

FACE TOUCH DETECTION BASED ON HAND
GESTURE RECOGNITION USING WEARABLE

MOTION SENSORS AND DEEP LEARNING

 2022
MASTER THESIS

COMPUTER ENGINEERING

Abdullah ALESMAEIL

Thesis Advisor
Assist.Prof.Dr. Eftal ŞEHİRLİ

FACE TOUCH DETECTION BASED ON HAND GESTURE RECOGNITION

USING WEARABLE MOTION SENSORS AND DEEP LEARNING

Abdullah ALESMAEIL

T.C.

Karabuk University

Institute of Graduate Programs

Department of Computer Engineering

Prepared as

Master Thesis

Thesis Advisor

Assist.Prof.Dr. Eftal ŞEHİRLİ

KARABUK

Jan 2022

ii

I certify that in my opinion the thesis submitted by Abdullah Alesmaeil titled “FACE

TOUCH DETECTION BASED ON HAND GESTURE RECOGNITION USING

WEARABLE MOTION SENSORS AND DEEP LEARNING” is fully adequate in

scope and in quality as a thesis for the degree of Master of Science.

Assist.Prof.Dr. Eftal ŞEHİRLİ

Thesis Advisor, Department of Computer Engineering

This thesis is accepted by the examining committee with a unanimous vote in the

Department of Computer Engineering as a Master of Science thesis. Jan 20, 2022

Examining Committee Members (Institutions) Signature

Chairman : Prof.Dr.İsmail Rakıp KARAŞ (KBU)

Member : Assist.Prof.Dr. Birsen GÜLDEN ÖZDEMİR (Doğuş)

Member : Assist.Prof.Dr. Eftal ŞEHİRLİ (KBU)

The degree of Master of Science by the thesis submitted is approved by the

Administrative Board of the Institute of Graduate Programs, Karabuk University.

Prof. Dr. Hasan SOLMAZ

Director of the Institute of Graduate Programs

iii

“I declare that all the information within this thesis has been gathered and presented
in accordance with academic regulations and ethical principles and I have according
to the requirements of these regulations and principles cited all those which do not
originate in this work as well.”

Abdullah ALESMAEIL

iv

ABSTRACT

M. Sc. Thesis

FACE TOUCH DETECTION BASED ON HAND GESTURE RECOGNITION

USING WEARABLE MOTION SENSORS AND DEEP LEARNING

Abdullah ALESMAEIL

Karabük University

Institute of Graduate Programs

The Department of Computer Engineering

Thesis Advisor:

Assist.Prof.Dr. Eftal ŞEHİRLİ

Jan 2022, 60 pages

Wearable devices like fitness bands and smartwatches have increased in popularity in

recent years. Those devices are fitted with wide range of health, fitness, and motion

sensors that can be utilized to analyze and monitor body and hand activities. Being

worn on the wrist or arm make them a good candidate for hand activity monitoring

applications like Hand Gesture Recognition (HGR). With the worldwide spread of

COVID-19 pandemic, many recommendations were issued by World Health

Organization (WHO), to avoid touching the face as it was a main method for viral

infections. However, most face touches are done unconsciously that is why, it is

difficult for people to monitor their hand moves and try to avoid touching the face

which opens the need for automatic Face-Touch Detection (FTD) solution. This thesis

proposes a smartwatch application that uses small, efficient, and end-to-end

Convolutional Neural Networks (CNN) models to classify hand motion and identify

v

Face-Touch moves. The application provides a real-time feedback and alerts the user

with vibration and sound whenever attempting to touch the face, which leads to lower

unconscious face touches and lower infection rates. The obtained results for recall,

precision, F1-Score, and accuracy were calculated as 96.75%, 95.1%, 95.85%, 99.70%

respectively, with low False Positives Rate (FPR) of 0.04%. By using efficient

configurations and small models, the application can run for long hours without

significant impact on battery which makes it applicable on most out-of-the-shelf

smartwatches.

Key Words : Convolutional Neural Networks, Face Touch Detection, Hand

Gesture Recognition, Human Activity Recognition, Smartwatch

Sensors.

Science Code : 92432

vi

ÖZET

Yüksek Lisans Tezi

GİYİLEBİLİR HAREKET SENSÖRLERİ VE DERİN ÖĞRENME

KULLANARAK ELİN HAREKETLERİNİ TANIMAYA DAYALI YÜZE

DOKUNMA TESPİTİ

Abdullah ALESMAEIL

Karabük Üniversitesi

Lisansüstü Eğitim Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Tez Danışmanı:

Dr.Öğr.Üyesi Eftal ŞEHİRLİ

Ocak 2022, 60 sayfa

Fitness bantları ve akıllı saatler gibi bileğe takılan cihazların popülaritesi son yıllarda

artmıştır. Bu cihazlar, vücut ve ellerin aktivitelerini analiz etmek ve izlemek için

kullanılabilecek çok çeşitli sağlık, fitness ve hareket sensörleriyle donatılmıştır. Bileğe

veya kola takılmaları ellerin hareketini tanıma gibi el aktiviteleri izleme uygulamaları

için bu cihazları iyi bir seçenek yapmaktadır. COVID-19 pandemisinin dünya çapında

yayılmasıyla birlikte, Dünya Sağlık Örgütü (WHO) viral enfeksiyonlara sebebiyet

verebilen el ile yüze temas etmekten kaçınmanın önemi üzerinde durmuştur. Fakat,

yüze dokunuşların birçoğu bilinçsizce yapıldığından dolayı, insanların ellerinin

hareketlerini izlemesi ve yüzlerine dokunmaktan kaçınması zordur. Bu durum

otomatik olarak yüze dokunma tespiti ihtiyacını doğurmaktadır. Bu tezde ellerin

hareketini sınıflandırmak ve yüze dokunma hareketlerini tanımlamak için küçük,

vii

verimli ve uçtan uca Evrişimsel Sinir Ağları (CNN) modelini kullanan bir akıllı saat

uygulaması önerilmektedir. Geliştirilen uygulama gerçek zamanlı bir geri bildirim

sağlamakta ve kullanıcıyı yüze dokunmaya çalıştığında titreşim ve sesle uyarmaktadır.

Bu çözüm bilinçsizce yüze dokunuşlarının azalmasına ve enfeksiyon oranlarının

düşmesine olanak sağlayacaktır. Elde edilen sonuçlara göre, önerilen çözüm %0.04'lük

düşük Yanlış Pozitif Oranı, %96.75 ile ortalama hassasiyet, %95.1 ile ortalama

kesinlik ve %95.85 ile ortalama F1-Skoruna ulaşmıştır. Verimli ayarlamalar ve küçük

modeller kullanarak geliştirilen uygulama pil üzerinde önemli bir etki yaratmadan

uzun saatler boyunca çalışabilir ve bu da onu kullanıma hazır akıllı saatlerin çoğuna

uygulanabilir hale getirmektedir.

Anahtar Kelimeler : Akıllı Saat Sensörleri, Ellerin Hareketini Tanıma, Evrişimsel

Sinir Ağları, İnsan Hareketi Tanıma, Yüze Temas Tespiti.

Bilim Kodu : 92432

viii

ACKNOWLEDGMENT

First of all, I would like to give special thanks to my advisor, Dr. Eftal ŞEHİRLİ for

his great advices, helpful insights, and assistance during the thesis project from the

beginning until the end. Additionally, I would like to express my gratitude to my wife

for her support and for helping me along with my friends to gather thousands of

training samples while working for countless days and hundreds of hours collecting

the training dataset.

ix

CONTENTS

Page

APPROVAL .. ii

ABSTRACT ... iv

ÖZET .. vi

ACKNOWLEDGMENT .. viii

CONTENTS ... ix

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

SYMBOLS AND ABBREVITIONS INDEX .. xvi

PART 1 .. 1

INTRODUCTION ... 1

1.1. INTRODUCTION .. 1

1.2. MOTIVATION ... 1

1.3. NOVELTIES .. 2

1.4. THESIS OUTLINES .. 2

PART 2 .. 4

BACKGROUND ... 4

2.1. WEARABLE DEVICES AND SENSORS .. 4

2.1.1. Wearable Devices .. 4

2.1.2. Wearable Sensors ... 6

2.2. ACTIVITY RECOGNITION TYPES .. 8

2.2.1. Human Activity Recognition (HAR) ... 8

2.2.2. Hand Gesture Recognition (HGR) ... 9

2.2.3. Face Touch Detection (FTD) ... 10

x

Page

2.3. CHALLENGES AND LIMITATIONS .. 10

2.3.1. MEMS Sensors Limitations ... 10

2.3.2. Limited CPU and Battery .. 11

2.3.3. FTD Challenges compared with HGR and HAR 11

PART 3 .. 13

LITERATURE REVIEW .. 13

3.1. HARDWARE SETUP .. 13

3.1.1. Hardware Devices .. 14

3.1.2. Used Sensors .. 14

3.2. DATASET COLLECTION METHODS .. 15

3.2.1. Controlled Sessions ... 15

3.2.2. Free Living Sessions .. 15

3.3. DATA PROCESSING .. 16

3.3.1. Getting Raw Data .. 16

3.3.2. Data Filtering ... 16

3.3.3. Data Segmentation ... 16

3.3.4. Feature Extraction .. 17

3.4. CLASSIFICATION METHODS .. 17

3.4.1. Conventional Approaches .. 18

3.4.2. Deep-Learning Approaches ... 19

PART 4 .. 22

MATERIALS AND METHODS .. 22

4.1. MATERIALS ... 22

4.1.1. Used Hardware and Software .. 22

4.1.2. Volunteers .. 23

4.1.3. Dataset Properties .. 23

4.2. SENSOR FUSION .. 24

4.2.1. Goals and Types .. 24

4.2.2. Reference Frames .. 26

xi

Page

4.3. CHOSEN CONFIGURATIONS .. 28

4.3.1. Chosen Sensors and Configurations .. 28

4.3.2. Raw Features ... 28

4.4. DIVIDING HAND MOTION TYPES ... 31

4.4.1. Hand Motion Classes ... 31

4.4.2. Scenarios for Each Class .. 32

4.4.3. Orientations for Each Scenario .. 32

4.5. COLLECTING DATASETS .. 34

4.5.1. Training Dataset ... 34

4.5.2. Separate Test Dataset ... 36

4.6. POST-PROCESSING ON TRAINING DATASET 37

4.6.1. Half-Wave vs Full-Wave ... 37

4.6.2. Window-Sizes .. 39

4.6.3. Window-Shifting ... 39

4.6.4. Additional Data Processing ... 40

4.7. TRAINING USING DEEP-LEARNING ... 40

4.7.1. End-To-End CNN Architecture ... 40

4.7.2 Hyperparameter Tunning Using Grid-Search ... 41

4.8. VALIDATION ... 41

4.8.1. Confusion Matrix ... 42

4.8.2. Cross Validation .. 44

PART 5 .. 45

EXPERIMENTAL RESULTS .. 45

5.1. CROSS VALIDATION TESTING .. 45

5.1.1. Five-Class Training Results ... 45

5.1.2. K-Fold Cross Validation Testing Results .. 46

5.1.3. LOSO Cross Validation Testing Results ... 47

5.2. TEST DATASET RESULTS ... 47

5.3. REAL TESTS ON THE APPLICATION .. 50

5.3.1. Test Results of the Application .. 50

xii

Page

5.3.2. False-Positives Test Results .. 50

5.3.3. Battery Test Results ... 51

PART 6 .. 52

DISCUSSION AND CONCLUSION ... 52

6.1. COMPARING RESULTS WITH LITERATURE ... 52

6.2. COMPARISON WITH THE STATE OF THE ART ON FTD 53

6.3. SUMMARY .. 54

REFERENCES .. 56

RESUME ... 60

xiii

LIST OF TABLES

Page

Table 2.1. Comparison between HAR, HGR, and FTD tasks in various aspects. 12

Table 4.1. List of 25 raw features saved while recording training data. 24

Table 5.1. Precision recall and F1-score for all 5 classes. ... 46

Table 5.2. Face-Touch accuracy results on the Left/Right Test Datasets. 48

Table 5.3. Battery usage percentage with and without running the application. 51

Table 6.1. Literature comparison HGR and FTD applications. 52

Table 6.2. Accuracy comparison with other approaches. .. 54

Table 6.3. Comparison for Recall, Precision, and False Positives Rate. 54

xiv

LIST OF FIGURES

Page

Figure 2.1. Worldwide sales of smart wearable device. .. 5

Figure 2.2. Smart wearable devices types. ... 5

Figure 2.3. Schematic of embedded MEMS based accelerometer. 7

Figure 3.1. Four different phases of HGR and FTD solutions. 13

Figure 3.2. Sliding window with 100 frames size and overlapping of 25 frames. .. 17

Figure 3.3. Architecture of the VGG-16 CNN network. ... 20

Figure 3.4. Unfolded RNN network structure. .. 20

Figure 3.5. Architecture that combines LSTM layers on top of CNN layers. 21

Figure 4.1. Attitude angles: Roll, Pitch, and Yaw. .. 25

Figure 4.2. Local reference frame attached to watch screen. 26

Figure 4.3. Reference frames where Z-axis is fixed, X and Y axes are random. 27

Figure 4.4. Fixed reference frame where X, Y, Z axes are always the same. 27

Figure 4.5. GV relative to current device reference frame. 29

Figure 4.6. Sample data of a person trying to touch his face. 30

Figure 4.7. The angle between forearm and upper arm is sharp. 31

Figure 4.8. The angle between forearm and upper arm is large. 31

Figure 4.9. Five different positions: standing, walking, and three different sitting. 32

Figure 4.10. Initiating hand move from three different heights. 32

Figure 4.11. Hand start/end orientations when touching the face. 33

Figure 4.12. Sample motion patterns for 6 hand orientations of “Touch” move. 34

Figure 4.13. Example of samples automatically detected by the algorithm. 36

Figure 4.14. Extracted samples where only acceleration phase is taken. 38

Figure 4.15. Extracted samples where both phases are taken. 39

Figure 4.16. Original extracted sample window and 2 other shifted windows. 40

Figure 4.17. Definitions of TP, TN, FP, and FN for the proposed solution. 42

Figure 5.1. Confusion matrix for 5-class classification during training phase. 46

Figure 5.2. Accuracy across 10 folds in k-fold cross validation. 47

xv

Page

Figure 5.3. LOSO cross validation accuracy results for three volunteers. 47

Figure 5.4. Results for two models with and without gravity. 48

Figure 5.5. Results with/without gravity for multiple trained models. 49

Figure 5.6. Recall/Precision scores for binary and 5-class classifiers. 49

Figure 5.7. Precision for binary and 5-class classifiers for multiple trained models.

 ... 50

xvi

SYMBOLS AND ABBREVITIONS INDEX

ABBREVIATIONS

ADAM : Adaptive Moment Estimation

ADL : Activities of Daily Living

ANN : Artificial Neural Networks

AR : Augmented Reality

CNN : Convolutional Neural Networks

DT : Decision Trees

DTW : Dynamic Time Warping

FFT : Fast Fourier Transform

FN : False Negative

FP : False Positive

FPR : False Positives Rate

FTD : Face Touch Detection

GV : Gravity Vector

HAR : Human Activity Recognition

HCI : Human Computer Interaction

HGR : Hand Gesture Recognition

HR : Heart Rate

HRT : Habit Reversal Therapy

Hz : Hertz

IMU : Inertial Measurement Unit

IR : Infra-Red

KNN : K-Nearest Neighbor

LOSO : Leave One Subject Out

LSTM : Long-Short Term Memory

MCD : Minimum Covariance Determinant

xvii

MEMS : Micro Electro-Mechanical Systems

NB : Naïve-Bayes

OS : Operating System

RF : Random Forest

RFID : Radio Frequency Identification

RMS : Root Mean Square

RMSPROP : Root Mean Square Propagation

RNN : Recurrent Neural Networks

SARS-CoV2 : Severe Acute Respiratory Syndrome Coronavirus 2

SGD : Stochastic Gradient Descent

SNR : Signal to Noise Ratio

SpO2 : Peripheral Oxygen Saturation

SVM : Support Vector Machines

TN : True Negative

TP : True Positive

VIO : Visual Inertial Odometry

VR : Virtual Reality

WHO : World Health Organization

1

PART 1

INTRODUCTION

1.1. INTRODUCTION

In the current technological age, smart devices have become small enough that can be

fitted in our pockets or easily worn in our bodies. The market of wearables has grown

many folds in the past decade, which includes range of devices from smartphones,

Augmented-Reality headsets, to wrist-worn devices which include fitness trackers,

wrist bands, and smartwatches. People use wrist-worn devices to track their daily

exercise, steps taken, and monitor their vitals from Heart Rate (HR), blood-oxygen,

and calories spent during exercise or sport activities like walking, running, cycling,

gym classes, or during playing all kinds of sports.

Nowadays wrist-worn devices like smartwatches have become fully-fledged devices

that can rival the bigger smartphones in terms of hardware and software features. They

are supported by major OS platforms like iOS and Android and started to add support

for third-party applications. Most of these devices are equipped with wide range of

useful sensors like health sensors, motion sensors, and external environment sensors.

These sensors can be utilized for Human Activity Recognition (HAR) like walking,

running, sitting, or whole-body activities in general. In addition to whole-body

activities, they can be used to classify hand moves and activities which have many

applications such as sport actions [1] and daily-life actions [2].

Wrist-worn smart wearable devices for Hand Gesture Recognition (HGR) have been

used in many studies. Example of HGR applications are Sign-Language gesture

recognition where gestures can mean words or actions [3], and Human Computer

1

Interaction (HCI) where hand gestures can give commands to a remote computer

interface [4-5].

Although, Face Touch Detection (FTD) has received more focus recently due to

COVID-19 pandemic, there were many studies that took advantage of smartwatch

sensors to identify hand moves towards the face. Face-touch hand move can be

considered as special type of hand gestures. It shares many characteristics with other

HGR gestures. However, it differs in some ways that makes it more challenging to

detect. Thus, it requires additional works to overcome the obstacles.

1.2. MOTIVATION

According to World Health Organization (WHO), the Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) which causes the COVID-19 infection, can

be transmitted among people in two major ways. The first one is through respiratory

droplets when a person stays in close contact with an infected person. The second one

is when people touch a surface contaminated with the virus and touch their faces

specially their eyes, noses, or mouths. The second way is our point of interest where

an automatic FTD application can be useful. This is because when people are outside,

they touch all kinds of surfaces with their hands, which can be contaminated with

viruses or bacteria. After that, when they touch their faces, these germs can be

transmitted through the respiratory system to their bodies.

To help in lowering infection rates, many recommendations have been issued by

national health organizations to avoid face touches as much as possible. Unfortunately,

many studies show that people tend to touch their faces more than 20 times per hour

on average, and many of these touches are done unconsciously [6]. This makes it

difficult for people to monitor their hand moves by themselves in order to avoid

undesired face touches. This opens the need for automatic detection and alert solution.

The proposed solution detects face touch moves and alert users in real-time whenever

they attempt to touch their faces. This helps people to lower their unwanted face-touch

2

attempts especially when used in public places. The goal of the application is not only

to alert the user when trying to touch the face, but also to train his unconscious mind

using haptic feedback similar to Habit Reversal Therapy (HRT) [7]. This assists to

develop a habit of avoiding unnecessary face touches even when the application is not

running, which in turn leads to fewer infection rates.

1.3. NOVELTIES

The contributions of this thesis are:

• It provides complete and applied solution that runs completely on a smartwatch

and uses only IMU motion sensors without requiring extra sensors, devices, or

hardware components.

• Instead of approaching the problem as binary classification (Touch/No-Touch),

it proposes a smart approach of dividing hand motions into 5 classes (Touch,

Up, Abdominal, Normal, Stationary) which is proved to have significant impact

on improving precision and minimizing false positives.

• The use of controlled data collection sessions and automatic labeling algorithm

based on peak-valley analysis allows to collect large training dataset with 14k

samples for each hand, which to the best of our knowledge is the largest dataset

for face-touch detection.

• This work is designed to address and solve battery consumption limitations on

a small device like smartwatch especially when running the application

continuously for long hours. It uses the lowest configurations compared with

literature from small window size, to extremely compact Convolutional Neural

Networks (CNN) models.

1.4. THESIS OUTLINES

Part one (current part) of this thesis gives a brief introduction of this work like

motivation, novelties, and outlines. In second part, the domain of human and hand

activity recognition, its applications, and wearable devices is introduced. Third part

contains a review for the literature of automatic face touch detection, considering the

3

face-touch hand-move as a special gesture type. In addition, HGR and FTD literature

for solution design, approach, and methods are reviewed. In fourth part, the proposed

solution is introduced, which is a smartwatch application that uses small, efficient, and

end-to-end CNN models to classify hand motion and identify Face-Touch moves. This

part describes the approach and methods used to accomplish these results. Chosen

setup, sensors, features, and configurations are detailed. Additionally, the collection

process of a large dataset is detailed for both left and right hands and represents

multiple hand motion types, body positions, and hand orientations. In fifth part, all

experimental results are detailed. Then in the last part, the obtained results are

compared with state-of-the-art research on face touch detection. Finally, this thesis is

summarized at the end.

4

PART 2

BACKGROUND

This part introduces the domain of human and hand activity recognition using wearable

devices and sensors, and gives overview of its applications in health, sports and other

fields. It describes wearable devices and sensors, activity recognition types, and

outlines different challenges and obstacles for FTD in comparison with other activity

types.

2.1. WEARABLE DEVICES AND SENSORS

2.1.1. Wearable Devices

The market of wearables has grown many folds in the past decade, and fueled by the

pandemic, it has grown more than 35% in first quarter of 2021 alone compared with

2020 as shown in Figure 2.1. Smart wearables include a range of devices from

smartphones, Augmented-Reality headsets, to wrist-worn devices which in turn

include fitness trackers, wrist bands, and smartwatches. People use wrist-worn devices

to track their daily exercises, steps taken, and monitor their vitals from HR, blood-

oxygen, and calories spent during exercises like walking, running, cycling, gym

classes, or while doing sports activities.

5

Figure 2.1. Worldwide sales of smart wearable device.

Wearable devices mainly fall into three categories as shown in Figure 2.2:

Figure 2.2. Smart wearable devices types.

Smart bands and fitness trackers are smaller and cheaper than smartwatches. They are

just equipped with the most essential sensors and features to track person fitness like

steps and calories spent during the day.

Smartwatches are more expensive, have more features and sensors, and most

importantly they have more capable processor and larger battery. They have become

powerful devices that have features similar to the bigger smartphones in terms of

hardware and software but still lack behind in terms of processing power and battery

capacity. They are supported by major OS platforms like iOS and Android and started

6

to add support for third-party applications. Being able to support the development and

deployment of third-party applications makes them ideal choice for this thesis.

Augmented Reality (AR) glasses and Virtual Reality (VR) headsets can be considered

as a special type of wearable devices. Along with motion sensors, they have depth

sensors and advanced camera systems that allow them to do Visual Inertial Odometry

(VIO) that incorporates vision data with motion data to accurately estimate speed and

position in 3D space. Estimating position, orientation, and speed make such devices

ideal for immersing experiences with the real world.

2.1.2. Wearable Sensors

Most of wearable devices are equipped with wide variety of useful sensors that come

in three groups: health related sensors, motion sensors, and external environment

sensors.

2.1.2.1. Health Sensors

From its name, these sensors measure person health vitals during the day while

wearing a device like a smartwatch. Most common types of these sensors are the heart

rate and oxygen level sensors:

HR Sensor measures heart beats per minute and it is based on non-invasive optical

sensors.

Blood-Oxygen Saturation Sensor (SpO2) measures the percentage of oxygen saturation

in the blood and it is based on non-invasive optical and Infra-Red (IR) sensors.

2.1.2.2. Inertial Motion Sensors

Inertial motion sensors or units (IMU) measure resistance of acceleration due to

external forces (hence the name inertial) and based on Micro-Electro-Mechanical-

7

Systems (MEMS). Such sensors are very small in size which is measured in

micrometers or less as shown in Figure 2.3. The most common types of such sensors

are the Accelerometer and Gyroscope.

Figure 2.3. Schematic of embedded MEMS based accelerometer.

Accelerometer measures the total acceleration of the device in g-force the earth

acceleration which is: 1g = 9.8 m/s2. Its measurements contain not only device

acceleration, but additionally, the earth gravitational acceleration component. That is

why additional operations must be done to separate both components and get only real

device linear acceleration. Using this sensor alone to get device speed by integrating

acceleration has large bias. Furthermore, making double integration steps to get

position has huge bias and error which make it totally impractical for getting speed

and position. This sensor can be found in most smart wearable devices and consumes

less power compared with other sensors [8].

Gyroscope measures the rotation rate of the devices in radians/second. It consumes

more power than accelerometer and has more noise. Using this sensor alone to get the

angles of the device is impractical and carries huge error rate.

8

2.1.2.3. External Environment Sensors

This type of sensors measures readings related to the outside world like the magnetic

field or air pressure. The most two common sensors of this type are the Magnetometer

and the Barometer:

Magnetometer measures surrounding earth magnetic field (measured in microtesla)

and can detect magnetic north and directions. Its drawback is that the local fields

caused by nearby electronic devices can interfere with its measurements and makes it

hard to remove this interference without additional calibration every time. Another

problem of this sensor is that it consumes a lot of battery and it is supported by only

few high-end smartwatches. That is why using this sensor in any design means that the

solution will not run on most wearable devices currently in the market.

Barometer is another example of external environment sensors. It measures current air

pressure changes. It can be useful for detecting changes in device vertical motion.

However, its accuracy is measured in several meters which makes it impractical for

most wrist-worn hand motion applications.

2.2. ACTIVITY RECOGNITION TYPES

In this thesis, three types of human activity recognition are studied HAR, HGR, and

FTD. These types can be thought of as levels, and each type can be considered as a

subtype of its parent type. HAR is the most general and it contains all types of human

activities. HGR is special type of HAR. It is only concerned about hand activities rather

than body activities. FTD is a subtype of HGR. The face-touch move is a special type

of hand gestures.

2.2.1. Human Activity Recognition (HAR)

This type can be considered as the parent of all activity recognition applications that

may include full-body activities or activities for specific body-parts. Activities usually

9

include walking, running, sitting, standing, laying, moving upstairs or downstairs. In

this type, single or multiple wearable devices are worn on the body (not necessarily

the hand) to measure and classify the whole-body motion. This motion is almost 2D

in nature like moving on flat plan (the ground). Generally, it is run on long recognition

period, and it is much easier to classify compared with the other two types.

2.2.2. Hand Gesture Recognition (HGR)

HGR is about recognizing all gesture types and actions done by the hand. For example,

in Sign-Language gesture recognition, gestures can mean words or actions. Another

application is remote interaction like in HCI where hand gestures can give commands

to a computer interface. In addition, people can make remote interaction with devices

like TVs using only hand gestures.

HGR can be divided into two categories, gesture recognition and action recognition.

Gesture recognition involves the recognition of very specific gestures made by hand

like drawing shapes, letters, or doing specific complex motion patterns. Although it

seems hard, however, it is much easier job for the classifier to distinguish since those

gestures are very different from each other, and each gesture has specific long path full

of distinctive patterns.

Hand actions are specific moves done by hand and can be generally seen in hand sports

like Tennis strokes (forehand, backhand, serve, volley), swimming types, or other

sport moves such as throwing or catching. Another example is Activities of Daily

Living (ADL), which include actions like opening and closing doors, picking and

putting objects, washing hands, etc. [2]. Hand actions are even harder to classify than

hand gestures because hand actions are short, fast, and have less distinctive path and

much less distinctive features.

10

2.2.3. Face Touch Detection (FTD)

Face touch hand move can be considered as special type of hand gestures. It shares

many characteristics with other HGR gestures, although it differs in some ways that

make it more challenging task. It is done in shorter period with faster pace and has no

complex differentiating patterns like other gestures. Moreover, it shares other

similarities with normal hand moves done during regular daily living situations. All of

them make it more challenging to identify face-touch moves among many other regular

hand-moves. Although, Face-Touch detection has received some focus recently due to

COVID-19 pandemic, there were many studies that took advantage of smartwatch

sensors to monitor hand activities which involve a hand-to-face motion. Examples

include smoking habits monitoring [9-10], toothbrushing style recognition [11], or bite

counting while having a meal [12-13].

2.3. CHALLENGES AND LIMITATIONS

There are three types of obstacles for HAR, HGR, and FTD applications. The first

obstacle is the limitation of embedded MEMS sensors. The second obstacle is the

limited processing power and battery capacity of wearable devices compared with

larger devices like smartphones. The third obstacle is that there are additional

challenges for FTD applications in particular. Evaluating and addressing these

limitations have big effects on the proposed solution and the choices done from setup,

configurations, devices, sensors, and overall solution design.

2.3.1. MEMS Sensors Limitations

Accelerometer and Gyroscope sensors found on smartwatches are inertial sensors

based MEMS systems and come with their own limitations [14-15]. They are listed as

below:

• Raw data are noisy and carry an increasing error over time. These errors are

related to its micro mechanical nature, that is why it can be easily affected by

nearby chips and surrounding environment.

11

• Sensor readings are relative to a local moving reference frame by default

attached to the watch screen. Using external fixed reference frame requires

fusing data from additional third sensor (the Magnetometer) which has higher

power consumption [8]. Moreover, its data is not reliable and can be affected

by watch metal frame or band.

• MEMS sensors cannot be used for estimating position or distance travelled

because these estimates suffer from double integration drift over time (for

example, for a not moving device laying on a table, the integration drift will be

more than 5 meters after only 10 seconds). Using additional algorithms like

Kalman filter to minimize the error, does not guarantee the required accuracy

and computationally expensive to be applicable on a small device like a

smartwatch.

2.3.2. Limited CPU and Battery

Running machine learning models on a wearable device like smartwatch poses many

challenges because such devices have very small battery and limited CPU power

compared with smartphones. In addition, the solution needs to be running continuously

in the background. Like in FTD, it must have real time response with delays and

execution time measured in a few milliseconds

2.3.3. FTD Challenges compared with HGR and HAR

The problem of detecting face-touches is two levels harder than HAR. HAR uses

relatively longer window size with sparse model calls and does not require real-time

response. Moreover, the motion is mostly in 2D plane, device orientations are less

variant, and motion classes are largely different and easier to distinguish.

On the other hand, FTD requires sub-second window size, multiple model calls per

second, and real-time performance. The motion is in 3D space with variable device-

orientations. Besides, the motion-types are similar with minor differences. They

require differentiation between several normal daily life hand move types like touching

12

body parts, moving up and down, picking items, moving objects, or closing and

opening door, etc. Table 2.1 outlines all differences in sample size, execution time,

motion and device orientation types between all three types of activity recognition

HAR, HGR, and FTD.

Table 2.1. Comparison between HAR, HGR, and FTD tasks in various aspects.

 HAR HGR FTD

Window Size 3+ seconds 2+ seconds 0.5-1.0 seconds

Model Call Every 1+ seconds 1+ seconds 250-300

milliseconds

Model Min Required

Execution Time

500 milliseconds 500 milliseconds < 10 milliseconds

3D/2D Motion

Coordinates

Motion mostly in

2D space

Motion mostly in

3D space

Motion in 3D space

Device Orientation Fixed orientation Variable

Orientations

Variable

Orientations

Variance Between

Classes

Large Difference

with Low

Confusion

Large Difference

with

Medium

Confusion

Small Difference

with High

Confusion

13

PART 3

LITERATURE REVIEW

This part contains a review of HGR and FTD literature, considering the face-touch

hand-move as a special hand gesture type with its unique characteristics compared

with other hand gestures. HGR and FTD literature are reviewed for solution design,

approach, and methods. There are mainly four parts involved in solution design:

hardware setup, dataset collection, data processing, and classification methods as

shown in Figure 3.1. Classifications methods include classical methods and deep

learning methods such as CNN networks.

Figure 3.1. Four different phases of HGR and FTD solutions.

3.1. HARDWARE SETUP

Depending on the requirements, different studies used different hardware

configurations, like single wearable device or multiple connected devices. Besides,

single or multiple sensors working together have been used in literature.

14

3.1.1. Hardware Devices

Solution design may run on the wearable device directly without using smartphone or

any other extra hardware [16-20]. This setup is more practical, cheaper, and provides

immediate response to users. It can work offline without requiring any connection to

other devices. However, in some situations it may lack the needed processing power.

To overcome this problem, the second design utilizes a smartwatch connected to a

smartphone where the smartwatch can send sensors data to a connected more capable

smartphone for processing and classification [4]. Sometimes the implemented solution

requires far more processing power than what smartwatch or phone can handle. In such

case, data from smartwatch can be relayed to a PC over the network for processing and

classification [21-23].

3.1.2. Used Sensors

For activity classification, generally a mix of three sensors is used in literature:

Accelerometer, Gyroscope, and Magnetometer. Some studies used only

Accelerometer to save on power consumption and requirements [19,21], while others

used combination Accelerometer and Gyroscope to get more data [4,16-18,20,22].

Authors in [24] used Magnetometer along with magnets mounted on glasses or

necklace to measure proximity between hand and face to detect potential face touches.

Although these three sensors have been widely used in literature, some other studies

have used additional special sensors. In [23], in addition to Magnetometer, authors

have used Radio-Frequency-Identification (RFID) tags to read radio signals and detect

face touches. Other researchers have used depth IR cameras to get depth image and

measure hand position [25].

15

3.2. DATASET COLLECTION METHODS

Multiple public datasets exist for HAR activities that can be used for training.

However, depending on the situation, these datasets might lack some features, or use

different methodology. In such cases, a new training dataset needs to be collected from

scratch.

Training data can be collected in two ways. The first way is to use controlled sessions,

where participants are asked to do activities repeatedly with specific positions,

scenarios, and orientations. The second way is to use free-living setup in which

participants are told to practice their lives naturally while wearing the smartwatch.

3.2.1. Controlled Sessions

In controlled sessions, training samples for particular class, type, or with specific

conditions are collected in a separate session. Many HGR and FTD studies have used

controlled sessions because data can be gathered in a faster pace. For example,

different sessions can be allocated to gather samples for each class, scenario, or device

orientation [16,18,20].

3.2.2. Free Living Sessions

To make training data more representative to real world scenarios, some studies have

collected training data in free living setup. In this setup, volunteers are asked to

practice their lives normally while wearing a smartwatch and the data logging

application is already running during the session [25]. However, this adds an extra

challenge for extracting the target actions. One way to solve this problem is to make

video recording for all data collection sessions. Then manual cross-checking of videos

with logged data is performed to find start and end points for target action samples.

This method may yield more accurate data; however, it requires too much time to

collect large training dataset.

16

3.3. DATA PROCESSING

Data processing is a crucial phase after dataset collection. It consists of four steps:

sampling raw data, data filtering, data segmentation, and feature extraction.

3.3.1. Getting Raw Data

The number of times the sensors are sampled is measured in Hz or number of readings

per second. Frequency ranges from 25Hz for low-end wearable devices, up to 200Hz

in high-end smartphones. Sampling at higher frequency provides more data although

it consumes more power. Accelerometer data is measured in g (g = 9.81/s2). Gyroscope

data is measured in radians/second. Magnetometer data is measured in microtesla. Raw

data values come as vectors with three values that represents readings across 3D axes

X, Y, and Z [26].

3.3.2. Data Filtering

Sensor readings are raw data that need to be filtered and processed. Filtering can be

used to eliminate anomalies and reduce bias. Low-pass and high-pass filters are

commonly used to reduce noise and break accelerometer total acceleration into real

device linear acceleration and earth gravity acceleration [18,20]. Those filters work by

transforming the signal from time domain to frequency domain. Then, they pass

signals that have frequency below or above some cut-off threshold.

3.3.3. Data Segmentation

The next step after data filtering is segmentation. Reading sensors data at moment (t)

is considered a single frame. Sliding-Window algorithm is a common method to group

multiple frames together over specific window of time [16-19,21,23-24]. However,

sometimes the target activity can start in the middle of one window and continue to

the next window. To overcome such a problem, a sliding-window with overlapping is

applied as shown in Figure 3.2.

17

Figure 3.2. Sliding window with 100 frames size and overlapping of 25 frames.

3.3.4. Feature Extraction

In the case of end-to-end classification, data are served directly to the classifier without

using any hand-crafted features or feature extraction phase. This is usually done when

using deep learning methods. For example, CNN layers learn to extract features

automatically, then feed those features to dense fully connected layers for

classification [4,21].

Alternatively, feature extraction phase can be used before classification. Hand-Crafted

features come in two types: Time-Domain features and Frequency-Domain features

[16-17,19-20].

A few examples of hand-crafted features are mean, standard deviation, variance,

quantiles, median, root-mean-square (RMS), entropy, energy, signal to noise ratio

(SNR), skewness, kurtosis, etc. Those features are calculated for the whole sample

window of time (Time-Domain), or after applying Fast-Fourier-Transform (FFT)

(Frequency-Domain). Some studies have calculated these features, then used them as

an input to deep learning models which calculated higher-level features.

3.4. CLASSIFICATION METHODS

There are two approaches of used by researchers: conventional approaches and deep

learning approaches.

18

3.4.1. Conventional Approaches

Many studies have used traditional classifiers for their simplicity and fewer

computations compared with deep learning methods. Traditional classifiers can be

listed as K-Nearest-Neighbor (KNN), Support-Vector-Machines (SVM), Decision

Trees (DT), Random-Forests (RF), Naïve-Bayes (NB), and Dynamic-Time-Warping

(DTW).

KNN classifier operates by classifying the data based on how the neighbors or nearby

points are classified. Any new data point is classified based on a similarity measure of

all the available cases or data points. It is a versatile, common, easy to implement, and

supervised machine learning algorithm that can be used for both regression and

classification. KNN does not have a training phase, however, this comes at a cost of

making prediction step little more expensive. Every time a prediction is made, it

searches for the nearest neighbor in the whole training set [27-28].

The main objective of SVM classifier is to draw a line or hyperplane that divide data

points based on their class. If a dataset is not separable by a single straight line, a kernel

trick can be applied to transform the dataset from 2D dimension to 3D dimension.

SVM can work with non-linear separable data because of its ability to operate on

higher dimensions where it can make the data linearly separable [29-30].

RF depends on DT which builds a tree of questions based on particular features to

separate a dataset into classes. In DT it is needed to know what features can to split

the data in a way that the result classes are as different from each other as possible,

and the members of each class are similar to each other as possible. In other words,

the question is what features give the most information gain at what threshold. RF is a

supervised classification method which consists of collection of decisions trees. It uses

bagging and feature randomness when building each individual tree to create an un-

correlated forest of trees whose prediction is more accurate than any single decision

tree [31-32].

19

NB is a classification method for binary and multiclass classification problems. It is

named Naive Bayes because the calculations of the probabilities for each class are

simplified by making naïve assumptions. Rather than trying to calculate the

conditional probabilities of each attribute value, they are assumed to be conditionally

independent. Although this assumption is unlikely in real world, the approach

performs surprisingly well even if this assumption does not hold. This makes NB easy

to implement and calculate.

DTW is a classification method that depends on comparing the data time-series on

hand with pre-calculated templates of time-series data. Any two time series can be

compared using euclidean distance or other distance measured on a one to one basis

along the time axis. Values of first time series at time T are compared with values of

second time series at time T. However, this may result in a very poor similarity score

when the two time-series data are out of phase even if they are very similar in shape.

DTW solves this problem by comparing amplitude of first signal at time T with

amplitude of second signal at time T+1 and T-1 or T+2 and T-2. This assures that it

does not yield low similarity score for signals with similar shape but in different phase

[4,33-34].

Traditional classifiers have been used frequently in literature to classify gestures.

Authors in [16] compared the performance for SVM and KNN. They found that SVM

had better accuracy for classifying seven different hand gestures. DTW classifier have

been used in many studies to classify hand gestures [4,18]. Researchers in [17]

compared performance of different classifiers like KNN, SVM, and NB. They found

that each classifier performs better on certain gestures by choosing the right classifier

based on target gestures.

3.4.2. Deep-Learning Approaches

While traditional classifiers are convenient for small wearable devices due to less

required computations, deep learning methods like regular Artificial Neural Networks

(ANN), CNN networks, Recurrent Neural Networks (RNN) generally outperform

20

other classifiers. Deep Learning methods have an ability to learn features

automatically even when fed with raw data. When fed with hand-crafted features, they

can learn correlations between several features and induce extra higher features.

CNN networks take input data like images and apply convolution layers where it

convolves over images with learned filter to produce another image with same or less

dimensions. Pooling layers are usually applied after each convolution to reduce size

and fight overfitting. Convolution blocks can be considered as feature extraction

layers. Those layers are followed by dense layers at the end which serve as final

classification layers. Figure 3.3 shows the structure of the popular VGG-16 CNN

network.

Figure 3.3. Architecture of the VGG-16 CNN network.

RNN networks are suitable for sequence of data. In such networks, the output of hidden

layer is fed again as additional input in the next step. Figure 3.4 shows the structure of

RNN network and it is unfolded which provides clearer image about its structure.

Figure 3.4. Unfolded RNN network structure.

21

Some studies use hybrid approach which combines CNN and RNN together. Long-

Short Term Memory (LSTM) layers which are a flavor of RNN can be placed on top

of CNN layers. In such approach, CNN layers extract current window features, and

the LSTM layer keeps track of hidden layer output from previous samples as shown

in Figure 3.5. This is especially useful when hand gestures or motion types have

temporal dependencies [35].

Figure 3.5. Architecture that combines LSTM layers on top of CNN layers.

Deep learning methods have been used frequently in the literature. Authors in [20]

compared classification performance between CNN and several conventional

classifiers like SVM, iForest, Minimum Covariance Determinant (MCD). They found

that CNN outperformed other classifiers in terms of recall and precision. Authors in

[21] have used end-to-end CNN network to classify 10 different gestures and achieved

97.32% F1-score.

22

PART 4

MATERIALS AND METHODS

This part describes the materials and methods used to implement the proposed

solution. Used materials like hardware, software, and volunteers are explained. Chosen

setup, sensors, features, and configurations are detailed. The collection process of a

large dataset is detailed for both left and right hands, then all post processing steps are

elaborated. Classification process based on deep learning and the validation methods

used to test the trained models are mentioned.

4.1. MATERIALS

In this section, all required hardware, devices, sensors, software, operation systems are

detailed. Additionally, the number of volunteers and characteristics used to obtain

training dataset are described. The size and features of the dataset are outlined.

4.1.1. Used Hardware and Software

During dataset collection process, two different smartwatches were used. First one is

Apple Watch Series 3 which was released in 2017. This watch tests the ability of the

proposed solution to run even on old hardware with limited capabilities. The second

one is a new version called Apple Watch SE released in 2020 with better capabilities

in terms of CPU and other hardware. During data collection, a special recorder

application was run on both watches where logs were saved, then sent to a connected

local PC. All subsequent data processing and training models were done on local PC.

Although the smartwatches were equipped with several sensors, only two sensors were

used which are the Accelerometer and the Gyroscope. During recording training data,

23

the maximum sensor sampling frequency were set to 100Hz. During data processing

phase, down-sampling such as 50Hz and 75Hz were applied.

All the data collection, processing, and testing data were done on Apple WatchOS

operating system. The solution can completely run on the watch alone offline without

requiring internet connection or connecting to any server or nearby smartphone.

4.1.2. Volunteers

Training dataset were collected using three different volunteers with variable age and

body characteristics. Collecting the Test dataset was done by the help of three

volunteers as well. Two of them were not participating in the training dataset collection

process. For beta-testing on real app, eight volunteers were asked to install the

application and test both its accuracy in real life usage and battery usage. Those

volunteers have wide range of smartwatches versions. They have different

characteristics and even live in different countries. They use their smartwatches in

different real-world environments like work, household, shopping, and public

transportation environment.

4.1.3. Dataset Properties

Two different datasets were collected from scratch for left and right hands with the

exact methodology. Each dataset contains approximately 14000 training samples

distributed evenly on five classes. Each training sample contains 100 frames (because

100Hz frequency is used). Although subset of features was used in final solution,

during training data recording, all 25 features were saved for further experiments as

shown in Table 4.1.

24

Table 4.1. List of 25 raw features saved while recording training data.
Type Num. Features Description

Device Real

Acceleration

3 features accx, accy, accz which are acceleration

on X, Y, Z axes measured in g-force

Rotation Rate 3 features gyrx, gyry, gyrz which are rotation rate

on X, Y, Z axes in radians/per-second

Current Gravity

Vector

3 features gravx, gravy, gravz which are gravity

force values on the current X, Y, Z axes

measured in g-force

Attitude –

Represented in Euler

Angles

3 features Roll: rotation on Y axis in radians

Pitch: rotation on X axis in radians

Yaw: rotation on Z axis in radians

Attitude –

Represented in

Quaternions

4 features qx, qy, qz, qw

A quaternion offers a better way to

parameterize and represent attitude.

Attitude –

Represented in

Rotation Matrix

9 features [m11 m12 m13

 m21 m22 m23

 m31 m32 m33]

A rotation matrix in linear algebra

describes the rotation of a body in three-

dimensional Euclidean space.

4.2. SENSOR FUSION

Sensor-Fusion, which is an important technique is explained in this section. It has a

large effect on features and configurations. The goals and flavors of sensor fusion is

firstly described. Then the used reference frames are detailed.

4.2.1. Goals and Types

Sensor Fusion is the process of combining data from two or more sensors to generate

more robust and accurate readings when compared with reading each single sensor

data. Sensor fusion between multiple sensors achieves multiple goals like reducing

bias, separating linear acceleration and gravity, and estimating device orientation in

25

3D space as shown in Figure 4.1. Device orientation can be given as Euler-Angles

simple form, quaternions, or a rotation matrix that have more accuracy and less

problems [22]. Fusion process is usually done by using a flavor of Kalman-Filter which

is time consuming process specially when applied on wearable devices. That is why,

modern smartwatches have hardware-accelerated sensor fusion using dedicated

motion co-processor.

Figure 4.1. Attitude angles: Roll, Pitch, and Yaw.

There are two types of sensor fusion. First type uses fusion between Accelerometer

and Gyroscope. It can achieve many goals such as correcting rotation bias, isolating

linear and gravity acceleration, and estimating device angles.

Second type uses fusion between Accelerometer, Gyroscope, and Magnetometer. The

second type of sensor-fusion achieves goals which are achieved by the first type as

well. In addition to that, the second type has external fixed reference frame. However,

the second type is notably more expensive in terms of battery usage and required

processing power.

26

4.2.2. Reference Frames

The reference frame used when reading acceleration and rotation data is local

reference-frame pinned to the watch screen as shown in Figure 4.2. Reference frame

axes can be explained as below:

• X-Axis is going horizontally on the watch screen from left to right.

• Y-Axis is perpendicular on X-Axis and going from top to down on watch

screen.

• Z-Axis is vertical, virtually penetrating watch screen, and perpendicular on X

and Y axes.

Figure 4.2. Local reference frame attached to watch screen.

When reading device orientation, those values must be based on fixed external

reference frame. There are two types of reference frames that can be used depending

on which type of sensor fusion is used.

When using Accelerometer and Gyroscope sensor-fusion, the Z-axis is vertical along

with earth gravity vector and X-axis is chosen randomly in horizontal plane, and Y-

axis is perpendicular on both X and Z as shown in Figure 4.3. This random choice of

X-axis may lead to different patterns for the same move during training and inference.

The solution is to save initial attitude at first frame of the input window. Then the

solution is to convert all subsequent attitude readings to be relative to the initial value.

This is done by multiplying with inverse of initial attitude rotation matrix as shown in

formula Eq. 4.1.

27

𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒!"#$%&'" = 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒()**"+% ∗ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒,+&%&$#)																												(4.1)

Figure 4.3. Reference frames where Z-axis is fixed, X and Y axes are random.

When using the second type of sensor fusion, the reference-frame is totally fixed where

Z-axis is vertical, Y-axis points towards the magnetic north, and X axis is

perpendicular as shown in Figure 4.4. In such case, a conversion for each attitude value

is not required.

Figure 4.4. Fixed reference frame where X, Y, Z axes are always the same.

28

4.3. CHOSEN CONFIGURATIONS

In this section, the chosen setup from sensors, configurations like sampling frequency,

sliding-window size, and features are explained.

4.3.1. Chosen Sensors and Configurations

Only Accelerometer and Gyroscope inertial sensors were used because they are

supported on all smartwatches and they consume much less power compared with

other sensors. The use of Magnetometer sensor was dropped because it is not supported

on all smartwatch models, it has higher power consumption [8], and can be affected

by watch metal frame. Thus, it requires manual calibration to be done by user. All

sensor readings are relative to a local moving reference frame pinned to the device

screen. Sliding-Window method is used with window-size set to a small number of 30

frames or 0.6 seconds in order to reduce the calculations required in each model call

and save on power consumption. During runtime inference, 50% overlapping is

applied which results in 3.33 model-calls per second.

Instead of reading raw sensors data, Sensor-Fusion between Accelerometer and

Gyroscope was used at low sampling frequency of 50Hz. Sensor-Fusion achieves two

main goals. The first one is correcting Gyroscope data by removing accumulated bias.

The second one is separating linear device acceleration from acceleration due to earth

gravity.

4.3.2. Raw Features

Sensor fusion between Accelerometer and Gyroscope allows for recording of 25

features. Three features represent real device linear acceleration. Three features

represent the corrected rotation rate. Three features represent current gravity vector.

Rotation rate is measured in radians/second whereas both device acceleration and

gravity are measured in g (g = 9.81/s2). This makes total of 9 features, and the rest 16

29

features are reserved for device orientation. Device orientation can be represented in

3 angles (Euler angles: Roll, Pitch, and Yaw), Quaternions, and rotation matrix with

shape 3x3. All 25 features are shown in Table 4.1.

Gravity can capture device tilt because data are relative to device’s reference frame.

Current gravity vector (GV) is always vertical and aligned with earth GV which means

GV angles change with the device or hand tilt as shown in Figure 4.5.

Figure 4.5. GV relative to current device reference frame.

Figure 4.6 shows data for one hand motion sample of a person trying to touch his face

while wearing a smartwatch. It explains how one sample of face touch motion is

translated to a window of 30 frames and each frame contains 9 data points or features.

In Figure 4.6, while this hand moves, every 20 milliseconds single data frame is read

from motion sensors. When 30 readings are collected, the window is fed to the CNN

model.

30

Figure 4.6. Sample data of a person trying to touch his face.

31

4.4. DIVIDING HAND MOTION TYPES

Hand motion in 3D space is chaotic and some hand moves share many similar

acceleration and rotation patterns with the face-touch move. In this binary

classification problems (touch/no touch), high recall was obtained, however, precision

was relatively low due to many false positives. By closely examining false positives,

it was found that they were mostly caused by specific types of hand moves that are

elbow-based. This happens when the forearm moves around the elbow making a sharp

angle with the upper arm as shown in Figure 4.7. This is in contrast to moving the

whole arm together or when the angle between the forearm and upper arm is large as

shown in Figure 4.8.

Figure 4.7. The angle between forearm and upper arm is sharp.

Figure 4.8. The angle between forearm and upper arm is large.

4.4.1. Hand Motion Classes

To minimize false positives, additional two elbow-based motion classes were added.

“Up” class represents when the hand moves up with close level to the head, and

“Abdominal” class represents all hand moves towards the abdominal area like stomach

and chest. Besides, another two classes were added, “Stationary” class for when the

32

hand is stationary or slightly moving, and “Normal” class for all other hand moves

which brings the total of hand motion classes to five.

4.4.2. Scenarios for Each Class

To achieve fine-grained division and make the classifiers more robust, data are

collected for each of those classes in five scenarios: standing, walking, and three

different sitting positions as sitting while hand in a neutral or lower position, in a

medium position like resting on the legs or couch, and in a high position like resting

on a table as shown in Figure 4.9. The three sitting positions serve for another purpose

which is recognizing face touch move even if it was initiated from different locations

as shown in Figure 4.10.

Figure 4.9. Five different positions: standing, walking, and three different sitting.

Figure 4.10. Initiating hand move from three different heights.

4.4.3. Orientations for Each Scenario

Since local moving reference-frame is used instead of external fixed one, any change

in hand orientation or any small shift in watch position around the wrist caused by

loose bands give different data patterns. To overcome this problem, for each of the

33

above five scenarios, data are collected with multiple hand orientations. Two hand

orientations are defined at the move start, and three at the move end that represents

three different ways for touching the face either with hand palm, back, or side. This

makes the total 6 combinations of hand orientations as shown in Figure 4.11. Those

hand orientations are not rigid. A range of hand rotation in either direction is allowed

during samples collection to mimic real-life cases especially with loose bands where

the watch can move around the wrist.

Figure 4.11. Hand start/end orientations when touching the face.

Any change in hand orientation at the start may cause different motion patterns like

acceleration or rotation on a different axis. Similarly, touching the face with different

orientation or different hand-part causes different rotational patterns. Figure 4.12

shows different acceleration and rotation patterns for the same hand move in the same

standing position, but in 6 different hand orientations.

34

Figure 4.12. Sample motion patterns for 6 hand orientations of “Touch” move.

By applying the 3-level division of hand motion, the models are allowed to be trained

on a wide range of motion patterns in real-life situations which improves detection

accuracy and minimize false positives.

4.5. COLLECTING DATASETS

Training and Test datasets were collected from scratch. This section describes the

methodologies used in the collection process.

4.5.1. Training Dataset

Training datasets were collected using controlled sessions and automatic sample

extraction algorithm.

35

4.5.1.1. Controlled Sessions

The methodology used for training dataset collection and processing has a huge impact

on achieving both high accuracy and high efficiency. Training data are collected in

controlled sessions where each session is performed by one person for a specific

motion class, and only for one scenario, and hand orientation. That means up to 30

different sessions for each motion class. In each session, the volunteer does repetitive

hand moves with around 1 second rest in between. Each session contains between 40

and 150 samples. Data are recorded using a special application, where the user presses

start-button to start the session and presses the stop-button to finish the session.

All data collected in a single session are logged and saved in a separate file. This file

includes motion data for the target touch move along with other irrelevant hand moves

like moving the hand back from the face to the neutral position. In addition, it contains

some intervals where the hand is in the resting state. To automatically extract only the

target face-touch move, a novel algorithm was applied.

4.5.1.2. Automatic Sample Extraction Algorithm

The novel algorithm was developed to extract training samples automatically which

helped the collection of large number of samples in less time. Visualizing the three

elbow-based hand moves (Face-Touch, Up, Abdominal), it was observed that they

cause a spike in rotation rate around Z or Y axes resulted from moving the forearm

around the elbow. Using this prominent feature besides the fact that there is only one

targeted move type in each session, an algorithm that uses peak-valley analysis was

developed to extract samples automatically. Each hand-move starts with an

acceleration phase until it peaks at the middle, then a deceleration phase starts and

continues until the hand stops. Sample is extracted by taking the peak value as the

middle point as shown in Figure 4.13.

36

Figure 4.13. Example of samples automatically detected by the algorithm.

A small window size of 0.6 seconds was chosen to minimize required calculations,

save on power consumption, and allow early touch detection. However, this is mostly

smaller than the actual touch move duration as observed in the dataset which mostly

falls in the range of [0.55, 0.8] seconds. Random shift of the middle point was applied

with up to 2 frames to the left, and up to 5 frames to the right, with more emphasis on

right-shift because the end of touch move contains more distinctive features compared

with the move-start. The formula for the extracted-sample-range at detected peak at

moment (t) is given in Eq 4.2. where r is a random number in range of [-2, +5].

SampleRange = :t − =
window-./0

2 C + r, t + =
window-./0

2 C + rG 																	(4.2)

Using controlled setup where each volunteer made over 80 data collection sessions,

and the automatic sample extraction, helped to collect large training dataset for both

left and right hands.

4.5.2. Separate Test Dataset

To test the trained models better, a Test-Dataset which was never used in training

phase was collected. It was collected separately from three different volunteers doing

37

real-life activities including face-touches while wearing two different watches. Each

person did 50-100 face-touches in the 5 scenarios while doing normal activities for a

total of 250 touch samples for each of the left and right hands. Each session was

recorded as a video and then the dataset was labelled manually by cross-checking all

recorded videos.

In order to make the test dataset more representative of real-world usage, additional

moves that may cause false positives were added like moving hand up near the face or

touching the chest. Those moves were added with one-to-one ratio compared with the

face-touch move (also around 250 moves per dataset). Additionally, a wide range of

normal daily-life activity moves were added like household activities and office

activities. In total, each dataset contains 250 positive face-touch samples and over 5700

non-touch samples where the hand is doing other motion types. All moves are done

within 90 minutes period. Finally, 50% overlapping was applied to match runtime

conditions on the application.

4.6. POST-PROCESSING ON TRAINING DATASET

Additional processing steps were done on collected raw dataset. Those steps were used

to generate multiple different datasets out of the original dataset. Each one has different

characteristics or parameters as generating datasets based on Full-Motion-Wave or

Half-Motion-Wave. Additionally, datasets with different window-sizes were

generated to test more possible window sizes. Three different datasets with different

window shift augmentations were used to increase samples or to test different window

shift values. Finally, extra processing steps were done, specifically, applying jittering

and data standardization.

4.6.1. Half-Wave vs Full-Wave

The hand motion can be divided into two phases. The first one is the acceleration phase

where all readings start at low values and then explode quickly towards the peak as

38

shown in Figure 4.14. The second phase starts after the hand motion speed peaks and

then starts the deceleration phase until it stops on the face as shown in Figure 4.15.

Two types of datasets were processed. First one is where all samples extracted from

considering the motion peak is the end of the window. This type allows for early

detection as the application alerts the user well before the hand reaches the face.

Second one is where all samples extracted considering the peak is the middle of the

window.

Figure 4.14. Extracted samples where only acceleration phase is taken.

39

Figure 4.15. Extracted samples where both phases are taken.

4.6.2. Window-Sizes

Multiple datasets were processed with different window-sizes like 30, 40, and 50

frames sizes which are equivalent to 0.6, 08, 1.0 seconds, respectively. Having small

window size lowers the necessary computations. That means faster classification and

less consumed power. On the other hand, having larger window size means there are

more input data points for the classifier which may result in better accuracy.

4.6.3. Window-Shifting

The original sample is extracted based on the detected peak. Additional window-

shifting is applied to generate more samples and more robust training data. Window-

Shifting serves as data augmentation where multiple training samples are generated

from one sample. Shifting is done on both ways, to the right (positive) where window-

center is moved couple of frames, or to the left (negative) where window-center is

subtracted few frames as shown in Figure 4.16.

40

Figure 4.16. Original extracted sample window and 2 other shifted windows.

4.6.4. Additional Data Processing

To make the training dataset more robust, signal jittering and data standardization were

applied. Signal jittering resembles jittery sensor readings when some high priority task

is performed by the operating system. Data standardization is done on the final data

by subtracting the mean and dividing by standard deviation.

4.7. TRAINING USING DEEP-LEARNING

4.7.1. End-To-End CNN Architecture

The proposed architecture uses end-to-end models based on CNN networks without

any hand-crafted or computed features. After experimenting with adding LSTM layers

on top of CNN layers, the performance gain was negligible compared with expensive

computations of LSTM layers. Instead of 2D-Convolutions, 1D convolutions were

used to convolve data along time axis with features set as depth channels. Average

41

pooling layers were used for down sampling and translation invariance. CNN blocks

automatically extract features before feeding them to dense layers for classification.

4.7.2 Hyperparameter Tunning Using Grid-Search

To find the best hyperparameters, a grid-search of 243 iterations was executed. In each

iteration, a separate model was trained using one combination of hyperparameters like

filters count, dropout rates, optimizer method, batch size, and epochs count.

Filters counts of 32, 64, and 128 were used. For dropout rates, three different

combinations were used. Batch size of 32, 64, and 128 were tried. Three different

counts were tried for epochs count. Adam, RMSPROP, and SGD optimizers were

tried. This makes the total iterations or different trained models as 35.

Trying different optimizers like SGD, RMSProp, and Adam with different learning

rates parameters is necessary because each problem might work better with different

optimizer method and with better learning rate parameters. In SGD which stands for

Stochastic Gradient Descent, weights are updated after one sample classification

forward pass during training and learning rate is fixed. This means the path to optimal

solution or global loss minima is noisy and slow. RMSProp which stands for Root

Mean Square Propagation is an improvement over SGD. It normalizes the gradient by

using the moving average of squared gradients which means the learning rate is

adaptive and changes overtime. Adam which stands for Adaptive Moment is

considered as an improvement on RMSProp. Adam is the latest state of the art

optimizer and the most used optimizer in deep learning literature.

4.8. VALIDATION

Before presenting experimental results, this section outlines the validation for testing

results used to test the trained models.

42

4.8.1. Confusion Matrix

Confusion matrix summarizes the prediction results for the trained classifier. It shows

the counts of correctly classified or misclassified cases for each class. It can show

better understanding of the trained model and its weak points. This is effective for

misclassified samples for each class to display. It gives better insight not only on the

mistakes done by the classifier, but also on the types of errors that were made.

In binary classification, classified samples can be categorized in four types. In the case

of Touch/No-Touch problem, True-Positives (TP) are face-touches that are classified

correctly by the classifier. True-Negatives (TN) are non-touch moves that are correctly

classified as non-touch. False-Positives (FP) are normal moves but wrongly classified

as touch moves by the classifier. False-Negatives (FN) are real face-touch samples but

wrongly classified as Non-Touch by the classifier. The confusion matrix for the

proposed solution is shown in Figure 4.17.

Figure 4.17. Definitions of TP, TN, FP, and FN for the proposed solution.

43

For evaluation, researchers apply several metrics like Recall (or sensitivity), Precision,

Specificity, Accuracy, F1-Score, and False Positives Rate (FPR) to measure

performance of trained models. In case of detecting face-touch hand moves, Recall

given in Eq. 4.3 represents how many touches were detected out of all face touches

made by the user. Precision given in Eq. 4.4 measures out of all face touches detected

by the application how many real face touches were done. Specificity given in Eq. 4.5

gives the percentage of non-touch moves predicted correctly from all non-touch

moves. Overall accuracy given in Eq. 4.6 calculates out of all samples in the dataset

how many correctly classified were done by the model. F1-Score given in Eq. 4.7 is a

measure that combines precision and recall. Positives-Rate (FPR) given in Eq. 4.8

represents the probability that a false alarm is raised.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 																																																																																																													(4.3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 																																																																																																						(4.4)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 	= 1 − 𝐹𝑃𝑅																																																																												(4.5)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																																																																																
(4.6)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗	
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛																																																																							

(4.7)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 																																																																																																																	(4.8)

44

4.8.2. Cross Validation

Cross Validation is a validation type where the training set is broken into parts. One

of the parts is taken as test set while the rest is used as training set. Cross validation is

useful when it is hard or expensive to collect a separate test dataset.

There are two types of cross validation, the first one is K-Fold cross validation. In this

type, the training dataset is broken into K parts equal in size. Then, the model will be

trained and tested K times where in each time one part is taken as test set and others

combined as training set. In each time one different part is taken as test set until all K

parts are tested. The second type of cross validation is Leave-One-Subject-Out

(LOSO) where one subject data is used as test dataset and the rest as training set.

45

PART 5

EXPERIMENTAL RESULTS

In this part all experimental results are detailed based on three types of tests: Cross

Validation testing, Separate Test Dataset testing, and Real-Life testing on the deployed

smartwatch application.

5.1. CROSS VALIDATION TESTING

Two types of cross validation were done using the collected left and right training

datasets, K-Fold and LOSO cross validation testing.

5.1.1. Five-Class Training Results

Although models are trained to fit the training set and it might overfit this dataset,

training accuracy can give an initial view of the model accuracy. When looking at the

confusion matrix particularly, percentage of misclassified samples with each class can

be checked. Figure 5.1 shows for each class of the five motion classes, how many

samples were misclassified with each of the rest four classes.

46

Figure 5.1. Confusion matrix for 5-class classification during training phase.

Figure 5.1. shows that most of missed face touches (False-Negatives) were classified

as UP move. Besides, it can be seen that six stomach (Abdominal) samples were

wrongly classified as Touch (False Positives).

Table 5.1 shows detailed precision, recall, f1-score for each class of the five classes:

touch, normal, stationary, up, stomach (or abdominal).

Table 5.1. Precision recall and F1-score for all 5 classes.

Class precision Recall F1-score

Touch 0.99 0.96 0.97

Normal 0.96 0.98 0.97

Stationary 0.99 1.00 0.99

Up 0.96 0.97 0.97

Abdominal 0.98 0.99 0.99

5.1.2. K-Fold Cross Validation Testing Results

To check the possibility of overfitting, two types of cross validation were done using

the training dataset. K-Fold cross validation with 10-folds was firstly done by splitting

training dataset to 10 equal parts. Test results show overall accuracy for 5-class

classification between 95% and 97% across all 10 folds as shown in Figure 5.2.

47

Figure 5.2. Accuracy across 10 folds in k-fold cross validation.

5.1.3. LOSO Cross Validation Testing Results

The second type of cross validation in this thesis is LOSO. The results for all three

volunteers are close with accuracy between 95% and 96% as shown in Figure 5.3.

Figure 5.3. LOSO cross validation accuracy results for three volunteers.

5.2. TEST DATASET RESULTS

Since the training dataset was collected in controlled sessions where only one specific

type of hand moves was done, testing results might not be representative to real-world

48

testing. On the other hand, testing results on the Test Dataset give more representative

results for real-world usage because it was collected in a free-living setup.

Test results show high recall and precision results with average F1-score of 95.85% as

shown in Table 5.2.

Table 5.2. Face-Touch accuracy results on the Left/Right Test Datasets.

 Left Hand Right Hand Average

Recall 96.5% 97.0% 96.75%

Precision 93.7% 96.5% 95.10%

F1 Score 95.0% 96.7% 95.85%

Accuracy 99.7% 99.7% 99.70%

By using only linear acceleration and rotation rate features, the best recall score was

88.5% for F1-score of 86.7% (for left hand). However, when three gravity features

were added, the recall jumped to 96.5% and F1-score reached to 95.0% as shown in

Figure 5.4.

Figure 5.4. Results for two models with and without gravity.

Even when testing against over 200 different models trained with different

hyperparameters during grid-search iterations, models with gravity consistently scored

higher as shown in Figure 5.5.

49

Figure 5.5. Results with/without gravity for multiple trained models.

Additionally, using five classes instead of binary classification had a big effect on

minimizing false positives and improving precision and accuracy. Figure 5.6 shows a

high precision improvement for 5-class models with a precision score of 93.7%

compared with the best precision of 75.8% for 2-class models (for models with the

best F1-score in both situations).

Figure 5.6. Recall/Precision scores for binary and 5-class classifiers.

Similarly, when testing against multiple models resulted from grid-search iterations,

5-class models consistently scored higher precision values compared with 2-class

models with a big margin as shown in Figure 5.7. The precision score for binary

classification was mostly in range of 0.5 and 0.7 which is considered very low and not

practical for real-world usage on the application even if the recall score is high.

50

Figure 5.7. Precision for binary and 5-class classifiers for multiple trained models.

5.3. REAL TESTS ON THE APPLICATION

Testing was done on the final smartwatch application to test accuracy results, battery

consumption, and percentage of false alarms over long periods.

5.3.1. Test Results of the Application

To check real-world performance, the final trained models were deployed on the

developed application which was deployed on two different watches. The application

was able to give real-time alert and haptic feedback and showed the current count of

face touches. Five volunteers were asked to use the application extensively and do face

touch attempts repeatedly in all five scenarios for each hand. The average detection

accuracy was 97% for both hands.

5.3.2. False-Positives Test Results

To test false positives rate over long period, each volunteer was asked to use the

application for five hours while doing normal daily-life activities.

51

For each volunteer data which contain around 30k hand motion samples, the average

false positives rate was 0.04% or 1 false positive every 2500 samples which in our

setup translates to 2.4 FPs/hour in normal daily life usage. Besides, specificity was

calculated as 99.6%. Such very low FPR and high specificity mean that the application

is alerting the user only when there is very high confidence of potential face-touch

move. This makes the application suitable for long hours use without much disturbance

for the user that can be caused by too many false alarms.

5.3.3. Battery Test Results

In terms of battery consumption, the application was power-efficient and battery drain

was minimal. Testing results showed that running the application continuously in the

background added less than 2% battery drain per hour as shown in Table 5.3. That

means even running the application for 10 hours continuously consumes only 20%

extra battery.

Table 5.3. Battery usage percentage with and without running the application.

 Battery Level After 5 Hours

 Application is Not

Running

Application is

Running

Consumption by

the Application

Apple Watch 3 93% 86% 7%

Apple Watch

SE

91% 81% 10%

52

PART 6

DISCUSSION AND CONCLUSION

6.1. COMPARING RESULTS WITH LITERATURE

The methods and configurations used in the literature have an effect on classification

of HGR, and FTD. Different studies used different approaches to overcome obstacles

and achieve high results. Table 6.1 compares final results based on used devices,

sensors, filtering, segmentation, feature extraction, and classification techniques.

Table 6.1. Literature comparison HGR and FTD applications.
Pape
r

Devices &
Sensors

Filtering + Segmentation
+ Feature Extraction

Classification Accuracy Results +
Testing method

[21]

- Smartwatch +
Phone +Server
- Sensors:
Accelerometer

- No filtering
- Window: 10s, 10Hz
- Features: raw data

End-to-End
CNN

- Precision: 97.3%,
Recall: 97.32%, F1-
Score= 97.32%
- 5-Fold Cross
Validation

[22] - wearable sensors
on wrist and arm
+ wireless
receiver + PC
- Sensors:
Accelerometer,
Gyroscope

- No filtering
- Features: Device Angles
(Quaternions)

SVM + ANN

- Accuracy: na
- K-Fold cross
validation

[16] -Smartwatch
- Sensors:
Accelerometer,
Gyroscope

- No Filtering
- Window: 1s, 5Hz
- Features:
7 time-domain features +
10 frequency-domain
bands

DWT +
KNN/SVM

- F1: 87%

[17] - Smartwatch
- Sensors:
Accelerometer,
Gyroscope

- No Filtering
- Window: 1s, 50Hz
- Features:
11 features in Time-
Domain and Frequency-
Domain

KNN, SVM,
NB

- Accuracy: na
- Separate test dataset

53

[18] Wrist-worn device
Sensors:
Accelerometer,
Gyroscope

- Low-Pass filter
- Window: 2.5s, 14s –
200Hz
- Features: raw data

DTW +
Decision Tree

- Accuracy: 95.6%
- 10-Fold

[4] Smartwatch +
Phone
Sensors:
Accelerometer,
Gyroscope

- No Filtering
- Features: 3 acceleration +
3 gravity + 3 angles

DTW - Accuracy: 71%

[23] - Magnetic ring +
RFID tags on
goggles +
Software on PC
- Sensors:
RFID +
Magnetometer

- No Filtering
- Window: 5s, 20Hz
- Features: Radio signal
and magnetic readings

KNN
classifier

- 65% accuracy
- Tests done on 1
person

[25] - IR Camera + PC
- Sensors:
Depth Sensors, IR
laser sensors

- Features: depth image
data

Special
Algorithm

- 90.96% accuracy

[24] - Magnetic
necklace +
Smartwatch
- Sensors:
magnetometer

- MEKF filter
- Window: 0.5s, 100Hz
- Features: Raw magnetic
data

Special
algorithm with
thresholds

- Recall: 91%, FPR:
3.8%
- Tests done by (5-6)
people in home setup
doing ADL for 8h per
day

[19] - Smartwatch
- Sensors:
accelerometer

- No Filtering
- Window: 1.5s, 100Hz,
with 85% overlap
- Features: (sum, mean,
median, standard
deviation, coefficient of
variation, zero crossing,
mean/median absolute
deviation, skewness and
kurtosis).

Random
Forest

- Recall: 89%, FPR:
0.56%
- Tests done by 3
people in home setup
doing ADL

[20] - Smartwatch
- Sensors:
Accelerometer,
Gyroscope

- Low-Pass filter
- Features: mean, std, mad,
energy, correlation,
skewness, entropy,
kurtosis

Conventional
classifiers
(SVM,
iForest, MCD,
LOP) or CNN

- Recall: 86%,
Precision: 90%
- Tests done by 1 new
person with 100 test
samples

6.2. COMPARISON WITH THE STATE OF THE ART ON FTD

The proposed approach achieved overall accuracy of 99.7% on the test dataset for

classifying Touch/No-Touch hand moves while keeping the models power efficient.

In comparison, studies in [23,25] reported accuracy results for touching different face-

parts. In [23] authors used RFID tags mounted on plastic goggles in addition to

magnetic rings and measured touch detection accuracy for different face locations.

54

Similarly, authors in [25] used depth cameras to detect face touches and measure

workers compliance with health practices and reported accuracy for touching multiple

face parts. All reported accuracy results are shown in Table 6.2.

Table 6.2. Accuracy comparison with other approaches.

Study Accuracy

Takayama et al. (2020) [23] 83.0%

Manghisi et al. (2020) [25] 90.7%

The proposed method 99.7%

In addition, the trained models have a better recall, precision, and lower FPR compared

with the study [20] which used feature extraction and CNN networks, with the study

[19] which used hand-crafted features and RF classifier, and with the study [24] which

used magnets to measure the proximity between the hand and the face as shown in

Table 6.3.

Table 6.3. Comparison for Recall, Precision, and False Positives Rate.

Study Recall Precision FP Rate

Sudharsan et al. (2020) [20] 91% -- 3.8%

Xiang Chen (2020) [19] 89% -- 0.56%

Aurizio et al. (2020) [24] 86% 90% --

The proposed method 96.75% 95.1% 0.04%

6.3. SUMMARY

In this thesis, it is presented a complete approach for classifying hand moves to detect

face touches using only smartwatch IMU motion sensors and CNN networks without

using any extra hardware equipment. The goal is to alert users and prevent unwanted

face touches which can be one of the main causes for transmitting viral infections. The

proposed approach utilizes smart data processing for automatic sample extraction to

55

gather large training dataset with around 28k samples collected from left and right

hand. Using sensor fusion assisted to eliminate bias and accumulated error. Adding

gravity features was effective in improving touch detection accuracy. Besides,

dividing hand moves into multiple classes, collecting data in multiple scenarios and

multiple hand orientations minimized false positives. The proposed solution used the

lowest configurations compared with the study [36] based on window size, layer count

and model size. These efficient configurations allowed the models to run directly on

the watch with real-time performance while preserving battery at the same time.

Testing results show the proposed approach outperformed classical methods that use

hand-crafted feature extraction and fared better than approaches that use extra

hardware components. The application provides real-time feedback and alerts the user

with vibration and sound whenever attempting to touch the face. The obtained results

for average recall, precision, F1-Score, and accuracy were calculated as 96.75%,

95.10%, 95.85%, 99.70% respectively, with low FPR as 0.04%. By using efficient

configurations and small models, the application achieves high efficiency and can run

for long hours without significant impact on battery which makes it applicable on most

out-of-the-shelf smartwatches.

56

REFERENCES

1. Z. Zhuang and Y. Xue, “Sport-related human activity detection and recognition using
a smartwatch,” Sensors (Switzerland), vol. 19, no. 22, pp. 1–21, 2019, doi:
10.3390/s19225001.

2. G. Laput and C. Harrison, “Sensing fine-grained hand activity with smartwatches,”
Conf. Hum. Factors Comput. Syst. - Proc., 2019, doi: 10.1145/3290605.3300568.

3. J. Hou et al., “SignSpeaker: A real-time, high-precision smartwatch-based sign
language translator,” Proc. Annu. Int. Conf. Mob. Comput. Networking, MOBICOM,
2019, doi: 10.1145/3300061.3300117.

4. D. Moazen, S. A. Sajjadi, and A. Nahapetian, “AirDraw: Leveraging Smart Watch
Motion Sensors for Mobile Human Computer Interactions,” arXiv, pp. 1–5, 2017.

5. M. Kim, J. Cho, S. Lee, and Y. Jung, “Imu sensor-based hand gesture recognition for
human-machine interfaces,” Sensors (Switzerland), vol. 19, no. 18, pp. 1–13, 2019,
doi: 10.3390/s19183827.

6. Y. L. A. Kwok, J. Gralton, and M. L. McLaws, “Face touching: A frequent habit that
has implications for hand hygiene,” Am. J. Infect. Control, vol. 43, no. 2, pp. 112–
114, 2015, doi: 10.1016/j.ajic.2014.10.015.

7. K. S. Bate, J. M. Malouff, E. T. Thorsteinsson, and N. Bhullar, “The efficacy of habit
reversal therapy for tics, habit disorders, and stuttering: A meta-analytic review,” Clin.
Psychol. Rev., vol. 31, no. 5, pp. 865–871, 2011, doi: 10.1016/j.cpr.2011.03.013.

8. K. Katevas, H. Haddadi, and L. Tokarchuk, “Sensing Kit: Evaluating the sensor power
consumption in iOS devices,” Proc. - 12th Int. Conf. Intell. Environ. IE 2016, pp.
222–225, 2016, doi: 10.1109/IE.2016.50.

9. M. Abo-Tabik, N. Costen, J. Darby, and Y. Benn, “Towards a smart smoking cessation
app: A 1D-CNN model predicting smoking events,” Sensors

57

 (Switzerland), vol. 20, no. 4, pp. 1–18, 2020, doi: 10.3390/s20041099.

10. V. Y. Senyurek, M. H. Imtiaz, P. Belsare, S. Tiffany, and E. Sazonov, “A CNN-LSTM
neural network for recognition of puffing in smoking episodes using wearable
sensors,” Biomed. Eng. Lett., vol. 10, no. 2, pp. 195–203, 2020, doi: 10.1007/s13534-
020-00147-8.

11. S. Akther, N. Saleheen, S. A. Samiei, V. Shetty, E. Ertin, and S. Kumar, “mORAL:
An mHealth Model for Inferring Oral Hygiene Behaviors in-the-wild Using Wrist-
worn Inertial Sensors,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous
Technol., vol. 3, no. 1, pp. 1–25, 2019, doi: 10.1145/3314388.

12. Y. Shen, J. Salley, E. Muth, and A. Hoover, “Assessing the Accuracy of a Wrist
Motion Tracking Method for Counting Bites Across Demographic and Food
Variables,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 3, pp. 599–606, 2017,
doi: 10.1109/JBHI.2016.2612580.

13. P. W. Jasper, M. T. James, A. W. Hoover, and E. R. Muth, “Effects of Bite Count
Feedback from a Wearable Device and Goal Setting on Consumption in Young
Adults,” J. Acad. Nutr. Diet., vol. 116, no. 11, pp. 1785–1793, 2016, doi:
10.1016/j.jand.2016.05.004.

14. A. Umek and A. Kos, “Limitations of Smartphone MEMS for motion analysis,” pp.
450–454, 2015.

15. H. Guo and H. Hong, “Research on filtering algorithm of MEMS gyroscope based on
information fusion,” Sensors (Switzerland), vol. 19, no. 16, 2019, doi:
10.3390/s19163552.

16. H. Wen, J. R. Rojas, and A. K. Dey, “Serendipity: Finger gesture recognition using an
off-the-shelf smartwatch,” Conf. Hum. Factors Comput. Syst. - Proc., pp. 3847–3851,
2016, doi: 10.1145/2858036.2858466.

17. Y. Li, N. Yang, L. Li, L. Liu, and Y. Yang, “Finger gesture recognition using a
smartwatch with integrated motion sensors,” Web Intell., vol. 16, no. 2, pp. 123–129,
2018, doi: 10.3233/WEB-180378.

18. J. Wu and R. Jafari, “Orientation independent activity/gesture recognition using
wearable motion sensors,” IEEE Internet Things J., vol. 6, no. 2, pp. 1427–1437,
2019, doi: 10.1109/JIOT.2018.2856119.

19. X. Chen, “FaceOff: Detecting face touching with a wrist-worn accelerometer,” arXiv,
pp. 1–5, 2020.

20. B. Sudharsan, D. Sundaram, J. G. Breslin, and M. I. Ali, “Avoid Touching Your Face:
A Hand-to-face 3D Motion Dataset (COVID-away) and Trained Models for
Smartwatches,” ACM Int. Conf. Proceeding Ser., no. October, 2020, doi:
10.1145/3423423.3423433.

58

21. M. C. Kwon, G. Park, and S. Choi, “Smartwatch user interface implementation using

CNN-based gesture pattern recognition,” Sensors (Switzerland), vol. 18, no. 9, pp. 1–
12, 2018, doi: 10.3390/s18092997.

22. S. Alavi, D. Arsenault, and A. Whitehead, “Quaternion-based gesture recognition
using wirelesswearable motion capture sensors,” Sensors (Switzerland), vol. 16, no.
5, 2016, doi: 10.3390/s16050605.

23. Y. Takayama, Y. Ichikawa, T. Kitagawa, S. Shengmei, B. Shizuki, and S. Takahashi,
“Touch Position Detection on the Front of Face Using Passive High-Functional RFID
Tag with Magnetic Sensor,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 12182 LNCS, pp. 523–531, 2020, doi:
10.1007/978-3-030-49062-1_35.

24. N. D’Aurizio, T. L. Baldi, G. Paolocci, and D. Prattichizzo, “Preventing Undesired
Face-Touches with Wearable Devices and Haptic Feedback,” IEEE Access, vol. 8, pp.
139033–139043, 2020, doi: 10.1109/ACCESS.2020.3012309.

25. V. M. Manghisi et al., “A body tracking-based low-cost solution for monitoring
workers’ hygiene best practices during pandemics,” Sensors (Switzerland), vol. 20,
no. 21, pp. 1–17, 2020, doi: 10.3390/s20216149.

26. R. M. Al-Eidan, H. Al-Khalifa, and A. M. Al-Salman, “A review of wrist-worn
wearable: Sensors, models, and challenges,” J. Sensors, vol. 2018, 2018, doi:
10.1155/2018/5853917.

27. M. L. Zhang and Z. H. Zhou, “ML-KNN: A lazy learning approach to multi-label
learning,” Pattern Recognit., vol. 40, no. 7, pp. 2038–2048, 2007, doi:
10.1016/j.patcog.2006.12.019.

28. S. Zhang, X. Li, M. Zong, X. Zhu, and R. Wang, “Efficient kNN classification with
different numbers of nearest neighbors,” IEEE Trans. Neural Networks Learn. Syst.,
vol. 29, no. 5, pp. 1774–1785, 2018, doi: 10.1109/TNNLS.2017.2673241.

29. C. Schuldt, L. Barbara, and S.- Stockholm, “Recognizing Human Actions : A Local
SVM Approach ∗ Dept . of Numerical Analysis and Computer Science,” Pattern
Recognition, 2004. ICPR 2004. Proc. 17th Int. Conf., vol. 3, pp. 32–36, 2004.

30. Z. He and L. Jin, “Activity recognition from acceleration data based on discrete
consine transform and SVM,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., no.
October, pp. 5041–5044, 2009, doi: 10.1109/ICSMC.2009.5346042.

31. M. Pal, “Random forest classifier for remote sensing classification,” Int. J. Remote
Sens., vol. 26, no. 1, pp. 217–222, 2005, doi: 10.1080/01431160412331269698.

59

32. T. Shi and S. Horvath, “Unsupervised learning with random forest predictors,” J.
Comput. Graph. Stat., vol. 15, no. 1, pp. 118–138, 2006, doi:
10.1198/106186006X94072.

33. P. Senin, “Dynamic Time Warping Algorithm Review,” Science (80-.)., vol. 2007,
no. December, pp. 1–23, 2008, [Online]. Available:
http://129.173.35.31/~pf/Linguistique/Treillis/ReviewDTW.pdf.

34. R. Varatharajan, G. Manogaran, M. K. Priyan, and R. Sundarasekar, “Wearable sensor
devices for early detection of Alzheimer disease using dynamic time warping
algorithm,” Cluster Comput., vol. 21, no. 1, pp. 681–690, 2018, doi: 10.1007/s10586-
017-0977-2.

35. F. J. Ordóñez and D. Roggen, “Deep convolutional and LSTM recurrent neural
networks for multimodal wearable activity recognition,” Sensors (Switzerland), vol.
16, no. 1, 2016, doi: 10.3390/s16010115.

36. W. S. Lima, E. Souto, K. El-Khatib, R. Jalali, and J. Gama, “Human activity
recognition using inertial sensors in a smartphone: An overview,” Sensors
(Switzerland), vol. 19, no. 14, pp. 14–16, 2019, doi: 10.3390/s19143213.

60

RESUME

Abdullah ALESMAEIL graduated from Damascus university in 2005 with bachelor’s

degree in computer engineering. He worked more than 8 years as a software engineer

in different sectors such as telecom, banking, and enterprise solutions. In 2014 he co-

founded a startup specialized in development of mobile and wearable applications. In

2020 he moved to Karabük and started his master degree in Computer Engineering in

Karabük university.

