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ABSTRACT 

 

M. Sc. Thesis 

 

MELLIN-TYPE CONVOLUTION OPERATORS FROM PAST TO PRESENT 

 

Dilshad Qasim Hamza HASO 

 

Karabük University 

Institute of Graduate Programs  

The Department of Mathematics 

 

Thesis Advisor: 

Assist. Prof. Dr. Gümrah UYSAL 

June 2021, 92 pages 

 

This thesis consists of five parts. The first part of this thesis includes introductory 

information. The second part includes the theoretical background consisting of some 

important definitions and theorems. In the third part, Mellin transform, inverse 

Mellin transform, Fourier transform and inverse Fourier transform are discussed. 

Also, Mellin-type linear convolution operators are examined. In the fourth part, an 

overview of the literature concerning Mellin-type nonlinear operators is given. Then, 

a pointwise convergence result concerning generalized Mellin     Lebesgue 

points of integrable functions is proved. The last part is devoted to giving concluding 

remarks. 

 

Key Words : Haar measure, Mellin transform, Mellin-type convolution, m-

singular integrals, pointwise convergence. 

 

Science Code :  20404 
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ÖZET 

 

Yüksek Lisans Tezi 

 

GEÇMİŞTEN GÜNÜMÜZE MELLIN TİPİ KONVOLÜSYON OPERATÖRLER 

 

Dilshad Qasim Hamza HASO 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Matematik Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi Gümrah UYSAL 

Haziran 2021, 92 sayfa 

 

Bu tez beş bölümden oluşmaktadır. Tezin ilk bölümü giriş bilgilerini içermektedir. 

İkinci bölüm, bazı önemli tanım ve teoremlerden oluşan teorik arka planı 

oluşturmaktadır. Üçüncü bölümde Mellin dönüşümü, ters Mellin dönüşümü, Fourier 

dönüşümü ve ters Fourier dönüşümü ele alınmıştır. Ayrıca, Mellin tipi lineer 

konvolüsyon operatörler incelenmiştir. Dördüncü bölümde, Mellin tipi nonlineer 

operatörler ile ilgili literatüre genel bir bakış verilmiştir. Daha sonra, integrallenebilir 

fonksiyonların genelleştirilmiş Mellin     Lebesgue noktalarına ilişkin bir 

noktasal yakınsama sonucu kanıtlanmıştır. Son bölüm, sonuç açıklamalarına 

ayrılmıştır. 

 

Anahtar Kelimeler  : Haar ölçüsü, Mellin dönüşümü, Mellin tipi konvolüsyon, m-

singüler integral, noktasal yakınsama. 

 

Bilim Kodu :   20404 
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SYMBOLS AND ABBREVIATIONS INDEX 

 

SYMBOLS 

 

  : Field consisting of real or complex numbers 

  : The set of all complex numbers 

  : The set of all real numbers 

   : The set of all positive real numbers 

  : The set of all positive integers 

  : The set of all rational numbers 

   :   dimensional Euclidean space 

  : Gamma function 

  : Beta function 

   : Mellin transform 

    : Fourier transform 

〈   〉 : Fundamental strip 

  , - : Real part of complex number   

 

 

ABBREVIATIONS 

 

resp. : respectively 

i.e. : that is or in other words 
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PART 1 

 

INTRODUCTION 

 

Mellin transforms and Mellin-type convolution operators, named after the famous 

mathematician Hjalmar Mellin, have been studied for many years. Lindelöf (1933) 

presented very inclusive information about Hjalmar Mellin and his contributions. 

Mamedov (1991) and Butzer and Jansche (1997) presented very important results in 

this respect. Mellin-type operators have also been studied extensively in 

approximation theory. Some studies centered on approximation by linear and 

nonlinear operators can be given as (Butzer and Jansche, 1998; Bardaro and 

Mantellini, 2006; Bardaro and Mantellini, 2007; Bardaro and Mantellini, 2011; 

Bardaro et al., 2013; Angeloni and Vinti 2014; Angeloni and Vinti, 2015; Fard and 

Zainuddin, 2016). Also, detailed information about Mellin-type nonlinear operators 

with some historical background can be found in (Bardaro et al., 2003).  

 

In this thesis, although it is not possible to examine all studies, we present a small-

scale study. Then, we prove a pointwise convergence result concerning generalized 

Mellin     Lebesgue points of integrable functions. 
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PART 2 

 

THEORETICAL AND CONCEPTUAL BACKGROUND 

 

In this part of the thesis, well-known theorems and definitions of notions are recalled 

from some reference works. The information covered in this part is given for the 

convenience of the reader in the continuing parts. 

 

2.1. PRELIMINARIES 

 

Definition 2.1.1. Let   be an arbitrary set and     . Then, a set (  )    

*      + is called an indexed set. In this regard,   is called an index set (Mucuk, 

2010). 

 

Example 2.1.1. Consider the set *                 + which equals  *   

                                 +. This set is an indexed set with 

respect to   such that (  )    (       )     with     . 

 

Definition 2.1.2. A set in which the members are sets is called a class. A set in which 

the members are classes is called a family (Mucuk, 2010). 

 

Definition 2.1.3. A function         defined on a non-empty set   is called a 

binary operation on  . A set   with a binary operation defined on it forms an 

algebraic structure denoted by (   ) (Bayraktar, 2006). 

 

Definition 2.1.4. Let  (   ) be an algebraic structure. If: 

 

 for all            the equality   (    )  (   )   , 

 for all       there exists     such that           ; 

 for each     there exists         such that                . 
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hold there, then   is called a group with respect to an algebraic operation  . If, in 

addition, for all       the equality          hold, then  (    ) is called an 

Abelian (commutative) group (Bayraktar, 2006). 

 

Example 2.1.2. It is known that with regards to the usually utilized addition 

operation, the set of all real numbers   forms an Abelian group. In relation to usually 

utilized multiplication, the set of all positive real numbers    also forms an Abelian 

group. On the other hand, due to the absence of the inverse of zero,   is not a group 

in relation to the usually utilized multiplication process. For some detailed 

explanations and further examples; see (Bayraktar, 2006).  

 

Definition 2.1.5. Let   be a field consisting of real or complex numbers and   be a 

non-empty set. If the following conditions with respect to two algebraic operations 

given as addition “⊕” and scalar multiplication “ ”: 

   verifies the following properties with respect to addition “⊕”: 

 

 for all       one has  ⊕    ; 

 for all         one has  ⊕    ⊕  ; 

 for all           one has  ⊕ ( ⊕  )  ( ⊕  ) ⊕  ; 

 there exists a zero element “O” in   such that for all    , one has  ⊕   

 ⊕    ; 

 for each     there exists         with         with respect to addition 

such that  ⊕ (  )  (  ) ⊕     holds for all    ; 

  verifies the following properties with respect to scalar multiplication “ ”: 

 

         for all     and      ; 

   ( ⊕  )  (   ) ⊕ (   )  and 

 ( ⊕  )    (   ) ⊕ (   )  for all       and        ; 

 (   )      (   )  for all     and        ; 

       for all       where   is an identity element of   ; 
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hold, then   is called a vector space over  . Here, the members of    and   are 

respectively called vectors and scalars (Bayraktar, 2017). 

 

Example 2.1.3. The set of all real numbers   and the set of all complex number   

are well-known vector spaces with respect to their usual addition and multiplication 

operations, for some details and further examples, (Bayraktar, 2017) is 

recommended. 

 

Definition 2.1.6. Let   be a set. A real-valued function  (   ) defined on     

satisfying the following properties: 

  

  (   )     holds for all       with   (   )       ; 

  (   )   (   ) holds for all      ; 

  (   )   (   )   (   ) holds for all      ; 

is called a metric (or a distance function) on     A pair (   ) is called a metric 

space (Kolmogorov and Fomin, 1975). 

 

Example 2.1.4. Let    . An absolute value function defined on      with  

 (   )  |   | (Euclidean distance) is a well-known metric for   (Kolmogorov 

and Fomin, 1975). 

 

Definition 2.1.7. Let (     ) and (     ) be two metric spaces. Further, let   be a 

function from     to   . If for every       there exists     such that   (    )  

    ( (  )  ( ))     then   is continuous at        If   is continuous at 

each      , then   is continuous on    (Folland, 1999). 

 

Example 2.1.5. Polynomials and an exponential function    defined on   are well-

known continuous functions with respect to usual Euclidean distance  (   )  

|   | with (   )     . 

 

Remark 2.1.1. In this thesis, we will consider the usual Euclidean distance as a 

metric unless otherwise specified. 



5 

 

Definition 2.1.8. A function       is said to be Lipschitz continuous if there is a 

constant   such that  

| ( )   ( )|    |   | 

holds for all        (Folland, 1999). 

 

Example 2.1.6. Let   ( )     ( )  with        ,    -        ( )  | | 

with           * +  These are well-known Lipschitz continuous functions since  

|   ( )     ( )|     |   |                   

and  

| | |  | | |     |   |                  

for all        

The first inequality follows from the fact that: 

 

|   ( )     ( )|   |   ( 
   

 
 )     ( 

   

 
 )| 

                                    |
   

 
|  |   . 

   

 
 /| 

                                |   |       

 

where |   . 
   

 
 /|     and |   . 

   

 
 /|  

 

 
 |   |   for all      .  

 

The second one is clear by the well-known triangle inequality given by (see, for 

example, (Balcı, 2008)): 

 

| | |  | | |   |   |  | |  | |   where        

 

Definition 2.1.9. Let   be a non-empty set in ,     -. The least upper bound of   

is called supremum of    and it is denoted by     . Similarly, the greatest lower 

bound of   is called infimum of  , and it is denoted by      . Also, for a function   

defined on  , the symbols        ( ) and        ( ) are respectively used for 

supremum and infimum values of    (Rudin, 1987). 
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Example 2.1.7. Let   (         ). Here,           and           for 

all    . 

 

Definition 2.1.10. Let   be an arbitrary interval in   and   be a real-valued function 

defined on this interval. If there holds the following inequality: 

 

 (    (   )  )      (  )  (   ) (  )   for all          and     ,   -, 

then   is convex on  . Similarly, if there holds the inequality: 

 

  (    (   )  )    (  )  (   ) (  ) for all          and     ,   -  

then   is concave on   (Dernek, 2003). 

 

Example 2.1.8. Let          be such that  ( )     and  ( )      then  ( ) 

is convex on   and  ( ) is concave on  . 

 

Definition 2.1.11. Let   be a vector space. A function   on   satisfying the 

following properties: 

  

  ( )      holds for all      with  ( )       ; 

  (  )  | | ( )  holds for all       and scalar     (    or    ); 

  (   )   ( )   ( ) holds for all          

is called a norm on     A vector space    with a norm  ( )  ‖ ‖  is called a 

normed space (Kolmogorov and Fomin, 1975). 

 

Example 2.1.9.   is a normed space by taking ‖ ‖  | |          (Kolmogorov 

and Fomin, 1975). 

 

Now, we will give some necessary topological preliminaries. 

 

Definition 2.1.12. Let   be a set and   be a collection consisting of subsets of this 

set. If   possesses the following properties: i.e.; 
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      ; 

 if *  +   
   , then     

     , where    ; 

 if for an arbitrarily selected collection of elements *  + which is finite, countable 

or uncountable, then           , where   is an index set; 

then   is called a topology on    (   ), a set   with a topology defined on it, is 

called a topological space and its elements are called open sets of    (Rudin, 1987). 

 

Example 2.1.10. Let   *              + be given. Considering the sets given 

by    {     *    + *    + *         +} and    *     *         + 

*         + +, one observes that     is a topology on   . On the contrary, 

since *         +  *         +  *    +          is not a topology on  . 

 

Definition 2.1.13 Let    . If for every     there exists          such 

that (       )   , then    is an open set in    If for a given set     the 

set          is open in  , then   is called a closed set. A class of open sets   in   

is a topology on  , and it is called the usual topology on   (Mucuk, 2010). 

 

Definition 2.1.14. Let (   ) be a topological space,      and   denote an element 

of   . If there is an open set        with        , then a set   is called a 

neighbourhood of   (Mucuk, 2010). 

 

Example 2.1.11. For     and    
 

 
, one has (       )  .  

 

 
   

 

 
/  

. 
 

 
 
 

 
/    . Here,   is a neighbourhood of     with respect to   

 

 
 in view of 

usual topology on  .  

 

Definition 2.1.15. Let (   ) be a topological space,     and    . If for every 

open neighbourhood   of       the set  (  * +)    is non-empty, then a point 

    is called an accumulation point of    (Mucuk, 2010). 
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Example 2.1.12. Let   (         )  Considering   with its usual topology, we 

see that all elements of   together with {2020, 2021} are accumulation points of the 

set  . 

 

Proposition 2.1.1. Every subset of Euclidean space    which is closed and bounded 

is compact (Folland, 1999). 

 

Example 2.1.13. It is well-known that any closed and bounded interval ,   - in   is 

compact. 

 

Definition 2.1.16. Let (   ) be a topological space in whose every point possesses a 

compact neighbourhood is called a locally compact topological space (Folland, 

1999). 

 

Example 2.1.14. The set   is local compact with respect to the usual topology. But, 

since none of the elements of   have a compact neighbourhood,   is not locally 

compact (Mucuk, 2010). 

 

Definition 2.1.17. Let (   ) be a topological space. If   possesses the property 

given as if    , then there are open sets    and   satisfying      , where   

   and    , then   is called Hausdorff space (Folland, 1999). 

 

Definition 2.1.18. A group (   ) with a topology defined on it such that the 

following group operations: (   )       and        are respectively 

continuous from        and      is called a topological group. In particular, 

a topological group on which the topology is locally compact and Hausdorff is called 

a locally compact group (Folland, 1999). 

 

Example 2.1.15.    with usual multiplication and usual topology came from   is a 

well-known (multiplicative) topological group. 

 

Now, we will present some necessary measure theoretical preliminaries. 
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Definition 2.1.19. Let   be a set. Further, let   denote a collection consisting of 

subsets of this set. If   possesses the following properties: 

  

    ; 

 if a set    , then       where    denotes complement of    in   (      ); 

 if  *  +     , then      
      ; 

 

then   is called            on  . A pair (   ) is called a measurable space, 

and elements of    are called measurable sets on   (Rudin, 1987). 

 

Definition 2.1.20.  Let (   ) be a measurable space. The function     ,    - is 

called a measure if for each infinite sequence (  ) consisting of disjoint elements of 

  there holds   (    
   )   ∑  (  ) 

    and    ( )    . (     ) is called a 

measure space (Cohn, 1980). 

 

Definition 2.1.21. Let (   ) be a topological space. The Borel  -algebra, which is 

denoted by  ( ) is the  -algebra generated by the family of open sets (respectively 

closed sets) in   . The elements of   ( ) are called Borel sets. In particular, 

if     , then Borel   -algebra on    is obtained (Folland, 1999). 

 

Proposition 2.1.2. Open and closed intervals, semi-open (respectively semi-closed) 

intervals and semi-infinite intervals in   generate  ( ) separately (Folland, 1999).  

 

Example 2.1.16. Let  ( )    ( ). The intervals (   ) (    ) and  (   -  are 

some elements of  ( ). 

 

Definition 2.1.22. Let  ( ) denote the set consisting of all subsets of  . A function 

    ( )  ,    - defined by 

 

  ( )      {∑(     )

 

 *(     )+    } 
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for each subset     satisfying       
 (     ), where    is a set of all infinite 

sequences *(     )+ of open bounded intervals, that is,          with       for 

each  , is called Lebesgue outer measure (Cohn, 1980).  

 

In particular, if    is considered on  ( ), then it is called Lebesgue measure shown 

as     and domain of it will be called a class of Lebesgue measurable sets (Folland, 

1999).  

 

Proposition 2.1.3. Using the Lebesgue (outer) measure, one evaluates the measure of 

each interval      as its length (Cohn, 1980; Folland, 1999).  

 

For example, if   (         ), then   ( )                   ( )   

 

Definition 2.1.23. A Borel measure   on a Hausdorff topological space is a measure 

such that     ( )  ,     -. A measure defined on  ( ) satisfying: 

  

  ( ) is finite for each compact set    ;  

  ( )        * ( )      with   being open} for each    ( );  

  ( )       * ( )      with   being compact} for each open set    ; 

 

is called a regular Borel measure (Cohn, 1980). 

 

Definition 2.1.24. Let (   ) be a measurable space. The function     ,     -  

where      is a subset of  , is called a measurable function if for each    , the 

set defined by *     ( )   +      If     and    (  ), then the function is 

Borel measurable function (resp. Borel function). Also, if   stands for a Lebesgue 

measurable set on  , then the function is measurable in the sense of Lebesgue (Cohn, 

1980). 

 

Definition 2.1.25. A measurable function   defined on a measurable space   with 

respect to Lebesgue measure     satisfying ∫ | |  
 

   is called a Lebesgue 

integrable function (Rudin, 1987). 
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Definition 2.1.26. Assume that (   ) be an arbitrary interval in   whose endpoints 

satisfy the inequality             Let       and   be a Lebesgue 

measurable function defined on this interval. Space   (   )  the space of functions 

whose p-th power is Lebesgue integrable on (   ), consists of the functions 

equipped with the norm 

 

‖ ‖  (   )  (∫| ( )| 
 

 

   )

 
 ⁄

      

 

with ‖ ‖  (   )    (Hacısalihoğlu and Hacıyev, 1995). 

 

Definition 2.1.27. Let   be an arbitrary subset of  . A function defined by 

  

  ( )  {
                    
                    

 

 

is called a characteristic function of the set   (Rudin, 1987). 

 

Now, we are ready to give the definition of Haar measure. 

 

Definition 2.1.28. A non-zero regular left (or right) translation-invariant Borel 

measure   on locally compact group    is a left (or right) Haar measure on  . Here, 

above indicated measure   is left (or right) translation-invariant means for every 

    and    ( )     (   )   ( )  (or  (   )   ( )) holds. Here, for 

every fixed     the notation     (or    )  represents     (or    ) for all 

    (Cohn, 1980). 

 

As seen below, Cohn (1980) used different notations for left and right translates and 

explained why he did it with reasons. 

 

Example 2.1.17. Let   be a locally compact group with respect to operation  . Let 

    denote inverse element such that             holds for every    . 
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Denoting left translate of a function   defined on   by    with   ( )   .     / 

for every    , one has 

  

∫   

 

    ∫ 

 

   

 

for each Borel function   which is either integrable with respect to measure   or 

non-negative, provided that   is a left Haar measure on  . The right translate of   is 

defined similarly as    with   ( )   (     ) for every    . In particular, 

replacing   by    of a Borel set   on  , one has 

 

∫     

 

    (   )   ( )  ∫  

 

   

 

where    is the characteristic function of   (Cohn, 1980, p. 305).  

 

Following the strategy used above, two Haar measures given in (Cohn, 1980) are 

examined as follows. 

 

Example 2.1.18. It is stated in (Cohn, 1980, p. 304) that the Lebesgue measure is  a 

left and a right Haar measure, shortly Haar measure, on topological group    It is 

well-known that   is an additive topological group, which is Abelian with respect to 

usual addition, together with its usual topology. Here, we consider the Lebesgue 

integral of a function   defined on   as ∫  ( )  
 

 with respect to Lebesgue 

measure    ( )  ∫   
 

  where   is an arbitrary Borel set on  . In fact, following the 

notation of Cohn (1980) used in Example 2.1.17, it is easily seen that 

  

∫     ( )

 

      (   )     (   )  ∫  
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holds. Let   ,   - with       satisfying      In particular, taking   ,   - 

and making the variable change       with       gives the following result 

for the left translate of    : 

 

∫     ( )

 

   ∫  (    )

 

   ∫  ( )

 

   ∫          ( ) 

 

 

 

 

Similarly, for the right translate of   , one has 

 

∫   
( )

 

   ∫  (   )

 

   ∫  ( )

 

   ∫  

 

 

        ( )       

 

The following example has particular importance in view of the variable change 

operations in Mellin convolutions. 

 

Example 2.1.19. It is stated in (Cohn, 1980, p. 311) that the formula given as 

 

 ( )  ∫
 

 
   

 

 

 

defines a Haar measure on multiplicative topological group     which is Abelian 

with respect to usual multiplication, with the usual topology inherited from  . Here, 

   refers to usual Lebesgue measure     and   stands for an arbitrary Borel set 

on        

In fact, following the notation of Cohn (1980) used in Example 2.1.17 and using 

variable change given by      with       , one has  

 

∫     ( )

  

 

 
   ∫  (

 

 
 )

 

 
  

   ∫  ( )
 

 
  

   ∫
 

 
 

     ( )    

 

A similar result can be obtained for the right translate. 
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Let   ,   - with         satisfying    . Then, one has  

 ( )   (,   -)    ( )    ( )    (    )  

 

Theorem 2.1.1. Assume that (   ) be an arbitrary interval in   whose endpoints 

satisfy the inequality            and  
 

 
 

 

 
     with          . If 

    (   ) and     (   )  then the inequality: 

  

‖  ‖  (   )  ‖ ‖  (   )‖ ‖  (   )  

 

holds. This inequality is known as Hölder's inequality (Hacısalihoğlu and Hacıyev, 

1995). 

 

Theorem 2.1.2. Let  (   ) with       be a bivariate (complex-valued) function 

defined and measurable on     Then,     (  ) and  

 

∫ ∫  (   )

  

  

  

  

      ∫ ( ∫  (   )

  

  

  )

  

  

   ∫ ( ∫  (   )

  

  

  )

  

  

   

 

provided that ∫ (∫ | (   )|
  

  
  )

  

  
   finitely exists (Butzer and Nessel, 1971).  

Note that Theorem 2.1.2 is the second part of Fubini's theorem given in (Butzer and 

Nessel, 1971).  

 

Theorem 2.1.3. Let  (   ) with       be a bivariate (complex-valued) function 

defined and measurable on    and         . Then, 

  

‖ ∫  (   )  

  

  

‖

  ( )

 ∫ ‖ (   )‖  ( )

  

  

    

 

provided that ‖ (   )‖  ( )    ( )  This inequality is called Hölder-Minkowski 

inequality (Butzer and Nessel, 1971). 
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Definition 2.1.29. A point     is called a Lebesgue point of   if the following 

equality: 

 

   
    

∫ | ( )   ( )|

   

 

      

 

holds at      Here,   is integrable on the sufficiently large domain (Natanson, 

1964). 

 

Example 2.1.20. Let      * +    with  ( )      This function is integrable on 

any bounded interval of    * +  Further, let      Now, we show that this point is 

Lebesgue point of   as follows: 

 

   
    

 

 
∫|       |

 

 

      
    

 

 
 ∫(    )

 

 

   

                                                
    

 

 
 ,    | 

  

                                                
    

 

 
 ,(    )  (    )- 

                                                
    

(      )

 
   

 

Here, we use well-known  L’Hospital's theorem such that 

 

   
    

(      )

 
  

    

 
 

                                     
   

 
 

                                         

 

Definition 2.1.30. It is said that a property   holds almost everywhere on a set   if   

holds everywhere on   except a set     which is a set of measure zero (Natanson, 

1964). 
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Definition 2.1.31. Let        . If for all          with       there 

holds  (  )   (  ), then    is called non-decreasing on   . Similarly, if for 

all         with       there holds  (  )   (  ), then    is called non-

increasing on  . A function   which is either non-increasing or non-decreasing on 

its domain, is called monotonic function (Kolmogorov and Fomin, 1975). 

 

Example 2.1.21. Let       be given by  ( )    . This function is non-

decreasing on ,   ) and non-increasing on (    -. This function is not monotonic 

since it is neither non-increasing nor non-decreasing in its domain. 

 

Now, we present some necessary information about the functions of bounded 

variation. 

 

Definition 2.1.32. Assume that   is a real-valued function defined on ,   -, where 

,   -     with    . Let     *       + be any partition of the interval ,   - and 

P be the set consisting of all (finite) partitions of this interval. Total variation of    

over ,   - 

 

⋁( )

 

 

    
   

∑| (  )   (    )|

 

   

 

 

is the number in ,    -. If  ⋁ ( ) 
   has a finite value which is independent of the 

selection of the partition, then   is said to be of bounded variation over ,   - 

(Kolmogorov and Fomin, 1975). 

 

Theorem 2.1.4. If a function   defined on ,   -  where ,   -    with    ,  is 

monotonic, then this function possesses a finite derivative    almost everywhere on 

,   -  This theorem is called Lebesgue's theorem (Kolmogorov and Fomin, 1975). 

 

Theorem 2.1.5. A function which is of bounded variation on  ,   -  where ,   -  

  with    , can be written as the difference of two non-decreasing functions on 

this interval (Kolmogorov and Fomin, 1975). 
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Corollary 2.1.1. A function which is of bounded variation on ,   -  where ,   -  

  with    , possesses finite derivative almost everywhere on this interval 

(Kolmogorov and Fomin, 1975). 

 

Corollary 2.1.2. If the function   is integrable in the sense of Lebesgue on ,   -  

  with    , then the indefinite integral function defined by 

 

 ( )   ∫ ( )  

 

 

  

 

where   ,   -, is of bounded variation on ,   -    (Kolmogorov and Fomin, 

1975). 

 

Definition 2.1.33. Let *(     )+ be a finite sequence of disjoint and open intervals in 

the closed interval    .  If      can be found for each      such that 

  

∑(     )

 

   

      ∑| (  )   (  )|

 

   

    

 

which is independent of the selection of the sequence, then the function          is 

absolutely continuous on    . The interval   can also be taken as   (Cohn, 

1980). 

 

Theorem 2.1.6. An absolute continuous function on a closed and bounded interval of  

   is of bounded variation in the same interval (Cohn, 1980). 

 

Theorem 2.1.7. If the function   is integrable in the sense of Lebesgue on ,   -    

with    , then the indefinite integral function defined by 

 ( )   ∫ ( )  
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where   ,   -, is absolutely continuous on ,   -    (Kolmogorov and Fomin, 

1975). 

 

The following theorem provides the conditions for transforming the Lebesgue 

integral into Stieltjes integral. 

 

Theorem 2.1.8. If the function   is integrable in the sense of Lebesgue on ,   -    

with     and   is the indefinite integral of function   , which is integrable in the 

sense of Lebesgue on ,   -  defined by 

 

 ( )   ∫ ( )  

 

 

  

 

where   ,   -, then the equality:   

 

∫  ( ) ( )  

 

 

 ∫  ( )  ( )

 

 

 

 

holds (Hobson, 1921).  

 

Theorem 2.1.9. Let   and   be given functions defined on ,   -    with    . If 

one of the integrals ∫  ( )  ( )
 

 
 and ∫  ( )  ( )

 

 
 (finitely) exists, then the 

other one also finitely exists and the following equality: 

  

∫  ( )  ( )

 

 

  ( ) ( )   ( ) ( )  ∫  ( )  ( )

 

 

 

 

holds. This formula is known as a method of integration by parts for Stieltjes 

integrals (Natanson, 1964). 
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Example 2.1.22. Let     ,   -    be given by  ( )     and  ( )  
 

 
  Direct 

computation gives ∫    

 
  

 

 
 

 

 
 . On the other hand, in view of   ( )   ∫

 

 
  

 

 
 

and using integration by parts, we have 

 

∫    ( )

 

 

    ( )     ( )  ∫ ( ) (  )

 

 

 

                           (   )    ∫ ( )   

 

 

 

                          (   )    ∫ ( )   

 

 

 

                       ∫  
 

 
  

 

 

 

                        
 

 
  

 

Definition 2.1.34. The space   (  ) consists of the measurable functions   for 

which ∫ | ( )| 
  

 

 

 
        where      and      .  The norm in this space 

is defined as follows: 

 

‖ ‖  (  )   (∫ | ( )| 
  

 

 

 
  )

 
 

     

 

where      and         (Mamedov, 1991). Here, the measure is as treated 

in Example 2.1.19. We use this norm in Parts 3 and 4 while treating Mellin-type 

operators. 

 

Remark 2.1.2. Let     
 (  ) represent the space of locally integrable functions   for 

which ∫ | ( )|
 

 

 

 
       where      and   (   -. Here, the measure is as 

treated in Example 2.1.19. Similarly, let     
 (  ) represent the space of usual 
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locally integrable functions   for which ∫ | ( )|
 

 
      for every choice of 

     with   (   -. Here, the measure is as treated in Example 2.1.18. 

Considering these, Bardaro and Mantellini (2006) proved the inclusion relation given 

as     
 (  )      

 (  ) provided that       by stating the following 

observation: 

 

∫| ( )|

 

 

   ∫| ( )|
 

 

 

 

    

 

We may express this fact in more detailed form as follows: 

 

∫| ( )|

 

 

   ∫| ( )|

 

 

 

 
   6    

  (   )
 7∫| ( )|

 

 

 

 
   ∫| ( )|

 

 

 

 
    

 

This means if       
 (  )  one has       

 (  ) with         But, the 

converse of this may not be true. Considering   as a constant function is enough to 

see this. Taking  ( )    gives indeed ∫ | ( )|
 

 
   ∫  

 

 
     and non-existence 

of the integral ∫ | ( )| 
 

 

 

 
   when       Now, one may understand why the theory 

developed for Lebesgue integration is used in the proofs concerning Mellin-type 

convolutions (see Part 4). 

 

Remark 2.1.3. The symbols     
 (  ) and     

 (  ) are used as in Remark 2.1.2 

throughout this thesis. 

 

Example 2.1.23. Let          be defined by  ( )        Now, we will show that 

    (  )  By definition  

 

∫ | ( )| 
  

 

 

 
     ∫ |     | 
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                              ∫       

  

 

    

 

Let     with       and            with    
  

 
    . Then, we have 

 

∫      

  

 

   
  

 
     | 

   
 

 
∫     

  

 

   

                          
  

 
,    | 

   

                         
  

 
,   -  

 

 
   

 

Now, definitions of some special functions arising from the computations will be 

given. 

 

Definition 2.1.35. The formula given by 

 

 ( )  ∫    

  

 

                    , -    

 

defines the Gamma function  ( ) (Lebedev, 1972). 

 

Definition 2.1.36. The formula given by  

 

 (   )  ∫     

 

 

(   )       

 

defines the Beta function  (   ) for   , -    and   , -     In particular, the 

relationship between Gamma and Beta functions is given as 

 (   )  
 ( ) ( )

 (   )
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for   , -    and   , -    (Lebedev, 1972). 

 

Definition 2.1.37. Let   be a set such that     (    ) and         and 

        with  ( )      be two functions. Then, the following equation 

   
    

 ( )

 ( )
   

states that  ( )   ( ( ))  where    ,     -  Here, the symbol "o" is known in 

the literature as (Landau's) little o notation (Murray, 1984). 

 

Example 2.1.24. Let            be defined by  ( )         and  ( )      

Since        
       

    ,         (  )  for sufficiently large positive real 

number    such that        

 

2.2. INTEGRAL OPERATORS AND AROUND 

 

Definition 2.2.1. Let   and   be two function spaces.  A rule   associating each 

function   taken from   to a function   in   is called an operator which is denoted 

by  (   )   ( ). Here,   is the element of the domain of  . The space   is called 

the domain of the operator   and is denoted by      ( ). The image set of   

consisting of the functions   is denoted by  ( ) being a subset of    

 

It is decided whether an operator is linear or not provided that the space   is a 

(linear) vector space as follows: 

 

Let   ( ) and   ( ) be any two functions in  ( ), which are defined on a suitable 

domain compatible with  ( ), and    and    be arbitrary real or complex numbers. 

If the condition is given as: 

 

 (             )       (    )     (    ) 

 

is fulfilled, then the operator   is called a linear operator (Hacısalihoğlu and 

Hacıyev, 1995). 
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Definition 2.2.2. Assume that (   ) be an arbitrary interval in   whose endpoints 

satisfy the inequality             Let   be a function defined on this 

interval. The expression given as 

 

 (   )   ( )  ∫ ( ) (   )

 

 

                                                                             (     ) 

 

where   (   )  defines the integral transform of     (   ) is a kernel of the 

transform satisfying some properties for variables   and    In order to construct the 

original function, the inverse of the transform given as     ( ( )  )    ( ) is used. 

Here, the process is done in the following way:  

 

     ( ( )  )       (  (   )  )   (   )   ( )  

 

where   is an identity transform (or operator) (Debnath and Bhatta, 2007). 

Debnath and Bhatta (2007) showed the linearities of this unified form of integral 

transform and its inverse as follows: 

 

Let   ( ) and   ( ) be any two functions in the domain of   and    and    be 

arbitrary real or complex numbers. Verification of linearity conditions gives that: 

 

 (           )  ∫(    ( )      ( )) (   )

 

 

   

                                       (    )     (    ) 

                                         ( )      ( )  

 

and in view of linearity of  , one has 

 

    (    ( )      ( )  )      (   (    )     (    )  ) 

                                                          ( (      )   (      )  ) 

                                                           ( (           )) 

                                                        (           ) 
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                                                           ( )      ( ) 

                                                          
   (  ( )  )     

   (  ( )  )  

 

Definition 2.2.3. Assume that (   ) be an arbitrary interval in   whose endpoints 

satisfy the inequality            Let   be a function defined on this 

interval. The expression given as 

 

  (   )   ∫ ( )  (   )

 

 

                                                                                       (     ) 

 

where        ,   - and   (   )  defines the linear singular integral. Here, the 

function    is a kernel, that is, 

  

   
    

∫   (   )

  

  

      

 

where             (Natanson, 1960). 
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PART 3 

 

FROM MELLIN TRANSFORMS TO MELLIN CONVOLUTION 

OPERATORS 

 

In this part, theoretical information about Mellin transforms, and Mellin convolution 

operators will be given.  

 

3.1. MELLIN AND FOURIER TRANSFORMS 

 

Two definitions of Mellin transform of a function are as follows: 

 

Definition 3.1.1. Let       
  (  )  The following formula 

  

 (   )    ( )   ∫  ( )       

  

 

                                                                         (     ) 

 

where                with           is called the Mellin transform    of    

(Flajolet et al., 1995).  

 

Definition 3.1.2. The notation 〈   〉 stands for open strip consisting of complex 

numbers         with        and         In addition, the concept called 

fundamental strip stands for the largest open strip in which the Mellin transform    

converges (Flajolet et al., 1995). In this thesis, we follow this notation. A similar 

strip concept is used in (Butzer and Jansche, 1997) with different symbolization.  

 

Definition 3.1.3. The Mellin transform    of   ,          is defined by the 

following formula: 
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 (   )    ( )   ∫  ( )          

  

 

                                                                      (     ) 

 

provided that  ( )        (  ) for some            with          

The inverse Mellin transform   
   (   ) of   * +           is given as: 

 

  
   (    )   

 

  
∫  (    )  (    )    

  

  

                                                          (     ) 

 

where      (* +     ) (Butzer and Jansche, 1997). 

 

Remark 3.1.1. The condition is given as   ( )        (  )  is emphasized in 

Definition 3.1.3. It seems quite natural to consider the condition used in Definition 

3.1.3 due to the characteristic properties of Lebesgue integrable functions. On the 

other hand, Butzer and Jansche (1997) simplified their condition as   ( )     

   (  )  by proving the inequality given by |  (      )|    ‖ ‖  
 (  ), where 

| | denotes complex modulus, under the assumption   ( )        (  ), where 

  
 (  ) is the function space consisting of the functions          such that 

  ( )       (  ) for some     with respect to the norm defined 

by  ‖ ‖  
 (  )  ∫ | ( )|      

 
   is finite for some    . In addition, by defining 

the space   
 (  ) Butzer and Jansche (1997) gave a characterization for the class of 

functions whose Mellin transforms are convergent (resp. exist). 

 

Now, some basic properties collected from the literature are given. Since Mellin and 

Fourier transforms have been widely studied over the years, and their properties have 

been given in various forms by many authors. The sources which we used to collect 

some of these features below can be found in Remarks 3.1.2 and 3.1.3. 

 

Property 3.1.1. Recall that we included the unified forms of the integral transform 

and its inverse given by Debnath and Bhatta (2007). Since the same authors also 

proved the linearities of the indicated transforms, of this general case, it is stated in 

the same work that the Mellin transform, and its inverse are also linear operators (or 
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transforms) (see (Debnath and Bhatta, 2007)). Now, replacing equation (2.2.1) by 

Mellin transform formula, we give the particular case of their linearity proof as 

follows: 

 

Let    and    be any two functions in   
 (  ) for some   and    and    be arbitrary 

real or complex numbers. Since 

 

 (   )   ∫  ( )       

  

 

 

 

where           with       , we easily verify the linearity conditions in the 

following style:  

 

 (           )   ∫ (    ( )      ( )) 
       

  

 

                          

   ∫   ( )  
       

  

 

   ∫   ( )  
       

  

 

 

                         (    )       (    )   

 

This property is known as the linearity property of the Mellin transform. 

 

Property 3.1.2.  ( (  )  )       ( )  where         〈   〉  and   

  
 (  )  This property is known as the scaling property of Mellin transform. 

Applying definition and variable change      indeed gives that: 

 

 ( (  )  )  ∫  (  )      

  

 

 ∫  ( )              

  

 

     ( )  

 

Property 3.1.3.  (   ( )  )    (   )  where       〈    , -   

  , -〉  and      
 (  ).  

 



28 

 

Applying definition indeed gives that 

 

 (   ( )  )  ∫    ( )      

  

 

 ∫  ( )        

  

 

   (   )  

 

Property 3.1.4.  ( (  )  )       (    )  where         〈     〉  and 

    
 (  ). 

 

Applying definition and variable change      indeed gives that: 

 

 ( (  )  )  ∫  (  )      

  

 

    ∫  ( )          

  

 

     (    )  

 

Property 3.1.5.  (    (   )  )    (   )  where  ( )      (  ) for some 

suitable complex number(s)  . 

  

Applying definition and using the variable change       indeed gives that: 

 

 (    (   )  )  ∫     (   )      

  

 

 ∫  ( ) (   )       (   )

  

 

  

 

Property 3.1.6. Let     be fixed and  ( )  
  

    ( ) with  ( )     Assume that  

            (   )( )    and             (   )( )    for           

Then, there holds 

 

 ( ( )( )  )  (  ) 
 ( )

 (   )
  (   ) 

 

under the required conditions of existence of Mellin transform. 
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To see the relation holds true, we simply utilize mathematical induction. Let      

By definition, we write  

 

 ( ( )( )  )  ∫      ( )( )

  

 

    

 

Integrating by parts gives: 

 

∫      ( )( )

  

 

   ,     ( )- 
   (   )∫     

  

 

 ( )   

                                (   ) ∫  (   )    

 
 ( )   

                               (   )  (   )  

 

Let      By the result for    , we have 

 

 ( ( )( )  )   (   )  
( )(   )  

                         (   )(   )   (   ). 

 

Suppose that the result holds true for        We will show that it is true for  

     We have 

 

 ( (   )( )  )  (  )   (   )(   ) (     )   (     ) 

   (  )    ( )

 (     )
  (     )  

 

Thus, we easily get the result, that is, 

 

 ( ( )( )  )   (   )  
(   )(   )  

                               (   )(  )   (   )(   ) (   )   (   ) 

                              (  )  ( )

 (   )
  (   )  
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Property 3.1.7. Let     and   
( )

( )  
  

   
   with   

( )      Then, 

 ((   ( ))  ( )  )  (  ( ))( )  under the required conditions of existence of 

Mellin transform. 

 

Using the clue given by 
 

  
(    )    ( )     of (Debnath and Bhatta, 2007), we 

observe that  
  

   
(    )  (  ( ))     . By definition, the claim holds as such: 

 

∫     (   ( ))  ( )

  

 

   
  

   
∫      ( )

  

 

   (  ( ))( )  

 

Property 3.1.8. Under the assumptions of Property 3.1.3 and Property 3.1.6, there 

holds: 

 

 (   ( )( )  )  (  )     ( )  

 

To see this, we simply utilize mathematical induction. Let      By Property 3.1.3, 

we write 

 

 (  ( )( )  )   ( ( )( )    )  

 

Besides, since  ( ( )( )  )   (   )  (   ) by Property 3.1.6, replacing 

here   by      we get: 

 

 ( ( )( )    )       ( )  

  

Therefore, we get: 

 

 (  ( )( )  )       ( )   

 

Let      By the result for    , we have 
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 (   ( )( )  )    (     ( )) 

            ( )   

 

Suppose that the result holds true for        We will show that it is true for  

     We have 

 

 (     (   )( )  )  (  )           ( )  

 

For      we obtain the desired result, that is, 

 

 (   ( )( )  )     (     (   )( )  ) 

                               (  )           ( ) 

                             (  )       ( )  

 

Remark 3.1.2. The Properties 3.1.1-3.1.4 given above can be found in Proposition 1 

(Butzer and Jansche, 1997, pp. 336-337). The Properties 3.1.1-3.1.7 can be found in 

Theorem 1.4 of (Mamedov, 1991, p. 16) and (Mamedov, 1991, p. 60). The Properties 

3.1.1-3.1.8 can also be found with most of their proofs in (Debnath and Bhatta, 2007, 

pp. 343-345). The written proofs (or clarifications) for properties discussed above, 

which are directly based on definitions of the concepts, can be seen and compared in 

the cited sources in this remark. 

 

Property 3.1.9.   ( ( )  )   ( )  (  )  where 

  

 ( )  ∑
 ( )

  
(  ) ( ) 

  

   

 
 ( )

 
 

 ( )

  
  

 ( )

  
        

 

and  ( ) is a function associated to the series representation (see (Hardy, 1940; 

Amdeberhan et al., 2012)). 

 

Remark 3.1.3. Property 3.1.9, known in the literature as “Ramanujan’s Master 

Theorem”, named after famous mathematician Srinivasa Ramanujan and its 
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existence hypotheses were widely discussed in (Amdeberhan et al., 2012); see also 

(Hardy, 1940).  

 

Example 3.1.1. By taking  ( )  (   )   with     and       Amdeberhan et 

al. (2012) showed that ∫
    

(   ) 
   

  

 
  ( ) (  )  where  (  )  

 (   )

 ( )
 by using 

Binomial theorem including negative exponents: 

  

(   )    ∑ (
     

 
)

  

   

(  )    ∑
 (   )

 ( )

  

   

 
(  )   

  
   

 

where  ( )  
 (   )

 ( )
 and replacing   by    in accordance with Ramanujan’s 

Master Theorem. 

 

Direct computation of the Mellin transform indeed gives (see, for example, 

(Brychkov et al., 2019)): 

 

∫
    

(   ) 
   

  

 

  (     )  
 ( )  (   )

 ( )
 

 

with     , - and   , -      

 

Following the same steps, one obtains by taking  ( )  (    )   with         

and       ∫
    

(    ) 
   

  

 
  ( ) (  )  where  (  )    (   )    (   )

 ( )
 by using 

well-known Binomial series of the function: 

  

(    )    ∑ (
     

 
)  (   )  

  

   

(  )    

                      ∑
 (   )

 ( )

  

   

 
    (   )(  )   
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where  

 

 ( )  

  (   )

    (   )

 ( )
  

 

Direct computation of the Mellin transform indeed gives (see, for example, 

(Brychkov et al., 2019)): 

 

∫
    

(    ) 
   

  

 

 
  (   )    ( )  (   )

 ( )
   (   )    (     ) 

 

with     , - and   , -      

 

Here, derivation of Binomial series of  ( )  (   )   with     and for some 

     is as follows: 

 

Using well-known Taylor formula whose general term is  
 ( )(  )

  
(    )

  with 

    , the series (i.e., Maclaurin series) will seem as 

 

(    )   ∑  ( )( )
  

  
 

  

   

 

 

Using the Taylor formula, we obtain 
 ( )( )

  
 .

  
 

/ for          . 

 

Using identity .
  
 

/  (     
 

)(  )  for integers     (see, for example, 

(Wolfram Research, 1988)), we obtain the desired result, that is, 

 

(    )   ∑ .
  
 

/    

  

   

∑ (
     

 
)

  

   

(  )     
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where       in view of the ratio test. 

 

The definition of Mellin derivative given by Mamedov (1991) is as follows: 

 

Definition 3.1.4.  The Mellin derivative of a function   defined on a suitable subset 

of      at a point      belonging to its domain is defined by 

 

 , ( )-  (  )
 

  
 ( )   

 

and in the limit form: 

 

 , ( )-     
   

 .
 
 
/   ( )

   ( )
 

 

provided that this limit exists at a point      (Mamedov, 1991). 

In fact, making the variable change and using well-known L'Hospital's rule in the 

limit, one has 

 

 , ( )-     
   

 .
 
 
/   ( )

  ( )
  

                     
   

.
 
 

  /

  ( )
   
   

 .
 
 
/   ( )

.
 
 

  /
  

                  (  )   
   

 ( )   ( )

(   )
 (  )

 

  
 ( )  

 

For example,  ,  -       at each point       

Another definition of Mellin derivative with its detailed treatment can be found in 

(Butzer and Jansche, 1997). 

 

Example 3.1.2. Let           be given by  

 ( )   {
                        (   - 
        (   - 
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Since the integral evaluated as  

  

∫ | ( )|        ∫         

 

 

 

  

 

 

                                 
 

    
  

 

is absolutely convergent for       the Mellin transform    of    exists for these 

values. That is, for   , -      there holds: 

  

  ( )   ∫  ( )       

  

 

 

              ∫         

 

 

 

              
 

   
         

 

Example 3.1.3. Let    ( )          with       and         . Let        The 

definition of well-known Gamma function   ( ) is given by     that is, 

  

 (    )   ∫   ( ) 
      

  

 

 

                   ∫           

  

 

 

                     ( )      

 

This integral converges absolutely for   , -       that is, here     〈    〉. Now, 

let        

 (    )   ∫   ( ) 
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                   ∫         

  

 

 

                     (   )    

 

The recursion formula written as  (    )      ( ) is obtained using integration by 

parts several times.  Clearly, using the inversion formula there holds that: 

 

    
 

   
∫  ( )       

    

    

      

 

for      see (Lebedev, 1972; Flajolet et al., 1995; Butzer and Jansche, 1997; 

Debnath and Bhatta, 2007). 

 

Example 3.1.4. Let           be given by  ( )      
  Its Mellin transform is 

computed as follows: 

 

  ( )  ∫  ( )       

  

 

 

              ∫     
        

  

 

 

 

Making the variable change      with             and   , -     we have 

 

 ∫  
 4 

 
 5

 

 

 
  

  

 

 
 

 
∫    

 
     

  

 

 

 

One more changing of variables  
 

    with 
 

 
 

 

 
        and   =

 

 
 

 

 
      

gives: 
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∫    

 
      

 

 
∫     

 
 
      

 

 
 .

 

 
/    , -    

  

 

  

 

 

 

In order to give the relationship between Mellin and Fourier transforms, the 

following definition is necessarily given.  

 

Definition 3.1.5. Let     ( ) be a given function. The Fourier transform 

 (   ) is defined by: 

 

 (   )     ( )   
 

√  
 ∫      

  

  

 ( )     

 

where       The formula given as: 

 

   (   ( ))   ( )  
 

√  
∫        ( )

  

  

   

 

is the inverse Fourier transform (see, for example, (Debnath and Bhatta, 2007; 

Altın, 2011)).  

 

The required conditions under which the above representations are convergent also 

discussed in (Debnath and Bhatta, 2007; Altın, 2011).  

 

As in Property 3.1.1, we show that the Fourier transform is linear. Let    and    be 

any two functions in   ( ) and    and    be arbitrary real or complex numbers. 

Since 

 

 (   )   
 

√  
 ∫      

  

  

 ( )    

 

we simply have 
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 (           )   
 

√  
 ∫      

  

  

(    ( )      ( ))    

                                    
  

√  
 ∫          ( )    

  

  

   
  

√  
  ∫          ( )    

  

  

 

                                       (    )       (    )  

 

Example 3.1.5. Let         be defined by 

  

 ( )  {
              | |    
              | |    

 

 

The Fourier transform of   is computed in the following way: 

  

   ( )   
 

√  
 ∫      

  

  

 ( )   

              
 

√  
 *( ∫      

  

  

 ( )  )  ( ∫      

  

  

 ( )  )  ( ∫      

  

  

 ( )  )+ 

              
 

√  
 *( ∫      

  

  

( )  )  ( ∫      

  

  

( )  )  ( ∫      

  

  

( )  )+ 

              
 

√  
*  ( ∫      

  

  

  )   +  

              (
  

√      
) 0     |

  

 
  

              (
  

√      
) [        ]  

              (
  

√      
) ,(          )  (          )- 

              (
  

√      
) ,                     - 

              (
  

√      
) ,       - 
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√     
   √

 

 
  
    

 
   

 

For a more general version of this example, see (Altin, 2011). 

 

Example 3.1.6. Consider the function        defined by   ( )      | |, since 

  

‖ ‖  ( )   ∫   | |

  

  

   

                         

we have     ( )   

 

Its Fourier transform is computed as follows: 

  

   ( )  
 

√  
∫      

  

  

  | |     

             
 

√  
* ∫      

 

  

  (  )    ∫      

  

 

  ( )    + 

             
 

√  
* ∫       

 

  

    ∫        

  

 

    + 

             
 

√  
* ∫  (    ) 

 

  

    ∫   (    ) 

  

 

  + 

             
 

√  
[,

 

    
 (    ) |

  

 
 ,

  

    
  (    ) |

 

  
 ] 

             
 

√  
[

 

    
 (   )   

 

    
 (   ) ] 

             
 

√  
[

 

    
  

 

    
  ] 

             
 

√  
(

 

    
)              
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On the other hand, using the inverse Fourier transform, one has 

 

  | |  
 

  
∫     

  

  

 

    
              

 

For a more general version of this example and some other well-known functions, 

Fourier transforms (see, for example, (Debnath and Bhatta, 2007)). 

 

Debnath and Bhatta (2007) expressed the relationship between the Mellin and 

Fourier transforms in the following fashion: 

 

Changing the integral variables as      with    
  

 
 and        in the 

expression defined in Fourier transform, one has 

  

 

√  
∫      

  

  

 ( )   
 

√  
∫   (   )

  

 

 

 
 (   )    

                                                 (       )   

 

Replacing 
   

√  
 (   ) by  ( ) and   (       ) by   ( )  one obtains the definition 

of Mellin transform, that is,  

 

  ( )  ∫  ( )  

  

 

  

 
    

 

In view of similar considerations, the relationship between the inverse Mellin and 

inverse Fourier transforms can be obtained. This relationship and the relationships 

between Laplace, bilateral Laplace and Mellin transforms were examined in (Butzer 

and Jansche, 1997). 
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3.2. MELLIN-TYPE CONVOLUTIONS 

 

Now, some basic definitions are given. 

 

Definition 3.2.1. Let           be two functions. The functional product 

expressed as      defined by 

 

(    )( )    ∫  ( 
 

 
 )  ( )

  

 

  

 
  

 

where      is called the Mellin convolution product provided that the integral 

exists (Mamedov, 1991; Butzer and Jansche, 1997). 

 

Definition 3.2.2. The functional product expressed as     defined by 

 

(   )( )   
 

√  
∫  (   )

  

  

 ( )    

 

where      is called the convolution of the functions   and   defined on   

whenever the integral exists (Altın, 2011).  

 

These are classical convolutions. However, we want to mention here one more 

convolution in the sense of Mellin. 

 

Definition 3.2.3. Let           be two functions. The operation defined by  

 

(   )( )  ∫  (  ) ( )

  

 

    

 

where       is another Mellin-type convolution product (Debnath and Bhatta, 

2007). 
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Classical Mellin and usual convolutions have been widely studied over the years, and 

their properties have been given in various forms by many authors. The sources 

which we used to collect some of these features below can be found in Remark 3.2.1.  

 

Now, some basic properties collected from the literature are given. 

 

Property 3.2.1. The classical Mellin convolution product    is commutative. 

Let           be two functions. In fact, making the variable change   
 

 
 with 

    
   

    where        we have 

 

(    )( )    ∫  (
 

 
) ( )

  

 

  

 
 ∫  (

 

 
)  ( )

  

 

  

 
 (    )( )  

 

Property 3.2.2. The classical convolution product   is commutative. 

Let     be two functions defined on  . In fact, making the variable change     

  with       , where        we have 

 

(   )( )   
 

√  
∫  (   ) ( )

  

  

   

                      
 

√  
∫  (   ) ( )

  

  

   (   )( )  

 

Property 3.2.3. Assume that       
 (  ) for some      Then, for classical 

Mellin convolution product   , there holds: 

 

(    ) ( )     ( )  ( )  

where          with        

 

Let           be two functions. Consider the functions for     

  (
 

 
)  {

.
 

 
/

   

 .
 

 
/                 
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and 

 

  ( )  {
    ( )                  
                         

   

 

Since 

 

(    ) ( )  ∫     

  

 

 (∫  (
 

 
)

  

 

 ( )
  

 
)   

                                 ∫ ( ∫   (
 

 
)

  

  

  ( )  )

  

  

     

 

in view of Fubini’s theorem (Theorem 2.1.2), we may write 

 

    ∫ ( ∫   (
 

 
)

  

  

  ( )  )

  

  

       ( ∫   ( )  

  

  

)( ∫   (
 

 
)

  

  

  ) 

                                                              (∫  ( )
  

 

  

 

)(∫      

  

 

 (
 

 
)  )  

 

In fact, making a change of variable   
 

 
 with    

  

 
  where      in the second 

integral above, we have  

 

(∫  ( )
  

 

  

 

)(∫      

  

 

 (
 

 
)  ) 

 (∫  ( )       

  

 

)(∫  ( )    

  

 

  ) 

 

   ( )   ( )    ( )  ( )  (    ) ( )  
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Property 3.2.4. For the classical convolution product  , there holds 

(   ) ( )     ( )  ( )  

where    , provided that Fourier transform exists. 

We will prove that by using the definition. Since 

 

(   ) ( )    
 

√  
∫ (

 

√  
∫  (   )

  

  

 ( )  )         

  

  

 

 

in view of Fubini’s theorem (Theorem 2.1.2), we may write 

 

 

√  
∫ (

 

√  
∫  (   )

  

  

 ( )  )        

  

  

 

 (
 

√  
∫  ( )  

  

  

)(
 

√  
∫  (   )

  

  

       )  

 

In fact, making the variable change as       with       and       in 

the second integral above, we have: 

 

(   ) ( )   (
 

√  
∫  ( )  

  

  

)(
 

√  
∫  ( )

  

  

    (   )  ) 

                         (
 

√  
∫  ( )        

  

  

) (
 

√  
∫  ( )     

  

  

  ) 

                           ( )  ( )    ( )  ( )  (   ) ( )  

 

Property 3.2.5. The Mellin-type convolution   has the following property: 

  

(   ) ( )     ( )   (   )  

 

where            with        provided that the Mellin transform exists. 
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Using Fubini’s theorem (Theorem 2.1.2), similar to that of Property 3.2.3, we have 

 

 (   ) ( )  ∫     

  

 

 (∫  (  )  ( )

  

 

  )                        

 (∫  ( )  

  

 

)(∫     

  

 

 (  )  )     

 

Now, making the variable change       and        with     in the second 

integral above, the result follows, that is, (   ) ( )    ( )  (   )    

 

Property 3.2.6. Let       (  ) and     (  ) with         Then, one 

has: 

 

‖    ‖  (  )  ‖ ‖  (  )‖ ‖  (  )  

 

and 

 

‖    ‖  (  )  ‖ ‖  (  )‖ ‖  (  )   

 

Using Fubini’s theorem (Theorem 2.1.2), similar to that of Property 3.2.3 and the 

definition of norm, we have  

 

‖    ‖  (  )  ∫ |∫  (
 

 
)

  

 

 ( )
  

 
|

  

 

  

 
 

                               (∫ | (
 

 
)|

  

 

  

 
)(∫ | ( )|

  

 

  

 
)  

 

Now, making the variable change       and        with     in the second 

integral above, the result follows, that is, 
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‖    ‖  (  )  ‖ ‖  (  )‖ ‖  (  )  

 

For the second one, using Hölder-Minkowski inequality (Theorem 2.1.3) and 

definition of norm, we have 

 

‖    ‖  (  )  (∫ |∫  (
 

 
)

  

 

 ( )
  

 
|

   

 

  

 
)

   

 

                               (∫ | ( )|

  

 

  

 
)(∫ | (

 

 
)|

 
  

 

  

 
)

   

  

 

Now, making the variable change       and        with     in the second 

integral above, the result follows, that is,  

 

‖    ‖  (  )  ‖ ‖  (  )‖ ‖  (  )   

 

Property 3.2.7. Let       ( ) and     ( ) with         Then, one has 

‖   ‖  ( )  ‖ ‖  ( )‖ ‖  ( ) 

  

and 

 

‖   ‖  ( )  ‖ ‖  ( )‖ ‖  ( )   

 

Using Fubini’s theorem (Theorem 2.1.2) and definition of norm, we have 

  

‖   ‖  ( )  ∫ | ∫  (   )

  

  

 ( )  |

  

  

   

                               ( ∫ | ( )|

  

  

  )( ∫ | (   )|

  

  

  )  
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Now, making the variable change        and       with     in the second 

integral above, the result follows, that is,  

 

‖   ‖  ( )  ‖ ‖  ( )‖ ‖  ( )  

 

For the second one, using Hölder-Minkowski inequality (Theorem 2.1.3) and 

definition of norm, we have 

 

‖   ‖  ( )  ( ∫ | ∫  (   )

  

  

 ( )  |

   

  

  )

   

 

                               ( ∫ | ( )|

  

  

  )( ∫ | (   )| 
  

  

  )

   

  

 

Now, making the variable change        and       with     in the second 

integral above, the result follows, that is,  

 

‖   ‖  ( )  ‖ ‖  ( )‖ ‖  ( )   

 

Remark 3.2.1. The Properties 3.2.1 and 3.2.3 given above can be found in Theorem 

3 of (Butzer and Jansche, 1997, pp. 339-340), including the proof of Property 3.2.3. 

The Properties 3.2.2-3.2.4 can be found in Theorem 2.10 of (Altın, 2011, pp. 106-

107), including the proof of Property 3.2.4. The Properties 3.2.3 and 3.2.6 given 

above can be found in Theorem 6.1 of (Mamedov, 1991, pp. 40-41), including their 

proofs. Property 3.2.7 can be found in Theorem 1.3 of (Stein and Weiss, 1971, p. 3) 

with its proof. The Properties 3.2.3 and 3.2.5 can be found with their proofs in 

(Debnath and Bhatta, 2007, pp. 346-347). The written proofs (or clarifications) for 

properties discussed above, which are directly based on definitions of the concepts, 

can be seen and compared in the cited sources in this remark. 

Now, we give some examples. 
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Example 3.2.1. Consider the functions           defined by  ( )    
  

  ⁄   

and   ( )       Their Mellin convolution product is obtained as follows: 

  

(    )( )    ∫  ( 
 

 
 )  ( )

  

 

  

 
  

                          ∫  

  

. 
 
 

 /
  ⁄

  

 

   
  

 
   

                           ∫  
  ( 

  

   )

  

 

       

 

Let                    We have 

 

(    )( )  
 

 
∫  

  
  

  

 

   

                         
 

 
[
 

  
  

  
  

|

 

  

        

                         
   

 
,   - 

                           
  

 
      

 

On the other hand, computations of  (    ) leads to the following result: 

 

(    )( )   ∫  ( )

  

 

 (
 

 
) 

  

 
    

                         ∫  
  

  ⁄

  

 

 
  

  
 
  

 
      

 

Let   
  

  
        

 

  
     We have  
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 (    )( )    
  

 
∫  

 

  

   

                         
  

 
 ,  |  

    

                         
  

 
 ,   - 

                          
  

 
   

 

Here,        This result illustrates the commutativity of the classical Mellin 

convolution product. 

  

Example 3.2.2. Consider the functions          defined by  ( )       

and   ( )      
   Their classical convolution product is obtained as follows:  

 

(   )( )   
 

√  
 ∫  (   ) ( )

  

  

                                

                       
 

√  
 ( ∫   (   )

  

  

    
    ) 

                       
 

√  
 ( ∫        

  

  

    
    ) 

                       
 

√  
 ( ∫    

  

  

           ) 

                       
   

√  
 ( ∫        

  

  

    ) 

                       
   

√  
 ( ∫    (   ) 

  

  

    )  

 

Making the variable change        with        we have 
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√  
 ( ∫    ( ) 

  

  

    )  
     

√ 
  

 

On the other hand, computations of  (   ) leads to the following result: 

 

(   )( )   
 

√  
 ∫  (  ) (   )

  

  

                               

                       
 

√  
( ∫    

  

  

  (   )     ) 

                       
 

√  
( ∫     (   ) 

  

  

    )  

 

Making similar operations as above, we obtain: 

 

 

√  
( ∫     (   ) 

  

  

    )  
     

√ 
  

 

This result illustrates the commutativity of the classical convolution product.  

 

Example 3.2.3. Consider the functions           defined by   ( )      
 

and   ( )     In this case,     is computed as follows: 

  

(   )( )  ∫  (  ) ( )

  

 

        

                        ∫       

  

 

      

 

Let      and           We have 
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∫      

  

 

   

                       
 

 
[
     

   
|
 

  

      

                       
  

   
 ,   -   

 

   
   

 

Next, the computation of     leads to the following result: 

 

(   )( )   ∫  ( ) (  )

  

 

    

                        ∫     

  

 

        

 

Let      and           We have 

 

                       
 

 
∫    

  

 

   

                       
 

 
,    | 

   

                       
 

 
 ,   -   

 

 
                 

 

Here,        In view of these results, it is easy to see that the operation is not 

commutative. For formal proof, see (Debnath and Bhatta, 2007). 

 

3.3. MELLIN-TYPE LINEAR CONVOLUTION OPERATORS 

 

Definition 3.3.1. Let       be a non-empty index set consisting of positive 

parameters   with       The family *  +    
   

 (  ) (i.e.,   
 (  )    )  

is called a kernel on   
 (  ) provided that 
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 ∫   ( )
  

 

  

 
   for     

 

and 

 

 For all       there is a real number     such that ‖  ‖  
 (  )     

If, in particular, *  +    
 verifies the following condition: 

 

 For each fixed number   satisfying        one has 

 

   
    

∫ |  ( )|

|    |  

  

 
          

 

then the kernel family *  +    
 is named as a (local) approximate identity in the 

sense of Mellin (Butzer and Jansche, 1997). 

 

Definition 3.3.2. The family of operators  *  +    with      
 (  )    

 (  ) 

defined as:  

 

(   )( )  ∫  .
 

 
/  ( )

  

 

  

 
                                                                       (     ) 

 

is called a (local) Mellin convolution type singular integral provided that 

*  +    
   

 (  ) verifies the kernel assumptions (Butzer and Jansche, 1997). 

 

Definition 3.3.3. Let       be a non-empty index set consisting of positive 

parameters   with       The family *  +    is called a kernel on   ( ) 

provided that: 

 

       ( ) for each     

 

      and 
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√  
∫   ( )

  

  
     for    . 

  

If it also verifies the following conditions: 

 

 For all      there is a positive real number     such that ‖  ‖  ( )   , 

 For each fixed number   satisfying        one has 

 

   
    

∫ |  ( )|

  | |

     

 

      and 

 

       [     | ||  ( )|]   , 

 

then the kernel family *  +    is named as an approximate identity (Butzer and 

Nessel, 1971); see also (Gadjiev, 1998).  

 

Definition 3.3.4. The family of operators *  +    with      ( )    ( ) defined 

as:  

 

(   )( )  ∫  (   )  ( )

  

  

                                                                   (     ) 

 

is called a convolution type singular integral provided that *  +      ( ) 

verifies the kernel assumptions (Butzer and Nessel, 1971). 

 

Remark 3.3.1. The following operators are non-classical versions of the operators 

defined in respectively in equations (3.3.1) and (3.3.2): 

 

(  
  )( )  ∫  ( )  

 (    )
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where       ,     and      (Bardaro and Mantellini, 2007) 

and 

 

(  
  )( )  ∫  ( )  

 (   )

  

  

    

 

where      ,     and      (Hacısalihoğlu and Hacıyev, 1995). The kernels 

here are also of type approximate identity. 

 

Example 3.3.1. Butzer and Jansche (1997) gave the definition of Mellin-Gauss-

Weierstrass kernel    as follows: 

 

           is defined by   ( )  
 

√  
  .

 

 
  ( )/

 

        

 

Now, we will show that      
 (  ) as follows: 

 

‖  ‖  
 (  )  ∫ |

 

√  
  .

 
 

  (  )/
 

|
 

 
     

  

 

 

 

Making the variable change    
 

 
  ( ) with    

 

  
   , we have 

 

‖  ‖  
 (  )  

 

√  
∫     

    
√ 

√ 
   

  

 

 

 

Proofs of all properties concerning being the approximate identity of this kernel in a 

more general fashion can be found in (Butzer and Jansche, 1997). 

 

Example 3.3.2. The following versions of Gauss-Weierstrass operators: 

 

  (   )  
 

√ 
∫  (   )

  

  

  (  )                                                                         (     ) 
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where      ,     and      (Gadjiev, 1998), 

and 

 

  (   )  
√ 

√  
∫  (   )

  

  

 
    

                                                                        (     ) 

 

where      ,     and       or by replacing   by 
 

 
 

 

  (   )  
 

√   
∫  (   )

  

  

 
   

                                                                        (     ) 

 

where      ,     and       (Butzer and Nessel, 1971), have approximate 

identity kernels as treated in the works cited respectively. 
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PART 4 

 

MELLIN-TYPE NONLINEAR CONVOLUTION OPERATORS 

 

In this part, we give an overview of some results from the literature and prove a 

result concerning pointwise convergence of Mellin-type nonlinear m-singular 

integral operators at generalized Mellin      Lebesgue points. 

 

4.1. AN OVERVIEW OF RESULTS 

 

Musielak (1983) studied the convergence properties of the following convolution-

type nonlinear integral operators: 

 

  (   )  ∫  (     ( ))

 

 

                                                                                   (     ) 

 

where        is the element of a non-empty index set   and the kernel function 

      ,   )       satisfies some conditions.  In order to overcome the 

nonlinearity problem occurring in the operators of type (4.1.1), Musielak (1983) 

stipulated that    must satisfy the following Lipschitz condition: 

 

|  (   )    (    )|    ( )|    |  

 

for           ,   ) and     provided that such a non-negative function    

defined on ,   ) exists with some additional features defined on it. 

 

The operators of type (4.1.1) have been studied in different directions (see, for 

example, (Swiderski and Wachnicki, 2000; Angeloni and Vinti, 2006). Also, a large 

amount of information can be found in (Bardaro et al., 2003). 

 



57 

 

The linear convolution operators in different directions were studied in, for example, 

(Natanson, 1960; Taberski, 1962; Gadjiev, 1968; Butzer and Nessel, 1971; Stein and 

Weiss, 1971; Hacısalihoğlu and Hacıyev, 1995; Gadjiev, 1998; Anastassiou and Gal., 

2000). 

 

Bardaro and Mantellini (2006) studied the following Mellin-type nonlinear integral 

operators: 

 

  (   )  ∫   4
 

 
  ( )5

  

 

  

 
 ∫   (   (  ))

  

 

  

 
                                          (     ) 

 

where              and the kernel function               satisfies 

some conditions.  In this work, the authors obtained the pointwise convergence of the 

operators at Lebesgue points of the function   as      under suitable 

assumptions satisfied by     The operators of type (4.1.2) have been studied in 

different directions (see, for example, (Bardaro and Mantellini, 2007; Angeloni and 

Vinti 2014)). Also, Bardaro et al. (2011) studied the more generalized form of the 

operators of type (4.1.2). Also, a large amount of information can be found in 

(Bardaro et al., 2003).  

 

Mellin-type linear convolution operators in different directions were studied in, for 

example, (Mamedov, 1991; Butzer and Jansche, 1997; Butzer and Jansche, 1998; 

Bardaro and Mantellini, 2007; Bardaro and Mantellini, 2011; Angeloni and Vinti, 

2015; Fard and Zainuddin, 2016). 

 

Bardaro et al. (2013) defined and considered the following Mellin-type nonlinear 

  singular integral operators: 

 

  
, -(   )  ∫   (  ∑ .

 
 

/ (  )   

 

   

 (   ))
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where           is the element of a non-empty index set  ,   is a fixed positive 

integer and the kernel function               satisfies some conditions.  In 

this work, the authors obtained the pointwise convergence of the operators at 

  Lebesgue points of the function     (  ) as       where    is an 

accumulation point of   with respect to the topology defined on it, under suitable 

assumptions satisfied by      

 

Taking     and       with     , the setting of the operators defined in 

equation (4.1.2) is obtained. 

 

Mellin-type linear   singular integral operators were studied widely by Mamedov 

(1991), presenting various results. Mamedov (1963) also studied the pointwise 

convergence of linear   singular integral operators in the space   ( ) with 

        Some studies related to this kind of generalization of the integral 

operators can be given as (Anastassiou and Gal., 2000; Ibrahimov and Jafarova, 

2012; Karslı, 2014; Yılmaz, 2014; Yıldırım, 2019). 

  

4.2. SOME POINTWISE CONVERGENCE THEOREMS 

 

Two results from the literature are reviewed in detail, and in view of them, a 

pointwise convergence result is proved in the sequel.  

 

We start by reviewing Theorem 30.1 in (Mamedov, 1991). 

 

Mamedov (1991) defined the following Mellin-type linear   singular integral 

operators: 

 

  
, -(   )  ∫ [∑ .

 
 

/ (  )    .
 

  
/

 

   

]   ( )

  

 

  

 
  

 



59 

 

where           is the element of a non-empty index set  ,   is a fixed positive 

integer, the accumulation point of   is denoted by    and the kernel function 

            * +  satisfies some conditions.  

 

Assuming     satisfies the following conditions: 

 

i. ∫   ( )
  

 

  

 
           

ii.         ,            ( )-          ,             ( )-    for each 

fixed   (   ) and    
     

0∫   ( )
   

 

  

 
1     

     
0∫   ( )

  

   

  

 
1    for each 

fixed   (   ); 

iii. There exists a positive real number    such that ‖  ‖  (  )   , where   

is independent of     (this condition is equivalent to condition (i) for this 

kernel since it is non-negative); 

iv.   ( ) is non-decreasing on (   ) and non-increasing on (    ) with 

respect to   for each fixed    ; 

v. There exists a positive real number   such that     
     

,  -     where 

    ∫   ( )|  ( )| 
  

 

   

   
  for each fixed   (   ) and        

 

Mamedov (1991) proved that 

 

|  
, -

(   )   ( )|   ((  )
 
 )  (    )  

 

where     (  ) with         holds at each point       for which the 

following relations hold: 

 

∫ |∑ .
 

 
/

 

   

(  )    (   )|

  

   

  

 
  (|   (   )| )   (    ) 

 

and 
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∫ |∑ .
 

 
/

 

   

(  )    (   )|

    

 

  

 
  (|   (   )| )  (    ) 

 

provided that: 

 

I.             ( )   ((  )
 

 )  and              ( )   ((  )
 

 )  (  

  ) for each fixed   (   ); 

 

II. ∫   ( )
   

 

  

 
  ((  )

 

 ) and ∫   ( )
  

   

  

 
  ((  )

 

 )  (    )   

 for each  fixed   (   )  

 

Here, “ ” stands for Landau’s little o notation. 

 

Now, we summarize Theorem 3.1 in (Bardaro et al., 2013). 

 

Let   be a non-empty index set associated with a topology. Here,   denotes the 

element of    The accumulation point of   is denoted by    with respect to the 

indicated topology. Recall that Bardaro et al. (2013) considered the following 

Mellin-type nonlinear    singular integral operators: 

 

  
, -(   )  ∫   (  ∑ .

 
 

/ (  )   

 

   

 (   ))

  

 

  

 
                                          (     ) 

 

where       ,   is a fixed positive integer and    satisfies some conditions, that 

is,  the family    which is called the kernel of the family of the operators 2  
, -

3
   

  

consists of the functions    :       with   (   )    for every       

    and    is integrable as a function of its first variable over    for all values of 

its second variable and for each      with respect to the Haar measure   defined 

on Borel sets   on      with   ( )  ∫      
 

 =∫
  

  
   The authors also denote the 
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set of all functions   for which    
, -

 is well-defined by    .  
, -

/  the family of 

all neighbourhoods of number 1 in    by  ( ) and           .
 
 

/  by     

 

In view of these, the authors proved that: 

 

   
    

|  
, -

(   )   ( )|     

 

where      .  
, -

/   (  ) with  (  | |)    (  )  and  ,      * +   

   * +  is a continuous, non-decreasing and concave function on    * + with 

 ( )    and  ( )    for      holds at each point       for which the 

following relation holds: 

 

    
   

|
 

   ( )
∫ |∑ .

 
 

/ (  )   

 

   

 (   )|

 

 

  

 
|     

 

(see Definition 2 of the same paper) provided that the kernel function     which is 

described above, satisfies the following conditions: 

 

A. There exists a function          * + with      (  ) and such that 

the   Lipschitz condition 

|  (   )    (    )|    ( ) (|    |) 

hold for every              and for each      

B.       ∫   ( )
  

 

  

 
      where      and    is a certain positive 

constant; 

C.    
    

|∫   (   )
  

 
  

  

 
|    for every       where       

D.    
    

∫   ( )
  

    0
 

 
  1

   for every     with 0
 

 
  1   ( )  

E.    
    

   
     0

 

 
  1

,  ( )-    for every     with 0
 

 
  1   ( ); 
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F. There exists a positive number      for which   ( ) is non-decreasing on 

(
 

  
  - and non-increasing on ,    ) with respect to   for each      

 

Remark 4.2.1. Now, we recall here the useful identities and a relation that are 

classically used in the proofs. There hold the following inequalities (see, for 

example, (Grinstead and Snell, 1999)): 

 

∑(  )   

 

   

.
 

 
/                                                                                                         (     ) 

 

and 

 

∑ .
 

 
/

 

   

                                                                                                                      (     ) 

 

for a certain positive integer    Also, the inequality (   )    (   )  holds 

for       and non-negative real numbers   and   (see, for example, (Rudin, 

1987)). 

 

Now, based on the above-reviewed theorems, we will prove a pointwise convergence 

result for the operators defined in equation (4.2.1) which are considered and studied 

by Bardaro et al. (2013).  

 

Definition 4.2.1. Let     (  ) with    . A point      at which 

 

   
    

 

(   (   ))   
∫ |∑ .

 

 
/

 

   

(  )    (   )|

 
  

 
  

 

   

                            (     ) 

 

and 
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(   (   ))   
∫ |∑ .

 

 
/

 

   

(  )    (   )|

 
  

 
  

   

 

                            (     ) 

 

where       and        for a certain real number     and a fixed 

positive integer   hold is called generalized Mellin      Lebesgue point of   

(Mamedov, 1991). 

 

For     and     the above definition turns out to be the definition of Mellin 

  Lebesgue point given by the same author. Mamedov (1991) also showed that for 

the case         corresponds to the function which is identically zero. 

 

Example 4.2.1. Let  ( )  {
                        (   )

                    (   )
     with       and        

Let us show that this point is Mellin Lebesgue point of    Applying the definition for 

    and      we get 

     
    

 

   (   )
 ∫ | (

 

 
)   |

   

 

  

 
 

       
    

 

   (   )
 ∫ |

 

 
  |

   

 

  

 
 

      
    

 

   (   )
 ∫ (   

 

 
)

   

 

  

 
 

       
    

 

   (   )
6    | 

     
 

 
|
 

   

7 

       
    

 

   (   )
[ (  (   )     ( ))  ( 

 

   
  )] 

       
    

  (   )   
 

   
  

   (   )
    

 

Here, using L’Hospital's theorem, we have 
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  (    )   
 

   
  

   (   )
       

    

 
 

   
 

 
(   ) 

 
   

 

                                                         
 

 
    

 
(   ) 

 
   

 

                                                             

 

Verification of the relation (4.2.4) can be done in the same way. 

 

Remark 4.2.2. In the following definition, the conditions and properties on     

given by Bardaro et al. (2013) and the conditions on    given by Mamedov (1991) 

are combined as seen below. On the other hand, we use the Lipschitz condition on    

in equation (4.1.1), which is given by Musielak (1983). That case is obtained from  

  Lipschitz condition by choosing  ( )  | | (see (Bardaro et al., 2003; Bardaro 

and Mantellini, 2006). Also, in the forthcoming condition (f),   need not be zero as 

in (Mamedov, 1991) because we just obtain pointwise convergence; we do not 

evaluate the rate of convergence as in Theorem 30.1 reviewed above. We refer the 

reader to see the complete work of Mamedov (1991) since it covers many pointwise 

convergence results, and also (Gadjiev, 1968) for this kind of theorem concerning 

generalized Lebesgue point. 

 

Definition 4.2.2. Let   be a non-empty index set associated with a topology. Here,   

denotes the element of    The accumulation point of   is denoted by   , that is, 

      (in particular,      for        with     ). 

  

The kernel function    of the operator   
, -

  which is defined as   :       for 

each fixed       verifies the following conditions: 

 

a) For all     and for each fixed        (   )    (  ) with respect to   

and   (   )    for every      and for each fixed       

b) There exists a non-negative function    defined on    such that    

  (  ) and the Lipschitz condition 
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|  (   )    (    )|    ( )|    | 

hold for every             and for each fixed       

c)         ,            ( )-          ,             ( )-    for each 

fixed   (   ) and    
     

0∫   ( )
   

 

  

 
1     

     
0∫   ( )

  

   

  

 
1    for each 

fixed   (   )  

d)    
     

|∫   (   )
  

 

  

 
  |    for every       

e)   ( ) is non-decreasing on (   ) and non-increasing on (    ) with respect 

to   for each fixed      

f) There is a positive real number   such that     
     

0∫   ( )|  ( )| 
  

 

   

   
1     

where   is a non-negative real number, for each fixed   (   ) and 

      ; 

g) There is a positive real number   such that ‖  ‖  (  )   , where   is 

independent of      

 

Note that the operators   
, -

 defined in equation (4.2.1) act on   (  ) with     in 

view of conditions (a, b, g) of Definition 4.2.2. 

  

Theorem 4.2.1. Assume that    satisfies the conditions in Definition 4.2.2 and   
, -

 

are as in equation (4.2.1). If     (  ) with       , then  

 

   
    

|  
, -

(   )   ( )|    

 

holds at each generalized Mellin     Lebesgue point      of    for which 

equations (4.2.4) and (4.2.5) hold. 

 

Proof. We mainly follow the steps of Theorem 3.1 in (Bardaro et al., 2013) and 

Theorems 25.2 and 30.1 (Mamedov, 1991), which are based on classical proof 

schemes. 

 

The proof for the case     is as follows: 
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|  
, -

(   )   ( )|  |∫   (  ∑ .
 
 

/ (  )   

 

   

 (   ))

  

 

  

 
  ( )|  

 

Adding and subtracting the expression ∫   (  ∑ .
 
 

/ (  )    
    ( ))

  

 

  

 
  to 

the expression inside the absolute value on the right-hand side above, we have 

 

|∫   (  ∑ .
 
 

/ (  )   

 

   

 (   ))

  

 

  

 
  ( )

 ∫   (  ∑ .
 
 

/ (  )   

 

   

 ( ))

  

 

  

 
|  

 

Using triangle inequality, we get 

 

|  
, -

(   )   ( )| 

 |∫   (  ∑ .
 
 

/ (  )   

 

   

 (   ))

  

 

  

 

 ∫   (  ∑ .
 
 

/ (  )   

 

   

 ( ))

  

 

  

 
| 

 |∫   (  ∑ .
 
 

/ (  )   

 

   

 ( ))

  

 

  

 
  ( )| 

 

    ( )    ( )  

 

First, we show that   ( )    as        

 

Using the Lipschitz condition, we get 
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  ( )  ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )   ( )|
  

 

  

 

 

              ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )  ∑ .
 
 

/ (  )   

 

   

 ( )|
  

 

  

 

 

              ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

  

 

  

 

Since 

 

|∑ .
 
 

/ (  )    (   )

 

   

|  |∑ .
 
 

/ (  )    (   )

 

   

| 

                                                   |(  )  ∑ .
 
 

/ (  )    (   )

 

   

| 

                 |(  )   ∑ .
 
 

/ (  )    (   )

 

   

| 

 |∑ .
 
 

/ (  )    (   )

 

   

|   

 

we have 

 

 ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

  

 

 ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

  

 

 

 

                                                                               ( )  

 

Let   (   )  We can split the integral    ( ) into four terms as follows: 

 

   ( )  ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
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                ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

 

   

 

                ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

   

 

 

                ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

  

   

 

 

                    ( )      ( )      ( )      ( )  

 

In view of equations (4.2.4) and (4.2.5) and using the usual definition of limit, we 

can write that for a given      there exists      such that 

 

|(
 

(  (   ))   
 ∫ |∑ .

 
 

/ (  )   

 

   

 (   )|

 

   

  

 
)   |                          (     ) 

 

and 

 

|(
 

(  (   ))   
 ∫ |∑ .

 
 

/ (  )   

 

   

 (   )|

   

 

  

 
)   |                          (     ) 

 

hold provided that           

 

The relations (4.2.6) and (4.2.7) can be written respectively as follows: 

 

∫ |∑ .
 
 

/ (  )   

 

   

 (   )|

 

   

  

 
  |  (   )|                                              (     ) 

 

and 
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∫ |∑ .
 
 

/ (  )   

 

   

 (   )|

   

 

  

 
  |  (   )|                                              (     ) 

 

for     and           

 

Now, we compute     ( ) as follows: 

 

In view of relation (4.2.8) and the auxiliary function: 

 

 ( )  ∫ |∑ .
 
 

/ (  )   

 

   

 (   )|

 

 

  

 
  

 

we see that | ( )|   |  ( )|    for   ,      )  Using  ( ) we obtain the 

following equality: 

 

|    ( )|  | ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

 

   

| 

                     | ∫   ( )  ( )

 

   

|  

 

Since   ( ) is the non-decreasing function of   on ,      ) for each fixed    it is 

of bounded variation and hence differentiable almost everywhere (see Corollary 

2.1.1). Using integration by parts, we have 

 

|    ( )|  | ∫   ( )  ( )

 

   

| 

                    |, ( )  ( )-   
  ∫  ( )   ( )

 

   

| 
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                    |,   (   )  (   )-  ∫  ( )

 

   

   ( )| 

                     |  (   )|     (   )   | ∫|  ( )|      ( )

 

   

|  

 

Since   ( ) is the non-decreasing function of    on ,      ),    ( )    for each 

fixed    Therefore, we have 

 

|    ( )|  | |  (   )|     (   )   ∫|  ( )|      ( )

 

   

|  

 

We will integrate this part: ∫ |  ( )|    

   
   ( )   

 

Using integration by parts method, that is, letting   |  ( )|    with    (  

 )|  ( )| 
  

 
 and       ( ) with     ( )  we have 

 

∫|  ( )|   

 

   

   ( ) 

 ,|  ( )|      ( )-   
  (   ) ∫   ( )|  ( )| 

 

   

  

 
 

 ,  |  (   )|      (   )-  (   ) ∫   ( )|  ( )| 
 

   

  

 
  

 

Collecting all the terms, we get  
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|    ( )|  | |  (   )|     (   )  |  (   )|      (   )

  (   ) ∫   ( )|  ( )| 
 

   

  

 
|   

Thus: 

 

|    ( )|   (   ) ∫   ( )|  ( )| 
  

 

 

   

  

 

In view of relation (4.2.9) and the auxiliary function: 

 

 ( )  ∫ |∑ .
 
 

/ (  )   

 

   

 (   )|

 

 

  

 
  

 

we see that | ( )|   |  ( )|    for   (     -  Using  ( ) we obtain the 

following equality: 

 

|    ( )|  |∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

   

 

| 

                     |∫   ( )  ( )

   

 

|  

 

Since   ( ) is the non-increasing function of   on (     - for each fixed    it is of 

bounded variation and hence differentiable almost everywhere (see Corollary 2.1.1). 

Using integration by parts, we have 

 

|    ( )|  |∫   ( )  ( )

   

 

| 
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                    |, ( )  ( )- 
    ∫  ( )   ( )

   

 

| 

                     |, (   )  (   )   -  ∫  ( )

   

 

   ( )| 

                     |  (   )|     (   )   |∫ |  ( )|      ( )

   

 

|  

 

Since   ( ) is the non-increasing function of   on (     -,    ( )    for each 

fixed    Therefore 

 

|    ( )|  | |  (   )|     (   )   ∫ |  ( )|      ( )

   

 

|  

 

We will integrate this part: ∫ |  ( )|      

 
   ( )   

 

Using integration by parts method, that is, letting   |  ( )|    with    (  

 )|  ( )| 
  

 
 and       ( ) with     ( ), we have 

 

∫ |  ( )|   

   

 

   ( ) 

 ,|  ( )|      ( )- 
    (   ) ∫   ( )|  ( )| 

   

 

  

 
 

 ,|  (   )|      (   )   -  (   ) ∫   ( )|  ( )| 
   

 

  

 
  

Collecting all the terms, we get 

  

|    ( )|   (   ) ∫   ( )|  ( )| 
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Hence,  

(|    ( )|  |    ( )|)   (   ) , ∫   ( )|  ( )| 
  

 
 ∫   ( )|  ( )| 

  

 

   

 

 

   

- 

                                                 (   ) ∫   ( )|  ( )| 
  

 

   

   

  

 

Since ∫   ( )|  ( )| 
  

 

   

   
 is bounded in the limit position for each fixed     and  

      by condition ( ) the result follows, that is, 

   
    

(|    ( )|  |    ( )|)     

 

Now, we will show that     ( )    as       

 

Since 

 

|    ( )|  |∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

   

 

| 

                    |∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )   ( )|
  

 

   

 

| 

                     ∑ .
 
 

/    
       

  ( )

 

   

∫ | (   )|
  

 

  

 

 | ( )| ∫   ( )
  

 

   

 

 

                     ∑ .
 
 

/    
       

  ( )

 

   

‖ ‖  (  )  | ( )| ∫   ( )
  

 

   

 

 

                         
       

  ( )‖ ‖  (  )  | ( )| ∫   ( )
  

 
 

   

 

 

 

where ∑ ( 
 
) 

    is equal to    (see equation 4.2.3), and by condition ( )  we see that 

       
|    ( )|     Here, by definition of norm ∫ | (   )|

  

 

  

 
 is equal to 
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‖ ‖  (  )) since making the variable change       with             and in 

view of this  
  

 
 

  

 
  we have 

 

∫ | (   )|
  

 
 ∫ | ( )|

  

 

  

 

 ‖ ‖  (  )

  

 

  

 

Similarly, we will show that     ( )    as       

 

Making similar evaluations, we have 

 

|    ( )|  | ∫   ( ) |∑ .
 

 
/

 

   

(  )    (   )|
  

 

  

   

| 

                    | ∫   ( ) |∑ .
 

 
/

 

   

(  )    (   )   ( )|
  

 

  

   

| 

                    ∑ .
 

 
/

 

   

   
        

  ( )∫ | (   )|
  

 
 | ( )| ∫   ( )

  

 

  

   

  

 

  

 

Here, by definition of norm ∫ | (   )|
  

 

  

 
 is equal to ‖ ‖  (  )) as in the previous 

evaluation. Hence 

 

|    ( )|  ∑ .
 

 
/

 

   

   
        

  ( )‖ ‖  (  )  | ( )| ∫   ( )
  

 

  

   

 

                         
        

  ( )‖ ‖  (  )  | ( )| ∫   ( )
  

 

  

   

 

 

by the identity in equation (4.2.3) ∑ ( 
 
) 

    is equal to      

 

By condition (c), we see that        
|    ( )|   . 
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Since 

 

|  ( )|  |∫   

  

 

(  ∑ .
 

 
/

 

   

(  )    ( ))
  

 
  ( )|  

                 |∫   

  

 

(   ( ))
  

 
  ( )| 

 

by the identity in equation (4.2.2)   ∑ ( 
 
) 

   (  )    is equal to    by condition (d), 

we see that    
    

|  ( )|     Thus, the proof is completed for      

The proof for the case     is as follows: 

 

|  
, -

(   )   ( )|  |∫   (  ∑ .
 
 

/ (  )   

 

   

 (   ))

  

 

  

 
  ( )|  

 

Adding and subtracting the expression ∫   (  ∑ .
 
 

/ (  )    
    ( ))

  

 

  

 
 to the 

expression inside the absolute value on the right-hand side above, we have 

 

|∫   (  ∑ .
 
 

/ (  )   

 

   

 (   ))

  

 

  

 
  ( )

 ∫   (  ∑ .
 
 

/ (  )   

 

   

 ( ))

  

 

  

 
|  

 

Using triangle inequality, we get 

 

|  
, -

(   )   ( )| 
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 |∫   (  ∑ .
 
 

/ (  )   

 

   

 (   ))

  

 

  

 

 ∫   (  ∑ .
 
 

/ (  )   

 

   

 ( ))

  

 

  

 
| 

 |∫   (  ∑ .
 
 

/ (  )   

 

   

 ( ))

  

 

  

 
  ( )|  

 

Using the inequality (|  |  |  |)
    (|  |

  |  |
 ) with         and    , 

we have 

 

|  
, -

(   )   ( )|
 

 

   |∫   (  ∑ .
 
 

/ (  )   

 

   

 (   ))

  

 

  

 

 ∫   (  ∑ .
 
 

/ (  )   

 

   

 ( ))

  

 

  

 
|

 

 

   |∫   (  ∑ .
 
 

/ (  )   

 

   

 ( ))

  

 

  

 
  ( )|

 

 

 

    (  ( )    ( ))  

 

First, we show that   ( )    as        

 

Using the Lipschitz condition, we write 

 

  ( )  (∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )   ( )|
  

 

  

 

)
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             (∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|
  

 

  

 

)

 

 

 

and applying Hölder’s inequality with  
 

 
 

 

 
   and         , we have 

 

  ( )  (∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|

 
  

 

  

 

)(∫   ( )
  

 

  

 

)

 
 

  

 

By condition (g), we get 

 

  ( )  ( )
 
 (∫   ( ) |∑ .

 
 

/ (  )   

 

   

 (   )|

 
  

 

  

 

) 

 ( )
 
    ( )  

 

Let   (   )  We can split the integral    ( ) into four terms as follows: 

 

   ( )  ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|

 
  

 

   

 

 

               ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|

 
  

 

 

   

 

               ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|

 
  

 

   

 

 

               ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|

 
  

 

  

   

 

 

                    ( )      ( )      ( )      ( )  
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In view of equations (4.2.4) and (4.2.5) and using the definition of limit, we can 

write that for a given      there exists       such that: 

 

|(
 

(  (   ))   
 ∫ |∑ .

 
 

/ (  )   

 

   

 (   )|

  

   

  

 
)   |                      (      ) 

 

and 

 

|(
 

(  (   ))   
 ∫ |∑ .

 
 

/ (  )   

 

   

 (   )|

    

 

  

 
)   |                      (      ) 

 

hold provided that            

 

The relations (4.2.10) and (4.2.11) can be written respectively as follows: 

 

∫ |∑ .
 
 

/ (  )   

 

   

 (   )|

  

   

  

 
  |  (   )|                                         (      ) 

and 

 

∫ |∑ .
 
 

/ (  )   

 

   

 (   )|

    

 

  

 
  |  (   )|                                         (      ) 

 

for     and            

 

Now, we compute     ( ) as follows: 

 

In view of relation (4.2.12) and the auxiliary function: 

 

  ( )  ∫ |∑ .
 
 

/ (  )   

 

   

 (   )|
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we see that |  ( )|   |  ( )|    for   ,      )  Using   ( )  we obtain the 

following equality: 

 

|    ( )|  | ∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|

 
  

 

 

   

| 

                     | ∫   ( )   ( )

 

   

|  

 

Using integration by parts, we have 

 

|    ( )|  | ∫   ( )   ( )

 

   

| 

                     |,  ( )  ( )-   
  ∫   ( )   ( )

 

   

| 

                     |,    (   )  (   )-  ∫   ( )

 

   

   ( )| 

                       |  (   )|     (   )   | ∫|  ( )|      ( )

 

   

|  

 

Since   ( ) is the non-decreasing function of   on ,      ),    ( )    for each 

fixed    Therefore, we have 

 

|    ( )|  | |  (   )|     (   )   ∫|  ( )|      ( )

 

   

|  

 

We will integrate this part: ∫ |  ( )|    

   
   ( )  
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Using integration by parts method, that is, letting   |  ( )|    with    (  

 )|  ( )| 
  

 
 and       ( ) with     ( )  we have 

 

∫|  ( )|   

 

   

   ( ) 

 ,|  ( )|      ( )-   
  (   ) ∫   ( )|  ( )| 

 

   

  

 
 

 ,  |  (   )|      (   )-  (   ) ∫   ( )|  ( )| 
 

   

  

 
  

Collecting all the terms, we get  

 

|    ( )|  | |  (   )|     (   )  |  (   )|      (   )

  (   ) ∫   ( )|  ( )| 
 

   

  

 
|  

Thus 

|    ( )|   (   ) ∫   ( )|  ( )| 
  

 

 

   

  

 

In view of relation (4.2.13) and the auxiliary function: 

 

  ( )  ∫ |∑ .
 
 

/ (  )   

 

   

 (   )|

  

 

  

 
  

 

we see that |  ( )|   |  ( )|    for   (     -  Using   ( ) we obtain the 

following equality: 

 

|    ( )|  |∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|

 
  

 

   

 

| 
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                     |∫   ( )   ( )

   

 

|  

 

Using integration by parts method, we have 

 

|    ( )|  |∫   ( )   ( )

   

 

| 

                     |,  ( )  ( )- 
    ∫   ( )   ( )

   

 

| 

                     |,  (   )  (   )   -  ∫   ( )

   

 

   ( )| 

                       |  (   )|     (   )   |∫ |  ( )|      ( )

   

 

|  

 

Since   ( ) is the non-increasing function of   on  (     -     ( )    for each 

fixed  . Therefore 

 

|    ( )|  | |  (   )|     (   )   ∫ |  ( )|      ( )

   

 

|  

 

We will integrate this part: ∫ |  ( )|      

 
   ( )   

 

Using integration by parts method, that is, letting   |  ( )|    with 

   (   )|  ( )| 
  

 
 and       ( ) with     ( ), we have 

 

∫ |  ( )|   

   

 

   ( ) 
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 ,|  ( )|      ( )- 
    (   ) ∫   ( )|  ( )| 

   

 

  

 
 

 ,|  (   )|      (   )   -  (   ) ∫   ( )|  ( )| 
   

 

  

 
  

 

Collecting all the terms, we get  

|    ( )|   (   ) ∫   ( )|  ( )| 
  

 

   

 

  

Hence,  

(|    ( )|  |    ( )|)   (   ) , ∫   ( )|  ( )| 
  

 
 ∫   ( )|  ( )| 

  

 

   

 

 

   

- 

                                                 (   ) ∫   ( )|  ( )| 
  

 

   

   

  

 

Since ∫   ( )|  ( )| 
  

 

   

   
 is bounded for each fixed     and        by 

condition ( ) the result follows, that is, 

 

   
    

(|    ( )|  |    ( )|)     

 

Now, we will show that     ( )    as       

 

Since 

 

|    ( )|  |∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )|

 
  

 

   

 

| 

                    |∫   ( ) |∑ .
 
 

/ (  )   

 

   

 (   )   ( )|

 
  

 

   

 

|  
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using the inequality (|  |  |  |)
    (|  |

  |  |
 ) with         and    , 

we have 

 

|    ( )| 

   (∑ .
 
 

/

 

   

)

 

   
       

  ( )∫ | (   )| 
  

 

  

 

   | ( )| ∫   ( )
  

 

   

 

 

   (∑ .
 
 

/

 

   

)

 

   
       

  ( ) (‖ ‖  (  ))
 
   | ( )| ∫   ( )

  

 

   

 

 

   (  )    
       

  ( )(‖ ‖  (  ))
 

   | ( )| ∫   ( )
  

 

   

 

 

         
       

  ( )(‖ ‖  (  ))
 
   | ( )| ∫   ( )

  

 

   

 

  

 

Using condition (c), we see that        
|    ( )|   . 

 

Similarly, we will show that     ( )    as       

 

Since  

 

|    ( )|  | ∫   ( ) |∑ .
 

 
/

 

   

(  )    (   )|

 
  

 

  

   

| 

                    | ∫   ( ) |∑ .
 

 
/

 

   

(  )    (   )   ( )|

 
  

 

  

   

|  

 

using the inequality (|  |  |  |)
    (|  |

  |  |
 ) with         and    , 

we have 

 

|    ( )|    (∑.
 

 
/

 

   

)

 

   
        

  ( )∫ | (   )| 
  

 
   | ( )| ∫   ( )
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                      (∑ .
 

 
/

 

   

)

 

   
        

  ( )(‖ ‖  (  ))
 

   | ( )| ∫   ( )
  

 

  

   

 

                      (  )    
        

  ( )(‖ ‖  (  ))
 

   | ( )| ∫   ( )
  

 

  

   

  

                            
        

  ( )(‖ ‖  (  ))
 

   | ( )| ∫   ( )
  

 

  

   

  

 

Using condition (c), we see that        
|    ( )|   . 

 

Lastly, we will show that |  ( )|    as     .  

Since 

 

|  ( )|  |∫   

  

 

(  ∑.
 

 
/

 

   

(  )    ( ))
  

 
  ( )|

 

 

                |∫   

  

 

(   ( ))
  

 
  ( )|

 

  

 

by condition (d), we see that    
    

|  ( )|   . 

 

Thus, the proof is completed. 

 

Now, we give some graphical examples. 

 

Example 4.2.2.  Let      Bardaro and Mantellini (2006) considered the following 

respectively linear and nonlinear moment operators: 

 

  
 (   )  ∫   

 

  

 

(    ) ( )
  

 
                                                                             (      )  
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where   
  {

                                    (   )
                                   (   )

 

 

and 

 

  
  (   )  ∫   

 

  

 

(    )  ( ( ))
  

 
                                                                    (      ) 

 

where   ( )  
  | |

 | |  
       

 

The analysis of these operators can also be found in (Bardaro and Mantellini, 2006) 

with some examples. Bardaro et al. (2013) remarked that the theory for Mellin-type 

nonlinear   singular integral operators is compatible with moment-type operators 

via using the operators defined in equation (4.2.1). 

 

The Mellin-type    singular moment operators with respect to (4.2.14) and (4.2.15) 

may be written as: 

 

  
 , -(   )  ∫   

 ( )

  

 

[∑ .
 

 
/

 

   

(  )    (   )]
  

 
                                       (      ) 

 

and 

  
  , -(   )  ∫   

 

  

 

( ) [∑ .
 

 
/

 

   

(  )     . (   )/]
  

 
                            (      ) 

 

Now, we present Figures 4.1 and 4.2, which are generated by using computer algebra 

system Mathematica 12.2.  

 

Let  ( )  √     with       We applied the operators defined in (4.2.16) to the 

function  ( )  In Figure 4.1, the thick and orange graph represents the case      

and    , thick and dashed graph represents the case     and    , the thick 
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and purple graph represents the case     and      and thick and black graph 

represents the original function.  

 

 

Figure 4.1. Approximation by linear moment-type operators 

 

Let   ( )  {
                       (   ) 

                    (   ) 
 We applied the operators defined in (4.2.17) 

to the function  ( )  In Figure 4.2, the thick and pink graph represents the case 

     and    , the thick and dashed graph represents the case     and    , 

the thick and black graph represents the case     and      and thick and dark 

blue graph represents the original function. 

 

 

Figure 4.2. Approximation by nonlinear moment-type operators 
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PART 5 

 

CONCLUSION 

 

In this thesis, a pointwise convergence result (Theorem 4.2.1) concerning generalized 

Mellin      Lebesgue points of integrable functions is proved by using some 

theorems in (Bardaro et al., 2013) and (Mamedov, 1991). The result is supported 

with some graphical examples, which are generated by using computer algebra 

system Mathematica 12.2. The result with some additional generalizations will be 

presented in a conference, possibly in 2021, by D. Q. Haso as it is a joint work with 

G. Uysal. 
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