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ABSTRACT 

 

M. Sc. Thesis 

 

RANK 1 FIRST FORBIDDEN BETA-DECAY LOG(FT) VALUES FOR 

SOME GOLD ISOTOPES 

 

Mohammed Hawez SABER 

 

Karabük University 

Institute of Graduate Programs  

The Department of Physics 

 

Thesis Advisor: 

Prof. Dr. Necla ÇAKMAK 

January 2022, 58 pages 

 

The log(ft) values of the rank1 first forbidden (FF) transitions were investigated by 

using Schematic Model (SM) for even-even neutron-rich isotopes of Gold (Au). We 

solved only in the particle-hole channel the secular equations of the rank1 transitions 

the eigenvalues and eigenfunctions of the Hamiltonian within the framework of 

proton-neutron Quasi Random Phase Approximation (pn-QRPA). The Woods-Saxon 

(WS) potential basis was used in our calculations. The relativistic beta moment 

matrix element of the rank1 transition was calculated directly without any 

assumption. In all calculations, each Au nuclei was considered in a spherical shape. 

The calculated log(ft) values of the rank1 first forbidden transition compared with the 

experimental studies and the obtained results were found to be closer to these values. 

 

Keywords : rank1 transition, pn-QRPA, Woods-Saxon potential, Schematic 

Model 
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ÖZET 

 

Yüksek Lisans Tezi 

 

BAZI ALTIN ĠZOTOPLARININ RANK 1 BĠRĠNCĠ YASAKLI BETA-GEÇĠġ 
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Çift-çift nötron zengini altın (Au) izotoplarının rank1 birinci yasaklı geçişlerinin 

log(ft) değerleri şematik model (SM) kullanılarak incelendi. pn-QRPA çerçevesinde 

Hamiltonyenin özdeğerleri ve özfonksiyonları rank1 geçişlerinin seküler denklemleri 

için sadece parçacık-boşluk kanalında çözüldü. Hesaplamalarımızda Woods-Saxon 

(WS) potansiyeli kullanıldı. Rank1 geçişinin rölativistik beta moment matris elemanı 

herhangi bir yaklaşım yapılmaksızın doğrudan hesaplandı. Bütün hesaplamalarda her 

bir Au çekirdeği küresel formda kabul edildi. Rank1 birinci yasaklı beta geçişlerinin 

hesaplanan log(ft) değerleri deneysel çalışmalar ile karşılaştırıldı ve elde edilen 

sonuçlar bu değerlere yakın olarak bulundu. 

 

Anahtar Kelimeler  : rank1 geçişleri, pn-QRPA, Woods-Saxon Potansiyeli, 

Şematik Model 
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PART 1 

 

INTRODUCTION 

 

The beta-decay process is a radioactivity process to understand the weak processes of 

the interacting and nuclear structure. Although literature scientists have conducted 

many theoretical and experimental studies on allowed transitions, they did not show 

the same importance in forbidden transitions. Recent research has shown that the 

first-forbidden (FF) of the beta transition process is useful in determining the 

correctness theories relating to the r-processes and 2vββ [1]. 

 

In 1950, experimental and theoretical studies began on the first-forbidden (FF) beta 

transitions, and a general theory was created in 1951 about the first-forbidden (FF) 

beta-decay [2]. 

 

In addition, factors such as half-lives and beta-decay properties play a role in 

selecting the observed abundances in exotic nuclei near the path [3]. Due to the 

inaccessibility of many r-process progenitors with current radioactive ion beam 

facilities, estimates of r-process nucleosynthesis typically rely on predictions based 

on nuclear models describing properties of nuclei that are far from stable [4]. On the 

other hand, for extreme isospin values, microscopic structural effects altering the 

shape of the β-strength function, such as quenching or distortion of nuclear shells, 

can bias theoretical predictions [5,6]. 

 

Not only does electron neutrino capturing intensify the impact of beta-decays in 

neutron-rich environments, but neutron spallation induced by electron neutrinos may 

also play a role in modifying r-abundance distribution [7].  

 

The ground state transitions in first-forbidden (FF) and allowed Gamow-Teller (GT) 

beta-decays are studied by Suhonen [8]. The unique first-forbidden (U1F) for J =2 is 

calculated and the Gamow-Teller (GT) transitions are allowed in even-even and odd-
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odd nuclei in the mass range 70 ≤ A ≤ 214 [9]. It is proposed that at 
200

Au decay, a 

level of 
200

 Hg at 2,642 kV is populated by the main beta-decay branch [10]. Halbleib 

and Sorensen developed the quasi-particle random phase approximation (QRPA) 

model by generalizing the ordinary random phase approximation (RPA) to depict 

charge-exchanging transitions [11]. Proton-neutron quasi-particle random phase 

approximation (pn-QRPA) uses pairing interaction to construct a quasi-particle basis, 

and the random phase approximation (RPA) equation is used to calculate the 

schematic first-forbidden (FF) residual interaction. To study the first-forbidden (FF) 

transitions with a schematic disjoin interaction, the proton-neutron quasi-particle 

random phase approximation (pn-QRPA) model is analyzed using the Woods-Saxon 

(WS) potential basis in the Chepurnov parameterization [1]. 

 

Civitarese et al. presented the factor of spin-isospin dependent interactions on first-

forbidden (FF) 𝛽-transitions of low-energy between even-odd and even-even nuclei 

with ΔJ = 0, 2. The relativistic beta momentum matrix element            is not 

analytically evaluated; the non-relativistic beta momentum matrix element 

                is assumed to be proportional. The ft values were calculated 

for the ground state for ΔJ = 0,2, and it was shown that the first-forbidden (FF) beta 

decay giant resonances occurred at approximately 25 MeV. Charge change spin-

dipole calculations include the effect of nuclei polarization [12]. 

 

Kenar İ., et al. presented nuclear matrix elements that were calculated for rank 0 

transitions without considering the communion from spin-orbit potential in the 

evaluation of the relativistic matrix element.  The 0
+
→0

-
 first-forbidden (FF) beta-

decay was examined for 
206-2014

Pb→
206-2014

Bi transitions and the calculations were 

made according to two different approaches [13,14]. For the first approximation, the 

relativistic beta transition operator is evaluated straight away without making any 

assumptions. The second approximation considers the relativistic operator as 

proportional to the non-relativistic operator. The first-forbidden (FF) beta-decay 

matrix element has been computed without taking into account spin-orbit interaction 

in the shell model potential. In comparison to other studies, the results obtained are 

closer to the experimental data, although it cannot be said that they are in complete 

harmony. The reason for this is that in these calculations, the effective interaction 
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with charge change between nucleons is only considered in the particle-hole (ph) 

channel. The interaction in the particle-particle (pp) channel is very important for a 

better understanding of the weak interaction theory. 0
-
 excited states were examined 

for spherical nuclei. The contribution from the spin-orbit potential is considered in 

the evaluation of the relativistic matrix element of the first-forbidden (FF) beta 

transition matrix element, which is evaluated without any assumptions. Particle-

particle (pp) and particle-hole (ph) spaces are based on calculations [15]. Using the 

ξ- approximation, logft values for 
124

Sb and 
86

Rb for the first-forbidden (FF) beta-

decay [16] and single-particle (sp) logft values for 
207

Ti→ 
207

Pb and 
209

Pb→ 
209

Bi 

transitions using the same approach [17]. 

 

Nabi, J., et al. presented the properties of β-decay of the nucleus with some neutron 

N= 126. Two various factors of the proton-neutron quasi-particle random phase 

approximation (pn-QRPA) model were utilized to evaluate half-lives and the β-decay 

rates for N = 126 isotones. The schematic model (SM) approach is used to analyze 

and calculation the proton-neutron quasi-particle random phase approximation (pn-

QRPA) equations. As an average field base, the Woods-Saxon (WS) potential was 

used. Both first-forbidden (FF) and allowed Gamow-Teller (GT) transitions were 

considered in the particle-hole (ph) channel. Under stellar and terrestrial settings, the 

proton-neutron quasi-particle random phase approximation (pn-QRPA) model was 

used in the distorted Nilsson basis to evaluate the β-decay rates for unique first-

forbidden (U1F) and allowed Gamow-Teller (GT) transitions. The findings support 

the results of the shell model, showing that first-forbidden (FF) transitions because of 

a significant change in the isotones' evaluated half-lives. The use of first-forbidden 

(FF) communion resulted in a substantially greater agreement between evaluated and 

measured terrestrial-decay half-lives than previous computations. An example of 

waiting point nuclei's influence on the r-process nucleosynthesis is given [18]. 

 

Nabi, J., et al. presented increasing proton number (Z) causes to show more 

importance first-forbidden (FF) charge-changing transitions for nuclei, and this is 

because of decreasing of the allowed Gamow–Teller (GT) strength transitions. They 

calculated allowed Gamow–Teller (GT) also 0
+
 → 2

-
 and 0

+
 → 0

-
 transitions for 

neutron-rich Ge and Zn isotopes. To calculate first-forbidden (FF) and allowed 
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Gamow–Teller (GT) transitions, two various proton-neutrons quasi-particle random 

phase approximation (pn-QRPA) models were combined with the interaction of a 

schematic separable. First-forbidden (FF) decay plays a significant role in the pn-

QRPA(N) computation that includes distortion. For Zn isotopes, the pn-QRPA(WS) 

results are better than observed data (upper panel), although the pn-QRPA(N) results 

show the best overall agreement with experimental data. In order to evaluate β-stellar 

decay rates for astrophysical purposes, allowed Gamow–Teller (GT) and unique 

first-forbidden (U1F) transitions were included. 
86,88

Ge has a significant communion 

to the overall stellar rate of unique first-forbidden (U1F) transitions [19]. 

 

Nabi, J. U., et al. presented first-forbidden (FF) transitions can play a significant role 

in reducing the evaluated half-lives especially in environments where allowed 

Gamow-Teller (GT) transitions are not preferred. Particularly noteworthy is phase-

space amplification in neutron-rich nuclei, which favours the first-forbidden (FF) 

transition. They calculated the allowed Gamow-Teller (GT) transitions for nickel's 

even-even neutron-rich isotopes using various proton-neutron quasi-particle random 

phase approximation (pn-QRPA) models. The factor of distortion on the evaluated 

strengths of Gamow-Teller (GT) is studied. The first-forbidden (FF) transitions for 

isotopes of nickel even-even if they are neutron-rich are evaluated assuming that the 

nuclei are spherical. They took into account the distortion of the nuclei and 

calculated the allowed Gamow-Teller (GT) + unique first-forbidden (FF) transitions, 

stellar beta-decay rates, the probability of β-delayed neutron emissions, and the 

energy rate of β-delayed neutrons. The computed half-lives are very similar to those 

measured and prove that they are responsible for speeding up r-mater flow [20]. 

 

Nabi, J. U., et al. presented the allowed Gamow–Teller (GT) transitions are the 

majority common spin–isospin (στ) type weak nuclear processes. In the field of 

nuclear physics, these transitions play a significant role in a variety of processes. 

Their communion to astrophysics, supernova explosions and particularly nuclear 

synthesis is very significant. First-forbidden (FF) transitions are more important 

when allowed Gamow–Teller (GT) transitions are disfavored, especially in heavy 

and medium nuclei. First-forbidden (FF) transitions are favoured in neutron-rich 

nuclei because of phase-space multiplication for these transitions. They determined 
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the allowed Gamow–Teller (GT) and the strength of unique first-forbidden (U1F) |J| 

=2 transitions in even-even and odd–odd nuclei in the mass range 70 ≤A≤ 214. Two 

different proton-neutron quasi-particle random phase approximation (pn-QRPA) 

models with a schematic separable interaction were used to calculate unique first-

forbidden (U1F) and Gamow-Teller (GT) transitions. The inclusion of the strength of 

unique first-forbidden (U1F) to both models improved the total comparison of 

computed half-lives of terrestrial β-decay. For the 2
-
 ↔ 0

+
 transitions, the ft values 

and decreased transition probabilities were also determined. The rates of β
±
-decay 

and electron/ positron capture of heavy nuclei in the stellar matter were investigated, 

and it was also shown that at high stellar temperatures, electron and positron capture 

rates control the overall weak rates of all these heavy nuclei [9]. 

 

Cakmak, N., et al. presented in open-shell 
124,126,128,130

Te isotopes, the structure of 1
-
 

excitations. A translational and Galilean invariant model is used to investigate 

electric dipole states. The same isotopes are also explained theoretically by spin-

dipole 1
-
 excitations that conserve charge. Both types of excitations have the energy 

spectra analyzed and discussed. The calculated cross-sections and energy are also 

compared to the experimental data [21]. 

 

Ullah, A., et al. presented the role of the distortion parameter (β) on the computed 

strength of Gamow-Teller (GT) distributions and electron capture cross-sections 

(ECC) for 
46,48,50

Cr isotopes through the framework of the proton-neutron quasi-

particle random phase approximation (pn-QRPA). In this investigation, three various 

parameters were used. The interacting boson model (IBM) and the macroscopic-

microscopic (Mac-mic) models were used to calculate two of them. The 

experimental values determined by using its relation with the experimental B(E2)↑ 

values are the third. All of the daughter states of the indicated isotopes have widely 

dispersed Gamow-Teller (GT) strength distributions. They were determined to have 

an inverse relationship with the β parameter, i.e., they decreased as the β value 

increased. The electron capture cross-sections (ECC) were evaluated as a function of 

the β parameter, and the findings show that for the selected examples, the evaluated 

electron capture cross-sections (ECC) decreased as the parameter β value decreased 

[22]. 
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Çakmak, Ş., et al. simulated the Gamow-Teller (GT), allowed Fermi (F), and first-

forbidden (FF) transitions for even-even neutron-rich zinc isotopes using the Pyatov 

Method (PM) and Schematic Model (SM). The Fermi beta-decay calculations were 

performed by using the proton-neutron quasi-particle random phase approximation 

(pn-QRPA) in the Pyatov method (PM) without adding the effective coupling 

constant values. Schematic Model (SM) and Pyatov Method (PM) were used to 

calculate Gamow-Teller (GT) transitions for the particle-particle (pp) and particle-

hole (ph) channels using proton-neutron quasi-particle random phase approximation 

(pn-QRPA). In the computations for first-forbidden (FF) transitions, only the 

relevant particle-hole (ph) channel in the Schematic Model (SM) was taken into 

account. For eigenfunctions and eigenvalues of relevant Hamiltonians, they 

computed the secular equations of Fermi (F), Gamow-Teller (GT) and first-forbidden 

(FF) transitions. In all simulations, each Zn nuclei was given a spherical shape. In 

Schematic Model (SM) and Pyatov Method (PM) simulations, the experimental 

values were found to be closer to the calculated logft values of the Gamow-Teller 

(GT) and allowed Fermi (F) transitions. It is excellent agreement the experimental 

equivalents of first-forbidden (FF) excitations with the simulated half-lives 

developed in this study, which are similar to logft values [23]. 

 

One of the main problems in nuclear structure analysis and testing nuclear models is 

the calculation of the nuclear matrix element.  As it is known, beta-decay processes 

are very important in understanding the nuclear structure and weak interaction 

processes. Especially in the nucleosynthesis event, the effect of the first-forbidden 

(FF) passes has gained great importance in recent years. In this thesis; for spherical 

nuclei in the           mass region for Gold (Au) isotopes, the logft values 

will be obtained by calculating the nuclear matrix elements of the first-forbidden 

(FF) rank1 beta transitions and important contributions to the literature will be 

presented. 

 

We can list the basic features that distinguish the analytical calculations made within 

the scope of the thesis from other studies in the literature as follows: 
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 Direct calculation of beta momentum, which is relativistic from the first-forbidden 

(FF) beta transition momentum, without any assumptions. 

 The use of the base functions of the Woods-Saxon (WS) potential as the potential 

well in the microscopic model is considered, since the charge and mass 

distribution in the nucleus in electron and proton scattering is closer to the Woods-

Saxon (WS) potential function. 

 Considering the interaction forces in the particle-particle channel to the effective 

interaction with charge change between nucleons.  

 

The thesis study consists of: 

 

 The relativistic and non-relativistic nuclear matrix elements of the first-forbidden 

(FF) ΔJ = 1 𝛽  decay transition operators will be calculated.  

 The calculation of the first-forbidden (FF) 𝛽  transitions will be done using the 

proton-neutron quasi-random phase approximation (pn-QRPA) and the particle 

and quasi-particle (qp) space will be taken as the basis. 

 By drawing wave functions in the radial integrals of matrix elements of each case, 

the dependence of the radial integrals of these matrix elements to the parameters 

of the Woods-Saxon (WS) potential will be examined.   

 The first-forbidden resonance (FFR) energies of the rank 1 excited state for the 

nucleic in the 186 A 202 mass region for Gold (Au) and logft values that 

contribute greatly to the compilation of nuclear decay information will be 

calculated and the thesis study will be evaluated in general by making 

comparisons with experimental data. 

 

The thesis consists of six parts: In the first part; literature information about beta-

decay processes and first-forbidden (FF) beta transitions is given. In the second part; 

the theory of beta decay, Fermi’s Golden Rule, and the selection rules for beta decay. 

In the third part, relativistic and non-relativistic matrix elements of rank 1 first-

forbidden (FF) β-decay transition operators were calculated. In the fourth part, the 

eigenvalues and eigenfunctions of the Hamilton operator were obtained only by the 

effective interaction of the particle-hole channel through the framework of the 

proton-neutron quasi-particle random phase approximation (pn-QRPA). By 
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considering the wave functions in the radial integrals of the matrix elements of each 

case, the dependence of the radial integrals of these matrix elements on the Woods-

Saxon (WS) potential parameters is expressed. In the fifth part, the first-forbidden 

resonance (FFR) energies of the excited states of 𝜆     for the nuclei in the mass 

region for Au discussed, and logft values, which contributed greatly to the 

compilation of nuclear decay information, were calculated and the study was 

generally evaluated by making comparisons with experimental data. In the sixth part, 

we give a summary and conclusion of the results obtained in this thesis, as well as its 

contributions.
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PART 2 

 

BETA-DECAY 

 

2.1. THEORY OF BETA DECAY  

 

The beta-decay theory was developed by Enrico Fermi in 1934 [24]. When a 

radioactive nucleus beta-decays, the product nucleus contains the same number of 

nucleons as the main nucleus. This decay process is the transformation of a neutron 

into a proton or a proton into a neutron. In the nucleus, there is a change in the 

number of protons and neutrons, but there is no change in the total number of 

nucleons. 

 

One of the first radioactive events observed as a result of the nucleus emitting 

negative electrons is beta decay. The opposite of this, that is, the nucleus from the 

electrons of the atom it is possible to catch someone. Beta-decay is of great 

importance to understanding the nuclear structure and its weak interaction properties 

correctly. While nuclear beta-decay is in an isolated state between the reactions of 

known atomic particles, then elementary particle processes that are very closely 

related to beta-decay have emerged. The interaction of beta decay is expressed by a 

paired force smaller than electromagnetic forces, and this is called weak interaction 

[25]. This incident was reported by Alvarez's nuclei in 1938 released during the 

filling of the place where the electron of the captured atom is discharged; it could not 

be observed until the characteristic X-rays were found. 

 

In 1934, Joliot-Curies first observed the emission of positive electrons (positrons) in 

radioactive decay. Just two years later, positron was discovered in cosmic rays. 

These three nuclear events are closely related and are called beta-decay. Nuclei 

undergo beta-decay reactions when a neutron or a proton is converted from one to 

the other. In a nucleus, beta-decay changes both the proton numbers (Z) and the 
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neutron numbers (N) by one unit: Z→Z±1, N→N ± 1 so the mass number (A = Z + 

N) remains constant [26]. Hence nuclear beta transitions have a very important place 

in understanding the weak interaction theory better, in keeping the parity, and in 

learning the nuclei structure with the said transitions. 

The nuclear β-decay processes are defined as 

 

𝑛  𝑝  𝑒  𝜈̅                     𝛽  decay                                                                  (2.1) 

 

𝑝  𝑛  𝑒  𝜈                     𝛽   decay                                                                 (2.2) 

 

𝑝  𝑒  𝑛  𝜈                     electron capture (𝜀)                                                  (2.3) 

 

It is examined in three parts as [27]. A disruption in lepton number conservation 

leads to more exotic decay methods. For example; as in the neutrino-free double beta 

decay, this electron changes the number of leptons to two units [28]. Another 

example is electron-muon transformation, which is incompatible with lepton 

conservation  [29]. In this study, neither the lepton breach nor the neutrino character 

(Majorana or Dirac) affects the results. The three processes in this study that comply 

with the relevant conservation laws are as follows: 

 

2.1.1. Negative Beta Decay 

 

This process includes two isobars when the number of nuclear charges (Z) increases 

by one unit, which is called nuclear 𝛽  decay or negatron capture and by the reaction 

in equation (2.4) is expressed [30]. 

 

      
  

→            𝑒   𝜈̅                                                                     (2.4) 

 

where 𝛽−
 denotes the negatron capture, N represents the neutron number; Z 

represents the proton number, е
-
 represents the electron and 𝜈̅  represents the 

antineutrino.  
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Essentially, they are baryons responsible for reducing a free neutron into a free 

proton. In the latter case, both electrons contain leptons and antilepton. This 

distortion is caused by the difference in mass between a proton and a neutron. The 

combined decay energy, and the energy released as the final state particles' kinetic 

energy, is expressed by equation (2.5) in decay by negatron emission; 

 

       
     

                                                                             (2.5) 

 

where    is the final state of the kinetic energy of particles, 𝑚𝑛 is the mass of the 

neutron, 𝑚𝑝 is the proton mass, 𝑚𝑒 is the electron mass and c is the speed of light 

[31]. 

 

2.1.2. Positive Beta Decay 

 

If the protons number in the nucleus is high, one of the protons decomposes into a 

positively charged electron (positron) and a neutron. While the positron is ejected 

from the nucleus, the neutron remains in the nucleus. Thus, while the number of 

protons in the nucleus decreases, the nucleus transforms into a different atom [32]. 

This decay containing two isobars in which the number of nuclear charges (Z) 

decreases by one unit means the decay of the nucleus by the positron capture denoted 

by 𝛽  and is expressed by the reaction of equation (2.6). 

 

     
  

→            𝑒   𝜈 
 
                                                                    (2.6) 

 

where 𝛽  is stands for positron capture, е
 + 

is the positron, 𝜈𝑒 denotes the neutrino. 

The decay of a proton is accompanied by a lepton and an antilepton with a neutron, 

and both are accompanied by an electron. It is not allowed for a free proton to decay 

in this way. There is an allowed nucleus in which the excess energy required to 

create the proton-neutron mass difference and positron mass 𝑚   can be used. In this 

case, the amount of kinetic energy (Q) is negative. The kinetic energy of particles in 

the final state is expressed in equation (2.7) for decay by positron capture: 
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  𝑚                                                                         (2.7) 

 

where 𝑚   is the positron mass [31]. 

 

2.1.3. Electron Capture (EC) 

 

A process in which a proton captures an electron and converts it into a neutrino and 

an electron neutrino, that is, the number of nuclear charges Z decreases by one unit 

means electron capture (ɛ) and is expressed in equation (2.8). 

 

      𝑒 
    
             𝜈                                                                       (2.8) 

 

During beta decay, electron capture can only occur when extra energy is supplied, 

and the kinetic energy of particles in the final state in equation (2.9) is used to 

express this;  

 

      
  𝑚     

                                                                             (2.9) 

 

These processes can all occur within the nucleus multi-body environment. 

Particularly, the nuclear environment allows EC and 𝛽 +
 processes that are impossible 

in free space because of Q < 0.  

 

The total kinetic energy of leptons in the final state is used to calculate the kinetic 

energy (Q) of each of the processes in equations (2.5), (2.7) and (2.9). The values of 

the nuclei that depend on the multibody directions are related to the reflection of the 

mass differences.  

 

In nuclear beta decay, the decaying nucleus feels only weak interaction at the exact 

moment of decay and does not interact with the remaining nucleons of the nucleus 

via nuclear force. Thus, the A-1 nucleon does not participate in the weak decay 

process. Nuclear multi-body final and initial states are the only ones with strong 

interactions with the other A-1 nucleon. This method is known as the impulse 
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approximation. Beyond the impulse approximation, the definition of beta-decay 

includes the processes shown in Figure (2.2.). 

 

 

 

Figure 2.1. The Feynman diagrams [31]. 

 

In Figure (2.1.) it can be seen that in the impulse approximation only one nucleon 

participates in the weak decay process during nuclear positive beta-decay (𝛽 +
), 

negative beta-decay (𝛽 -
), and electron capture (EC) decays. The    initial and    

end states are strong two-nucleon-interacting nuclear A-body states. The antilepton 

lines at the weak-interaction corners appear to move back in time. The    Fermi 

constant determines the strength of the punctate weak interaction peak. 

 

As shown in Figure (2.1.), the flow line of nucleons corresponds to the nucleon 

current or weak hadronic current. Similarly, the weak leptonic current is the flow line 

that contains the leptons. At a weak-interaction vertex, the hadronic and leptonic 

currents interact. The vertex is often referred to as a pointlike in the energy range of 

nuclear beta-decay. The effect of exchanging the large vector bosons    is 

incorporated in the Fermi-named effective decay strength constant   .  
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Figure 2.2. The Feynman diagram in the impulse approximation. 

 

The weak decay of two nucleons involves an exchange of pions, as shown in Figure 

2.2, with the coupling constant      [31]. A closer examination of weak decay, on 

the other hand, reveals a more complex mechanism. It is shown in Figure (2.3) for 𝛽 -
 

decay.  

 

 

 

Figure 2.3. Connecting gw with W-boson [31]. 

 

With    boson bonding, a neutron's binding to baryon and lepton corners through 

𝛽  decay with weakly interacting binding force gW is shown in Figure (2.3.). The 

effective coupling constant GF is due to the low energy of nuclear beta decay and the 

large mass of the W boson. 

 

  

√ 
 

  
 

        
                                                                                                        (2.10) 

 

To a good approximation, the complicated decay pattern in Figure (2.3.) can be 

replaced with the simple one in Figure (2.1.). The two decay lines GF of Figure (2.3.) 
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are replaced by an effective vertex with an effective coupling constant GF. A 

pointlike current–current interaction is described by the effective vertex [31]. 

 

2.2. FERMI’S GOLDEN RULE 

 

In 1931, W. Pauli suggested that during the decay a second particle, which Enrico 

Fermi later called the neutrino, was released. Electric charge conservation requires 

the neutrino to be electrically neutral, while the angular momentum conservation 

requires the neutrino to be 1/2 spin like an electron. The first successful decay theory 

was developed by Enrico Fermi in 1934, based on Pauli's neutrino hypothesis. A 

modern beta-decay theory, which argues that parity conservation in attenuation 

interactions is not confirmed, was put forward in 1956 by C. Yang and T. D. Lee, 

and E. Fermi's beta-decay theory was further developed [33]. 

 

With this theory, beta spectrum shapes and half-life times are explained by a rebound 

and angular correlation experiments. Basis of degradation, metastable states 

compared to the interactions that generate it can be derived from the transition 

probability expression. Characteristic times in beta decay (half-lives) are in the order 

of seconds or longer. Since the natural nuclear time is in the order of 10
-20

, 

characteristic times in beta decay are much longer than the natural nuclear time. 

Degradation by Enrico Fermi, as a result of calculations made by considering it as a 

weak perturbation, Fermi known as the Golden Rule, which allows the calculation of 

the rate of transition from one level to another in unit time, 

 

𝜆  
  

ℏ
|   |

 
𝜌                                                                                                    (2.11) 

 

it is revealed the relation [26]. In this equation,     is the matrix element, 𝜆 is the 

decay rate, 𝜌     is the final state density. This matrix element is the integral of the 

 ̂   interaction between the first and the last quasi-steady states of the system.  ̂   is 

the Hamilton operator related to the interaction energy that causes the transition;  

 

    ∫  
  ̂     𝑣                                                                                            (2.12) 
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Fermi did not use equations (2.11) and (2.12), because he did not know the 

mathematical expression of matrix element (M) for beta-decay. Instead, he showed 

that one of the five math processors denoted by    can be used as a substitute for V, 

using all possible shapes that agree with special relativity. Subindex X gives the 

shape of the processor Q, i.e. X = V (vector), S (scalar), A (axial vector), P 

(pseudoscalar) or tensor. It took a lot of time to understand which of the properties of 

this transformation is suitable for beta decay, and as a result of the experiments, it 

was concluded that the appropriate result for beta decay was a vector and axial-

vector. 

 

The latter state nuclear wave function,    and    represents the time-independent 

free particle wave functions characterizing the neutrino and the electron. If electron 

and neutrino wave functions are normalized to V unit volume;  

 

   𝑟  
 

√ 
𝑒  ⃑   ⃑ ℏ⁄  𝑒  ⃑⃗  ⃑                                                                                    (2.13) 

 

   𝑟  
 

√ 
𝑒  ⃑   ⃑ ℏ⁄  𝑒  ⃑⃗  ⃑                                                                                    (2.14) 

 

It is obtained. If we open these wave functions to series and take the first term to re-

translate, this approach would be an allowed approximation. Each subsequent term is 

called unfavoured allowed according to its degree: 

 

𝑒  ⃑   ⃑ ℏ⁄    
  ⃑  ⃑

ℏ
 

 

 
*
  ⃑  ⃑

ℏ +
 

                                                                  (2.15) 

 

𝑒  ⃑   ⃑ ℏ⁄    
  ⃑  ⃑

ℏ
 

 

 
*
  ⃑  ⃑

ℏ +
 

                                                                  (2.16) 

 

Some of the theoretical and experimental results of 𝛽   decays of nuclei there are 

systematic differences. This is the case between the 𝛽 particle and the product. 

Coulomb arises from the interaction. Blame in the decay of atoms considering the 

momentum and positrons and kinetic energy spectra of electrons, this we can 

conclude. Although in beta-decays of nuclei, electron energy, and momentum 
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distributions are when the theoretical and experimental results are examined, there 

are some differences. This is because nuclear the effect of the matrix element is not 

taken into account in theoretical values. 

 

Theoretical results to obtain a parallel between the experimental data and the effect 

on the spectrum. The     nuclear matrix element, which is assumed to be absent, 

needs to be taken into account. This is a good approach in terms of compatibility 

with theoretical results and experimental data. 

 

Sometimes it is in situations where it gives very bad results, in such cases in the 

approximation, the value of the nuclear matrix element becomes zero. In this case, 

(2.15) and (2.16) in the plane wave expansion given by equations, other, including 

momentum dependence, there is impermissible degradation taking into account the 

terms. 

 

The level of a forbidden decay depends on how many terms we consider after 1 in 

the plane wave expansion to obtain a non-zero nuclear matrix element. The first term 

after 1 in the series expansion gives the first-forbidden (FF) decay. The second term 

is the second-forbidden decay. Generally, a nucleus prefers to decay with an allowed 

or first-forbidden pass, and it is very difficult to observe higher-order decays. 

 

In this approach, terms that depend on the electron energy and neutrino come from 

the state densities. Assume we're attempting to calculate the emitted electrons' 

momentum and energy distribution, the decay rate of the electron, and neutrino [26]. 

 

 𝜆  
  

ℏ
𝑔 |   |

 
     

  
      

 

ℏ 

  

   
                                                                      (2.17) 

 

where     is the element of the nuclear matrix,    is the final state energy, and    is 

a constant. 

 

    ∫  
      𝑣                                                                                              (2.18) 
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            𝑞                                                                                        (2.19) 

 

   
  

   
 

 

 
                                                                                                         (2.20) 

 

In this expression, let's assume the terms that do not contain momentum as constant 

C. In this case, we can find the distribution of electrons with momentum between 

p+dp and p from the expression (2.21) [26]: 

 

  𝑝  𝑝   𝑝 
 𝑞 

  𝑝                                                                                             (2.21) 

 

2.3. THE SELECTION RULES FOR BETA DECAYS 

 

2.3.1. Allowed Decays 

 

In this approach, the wave functions of the neutrino and electron values are used, i.e. 

it is assumed that the electron and neutrino were created at r = 0 [34]. As long as the 

electron and neutrino have 0 orbital angular momenta and the nucleus has the same 

angular momentum, then the angular momentum change is due to the spins of the 

electron and neutrino. It is spin (s = 1/2) for both neutrino and electron. If these two 

spins if parallel, total spin (S=1) becomes (S=0) if antiparallel.  

 

If it has an antiparallel spin value according to Fermi (F) decay, there is no difference 

in nuclear spin value for l = 0 cases (              ). If the spin values are 

parallel for neutrino and antineutrino, the total value of angular momentum is 1 

according to the Gamow Teller (GT) decay and coupled by forming a vector as 

            ). This is the case if        or 1 [26]. Parity selection rules and 

angular momentum for allowed transitions can be summarized as in Table 2.1. 
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Table 2.1. Selection rules for allowed beta-decay transitions [31]. 

 

Transition type                      

Fermi 

Gamow-Teller 

Gamow-Teller 

0 

1 (        or       ) 

0, 1 (     ,         ) 

+1 

+1 

+1 

 

Where the first (final) angular momentum and parity operators are represented by    

(  ) and    (  ). 

 

2.3.2. Forbidden Decays 

 

Some beta publisher transitions give inaccurate lines for the Curie drawing as 

opposed to the allowed transitions. The deviation to the incorrect line is because the 

matrix element is energy-dependent. These transitions are called forbidden 

transitions. Unlike allowed transitions, forbidden transitions allow the Fermi theory 

to be tested, as they depend on the matrix element (M) in shape. If the angular 

moments of the electron and neutrino are different from zero, as the angular 

momentum increases, the electron and neutrino wave function is strongly suppressed 

first and with it the decay coefficient decreases. Unlike the nucleus, the monovalent 

orbital angular momentum of the electron and the neutrino are must be broadcast, so 

(  𝑙           𝑛    ). Where n is the degree of forbidden [35]. The selection 

rules for forbidden beta transitions can be summarized as follows. 

 

Table 2.2. Selection rules for forbidden beta transitions [36]. 

 

Transition type    
(parity change) 

Fermi 

(ΔΙ) 

Gamow-Teller 

(ΔΙ) 

First forbidden Yes 0, ±1 0, ±1, ±2 

Second forbidden No ±1, ±2 ±2, ±3 

Third forbidden Yes ±2, ±3 ±3, ±4 

Fourth forbidden No ±3, ±4 ±4, ±5 
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2.3.3. First Forbidden Decays 

 

Since it is less likely to occur than allowed degradation, forbidden they are called 

decays. If allowed matrix elements are zero forbidden crossings are possible. 

Generally, the initial and final states must be of opposite parity for the first-forbidden 

(FF) decay to occur. Electrons and neutrinos must both be emitting single-value 

orbital angular momentums relative to a nucleus to satisfy the parity change. The 

decay of 𝑙     probability of occurrence is less than 𝑙     decay, decays with 𝑙  

      , ... the probability of occurrence is very small. In this case, only 𝑙     of the 

forbidden passes considering the degradation, these are called first-forbidden (FF) 

decays. These decay electron and neutrino with opposite spin (S = 0) Fermi type 

allowed transitions and parallel spin (S = 1) Gamow-teller (GT) type is similar to 

forbidden passes. For Gamow-teller (GT) decay of S = 0 to 𝑙     coupling yields 0, 

1, or 2 units of angular momentum, so (              ). In this case, the selection 

rules for the first-forbidden (FF) pass are as follows [26]: 

 

                  (Parity change) =Yes. 

 

The first-forbidden (FF) beta transitions consist of three parts:             

exciting transitions. Rank 0 transition contains one relativistic and one non-

relativistic matrix element. Rank 1 transition consists of two non-relativistic matrix 

elements and one relativistic matrix element. The excited state of Rank 2 (rare first-

forbidden transitions) consists of a non-relativistic matrix element. Beta-decay 

transition types are classified according to logft values are given in Table 2.3. 

 

Table 2.3. Classification of beta-decay transition types according to logft values [37].  

 

Transition type logft 

Super allowed transition 2.9-3.7 

Unfavoured allowed transition 3.8-6.0 

Allowed transition ≥5.0 

Rank 2 unique first-forbidden 8-10 
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Rank 0, rank 1 first-forbidden 6-9 

Second forbidden 11-13 

Third forbidden 17-19 

Forth forbidden >22 

 

The ft values are given by Equation (2.22) [1], 

 

  𝑡    
 

     ⁄      (       
 )

                                                                              (2.22) 

 

  
   ℏ 𝑙𝑛 

𝑔 
 𝑚 

   
      𝑠𝑒    

 

 
𝑔 

𝑔 
        

 

where D and  (      𝛽
 ) are a constant and the transition probability, 

respectively. 
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PART 3 

1. P 

FIRST FORBIDDEN 1
-
 ↔ 0

+
 BETA TRANSITIONS 

 

The transitions probabilities B(     , 𝛽  ) is specified by Bohr and Mottelson 

[20]: 

 

    𝜆     𝛽   |〈  
 ‖   

  ‖  〉|
 

                                                                (3.1) 

 

where  

 

   
      𝑗  𝑘    𝜆    𝜇   

𝑚  

√ ℏ
𝜉   𝜌  𝜆    𝜇  

  √
 

 

   

ℏ
ξ   𝑗  𝑘    𝜆    𝜇                                                                          (3.2) 

 

3.1. THE CALCULATION OF THE NUCLEAR MATRIX ELEMENTS 

 

In this part of the thesis, detailed mathematical solutions of nuclear beta moment 

matrix elements of rank 1 excited state are given. Matrix elements of beta moments 

for 1
−
 cases of the first-forbidden (FF) transitions (n = 1) are expressed as follows 

[17]. 

 

  𝜌  𝜆    𝜇  𝑔 ∑ 𝑡  𝑘 𝑟̂     𝑟̂                                                                (3.3a) 

 

  𝑗  𝑘    𝜆    𝜇  
 

√  

  

 
∑ 𝑡  𝑘   𝑣                                                      (3.3b) 

 

  𝑗  𝑘    𝜆    𝜇  𝑔 ∑ 𝑡  𝑘 𝑟     𝑟̂   𝜎  𝑘                                          (3.3c) 

 

where equations (3.3a) and (3.3b) are the non-relativistic beta moment, equation 

(3.3c) is the relativistic beta moment. 
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3.2. THE NON-RELATIVISTIC MATRIX ELEMENT M (𝜌V, 𝜆 = 1, µ) 

 

The non-relativistic 𝛽 moment matrix element in Equation (3.3a) is given as 

 

  𝜌  𝜆    𝜇  𝑔 ∑ 𝑡  𝑘 𝑟̂     𝑟̂     

 

In the non-relativistic β moment matrix element equation, 𝑔𝑉 is the vector interaction 

constant, 𝑡_ (𝑘) is the isospin reduction operator, 𝑟𝑘 is the radius vector of the 

nucleon, and  1𝜇 (𝑟𝑘) is the spherical harmonic operator. To calculate the matrix 

element that provides the transformation of the neutron to a proton, the matrix 

expansion of the operators belonging to the two sub-variables can be applied. 

  

The matrix calculations of the operators of the two sub-variables can be solved with 

the help of the following expression [38]: 

 

⟨𝑛 
 𝑗 

 𝑛 
 𝑗 

 𝑗 𝑚 |{ ̂      ̂    }  |𝑛 𝑗 𝑛 𝑗 𝑗𝑚⟩                
    

 

 

 {
   
𝑗 
 𝑗 

 𝑗 

𝑗 𝑗 𝑗
} 〈𝑛 

 𝑗 
 ‖ ̂    ‖𝑛 𝑗 〉〈𝑛 

 𝑗 
 ‖ ̂    ‖𝑛 𝑗 〉 .                                        (3.4) 

 

The expression here is the phase, 9j symbol, Clebsch-Gordan coefficient, and 

reduced matrix elements. In this case, the non-relativistic matrix elements obtain the 

following expression. 

 

⟨(𝑙 𝑠 )𝑗 𝑚 |𝑔 ∑ 𝑡  𝑘 𝑟̂     𝑟̂   | 𝑙 𝑠  𝑗 𝑚 ⟩                  

    
  

 

 {

   
𝑙 𝑠 𝑗 
𝑙 𝑠 𝑗 

} 〈𝑙 ‖𝑟̂     𝑟̂  ‖𝑙 〉〈𝑠 ‖  ‖𝑠 〉  .                                                     (3.5) 

 

Let's find each statement in Equation (3.5) separately. The expansion of the 

expression       is as follows obtained [38] 
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       √                                                                                       (3.6) 

 

and 

 

  𝑗𝑛
 √       ( 𝑗𝑛   )  √ ( 𝑗𝑛   )  .                                                             (3.7) 

 

We can use the following expression to reduce the 9j symbol to the 6j symbol 

obtained [38] 

 

{

   
 𝑔  
𝑒 𝑔  

}  
          𝑔

√        𝑔   
{
   
𝑒  𝑔

}                                                                         (3.8) 

 

and 

 

{

   
𝑙 𝑠 𝑗 
𝑙 𝑠 𝑗 

}  
              ⁄

√          
 

 
   

{
𝑗 

 

 
 

𝑙 𝑙 
 

 

}  
            ⁄

√ 
{
𝑗 

 

 
 

𝑙 𝑙 
 

 

} .       (3.9) 

 

 

The expression for the spherical harmonic operator is used [38] 

 

〈𝑙 ‖ ⃗  ‖𝑙〉  √
            

  
     

    .                                                                             (3.10) 

 

In this case, we get this equation 

 

〈𝑙 ‖ ⃗  ‖𝑙 〉  √
              

  
      

    √
        

  
⟨𝑙    |𝑙  ⟩ .                            (3.11) 

 

The following expression is used for the resulting unit operator (  ̂ ) [38] 

 

〈𝑠‖ ̂‖𝑠 〉  √ 𝑠                                                                                                 (3.12) 

 

and 

 

〈
 

 
‖ ̂‖

 

 
〉  √  

 

 
   √   .                                                                                           (3.13) 
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When the expressions found for each term are written instead  

 

⟨(𝑙 𝑠 )𝑗 𝑚 |  𝜌  𝜆    𝜇 | 𝑙 𝑠  𝑗 𝑚 ⟩  √
   𝑗      𝑙    

  
 

             ⁄ {
𝑗 𝑗  

𝑙 𝑙 
 

 

} ⟨𝑗 𝑚  𝜇|𝑗 𝑚 ⟩⟨𝑙    |𝑙  ⟩     .                       (3.14) 

 

The Wigner-Eckart theorem used to the 𝛽 moment matrix element is a simpler 

transform into expression. Wigner-Eckart theorem is given as [38] 

 

⟨𝑛 𝑗 𝑚 | ̂  |𝑛𝑗𝑚⟩             
    ⟨      | ̂  |   ⟩

√     
                                            (3.15) 

 

The solution of the 𝛽 moment matrix element that transforms a neutron into a proton 

is as follows. 

 

⟨(𝑙 𝑠 )𝑗 𝑚 |  𝜌  𝜆    𝜇 | 𝑙 𝑠  𝑗 𝑚 ⟩  √
   𝑗      𝑙    ( 𝑗   )

  
 

 

 {
𝑗 𝑗  

𝑙 𝑙 
 

 

} ⟨𝑗 𝑚  𝜇|𝑗 𝑚 ⟩⟨𝑙    |𝑙  ⟩                                                     (3.16) 

 

3.3. THE RELATIVISTIC MATRIX ELEMENT M (jV, k=0, 𝜆 = 1, µ) 

 

The relativistic 𝛽 moment matrix element in Equation (3.3b) is given as 

 

  𝑗  𝑘    𝜆    𝜇  
 

√  

𝑔 

 
∑𝑡  𝑘  𝑣  
 

    

 

Here 𝑣   is the velocity expression. Firstly, let's get the expression 𝑣   velocity. 

 

𝑣  𝑟 ̇  
 

ℏ
[ ̂ 𝑟 ]                                                                                                     (3.17) 
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 ̂  
   

  
 𝑉  𝑟̂  𝑉        𝑟̂  𝑉  (𝑙  𝑠 )                                                            (3.18) 

 

where 𝑝   𝑚⁄  is the kinetic energy, 𝑉  𝑟̂  is the Coulomb potential; 𝑉        𝑟̂  is the 

central potential and 𝑉   𝑙  𝑠   is the spin-orbit interaction potential. These 

expressions are as given below 

 

𝑉        𝑟̂   𝑉   𝑟 (    
   

 
𝑡 )  

 

  𝑟  
 

  𝑒
𝑟    

 

   

 

𝑉  𝑟̂  𝑒 
   

𝑟
{
 𝑟

   
 

 

 
 
𝑟

  
  }                   𝑟       

 

𝑉  𝑟̂  𝑒 
   

𝑟
                                                 𝑟        

 

𝑉  (𝑙  𝑠 )   𝜀  
 

𝑟

 𝑉          

 𝑟
 

 

𝑡    ⁄    𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠                  𝑡    ⁄    𝑝𝑟𝑜𝑡𝑜𝑛𝑠  

 

After some intermediate operations, we use the following expression for velocity. 

 

𝑣   
 ℏ 

 
 ⃗⃗  

 

ℏ
𝑉   𝑟  𝑠                                                                              (3.19) 

 

In this case, for the matrix element that changes a neutron into a proton expression is 

obtained 

 

⟨(𝑙 𝑠 )𝑗 𝑚 |
 

√  

  

 
∑ 𝑡  𝑘   

  ℏ

 
 ⃗⃗      𝑟  𝑠  𝑉       | 𝑙 𝑠  𝑗 𝑚 ⟩              (3.20) 

 

Equation (3.20) consists of two terms, the operator  ⃗⃗  and (𝑟    𝑠 ) cross-product 

expression. We will calculate these terms separately 
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⟨(𝑙 𝑠 )𝑗 𝑚 | ⃗⃗   | 𝑙 𝑠  𝑗 𝑚 ⟩                                                                           (3.21) 

 

⟨(𝑙 𝑠 )𝑗 𝑚 |𝑉   𝑟  𝑠    | 𝑙 𝑠  𝑗 𝑚 ⟩                                                            (3.22) 

 

The following expression is used for the matrix element of the operator  ⃗⃗  [38]: 

 

⟨(𝑙 𝑠 )𝑗 𝑚 | ⃗⃗   | 𝑙 𝑠  𝑗 𝑚 ⟩  √  𝑗    ( 𝑗   ) 

 

 {
𝑗 𝑗  

𝑙 𝑙 
 

 

} 〈𝑙 ‖ ⃗⃗  ‖𝑙 〉                                                                                            (3.23) 

 

〈𝑛 𝑙 ‖ ⃗⃗  ‖𝑛𝑙〉  √𝑙                 √𝑙                                                     (3.24) 

 

The coefficients A and B in Equation (3.24) are shown as [38]: 

 

        ∫      
  𝑟  

 

  
 

 

 
     𝑟 𝑟

  𝑟
 

 
                                                           (3.25) 

 

        ∫      
  𝑟  

 

  
 

   

 
     𝑟 𝑟

  𝑟
 

 
                                                        (3.26) 

 

Here     𝑟  is the radial part of the corresponding wave function. When the 

necessary arrangements are made, we can write the  ⃗⃗  operator expression as follows. 

 

  〈𝑙 ‖ ⃗⃗  ‖𝑙 〉  √ 𝑙                 √𝑙                                                      (3.27) 

 

Secondly, the following expression is used for the matrix element of vector products 

[38]: 

 

〈𝑙 𝑠   𝑚 ‖ 𝑛̂  𝑠̂  ‖𝑙𝑠 𝑚〉        
         √  𝑙               

    

 

 
 

 
     𝑙      𝑙        𝑙    𝑙     {

  𝑙 𝑠
𝑙   

}      
    

                     (3.28) 

 

After making the necessary arrangements here, the following equation is obtained: 
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𝜉  〈(𝑙 𝑠 )𝑗 𝑚 ‖𝑉   𝑟  𝑠    ‖ 𝑙 𝑠 𝑗  𝑚 〉                 √  𝑙      𝑗     

 

⟨𝑙    |𝑙  ⟩
 

 
[(𝑗  𝑙 )(𝑗  𝑙   )   𝑗  𝑙   𝑗  𝑙    ] 

 

 {
𝑗𝑝 𝑙𝑝 𝑠𝑛

𝑙𝑛 𝑗
𝑛

 
} ⟨𝑙𝑛   |𝑙𝑝 ⟩                                                                                   (3.29) 

 

When we find  ⃗⃗  and the vector product expressions and substitute (3.20) the equality 

It can be written as follows. 

 

⟨(𝑙 𝑠 )𝑗 𝑚 |
 

√  

  

 
∑ 𝑡  𝑘   

  ℏ

 
 ⃗⃗      𝑟  𝑠  𝑉       | 𝑙 𝑠  𝑗 𝑚 ⟩  

 

 
 

√  

𝑔 

 
[
  ℏ

𝑚
   𝑉  𝜉] 

 

For the solution of the relativistic 𝛽 moment matrix element, the following equation 

is obtained [38]: 

 

⟨(𝑙 𝑠 )𝑗 𝑚 |  𝑗  𝑘    𝜆    𝜇 |𝑗 𝑚  𝑙 𝑠  ⟩ 

 

 
 

√  

  

 
⟨(𝑙 𝑠 )𝑗 𝑚 |

  ℏ 

 
   𝑉  𝜉| 𝑙 𝑠  𝑗 𝑚 ⟩                                           (3.30) 

 

3.4. THE NON-RELATIVISTIC MATRIX ELEMENT M (jA, k=0, 𝜆 = 1, µ) 

 

The non-relativistic 𝛽 moment matrix element Equation (3.3c) is given as: 

 

  𝑗  𝑘    𝜆    𝜇  𝑔 ∑𝑡  𝑘 𝑟     𝑟̂ 
 

 𝜎  𝑘     

 

where gA is the axial-vector interaction constant and 𝜎  𝑘  is the Pauli spin operator. 

Let's write our statement that changes a neutron into a proton: 
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⟨(𝑙 𝑠 )𝑗 𝑚 |  𝑗  𝑘    𝜆    𝜇 | 𝑙 𝑠  𝑗 𝑚 ⟩ 

 

 ⟨(𝑙 𝑠 )𝑗 𝑚 |𝑔 ∑ 𝑡  𝑘 𝑟     𝑟̂  𝜎  𝑘     | 𝑙 𝑠  𝑗 𝑚 ⟩                               (3.31) 

 

We can calculate the matrix element that changes a neutron into a proton using the 

matrix expansion of the operators connected to the two sub-variables given in 

Equation (3.5). 

 

⟨(𝑙 𝑠 )𝑗 𝑚 |𝑔 ∑ 𝑡  𝑘 𝑟     𝑟̂  𝜎  𝑘     | 𝑙 𝑠  𝑗 𝑚 ⟩                    

    
  

 

 {

   
𝑙 𝑠 𝑗 
𝑙 𝑠 𝑗 

} 〈𝑗 ‖   𝑟̂  ‖𝑗 〉〈𝑠 ‖𝜎  𝑘 ‖𝑠 〉                                                     (3.32) 

 

This equality; from phase, symbol 3j, symbol 9j, spherical harmonic, and Pauli spin 

operator is formed. Let's find each term separately: 

 

  𝑗𝑛
 √ ( 𝑗𝑛   )                                                                                              (3.33) 

 

〈𝑙 ‖ ⃗  ‖𝑙 〉  √
        

  
⟨𝑙    |𝑙  ⟩                                                                     (3.34) 

 

The following transformation is used for the resulting Pauli spin matrix element 

operator [38]: 

 

〈𝑠 ‖ ̂ ‖𝑠〉      √𝑠 𝑠      𝑠                                                                        (3.35) 

 

and 

 

〈𝑠 ‖ ̂ ‖𝑠 〉      √
 

 
 
 

 
      

 

 
    √

 

 
                                                            (3.36) 
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Since 𝜎    ̂, it is found as 𝜎  √ . After writing each term in its place, Equation 

(3.37) is obtained for the non-relativistic 𝛽 moment matrix element. 

 

 √
  

  
  𝑙      𝑗    {

   
𝑙 𝑠 𝑗 
𝑙 𝑠 𝑗 

} ⟨𝑙    |𝑙  ⟩                                        (3.37) 

 

By using the Wigner-Eckart theorem, we obtain the reduced nuclear matrix element 

as follows. 

 

⟨(𝑙 𝑠 )𝑗 𝑚 |  𝑗  𝑘    𝜆    𝜇 | 𝑙 𝑠  𝑗 𝑚 ⟩ 

 

 √
  

  
  𝑙      𝑗      𝑗    {

   
𝑙 𝑠 𝑗 
𝑙 𝑠 𝑗 

} ⟨𝑙    |𝑙  ⟩                     (3.38) 

 

Where Rnp expression is as follows. 

 

    ∫   
  𝑟    𝑟 𝑟

  

 
 𝑟                                                                                 (3.39) 

 

Here  𝑛𝑝 is the radial part of the wave function [38]. 
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PART 4 

1. P 

THE pn QUASI-PARTICLE RANDOM PHASE APPROXIMATION 

 

4.1. THE pn-QRPA FOR RANK 1 TRANSITIONS 

 

Halbleib and Sorensen developed the quasi-particle random phase approximation 

(QRPA), which describes excitations created by a charge-exchanging transition 

operator, by generalizing the usual RPA [11]. In this part of the thesis, the solutions 

for the proton-neutron quasi-particle random phase approximation(pn-QRPA) we use 

to obtain the eigenvalues and eigenfunctions of the total Hamilton operator for rank 1 

(𝜆     , first-forbidden (FF) beta transitions are given in detail. The model 

Hamilton operator is generally as follows: 

 

 ̂   ̂     ̂                                                                                                        (4.1) 

 

The system's single quasi-particle Hamiltonian ( ̂   ) is shown by 

 

 ̂    ∑ 𝜀     ̂  
     ̂                      𝑛 𝑝                                                     (4.2) 

 

Where 𝜀     and  ̂  
     ( ̂     ) are the single quasi-particle energy of the nucleons 

with angular momentum ( 𝑗 ) and the quasi-particle creation (annihilation) operators, 

respectively. The  ̂   is the spin-isospin effective interaction Hamiltonian which 

generates 1
−
 vibration modes in the particle-hole channel and is shown as 

 

 ̂   
    

𝑔 
 ∑ ,          

  𝜆           ̅           𝜆  𝜇 -

           

 ,  
       

     
 𝜆           ̅ 

       
     

  𝜆  𝜇 - 

              ∑    
 

    
                                                                                           (4.3) 
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Where    
     

   rank 1 is the first-forbidden (FF) beta transition annihilation 

operator, and     is particle-hole effective interaction constant [1,20]. 

 

   
  ∑ ⟨𝑗 𝑚 (𝑙 𝑠 )|𝑟

    |𝑗 𝑚  𝑙 𝑠  ⟩        
     

      
                            (4.4) 

 

In the second quantization space, it is given as in Equation (4.4). When the rank 1 

transition operator is rewritten according to the resulting Wigner-Eckart theorem: 

 

   
  ∑

〈  (    )‖ 
   ‖        〉

√         
∑ ⟨𝑗 𝑚 𝜆 |𝑗 𝑚 ⟩    

     

      
                  (4.5) 

 

Where      

  and      
 are particle generation and elimination operators. 

 

     

          

           𝑉        
                                                            (4.6) 

 

     
         

          𝑉        

                                                            (4.7) 

 

     

  , and      
 are the particle generation and elimination operators,     and 𝑉   

are the probability amplitudes of the hole and particle states in a given j state [37]. 

     

 , and      
 particle production, a product of annihilation operators 

 

     

      
             𝑉       

       

  

                                  𝑉        
     

                                                       (4.8) 

 

It is obtained in the form. In this case, the beta transition operator is as follows: 

 

   
  

∑
〈  (    )‖ 

   ‖        〉

√         ,   𝑉  ∑          ⟨𝑗 𝑚 𝜆 |𝑗 𝑚 ⟩     

       

 
    

 

   𝑉  ∑          ⟨𝑗 𝑚 𝜆 |𝑗 𝑚 ⟩      
         

-                                       (4.9) 

 

Where      
  𝜆   and        𝜆𝜇  are boson generation and annihilation operators. 
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  𝜆   √

    

     
∑          ⟨𝑗 𝑚 𝜆 |𝑗 𝑚 ⟩     

       

 
    

                 (4.10) 

 

* 𝑗𝑝𝑗𝑛

  𝜆  +
 
  𝑗𝑝𝑗𝑛

  𝜆𝜇                                                                                       (4.11) 

 

       𝜆𝜇  √
    

     
∑          ⟨𝑗 𝑚 𝜆 |𝑗 𝑚 ⟩      

         
                (4.12) 

 

The rank 1 beta transition operator in terms of boson removal and generation 

operators is obtained as follows; 

 

   
  ∑

〈𝑗 (𝑙 𝑠 )‖𝑟
   ‖𝑗  𝑙 𝑠  〉

√ 𝜆       

 

        ,𝑉          
  𝜆   𝑉                   𝜆  𝜇 -                                   (4.13) 

 

      
〈  (    )‖ 

   ‖        〉

√    
𝑉                                                                        (4.14a) 

 

 ̅     
〈  (    )‖ 

   ‖        〉

√    
   𝑉                                                                     (4.14b) 

 

With the reduced beta moment matrix elements       and  ̅    the beta transition 

elimination operator is obtained as follows: 

 

   
  ∑ ,          

  𝜆           ̅           𝜆  𝜇 -                                  (4.15a) 

 

Since     
           

   beta transition generation operator 

 

   
  ∑ ,          

 𝜆           ̅          
  𝜆  𝜇 -                                 (4.15b) 

 

It is obtained as [37]. One particle Hamilton operator is given as 

 

     ∑ 𝜀  𝜎    𝜎              𝜎  𝑝 𝑛                                                              (4.16) 



34 

 

   𝜎  ∑    
 

  𝜎     𝜎   

 

generally defined as above. When written in detail for each nucleon 

 

     ∑ 𝜀           ∑ 𝜀                                                                             (4.17) 

 

     ∑        
                                                                                           (4.18a) 

 

     ∑        
                                                                                          (4.18b) 

 

equations are obtained. 

 

The total Hamilton operator of the system consists of the sum of the single-particle 

Hamilton operator and the effective interaction Hamilton of rank 1 excited state. 

 

                                                                                                            (4.19) 

 

Since rank 1 excited state consists of a matrix element, there is separate active 

interaction Hamilton operators. This is given as 

 

                                                                                                                    (4.20) 

 

       ∑ {
*       

       

  𝜆           ̅      
       

  𝜆  𝜇 +

*       
       

 𝜆           ̅      
       

   𝜆  𝜇 +
}             

  

                                                                                                                               (4.21) 

 

The equation-of-motion (EOM) of the system in general 

 

     
       

                                                                                                     (4.22) 
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It is obtained in the form. Here    is the ground state energy of the neighbouring 

nucleus.   
  is the phonon generation operator in the quasi-particle space and is 

written in terms of boson operators as follows [37]; 

 

  
  𝜆   ∑ *     

      
  𝜆               

        𝜆𝜇 +                                (4.23a) 

 

[   𝜆      
  𝜆    ]                                                                                    (4.23b) 

 

The normalization condition in terms of      
  and      

  wave functions are given as 

follows. 

 

∑ {(     
 )

 

 (     
 )

 

}                                                                                 (4.24) 

 

4.2. THE pn-QRPA EQUATION 

 

The proton-neutron quasi-particle random phase approximation (pn-QRPA) equation 

by using the equations-of-motion (EOM) method can be derived. The basic 

excitation is defined as 

 

  ⟩    
  𝑝𝑛    ⟩                                                                                             (4.25) 

 

Where the phonon creation operator in the proton-neutron quasi-particle random 

phase approximation (pn-QRPA) is given as 

 

  
  ∑ [   

    
         

  ̃      ]                                                               (4.26) 

  

and  𝑝𝑛    ⟩ is the proton-neutron quasi-particle random phase approximation (pn-

QRPA) vacuum. Where ω = kJ
π
 contains k and J

π
 are the eigenvalue index and the 

spin–parity, respectively. The matrix elements of A and B are shown as 
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            (     )         (𝑢 𝑢 𝑢  𝑢             )⟨𝑝𝑛   𝑉 𝑝 𝑛   ⟩ 

 

                         𝑢   𝑢        𝑢    𝑢   ⟨𝑝𝑛    |𝑉   |𝑝
 𝑛   

  ⟩                 (4.27) 

 

             (𝑢 𝑢            𝑢  𝑢  )⟨𝑝𝑛   𝑉 𝑝 𝑛   ⟩ 

 

                       𝑢      𝑢     𝑢 𝑢      ⟨𝑝𝑛    |𝑉   |𝑝
 𝑛   

  ⟩                   (4.28) 

 

The particle-hole elements of the matrix ⟨𝑝𝑛     𝑉    𝑝
 𝑛     ⟩ 

 

⟨𝑝𝑛    |𝑉   |𝑝
 𝑛   

  ⟩   ∑  ̂ 
 

  {
𝑗 𝑗  

𝑗  𝑗    
} ⟨𝑝𝑛    𝑉 𝑝 𝑛  ⟩                 (4.29) 

 

The proton-neutron quasi-particle random phase approximation (pn-QRPA) 

equations are given as 

 

∑                  
  ∑                  

       
                                            (4.30) 

 

 ∑                     
  ∑                     

       
                                (4.31) 

 

The equation of quasi-particle random phase approximation (QRPA) and random 

phase approximation (RPA) matrix are given by 

 

(
  

      ) (
  

  )    (
  

  )                                                                           (4.32) 

 

This equation is a non-Hermitian eigenvalue problem. As in the case of the quasi-

particle random phase approximation (QRPA), B is symmetric and A is Hermitian. 

The proton-neutron quasi-particle random phase approximation (pn-QRPA) matrix 

receives the same form as this equation (4.32) [39]. 
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4.3. THE pn-QRPA FORMULA SOLUTIONS PROPERTY 

 

The annihilation condition can be used to determine the composition of the proton-

neutron quasi-particle random phase approximation (pn-QRPA) vacuum.  

 

   𝑝𝑛    ⟩                                                                                                 (4.33) 

 

where 

 

   ∑ [   
  

           
  

 ̃  
     ]                                                              (4.34) 

 

The proton-neutron quasi-particle random phase approximation (pn-QRPA) 

orthonormality condition is shown as 

 

∑(   
    

   
        

    
   

    )

  

             𝑝𝑛                                    

 

The proton-neutron quasi-particle random phase approximation (pn-QRPA) 

normalization condition is shown as 

 

∑(|   
 |

 
 |   

 |
 
)

  

                                                                                                       

 

The completeness relations for the proton-neutron quasi-particle random phase 

approximation (pn-QRPA) is [39], as shown as 

 

∑(   
    

    
    

    
    

 
    
   

)

  

                                                                                  

 

Which is the proton-neutron quasi-particle random phase approximation (pn-

QRPA)'s completeness relation I. The completeness relation II of the proton-neutron 

quasi-particle random phase approximation (pn-QRPA) is given as 
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∑(   
    

    
    

    
    

 
    
   

)

 

                                                                                        

 

The matrix equation is developed by combining equations (4.37) and (4.38) are given 

as 

 

∑ *(
  

  )            (
   

   )   
        +

 
    

 (
  
  

)                                      

 

The proton-neutron quasi-particle random phase approximation (pn-QRPA) 

equation, like the random phase approximation (RPA) and quasi-particle random 

phase approximation (QRPA) equations, also has positive and negative energy 

solutions [39]. The condition form is 

 

|   
 |                                                                                                                            

 

The proton-neutron quasi-particle random phase approximation (pn-QRPA) solutions 

are similar to the corresponding proton-neutron quasi-particle Tamm–Dancoff 

approximation (pn-QTDA) solutions under this condition. That is shown by 

 

 𝑝𝑛    ⟩      ⟩                                                                                             

 

The corrections are two-neutron-quasiparticle-two-proton-quasiparticle, four-

neutron-quasiparticle-four-proton-quasiparticle, etc., components. 

 

The proton-neutron quasi-particle random phase approximation (pn-QRPA) in the 

ground state  

 

 𝑝𝑛    ⟩    𝑒
     ⟩                                                                                                       

 

where N0 is a factor of normalization and 
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∑ ∑           

  

    
  

   
      ̃    

                                                 

 

In the following equation, the amplitudes X and Y are solved, as shown as 

 

∑   
  

  

                
                     𝑝 𝑛                                                                   

 

The C coefficients are obtained by solving this series of linear equations [39]. We 

can see from (4.42) and (4.43) that the Bardeen–Cooper–Schrieffer theory (BCS) 

vacuum is the first term of the proton-neutron quasi-particle random phase 

approximation (pn-QRPA) vacuum, and the rest are k-neutron-quasiparticle- k-

proton-quasiparticle terms for k = 2, 4, 6,... 

 

The one-quasiparticle densities (4.45) and (4.46) provide a way to build on the 

proton-neutron quasi-particle random phase approximation (pn-QRPA) classification 

to achieve higher-pnQRPA frameworks, as shown as 

 

⟨𝑝𝑛       
    𝑝𝑛    ⟩    ̂

  ∑  ̂ 

  
    

∑|   
   |

 

 

                                                     

 

⟨𝑝𝑛       
    𝑝𝑛    ⟩    ̂

  ∑  ̂ 

  
    

∑|   
   |

 

 

                                                  

 

In this case, the equations-of-motion (EOM) may be used with the accurate ground 

state to obtain the exact A and B matrices, as shown as 

 

         ⟨𝑝𝑛    |*           
 +|𝑝𝑛    ⟩                                                             

 

         ⟨𝑝𝑛    |[       ̃    ]|𝑝𝑛    ⟩                                                             
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The higher-pnQRPA equations are then solved in a self-consistent, iterative manner. 

In any approximation, the matrix elements Equations (4.47) and (4.48) are evaluated. 

The approximation used for one-quasiparticle densities determines the level of 

approximation. The self-consistent problem is written in the lowest order as follows 

[39]: 

 

(  ̅  ̅
  ̅   ̅ ) (

 ̅ 

 ̅ )    ( ̅
 

 ̅ )                                                                                          

 

The barred matrices B, A, Y, and X are the normal matrices B, A, Y, and X 

multiplied by combinations of densities of the one-quasiparticle Equations (4.45) and 

(4.46) as defined in [40], which also introduces a renormalized proton-neutron quasi-

particle random phase approximation (pn-QRPA or pn-RQRPA) theory [39]. 

 

4.4. THE 𝛽-DECAY TRANSITIONS IN THE pn-QRPA FRAMEWORK 

 

This section discusses the 𝛽-decay transitions between states of the neighbouring 

even-even reference nucleus and an open-shell odd-odd nucleus. Consider transitions 

from an odd-odd nucleus's initial state Equation (4.25) to the even-even reference 

nucleus's ground state  𝑝𝑛    ⟩. For 𝛽  and 𝛽   transitions, the decay amplitude is 

given 

 

⟨𝑝𝑛    |𝛽  
 | ⟩  ⟨𝑝𝑛    |𝛽  

   
 |𝑝𝑛    ⟩ 

                                    ⟨𝑝𝑛    |[𝛽  
    

 ]|𝑝𝑛    ⟩                                                       

 

We have used the commutator to access the Y terms of the proton-neutron quasi-

particle random phase approximation (pn-QRPA) phonon, as is customary in the 

random phase approximation (RPA) work [39]. The 𝛽  operator's quasi-particle 

representation as 

 

𝛽  
  ∑  

  

 𝑝𝑛 {𝑢      
        𝑢  ̃       

                                 𝑢 𝑢 [  
  ̃ ]                  [  

  ̃ ]  -                            
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𝛽  
   ̂  ∑  𝑝‖  ‖𝑛 [  

  ̃ ]     ∑      𝑝𝑛 [  
  ̃ ]                           

 

By taking the Hermitian conjugate of this and applying by the Wigner-Eckart 

theorem, 

 

 𝛽  
         𝛽    

                                                                                                            

 

where 

 

𝛽  
   ̂  ∑  𝑛‖  ‖𝑝 [  

  ̃ ]     ∑      𝑛𝑝 [  
  ̃ ]                                          

 

Combining equation (4.53) with the converse relation we have 

 

(𝛽  
 )

 
      𝛽    

                                                                                                            

 

The Condon-Shortley Phase Layout (CS) and Biedenharn-Rose Phase Layout (BR) 

phase conventions have the same allowed β-decay relations. Due to spatial 

dependence, the forbidden unique decay has a convention-dependent phase factor 

[39]. The quasi-boson approximation (QBA) given as 

 

⟨𝑝𝑛     𝛽  
   ⟩   

   
 

  ⟨     𝛽  
    

      ⟩ 

 ∑   

  

    

 𝑝 𝑛  {   𝑢      
 ⟨   |[ ̃            

      ]|   ⟩ 

                                 𝑢        
 ⟨   |*     

       ̃       +|   ⟩-                          

 

We use the notation Mω, To distinguish the z projection of J from the z projection of 

L. The matrix elements show Kronecker deltas so that 

 

⟨𝑝𝑛     𝛽  
   ⟩

          
       ∑  

  

 𝑝𝑛 (  𝑢    
  𝑢      

 )                
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The transition amplitude is determined by the Wigner–Eckart theorem, 

 

(𝑝𝑛    ‖𝛽 
 
‖ )      ̂∑  

𝑝𝑛

 𝑝𝑛 ( 𝑝𝑢𝑛 𝑝𝑛
  𝑢𝑝 𝑛 𝑝𝑛

 
)                                        

 

We use equation (4.55) to discover the transition amplitude for 𝛽  decay, which 

gives: 

 

⟨𝑝𝑛     𝛽  
   ⟩           ⟨𝑝𝑛    |(𝛽    

 )
 
| ⟩ 

                              ⟨ |𝛽    
 |𝑝𝑛    ⟩

 
      ⟨ |𝛽    

 |𝑝𝑛    ⟩                

 

Where we have assumed that matrix elements are real as is usual. In the same way as 

equation (4.56), this becomes 

 

⟨𝑝𝑛     𝛽  
   ⟩   

   
 

       ⟨   |[  
  𝛽    

 ]|   ⟩ 

 ∑   

  

    

 𝑝 𝑛  ,   𝑢      
 ⟨   |*              

       +|   ⟩ 

                                             𝑢        
 ⟨   |[ ̂  

        ̃          ]|   ⟩} 

 

                          
     ∑      𝑝𝑛 (𝑢      

    𝑢    
 )                              

 

By using the Wigner–Eckart theorem to obtain the reduced matrix element, as shown 

as 

 

(𝑝𝑛    ‖𝛽 
 
‖ )           ̂∑  

𝑝𝑛

 𝑝𝑛 (𝑢𝑝 𝑛 𝑝𝑛
   𝑝𝑢𝑛 𝑝𝑛

 
)                            

 

We use the relation for transitions in the opposite direction equation (4.55). For β
− 

transitions it gives as 
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⟨  𝛽  
  𝑝𝑛    ⟩       ⟨ |(𝛽    

 )
 
|𝑝𝑛    ⟩       ⟨𝑝𝑛    |𝛽    

 | ⟩ 

                                            
∑  

  

 𝑝𝑛 (𝑢      
    𝑢    

 )                            

 

where the last step came from equation (4.62) [39]. As a result, the reduced matrix 

element is shown as 

 

( ‖𝛽 
 
‖𝑝𝑛    )       ̂∑  

𝑝𝑛

 𝑝𝑛 (𝑢𝑝 𝑛 𝑝𝑛
   𝑝𝑢𝑛 𝑝𝑛

 
)                                       

 

The remaining transition amplitude is calculated similarly using equation (4.57) [39], 

with the result  

 

( ‖𝛽 
 
‖𝑝𝑛    )           ̂∑  

𝑝𝑛

 𝑝𝑛 ( 𝑝𝑢𝑛 𝑝𝑛
  𝑢𝑝 𝑛 𝑝𝑛

 
)                            
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PART 5 

 

RESULTS AND DISCUSSION 

 

For some spherical nuclei in the 186 A 202 mass region for Gold (Au), from 0
+
↔1

-
 

first-forbidden (FF) β moment matrix elements investigated. Beta transition strength 

distributions are very important in the accurate determination of logft values, which 

greatly contribute to the understanding of nuclear beta decay. The relativistic matrix 

element of the first-forbidden (FF) beta-transition operators are calculated directly 

without any assumptions. 

 

The contribution of the forbidden transitions, which have longer half-lives and less 

probability of occurrence than the allowed decays, to the ground state transitions is 

very effective in determining the total beta transition half-life times.  

 

The ft function is inversely proportional to the square of the nuclear transition matrix 

element | |
2
. The larger ft, i.e. the smaller square of the nuclear transition matrix 

element | |
2
, the more impossible the transition under consideration, i.e. it is 

forbidden. If the square of the nuclear transition matrix element | |
2
 is proportional 

to the degree of overlap of the wavefunctions of the mother nucleus and the product 

nucleus. The more the wavefunctions overlap, the larger square of the nuclear 

transition matrix element | |
2
 becomes and approaches 1. The size of the nuclear 

matrix element (M) depends on the selection rules and the magnitude of the orbital 

angular momentum (l). Logft values of beta transitions, which are important in 

understanding the nuclear structure of first-forbidden (FF) transitions with λ
π
 = 1

-
 

have a significant contribution to the determination of half-life times, the explanation 

of double beta decay processes with two neutrinos and nuclear astrophysical events. 

Because the investigation of charge-change collective excitations, which are proton-

neutron, neutron-proton reactions, is not limited to examining properties such as 

Gamow-Teller (GT) resonance energy, the Ikeda sum rule, and cross-section. 
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Therefore, the determination of nuclear matrix elements of both ground state and 

excited states and calculation of half-life times is of great importance. 

 

Numerical calculation results of matrix elements of the Pauli spin operator, the 

orbital angular momentum operator, and the total angular momentum operator 

obtained as a result of analytical calculations were obtained using FORTRAN 77 

programming language. The relativistic β moment matrix elements play an important 

role in the calculation of the transition probability. Obtaining the transition 

probability correctly will make a great contribution to the correct interpretation of the 

ft value. For 𝜆 =1
−
 excited states, the effective interaction strength parameter is used 

as 𝜒𝑟 𝑛𝑘1=55 −5/3 𝑒𝑉 𝑚−2
. 

 

In this study, rank 1 first-forbidden (FF) beta decay processes for the considered 

isotopes were investigated by using the proton-neutron quasi-particle random phase 

approximation (pn-QRPA) in the Schematic Model. For the first-forbidden 

transitions, the Woods-Saxon (WS) potential is considered as the average field 

potential in the numerical calculations and the Chepurnov parameterization is taken 

into account in the selection of the parameters. The pair correlation function 

constants between nucleons assumed to be  𝑛= 𝑝=12/√  and no extinction factor 

was used to match the experimental results. 

 

The relativistic matrix element of the first-forbidden beta transition operator 𝜆 =1
−
 is 

calculated directly analytically without making any assumptions. The problem is 

analyzed in more detail by adding the potential arising from the spin-orbit interaction 

in obtaining the matrix elements of the rank 1 first-forbidden beta transition 

operators. The ξ-approximation was taken into account in the calculation of nuclear 

matrix beta moments. 

 

Nuclei in the 186 A 202 mass region undergo 𝛽− 
decay or electron capture (EC) 

reaction due to the excess number of neutrons. Transition diagrams of some isotopes 

that make the 0
+⟷1

−
 transition is shown in Figures 5.1 - 5.8. The value of I (%) 

indicates the abundance ratio, and the experimental logft values corresponding to this 
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abundance value are expressed with proton-neutron quasi-particle random phase 

approximation (pn-QRPA) Woods-Saxon values. 

 

 
 

Figure 5.1. Electron capture (ε) transitions diagram of the Hg-186 isotope. 

 

 

 

Figure 5.2. Electron capture (ε) transition diagram of the Au-190 isotope. 
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Figure 5.3. Electron capture (ε) transition diagram of the Hg-190 isotope. 

 

 

 

Figure 5.4. Electron capture (ε) transition diagram of the Au-192 isotope. 
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Figure 5.5. Electron capture (ε) transition diagram of the Hg-192 isotope. 

 

 

 

Figure 5.6. Electron capture (ε) transitions diagram of the Au-194 isotope. 
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Figure 5.7. Negative beta (β
-
) transitions diagram of the Au-200 isotope. 

 

 
 

Figure 5.8. Negative beta (β
-
) transitions diagram of the Au-202 isotope. 
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The proton-neutron quasi-particle random phase approximation (pn-QRPA) logft 

values for isotopes making the first-forbidden 0
+
→1

−
 and 1

−
→0

+ 
transitions were 

compared with appropriate experimental values and the results are given in Tables 

5.1 – 5.8. The energy values of ωi (MeV) are the ground state energies of the 

neighbouring nucleus corresponding to the logft values calculated with the pn-QRPA 

(WS). As can be seen from all tables, the logft values calculated by the pn-

QRPA(WS) method are closer to the experimental values. 

 

Table 5.1. The FF-decay logft for Hg-186 isotope. 

 

Theoretical Experimental [41]  

Transitions 
logft ω 

(MeV) 

logft I (%) ω 

(MeV) 

6.37 2.361 5.89 

6.56 

6.45 

2.8 

0.5 

0.6 

1.139 

4.052 

4.642 

 

 𝑔  
       𝑔 𝑠    𝑢  

        

 

Table 5.2. The FF-decay logft for Au-190 isotope. 

 

Theoretical Experimental [42]  

Transitions 
logft ω 

(MeV) 

logft I (%) ω 

(MeV) 

7.83 1.532 8.4 

7.6 

0.6 

1.9 

0.0 

0.920 

 

 𝑢  
       𝑔 𝑠    𝑡  

        

 

Table 5.3. The FF-decay logft for Hg-190 isotope. 

 

Theoretical Experimental [42]  

Transitions 
logft ω 

(MeV) 

logft I (%) ω 

(MeV) 

7.26 0.853 ˃5.9 

 

˂10 0.0 

 

 𝑔  
       𝑔 𝑠    𝑢  
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Table 5.4. The FF-decay logft for Au-192 isotope. 

 

Theoretical Experimental [43]  

Transitions 
logft ω 

(MeV) 

logft I (%) ω 

(MeV) 

7.84 0.765 7.59 

8.73 

14 

0.45 

0.0 

1.195 

 

 𝑢  
       𝑔 𝑠    𝑡  

        

 

Table 5.5. The FF-decay logft for Hg-192 isotope. 

 

Theoretical Experimental [43]  

Transitions 
logft ω 

(MeV) 

logft I (%) ω 

(MeV) 

6.67 1.156 6.8 2.2 1.674  𝑔  
       𝑔 𝑠    𝑢  

        

 

Table 5.6. The FF-decay logft for Au-194 isotope. 

 

Theoretical Experimental [44]  

Transitions 

logft ω 

(MeV) 

logft I (%) ω 

(MeV)  

8.04 1.032 7.95 

9.2 

11.01 

7.72 

7.14 

24 

0.34 

0.001 

0.80 

0.14 

0.0 

1.267 

1.893 

2.085 

2.356 

 

 𝑢  
       𝑔 𝑠    𝑡  

        

 

Table 5.7. The FF-decay logft for Au-200 isotope. 

  

Theoretical Experimental [45]  

Transitions 
logft ω 

(MeV) 

logft I (%) ω  

(MeV) 

6.87 0.354 6.93 

8.46 

9.38 

79 

0.23 

0.00053 

0.0 

1.029 

1.856 

 

 𝑢  
       𝑔 𝑠    𝑔  
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Table 5.8. The FF-decay logft for Au-202 isotope. 

 

Theoretical Experimental [46]  

Transitions 
logft ω 

(MeV) 

logft I (%) ω 

(MeV) 

5.57 0.902 ≈5.3 

6.32 

5.66 

5.63 

≈90 

0.75 

2.3 

2.01 

0.0 

1.411 

1.564 

1.643 

 

 𝑢  
       𝑔 𝑠    𝑔  
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PART 6 

 

CONCLUSION 

 

This thesis is of great importance in terms of considering first-forbidden (FF) beta 

transitions with the WS potential by using the pn-QRPA in the SM. We can 

summarize the results of the thesis study as follows: 

 

 The first-forbidden (FF) beta transition momentum of the relativistic beta 

transition operator is directly calculated without any assumptions and the 

contribution of the spin-orbit term in the shell model potential is neglected in 

the relativistic calculation of the first-forbidden (FF) beta decay matrix 

element. 

 

 The results get in better agreement with experimental data as the neutron 

number increases. It is also expected to give reliable results for nuclei close to 

the neutron-drip line is available 

 

 Since the charge and mass distribution in the nucleus is closer to the Woods-

Saxon (WS) potential function in electron and proton scattering, the base 

functions of the Woods-Saxon (WS) potential as a potential well in the 

microscopic model considered, 

 

 The reason for this is that the effective interaction with charge changing 

between nucleons is considered only in the particle-hole (ph) channel in the 

aforementioned calculations. The interaction in the particle-particle (pp) 

channel is very important for a better understanding of the weak interaction 

theory. We are currently working on FF calculation by using pn-QRPA with 

the pp channel in Schematic method and this would be treated as a future 

assignment. 
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