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ABSTRACT 

 

M. Sc. Thesis 

 

FACE TOUCH DETECTION BASED ON HAND GESTURE RECOGNITION 

USING WEARABLE MOTION SENSORS AND DEEP LEARNING 

 

Abdullah ALESMAEIL 

 

Karabük University 

Institute of Graduate Programs 

The Department of Computer Engineering 

 

Thesis Advisor: 

Assist.Prof.Dr. Eftal ŞEHİRLİ 

Jan 2022, 60 pages 

 

Wearable devices like fitness bands and smartwatches have increased in popularity in 

recent years. Those devices are fitted with wide range of health, fitness, and motion 

sensors that can be utilized to analyze and monitor body and hand activities. Being 

worn on the wrist or arm make them a good candidate for hand activity monitoring 

applications like Hand Gesture Recognition (HGR). With the worldwide spread of 

COVID-19 pandemic, many recommendations were issued by World Health 

Organization (WHO), to avoid touching the face as it was a main method for viral 

infections. However, most face touches are done unconsciously that is why, it is 

difficult for people to monitor their hand moves and try to avoid touching the face 

which opens the need for automatic Face-Touch Detection (FTD) solution. This thesis 

proposes a smartwatch application that uses small, efficient, and end-to-end 

Convolutional Neural Networks (CNN) models to classify hand motion and identify 
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Face-Touch moves. The application provides a real-time feedback and alerts the user 

with vibration and sound whenever attempting to touch the face, which leads to lower 

unconscious face touches and lower infection rates. The obtained results for recall, 

precision, F1-Score, and accuracy were calculated as 96.75%, 95.1%, 95.85%, 99.70% 

respectively, with low False Positives Rate (FPR) of 0.04%. By using efficient 

configurations and small models, the application can run for long hours without 

significant impact on battery which makes it applicable on most out-of-the-shelf 

smartwatches. 

 

Key Words : Convolutional Neural Networks, Face Touch Detection, Hand 

Gesture Recognition, Human Activity Recognition, Smartwatch 

Sensors. 

Science Code : 92432
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ÖZET 

 

Yüksek Lisans Tezi 

 

GİYİLEBİLİR HAREKET SENSÖRLERİ VE DERİN ÖĞRENME 

KULLANARAK ELİN HAREKETLERİNİ TANIMAYA DAYALI YÜZE 

DOKUNMA TESPİTİ 

 

Abdullah ALESMAEIL 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr.Öğr.Üyesi Eftal ŞEHİRLİ 

Ocak 2022, 60 sayfa 

 

Fitness bantları ve akıllı saatler gibi bileğe takılan cihazların popülaritesi son yıllarda 

artmıştır. Bu cihazlar, vücut ve ellerin aktivitelerini analiz etmek ve izlemek için 

kullanılabilecek çok çeşitli sağlık, fitness ve hareket sensörleriyle donatılmıştır. Bileğe 

veya kola takılmaları ellerin hareketini tanıma gibi el aktiviteleri izleme uygulamaları 

için bu cihazları iyi bir seçenek yapmaktadır. COVID-19 pandemisinin dünya çapında 

yayılmasıyla birlikte, Dünya Sağlık Örgütü (WHO) viral enfeksiyonlara sebebiyet 

verebilen el ile yüze temas etmekten kaçınmanın önemi üzerinde durmuştur. Fakat, 

yüze dokunuşların birçoğu bilinçsizce yapıldığından dolayı, insanların ellerinin 

hareketlerini izlemesi ve yüzlerine dokunmaktan kaçınması zordur. Bu durum 

otomatik olarak yüze dokunma tespiti ihtiyacını doğurmaktadır. Bu tezde ellerin 

hareketini sınıflandırmak ve yüze dokunma hareketlerini tanımlamak için küçük, 
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verimli ve uçtan uca Evrişimsel Sinir Ağları (CNN) modelini kullanan bir akıllı saat 

uygulaması önerilmektedir. Geliştirilen uygulama gerçek zamanlı bir geri bildirim 

sağlamakta ve kullanıcıyı yüze dokunmaya çalıştığında titreşim ve sesle uyarmaktadır. 

Bu çözüm bilinçsizce yüze dokunuşlarının azalmasına ve enfeksiyon oranlarının 

düşmesine olanak sağlayacaktır. Elde edilen sonuçlara göre, önerilen çözüm %0.04'lük 

düşük Yanlış Pozitif Oranı, %96.75 ile ortalama hassasiyet, %95.1 ile ortalama 

kesinlik ve %95.85 ile ortalama F1-Skoruna ulaşmıştır. Verimli ayarlamalar ve küçük 

modeller kullanarak geliştirilen uygulama pil üzerinde önemli bir etki yaratmadan 

uzun saatler boyunca çalışabilir ve bu da onu kullanıma hazır akıllı saatlerin çoğuna 

uygulanabilir hale getirmektedir. 

 

Anahtar Kelimeler  :  Akıllı Saat Sensörleri, Ellerin Hareketini Tanıma, Evrişimsel 

Sinir Ağları, İnsan Hareketi Tanıma, Yüze Temas Tespiti. 

Bilim Kodu :   92432
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PART 1 

 

INTRODUCTION 

 

1.1. INTRODUCTION 

 

In the current technological age, smart devices have become small enough that can be 

fitted in our pockets or easily worn in our bodies. The market of wearables has grown 

many folds in the past decade, which includes range of devices from smartphones, 

Augmented-Reality headsets, to wrist-worn devices which include fitness trackers, 

wrist bands, and smartwatches. People use wrist-worn devices to track their daily 

exercise, steps taken, and monitor their vitals from Heart Rate (HR), blood-oxygen, 

and calories spent during exercise or sport activities like walking, running, cycling, 

gym classes, or during playing all kinds of sports. 

 

Nowadays wrist-worn devices like smartwatches have become fully-fledged devices 

that can rival the bigger smartphones in terms of hardware and software features. They 

are supported by major OS platforms like iOS and Android and started to add support 

for third-party applications. Most of these devices are equipped with wide range of 

useful sensors like health sensors, motion sensors, and external environment sensors.  

 
These sensors can be utilized for Human Activity Recognition (HAR) like walking, 

running, sitting, or whole-body activities in general. In addition to whole-body 

activities, they can be used to classify hand moves and activities which have many 

applications such as sport actions [1] and daily-life actions [2].  

 

Wrist-worn smart wearable devices for Hand Gesture Recognition (HGR) have been 

used in many studies. Example of HGR applications are Sign-Language gesture 

recognition where gestures can mean words or actions [3], and Human Computer 
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Interaction (HCI) where hand gestures can give commands to a remote computer 

interface [4-5]. 

 

Although, Face Touch Detection (FTD) has received more focus recently due to 

COVID-19 pandemic, there were many studies that took advantage of smartwatch 

sensors to identify hand moves towards the face. Face-touch hand move can be 

considered as special type of hand gestures. It shares many characteristics with other 

HGR gestures. However, it differs in some ways that makes it more challenging to 

detect. Thus, it requires additional works to overcome the obstacles. 

 

1.2. MOTIVATION 

 

According to World Health Organization (WHO), the Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2) which causes the COVID-19 infection, can 

be transmitted among people in two major ways. The first one is through respiratory 

droplets when a person stays in close contact with an infected person. The second one 

is when people touch a surface contaminated with the virus and touch their faces 

specially their eyes, noses, or mouths. The second way is our point of interest where 

an automatic FTD application can be useful. This is because when people are outside, 

they touch all kinds of surfaces with their hands, which can be contaminated with 

viruses or bacteria. After that, when they touch their faces, these germs can be 

transmitted through the respiratory system to their bodies. 

 

To help in lowering infection rates, many recommendations have been issued by 

national health organizations to avoid face touches as much as possible. Unfortunately, 

many studies show that people tend to touch their faces more than 20 times per hour 

on average, and many of these touches are done unconsciously [6]. This makes it 

difficult for people to monitor their hand moves by themselves in order to avoid 

undesired face touches. This opens the need for automatic detection and alert solution. 

 

The proposed solution detects face touch moves and alert users in real-time whenever 

they attempt to touch their faces. This helps people to lower their unwanted face-touch 
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attempts especially when used in public places. The goal of the application is not only 

to alert the user when trying to touch the face, but also to train his unconscious mind 

using haptic feedback similar to Habit Reversal Therapy (HRT) [7]. This assists to 

develop a habit of avoiding unnecessary face touches even when the application is not 

running, which in turn leads to fewer infection rates.  

 

1.3. NOVELTIES 

 

The contributions of this thesis are: 

• It provides complete and applied solution that runs completely on a smartwatch 

and uses only IMU motion sensors without requiring extra sensors, devices, or 

hardware components.  

• Instead of approaching the problem as binary classification (Touch/No-Touch), 

it proposes a smart approach of dividing hand motions into 5 classes (Touch, 

Up, Abdominal, Normal, Stationary) which is proved to have significant impact 

on improving precision and minimizing false positives.  

• The use of controlled data collection sessions and automatic labeling algorithm 

based on peak-valley analysis allows to collect large training dataset with 14k 

samples for each hand, which to the best of our knowledge is the largest dataset 

for face-touch detection. 

• This work is designed to address and solve battery consumption limitations on 

a small device like smartwatch especially when running the application 

continuously for long hours. It uses the lowest configurations compared with 

literature from small window size, to extremely compact Convolutional Neural 

Networks (CNN) models. 

 

1.4. THESIS OUTLINES 

 

Part one (current part) of this thesis gives a brief introduction of this work like 

motivation, novelties, and outlines. In second part, the domain of human and hand 

activity recognition, its applications, and wearable devices is introduced. Third part 

contains a review for the literature of automatic face touch detection, considering the 
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face-touch hand-move as a special gesture type. In addition, HGR and FTD literature 

for solution design, approach, and methods are reviewed. In fourth part, the proposed 

solution is introduced, which is a smartwatch application that uses small, efficient, and 

end-to-end CNN models to classify hand motion and identify Face-Touch moves. This 

part describes the approach and methods used to accomplish these results. Chosen 

setup, sensors, features, and configurations are detailed. Additionally, the collection 

process of a large dataset is detailed for both left and right hands and represents 

multiple hand motion types, body positions, and hand orientations. In fifth part, all 

experimental results are detailed. Then in the last part, the obtained results are 

compared with state-of-the-art research on face touch detection. Finally, this thesis is 

summarized at the end.
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PART 2 

 

BACKGROUND 

 

This part introduces the domain of human and hand activity recognition using wearable 

devices and sensors, and gives overview of its applications in health, sports and other 

fields. It describes wearable devices and sensors, activity recognition types, and 

outlines different challenges and obstacles for FTD in comparison with other activity 

types. 

 

2.1. WEARABLE DEVICES AND SENSORS 

 

2.1.1. Wearable Devices 

 

The market of wearables has grown many folds in the past decade, and fueled by the 

pandemic, it has grown more than 35% in first quarter of 2021 alone compared with 

2020 as shown in Figure 2.1. Smart wearables include a range of devices from 

smartphones, Augmented-Reality headsets, to wrist-worn devices which in turn 

include fitness trackers, wrist bands, and smartwatches. People use wrist-worn devices 

to track their daily exercises, steps taken, and monitor their vitals from HR, blood-

oxygen, and calories spent during exercises like walking, running, cycling, gym 

classes, or while doing sports activities. 
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Figure 2.1. Worldwide sales of smart wearable device. 

 

Wearable devices mainly fall into three categories as shown in Figure 2.2: 

 

 
Figure 2.2. Smart wearable devices types. 

 

Smart bands and fitness trackers are smaller and cheaper than smartwatches. They are 

just equipped with the most essential sensors and features to track person fitness like 

steps and calories spent during the day.  

 

Smartwatches are more expensive, have more features and sensors, and most 

importantly they have more capable processor and larger battery. They have become 

powerful devices that have features similar to the bigger smartphones in terms of 

hardware and software but still lack behind in terms of processing power and battery 

capacity. They are supported by major OS platforms like iOS and Android and started 
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to add support for third-party applications. Being able to support the development and 

deployment of third-party applications makes them ideal choice for this thesis. 

 

Augmented Reality (AR) glasses and Virtual Reality (VR) headsets can be considered 

as a special type of wearable devices. Along with motion sensors, they have depth 

sensors and advanced camera systems that allow them to do Visual Inertial Odometry 

(VIO) that incorporates vision data with motion data to accurately estimate speed and 

position in 3D space. Estimating position, orientation, and speed make such devices 

ideal for immersing experiences with the real world. 

 

2.1.2. Wearable Sensors 

 

Most of wearable devices are equipped with wide variety of useful sensors that come 

in three groups: health related sensors, motion sensors, and external environment 

sensors. 

 

2.1.2.1. Health Sensors 

 

From its name, these sensors measure person health vitals during the day while 

wearing a device like a smartwatch. Most common types of these sensors are the heart 

rate and oxygen level sensors: 

 

HR Sensor measures heart beats per minute and it is based on non-invasive optical 

sensors. 

 

Blood-Oxygen Saturation Sensor (SpO2) measures the percentage of oxygen saturation 

in the blood and it is based on non-invasive optical and Infra-Red (IR) sensors. 

 

2.1.2.2. Inertial Motion Sensors 

 

Inertial motion sensors or units (IMU) measure resistance of acceleration due to 

external forces (hence the name inertial) and based on Micro-Electro-Mechanical-
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Systems (MEMS). Such sensors are very small in size which is measured in 

micrometers or less as shown in Figure 2.3. The most common types of such sensors 

are the Accelerometer and Gyroscope. 

 

 
Figure 2.3. Schematic of embedded MEMS based accelerometer. 

 

Accelerometer measures the total acceleration of the device in g-force the earth 

acceleration which is: 1g = 9.8 m/s2. Its measurements contain not only device 

acceleration, but additionally, the earth gravitational acceleration component. That is 

why additional operations must be done to separate both components and get only real 

device linear acceleration. Using this sensor alone to get device speed by integrating 

acceleration has large bias. Furthermore, making double integration steps to get 

position has huge bias and error which make it totally impractical for getting speed 

and position. This sensor can be found in most smart wearable devices and consumes 

less power compared with other sensors [8]. 

 

Gyroscope measures the rotation rate of the devices in radians/second. It consumes 

more power than accelerometer and has more noise. Using this sensor alone to get the 

angles of the device is impractical and carries huge error rate. 
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2.1.2.3. External Environment Sensors 

 

This type of sensors measures readings related to the outside world like the magnetic 

field or air pressure. The most two common sensors of this type are the Magnetometer 

and the Barometer: 

 

Magnetometer measures surrounding earth magnetic field (measured in microtesla) 

and can detect magnetic north and directions. Its drawback is that the local fields 

caused by nearby electronic devices can interfere with its measurements and makes it 

hard to remove this interference without additional calibration every time. Another 

problem of this sensor is that it consumes a lot of battery and it is supported by only 

few high-end smartwatches. That is why using this sensor in any design means that the 

solution will not run on most wearable devices currently in the market. 

 

Barometer is another example of external environment sensors. It measures current air 

pressure changes. It can be useful for detecting changes in device vertical motion. 

However, its accuracy is measured in several meters which makes it impractical for 

most wrist-worn hand motion applications. 

 

2.2. ACTIVITY RECOGNITION TYPES 

 

In this thesis, three types of human activity recognition are studied HAR, HGR, and 

FTD. These types can be thought of as levels, and each type can be considered as a 

subtype of its parent type. HAR is the most general and it contains all types of human 

activities. HGR is special type of HAR. It is only concerned about hand activities rather 

than body activities. FTD is a subtype of HGR. The face-touch move is a special type 

of hand gestures. 

 

2.2.1. Human Activity Recognition (HAR) 

 

This type can be considered as the parent of all activity recognition applications that 

may include full-body activities or activities for specific body-parts. Activities usually 
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include walking, running, sitting, standing, laying, moving upstairs or downstairs. In 

this type, single or multiple wearable devices are worn on the body (not necessarily 

the hand) to measure and classify the whole-body motion. This motion is almost 2D 

in nature like moving on flat plan (the ground). Generally, it is run on long recognition 

period, and it is much easier to classify compared with the other two types.  

 

2.2.2. Hand Gesture Recognition (HGR) 

 

HGR is about recognizing all gesture types and actions done by the hand. For example, 

in Sign-Language gesture recognition, gestures can mean words or actions. Another 

application is remote interaction like in HCI where hand gestures can give commands 

to a computer interface. In addition, people can make remote interaction with devices 

like TVs using only hand gestures.  

 

HGR can be divided into two categories, gesture recognition and action recognition. 

Gesture recognition involves the recognition of very specific gestures made by hand 

like drawing shapes, letters, or doing specific complex motion patterns. Although it 

seems hard, however, it is much easier job for the classifier to distinguish since those 

gestures are very different from each other, and each gesture has specific long path full 

of distinctive patterns. 

 

Hand actions are specific moves done by hand and can be generally seen in hand sports 

like Tennis strokes (forehand, backhand, serve, volley), swimming types, or other 

sport moves such as throwing or catching. Another example is Activities of Daily 

Living (ADL), which include actions like opening and closing doors, picking and 

putting objects, washing hands, etc. [2]. Hand actions are even harder to classify than 

hand gestures because hand actions are short, fast, and have less distinctive path and 

much less distinctive features. 
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2.2.3. Face Touch Detection (FTD) 

 

Face touch hand move can be considered as special type of hand gestures. It shares 

many characteristics with other HGR gestures, although it differs in some ways that 

make it more challenging task. It is done in shorter period with faster pace and has no 

complex differentiating patterns like other gestures. Moreover, it shares other 

similarities with normal hand moves done during regular daily living situations. All of 

them make it more challenging to identify face-touch moves among many other regular 

hand-moves. Although, Face-Touch detection has received some focus recently due to 

COVID-19 pandemic, there were many studies that took advantage of smartwatch 

sensors to monitor hand activities which involve a hand-to-face motion. Examples 

include smoking habits monitoring [9-10], toothbrushing style recognition [11], or bite 

counting while having a meal [12-13]. 

 

2.3. CHALLENGES AND LIMITATIONS 

 

There are three types of obstacles for HAR, HGR, and FTD applications. The first 

obstacle is the limitation of embedded MEMS sensors. The second obstacle is the 

limited processing power and battery capacity of wearable devices compared with 

larger devices like smartphones. The third obstacle is that there are additional 

challenges for FTD applications in particular. Evaluating and addressing these 

limitations have big effects on the proposed solution and the choices done from setup, 

configurations, devices, sensors, and overall solution design. 

 

2.3.1. MEMS Sensors Limitations 

 

Accelerometer and Gyroscope sensors found on smartwatches are inertial sensors 

based MEMS systems and come with their own limitations [14-15]. They are listed as 

below: 

• Raw data are noisy and carry an increasing error over time. These errors are 

related to its micro mechanical nature, that is why it can be easily affected by 

nearby chips and surrounding environment. 
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• Sensor readings are relative to a local moving reference frame by default 

attached to the watch screen. Using external fixed reference frame requires 

fusing data from additional third sensor (the Magnetometer) which has higher 

power consumption [8]. Moreover, its data is not reliable and can be affected 

by watch metal frame or band. 

• MEMS sensors cannot be used for estimating position or distance travelled 

because these estimates suffer from double integration drift over time (for 

example, for a not moving device laying on a table, the integration drift will be 

more than 5 meters after only 10 seconds). Using additional algorithms like 

Kalman filter to minimize the error, does not guarantee the required accuracy 

and computationally expensive to be applicable on a small device like a 

smartwatch. 

 

2.3.2. Limited CPU and Battery 

 

Running machine learning models on a wearable device like smartwatch poses many 

challenges because such devices have very small battery and limited CPU power 

compared with smartphones. In addition, the solution needs to be running continuously 

in the background. Like in FTD, it must have real time response with delays and 

execution time measured in a few milliseconds 

 

2.3.3. FTD Challenges compared with HGR and HAR 

 

The problem of detecting face-touches is two levels harder than HAR. HAR uses 

relatively longer window size with sparse model calls and does not require real-time 

response. Moreover, the motion is mostly in 2D plane, device orientations are less 

variant, and motion classes are largely different and easier to distinguish. 

 

On the other hand, FTD requires sub-second window size, multiple model calls per 

second, and real-time performance. The motion is in 3D space with variable device-

orientations. Besides, the motion-types are similar with minor differences. They 

require differentiation between several normal daily life hand move types like touching 
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body parts, moving up and down, picking items, moving objects, or closing and 

opening door, etc. Table 2.1 outlines all differences in sample size, execution time, 

motion and device orientation types between all three types of activity recognition 

HAR, HGR, and FTD. 

 

Table 2.1. Comparison between HAR, HGR, and FTD tasks in various aspects. 

 HAR HGR FTD 

Window Size 3+ seconds 2+ seconds 0.5-1.0 seconds 

Model Call Every 1+ seconds 1+ seconds 250-300 

milliseconds 

Model Min Required 

Execution Time 

500 milliseconds 500 milliseconds < 10 milliseconds 

3D/2D Motion 

Coordinates  

Motion mostly in 

2D space 

Motion mostly in 

3D space 

Motion in 3D space 

Device Orientation Fixed orientation Variable 

Orientations 

Variable 

Orientations 

Variance Between 

Classes 

Large Difference 

with Low 

Confusion 

Large Difference 

with 

Medium 

Confusion 

Small Difference 

with High 

Confusion 
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PART 3 

 

LITERATURE REVIEW 

 

This part contains a review of HGR and FTD literature, considering the face-touch 

hand-move as a special hand gesture type with its unique characteristics compared 

with other hand gestures. HGR and FTD literature are reviewed for solution design, 

approach, and methods. There are mainly four parts involved in solution design: 

hardware setup, dataset collection, data processing, and classification methods as 

shown in Figure 3.1. Classifications methods include classical methods and deep 

learning methods such as CNN networks. 

 

 
Figure 3.1. Four different phases of HGR and FTD solutions. 

 

3.1. HARDWARE SETUP 

 

Depending on the requirements, different studies used different hardware 

configurations, like single wearable device or multiple connected devices. Besides, 

single or multiple sensors working together have been used in literature. 
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3.1.1. Hardware Devices  

 

Solution design may run on the wearable device directly without using smartphone or 

any other extra hardware [16-20]. This setup is more practical, cheaper, and provides 

immediate response to users. It can work offline without requiring any connection to 

other devices. However, in some situations it may lack the needed processing power. 

To overcome this problem, the second design utilizes a smartwatch connected to a 

smartphone where the smartwatch can send sensors data to a connected more capable 

smartphone for processing and classification [4]. Sometimes the implemented solution 

requires far more processing power than what smartwatch or phone can handle. In such 

case, data from smartwatch can be relayed to a PC over the network for processing and 

classification [21-23].  

 

3.1.2. Used Sensors  

 

For activity classification, generally a mix of three sensors is used in literature: 

Accelerometer, Gyroscope, and Magnetometer. Some studies used only 

Accelerometer to save on power consumption and requirements [19,21], while others 

used combination Accelerometer and Gyroscope to get more data [4,16-18,20,22]. 

Authors in [24] used Magnetometer along with magnets mounted on glasses or 

necklace to measure proximity between hand and face to detect potential face touches.  

 

Although these three sensors have been widely used in literature, some other studies 

have used additional special sensors. In [23], in addition to Magnetometer, authors 

have used Radio-Frequency-Identification (RFID) tags to read radio signals and detect 

face touches. Other researchers have used depth IR cameras to get depth image and 

measure hand position [25].  
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3.2. DATASET COLLECTION METHODS 

 

Multiple public datasets exist for HAR activities that can be used for training. 

However, depending on the situation, these datasets might lack some features, or use 

different methodology. In such cases, a new training dataset needs to be collected from 

scratch. 

 

Training data can be collected in two ways. The first way is to use controlled sessions, 

where participants are asked to do activities repeatedly with specific positions, 

scenarios, and orientations. The second way is to use free-living setup in which 

participants are told to practice their lives naturally while wearing the smartwatch. 

 

3.2.1. Controlled Sessions 

 

In controlled sessions, training samples for particular class, type, or with specific 

conditions are collected in a separate session. Many HGR and FTD studies have used 

controlled sessions because data can be gathered in a faster pace. For example, 

different sessions can be allocated to gather samples for each class, scenario, or device 

orientation [16,18,20]. 

 

3.2.2. Free Living Sessions 

 

To make training data more representative to real world scenarios, some studies have 

collected training data in free living setup. In this setup, volunteers are asked to 

practice their lives normally while wearing a smartwatch and the data logging 

application is already running during the session [25]. However, this adds an extra 

challenge for extracting the target actions. One way to solve this problem is to make 

video recording for all data collection sessions. Then manual cross-checking of videos 

with logged data is performed to find start and end points for target action samples. 

This method may yield more accurate data; however, it requires too much time to 

collect large training dataset. 
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3.3. DATA PROCESSING 

 

Data processing is a crucial phase after dataset collection. It consists of four steps: 

sampling raw data, data filtering, data segmentation, and feature extraction. 

 

3.3.1. Getting Raw Data 

 

The number of times the sensors are sampled is measured in Hz or number of readings 

per second. Frequency ranges from 25Hz for low-end wearable devices, up to 200Hz 

in high-end smartphones. Sampling at higher frequency provides more data although 

it consumes more power. Accelerometer data is measured in g (g = 9.81/s2). Gyroscope 

data is measured in radians/second. Magnetometer data is measured in microtesla. Raw 

data values come as vectors with three values that represents readings across 3D axes 

X, Y, and Z [26]. 

 

3.3.2. Data Filtering 

 

Sensor readings are raw data that need to be filtered and processed. Filtering can be 

used to eliminate anomalies and reduce bias. Low-pass and high-pass filters are 

commonly used to reduce noise and break accelerometer total acceleration into real 

device linear acceleration and earth gravity acceleration [18,20]. Those filters work by 

transforming the signal from time domain to frequency domain. Then, they pass 

signals that have frequency below or above some cut-off threshold.  

 

3.3.3. Data Segmentation 

 

The next step after data filtering is segmentation. Reading sensors data at moment (t) 

is considered a single frame. Sliding-Window algorithm is a common method to group 

multiple frames together over specific window of time [16-19,21,23-24]. However, 

sometimes the target activity can start in the middle of one window and continue to 

the next window. To overcome such a problem, a sliding-window with overlapping is 

applied as shown in Figure 3.2.  
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Figure 3.2. Sliding window with 100 frames size and overlapping of 25 frames. 

 

3.3.4. Feature Extraction 

 

In the case of end-to-end classification, data are served directly to the classifier without 

using any hand-crafted features or feature extraction phase. This is usually done when 

using deep learning methods. For example, CNN layers learn to extract features 

automatically, then feed those features to dense fully connected layers for 

classification [4,21]. 

 

Alternatively, feature extraction phase can be used before classification. Hand-Crafted 

features come in two types: Time-Domain features and Frequency-Domain features 

[16-17,19-20]. 

 

A few examples of hand-crafted features are mean, standard deviation, variance, 

quantiles, median, root-mean-square (RMS), entropy, energy, signal to noise ratio 

(SNR), skewness, kurtosis, etc. Those features are calculated for the whole sample 

window of time (Time-Domain), or after applying Fast-Fourier-Transform (FFT) 

(Frequency-Domain). Some studies have calculated these features, then used them as 

an input to deep learning models which calculated higher-level features. 

 

3.4. CLASSIFICATION METHODS 

 

There are two approaches of used by researchers: conventional approaches and deep 

learning approaches. 
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3.4.1. Conventional Approaches 

 

Many studies have used traditional classifiers for their simplicity and fewer 

computations compared with deep learning methods. Traditional classifiers can be 

listed as K-Nearest-Neighbor (KNN), Support-Vector-Machines (SVM), Decision 

Trees (DT), Random-Forests (RF), Naïve-Bayes (NB), and Dynamic-Time-Warping 

(DTW).  

 

KNN classifier operates by classifying the data based on how the neighbors or nearby 

points are classified. Any new data point is classified based on a similarity measure of 

all the available cases or data points. It is a versatile, common, easy to implement, and 

supervised machine learning algorithm that can be used for both regression and 

classification. KNN does not have a training phase, however,  this comes at a cost of 

making prediction step little more expensive. Every time a prediction is made, it 

searches for the nearest neighbor in the whole training set [27-28]. 

 

The main objective of SVM classifier is to draw a line or hyperplane that divide data 

points based on their class. If a dataset is not separable by a single straight line, a kernel 

trick can be applied to transform the dataset from 2D dimension to 3D dimension. 

SVM can work with non-linear separable data because of its ability to operate on 

higher dimensions where it can make the data linearly separable [29-30]. 

 

RF depends on DT which builds a tree of questions based on particular features to 

separate a dataset into classes. In DT it is needed to know what features can to split 

the data in a way that the result classes are as different from each other as possible, 

and the members of each class are similar to each other as possible. In other words, 

the question is what features give the most information gain at what threshold. RF is a 

supervised classification method which consists of collection of decisions trees. It uses 

bagging and feature randomness when building each individual tree to create an un-

correlated forest of trees whose prediction is more accurate than any single decision 

tree [31-32]. 
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NB is a classification method for binary and multiclass classification problems. It is 

named Naive Bayes because the calculations of the probabilities for each class are 

simplified by making naïve assumptions.  Rather than trying to calculate the 

conditional probabilities of each attribute value, they are assumed to be conditionally 

independent. Although this assumption is unlikely in real world, the approach 

performs surprisingly well even if this assumption does not hold. This makes NB easy 

to implement and calculate. 

 

DTW is a classification method that depends on comparing the data time-series on 

hand with pre-calculated templates of time-series data. Any two time series can be 

compared using euclidean distance or other distance measured on a one to one basis 

along the time axis. Values of first time series at time T are compared with values of 

second time series at time T. However, this may result in a very poor similarity score 

when the two time-series data are out of phase even if they are very similar in shape. 

DTW solves this problem by comparing amplitude of first signal at time T with 

amplitude of second signal at time T+1 and T-1 or T+2 and T-2. This assures that it 

does not yield low similarity score for signals with similar shape but in different phase 

[4,33-34]. 

 

Traditional classifiers have been used frequently in literature to classify gestures. 

Authors in [16] compared the performance for SVM and KNN. They found that SVM 

had better accuracy for classifying seven different hand gestures. DTW classifier have 

been used in many studies to classify hand gestures [4,18]. Researchers in [17] 

compared performance of  different classifiers like KNN, SVM, and NB. They found 

that each classifier performs better on certain gestures by choosing the right classifier 

based on target gestures. 

 

3.4.2. Deep-Learning Approaches 

 

While traditional classifiers are convenient for small wearable devices due to less 

required computations, deep learning methods like regular Artificial Neural Networks 

(ANN), CNN networks, Recurrent Neural Networks (RNN) generally outperform 
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other classifiers. Deep Learning methods have an ability to learn features 

automatically even when fed with raw data. When fed with hand-crafted features, they 

can learn correlations between several features and induce extra higher features.  

 

CNN networks take input data like images and apply convolution layers where it 

convolves over images with learned filter to produce another image with same or less 

dimensions. Pooling layers are usually applied after each convolution to reduce size 

and fight overfitting. Convolution blocks can be considered as feature extraction 

layers. Those layers are followed by dense layers at the end which serve as final 

classification layers. Figure 3.3 shows the structure of the popular VGG-16 CNN 

network. 

 

 
Figure 3.3. Architecture of the VGG-16 CNN network. 

 

RNN networks are suitable for sequence of data. In such networks, the output of hidden 

layer is fed again as additional input in the next step. Figure 3.4 shows the structure of 

RNN network and it is unfolded which provides clearer image about its structure. 

 
Figure 3.4. Unfolded RNN network structure. 
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Some studies use hybrid approach which combines CNN and RNN together. Long-

Short Term Memory (LSTM) layers which are a flavor of RNN can be placed on top 

of CNN layers. In such approach, CNN layers extract current window features, and 

the LSTM layer keeps track of hidden layer output from previous samples as shown 

in Figure 3.5. This is especially useful when hand gestures or motion types have 

temporal dependencies [35]. 

 

 
Figure 3.5. Architecture that combines LSTM layers on top of CNN layers. 

 

Deep learning methods have been used frequently in the literature. Authors in [20] 

compared classification performance between CNN and several conventional 

classifiers like SVM, iForest, Minimum Covariance Determinant (MCD). They found 

that CNN outperformed other classifiers in terms of recall and precision. Authors in 

[21] have used end-to-end CNN network to classify 10 different gestures and achieved 

97.32% F1-score.  



 

 

22  

PART 4 

 

MATERIALS AND METHODS 

 

This part describes the materials and methods used to implement the proposed 

solution. Used materials like hardware, software, and volunteers are explained. Chosen 

setup, sensors, features, and configurations are detailed. The collection process of a 

large dataset is detailed for both left and right hands, then all post processing steps are 

elaborated. Classification process based on deep learning and the validation methods 

used to test the trained models are mentioned. 

 

4.1. MATERIALS 

 

In this section, all required hardware, devices, sensors, software, operation systems are 

detailed. Additionally, the number of volunteers and characteristics used to obtain 

training dataset are described. The size and features of the dataset are outlined. 

 

4.1.1. Used Hardware and Software 

 

During dataset collection process, two different smartwatches were used. First one is 

Apple Watch Series 3 which was released in 2017. This watch tests the ability of the 

proposed solution to run even on old hardware with limited capabilities. The second 

one is a new version called Apple Watch SE released in 2020 with better capabilities 

in terms of CPU and other hardware. During data collection, a special recorder 

application was run on both watches where logs were saved, then sent to a connected 

local PC. All subsequent data processing and training models were done on local PC. 

Although the smartwatches were equipped with several sensors, only two sensors were 

used which are the Accelerometer and the Gyroscope. During recording training data, 
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the maximum sensor sampling frequency were set to 100Hz. During data processing 

phase, down-sampling such as 50Hz and 75Hz were applied. 

 

All the data collection, processing, and testing data were done on Apple WatchOS 

operating system. The solution can completely run on the watch alone offline without 

requiring internet connection or connecting to any server or nearby smartphone. 

 

4.1.2. Volunteers 

 

Training dataset were collected using three different volunteers with variable age and 

body characteristics. Collecting the Test dataset was done by the help of three 

volunteers as well. Two of them were not participating in the training dataset collection 

process. For beta-testing on real app, eight volunteers were asked to install the 

application and test both its accuracy in real life usage and battery usage. Those 

volunteers have wide range of smartwatches versions. They have different 

characteristics and even live in different countries. They use their smartwatches in 

different real-world environments like work, household, shopping, and public 

transportation environment.  

 

4.1.3. Dataset Properties 

 

Two different datasets were collected from scratch for left and right hands with the 

exact methodology. Each dataset contains approximately 14000 training samples 

distributed evenly on five classes. Each training sample contains 100 frames (because 

100Hz frequency is used). Although subset of features was used in final solution, 

during training data recording, all 25 features were saved for further experiments as 

shown in Table 4.1. 
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Table 4.1. List of 25 raw features saved while recording training data. 
Type Num. Features Description 

Device Real 

Acceleration 

3 features accx, accy, accz which are acceleration 

on X, Y, Z axes measured in g-force 

Rotation Rate 3 features gyrx, gyry, gyrz which are rotation rate 

on X, Y, Z axes in radians/per-second 

Current Gravity 

Vector 

3 features gravx, gravy, gravz which are gravity 

force values on the current X, Y, Z axes 

measured in g-force 

Attitude – 

Represented in Euler 

Angles 

3 features Roll: rotation on Y axis in radians 

Pitch: rotation on X axis in radians 

Yaw: rotation on Z axis in radians 

Attitude – 

Represented in 

Quaternions 

4 features qx, qy, qz, qw 

A quaternion offers a better way to 

parameterize and represent attitude. 

Attitude – 

Represented in 

Rotation Matrix 

9 features [m11  m12  m13 

 m21  m22  m23 

 m31  m32  m33] 

A rotation matrix in linear algebra 

describes the rotation of a body in three-

dimensional Euclidean space. 

 

 

4.2. SENSOR FUSION 

 

Sensor-Fusion, which is an important technique is explained in this section. It has a 

large effect on features and configurations. The goals and flavors of sensor fusion is 

firstly described. Then the used reference frames are detailed. 

 

4.2.1. Goals and Types 

 

Sensor Fusion is the process of combining data from two or more sensors to generate 

more robust and accurate readings when compared with reading each single sensor 

data. Sensor fusion between multiple sensors achieves multiple goals like reducing 

bias, separating linear acceleration and gravity, and estimating device orientation in 
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3D space as shown in Figure 4.1. Device orientation can be given as Euler-Angles 

simple form, quaternions, or a rotation matrix that have more accuracy and less 

problems [22]. Fusion process is usually done by using a flavor of Kalman-Filter which 

is time consuming process specially when applied on wearable devices. That is why, 

modern smartwatches have hardware-accelerated sensor fusion using dedicated 

motion co-processor. 

 

 
Figure 4.1. Attitude angles: Roll, Pitch, and Yaw. 

 

There are two types of sensor fusion. First type uses fusion between Accelerometer 

and Gyroscope. It can achieve many goals such as correcting rotation bias, isolating 

linear and gravity acceleration, and estimating device angles. 

 

Second type uses fusion between Accelerometer, Gyroscope, and Magnetometer. The 

second type of sensor-fusion achieves goals which are achieved by the first type as 

well. In addition to that, the second type has external fixed reference frame. However, 

the second type is notably more expensive in terms of battery usage and required 

processing power. 
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4.2.2. Reference Frames 

 

The reference frame used when reading acceleration and rotation data is local 

reference-frame pinned to the watch screen as shown in Figure 4.2. Reference frame 

axes can be explained as below: 

• X-Axis is going horizontally on the watch screen from left to right. 

• Y-Axis is perpendicular on X-Axis and going from top to down on watch 

screen. 

• Z-Axis is vertical, virtually penetrating watch screen, and perpendicular on X 

and Y axes. 

 

 
Figure 4.2. Local reference frame attached to watch screen. 

 

When reading device orientation, those values must be based on fixed external 

reference frame. There are two types of reference frames that can be used depending 

on which type of sensor fusion is used. 

 

When using Accelerometer and Gyroscope sensor-fusion, the Z-axis is vertical along 

with earth gravity vector and X-axis is chosen randomly in horizontal plane, and Y-

axis is perpendicular on both X and Z as shown in Figure 4.3. This random choice of 

X-axis may lead to different patterns for the same move during training and inference. 

The solution is to save initial attitude at first frame of the input window. Then the 

solution is to convert all subsequent attitude readings to be relative to the initial value. 

This is done by multiplying with inverse of initial attitude rotation matrix as shown in 

formula Eq. 4.1. 
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𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒!"#$%&'" = 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒()**"+% ∗ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒,+&%&$#)																												(4.1) 

 

 

Figure 4.3. Reference frames where Z-axis is fixed, X and Y axes are random. 

 

When using the second type of sensor fusion, the reference-frame is totally fixed where 

Z-axis is vertical, Y-axis points towards the magnetic north, and X axis is 

perpendicular as shown in Figure 4.4. In such case, a conversion for each attitude value 

is not required. 

 

 

Figure 4.4. Fixed reference frame where X, Y, Z axes are always the same. 
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4.3. CHOSEN CONFIGURATIONS 

 

In this section, the chosen setup from sensors, configurations like sampling frequency, 

sliding-window size, and features are explained. 

 

4.3.1. Chosen Sensors and Configurations 

 

Only Accelerometer and Gyroscope inertial sensors were used because they are 

supported on all smartwatches and they consume much less power compared with 

other sensors. The use of Magnetometer sensor was dropped because it is not supported 

on all smartwatch models, it has higher power consumption [8], and can be affected 

by watch metal frame. Thus, it requires manual calibration to be done by user. All 

sensor readings are relative to a local moving reference frame pinned to the device 

screen. Sliding-Window method is used with window-size set to a small number of 30 

frames or 0.6 seconds in order to reduce the calculations required in each model call 

and save on power consumption. During runtime inference, 50% overlapping is 

applied which results in 3.33 model-calls per second. 

 

Instead of reading raw sensors data, Sensor-Fusion between Accelerometer and 

Gyroscope was used at low sampling frequency of 50Hz. Sensor-Fusion achieves two 

main goals.  The first one is correcting Gyroscope data by removing accumulated bias. 

The second one is separating linear device acceleration from acceleration due to earth 

gravity.  

 

4.3.2. Raw Features 

 

Sensor fusion between Accelerometer and Gyroscope allows for recording of 25 

features. Three features represent real device linear acceleration. Three features 

represent the corrected rotation rate. Three features represent current gravity vector. 

Rotation rate is measured in radians/second whereas both device acceleration and 

gravity are measured in g (g = 9.81/s2). This makes total of 9 features, and the rest 16 
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features are reserved for device orientation. Device orientation can be represented in 

3 angles (Euler angles: Roll, Pitch, and Yaw), Quaternions, and rotation matrix with 

shape 3x3. All 25 features are shown in Table 4.1. 

 

Gravity can capture device tilt because data are relative to device’s reference frame. 

Current gravity vector (GV) is always vertical and aligned with earth GV which means 

GV angles change with the device or hand tilt as shown in Figure 4.5.  

 

 
Figure 4.5. GV relative to current device reference frame. 

 

Figure 4.6 shows data for one hand motion sample of a person trying to touch his face 

while wearing a smartwatch. It explains how one sample of face touch motion is 

translated to a window of 30 frames and each frame contains 9 data points or features.  

 

In Figure 4.6, while this hand moves, every 20 milliseconds single data frame is read 

from motion sensors. When 30 readings are collected, the window is fed to the CNN 

model. 
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Figure 4.6. Sample data of a person trying to touch his face. 
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4.4. DIVIDING HAND MOTION TYPES 

 

Hand motion in 3D space is chaotic and some hand moves share many similar 

acceleration and rotation patterns with the face-touch move. In this binary 

classification problems (touch/no touch), high recall was obtained, however, precision 

was relatively low due to many false positives. By closely examining false positives, 

it was found that they were mostly caused by specific types of hand moves that are 

elbow-based. This happens when the forearm moves around the elbow making a sharp 

angle with the upper arm as shown in Figure 4.7. This is in contrast to moving the 

whole arm together or when the angle between the forearm and upper arm is large as 

shown in Figure 4.8. 

 

 
Figure 4.7. The angle between forearm and upper arm is sharp. 

 

 
Figure 4.8. The angle between forearm and upper arm is large. 

 

4.4.1. Hand Motion Classes 

 

To minimize false positives, additional two elbow-based motion classes were added. 

“Up” class represents when the hand moves up with close level to the head, and 

“Abdominal” class represents all hand moves towards the abdominal area like stomach 

and chest. Besides, another two classes were added, “Stationary” class for when the 



 

 

32  

hand is stationary or slightly moving, and “Normal” class for all other hand moves 

which brings the total of hand motion classes to five. 

 

4.4.2. Scenarios for Each Class 

 

To achieve fine-grained division and make the classifiers more robust, data are 

collected for each of those classes in five scenarios: standing, walking, and three 

different sitting positions as sitting while hand in a neutral or lower position, in a 

medium position like resting on the legs or couch, and in a high position like resting 

on a table as shown in Figure 4.9. The three sitting positions serve for another purpose 

which is recognizing face touch move even if it was initiated from different locations 

as shown in Figure 4.10. 

 

 
Figure 4.9. Five different positions: standing, walking, and three different sitting. 

 

 
Figure 4.10. Initiating hand move from three different heights. 

 

4.4.3. Orientations for Each Scenario 

 

Since local moving reference-frame is used instead of external fixed one, any change 

in hand orientation or any small shift in watch position around the wrist caused by 

loose bands give different data patterns. To overcome this problem, for each of the 
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above five scenarios, data are collected with multiple hand orientations. Two hand 

orientations are defined at the move start, and three at the move end that represents 

three different ways for touching the face either with hand palm, back, or side. This 

makes the total 6 combinations of hand orientations as shown in Figure 4.11. Those 

hand orientations are not rigid. A range of hand rotation in either direction is allowed 

during samples collection to mimic real-life cases especially with loose bands where 

the watch can move around the wrist.  

 

 
Figure 4.11. Hand start/end orientations when touching the face. 

 

Any change in hand orientation at the start may cause different motion patterns like 

acceleration or rotation on a different axis. Similarly, touching the face with different 

orientation or different hand-part causes different rotational patterns. Figure 4.12 

shows different acceleration and rotation patterns for the same hand move in the same 

standing position, but in 6 different hand orientations. 
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Figure 4.12. Sample motion patterns for 6 hand orientations of “Touch” move. 

 

By applying the 3-level division of hand motion, the models are allowed to be trained 

on a wide range of motion patterns in real-life situations which improves detection 

accuracy and minimize false positives. 

 

4.5. COLLECTING DATASETS 

 

Training and Test datasets were collected from scratch. This section describes the 

methodologies used in the collection process. 

 

4.5.1. Training Dataset 

 

Training datasets were collected using controlled sessions and automatic sample 

extraction algorithm. 
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4.5.1.1. Controlled Sessions 

 

The methodology used for training dataset collection and processing has a huge impact 

on achieving both high accuracy and high efficiency. Training data are collected in 

controlled sessions where each session is performed by one person for a specific 

motion class, and only for one scenario, and hand orientation. That means up to 30 

different sessions for each motion class. In each session, the volunteer does repetitive 

hand moves with around 1 second rest in between. Each session contains between 40 

and 150 samples. Data are recorded using a special application, where the user presses 

start-button to start the session and presses the stop-button to finish the session. 

 

All data collected in a single session are logged and saved in a separate file. This file 

includes motion data for the target touch move along with other irrelevant hand moves 

like moving the hand back from the face to the neutral position. In addition, it contains 

some intervals where the hand is in the resting state. To automatically extract only the 

target face-touch move, a novel algorithm was applied. 

 

4.5.1.2. Automatic Sample Extraction Algorithm 

 

The novel algorithm was developed to extract training samples automatically which 

helped the collection of large number of samples in less time. Visualizing the three 

elbow-based hand moves (Face-Touch, Up, Abdominal), it was observed that they 

cause a spike in rotation rate around Z or Y axes resulted from moving the forearm 

around the elbow. Using this prominent feature besides the fact that there is only one 

targeted move type in each session, an algorithm that uses peak-valley analysis was 

developed to extract samples automatically. Each hand-move starts with an 

acceleration phase until it peaks at the middle, then a deceleration phase starts and 

continues until the hand stops. Sample is extracted by taking the peak value as the 

middle point as shown in Figure 4.13. 
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Figure 4.13. Example of samples automatically detected by the algorithm.  

   

A small window size of 0.6 seconds was chosen to minimize required calculations, 

save on power consumption, and allow early touch detection. However, this is mostly 

smaller than the actual touch move duration as observed in the dataset which mostly 

falls in the range of [0.55, 0.8] seconds. Random shift of the middle point was applied 

with up to 2 frames to the left, and up to 5 frames to the right, with more emphasis on 

right-shift because the end of touch move contains more distinctive features compared 

with the move-start. The formula for the extracted-sample-range at detected peak at 

moment (t) is given in Eq 4.2. where r is a random number in range of [-2, +5]. 

 

SampleRange = :t − =
window-./0

2 C + r, t + =
window-./0

2 C + rG 																	(4.2) 

 

Using controlled setup where each volunteer made over 80 data collection sessions, 

and the automatic sample extraction, helped to collect large training dataset for both 

left and right hands. 

 

4.5.2. Separate Test Dataset 

 

To test the trained models better, a Test-Dataset which was never used in training 

phase was collected. It was collected separately from three different volunteers doing 
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real-life activities including face-touches while wearing two different watches. Each 

person did 50-100 face-touches in the 5 scenarios while doing normal activities for a 

total of 250 touch samples for each of the left and right hands. Each session was 

recorded as a video and then the dataset was labelled manually by cross-checking all 

recorded videos.  

 

In order to make the test dataset more representative of real-world usage, additional 

moves that may cause false positives were added like moving hand up near the face or 

touching the chest. Those moves were added with one-to-one ratio compared with the 

face-touch move (also around 250 moves per dataset). Additionally, a wide range of 

normal daily-life activity moves were added like household activities and office 

activities. In total, each dataset contains 250 positive face-touch samples and over 5700 

non-touch samples where the hand is doing other motion types. All moves are done 

within 90 minutes period. Finally, 50% overlapping was applied to match runtime 

conditions on the application. 

 

4.6. POST-PROCESSING ON TRAINING DATASET 

 

Additional processing steps were done on collected raw dataset. Those steps were used 

to generate multiple different datasets out of the original dataset. Each one has different 

characteristics or parameters as generating datasets based on Full-Motion-Wave or 

Half-Motion-Wave. Additionally, datasets with different window-sizes were 

generated to test more possible window sizes. Three different datasets with different 

window shift augmentations were used to increase samples or to test different window 

shift values. Finally, extra processing steps were done, specifically, applying jittering 

and data standardization. 

 

4.6.1. Half-Wave vs Full-Wave 

 

The hand motion can be divided into two phases. The first one is the acceleration phase 

where all readings start at low values and then explode quickly towards the peak as 
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shown in Figure 4.14. The second phase starts after the hand motion speed peaks and 

then starts the deceleration phase until it stops on the face as shown in Figure 4.15. 

 

Two types of datasets were processed. First one is where all samples extracted from 

considering the motion peak is the end of the window. This type allows for early 

detection as the application alerts the user well before the hand reaches the face. 

Second one is where all samples extracted considering the peak is the middle of the 

window. 

 

 
Figure 4.14. Extracted samples where only acceleration phase is taken. 
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Figure 4.15. Extracted samples where both phases are taken. 

 

4.6.2. Window-Sizes 

 

Multiple datasets were processed with different window-sizes like 30, 40, and 50 

frames sizes which are equivalent to 0.6, 08, 1.0 seconds, respectively. Having small 

window size lowers the necessary computations. That means faster classification and 

less consumed power. On the other hand, having larger window size means there are 

more input data points for the classifier which may result in better accuracy.  

 

4.6.3. Window-Shifting 

 

The original sample is extracted based on the detected peak. Additional window-

shifting is applied to generate more samples and more robust training data. Window-

Shifting serves as data augmentation where multiple training samples are generated 

from one sample. Shifting is done on both ways, to the right (positive) where window-

center is moved couple of frames, or to the left (negative) where window-center is 

subtracted few frames as shown in Figure 4.16. 
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Figure 4.16. Original extracted sample window and 2 other shifted windows. 

 

4.6.4. Additional Data Processing 

 

To make the training dataset more robust, signal jittering and data standardization were 

applied. Signal jittering resembles jittery sensor readings when some high priority task 

is performed by the operating system. Data standardization is done on the final data 

by subtracting the mean and dividing by standard deviation. 

 

4.7. TRAINING USING DEEP-LEARNING 

 

4.7.1. End-To-End CNN Architecture 

 

The proposed architecture uses end-to-end models based on CNN networks without 

any hand-crafted or computed features. After experimenting with adding LSTM layers 

on top of CNN layers, the performance gain was negligible compared with expensive 

computations of LSTM layers. Instead of 2D-Convolutions, 1D convolutions were 

used to convolve data along time axis with features set as depth channels. Average 
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pooling layers were used for down sampling and translation invariance. CNN blocks 

automatically extract features before feeding them to dense layers for classification. 

 

4.7.2 Hyperparameter Tunning Using Grid-Search 

 

To find the best hyperparameters, a grid-search of 243 iterations was executed. In each 

iteration, a separate model was trained using one combination of hyperparameters like 

filters count, dropout rates, optimizer method, batch size, and epochs count. 

 

Filters counts of 32, 64, and 128 were used. For dropout rates, three different 

combinations were used. Batch size of 32, 64, and 128 were tried. Three different 

counts were tried for epochs count. Adam, RMSPROP, and SGD optimizers were 

tried. This makes the total iterations or different trained models as 35. 

 

Trying different optimizers like SGD, RMSProp, and Adam with different learning 

rates parameters is necessary because each problem might work better with different 

optimizer method and with better learning rate parameters. In SGD which stands for 

Stochastic Gradient Descent, weights are updated after one sample classification 

forward pass during training and learning rate is fixed. This means the path to optimal 

solution or global loss minima is noisy and slow. RMSProp which stands for Root 

Mean Square Propagation is an improvement over SGD. It normalizes the gradient by 

using the moving average of squared gradients which means the learning rate is 

adaptive and changes overtime. Adam which stands for Adaptive Moment is 

considered as an improvement on RMSProp. Adam is the latest state of the art 

optimizer and the most used optimizer in deep learning literature. 

 

4.8. VALIDATION 

 

Before presenting experimental results, this section outlines the validation for testing 

results used to test the trained models. 
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4.8.1. Confusion Matrix 

 

Confusion matrix summarizes the prediction results for the trained classifier. It shows 

the counts of correctly classified or misclassified cases for each class. It can show 

better understanding of the trained model and its weak points. This is effective for 

misclassified samples for each class to display. It gives better insight not only on the 

mistakes done by the classifier, but also on the types of errors that were made. 

 

In binary classification, classified samples can be categorized in four types. In the case 

of Touch/No-Touch problem, True-Positives (TP) are face-touches that are classified 

correctly by the classifier. True-Negatives (TN) are non-touch moves that are correctly 

classified as non-touch. False-Positives (FP) are normal moves but wrongly classified 

as touch moves by the classifier. False-Negatives (FN) are real face-touch samples but 

wrongly classified as Non-Touch by the classifier. The confusion matrix for the 

proposed solution is shown in Figure 4.17. 

 

 
 

Figure 4.17. Definitions of TP, TN, FP, and FN for the proposed solution. 
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For evaluation, researchers apply several metrics like Recall (or sensitivity), Precision, 

Specificity, Accuracy, F1-Score, and False Positives Rate (FPR) to measure 

performance of trained models. In case of detecting face-touch hand moves, Recall 

given in Eq. 4.3 represents how many touches were detected out of all face touches 

made by the user. Precision given in Eq. 4.4 measures out of all face touches detected 

by the application how many real face touches were done. Specificity given in Eq. 4.5 

gives the percentage of non-touch moves predicted correctly from all non-touch 

moves. Overall accuracy given in Eq. 4.6 calculates out of all samples in the dataset 

how many correctly classified were done by the model. F1-Score given in Eq. 4.7 is a 

measure that combines precision and recall. Positives-Rate (FPR) given in Eq. 4.8 

represents the probability that a false alarm is raised. 

 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 																																																																																																													(4.3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 																																																																																																						(4.4) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 	= 1 − 𝐹𝑃𝑅																																																																												(4.5) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																																																																																
(4.6) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗	
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛																																																																							

(4.7) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 																																																																																																																	(4.8) 
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4.8.2. Cross Validation 

 

Cross Validation is a validation type where the training set is broken into parts. One 

of the parts is taken as test set while the rest is used as training set.  Cross validation is 

useful when it is hard or expensive to collect a separate test dataset. 

 

There are two types of cross validation, the first one is K-Fold cross validation. In this 

type, the training dataset is broken into K parts equal in size. Then, the model will be 

trained and tested K times where in each time one part is taken as test set and others 

combined as training set. In each time one different part is taken as test set until all K 

parts are tested. The second type of cross validation is Leave-One-Subject-Out 

(LOSO) where one subject data is used as test dataset and the rest as training set. 
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PART 5 

 

EXPERIMENTAL RESULTS 

 

In this part all experimental results are detailed based on three types of tests: Cross 

Validation testing, Separate Test Dataset testing, and Real-Life testing on the deployed 

smartwatch application. 
 
 
5.1. CROSS VALIDATION TESTING 

 

Two types of cross validation were done using the collected left and right training 

datasets, K-Fold and LOSO cross validation testing.  

 

5.1.1. Five-Class Training Results 

 

Although models are trained to fit the training set and it might overfit this dataset, 

training accuracy can give an initial view of the model accuracy. When looking at the 

confusion matrix particularly, percentage of misclassified samples with each class can 

be checked. Figure 5.1 shows for each class of the five motion classes, how many 

samples were misclassified with each of the rest four classes.
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Figure 5.1. Confusion matrix for 5-class classification during training phase. 

 
Figure 5.1. shows that most of missed face touches (False-Negatives) were classified 

as UP move. Besides, it can be seen that six stomach (Abdominal) samples were 

wrongly classified as Touch (False Positives). 

 

Table 5.1 shows detailed precision, recall, f1-score for each class of the five classes: 

touch, normal, stationary, up, stomach (or abdominal).  

 
Table 5.1. Precision recall and F1-score for all 5 classes. 

Class precision    Recall F1-score 

Touch 0.99 0.96       0.97       

Normal 0.96       0.98       0.97       

Stationary 0.99       1.00       0.99       

Up 0.96       0.97       0.97       

Abdominal 0.98       0.99       0.99       

 

5.1.2. K-Fold Cross Validation Testing Results 

 

To check the possibility of overfitting, two types of cross validation were done using 

the training dataset. K-Fold cross validation with 10-folds was firstly done by splitting 

training dataset to 10 equal parts. Test results show overall accuracy for 5-class 

classification between 95% and 97% across all 10 folds as shown in Figure 5.2. 
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Figure 5.2. Accuracy across 10 folds in k-fold cross validation. 

  

5.1.3. LOSO Cross Validation Testing Results 

 

The second type of cross validation in this thesis is LOSO. The results for all three 

volunteers are close with accuracy between 95% and 96% as shown in Figure 5.3. 

 

 
Figure 5.3. LOSO cross validation accuracy results for three volunteers. 

 

5.2. TEST DATASET RESULTS 

 

Since the training dataset was collected in controlled sessions where only one specific 

type of hand moves was done, testing results might not be representative to real-world 
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testing. On the other hand, testing results on the Test Dataset give more representative 

results for real-world usage because it was collected in a free-living setup. 

 

Test results show high recall and precision results with average F1-score of 95.85% as 

shown in Table 5.2.  

 

Table 5.2. Face-Touch accuracy results on the Left/Right Test Datasets. 

 Left Hand Right Hand Average 

Recall 96.5% 97.0% 96.75% 

Precision 93.7% 96.5% 95.10% 

F1 Score 95.0% 96.7% 95.85% 

Accuracy 99.7% 99.7% 99.70% 

 

By using only linear acceleration and rotation rate features, the best recall score was 

88.5% for F1-score of 86.7% (for left hand). However, when three gravity features 

were added, the recall jumped to 96.5% and F1-score reached to 95.0% as shown in 

Figure 5.4. 

 

 
Figure 5.4. Results for two models with and without gravity. 

 

Even when testing against over 200 different models trained with different 

hyperparameters during grid-search iterations, models with gravity consistently scored 

higher as shown in Figure 5.5. 
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Figure 5.5. Results with/without gravity for multiple trained models. 

 

Additionally, using five classes instead of binary classification had a big effect on 

minimizing false positives and improving precision and accuracy. Figure 5.6 shows a 

high precision improvement for 5-class models with a precision score of 93.7% 

compared with the best precision of 75.8% for 2-class models (for models with the 

best F1-score in both situations). 

 

 
Figure 5.6. Recall/Precision scores for binary and 5-class classifiers. 

 

Similarly, when testing against multiple models resulted from grid-search iterations, 

5-class models consistently scored higher precision values compared with 2-class 

models with a big margin as shown in Figure 5.7. The precision score for binary 

classification was mostly in range of 0.5 and 0.7 which is considered very low and not 

practical for real-world usage on the application even if the recall score is high. 
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Figure 5.7. Precision for binary and 5-class classifiers for multiple trained models. 

 

5.3. REAL TESTS ON THE APPLICATION 

 

Testing was done on the final smartwatch application to test accuracy results, battery 

consumption, and percentage of false alarms over long periods. 

   

5.3.1. Test Results of the Application 

 

To check real-world performance, the final trained models were deployed on the 

developed application which was deployed on two different watches. The application 

was able to give real-time alert and haptic feedback and showed the current count of 

face touches. Five volunteers were asked to use the application extensively and do face 

touch attempts repeatedly in all five scenarios for each hand. The average detection 

accuracy was 97% for both hands.  

 

5.3.2. False-Positives Test Results 

 

To test false positives rate over long period, each volunteer was asked to use the 

application for five hours while doing normal daily-life activities.  
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For each volunteer data which contain around 30k hand motion samples, the average 

false positives rate was 0.04% or 1 false positive every 2500 samples which in our 

setup translates to 2.4 FPs/hour in normal daily life usage. Besides, specificity was 

calculated as 99.6%. Such very low FPR and high specificity mean that the application 

is alerting the user only when there is very high confidence of potential face-touch 

move. This makes the application suitable for long hours use without much disturbance 

for the user that can be caused by too many false alarms. 

 

5.3.3. Battery Test Results 

 

In terms of battery consumption, the application was power-efficient and battery drain 

was minimal. Testing results showed that running the application continuously in the 

background added less than 2% battery drain per hour as shown in Table 5.3. That 

means even running the application for 10 hours continuously consumes only 20% 

extra battery. 

 

Table 5.3. Battery usage percentage with and without running the application. 

 Battery Level After 5 Hours 

 Application is Not 

Running 

Application is 

Running 

Consumption by 

the Application 

Apple Watch 3 93% 86% 7% 

Apple Watch 

SE 

91% 81% 10% 
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PART 6 

 

DISCUSSION AND CONCLUSION 

 

6.1. COMPARING RESULTS WITH LITERATURE 

 

The methods and configurations used in the literature have an effect on classification 

of HGR, and FTD. Different studies used different approaches to overcome obstacles 

and achieve high results. Table 6.1 compares final results based on used devices, 

sensors, filtering, segmentation, feature extraction, and classification techniques. 

 

Table 6.1. Literature comparison HGR and FTD applications. 
Pape
r 

Devices & 
Sensors 

Filtering + Segmentation 
+ Feature Extraction 

Classification Accuracy Results +  
Testing method 

[21] 
 

- Smartwatch + 
Phone +Server 
- Sensors: 
Accelerometer 

- No filtering 
- Window: 10s, 10Hz 
- Features: raw data 

End-to-End 
CNN 

- Precision: 97.3%, 
Recall: 97.32%, F1-
Score= 97.32% 
- 5-Fold Cross 
Validation 

[22] - wearable sensors 
on wrist and arm 
+ wireless 
receiver + PC 
- Sensors:  
Accelerometer, 
Gyroscope 

- No filtering 
- Features: Device Angles 
(Quaternions) 

SVM + ANN 
 

- Accuracy: na 
- K-Fold cross 
validation 

[16] -Smartwatch 
- Sensors:  
Accelerometer, 
Gyroscope 

- No Filtering 
- Window: 1s, 5Hz 
- Features: 
7 time-domain features + 
10 frequency-domain 
bands 

DWT + 
KNN/SVM 
 

- F1: 87% 
 

[17] - Smartwatch 
- Sensors:  
Accelerometer, 
Gyroscope 

- No Filtering 
- Window: 1s, 50Hz 
- Features:  
11 features in Time-
Domain and Frequency-
Domain 

KNN, SVM, 
NB 
 

- Accuracy: na 
- Separate test dataset 
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[18] Wrist-worn device 
Sensors: 
Accelerometer, 
Gyroscope 

- Low-Pass filter 
- Window: 2.5s, 14s – 
200Hz 
- Features: raw data 

DTW + 
Decision Tree 
 

- Accuracy: 95.6% 
- 10-Fold 

[4] Smartwatch + 
Phone 
Sensors:  
Accelerometer, 
Gyroscope 

- No Filtering 
- Features: 3 acceleration + 
3 gravity + 3 angles 

DTW - Accuracy: 71% 

[23] - Magnetic ring + 
RFID tags on 
goggles + 
Software on PC 
- Sensors:  
RFID + 
Magnetometer  

- No Filtering 
- Window: 5s, 20Hz 
- Features: Radio signal 
and magnetic readings 

KNN 
classifier 

- 65% accuracy 
- Tests done on 1 
person 

[25] - IR Camera + PC 
- Sensors: 
Depth Sensors, IR 
laser sensors 

- Features: depth image 
data 

Special 
Algorithm 

- 90.96% accuracy 

[24] - Magnetic 
necklace + 
Smartwatch 
- Sensors: 
magnetometer 

- MEKF filter 
- Window: 0.5s, 100Hz 
- Features: Raw magnetic 
data 

Special 
algorithm with 
thresholds 

- Recall: 91%, FPR: 
3.8% 
- Tests done by (5-6) 
people in home setup 
doing ADL for 8h per 
day 

[19] - Smartwatch 
- Sensors: 
accelerometer 

- No Filtering 
- Window: 1.5s, 100Hz, 
with 85% overlap 
- Features: (sum, mean, 
median, standard 
deviation, coefficient of 
variation, zero crossing, 
mean/median absolute 
deviation, skewness and 
kurtosis).  

Random 
Forest 

- Recall: 89%, FPR: 
0.56% 
- Tests done by 3 
people in home setup 
doing ADL 

[20] - Smartwatch 
- Sensors: 
Accelerometer, 
Gyroscope 

- Low-Pass filter 
- Features: mean, std, mad, 
energy, correlation, 
skewness, entropy, 
kurtosis 

Conventional 
classifiers 
(SVM, 
iForest, MCD, 
LOP) or CNN 

- Recall: 86%, 
Precision: 90% 
- Tests done by 1 new 
person with 100 test 
samples 

 

 

6.2. COMPARISON WITH THE STATE OF THE ART ON FTD 

 

The proposed approach achieved overall accuracy of 99.7% on the test dataset for 

classifying Touch/No-Touch hand moves while keeping the models power efficient. 

In comparison, studies in [23,25] reported accuracy results for touching different face-

parts. In [23] authors used RFID tags mounted on plastic goggles in addition to 

magnetic rings and measured touch detection accuracy for different face locations. 
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Similarly, authors in [25] used depth cameras to detect face touches and measure 

workers compliance with health practices and reported accuracy for touching multiple 

face parts. All reported accuracy results are shown in Table 6.2.  

 

Table 6.2. Accuracy comparison with other approaches. 

Study Accuracy 

Takayama et al. (2020) [23] 83.0% 

Manghisi et al. (2020) [25] 90.7% 

The proposed method 99.7% 

 

In addition, the trained models have a better recall, precision, and lower FPR compared 

with the study [20] which used feature extraction and CNN networks, with the study 

[19] which used hand-crafted features and RF classifier, and with the study [24] which 

used magnets to measure the proximity between the hand and the face as shown in 

Table 6.3. 

 

Table 6.3. Comparison for Recall, Precision, and False Positives Rate. 

Study Recall Precision FP Rate 

Sudharsan et al. (2020) [20] 91% --  3.8% 

Xiang Chen (2020) [19] 89% --  0.56% 

Aurizio et al. (2020) [24] 86% 90% -- 

The proposed method 96.75% 95.1% 0.04% 

 

6.3. SUMMARY 

 

In this thesis, it is presented a complete approach for classifying hand moves to detect 

face touches using only smartwatch IMU motion sensors and CNN networks without 

using any extra hardware equipment. The goal is to alert users and prevent unwanted 

face touches which can be one of the main causes for transmitting viral infections. The 

proposed approach utilizes smart data processing for automatic sample extraction to 



 

 

55  

gather large training dataset with around 28k samples collected from left and right 

hand. Using sensor fusion assisted to eliminate bias and accumulated error. Adding 

gravity features was effective in improving touch detection accuracy. Besides, 

dividing hand moves into multiple classes, collecting data in multiple scenarios and 

multiple hand orientations minimized false positives. The proposed solution used the 

lowest configurations compared with the study [36] based on window size, layer count 

and model size. These efficient configurations allowed the models to run directly on 

the watch with real-time performance while preserving battery at the same time. 

Testing results show the proposed approach outperformed classical methods that use 

hand-crafted feature extraction and fared better than approaches that use extra 

hardware components. The application provides real-time feedback and alerts the user 

with vibration and sound whenever attempting to touch the face. The obtained results 

for average recall, precision, F1-Score, and accuracy were calculated as 96.75%, 

95.10%, 95.85%, 99.70% respectively, with low FPR as 0.04%. By using efficient 

configurations and small models, the application achieves high efficiency and can run 

for long hours without significant impact on battery which makes it applicable on most 

out-of-the-shelf smartwatches.
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