

DESIGN AND IMPLEMNTATION OF AN

EDUCATIONAL AM RECEIVER WITH FPGA
USING SDR TECHNIQUES

 Ali Ibrahim Khalifa HANDER

 2021
MASTER THESIS

ELECTRICAL AND ELECTRONICS
ENGINEERING

Thesis Advisor
Assist. Prof. Dr. Bilgehan ERKAL

DESIGN AND IMPLEMNTATION OF AN EDUCATIONAL AM RECEIVER

WITH FPGA USING SDR TECHNIQUES

Ali Ibrahim Khalifa HANDER

T.C.

Karabuk University

Institute of Graduate Programs

Department of

 Electrical and Electronic Engineering

Prepared as Master Thesis

Thesis Advisor

Assist. Prof. Dr. Bilgehan ERKAL

KARABUK

January 2021

ii

I certify that in my opinion the thesis submitted by Ali Ibrahim Khalifa

HANDER titled “DESIGN AND IMPLEMNTATION OF AN EDUCATIONAL

AM RECEIVER WITH FPGA USING SDR TECHNIQUES” is fully adequate in

scope and in quality as a thesis for the degree of Master of Science.

APPROVAL

Assist. Prof. Dr. Bilgehan ERKAL …………………

Thesis Advisor, Department of Electrical and Electronic Engineering

This thesis is accepted by the examining committee with a unanimous vote in the

Department of Electrical and Electronic Engineering as a master thesis. January 19,

2021

Examining Committee Members (Institutions) Signature

Chairman : Assoc. Prof. Dr. Salih GÖRGÜNOĞLU (KU) …………………

Member : Assoc. Prof. Dr. Hüseyin DEMIREL (KBU) …………………

Member : Assist. Prof. Dr. Bilgehan ERKAL (KBU) …………………

The degree of Master of Science by the thesis submitted is approved by the

Administrative Board of the Institute of Graduate Programs, Karabuk University.

Prof. Dr. Hasan SOLMAZ …………………

Director of the Institute of Graduate Programs

iii

“I declare that all the information within this thesis has been gathered and presented

in accordance with academic regulations and ethical principles and I have

according to the requirements of these regulations and principles cited all those

which do not originate in this work as well.”

 Ali Ibrahim Khalifa HANDER

iv

ABSTRACT

M. Sc. Thesis

DESIGN AND IMPLEMNTATION OF AN EDUCATIONAL AM RECEIVER

WITH FPGA USING SDR TECHNIQUES

Ali Ibrahim Khalifa HANDER

Karabük University

Institute of Graduate Programs

Department of Electrical and Electronic Engineering

 Thesis Advisor:

Assist. Prof. Dr. Bilgehan ERKAL

January 2021, 102 pages

In this study, an AM receiver is designed and implemented in FPGA using SDR

techniques. The main purpose of the study is to provide a cheap and simple FPGA

based platform for education of SDR basics. Firstly in the study, a simulation

environment is set using MATLAB scripts. A set of test signals are recorded and

used to generate an AM test signal using MATLAB scripts. The signal is used in

simulation and test of FPGA implementation. Simulation code is also used as a

framework in the VHDL design of the FPGA based SDR system. Another MATLAB

script is written to analyze the test and simulation results and make a comparison.

Where the results obtained from those tests on the two signals, it proved that the tests

with the signal A1 are better than the tests with the signal A2, as the higher SNR

ratio means the better. When comparing the actual real-world values with the

simulations for each test signal, it is noted that the real-world SNR results are slightly

lower than the simulations SNR. Where test results provided a SNR higher than

v

20dB, which is an acceptable level for an AM receiver. Where, test and simulation

results prove FPGA AM RX system a useful candidate for AM demodulation and

reception. The designed and implemented FPGA AM RX system is also a good

utility in the education of basic SDR principles which is the main focus of this study.

Key Words : SDR, FPGA, VHDL, SNR, MATLAB, RX, AM.

Science Code : 90523

vi

ÖZET

Yüksek Lisans Tezi

SDR TEKNİKLERİNİ KULLANARAK FPGA İLE EĞİTİM AMAÇLI BİR

ALICININ TASARIMI VE UYGULANMASI

Ali Ibrahim Khalifa HANDER

Karabük Üniversitesi

Lisansüstü Eğitim Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Tez Danışmanı:

Dr. Öğr. Üyesi Bilgehan ERKAL

Ocak 2021, 102 sayfa

Bu çalışmada, bir AM alıcısı, SDR teknikleri kullanılarak FPGA'da tasarlanmış ve

uygulanmıştır. Çalışmanın temel amacı, SDR temellerinin eğitimi için ucuz ve basit

bir FPGA tabanlı platform sağlamaktır. İlk olarak çalışmada MATLAB betikleri

kullanılarak bir simülasyon ortamı oluşturulmuştur. MATLAB komut dosyalarını

kullanarak bir AM test sinyali oluşturmak için bir dizi test sinyali kaydedilir ve

kullanılır. Sinyal, FPGA uygulamasının simülasyonunda ve testinde kullanılır.

Simülasyon kodu, FPGA tabanlı SDR sisteminin VHDL tasarımında bir çerçeve

olarak da kullanılır. Test ve simülasyon sonuçlarını analiz etmek ve bir karşılaştırma

yapmak için başka bir MATLAB betiği yazılmıştır. İki sinyal üzerinde yapılan bu

testlerden elde edilen sonuçlar, daha yüksek SNR oranı daha iyi anlamına

geldiğinden, sinyal A1 ile yapılan testlerin A2 sinyali ile yapılan testlerden daha iyi

olduğunu kanıtlamıştır. Gerçek gerçek dünya değerleri her bir test sinyali için

simülasyonlarla karşılaştırılırken, gerçek dünya SNR sonuçlarının simülasyon

vii

SNR'sinden biraz daha düşük olduğu not edilir. Test sonuçlarının, bir AM alıcısı için

kabul edilebilir bir düzey olan 20dB'den daha yüksek bir SNR sağlaması durumunda.

Test ve simülasyon sonuçları, FPGA AM RX sisteminin AM demodülasyonu ve

alımı için yararlı bir aday olduğunu kanıtladı. Tasarlanan ve uygulanan FPGA AM

RX sistemi, bu çalışmanın ana odak noktası olan temel SDR ilkelerinin eğitiminde de

iyi bir yardımcı programdır.

Anahtar Kelimeler : SDR, FPGA, VHDL, SNR, MATLAB, RX, AM.

Bilim Kodu : 90523

viii

ACKNOWLEDGMENT

I would like to express my appreciation to my great supervisor, Assist. Prof. Dr.

Bilgehan ERKAL who has given me an unlimited support and valuable guidance.

There are no enough words to express thanks to him.

As well as, I would like to thank my lovely family from my heart for their being with

me by supporting me with all possible means.

ix

CONTENTS

Page

APPROVAL .. ii

ABSTRACT .. iv

ÖZET .. vi

ACKNOWLEDGMENT ... viii

CONTENTS .. ix

LIST OF FIGURES ... xii

LIST OF TABLES .. xiv

SYMBOLS AND ABBREVITIONS INDEX ... xv

CHAPTER 1 .. 1

INTRODUCTION ... 1

CHAPTER 2 .. 6

SOFTWARE DEFINED RADIO (SDR) ... 6

2.1. SDR ADVANTAGES .. 6

2.2. SDR DISADVANTAGES ... 7

2.3. IDEAL SDR DESIGN ... 7

2.4. MOTIVATION AND OBJECTIVES .. 8

2.5. SDR HARDWARE .. 8

2.5.1. Traditional Receiver ... 8

2.6. SDR RECEIVER .. 10

2.7. SDR TRANSMITTER ... 11

CHAPTER 3 .. 12

FIELD PROGRAMMABLE GATE ARRAYS (FPGA) ... 12

3.1. FPGA ARCHITECTURE .. 13

3.1.1. Logic Cells .. 15

x

Page

CHAPTER 4 .. 17

AMPLITUDE MODULATION (AM) .. 17

4.1. DOUBLE SIDE BAND AMPLITUDE MODULATION (DSB-AM) 18

4.2. DSB-AM RECEIVERS .. 18

4.2.1. Modulation Spectrum ... 19

4.2.2. Demodulation Methods .. 20

4.2.2.1. Envelope Detector... 20

4.2.2.2. Square Law Detector .. 22

CHAPTER 5 .. 24

VHDL –HARDWARE DESCRIPTION LANGUAGE .. 24

5.1. VHDL CONCEPTS ... 24

5.1.1. Behavoaral Modelling .. 24

5.1.2. Structural Modelling ... 25

5.1.3. RTL (Register Transfer Level) Diagrams .. 26

5.2. VHDL DESIGN STAGES ... 26

5.2.1. Entity .. 26

5.2.2. Architecture .. 26

5.2.3. Package ... 27

5.2.4. Process .. 27

5.3. VHDL MODELLING BASICS ... 27

5.3.1. Constants .. 27

5.3.2. Signals .. 28

5.3.3. VHDL Operators .. 28

5.3.4. Concurrent Signal Assignments ... 29

CHAPTER 6 .. 30

FPGA BASED AM RECEIVER DESIGN AND IMPLEMENTATION 30

6.1. HARDWARE COMPONENTS ... 30

6.1.1. MIMAS - Spartan 6 FPGA Development Board 32

6.1.1.1. Introduction ... 32

6.1.1.2. Applications .. 33

6.1.1.3. Board Features .. 33

xi

Page

6.1.2. LM4550 Audio Expansion Module .. 34

6.1.2.1. Introduction ... 34

6.1.2.2. Applications .. 34

6.1.2.3. Board Features .. 34

6.1.3. IO Breakout Board ... 35

6.1.3.1. Introduction ... 35

6.1.3.2. Board Features .. 35

6.2. PROGRAMS .. 35

6.2.1. Matlab ... 36

6.2.2. HDSDR ... 36

6.2.3. Audacity ... 36

6.3. MATLAB SIMULATIO CODES .. 37

6.4. VHDL CODE AND BLOCK SCHEMA OF THE SYSTEM 38

6.5. RTL DIAGRAMS OF THE SYSTEM .. 41

CHAPTER 7 .. 43

RESULTS AND DISCUSSION .. 43

CHAPTER 8 .. 47

CONCLUSION .. 47

REFERENCES .. 49

APPENDIX A. DATASHEETS OF ELECTRONIC COMPONENTS (SPARTAN

6, LM4550) .. 51

APPENDIX B. MATLAB CODE LISTINGS ... 56

APPENDIX C. VHDL CODE LISTINGS .. 61

RESUME ... 102

xii

LIST OF FIGURES

Page

Figure 2.1. Functional block diagram of wireless communication system. 7

Figure 2.2. Internal blocks of super heterodyne receiver. .. 9

Figure 2.3. Block diagram of the SDR receiver. .. 10

Figure 2.4. Block diagram of a SDR transmitter. .. 11

Figure 3.1. Internal structure of FPGA. ... 13

Figure 3.2. Basic FPGA architecture. .. 14

Figure 3.3. Contemporary FPGA architecture. .. 15

Figure 3.4. Logic cells. .. 16

Figure 4.1. Representation of the AM principle. ... 17

Figure 4.2. Spectra of double-sided for AM signals and baseband. 20

Figure 4.3. The simple circuit of envelope demodulator ... 21

Figure 4.4. A Signal and its envelope detector. ... 22

Figure 4.5. Block diagram for squaring law. ... 23

Figure 6.1. General view of FPGA AM receiver. .. 30

Figure 6.2. Photo of the FPGA AM receiver. .. 32

Figure 6.3. Mimas – spartan 6 FPGA development board. 33

Figure 6.4. LM4550 AC’97 audio expansion module. .. 34

Figure 6.5. IO Breakout module for mimas. .. 35

Figure 6.6. Block schema of the FPGA AM RX system. .. 38

Figure 6.7. RTL schematic of top module cnt. .. 41

Figure 6.8. RTL schematic of am_rx module. ... 42

Figure 7.1. FPGA AM RX system test results with A1 test signal: top signal is

output demodulated waveform, middle test signal A1 at the input and

the bottom signal is difference between two. .. 44

Figure 7.2. Matlab simulation results with A1 test signal: top signal is output

demodulated waveform, middle test signal A1 at the input and the

bottom signal is difference between two. .. 44

Figure 7.3. FPGA AM RX system test results with A2 test signal: top signal is

output demodulated waveform, middle test signal A2 at the input and

the bottom signal is difference between two. .. 45

xiii

Page

Figure 7.4. Matlab simulation results with A2 test signal: top signal is output

demodulated waveform, middle test signal A2 at the input and the

bottom signal is difference between two. .. 45

xiv

LIST OF TABLES

Page

Table 7.1. Test results. ... 46

xv

SYMBOLS AND ABBREVITIONS INDEX

ABBREVITIONS

AM : Amplitude Modulation

FM : Frequency Modulation

SDR : Software Defined Radio

DSP : Digital Signal Processors

FPGA : Field Programmable Gate Arrays

RF : Radio Frequency

IF : Intermediate Frequency

DSB : Double Side Band

DUC : Dynamic Update Client

DUC : Digital Up Conversion.

DAC : Digital-to-Analog Converter

PLL : Phased Locked Loop

ADC : Analog to Digital Converter

ASIC : Application Specific Integrated Circuit

DDC : Digital Down Converter

HDL : Hardware Description Language

LUT : Look Up Table

RAM : Random Access Memory

VHSIC : Very High Speed Integrated Circuit

VHDL : VHSIC Hardware Description Language

PCB : Printed Circuit Board

FF : Flip-Flop

IC : Integrated Circuit

PLD : Programmable Logic Device

CLB : Configurable Logic Blocks

RTL : Register Transfer-Level

1

CHAPTER 1

INTRODUCTION

Since the emergence of cellular communication in the last two decades, wireless

communication channels gained more popularity. Currently, the development of

wireless applications and wireless technology needs flexibility in the hardware. It is

time-consuming and so expensive to make new radios in response to the change of

wireless applications and standards [1]. These problems can be solved through

software radio by moving the components of analogs to the digital domain. Functions

of radio can be implemented by using programmable logic devices including Field

Programmable Gate Arrays (FPGAs).

FPGAs offer the ability to implement functions in a cheap way which were

previously implemented by using the components of analog hardware. They are

constructed by one basic reconfigurable logic cell that doubled thousands of times.

FPGAs are used as co-processors to interact with DSPs and general-purpose

processors and offering lower cost and higher performance to the system. The

freedom to select where to implement the baseband-processing algorithms will add

another flexibility dimension when using Software Defined Radio (SDR) algorithms.

Therefore, with SDR, it is possible to implement simply the radio communitarian

process. We can say that SDR is better than the conventional radio communication

system because with SDR all hardware is removed and replaced by pure software.

Moreover, this flexibility gives an advantage to SDR receiver where it will be able to

decode the entire signals.

Besides, software radio permits a single device on receiving numerous and different

wireless transmissions. By the use of digital signal processing mechanisms of

FPGAs, the software radio may be accomplished in the digital systems. Nevertheless,

2

it is logical to focus on AM transmission rather than FM because constructing AM

receiver is very easy to be learned. This technique is beneficial because it develops

digital design mechanisms that can be applied in more advanced communication

systems. Besides, implementing AM receiver by the use of analog electronics is

always the base. Nevertheless, the development of digital systems allows the

emulation of analog with digital circuity easily. The digital AM Receiver is a digital

system that tries to accomplish the same analog AM receiver functions by using only

FPGA and a small number of analog electronics.

 In general, AM is a technique that is used to modulate the wave based on

changing its amplitude based on changes in the frequency and amplitude together of

the associated modulating signal and keep the frequency of the wave constant. The

change in wave amplitude is directly associated with the change in the modulating

signal amplitude. The changes in the modulating signal determine the positive and

negative peaks of the wave change. Increase or decrease the modulating signal

amplitude causes an associated increase or decrease of the wave peaks amplitude [2].

1.1. LITERATURE REVIEW

In 1894-5, Marconi, Oliver Lodge and Alexander Popov invented the first radio

receiver by the use of a primitive radio wave detector named as a cohered and

invented in 1890 by Eduard Branly and improved by Lodge and Marconi [3]. At the

beginning, it has high resistance. When the voltage of radio frequency was applied to

the electrodes, its conducted electricity and resistance has been reduced. The coherer

in the receiver was directly connected between the ground and antenna. Moreover,

the coherer was connected to a DC circuit with a relay and battery besides its

connection to the antenna. When the coherer resistance is reduced by the incoming

radio wave, the current of battery flowed through it turning on the relay to ring a bell

or create a mark on the tape of paper in the siphon recorder.

For restoring the coherer to the previous no conducting status in order to receive the

next pulse of radio waves, it had to be tapped mechanically to disturb the metal

particles [4]. This has been performed by a "DE coherer", and it is a clapper struck

3

the tube and operate by the electromagnet powered by a relay. In 1970, a researcher

coined the term of “digital receiver”. The Gold Room Laboratory in California

generated an analysis of software baseband tool named Midas that was of course a

software defined. In 1984, a team in Garland, Texas Division of E-Systems was

coined the term “Software Radio”. The same place witnessed the development of the

'Software Radio Proof-of-Concept' laboratory which published the software radio

inside many governmental organizations. This software radio which has been

invented in 1984 was a digital baseband receiver which offered programmable

interference cancellation and demodulation for broadband signals, typically with

thousands of adaptive filter taps by the use of many array processors retrieving

shared memory. In 1991, the term ‘software radio’ has been reinvented by Joe Mitola

independently in a plane to construct a GSM base station which may combine

between Ferdensi's digital receiver with E-Systems Melpar's which control digitally

the communications jammers to a true software-based transceiver.

The first main push in SDRs development is implemented by the use US military

paper called SpeakEasy. The main objective for SpeakEasy paper was to use the

programmable processing to simulate more than 10 presenting military radios which

operate in frequency bands between 2 and 2000 MHz. The other design goal was to

be able to easily include a new modulation and coding criteria in future. Therefore,

the military communication can keep pace with the developed modulation and

coding techniques. From 1992 to 1995, the main goal was to create a radio for the

U.S. Army which would operate from 2 MHz to 2 GHz with satellites, Naval Radios,

Air Force radios and ground force radios.

The main goal was to obtain a quicker reconfigurable architecture at open software

architecture with cross channel connectivity (the radio may bridge various protocols

of radio).

Harnani Hassan et al [5], from University Teknologi MARA implemented a low

complexity SDR using Simulink, Matlab and Xilinx environment based on FPGA.

Xilinx has been used as a platform used as a method for FPGA design whereas the

Matlab and Simulink has been used to create a random spectrum signal. The

4

methodology and mechanisms of the proposed transceiver design helped to design

the SDR by offering a quick method altering system with low complexity. As well

as, it opened the way to integrate cognitive radio aspect to wireless network

including 3G and 4G in the future. As well as, the proposed design accomplished the

goal and proved that it can be easily conducted by the use of Blockset, Xilinx DSP

and Simulink. This design method provide a benefit to designers on using either

HDL, Verilog or Matlab. As well as, it helped designers to determine the problems

and provide a quick method to alter the system.

Shahana K et al [6], designed and implementation of Low Frequency Trans-Receiver

on Spartan-3AN device. System Generator has been used to design and to simulate

system level models, and to get the timing and resources using results before

conducting the design on actual device. The primary idea behind this is to seek about

the feasibility to get the software close to the antenna as can as possible and

therefore, solve the problems of hardware by using software. The benefit of this

method is that the equipment is relatively cheap and more versatile. Also, the low

frequency trans-receiver based on FPGA is simple to be upgraded and offers high

flexibility in execution. The measured findings shown that the input of transmitter

matches with the output of receiver. Furthermore, Simulation of Matlab has been

implemented for further aware to the mentioned problem. The comprehensive

implementation is considered a perfect example to conduct the problem of hardware

in software. In addition, it offers low power solution and low cost. FPGA

implementation may further deliver flexibility to customize the design on different

data ratios, Carrier Frequency, Filter types, Modulation types, etc. which make the

design efficiently reconfigurable.

Jiang-tao Gong et al [7], from Hunan Railway Professional Technology College

presented the block diagram for FPGA to realize the distributed algorithm which can

implement the SDR channel processing, where it consists a multiple FIR filters bank

for various frequency bands because the radio system defined by a software need into

a series of different FIR filters to catch the equivalent signal. Through the distributed

algorithm depending on signal processing structure of FPGA and by Repeating

configure the FPGA, it may accomplish more FIR filter bank switching, in order to

5

accomplish different channel information receiving. It offers applicable processing

approaches and thoughts for radio channel switching defined by software.

In this study, an AM receiver using SDR techniques is designed and implemented in

FPGA on Spartan 6 FPGA Board with LM4550 Audio and IO Breakout Board. The

basic notion behind is to seek provide a cheap and simple FPGA based platform for

teaching and learning of SDR basics. Where a simulation environment is set using

MATLAB scripts. And a set of test signals are recorded and used to generate an AM

test signal using MATLAB scripts. The signal is used in simulation and test of FPGA

implementation. Simulation code is also used as a framework in the VHDL design of

the FPGA based SDR system. Another MATLAB script is written to analyze the test

and simulation results and make a comparison.

Test and simulation results prove FPGA AM RX system a useful candidate for AM

demodulation and reception. Subsequently the designed FPGA AM RX system a

good in the education of basic SDR principles. Also it can be used in teaching the

radio signal processing techniques using FPGAs. The system is also suitable to be

used with any soundcard based SDR frontend.

6

CHAPTER 2

SOFTWARE DEFINED RADIO (SDR)

Radio development in the communication field which people need, comprising video

and voice communication and broadcasting messages, etc. Radio SRD is the

definition of system software that comprises the entire or many descriptors including

modification, extraction, and others. Wireless devices are used easily and cost less

business mission. Software-defined radio (SDR) provides many advantages where it

pushes forward the cost of communication and flexibility with several advantages

accomplished by the service providers to the end-users. You can obtain more than an

explanation for the software-defined Radio also called (SDR). Radio is a wireless

device that sends information and receives frequencies. Many issues must be solved

in order to access SDR including tuning the specification of the system according to

numerous applications. We may return some of all will be held including

modification, extraction and encoding. To end it, this information helps the

recognition of these specifications through the reception [8].

2.1. SDR ADVANTAGES

• Point and Click Control

• Easy Tuning

• A Computer Is Sharing the Workload

• Cheaper (In Some Cases)

• Smaller

• Visual look at a signal

• Open Platforms

• Custom Filtering Uses modern technology

7

2.2. SDR DISADVANTAGES

• Filtering Traded For Space

• Hard to run on old computers

• Sending is more expensive

• Dependent on Computer

• Software Limits

2.3. IDEAL SDR DESIGN

Software-defined radio system (SDR) is considered one of the most significant

contemporary techniques in supporting the communication in military service

insecurity, war and peace. SDR is used rather than the conventional radio and it

involves optimal radio frequency RF convertor wireless signal to an analog IF

properly used in conventional radio. Analog signal conversion to a digital frequency

(ADC) in IF and convert the signal from digital to analog FM frequency in the IF is

called (DAC) and shown in Figure 2.1.

The transfer of the signal routed by the converter sample rate by the interface (ADC)

and the treatment of hardware in the receiver. SDR may use the processing of

baseband with several digital devices including digital signal processors (DSP) and

field-programmable gate arrays (FPGA).

Figure 2.1. Functional block diagram of wireless communication system.

8

There are many advantages to the use of digital devices such as low energy

consumption, high processor speed and flexibility. Nevertheless, there is a

comparison between the extreme flexibility degrees with the increase in consumption

of energy for DSP to minimum limit the flexibility and lower consumption of energy

than ASICs. FPGA provides astray consistent devices that cheap and less energy

consumption than DSP and ASICs flexibility FPGA and the redesign is made it

optimal of SDR [9].

2.4. MOTIVATION AND OBJECTIVES

SDR looks like many technologies in terms of its development and it is used in both

military and civilian applications and called Speakeasy. It is used in the naval forces

of the United Stated between 1991-1995. This technology accomplished great

success in the basic rules, knowledge, radio program, wireless communication and

programming. Currently, all SDR software is available at low prices [10].

2.5. SDR HARDWARE

2.5.1. Traditional Receiver

In addition to the classic demodulation, the traditional receiver and the three

processes to determine the sign in the carrier frequency setting of frequency shifting,

the candidate is filtering or separated from others. The compensation for transport

losses by enlargement is inserted enlargement by mass demodulation. Because of

carrying the signal to the demanded level circuit demodulation, most of the

conventional reception setups use different plans for about a century. Figure 2.2

shows the basic structure is significant to differentiate between the conventional and

reception by new SDR methods.

9

Figure 2.2. Internal blocks of super heterodyne receiver.

Figure 2.2 clarifies the signal interference by the antenna. The signal is amplified

during RF phase that works in the frequency area of benefit only after passing the

reference to the mixer during the other input which receives the contribution

oscillator ornament and appointing local frequency oscillator. By tuning the radio

which is responsible to translate the frequency signal mediator (IF), the mixer is

responsible for shifting the frequency to the medium frequency IF.

The purpose of appointing a frequency oscillator is to confirm that the amount of

time difference frequency signal is equal to (IF). For instance, if the frequency at the

FM station is 100.7 MHz and IF was rumored to 10.7 MHz, the oscillator should be

adjusted to 90 MHz situation due to the low side transformation. The following

phase is the phase of weakening all the candidate wave signal but certainly a part of

the spectrum. The received signal of the band is prevented to display by the

bandwidth. At the end of the stage, the original signal modified is restored by the

demodulator through the loudspeaker IF it uses one substitute. To increase the

processing of the signal, it depends on the purpose through which its intended

recipient device. Cross of information learned to a loudspeaker connected to the

speaker [11, 12].

10

2.6. SDR RECEIVER

Figure 2.3. Block diagram of the SDR receiver.

Figure 2.3 for receiver signal SDR and be the first fund pass it RF tuner transfers the

analog signal to IF to be the same and conduct the process in the first three boxes of

the variant receiver device to the convergence point of the two systems [13].

Then cross-reference IF are changed frequency band by ADC is liable on change and

is fed into the next phase and be down the digital converter. DDC is a significant part

of the SDR system, it is cheap and consists of three main parts as follows:

• Digital local oscillator.

• Digital mixer.

• Finite pulsation response FIR low-scrolling IF filter.

Reference transfers to the corresponding baseband in our digital mixer at the counter

of phase elements by the analysis [14]. It is a modified digital local oscillator that the

reference is needed far or up to 0Hz and the difference with the bandwidth along and

be a low-pass filter and detects any receiver part is a suitable signal. Another

approach is represented by decreasing the sampling ratio or sampling frequency is

taken to new samples from the baseband and create from the split in the frequency of

the original sample through an N element. It is named the decimation element. The

ratio of the end sample may be less than double the higher-frequency elements by

Nyquist theory.

11

The samples crossing to the baseband digital signal processing in a DSP box, finally,

for example decoding and demodulating [15].

2.7. SDR TRANSMITTER

As shown in Figure 2.4, DSP income generates the baseband signal to be sent by

SDR. The first box is DUC for digital transformation and translates the baseband

signal for IF by make its passband.

DAC send the samples to the field analog after the RF is moving towards the high-

frequency signal is later enlarged and the signal transmitted from the antenna DUC

Filter is responsible for the high sample ratio of the baseband signal which is

compatible with the operating of the elements followed by the so reverse process

arises at the reception frequency [14, 15].

Figure 2.4. Block diagram of a SDR transmitter.

12

CHAPTER 3

FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

FPGA can be described as a device that includes a matrix of reconfigurable gate

array logic circuitry. When FPGA is formed, the internal circuitry is connected in a

method that produces a hardware implementation of the software application.

FPGAs do not include an operating system and they use dedicated hardware to

process logic. The nature of FPGAs is parallel and therefore, different operations are

not competing for the same resources. Consequently, when adding additional

processing, one part of the application performance is not influenced.

Besides, many control loops can operate on a single FPGA device at different ratios.

The critical interlock logic can be enforced by FPGA-based control systems and can

be designed to inhibit I/O enforced by the operator. Nevertheless, FPGA-based

systems are unlike the hard-wired printed circuit board designs that have stable

hardware resources where FPGA-based systems may rewire their inner circuitry to

help the reconfiguration when the control system deploys in the field.

FPGA offers the reliability and performance for the dedicated hardware circuity. By

the use of FPGA, it is possible to substitute thousands of discrete elements by

merging millions of logic gates in one integrated circuit (IC) chip. As shown in

Figure 3.1 the internal resources of FPGA chip include a matrix of configurable logic

blocks bounded by a periphery of I/O blocks. Inside the FPGA matrix, the signals are

routed by wire routes and programmable interconnect switches.

13

Figure 3.1. Internal structure of FPGA.

3.1. FPGA ARCHITECTURE

The FPGA structure consists of many components as follows:

• Look-up table (LUT): This component conducts many logical operations.

• Flip-Flop (FF): This register component stores LUT result.

• Wires: These components connect components.

• Input/output (I/O) pads: These ports are physical and their mission is to get

data in and out of FPGA.

The collection of these components produce the basic structure of FPGA as clarified

in Figure 3.2. Despite the efficiency of this structure to implement any algorithm, the

proficiency of the resulting implementation is limited in terms of calculated output,

feasible clock frequency and demanded resources.

14

Figure 3.2. Basic FPGA architecture.

The modern architecture of FPGA includes many basic components accompanied by

other computational and storage blocks which increase the effectiveness and

computational density of the device. The additional components which will be

discussed in the following sections are as follows:

• Embedded memories to store the distributed data.

• Phase-locked loops (PLLs) to drive the FPGA fabric at different clock ratios.

• High-speed serial transmitting and receiving devices.

• Off-chip memory controllers

The collection of these components gives FPGA the flexibility in implementing any

software algorithm running on processors and produce the modern FPGA

architecture shown in Figure 3.3.

15

Figure 3.3. Contemporary FPGA architecture.

3.1.1. Logic Cells

The simple FPGA includes a large number of logical cells and each cell can be

configured to conduct many functions. Each logic cell has a unified number of

entries and exits. The logic cells used in FPGAs are as follows:

• Multiplexer based logic cells (e.g. Actel FPGAs)

• Memory-based logic cells (e.g. Xilinx FPGAs)

The basic internal structure of FPGA in a very wide sense is shown in Figure 3.4.

16

Figure 3.4. Logic cells.

As shown in Figure 3.4 that the internal structure of FPGA consists of programmable

interconnections and configurable logic cells.

17

CHAPTER 4

AMPLITUDE MODULATION (AM)

The amplitude modulation occurs when high-frequency carrier wave amplitude

differs as a function of signal intensity. Figure 4.1 shows the principle of amplitude

modulation. We can realize that the amplitudes of positive and negative carrier wave

half-cycles differ in relation to the signal. This means that increasing the positive

sense results lead to an increase in the carrier wave amplitude whereas the opposed

happens for the negative half-cycle. In general, AM process is implemented by the

use of an electronic circuit which is called a modulator [16].

Figure 4.1. Representation of the AM principle.

The AM process includes an important consideration which is the modulation factor.

We can imagine this factor as the depth of modulation or change in carrier amplitude.

In other words, it represents the ratio between the change in carrier amplitude and the

18

amplitude of normal carrier wave. The purpose of this factor is the determination of

strength and quality of transmitted signals respectively. The modulation of the carrier

in AM wave to a small degree produces a small change in carrier amplitude.

Therefore, the transmitted audio signal is not too strong. This means that the audio

signal is stronger and clearer when the modulation degree is great [16].

4.1. DOUBLE SIDE BAND AMPLITUDE MODULATION (DSB-AM)

One of the main types of AM technique is Double Side Band (DSB) where DSB

consists of two sidebands upper and lower with wave carrier suppressed. Practically,

DSB is consistent with SSB receivers where the last one is considered of the main

types of AM techniques in which the receiver rejects only the unwanted or redundant

sideband.

DSB signals are generated based on suppressing the carrier that results in the upper

and lower sideband. This generating method does not consist of waste in power.

DSB signal is generated based on modulating a carrier across the information signal

of a single-tone sine wave and signifies the summation of two sinusoidal sidebands.

Later, the carrier suppressed and the amplitude of the DSB sine wave signal changes

in the frequency of the carrier. The main features of DSB signal are the transition of

the stage that occurs at the wave lower amplitude slices. In general, DSB carrier

signals are generated by the balanced modulator circuit based on generating the

difference or summation between frequencies and to cancel or balance the carrier.

However, DSB signals are rarely used despite these features and both the low cost

and simple design because it is difficult to demodulate signals at the receiver. DSB

signals are used in many applications but the most important one is the transmitting

of information in television signals [17].

4.2. DSB-AM RECEIVERS

One of the oldest radio modulation technique is the amplitude modulation. The

receivers which are used to listen to DSB-AM are maybe the simplest receivers for

19

any radio modulation technique that perhaps the reasons behind the use of this

versions of amplitude modulations until now. The super heterodyne type of receivers

is the most popular receivers in use currently. They comprise of Amplifier, Local

Oscillator and Mixer, IF Section, Antenna, and Detector RF amplifier. The need of

these systems can be noticed when we consider the simplest and inadequate TRF or

tuned radio frequency amplifier. Amplitude modulation happens when the carrier

wave amplitude is modulated in order to respond to the source signal. In amplitude

modulator, we have an equation which is look this:

𝐴𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = 𝐴(𝑡)sin(𝜔𝑡) (4.1)

As where the much simple form amplitude modulation modulator comprises of a

diode that is configured to represent a detector of envelop. Product detector is

considered another type of demodulator which provide better-quality demodulation

with further circuit complexity.

4.2.1. Modulation Spectrum

As treated previously, the beneficial modulation signal m(t) is frequently more

complicated than a single sine wave. Nevertheless, in accordance with Fourier

decomposition, m(t) can be convoyed as the set of sine wave sum for many stages,

frequencies and amplitudes.

 By performing the multiplication of 1 + m(t) with c(t) as previously, the result

comprises a sum of sine waves. The carrier c(t) presents unchanged, but every

frequency element of m at fi has two sidebands at frequencies fc + fi and fc - fi.

The set of previous frequencies above the carrier frequency is called as upper

sideband and those lower configure the lower sideband. As clarified in upper of

Figure 2, the modulation m(t) can be considered to comprise an equal combination of

positive and negative frequency factors. The sideband can be viewed as the

modulation m(t) which is simply shifted in frequency by fc as showed at the bottom

from the right of Figure 2.

20

Figure 4.2. Spectra of double-sided for AM signals and baseband.

4.2.2. Demodulation Methods

The simplest type of amplitude modulation comprises a diode that is configured to

represent an envelope detector. Product detector is considered other type of

demodulator that has the ability to offer better-quality demodulation with further

circuit complexity.

4.2.2.1. Envelope Detector

When there is an attempt to demodulate the modulation amplitude, it looks like a

good sense which only the amplitude of the signal need to be cheeked. By checking

only the amplitude of signal at specific time, it is possible to eliminate the carrier

signal from consideration and it is possible to check the original signal. The

amplitude of signal can be checked by using a tool in our toolbox (the envelop

detector).

The envelope detector is just a half wave rectifier followed by a low pass filter. It can

be imagine as electronic circuit which takes (comparatively) high-frequency

amplitude modulated signal as input and delivers an output that is the demodulated

envelop of the original signal as shown in Figure 4.3.

21

Figure 4.3. The simple circuit of envelope demodulator

The detector is placed after the IF section in case of commercial amplitude

modulator. In this point, the carrier is 455 kHz whereas the highest frequency of

envelop is only 5 kHz. Since the ripple element is about 100 times the frequency of

the maximum baseband signal and does not pass through any succeeding audio

amplifiers. We can see below the forms of AM or FM signal 𝑥(𝑡) as follows:

𝑥(𝑡) = 𝑅(𝑡)cos(𝜔𝑡 + 𝜑(𝑡)) (4.2)

In the case of AM, 𝜑(𝑡) (the stage element of the signal) is constant and can be

neglected. Moreover, the carrier frequency𝜔 of amplitude modulator is also

constant. Therefore, the entire information of the amplitude modulator signal is

in 𝑅(𝑡) where 𝑅(𝑡) is known as the envelope of the signal. Thus, the amplitude

modulator signal is given by the function as follows:

𝑥(𝑡) = (𝐶 + (𝑚𝑡))cos(𝑤𝑡) (4.3)

𝐶 represents the carrier amplitude, (𝑚𝑡) represents the original audio frequency

message and 𝑅(𝑡) equal to 𝐶 + (𝑚𝑡). Consequently, the original message can be

recovered if the envelop of the amplitude modulator is extracted.

https://en.wikipedia.org/wiki/Amplitude_modulation
https://en.wikipedia.org/wiki/Frequency_modulation

22

Figure 4.4. A Signal and its envelope detector.

4.2.2.2. Square Law Detector

A square low detector of electronic signal processing is a device which create an

output relative to square of some input. For instance, in radio signal demodulation,

semiconductor diode is used as a square law detector which provide an output

existing relative to the square of the amplitude of the input voltage over some range

of input amplitudes. A square law detector offers an output directly relative to the

power of the input electrical signal. Moreover, square detector is a coherent or

synchronous detector. It avoids the problem to recreate the carrier by simply square

the signal of input. Basically, it uses the amplitude modulator signal itself as a range

of wideband carrier. The multiplier output is the square of the input amplitude

modulator signal:

(𝑒𝑎𝑚)
2 = (sin𝜔𝑐𝑡 +

𝑚

2
cos(𝜔𝑐 + 𝜔𝑚) 𝑡 −

𝑚

2
𝑐𝑜𝑠(𝜔𝑐 + 𝜔𝑚)𝑡)

2 (4.4)

23

 Figure 4.5. Block diagram for squaring law.

24

CHAPTER 5

VHDL –HARDWARE DESCRIPTION LANGUAGE

VHDL is a term that refers to the Very high speed integrated circuit (VHSIC)

Hardware Description Language (VHSIC). VHDL is a programming language used

to describe the logic circuit by functioning the behavior of data flow and/or the

structure.

The description of this hardware is used to configure a programmable logic device

(PLD) including a Field Programmable Gate Array (FPGA) with a convention logic

design. Also, VHDL is a formal language used to specify the structure and behavior

of the digital circuit.

5.1. VHDL CONCEPTS

The goal of VHDL is to describe a model of digital hardware device where this

model identifies the external view of the device and one or more of the inner views.

The external view of the device identifies the interface of the device which it can

communicate with many models in the same environment while the internal view of

the device identifies the structure or functionality.

5.1.1. Behavoaral Modelling

The most basic formula for the behavioral modeling of VHDL is the signal

assessment statement as shown in the following example:

a <= b;

The previous example means that a gets the value of b. This statement has an effect

which is signal a is replaced by signal b. When the value of signal b is changed, this

25

statement is executed. The sensitivity list of this statement is signal b. The signal

statement is executed when a signal in the sensitivity list of a signal assignment

statement changes value. If the execution produced a new value that is different from

the present value of the signal, the event will be scheduled for the target signal.

Consequently, no event will be scheduled but the transaction is still generated if the

execution result value is the same. The event is scheduled by only the changes of the

value while the transaction is always generated when the model is assessed.

A transaction is always generated when a model is evaluated, but only signal value

changes cause events to be scheduled.

5.1.2. Structural Modelling

The structural description describes the logical elements of the system and thus, it is

a simulation of the system. The elements can be OR gate(s), AND gate(s), or it can

be at a higher logical level for example Processor Level or Register Transfer-Level

(RTL). The structural description is more traditionally used than the behavioral

description for the system which requires explicit design. If we want to operate A +

B=C. In behavioral design, we must write C = A + B and we have no choice on the

type of adders used to conduct this addition process.

The entire statements with the structural description are concurrent. The entire

statements that have an event conducted concurrently through any simulation time.

The main difference between VHDL and Verilog structural description is the

availability elements (particularly primitive gates) for the user. The whole primitive

gates including AND, OR, XOR, NOT and XNOR are recognized in Verilog. The

gates must be linked to library, packages or modules which have the description of

gates to be recognized by the VHDL packages.

26

5.1.3. RTL (Register Transfer Level) Diagrams

Register-transfer level (RTL) that existed in the digital circuit design is modeling the

asynchronous digital circuit in terms of digital signals flow between the logical

operations conducted on those signals and hardware registers. Register-transfer level

abstraction is used hardware description languages (HDLs) such as Verilog and

VHDL to generate high-level illustrations of a circuit through which lower-level

representations and at the end actual wiring are derived. RTL design is considered a

distinctive practice for modern digital design [18].

In contrast with software complier design when register-transfer level intermediate

exemplification is the lowest level, RTL level is the ordinary input which designers

of circuit operate on there are various more level than it. Actually, in the synthesis of

the circuit, a transitional language is used between input register transfer level

representation and target netlist. Unlike in netlist, constructs for example cells,

functions and multi-bit registers are existed [18].

5.2. VHDL DESIGN STAGES

5.2.1. Entity

Entire designs are expressed in terms of entities. The most basic building block of

design is the entity. The entity of VHDL determines the entity name, entity ports and

information related to the entity. Entire designs are created by the use of one or more

entities [19]. If the type of design is hierarchal, the description of the top-level will

include a description of the lower-level contained in it.

5.2.2. Architecture

The architecture description is included in all entities which can be simulated. The

behavior of the entity is described by the architecture. Multiple architectures are

included in a single entity .a single architecture might be structural while another

architecture might be a behavioral description of the design.

27

5.2.3. Package

The main goal of the package is to encapsulate the elements which can be shared

(globally) between two or more design units. A package is a popular storage unit that

can be used to hold data to be shared between many entities. Data can be shared

through packages where the declaration of data inside the package helps the data to

be referenced by further entities.

Each package includes two parts: a package body and a package declaration section.

The interface of the package is defined by the package declaration and looks like the

same method in which the entity defines the model interface. The actual behavior of

the package is specified by the package body in the same approach that the

architecture statement does for the model.

5.2.4. Process

The basic execution unit of VHDL is the process. The process can be categorized

into single and multiple processes in the entire operations that are conducted in a

simulation of a VHDL description.

5.3. VHDL MODELLING BASICS

5.3.1. Constants

The constant objects are names given to a particular value of type. Constants provide

the capability to have a well documented model and a model that is easy to update.

For example, constants are used when a model needs the same value for several

cases. The designer can change the value of the constant and compile which will

change the whole cases of instances to reflect the new value of the constant.

28

5.3.2. Signals

Models are formed by the connection of entities together by using signal objects. The

communication of dynamic data between entities is implemented by signals. A

declaration of the signal is written is as follows:

SIGNAL signal_name: signal_type [:= initial_value];

Signal name(s) is followed by the keyword SIGNAL. A new signal is created by

each signal name. A colon separates between the signal name and signal type. Type

of signal refers to the type of information on which the signal consists.

The signal can include an initial value specifier through which the value of the signal

can be initialized. It is possible to declare the signal in package declarations,

architecture declarations and entity declaration sections. Signals declared in the

package are referred to as global signals because they may be shared between

entities.

5.3.3. VHDL Operators

There are six categories of predefined operators in the language and these operators

can be described as follows:

• Additional operators

• Multiplication operators

• Relational operators

• Logical operators

• Shift operators

• Miscellaneous operators

Each operator has increased precedence starting from the category (1) to (5).

Operators located in the same classification have the same precedence and the

29

evaluation is implemented from left to right. Left to right evaluation can be

overridden by the use of parentheses.

5.3.4. Concurrent Signal Assignments

Each assignment statement in a typical programming language including C and C++

implements one after the other in identified order. The statement order of the source

file determines the order of implementation. No specified ordering of the assignment

statements inside VHDL architecture. The implementation order inside VHDL

architecture is only specified by events occurring to signal which the assignment

statements are sensitive to.

30

CHAPTER 6

FPGA BASED AM RECEIVER DESIGN AND IMPLEMENTATION

Design and Implementation of FPGA based AM receiver consists of three parts:

selection of hardware design components, algorithmic design and simulation of

software parts in MATLAB and actual implementation of VHDL source code in the

FPGA for actual real world tests.

6.1. HARDWARE COMPONENTS

There are mainly three components in hardware part. MIMAS FPGA board, LM4550

soundcard and IO breakout board which adapts soundcard with PMOD connectors to

the FPGA main board. Other than these three hardware components, there are

interface cables: one USB-to-serial adapter cable for sending commands to the FPGA

board, one USB cable for FPGA programming and two audio extension cables for

connecting the analog sound input and outputs of LM4550 soundcard to the PC

soundcard. The general view of the system is shown in Figure 6.1.

 Figure 6.1. General view of FPGA AM receiver.

31

In Figure 6.1, a modulated signal produced by the Audacity played back wav file

which is produced using Matlab codes which will be defined later, is sent through

PC’s soundcard line-output to the line-in of FPGA’s soundcard LM4550. The ADC

of the LM4550 digitizes these audio signals in 16-bit, 48KSps, stereo format. The

two channels of the stereo audio interface provides a means to represent a complex

signal. So, the efective bandwidth of the AM radio signal is +24KHz as Nyquist

criteria for sampling complex signals suggests. Thus the total bandwidth of the

processed complex signal will be 48KHz. This complex signal which incorporates

two DSB-AM stations where each one plays two 10 second duration of different

music on two different frequencies continously, is processed and demodulated by the

FPGA fabric which is programmed appropriately for this purpose. So, all the

processing of the signal after digitization is carried on by FPGA fabric which can be

redefined with software (VHDL in this case). Which of the two stations are selected

is determined by a frequency setting command sent through the serial link provided

by the virtual serial communication port. The demodulated signal is then sent

through the DAC part of the LM4550 soundcard at 16-bits, 48KSps stereo format.

Despite the fact that the uplink is a two channel stereo audio stream, the resulting

signal is a mono signal in real format and this mono signal is simply repeated in the

two channels. However, there is a source select module programmed in the FPGA,

which takes commands through built-in switches on the FPGA mainboard and thus

the stereo up-link is useful in representing the complex signals that the different part

of FPGA AM RX module has. The source select module diverts the inter block

signals to output according to the commands from the swtiches and gives the

opportunity of seeing the different processing stages of the signal. Also, there is a

clipping indicator module in the FPGA fabric, which shows the level (actually an

indication of whether clipping occurs or not) of the signal at the input of every signal

processing block in the AM receviver module. This indicator is useful in seeing that

the level of the signal at the input of that stage is healthy or not. The clipping

indicator module uses on-board LEDs for this purpose.

The resulting receiver signals are then monitored, recorded and analyzed at the PC

using MATLAB scripts and HDSDR program which is a third party free SDR

software used in amateur radio projects.

32

Figure 6.2. Photo of the FPGA AM receiver.

Shown in Figure 6.2 is a photo of the actual working prototype of the system. Here,

connecting cables, LM4550 Audio extension card, IO breakout board and main

FPGA board is clearly seen. Hardware components of the FPGA AM receiver are

given in the next sections in detail.

6.1.1. MIMAS - Spartan 6 FPGA Development Board

6.1.1.1. Introduction

Mimas is easy to use the Development of FPGA board presenting Xilinx Spartan-6

FPGA. Mimas has been designed to learn and experiment design of the system with

FPGAs.

This developed board presenting Xilinx XC6SLX9 TQG144 FPGA with a maximum

of 70 user IOs.

 The USB 2.0 interface offers easy and quick configuration download to the on-board

SPI flash. There is no need for a special downloader cable or programmer to

download a bitstream to the board [20].

33

Figure 6.3. Mimas – spartan 6 FPGA development board.

6.1.1.2. Applications

• Product Prototype Development

• Home Networking

• Signal Processing

• Wireless and Wired Communication

• An educational tool for university and school [20].

6.1.1.3. Board Features

• FPGA: Spartan-6 XC6SLX9 in TQG144 package

• Flash memory: 16 Mb SPI flash memory (M25P16)

• 100MHz CMOS oscillator

• USB 2.0 interface for On-board flash programming

• FPGA configuration via JTAG and USB

• 8 LEDs and four switches for user-defined purposes

• 70 IOs for user-defined purposes

• Onboard voltage regulators for single power rail operation [20].

34

6.1.2. LM4550 Audio Expansion Module

6.1.2.1. Introduction

This Audio module features LM4550, an audio codec for PC systems that is

completely compliant and implements the analog concentrated functions of the

AC'97 Rev 2.1 architecture. LM4550 uses 18-bit Sigma-Delta ADCs and DACs to

create a high-quality stereo audio output [21].

Figure 6.4. LM4550 AC’97 audio expansion module.

6.1.2.2. Applications

• Product Prototype Development

• Audio Record/Playback Systems

• Media players [21].

6.1.2.3. Board Features

• One 2×6 pin Expansion connector

• AC'97 Rev 2.1 Compliant

• 90 dB Dynamic Range

• Stereo Headphone Amp With Separate Gain Control

• Dimension: 50mm x 46mm [21].

35

6.1.3. IO Breakout Board

6.1.3.1. Introduction

This product is an IO breakout solution for Mimas Sparta6 development board. This

product helps Mimas IOs to be categorized into smaller 2x6 headers which may

enable easy attachment for the other peripheral expansion modules. It features four

2×6 extension connector [22].

Figure 6.5. IO Breakout module for mimas.

6.1.3.2. Board Features

• Four 2x6 pin expansion connector.

• Can be connected to any side of Mimas.

• Dimension: 34.3mm X 88.1mm [22].

6.2. PROGRAMS

In this study, third party software packages are used in the various stages. These

programs and their role in the study are given in the next sections in detail.

36

6.2.1. Matlab

The significance to use MATLAB in our study is that realistic implementation of

SDR must include some equipment, for example, a high-speed A/D converter, a

powerful signal processor. This equipment makes the hardware platform very

expensive for students who study radio communication. Therefore, we used Matlab

in our study and radio signal frequency is limited in the band of audio. One Matlab

session has been through the setup of the receiver. Also, Matlab is used to complete

all the modulation and demodulation studies. When this system is used, the user

needs to only select the modulation and demodulation and corresponding factors.

6.2.2. HDSDR

HDSDR is SDR program which is used to listen into radio, analysis of spectrum and

analyse the results. It enjoys by waterfall and varied range separated from each other

of the input and output signal. It prevent noise to accomplish the lower speed

waterfall spectrum and receive and transmit the signals prepared by similar Matlab

scripts. HDSDR monitors and records the waveform produced by PC's sound card.

As well as, it works to record and playback RF, IF and AF WAV files with recording

scheduler. Therefore, HDSDR software allows a user to enter the mode and global

offsets to sync properly the pitch between the radio and SDR audio.

6.2.3. Audacity

It is used as a recording and playback program. It can be used easily as a powerful

audio editing and recording package. It allows to record voices and edit recorded

voices to correct any mistakes in voices and to combine some sound recordings from

many resources including music, interviews, or other recording of sound. Audacity

allows to export the recordings in MP3 files format and because of this, it is suitable

to produce podcasts.

37

6.3. MATLAB SIMULATIO CODES

In the first place the test signal used in the experiments, which is played through PC

soundcard using Audacity program is generated by the help of a MATLAB script.

The code is listed in Appendix B.1. The code is very straightforward and comments

in the code explains itself. The MATLAB program firstly takes two audio sample

files in wave format which are prepared as 10 second duration mono music sampled

at 8KSps format wave files. It up-samples and interpolates to 48KSps each and uses

in the modulation of two different AM stations whose frequency is determined by the

parameters in the code and so can be changeable. The resulting modulated waveform

is complex thus it is recorded in stereo format. This sample signal is then used in

both actual operational testing and MATLAB simulation of the system.

Another script is used to design filters used in the system and derived coefficients are

then transferred to the FIR filter IP component through a coefficient file. The

MATLAB script used for this purpose is listed in Appendix B.2. The program shows

the frequency response of the designed filter as a graphic and stores the coefficients

of the filter in a file which will be used in the FIR filter IP of the FPGA AM receiver.

Here, number of the coefficients, sampling rate and cut-off frequency of the filter can

be changed as desired.

The design of the algorithms underlying the principles of FPGA AM receiver and

simulation of the system is achieved using a MATLAB script. Then, the algorithms

are transferred to FPGA after recoded in VHDL. The VHDL codes of the FPGA AM

receiver will be discussed later. The listing of the simulation code is given in

Appendix B.3. This code is also very straight forward and explained by comment

lines well. It takes test signal in wave file format, demodulates one of the AM

stations whose frequency is set by a parameter in the code and using squaring

method (envelope detection) demodulates, filters and records the resulting signal as a

48KSps mono wave file so that it can be played back and listened later. Also,

products obtained at the various stages of demodulation process is recorded in

separate wave files for seeing the evolution of the signal and further analysis

purposes.

38

Lastly a MATLAB script listed in Appendix B.4 is used to compare the original

modulating waveform with the demodulation result of the either simulation program

or FPGA AM receiver which is recorded by HDSDR and post processed with

Audacity to cut and synchronize with the original. The waveforms that will be

compared is thus recorded in one stereo wave file where left channel carries the

demodulated signal and right channel carries original modulating signal. The results

will be discussed on the chapter about Results and Discussion.

6.4. VHDL CODE AND BLOCK SCHEMA OF THE SYSTEM

All the VHDL code of the system is given in Appendix C. As with the MATLAB

codes, comments explain everything. The block schema given in Figure 6.6

summarize the functioning of the FPGA AM RX and show the relations between

different modules. Top module cnt is used as a wire loom for other sub-modules and

provides the interconnections between different modules of the system. Also, top

module contains necessary codes to arrange clocks and resets used by sub-modules

of the system.

Figure 6.6. Block schema of the FPGA AM RX system.

39

All the basic AM receiver functions is contained in the AM_RX module. As seen on

Figure 6.6, AM_RX module can handle complex signals. Despite the output is also

two channels, it is not in complex form. The resulting demodulated signal can only

be in real format thus it is copied on both channels. The outputs of different sub-

modules in AM_RX module can be directed to the output and since many of them

provides complex output when they are selected, the output of the AM_RX module

is operated in complex mode. The selection is achieved by built-in switches of the

Mimas FPGA board. Also, every sub-module in the signal chain of AM_RX module

has its own clipping indicators and outputs of these indicators are directed to built-in

LEDs on the board.

Complex input to AM_RX module is firstly frequency shifted by an amount

controlled by the first NCO, whose frequency control input (phase increment input)

is driven by the frecalc module which in turn takes commands from sercomrx

module which provides frequency setting commands received from PC through a

USB-to-serial cable using a suitable terminal program such as Termite or PuTTY run

on the host PC. All serial data communication is handled by the sercomrx and

sercomtx modules in the FPGA design. The received commands by sercomrx module

are echoed through sercomtx module to host PC. The command format is

f<sign><frequency> where f represents that it is a frequency changing command,

sign is either + or – and frequency is a 5-digit integer number in the range 00000 –

23999 which is the absolute value of frequency in Hz. So, the frequency can only be

changed in 1Hz increments (frequency resolution is 1Hz).

The complex frequency down shifting operation sets the center frequency of the

received station to zero. The complex radio signal then low-pass filtered whose cut-

off frequency is set to 4KHz, which is compatible with the bandwidth of the

baseband modulating test signal used in the experiments. Then the signal is complex

up-shifted to 12KHz using a second fixed frequency NCO and a subsequent complex

multiplier IP. This last fixed upshifting operation is necessary for demodulation.

All the FIR filters, NCOs and complex and real multipliers are implemented using

ready-made Xilinx IPs which shortens design time extremely and provides high

40

performance. Every IP used is configured and setup using respective wizards whose

use is very comprehensive but explained clearly in respective datasheets of every IP.

So, they will not be covered here in detail.

After second frequency shift, the signal being bandlimited to +4KHz at the center

frequency of 12KHz is realized by an adder and then demodulated using a squaring

method which uses just a single multiplier. The resulting signal must be low-pass

filtered to get rid of the high frequency products generated in the non-linear squaring

process. After this the original modulating signal is obtained clearly.

All three FIR filters in the design are identical in input and output sampling rates

(48KSps), bit resolution (16-bits), number of coefficients (255), coefficient

resolutions (16-bits) and cut-off frequency (Fc=4KHz). So, after their coefficients

found using a MATLAB script, they are implemented using the FIR filter IP design

wizard and the resulting module is instantiated (copied) three times.

Signal digitization and reproduction is carried over by the LM4550 based soundcard.

So, signal exchange between PC and FPGA AM RX is through audio cables in

analog format. For the management of the LM4550 soundcard, a VHDL module is

written by the help of the respective datasheet. The management module resets, sets

up and configures the LM4550 chip prior usage and then handles the data streaming

between LM4550 and Spartan6 FPGA.

As said before frequency control is achieved through a USB-to-TTL serial cable and

using a terminal program in the PC. The serial link cable also provides the auxiliary

5V supply that the LM4550 soundcard necessitates since Mimas FPGA board only

supplies 3.3V.

According to the design utilization summary report generated in the synthesis

process by Xilinx ISE webpack suite, out of 1430 slices 702 is used which

corresponds to 49% utilization. Out of 32 RAMB16WER ram blocks 30 is used

which corresponds to 93% utilization. And lastly, out of 16 DSP48A1 DSP blocks 15

is used which corresponds to 93% utilization. So, in the light of these information the

41

design is said to be RAM and DSP intensive. It is normal for a SDR design

implemented in FPGA because their signal chain usually requires RAM and DSP

intensive filter and multiplier operations.

6.5. RTL DIAGRAMS OF THE SYSTEM

RTL diagrams are useful in showing the internals of a design in FPGA. They provide

an easy and quick way of understanding the operation of the design. They are also

used as an alternative tool in the debugging process of the design. Most important

modules of the system are presented here to show their operation. These are top

module cnt and am_rx modules.

Figure 6.7. RTL schematic of top module cnt.

42

Figure 6.8. RTL schematic of am_rx module.

43

CHAPTER 7

RESULTS AND DISCUSSION

The system is simulated and tested using two 10s sound recordings firstly recorded at

8KSps and then upsampled to 48KSps to cope with the modulation process. Each

recording incorporates music which fill the 4KHz spectra in a normal distrubution so

that test signals provide a similar result with a white noise source. The recording is

used in the modulation of two AM stations put in different frequencies with the test

signal A1 on fc=5KHz and A2 on fc=-15KHz in the complex signal at 48KSps.

Modulation is done using a MATLAB script whose listing given on Appendix B1.

This modulated complex test signal then used in the simulation of demodulation

using the code listed in Appendix B3. The test signal is also used in actual real world

experiments carried on FPGA AM RX system. This is achieved by playing the test

signal in a continuous loop outputted to the soundcard of PC using Audacity as the

player. After demodulation by the FPGA AM RX, the resulting waveform is

captured by the soundcard of the PC and monitored and recorded by the HDSDR

SDR program. The resulting waveforms from simulation and test are post-processed

before put into analysis using a MATLAB script which is listed on Appendix B4.

Post-processing incorporates normalizing and syncronization of the resulting

waveform to respective input test signal, either A1 or A2. Post-processing is carried

on using Audacity. The post-process result is then recorded in 2-channel stereo

format in order to preserve the synchrocity. In this format the top signal (Left

channel) holds the demodulated waveform and the bottom signal (Right channel)

holds the original test signal. The analysis operation provides three results: wav

recording of difference signal between demodulation and original test signal, rms

level of error signal (obtained from difference waveform using a 10s window),

Signal-to-Noise Ratio (SNR) in dB calculated from the rms error and rms level of the

original test signal. Demodulation waveform, original test signal waveform and

difference waveform combined in a single graphic time plot for each test signals and

44

for each of the simulation and test are presented in Figures 7.1-4. Also the analysis

results for each of the two test waveforms for each of the simulation and test is listed

in Table 7.1 for comparison.

Figure 7.1. FPGA AM RX system test results with A1 test signal: top signal is output

demodulated waveform, middle test signal A1 at the input and the bottom

signal is difference between two.

Figure 7.2. Matlab simulation results with A1 test signal: top signal is output

demodulated waveform, middle test signal A1 at the input and the

bottom signal is difference between two.

45

Figure 7.3. FPGA AM RX system test results with A2 test signal: top signal is output

demodulated waveform, middle test signal A2 at the input and the bottom

signal is difference between two.

Figure 7.4. Matlab simulation results with A2 test signal: top signal is output

demodulated waveform, middle test signal A2 at the input and the

bottom signal is difference between two.

46

Table 7.1. Test results.

Test Signal Error (rms) SNR (dB)

A1_test 9.235118e-03 26.24

A1_sim 4.700772e-03 31.14

A2_test 16.90000e-03 20.87

A2_sim 6.003603e-03 28.98

As it is seen from figures 7.1 and Table 7.1, simulation results are slightly better than

actual real world tests of FPGA AM RX system. This is normal because, actual real

world tests incorporate more noise coming from different sources namely: electrical

noise on the audio cables, inherent noise of ADCs and DACs of soundcards both PC

and LM4550 soundcards and samplerate differences between receiving and

transmitting pairs of ADCs and DACs. Also, there is noise coming from the

inaccurate normalization and synchronization processes done in the post-processing

of the results before analysis. As SNRs from each test run is compared, higher SNR

means better. Best performance is achieved in simulations done with the test signal

A1. Simulation with test signal A2 provided a lower performance compared to

simulation with test signal A2. This is also true for the actual real world tests. This is

attributed to the relatively low modulation depth used in the test signal A2. Usually

SNR decreases with decreasing modulation depth so this is normal. When actual real

world values are compared to simulations for each of the test signal it is seen that

real world SNR results are slightly lower than simulation SNRs. The difference

between SNRs for test signal A1 is 4.9dB and for test signal A2 it is 8.11dB. Again

tests with A1 is better than tests with A2.

Lastly, test results provide a SNR higher than 20dB, which is an acceptable level for

an AM receiver. So, the designed and implemented FPGA AM recevier can be

assumed successful in demodulation of AM signals.

47

CHAPTER 8

CONCLUSION

In this study, an AM receiver using SDR techniques is designed and implemented in

FPGA. The main purpose of the study is to provide a cheap and simple FPGA based

platform for teaching and learning of SDR basics. Test and simulation results proved

on the signals A1 and A2 that higher SNR means better. And through a comparison

between them, noted that A2 real world SNR results are slightly lower than A1

simulation SNRs.

Where, these results proved that tests with A1 is better than tests with A2. This is

attributed to the relatively low modulation depth used in the test signal A2 and too

this is normal because, actual real world tests incorporate more noise coming from

different sources namely: electrical noise on the audio cables, inherent noise of

ADCs and DACs of soundcards both PC and LM4550 soundcards and sample rate

differences between receiving and transmitting pairs of ADCs and DACs.. Also, test

and simulation results prove FPGA AM RX system a useful candidate for AM

demodulation and reception. The designed and implemented FPGA AM RX system

is also a good utility in the education of basic SDR principles which is the focus of

this study.

So, the designed and implemented FPGA AM receiver can be assumed successful in

demodulation of AM signals. It can be used in teaching the radio signal processing

techniques using FPGAs. As the system is also suitable to be used with any

soundcard based SDR frontend such as Softrock Ensemble receiver for HF and SW

bands. It can be used in a standalone fashion if a microcontroller is used to send

commands or a user interface for this purpose may be designed in the FPGA. The

design costumes most of the RAM and DSP blocks but has unused logic slices

sufficient for enhancements like that.

48

As a future work, other modulation types and methods can be added to this system to

show the principles behind them. A frontend and a user interface may be designed

for it to make it a more practical SDR system which can be used for amateur and

research purposes as well as in the education of communication engineering students.

49

REFERENCES

1. T. S. Rappaport, “Wireless Communication - Principle and practice, 2nd ed.”,

Prentice Hall, (2002).

2. Dierker, M., “Chapter Three: Amplitude Modulation Fundamentals”, Press, 93

117 (2007).

3. Lee, Thomas H., “The Design of CMOS Radio-Frequency Integrated Circuits,

2nd ed.”, Cambridge University, UK, (2004).

4. Lewis, C., “Wireless Radio: A History, 2nd ed.”, McFarland & Company, US,

(2006).

5. Harnani, H., Cik K. H. Y., and Nor, I. S. B., “Low Complexity SDR Transceiver

Design using Simulink, Matlab and Xilinx”, IEEE International Conference on

ICT Convergence (ICTC), (2012).

6. Parikh, K. S., Shahana, K., and Gupta, R. K., “SDR - Implementation of Low

Frequency Trans-Receiver on FPGA”, IEEE International Conference on

Signal Processing and Integrated Networks (SPIN), (2014).

7. Jiang-Tao, G., Chuan-Wu, T., “An Algorithm of Software Defined Radio

Channel Processing Based on FPGA”, IEEE International Conference on

Wireless Communication and Sensor Network, (2014).

8. Kohno, R., “Prespective of Software Radoi:Spatial and Temporal

Communication Theory Using Adaptive Array Antena for Mobile Radio

Communications”, Microwave Workshops and Transsion(MWE’97), 25-31,

PacificoYokohama, Dec (1997).

9. Mannan, P. M., “Framework for the design and implementation of software

define radio on wireless communication system”, Master Thesis, University of

Akron, December (2005).

10. Lackey, R. J. and Upmal, D. W., “Speakeasy: The Military Software Radio”,

IEEE (2016).

11. Carlson, A. B., “Communications Systems An Introduction to signals and Noise,

4th ed.”, McGraw-Hill Higher Education, (2002).

12. Gibson, J. D., “The Communications Handbook, 2nd ed.”, CRC Press, (2002).

13. Hosking, R. H., “Software Defined Radio Handbook (Notes Gathering), 8th ed.”,

Press (2010).

50

14. Anderson, J. B., and Rolf, J., “Understanding Information Transmission”, Wiley-

IEEE Press, (2005).

15. Giannini, V., Craninckx, J. and Baschirotto, A., “Baseband Analog Circuits for

Software Defined Radio”, Springer, (2008).

16. Mehta, V. K. and Mehta, R., “Chapter 16: Modulation and Demodulation,

Principles of Electronics”, S. Chand & Company, Ram Nagar, New Delhi

(2014).

17. Dierker, M., “Chapter Three: Amplitude Modulation Fundamentals”, Press, 93-

117 (2007).

18. Internet: Wikipedia, “About Register-transfer_leve”,

https://en.wikipedia.org/wiki/Register-transfer_level (2020).

19. Dominik, M., Katarína, J., “VHDL structural model visualization”, IEEE

EUROCON - International Conference on Computer as a Tool, (2011).

20. Internet: Numato, “Mimas - Spartan 6 FPGA Development Board”,

https://numato.com/docs/mimas-spartan-6-fpga-development-board/ (2018).

21. Internet: Numato, “LM4550 Audio Codec Expansion Module”,

https://numato.com/product/lm4550-ac97-stereo-audio-codec-expansion-

module/ (2020).

22. Internet: Numato, “IO Breakout Module For Mimas”,

https://numato.com/product/io-breakout-module-for-mimas/ (2020).

51

APPENDIX A.

DATASHEETS OF ELECTRONIC COMPONENTS (Spartan 6, LM4550)

52

A1. Datasheet Spartan 6 (xc6slx9-3tqg144)

53

54

A2. Datasheet LM4550

55

56

APPENDIX B.

MATLAB CODE LISTINGS

57

B1. Modulation (Test Signal Generation)

% (DSB-WC) Mod. with MUSIC by B. ERKAL 2020

% AM transmitter code by Bilgehan ERKAL

% Karabuk 2020

clear all;

% sound file 1 loading (4Khz mono (8KSps))

[iff1 , afs]=audioread('a1.wav');

[y1,~]=size(iff1);

% upsample x6 (8x6=48Khz)

yu1=upsample(iff1,6);

% Baseband signal is filtered and normalized

yu1=filter(fir1(128,4e3/24e3),1,yu1);

yu1=yu1./(1.01*max(abs(yu1)));

audiowrite('a1_48k.wav', yu1, 48e3);

% sound file 2 loading (4Khz mono (8KSps))

[iff2 , afs]=audioread('a2.wav');

[y1,~]=size(iff1);

% upsample x6 (8x6=48Khz)

yu2=upsample(iff2,6);

% Baseband signal is filtered and normalized

yu2=filter(fir1(128,4e3/24e3),1,yu2);

yu2=yu2./(1.01*max(abs(yu2)));

audiowrite('a2_48k.wav', yu2, 48e3);

fs=48e+3; % sampling frequency

ts=1/fs; % sampling interval

t=0:ts:10-ts; % time axis

% carrier parameters: amplitude, frequency and phase

C1=1; C2=1;

fct1=5e+3;

fct2=-15e+3;

tetac1=0*(pi/180);

tetac2=0*(pi/180);

% carrier signal

ct1=C1*exp(2*1i*pi*fct1*t+tetac1);

ct2=C2*exp(2*1i*pi*fct2*t+tetac2);

% Complex AM (DSB-WC) signal

m=0.2*(yu1'+3).*ct1+0.2*(yu2'+3).*ct2;

% IF signal is recorded in wav file

% IF normalized

m=m./(1.1*max(abs(m)));

58

audiowrite('DSB_WC.wav', [real(m)', imag(m)'], fs);

B2. Filter Design

clear all;

% filter cut at 4KHz 48KSps (24KHz)

no_coeff = 254; % number of taps (coefficients)

fc = 4e3; % cut-off frequency

nbw = 24e3; % nyqusit bandwidth (limit)

type ='low'; % type of the filter

% FIR filter structure

yu=fir1(no_coeff,fc/nbw,type);

% Filter coefficients are cast in 16-bit signed integers for using in FIR IP in

FPGA

z=int16(32767*(yu./max(abs(yu))));

freqz(yu); % Bode-plot of frequency response

% coefficients of the designed filter are stored in a file

fid = fopen('exp.txt','w');

fprintf(fid,'%i ',z);

fclose(fid);

B3. Simulation

% (DSB-WC) Demod. with MUSIC by B. ERKAL 2020

% AM receiver code by Bilgehan ERKAL

% Karabuk 2020

clear all;

% complex IF file loading (48Khz stereo)

[iff1 , afs]=audioread('DSB_WC.wav');

[y1,~]=size(iff1);

% complex conversion

yu1=iff1(1:y1,1)'+1i*iff1(1:y1,2)';

% IF signal is normalized

yu1=yu1./(1.01*max(abs(yu1)));

fs=afs; % sampling frequency

ts=1/fs; % sampling interval

t=0:ts:10-ts; % time axis

% carrier parameters: amplitude, frequency and phase

C1=0.1;

fct1=-5e+3;

tetac1=0*(pi/180);

% carrier signal

59

ct1=C1*exp(2*1i*pi*fct1*t+tetac1);

ct2=C1*exp(2*1i*pi*12e3*t+tetac1);

% demodulation

% complex frequency downshift operation

iffc=yu1.*ct1;

% zero IF cut at 4KHz

yu=filter(fir1(255,4e3/(24e3)),1,iffc);

% complex result is normalized and recorded

yu=yu./(1.01*max(abs(yu)));

audiowrite('res1.wav', [real(yu)',imag(yu)'], fs);

% AM detection

% complex upshifting for detector IF ofset

yu=yu.*ct2;

% complex result is normalized and recorded

yu=yu./(1.01*max(abs(yu)));

audiowrite('res2.wav', [real(yu)',imag(yu)'], fs);

% AM demodulation using squaring method

% first complex IF is realized

dem=real(yu)+imag(yu);

% real IF is normalized and recorded

dem=dem./(1.01*max(abs(dem)));

audiowrite('res3.wav', dem, fs);

% actual demodulation of real IF signal is accomplished here

dem=dem.*dem;

% Raw demodulation result is normalized and recorded

dem=dem./(1.01*max(abs(dem)));

audiowrite('res4.wav', dem, fs);

% Filtered demodulation result is normalized and recorded

dem=filter(fir1(255,4e3/(24e3)),1,dem);

dem=dem./(1.01*max(abs(dem)));

audiowrite('res5.wav', dem, fs);

B4. Analysis and Performance Evaluation

% Demod. performance analysis

% AM receiver analysis by Bilgehan ERKAL

% Karabuk 2020

clear all;

% stereo comparison file loading (48Khz stereo)

[iff1 , afs]=audioread('a2_aligned_st_Lres5_Ra2.wav');

[y1,~]=size(iff1);

% channel seperation and gain error correction

60

rec=1.0966*iff1(1:y1,1)';

a1=1*iff1(1:y1,2)';

% Calculate rms error and rms signal

diff=(a1-rec)/2;

err=(mean(diff.^2))^0.5;

a1_rms=(mean(a1.^2))^0.5;

fprintf('rms error: %d \nSNR(dB): %d \n', err, 20*log10(err/a1_rms));

audiowrite('diff.wav', diff, afs);

61

APPENDIX C.

VHDL CODE LISTINGS

62

C1. Top Module (cnt)

--

-- Company: KARABUK UNIVERSITY

-- Engineer: Bilgehan ERKAL – Ali HANDER

--

-- Create Date: 14:07:31 04/21/2020

-- Design Name: AM RX

-- Module Name: cnt - Behavioral

-- Project Name: AM RX

-- Target Devices: Spartan6-LX9

-- Tool versions:

-- Description: AM Receiver

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity cnt is

 Port (SW : in STD_LOGIC_VECTOR(3 downto

0);

 RX : in STD_LOGIC;--p4_1--green

 TX : out STD_LOGIC;--p4_2--

white

 LED : out STD_LOGIC_VECTOR(7

downto 0);

 AUDIO : out STD_LOGIC;--p4_3

 AC97_SDO : out STD_LOGIC;--p3_2--

mimas_p1_11

 AC97_SDI : in STD_LOGIC;--p3_3--

mimas_p1_14

 AC97_BIT_CLK : in STD_LOGIC;--p3_4--

mimas_p1_13

63

 AC97_RESETN : out STD_LOGIC;--p3_5--

mimas_p1_16

 AC97_SYNC : out STD_LOGIC;--p3_6--

mimas_p1_15

 CLK_IN : in STD_LOGIC--100MHz on-

board clock

);

end cnt;

architecture Behavioral of cnt is

component pll2

port

 (-- Clock in ports

 CLK_IN1 : in std_logic;

 -- Clock out ports

 CLK_OUT1 : out std_logic;

 CLK_OUT2 : out std_logic

);

end component;

 COMPONENT AC97_ADAC

 PORT(

 AC97_int_SDI : IN std_logic;

 AC97_int_BIT_CLK : IN std_logic;

 DAC_L : IN std_logic_vector(17 downto 0);

 DAC_R : IN std_logic_vector(17 downto 0);

 clk_48 : IN std_logic;

 AC97_int_SDO : OUT std_logic;

 reset_n : IN std_logic;

 AC97_int_SYNC : OUT std_logic;

 ADC_L : OUT std_logic_vector(17 downto 0);

 ADC_R : OUT std_logic_vector(17 downto 0)

);

 END COMPONENT;

COMPONENT sercomrx

 PORT(

 bin5 : OUT std_logic_vector(7 downto 0);

 bin4 : OUT std_logic_vector(7 downto 0);

 bin3 : OUT std_logic_vector(7 downto 0);

 bin2 : OUT std_logic_vector(7 downto 0);

 bin1 : OUT std_logic_vector(7 downto 0);

 bin0 : OUT std_logic_vector(7 downto 0);

 level : OUT std_logic_vector(6 downto 0);

 data_valid: OUT std_logic;

 clk : IN std_logic;

 serin : IN std_logic;

 reset_n : IN std_logic

64

);

 END COMPONENT;

COMPONENT sercomtx

 PORT(

 bin5 : IN std_logic_vector(7 downto 0);

 bin4 : IN std_logic_vector(7 downto 0);

 bin3 : IN std_logic_vector(7 downto 0);

 bin2 : IN std_logic_vector(7 downto 0);

 bin1 : IN std_logic_vector(7 downto 0);

 bin0 : IN std_logic_vector(7 downto 0);

 data_valid : IN std_logic;

 clk : IN std_logic;

 reset_n : IN std_logic;

 binout5 : OUT std_logic_vector(7 downto 0);

 binout4 : OUT std_logic_vector(7 downto 0);

 binout3 : OUT std_logic_vector(7 downto 0);

 binout2 : OUT std_logic_vector(7 downto 0);

 binout1 : OUT std_logic_vector(7 downto 0);

 binout0 : OUT std_logic_vector(7 downto 0);

 serout : OUT std_logic

);

END COMPONENT;

 COMPONENT frecalc

 PORT(

 digit_in : IN std_logic_vector(27 downto 0);

 reset_n : IN std_logic;

 data_valid : IN std_logic;

 clk : IN std_logic;

 phi_inc_out : OUT std_logic_vector(31 downto 0)

);

 END COMPONENT;

 COMPONENT am_rx

 PORT(

 phi_inc : IN std_logic_vector(31 downto 0);

 I_in : IN std_logic_vector(15 downto 0);

 Q_in : IN std_logic_vector(15 downto 0);

 s_sel : IN std_logic_vector(3 downto 0);

 clk_48KHz : IN std_logic;

 clk : IN std_logic;

 clip_indicator : out std_logic_vector(7 downto 0);

 I_out : OUT std_logic_vector(15 downto 0);

 Q_out : OUT std_logic_vector(15 downto 0)

);

 END COMPONENT;

 COMPONENT dac16

65

 PORT(

 Clk : IN std_logic;

 Data : IN std_logic_vector(15 downto 0);

 PulseStream : OUT std_logic

);

 END COMPONENT;

-- serial communication module signals

-- command completion stage indicator

signal stage : std_logic_vector(6 downto 0) := (others => '0');

signal sample : std_logic := '0';

-- command data valid indicators

signal data_valid : std_logic := '0';

-- completed command data

signal dat5 : std_logic_vector(7 downto 0) := (others => '0');

signal dat4 : std_logic_vector(7 downto 0) := (others => '0');

signal dat3 : std_logic_vector(7 downto 0) := (others => '0');

signal dat2 : std_logic_vector(7 downto 0) := (others => '0');

signal dat1 : std_logic_vector(7 downto 0) := (others => '0');

signal dat0 : std_logic_vector(7 downto 0) := (others => '0');

-- command data application digits indicating control frequency data

signal dig5 : std_logic_vector(7 downto 0) := (others => '0');

signal dig4 : std_logic_vector(7 downto 0) := (others => '0');

signal dig3 : std_logic_vector(7 downto 0) := (others => '0');

signal dig2 : std_logic_vector(7 downto 0) := (others => '0');

signal dig1 : std_logic_vector(7 downto 0) := (others => '0');

signal dig0 : std_logic_vector(7 downto 0) := (others => '0');

-- AM receiver module signals

-- phase increment value necessary to steer frequency of primary nco of am

receiver

signal phi_inc : std_logic_vector(31 downto 0) := (others => '0');

-- AM receiver output

signal I_out : std_logic_vector(15 downto 0) := (others => '0');

signal Q_out : std_logic_vector(15 downto 0) := (others => '0');

-- AM receiver input

signal I_in : std_logic_vector(15 downto 0) := (others => '0');

signal Q_in : std_logic_vector(15 downto 0) := (others => '0');

-- FPGA master reset signal

signal res_count : std_logic_vector(24 downto 0) := (others => '0');

signal reset_n : std_logic := '0';

-- ADAC (Audio card) reset signal

signal reset_n2 : std_logic := '0';

signal res_count2 : std_logic_vector(10 downto 0) := (others => '0');

-- clk_12288 12.288MHz clock live indicator

signal flash : std_logic_vector(22 downto 0) := (others => '0');

signal clk_count : std_logic_vector(8 downto 0) := (others => '0');

-- ADAC input and output signals

signal adata_L : std_logic_vector(17 downto 0) := (others => '0');

signal adata_R : std_logic_vector(17 downto 0) := (others => '0');

66

signal dacdata_L : std_logic_vector(17 downto 0) := (others => '0');

signal dacdata_R : std_logic_vector(17 downto 0) := (others => '0');

-- clipping indicator

signal c_ind : std_logic_vector(7 downto 0);

--clock signals

signal clk : std_logic := '0';-- 36.684MHz master clock

signal clk_48KHz : std_logic := '0';-- 48KHz sampling rate clock

signal clk_12288 : STD_LOGIC; -- 12.288MHz ADAC master

clock

signal clk_6144 : STD_LOGIC := '0';-- 6.144MHz pll2 input clock

signal clk_36864 : STD_LOGIC; -- 36.684MHz master clock

begin

-- master module connectors

clk <= clk_36864;

AC97_RESETN <= reset_n2;

--rx--p4_1 --> tx pin of usb2serial cable (green)

--tx--p4_2 --> rx pin of usb2serial cable (white)

--gnd--(black)

--audio--p4_3

-- ADAC connectors

--ADC outputs

I_in <= adata_L(17 downto 2);

Q_in <= adata_R(17 downto 2);

--DAC inputs

dacdata_L <= I_out(15) & I_out(15 downto 0) & "0";

dacdata_R <= Q_out(15) & Q_out(15 downto 0) & "0";

-- led indicator connectors, uncomment necessary and

-- comment out unnecessary

--led(6 downto 0) <= stage(6 downto 0);--sercom completion levels

--led(7) <= flash(22);-- clock live indicator

led(7 downto 0) <= c_ind(7 downto 0);--clipping indicators

-- master clock generator

Inst_pll2 : pll2

 port map

 (-- Clock in ports

 CLK_IN1 => clk_6144,

 -- Clock out ports

 CLK_OUT1 => clk_36864,

 CLK_OUT2 => clk_12288

);

-- pll2 input reference frequency (6.144MHz) derivator

-- master reference used is half of ADAC Bit clock at 12.288MHz

clk_6144_proc:process(AC97_BIT_CLK)

 begin

 if rising_edge(AC97_BIT_CLK) then

 clk_6144 <= not clk_6144;

67

 end if;

 end process;

-- Sampling rate clock generator derived from 36.864MHz master clock

--36864/(384*2) = 48KHz

clk48KHz_proc:process(clk)

 begin

 if rising_edge(clk) then

 if reset_n = '1' then

 if clk_count = 383 then

 clk_48KHz <= not clk_48KHz;

 clk_count <= (others => '0');

 else

 clk_count <= clk_count + 1;

 clk_48KHz <= clk_48KHz;

 end if;

 else

 clk_count <= clk_count;

 clk_48KHz <= '0';

 end if;

 end if;

 end process;

-- Master reset of FPGA fabric

 reset_proc: process(AC97_BIT_CLK)

 begin

 if rising_edge(AC97_BIT_CLK) then

 if res_count(24) = '1' then

 res_count <= res_count;

 else

 res_count <= res_count + 1;

 end if;

 end if;

 end process;

 reset_n <= res_count(24);

-- ADAC reset generator, completed before master FPGA reset

-- It is solely derived from 100.00MHz FPGA master clock which is

-- the only live and stable clock before ADAC reset is completed

 AC97_reset_proc: process(clk_in)

 begin

 if rising_edge(clk_in) then

 if res_count2(10) = '1' then

 res_count2 <= res_count2;

 else

 res_count2 <= res_count2 + 1;

 end if;

 end if;

68

 end process;

 reset_n2 <= res_count2(10);

-- 12.288MHz clock live indicator

 flash_proc: process(clk_12288)

 begin

 if rising_edge(clk_12288) then

 flash <= not flash;

 end if;

 end process;

-- command data receive complete indicator

 sample_proc: process(clk)

 begin

 if rising_edge(clk) then

 if data_valid = '1' then

 sample <= not sample;

 else

 sample <= sample;

 end if;

 end if;

 end process;

-- ADAC module (AC97 soundcard module)

 Inst_AC97_ADAC: AC97_ADAC PORT MAP(

 AC97_int_SDO => AC97_SDO,

 AC97_int_SDI => AC97_SDI,

 AC97_int_BIT_CLK => AC97_BIT_CLK,

 reset_n => reset_n,

 AC97_int_SYNC => AC97_SYNC,

 DAC_L => dacdata_L,

 DAC_R => dacdata_R,

 ADC_L => adata_L,

 ADC_R => adata_R,

 clk_48 => clk_48KHz

);

-- Serial communication receive module

-- This module is used to accept commands from PC at 9600bps

 Inst_sercomrx: sercomrx PORT MAP(

 bin5 => dat5,

 bin4 => dat4,

 bin3 => dat3,

 bin2 => dat2,

 bin1 => dat1,

 bin0 => dat0,

 level => stage,

 data_valid => data_valid,

 clk => clk,

69

 serin => rx,

 reset_n => reset_n

);

-- Serial communication transmit module

-- This module is used to echo received commands to PC at 9600bps

 Inst_sercomtx: sercomtx PORT MAP(

 binout5 => dig5,

 binout4 => dig4,

 binout3 => dig3,

 binout2 => dig2,

 binout1 => dig1,

 binout0 => dig0,

 bin5 => dat5,

 bin4 => dat4,

 bin3 => dat3,

 bin2 => dat2,

 bin1 => dat1,

 bin0 => dat0,

 data_valid => data_valid,

 clk => clk,

 serout => tx,

 reset_n => reset_n

);

-- Frequency calculation module

-- Takes frequency data which comes from PC as input

-- and calculates phase increment factor necessary to steer

-- primary nco frequency used in the AM RX module

Inst_frecalc: frecalc PORT MAP(

 digit_in => dig5 & dig4(3 downto 0) & dig3(3 downto 0) & dig2(3

downto 0) & dig1(3 downto 0) & dig0(3 downto 0),

 phi_inc_out => phi_inc,

 reset_n => reset_n,

 data_valid => data_valid,

 clk => clk

);

-- Actual AM receiver module

 Inst_am_rx: am_rx PORT MAP(

 phi_inc => phi_inc,

 I_out => I_out,

 Q_out => Q_out,

 I_in => I_in,

 Q_in => Q_in,

 s_sel => SW,

 clip_indicator => c_ind,

 clk_48KHz => clk_48KHz,

 clk => clk

70

);

-- Auxilary analog output port as Sigma-Delta DAC

 Inst_dac16: dac16 PORT MAP(

 Clk => clk,

 Data => not I_out(15) & I_out(14 downto 0),

 PulseStream => audio

);

end Behavioral;

C2. LM4550 Soundcard Controller Module (AC97_ADAC)

--

-- Company: KARABUK Un.

-- Engineer: Bilgehan ERKAL

--

-- Create Date: 11:26:16 04/28/2020

-- Design Name:

-- Module Name: AC97_ADAC - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

-- Refer to LM4550 datasheet for details

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity AC97_ADAC is

Port(

 AC97_int_SDO : out STD_LOGIC;

 AC97_int_SDI : in STD_LOGIC;

71

 AC97_int_BIT_CLK : in STD_LOGIC;

 reset_n : in STD_LOGIC;

 AC97_int_SYNC : out STD_LOGIC;

 DAC_L : in

STD_LOGIC_VECTOR(17 downto 0);

 DAC_R : in

STD_LOGIC_VECTOR(17 downto 0);

 ADC_L : out

STD_LOGIC_VECTOR(17 downto 0);

 ADC_R : out

STD_LOGIC_VECTOR(17 downto 0);

 clk_48 : in STD_LOGIC

);

end AC97_ADAC;

architecture Behavioral of AC97_ADAC is

COMPONENT comrom

 PORT (

 clka : IN STD_LOGIC;

 addra : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 douta : OUT STD_LOGIC_VECTOR(23 DOWNTO 0)

);

END COMPONENT;

-- valid command present indicator signal

signal valbit : STD_LOGIC := '1';

-- output shift register for sending command and DAC data to soundcard

signal AC_97_out_sreg : std_logic_vector(255 downto 0) := (others => '0');

-- input shift register for receiving command result data and ADC data

signal AC_97_in_sreg : std_logic_vector(255 downto 0) := (others => '0');

-- command data signal

signal comrom_data : std_logic_vector(23 downto 0) := (others =>

'0');

-- command data row signal used to address command rom

signal comrom_adr : std_logic_vector(3 downto 0) := (others =>

'0');

-- DAC input registers

signal DAC_reg_L : std_logic_vector(17 downto 0) :=

(others => '0');

signal DAC_reg_R : std_logic_vector(17 downto 0) :=

(others => '0');

-- ADC output registers

signal ADC_reg_L : std_logic_vector(17 downto 0) :=

(others => '0');

signal ADC_reg_R : std_logic_vector(17 downto 0) :=

(others => '0');

-- preloaders used to resample module input before sending out to DAC

72

signal L_in : std_logic_vector(17 downto 0) := (others =>

'0');

signal R_in : std_logic_vector(17 downto 0) := (others =>

'0');

-- preregisters used to resample incoming ADC data before output by module

signal L_out : std_logic_vector(17 downto 0) := (others =>

'0');

signal R_out : std_logic_vector(17 downto 0) := (others =>

'0');

-- zero fill for output shift register

signal zero160 : std_logic_vector(159 downto 0) := (others =>

'0');

-- synchronization signals

signal AC97_int_SYNC_reg : STD_LOGIC;

signal sync_count : std_logic_vector(7 downto 0) := (others => '0');

begin

AC97_int_SDO <= AC_97_out_sreg(255); -- DAC and command data output

AC97_int_SYNC <= AC97_int_SYNC_reg; -- soundcard sync input

-- connectors for ADC

ADC_L <= L_out;

ADC_R <= R_out;

-- Soundacard sync process

-- Generates a 48KHz sync clock necessary for soundcard using bit clock

AC97_SYNC_proc:process(AC97_int_BIT_CLK)

 begin

 if rising_edge(AC97_int_BIT_CLK) then

 if reset_n = '1' then -- end of reset

 sync_count <= sync_count + 1;

 if sync_count = 0 then

 AC97_int_SYNC_reg <= '1';-- start of sync

impulse

 else

 if sync_count = 16 then -- end of sync impulse

 AC97_int_SYNC_reg <= '0';

 else

 AC97_int_SYNC_reg <=

AC97_int_SYNC_reg;-- other times, conserve status

 end if;

 end if;

 else -- reset conditions

 sync_count <= (others => '0');

 AC97_int_SYNC_reg <= '0';

 end if;

 end if;

 end process;

-- command rom module

-- comrom holds initialization command data applied immediately after reset

Inst_comrom : comrom

73

 PORT MAP (

 clka => AC97_int_BIT_CLK,

 addra => comrom_adr,

 douta => comrom_data

);

-- data and command data acquisition process

AC_97_ADAC_proc:process(AC97_int_BIT_CLK)

 begin

 if rising_edge(AC97_int_BIT_CLK) then

 if reset_n = '1' then -- end of reset

 -- serial data input from soundcard is shifted in to input

shift register (ADC data)

 AC_97_in_sreg <= AC_97_in_sreg(254 downto 0) &

AC97_int_SDI;

 -- start by the start of sync signal

 if sync_count = 1 then

 -- reload output shift register with fresh

command data from comrom and DAC data from DAC data loading registers

 -- Slot0, Slot1, Slot2, Slot3-4 DAC data

 AC_97_out_sreg <= '1' & valbit & valbit &

"11000" & X"00" & comrom_data(23 downto 16) & X"000" & comrom_data(15

downto 0) & X"0" & DAC_reg_L(17 downto 0) & "00" & DAC_reg_R(17

downto 0) & "00" & zero160;

 else

 AC_97_out_sreg <= AC_97_out_sreg(254

downto 0) & '0';-- other times animate shift register and send data to soundcard

 end if;

 -- Time to withdraw ADC data coming from soundcard

and loaded to input shift register

 if sync_count = 2 then

 ADC_reg_L <= AC_97_in_sreg(199 downto

182);--slot3 data to ADC data input register Left channel

 ADC_reg_R <= AC_97_in_sreg(179 downto

162);--slot4 data to ADC data input register Right channel

 else -- other times conserve ADC data input registers

 ADC_reg_L <= ADC_reg_L;

 ADC_reg_R <= ADC_reg_R;

 end if;

 -- Time to load preloading output registers with fresh

data (DAC and command data)

 if sync_count = 3 then

 -- resampled module input loaded to preloading

output registers for DAC data

 DAC_reg_L <= L_in;

 DAC_reg_R <= R_in;

74

 -- if all the coomands listed in the command

rom is applied then enter wait state

 if comrom_adr = 5 then

 comrom_adr <= comrom_adr; -- wait at

the last command

 else

 comrom_adr <= comrom_adr + 1; --

proceed with the new command in the list

 end if;

 -- if last command is applied then mark

repeating last command as invalid by clearing the command valid bits

 if (comrom_adr = 4) or (comrom_adr = 5) then

 valbit <= '0'; -- invalid command

signaled

 else

 valbit <= '1'; -- valid command signaled

 end if;

 else -- other times conserve status, enter wait state

 DAC_reg_L <= DAC_reg_L;

 DAC_reg_R <= DAC_reg_R;

 comrom_adr <= comrom_adr;

 valbit <= valbit;

 end if;

 else -- reset status

 valbit <= '1';

 AC_97_out_sreg <= (others => '0');

 AC_97_in_sreg <= (others => '0');

 comrom_adr <= (others => '0');

 DAC_reg_L <= (others => '0');

 DAC_reg_R <= (others => '0');

 ADC_reg_L <= (others => '0');

 ADC_reg_R <= (others => '0');

 zero160 <= (others => '0');

 end if;

 end if;

 end process;

-- Process for resampling input and output of ADAC module at 48KHz

AC97_sample_proc:process(clk_48)

 begin

 if rising_edge(clk_48) then

 if reset_n = '1' then -- end of reset

 L_in <= DAC_L;

 R_in <= DAC_R;

 L_out <= ADC_reg_L;

 R_out <= ADC_reg_R;

 else -- reset in order, clear registers to inital values

 L_in <= (others => '0');

75

 R_in <= (others => '0');

 L_out <= (others => '0');

 R_out <= (others => '0');

 end if;

 end if;

 end process;

end Behavioral;

C3. Serial RX Module (Sercomrx)

--

-- Company:

-- Engineer:

--

-- Create Date: 17:48:58 04/01/2020

-- Design Name:

-- Module Name: sercomrx - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity sercomrx is

Port(

 bin5 : OUT std_logic_vector(7 downto 0);

 bin4 : OUT std_logic_vector(7 downto 0);

 bin3 : OUT std_logic_vector(7 downto 0);

 bin2 : OUT std_logic_vector(7 downto 0);

76

 bin1 : OUT std_logic_vector(7 downto 0);

 bin0 : OUT std_logic_vector(7 downto 0);

 level : OUT std_logic_vector(6 downto 0);

 data_valid: OUT std_logic;

 clk : IN std_logic;

 serin : IN std_logic;

 reset_n : IN std_logic

);

end sercomrx;

architecture Behavioral of sercomrx is

--Received data register

signal data : std_logic_vector(7 downto 0) := (others => '0');

--Received command completion data

signal stage : std_logic_vector(6 downto 0) := (others => '0');

--Received data bins in ASCII form

signal dat5 : std_logic_vector(7 downto 0) := (others => '0');--Sign (+/-)

signal dat4 : std_logic_vector(7 downto 0) := (others => '0');--MSB

signal dat3 : std_logic_vector(7 downto 0) := (others => '0');

signal dat2 : std_logic_vector(7 downto 0) := (others => '0');

signal dat1 : std_logic_vector(7 downto 0) := (others => '0');

signal dat0 : std_logic_vector(7 downto 0) := (others => '0');--LSB

--Received bins counter

signal dat_count : std_logic_vector(2 downto 0) := (others => '0');

--Serial input resample shift register

--Input is resampled 4 times in order to catch bits appropriately (10bits *4 =

40bits)

signal bits : std_logic_vector(39 downto 0) := (others => '1');

--resampling clock divider

signal counter : std_logic_vector(9 downto 0) := (others => '0');

--Received byte ok signal

signal byte_ok : std_logic := '0';

--Received byte ok signal delay registers

signal dat_ok1 : std_logic := '0';

signal dat_ok : std_logic := '0';

--Data valid signal, When dat_valid is active there is new and valid data at data

bin outputs

signal blink : std_logic := '0';

signal blink_del : std_logic := '0';

signal dat_valid : std_logic := '0';

begin

--calculate and generate byte ok signal (indicates that valid start-bit- 8-bit data

and stop-bit sequence in the bits resampling register)

 byte_ok <= -- start-bit "0" bits(2:1) + LSB first, MSB last data bits (0:7) +

stopbit "0" bits(38:37)

77

 (bits(38) and bits(37)) and (bits(34) xnor

bits(33)) and (bits(30) xnor bits(29)) and (bits(26) xnor bits(25)) and

 (bits(22) xnor bits(21)) and (bits(18) xnor bits(17)) and

(bits(14) xnor bits(13)) and (bits(10) xnor bits(9)) and

 (bits(6) xnor bits(5)) and (bits(2) nor bits(1));

--module connectors

 bin5 <= dat5;

 bin4 <= dat4;

 bin3 <= dat3;

 bin2 <= dat2;

 bin1 <= dat1;

 bin0 <= dat0;

 data_valid <= dat_valid;

 level <= stage;

--serial communication process

 ser_comm: process(clk)--ticks at 36864MHz

 begin

 if rising_edge(clk) then

 if reset_n = '1' then

 if counter = 959 then --resampling clock at

36864/960 = 4* 9600 = 38400

 bits <= serin & bits(39 downto 1);--

resample serial input, data comes as LSB first

 counter <= (others => '0');--reset

counter

 else

 counter <= counter+1;--wait till next

sample

 end if;

 if byte_ok = '1' then-- there is valid data in bits

resample register transfer it to data register

 data <= bits(34) & bits(30) & bits(26) &

bits(22) & bits(18) & bits(14) & bits(10) & bits(6);

 bits <= (others => '1');--setup bits

register for next new data

 end if;

 else--reset in order

 data(7 downto 0) <= (others => '0');

 bits(39 downto 0) <= (others => '1');

 counter(9 downto 0) <= (others => '0');

 end if;

 end if;

 end process;

--byte_ok signal delay process

 dat_ok_proc: process(clk)

 begin

 if rising_edge(clk) then

 dat_ok1 <= byte_ok;

 dat_ok <= dat_ok1;

78

 end if;

 end process;

--transfer valid data to apropriate data bin process

-- a FSM is used to track the next data bin to reload

-- if data is not valid for the actual data bin

-- all data located in the data bins so far is discarded

-- and the process starts from the beginning

 dat_xfer_proc: process(clk)

 begin

 if rising_edge(clk) then

 if reset_n = '1' then

 if dat_ok = '1' then

 CASE dat_count(2 downto 0) IS

 WHEN "000" => --test data for

f-command

 dat5 <= dat5;

 dat4 <= dat4;

 dat3 <= dat3;

 dat2 <= dat2;

 dat1 <= dat1;

 dat0 <= dat0;

 blink <= blink;

 if data = 102 then--

character "f" is received, next incoming data must be sign(+ or -)

 stage(0) <= '1';--

first stage is completed successfully

 dat_count <=

dat_count + 1;--proceed with next data

 else

 dat_count <=

(others => '0');-- received data is not valid (other than "f" character), start from

beginning

 stage <= (others

=> '0');-- clear all stages

 end if;

 WHEN "001" => --test data for

sign

 dat4 <= dat4;

 dat3 <= dat3;

 dat2 <= dat2;

 dat1 <= dat1;

 dat0 <= dat0;

 blink <= blink;

 if ((data = 43) or (data =

45)) then--data is plus or minus character

 stage(1) <= '1';

 dat5 <= data;--

record it in first data bin from left

79

 dat_count <=

dat_count + 1;

 else--start all over again

 dat_count <=

(others => '0');

 stage <= (others

=> '0');

 dat5 <= dat5;

 end if;

 WHEN "010" =>--test for msb

(it must be either a "0", "1" or "2")

 dat5 <= dat5;

 dat3 <= dat3;

 dat2 <= dat2;

 dat1 <= dat1;

 dat0 <= dat0;

 blink <= blink;

 if ((data > 47) and (data

< 51)) then--it is a "0", "1" or "2"

 stage(2) <= '1';

 dat4 <= data;--

then register it

 dat_count <=

dat_count + 1;

 else--start all over again

 dat_count <=

(others => '0');

 stage <= (others

=> '0');

 dat4 <= dat4;

 end if;

 WHEN "011" =>--test for

second msb (it must be either a "0", "1", "2" or "3" if first msb is "2" otherwise 0-

9)

 dat5 <= dat5;

 dat4 <= dat4;

 dat2 <= dat2;

 dat1 <= dat1;

 dat0 <= dat0;

 blink <= blink;

 if dat4 = 50 then--first

msb is "2"

 if ((data > 47)

and (data < 52)) then

 stage(3)

<= '1';

 dat3 <=

data;

80

 dat_count

<= dat_count + 1;

 else--start all over

again

 dat_count

<= (others => '0');

 stage <=

(others => '0');

 dat3 <=

dat3;

 end if;

 else-- first msb is 0 or 1

 if ((data > 47)

and (data < 58)) then

 stage(3)

<= '1';

 dat3 <=

data;

 dat_count

<= dat_count + 1;

 else--start all over

again

 dat_count

<= (others => '0');

 stage <=

(others => '0');

 dat3 <=

dat3;

 end if;

 end if;

 WHEN "100" =>--third msb (it

can be 0-9)

 dat5 <= dat5;

 dat4 <= dat4;

 dat3 <= dat3;

 dat1 <= dat1;

 dat0 <= dat0;

 blink <= blink;

 if ((data > 47) and (data

< 58)) then

 stage(4) <= '1';

 dat2 <= data;

 dat_count <=

dat_count + 1;

 else--start all over again

 dat_count <=

(others => '0');

 stage <= (others

=> '0');

81

 dat2 <= dat2;

 end if;

 WHEN "101" =>-- fourth msb

(0-9)

 dat5 <= dat5;

 dat4 <= dat4;

 dat3 <= dat3;

 dat2 <= dat2;

 dat0 <= dat0;

 blink <= blink;

 if ((data > 47) and (data

< 58)) then

 stage(5) <= '1';

 dat1 <= data;

 dat_count <=

dat_count + 1;

 else--start all over again

 dat_count <=

(others => '0');

 stage <= (others

=> '0');

 dat1 <= dat1;

 end if;

 WHEN "110" =>--lsb (0-9)

 dat5 <= dat5;

 dat4 <= dat4;

 dat3 <= dat3;

 dat2 <= dat2;

 dat1 <= dat1;

 dat_count <= (others =>

'0');--start at the beginning for new data

 if ((data > 47) and (data

< 58)) then

 stage(6) <= '1';

 dat0 <= data;

 blink <= not

blink;--changeover blink

 else--start all over again

 stage <= (others

=> '0');

 blink <= blink;

 dat0 <= dat0;

 end if;

 WHEN OTHERS =>--start all

over again

 dat_count <=

(others => '0');

 dat5 <= dat5;

 dat4 <= dat4;

82

 dat3 <= dat3;

 dat2 <= dat2;

 dat1 <= dat1;

 dat0 <= dat0;

 blink <= blink;

 stage <= (others

=> '0');

 END CASE;

 else-- there is no valid new data so wait for one

to come

 dat_count <= dat_count;

 dat5 <= dat5;

 dat4 <= dat4;

 dat3 <= dat3;

 dat2 <= dat2;

 dat1 <= dat1;

 dat0 <= dat0;

 blink <= blink;

 stage <= stage;

 end if;

 else-- reset in order

 dat_count <= (others => '0');

 dat5 <= (others => '0');

 dat4 <= (others => '0');

 dat3 <= (others => '0');

 dat2 <= (others => '0');

 dat1 <= (others => '0');

 dat0 <= (others => '0');

 blink <= '0';

 stage <= (others => '0');

 end if;

 end if;

 end process;

-- data valid signal process

 dat_valid_proc: process(clk)

 begin

 if rising_edge(clk) then

 if reset_n = '1' then

 dat_valid <= blink xor blink_del;--there is

changeover in blink so there is new valid data

 blink_del <= blink;-- delay blink signal so that

data valid signal is active for only one clock cycle

 else--reset in order

 dat_valid <= '0';

 blink_del <= '0';

 end if;

 end if;

 end process;

end Behavioral;

83

C4. Serial TX Module (Sercomtx)

--

-- Company:

-- Engineer:

--

-- Create Date: 17:48:58 04/01/2020

-- Design Name:

-- Module Name: sercomrx - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity sercomtx is

Port(

 binout5 : OUT std_logic_vector(7 downto 0);

 binout4 : OUT std_logic_vector(7 downto 0);

 binout3 : OUT std_logic_vector(7 downto 0);

 binout2 : OUT std_logic_vector(7 downto 0);

 binout1 : OUT std_logic_vector(7 downto 0);

 binout0 : OUT std_logic_vector(7 downto 0);

 bin5 : IN std_logic_vector(7 downto 0);

 bin4 : IN std_logic_vector(7 downto 0);

 bin3 : IN std_logic_vector(7 downto 0);

 bin2 : IN std_logic_vector(7 downto 0);

 bin1 : IN std_logic_vector(7 downto 0);

 bin0 : IN std_logic_vector(7 downto 0);

 data_valid: IN std_logic;

84

 clk : IN std_logic;

 serout : OUT std_logic;

 reset_n : IN std_logic

);

end sercomtx;

architecture Behavioral of sercomtx is

COMPONENT text_rom

 PORT (

 clka : IN STD_LOGIC;

 addra : IN STD_LOGIC_VECTOR(5 DOWNTO 0);

 douta : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);

END COMPONENT;

-- output digit data registers

signal dig5 : std_logic_vector(7 downto 0) := (others => '0');

signal dig4 : std_logic_vector(7 downto 0) := (others => '0');

signal dig3 : std_logic_vector(7 downto 0) := (others => '0');

signal dig2 : std_logic_vector(7 downto 0) := (others => '0');

signal dig1 : std_logic_vector(7 downto 0) := (others => '0');

signal dig0 : std_logic_vector(7 downto 0) := (others => '0');

-- serial data transfer registers

signal busyshiftreg : std_logic_vector(9 downto 0) := (others => '0');

signal datashiftreg : std_logic_vector(9 downto 0) := (others => '1');

-- clock divider counter

signal txcounter : std_logic_vector(12 downto 0) := (others => '0');

-- data register, reloading register for serial data transfer register

signal data : std_logic_vector(7 downto 0) := (others => '0');

-- caption text rom signals

signal rom_counter : std_logic_vector(7 downto 0) := (others => '0');

signal douta : std_logic_vector(7 downto 0) := (others => '0');

-- internal control signals

signal state_counter : std_logic_vector(3 downto 0) := (others => '0');

signal timer : std_logic_vector(1 downto 0) := (others => '0');

signal valid_data : std_logic := '0';

signal data2send : std_logic := '0';

begin

--caption text rom

Inst_romtext : text_rom

 PORT MAP (

 clka => clk,

 addra => rom_counter(5 downto 0),

 douta => douta

);

 -- module connectors

 serout <= datashiftreg(0);--data shifted as LSB first MSB last

85

 data2send <= (valid_data);

 binout5 <= dig5;

 binout4 <= dig4;

 binout3 <= dig3;

 binout2 <= dig2;

 binout1 <= dig1;

 binout0 <= dig0;

-- main serial communication process

 ser_comm_tx: process(clk)

 begin

 if rising_edge(clk) then

 if reset_n = '1' then

 if data2send = '1' then--there is data waiting to

be sent

 if busyshiftreg(0) = '0' then--sender is

not busy then reload new data from data register to data shift register

 busyshiftreg <= (others => '1');--

set busy signal to prevent unintended reloading of data shift register

 txcounter <= (others => '0');--

clear tx counter for the timing of new transfer

 datashiftreg <= '1' & data & '0';--

reload datashift register with fresh data and also include start and stop bits

 else

 if txcounter = 3839 then--bit

clock = 36864/3840 = 9.6kbps

 datashiftreg <= '1' &

datashiftreg(9 downto 1);--time to shift out a new bit

 busyshiftreg <= '0' &

busyshiftreg(9 downto 1);--count sent bits when complete busy signal is made

inactive automatically

 txcounter <= (others =>

'0');-- clear clock divider

 else--wait till next bit to out

 txcounter <=

txcounter+1;

 datashiftreg <=

datashiftreg;

 busyshiftreg <=

busyshiftreg;

 end if;

 end if;

 else--there is no new data so wait in ready state

(not busy)

 busyshiftreg <= (others => '0');

 txcounter <= (others => '0');

 datashiftreg <= (others => '1');

 end if;

 else-- reset in order

86

 busyshiftreg <= (others => '0');

 txcounter <= (others => '0');

 datashiftreg <= (others => '1');

 end if;

 end if;

 end process;

-- outgoing data reloading process

 data_proc: process(clk)

 begin

 if rising_edge(clk) then

 if reset_n = '1' then

 CASE state_counter(3 downto 0) IS

 WHEN "0000" =>-- caption text state,

withdraw text data from rom

 if (rom_counter = 64) and

(busyshiftreg(0) = '0') then-- end of rom data so proceed with sending out

incoming data (echo received data)

 state_counter <=

state_counter + 1;

 valid_data <= '0';

 rom_counter <=

rom_counter;

 data <= data;

 else--withdraw text data from

rom

 state_counter <=

state_counter;

 valid_data <= '1';

 if busyshiftreg(0) = '0'

then-- serial transmitter is ready for new data

 rom_counter <=

rom_counter + 1;--proceed with next line

 data <= douta;--

reload new data

 else--serial xmitter is

busy so wait until not busy

 rom_counter <=

rom_counter;

 data <= data;

 end if;

 end if;

 WHEN "0001" =>--xmit sign of

incoming data

 data <= dig5;

 if (timer = "11") and

(busyshiftreg(0) = '0') then--data accepted for xmit so proceed next state and wait

till xmitter is ready to accept new data

 state_counter <=

state_counter + 1;

87

 valid_data <= '0';

 timer <= "00";

 else--xmitter is not ready so wait

 state_counter <=

state_counter;

 valid_data <= '1';

 if timer = "11" then

 timer <= timer;

 else

 timer <= timer +

1;

 end if;

 end if;

 WHEN "0010" =>--xmit first msb of

incoming data

 data <= dig4;

 if (timer = "11") and

(busyshiftreg(0) = '0') then

 state_counter <=

state_counter + 1;

 valid_data <= '0';

 timer <= "00";

 else

 state_counter <=

state_counter;

 valid_data <= '1';

 if timer = "11" then

 timer <= timer;

 else

 timer <= timer +

1;

 end if;

 end if;

 WHEN "0011" =>--xmit second msb

 data <= dig3;

 if (timer = "11") and

(busyshiftreg(0) = '0') then

 state_counter <=

state_counter + 1;

 valid_data <= '0';

 timer <= "00";

 else

 state_counter <=

state_counter;

 valid_data <= '1';

 if timer = "11" then

 timer <= timer;

 else

88

 timer <= timer +

1;

 end if;

 end if;

 WHEN "0100" =>--xmit third msb

 data <= dig2;

 if (timer = "11") and

(busyshiftreg(0) = '0') then

 state_counter <=

state_counter + 1;

 valid_data <= '0';

 timer <= "00";

 else

 state_counter <=

state_counter;

 valid_data <= '1';

 if timer = "11" then

 timer <= timer;

 else

 timer <= timer +

1;

 end if;

 end if;

 WHEN "0101" =>--xmit fourth msb

 data <= dig1;

 if (timer = "11") and

(busyshiftreg(0) = '0') then

 state_counter <=

state_counter + 1;

 valid_data <= '0';

 timer <= "00";

 else

 state_counter <=

state_counter;

 valid_data <= '1';

 if timer = "11" then

 timer <= timer;

 else

 timer <= timer +

1;

 end if;

 end if;

 WHEN "0110" =>--xmit lsb

 data <= dig0;

 if (timer = "11") and

(busyshiftreg(0) = '0') then

 state_counter <=

state_counter + 1;

 valid_data <= '0';

89

 timer <= "00";

 else

 state_counter <=

state_counter;

 valid_data <= '1';

 if timer = "11" then

 timer <= timer;

 else

 timer <= timer +

1;

 end if;

 end if;

 WHEN "0111" =>--xmit CR

 data <= X"0D";

 if (timer = "11") and

(busyshiftreg(0) = '0') then

 state_counter <=

state_counter + 1;

 valid_data <= '0';

 timer <= "00";

 else

 state_counter <=

state_counter;

 valid_data <= '1';

 if timer = "11" then

 timer <= timer;

 else

 timer <= timer +

1;

 end if;

 end if;

 WHEN "1000" =>--xmit LF so proceed

new data with new line

 data <= X"0A";

 if (timer = "11") and

(busyshiftreg(0) = '0') then

 state_counter <=

state_counter + 1;

 valid_data <= '0';

 timer <= "00";

 else

 state_counter <=

state_counter;

 valid_data <= '1';

 if timer = "11" then

 timer <= timer;

 else

 timer <= timer +

1;

90

 end if;

 end if;

 WHEN OTHERS =>--start from

sending sign of new data (echo incoming data forever as there is new valid data)

 if data_valid = '1' then--

there is new valid data waiting to be echoed out

 state_counter <=

"0001";

 else--wait for new data

 state_counter <=

state_counter;

 end if;

 timer <= "00";

 valid_data <= '0';

 rom_counter <=

rom_counter;

 data <= data;

 END CASE;

 else--reset in order

 valid_data <= '0';

 rom_counter <= (others => '0');

 state_counter <= (others => '0');

 timer <= (others => '0');

 data <= X"61";

 end if;

 end if;

 end process;

-- sample incoming data process

 update_digit_proc: process(clk)

 begin

 if rising_edge(clk) then

 if reset_n = '1' then

 if data_valid = '1' then--there is valid data

waiting to be echoed

 dig5 <= bin5;

 dig4 <= bin4;

 dig3 <= bin3;

 dig2 <= bin2;

 dig1 <= bin1;

 dig0 <= bin0;

 else--wait

 dig5 <= dig5;

 dig4 <= dig4;

 dig3 <= dig3;

 dig2 <= dig2;

 dig1 <= dig1;

 dig0 <= dig0;

 end if;

 else--reset state (initial value -15000)

91

 dig5 <= X"2D";

 dig4 <= X"31";

 dig3 <= X"35";

 dig2 <= X"30";

 dig1 <= X"30";

 dig0 <= X"30";

 end if;

 end if;

 end process;

end Behavioral;

C5. Phase Increment Calculator Module (frecalc)

--

-- Company:

-- Engineer:

--

-- Create Date: 17:46:16 04/28/2020

-- Design Name:

-- Module Name: frecalc - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity frecalc is

Port(

digit_in : in STD_LOGIC_VECTOR(27 downto 0);

phi_inc_out : out std_logic_vector(31 downto 0) := (others => '0');

92

reset_n : in STD_LOGIC;

data_valid : in STD_LOGIC;

clk : in std_logic

);

end frecalc;

architecture Behavioral of frecalc is

COMPONENT FREQ

 PORT(

 bin : IN std_logic_vector(27 downto 0);

 pinc : OUT std_logic_vector(31 downto 0)

);

END COMPONENT;

signal phi_inc : std_logic_vector(31 downto 0) := (others => '0');--calculated

phase increment

signal freq_counter : std_logic_vector(7 downto 0) := (others => '0');--wait

counter

signal pinc : std_logic_vector(31 downto 0) := (others => '0');--precalculation

register

signal bin : STD_LOGIC_VECTOR(27 downto 0);--input frequency data in

BCD format + sign data

begin

phi_inc_out <= phi_inc;

 Inst_FREQ: FREQ PORT MAP(

 bin => digit_in,

 pinc => pinc

);

 freq_proc:process(clk)

 begin

 if rising_edge(clk) then

 if reset_n = '1' then

 if freq_counter = X"00" then--wait for new data

 phi_inc <= phi_inc;

 if data_valid = '1' then--there is new

data so start calculation

 freq_counter <= freq_counter +

1;

 else

 freq_counter <= freq_counter;

 end if;

 else-- calculation in progress

 freq_counter <= freq_counter + 1;

 if freq_counter = X"FF" then--

calculation is complete

93

 phi_inc <= pinc;--update phase

increment output with new one

 else--wait till calculation is complete

 phi_inc <= phi_inc;

 end if;

 end if;

 else--reset state

 freq_counter <= X"01";

 phi_inc <= (others => '0');

 end if;

 end if;

 end process;

end Behavioral;

C6. AM Receiver Module (am_rx)

--

-- Company: KARABUK UNIVERSITY

-- Engineer: Bilgehan ERKAL -Ali HANDER

--

-- Create Date: 18:24:23 04/28/2020

-- Design Name:

-- Module Name: am_rx - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

94

entity am_rx is

 Port (

 phi_inc : in std_logic_vector(31 downto 0);

 I_out : out std_logic_vector(15 downto 0);

 Q_out : out std_logic_vector(15 downto 0);

 I_in : in std_logic_vector(15 downto 0);

 Q_in : in std_logic_vector(15 downto 0);

 s_sel : in std_logic_vector(3 downto 0);

 clip_indicator : out std_logic_vector(7 downto 0);

 clk_48KHz : in STD_LOGIC;

 clk : in STD_LOGIC

);

end am_rx;

architecture Behavioral of am_rx is

 COMPONENT clipping_indicator_multi_channel

 PORT(

 clip_in_I : IN std_logic_vector(15 downto 0);

 clip_in_Q : IN std_logic_vector(15 downto 0);

 clk : IN std_logic;

 clip_out : OUT std_logic

);

 END COMPONENT;

component comp_mult1

 port (

 ar: in std_logic_vector(15 downto 0);

 ai: in std_logic_vector(15 downto 0);

 br: in std_logic_vector(15 downto 0);

 bi: in std_logic_vector(15 downto 0);

 clk: in std_logic;

 pr: out std_logic_vector(32 downto 0);

 pi: out std_logic_vector(32 downto 0));

end component;

COMPONENT nco1

 PORT (

 clk : IN STD_LOGIC;

 pinc_in : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

 cosine : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);

 sine : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END COMPONENT;

component fir1

 port (

 clk: in std_logic;

95

 rfd: out std_logic;

 rdy: out std_logic;

 din: in std_logic_vector(15 downto 0);

 dout: out std_logic_vector(34 downto 0));

end component;

COMPONENT nco2

 PORT (

 clk : IN STD_LOGIC;

 cosine : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);

 sine : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END COMPONENT;

COMPONENT mult

 PORT (

 clk : IN STD_LOGIC;

 a : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

 b : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

 p : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)

);

END COMPONENT;

-- first complex multiplier and nco signals

signal cos : std_logic_vector(15 downto 0) := (others => '0');

signal sin : std_logic_vector(15 downto 0) := (others => '0');

signal cmult_Iout1 : std_logic_vector(32 downto 0) := (others => '0');

signal cmult_Qout1 : std_logic_vector(32 downto 0) := (others => '0');

-- first LPF signals

signal lpf_I_din : std_logic_vector(15 downto 0) := (others => '0');

signal lpf_Q_din : std_logic_vector(15 downto 0) := (others => '0');

signal lpf_I_dout : std_logic_vector(34 downto 0) := (others => '0');

signal lpf_Q_dout : std_logic_vector(34 downto 0) := (others => '0');

-- second complex multiplier and nco signals

signal I_in2 : std_logic_vector(15 downto 0) := (others => '0');

signal Q_in2 : std_logic_vector(15 downto 0) := (others => '0');

signal cos2 : std_logic_vector(15 downto 0) := (others => '0');

signal sin2 : std_logic_vector(15 downto 0) := (others => '0');

signal cmult_Iout2 : std_logic_vector(32 downto 0) := (others => '0');

signal cmult_Qout2 : std_logic_vector(32 downto 0) := (others => '0');

-- realizer circuit signals

signal adder_I_in : std_logic_vector(15 downto 0) := (others => '0');

signal adder_Q_in : std_logic_vector(15 downto 0) := (others => '0');

signal adder_out : std_logic_vector(15 downto 0) := (others => '0');

-- Squaring type AM demodulator signals

96

signal squarer_in : std_logic_vector(15 downto 0) := (others => '0');

signal squarer_out : std_logic_vector(31 downto 0) := (others => '0');

-- Output LPF signals

signal lpf_out_din : std_logic_vector(15 downto 0) := (others => '0');

signal lpf_out_dout : std_logic_vector(34 downto 0) := (others => '0');

-- module outputs

signal I_out_x : std_logic_vector(15 downto 0) := (others => '0');

signal Q_out_x : std_logic_vector(15 downto 0) := (others => '0');

begin

-- intercomponent coarse level adjustment connectors

-- First LPF inputs

lpf_I_din <= cmult_Iout1(32) & cmult_Iout1(28 downto 14);

lpf_Q_din <= cmult_Qout1(32) & cmult_Qout1(28 downto 14);

--Second complex multiplier inputs

I_in2 <= lpf_I_dout(34) & lpf_I_dout(31 downto 17);

Q_in2 <= lpf_Q_dout(34) & lpf_Q_dout(31 downto 17);

--Realizer inputs

adder_I_in <= cmult_Iout2(32) & cmult_Iout2(28 downto 14);

adder_Q_in <= cmult_Qout2(32) & cmult_Qout2(28 downto 14);

-- AM Demodulator input

squarer_in <= adder_out(15) & adder_out(14 downto 0);

-- Output (final) LPF inputs

lpf_out_din <= squarer_out(31) & squarer_out(30 downto 16);

-- Module outputs (Despite 2-ch complex it is real in fact)

I_out_x <= lpf_out_dout(34) & lpf_out_dout(30 downto 16);

Q_out_x <= lpf_out_dout(34) & lpf_out_dout(30 downto 16);

-- Source selector process

s_sel_proc: process(clk)

 begin

 if rising_edge(clk) then

 CASE s_sel(3 downto 0) IS

 WHEN "1111" =>-- Demodulated final output

 I_out <= I_out_x;

 Q_out <= Q_out_x;

 WHEN "1110" =>-- Module input (first complex

multiplier input)

 I_out <= I_in;

 Q_out <= Q_in;

 WHEN "1101" =>-- Fist complex multiplier output,

First LPF input

 I_out <= lpf_I_din;

 Q_out <= lpf_Q_din;

97

 WHEN "1011" =>-- First LPF output, second complex

multiplier input

 I_out <= I_in2;

 Q_out <= Q_in2;

 WHEN "0111" =>-- Second complex multiplier output,

realizer input

 I_out <= adder_I_in;

 Q_out <= adder_Q_in;

 WHEN "1100" =>-- Realizer output, AM demodulator

input

 I_out <= squarer_in;

 Q_out <= squarer_in;

 WHEN "1010" =>-- AM demodulator output, Output

LPF input

 I_out <= lpf_out_din;

 Q_out <= lpf_out_din;

 WHEN "0110" =>-- Output LPF output, module output

 I_out <= I_out_x;

 Q_out <= Q_out_x;

 WHEN OTHERS =>-- module output

 I_out <= I_out_x;

 Q_out <= Q_out_x;

 END CASE;

 end if;

 end process;

-- Module input (first complex multiplier input) clipping indicator

cind0: clipping_indicator_multi_channel PORT MAP(

 clip_in_I => I_in,

 clip_in_Q => Q_in,

 clip_out => clip_indicator(0),

 clk => clk

);

-- First LPF input clipping indicator

cind1: clipping_indicator_multi_channel PORT MAP(

 clip_in_I => lpf_I_din,

 clip_in_Q => lpf_Q_din,

 clip_out => clip_indicator(1),

 clk => clk

);

-- Second complex multiplier input clipping indicator

cind2: clipping_indicator_multi_channel PORT MAP(

 clip_in_I => I_in2,

98

 clip_in_Q => Q_in2,

 clip_out => clip_indicator(2),

 clk => clk

);

-- Realizer input clipping indicator

cind3: clipping_indicator_multi_channel PORT MAP(

 clip_in_I => adder_I_in,

 clip_in_Q => adder_Q_in,

 clip_out => clip_indicator(3),

 clk => clk

);

-- AM demodulator input clipping indicator

cind4: clipping_indicator_multi_channel PORT MAP(

 clip_in_I => squarer_in,

 clip_in_Q => squarer_in,

 clip_out => clip_indicator(4),

 clk => clk

);

-- Output LPF input clipping indicator

cind5: clipping_indicator_multi_channel PORT MAP(

 clip_in_I => lpf_out_din,

 clip_in_Q => lpf_out_din,

 clip_out => clip_indicator(5),

 clk => clk

);

-- Module output (Output LPF output) clipping indicator

cind6: clipping_indicator_multi_channel PORT MAP(

 clip_in_I => I_out_x,

 clip_in_Q => Q_out_x,

 clip_out => clip_indicator(6),

 clk => clk

);

-- Empty indicator (reserved for future use)

clip_indicator(7) <= '0';

-- First complex multiplier

Inst_comp_mult1 : comp_mult1

 port map (

 ar => I_in,

 ai => Q_in,

 br => cos,--x"7FFF",--cos,--

 bi => sin,--x"0000",--sin,--

 clk => clk_48KHz,

 pr => cmult_Iout1,

 pi => cmult_Qout1

);

-- First NCO (steered by Phase increment value calculated from PC input

frequency data)

99

Inst_nco1 : nco1

 PORT MAP (

 clk => clk_48KHz,

 pinc_in => phi_inc,

 cosine => cos,

 sine => sin

);

-- First LPF (255 coefficient FIR, fs=48KHz, fc=4KHz)

-- I-channel

lpf_I : fir1

 port map (

 clk => clk,

 rfd => open,

 rdy => open,

 din => lpf_I_din,

 dout => lpf_I_dout

);

-- Q-channel

lpf_Q : fir1

 port map (

 clk => clk,

 rfd => open,

 rdy => open,

 din => lpf_Q_din,

 dout => lpf_Q_dout

);

-- Second complex multiplier

Inst_comp_mult2 : comp_mult1

 port map (

 ar => I_in2,

 ai => Q_in2,

 br => cos2,

 bi => sin2,

 clk => clk_48KHz,

 pr => cmult_Iout2,

 pi => cmult_Qout2

);

-- Second NCO (fixed upshift at 12KHz)

Inst_nco2 : nco2

 PORT MAP (

 clk => clk_48KHz,

 cosine => cos2,

 sine => sin2

);

-- Realizer circuit

100

adder_proc:process(clk_48KHz)

 begin

 if rising_edge(clk_48KHz) then

 adder_out <= adder_I_in + adder_Q_in;

 end if;

 end process;

-- Squarer circuit (AM Demodulator)

Inst_mult : mult

 PORT MAP (

 clk => clk_48KHz,

 a => squarer_in,

 b => squarer_in,

 p => squarer_out

);

-- Output LPF (255 coefficient FIR, fs=48KHz, fc=4KHz)

lpf_out : fir1

 port map (

 clk => clk,

 rfd => open,

 rdy => open,

 din => lpf_out_din,

 dout => lpf_out_dout

);

end Behavioral;

C7. Auxiliary 16-bit DAC (dac16) -not used

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dac16 is

Port (Clk : in STD_LOGIC;

 Data : in STD_LOGIC_VECTOR (15 downto 0);

 PulseStream : out STD_LOGIC);

end dac16;

architecture Behavioral of dac16 is

signal sum : STD_LOGIC_VECTOR (16 downto 0);

begin

PulseStream <= sum(16);

process (clk, sum)

begin

 if rising_edge(Clk) then

 sum <= ("0" & sum(15 downto 0)) + ("0" & data);

 end if;

101

end process;

end Behavioral;

102

RESUME

Ali Ibrahim Khalifa HANDER was born in Tripoli / Libya in 1981 and he graduated

first and elementary education in this city. He completed high school education in

Souq Al-Khamis High School, after that, he started higher diploma program in High

Institute for Comprehensive professions - Souq Al-Khamis / Tripoli Department of

Electrical and Electronic Engineering in 2000. Then in 2006, he started assignment

as a Research Assistant in same High Institute. To complete MSc education, he

moved to Karabük University.

CONTACT INFORMATION

Address : High Institute for Comprehensive professions - Souq Al-Khamis / Tripoli

Department of Electrical and Electronic Engineering Engineering

Campus / Souq Al-Khamis / Tripoli

E-mail : hander_ly@yahoo.com / aliabumalk@gmail.com

