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ABSTRACT

Ph.D. Thesis

HYBRID OPTIMIZATION SEARCH ALGORITHM TO SOLVE CEED OF
POWER SYSTEM INCLUDING SOLAR PHOTOVOLTAIC GENERATION

Abdurazag Mohamed Ali ELBAZ

Karabiik University
Institute of Graduate Programs

Department of Electrical & Electronics Engineering

Thesis Advisors:
Assoc. Prof. Dr. Muhammet Tahir GUNESER
January 2022 ,100 pages

The main objective of our research is to enable electric power systems to work
economically and minimize all losses as much as possible. Optimization methods are
the most effective way of solving the economic dispatch problem and so reduce the
cost of system operations, especially for reducing the generating units’ fuel
expenditures and cutting transmission losses. This economic operation must be
achieved by sharing total load demand among all generating units, according to the
minimum cost for each unit, taking into consideration the efficiency and reliability of
this process. The main target of using this process is to obviate wasting extra money
on system operations; in return, this money can be saved. Many optimization
methods were employed to solve the economic dispatch problem, and among the
most recent and efficient algorithms is the hybrid bat-crow search algorithm, which
is original to this study. In this thesis, we will employ optimization methods for a

part of generating units with the aim of solving the economic power dispatch for the



system. We will employ the most well-known algorithms, such as the bat algorithm,
particle swarm optimization (PSO), and genetic algorithm (GA). Our aim is to solve
the economic dispatch and combined economic emission dispatch (CEED) problems
in power systems. We will compare the proposed hybrid bat-crow search algorithm
results with bat, crow search, GA, and PSO algorithm for various power systems. For
the solar energy we will use Center of Solar Energy and Research Studies

Tripoli/Libya data.

Keywords : Combined Emission and Economic Dispatch, Power System, Solar
Photo Voltaic Generation, Optimization Method.
Science Code: 90544



OZET

Doktora Tezi

GUNES FOTOVOLTAIK URETIMI DAHIL HiBRIT OPTIMIZASYON
ARAMA ALGORITMASI

Abdurazag Mohamed Ali ELBAZ

Karabiik Universitesi
Lisansiistii Egitim Enstitiisii

Elektrik-Elektronik Miihendisligi

Tez Damismanai:
Assoc. Prof. Dr. Muhammet Tahir GUNESER
Ocak 2022, 100 sayfa

Calismamizin temel amaci, elektrik gilic sisteminin ekonomik olarak calismasini
saglamak ve tiim kayiplar1 miimkiin oldugunca asgari diizeye indirmektir. Ekonomik
sevk problemini ¢dzmek i¢in optimizasyon yontemlerinin kullanilmasi, ozellikle
tiretim birimlerinin yakit maliyetini en aza indirgemek ve iletim kayiplarin1 azaltmak
icin sistem islemlerinin maliyetini diisiirmenin en uygun yoludur. Bu ekonomik
islem, bu islemin verimliligi ve giivenilirligi géz oniinde bulundurularak, her birim
icin asgari maliyete gore, tiim {iretim birimleri arasindaki toplam yiik talebinin
paylasilmasiyla saglanmalidir. Bu siireci kullanmanin temel amaci, sistem
operasyonlarinda fazladan para harcamasini Onlemektir; buna karsilik, bu para
kaydedilebilir. Ekonomik sevk problemi problemini ¢6zmek i¢in bir¢ok
optimizasyon yontemi kullanildi ve en son ve etkili algoritmalardan biri, bu
yontemin bu ¢alismanin orijinali olan hybrid bat-crow search algoritmasi. Bu tezde,

sistemin ekonomik gili¢ dagitimini ¢6zmek igin iiretim birimlerinin bir kismi igin

Vi



optimizasyon yontemlerini kullanacagiz. Bat algoritmasi, parcacik Siiriisi
optimizasyonu (PSO) ve genetik algoritma (GA) gibi en bilinen algoritmalari
kullanacagiz. Bu calismanin amaci gii¢ dagitim sistemlerinde ekonomik gdnderim
problemini ve birlesik ekonomik emisyon gonderim (CEED) problemlerini
¢dzmektir. Onerilen hybrid bat-crow arama algoritmasi sonuglarini, cesitli giic
sistemleri i¢in bat, crow arama, GA ve PSO algoritmasiyla karsilastiracagiz. Giines
enerjisi i¢in, Tripoli / Libya verilerini kullanarak Giines Enerjisi ve Arastirma
Calismalart Merkezi'ni kullanacagiz. Asagidaki sekil, bu calismada kullanacagimiz

ornek giines enerjisini géstermektedir..
Anahtar Kelimeler : Kombine Emisyon ve Ekonomik Sevk, Enerji Sistemi, Solar

Foto Voltaik Uretim, Optimizasyon Y éntemi.

Bilim Kodu 1 90544
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CHAPTER 1

INTRODUCTION

1.1. HISTORY

The economic dispatch (ED) problem is of vital importance in the planning and
running of power systems [1]. Its solution is extremely complex as it involves a
nonlinear objective function and many constraints. In power systems, ED concerns
establishing a schedule for the available generators allowing them to operate
optimally in order to minimize the total cost of generation according to the systems’
constraints [2][3]. Rising concerns over global warming have stimulated interest in
reducing greenhouse gas (GHG) emissions, including those emitted during electricity
generation from conventional sources like coal, oil, and natural gas. In addition,
countries have been encouraged by energy security concerns to seek sustainable
sources of energy in place of the diminishing fossil fuels. Renewable energy sources
(RES) like the sun and wind are potential substitutes for generating power that are
both sustainable and environmentally friendly. They involve, however, certain
technical and economic problems preventing them from replacing the current sources
used for power generation. First, they are unpredictable, sporadic, and
unmanageable, and so they cannot be relied upon on their own to meet the load
demand. Also, the technologies needed for utilizing RES are generally costlier
compared to those used in conventional generators of comparable size, particularly
when they are employed together with energy storage devices for higher reliability.
Therefore, the price of the energy supplied is not competitive. Finally, they are
difficult to integrate into the current centralized power generation and delivery

infrastructures because they are distributed widely and dependent on location.



1.2. AIMS AND GOALS

The ED of power systems is an integral component of them and the main purpose of
using it is to enable power system generation networks to operate reliably and
efficiently, and this should be achieved by minimizing the generator fuel cost.
Getting optimal solutions for the ED problem requires efficient optimization
algorithms. The hybrid bat-crow search algorithm is one of the latest methods and it

has already been proved efficient and reliable for solving this problem.

The objective of the research for this thesis was to formulate and implement a design
strategy for determining the optimal configuration and operation plan for a PV HPS
able to meet the energy needs of a grid-connected power distribution system, keeping

the following considerations in mind:

e The design criteria are the annual system cost and CO2 emissions. Total cost
includes both capital (acquisition and installation) and operating (fuel, O&M,
replacement . . . etc.) costs, while emissions include both direct (operational)
and embedded emissions.

e RES are stochastic in nature.

e The technical and operational constraints of the system will not be violated by
the solution, and a certain level of supply reliability will be ensured.

e The optimization model will be easy to apply and manage, and will yield

results with a reasonable degree of accuracy.

In this thesis we propose the hybrid bat-crow search algorithm in order to solve the
ED problem based on a large-scale power system that includes generation by solar

photovoltaics.
1.3. SUBJECT, SCOPE
The hybrid bat-crow search algorithm is one of the most recent methods and it is

already proving its efficiency and reliability for solving the ED problem. We propose

to solve this problem using the hybrid algorithm, based on a large-scale power



system involving solar photovoltaic generation. We will prove this algorithm is
efficient and gives a perfect performance for small-scale systems. To test the
performance of the algorithm for small- and large-scale power systems, we will

apply it to the combined economic emission dispatch (CEED) problem.

1.4. CONTRIBUTION

The optimization of power system cost and protecting the atmosphere from being
damaged by greenhouse gas (GHG) emissions are important, as are algorithms
developed with these aims in mind. An algorithm suitable for these goals could help
with effective active power scheduling, lowering both fuel costs and emissions from
conventional fossil fuel-powered power plants at the same time [4]. This can also
result in large financial gains [5] and cut harmful emissions of gases such as nitrogen
oxide (NOx), sulfur oxide (SOx), and carbon dioxide (CO2). Since these objectives
are conflicting, multi-objective CEED issues may arise, which can be solved using
traditional numerical programming processes such as gradient search and lambda
iteration, or even by modern heuristic optimization methods. It is beneficial to solve
such CEED issues using heuristic optimization methods instead of traditional
population-based numerical programming methods. For searches that use stochastic
operators, heuristic approaches do not require any mathematical data or gradient
information. Furthermore, its implementation is both flexible and straightforward.
They feature a parallel structural architecture that is inherently scalable and execute
computations quickly [5].

This thesis explores the multi-objective optimization of the fuel cost of a
conventional power plant (CPP) as well as the minimization of emissions in CPPs
and solar PV power plants (SPVVPPs) via a hybrid bat-crow search algorithm. To find
a solution to this complicated, non-convex, and excessively nonlinear problem,
various effective meta-heuristic optimization algorithms are formulated. To
compensate for the shortcomings of evolutionary multi-objective algorithms, such as
early convergence, slow meeting of the Pareto-optimal front, and narrow trapping, it

is unusual to utilize a combination of diverse algorithms.



This thesis proposes hybrid evolutionary multi-objective optimization that combines
the crow search optimization with the bat algorithm to tackle the CEED problem for
SPVPPs. A hybrid technique in combination with the constriction handling method
proposed can achieve balance between exploitation and exploration tasks. The
proposed hybrid method was used to test different IEEE standard bus systems with
the quadratic cost function and monitoring of transmission losses. The results
obtained were compared with those of the bat, PSO, and crow search algorithms. The

simulation results indicate that the proposed method is effective.

The ED of power systems is an integral part of them and the main reason for using it
are to achieve the reliable and efficient operation of power system generation
networks, and this should be achieved by minimizing the generator fuel cost. Getting
optimal solutions for ED problems requires efficient optimization algorithms. The
PSO algorithm is among the latest methods and it has already shown its efficiency
and reliability in resolving the ED problem. In this thesis we propose the PSO
Algorithm for solving the economic dispatch problem based on a large-scale power
system involving solar photovoltaic generation. We will prove that the PSO
algorithm is efficient and gives a perfect performance for small-scale systems. To
test the performance of this algorithm for small- and large-scale power systems, we
will apply it to CEED problem. The performance of grid hybrid frameworks is
assessed depending principally on costs and reliability, associated with decreased
GHG emissions of the system. In the present research, with the aim of minimizing
two optimization features, i.e., loss of power supply probability (LPSP) and cost of
energy (COE), the multi-objective optimization of a grid-connected PV/wind turbine
framework was carried out at the Faculty of Engineering in Gharyan, Libya, while
attempting to provide adequate electricity. Optimization of the system’s renewable
energy fraction (REF) was the third objective. It was also aimed to estimate the
amount of power generated by the hybrid system and mathematical models were
submitted. The results obtained revealed the proportion of the total energy meeting
the demand for electricity in all parts of the network. Subsequently the
interrelationship between the grid and the proposed hybrid system in relation to the
capacity of the network to sell or obtain electricity from this system was examined.

Furthermore, the findings from the multi-objective bat algorithm (MOBA) were split



into three main areas: the economically optimal solution (lowest COE), the
conceptual perspective of utilizing renewable energies (highest REF), and the

optimal solution with optimal environmental effects (lowest GHG emissions).

1.5. THESIS ORGANIZATION

The rest of the thesis is organized as follows: Chapter 2 includes the literature
review. The methodology, research question, and goal functions are given in detail in
chapter 3. The findings are discussed in chapter 4, while chapter 5 contains the

conclusions.



CHAPTER 2

LITERATURE REVIEW

2.1. INTRODUCTION

The optimization of power system costs and protection of the atmosphere from the
damage caused by GHG emissions are vital, as are the algorithms developed for
these aims. An algorithm suitable for these purposes may provide optimal active
power scheduling to decrease both the fuel expenditures and emissions of
conventional fossil fuel-powered power plants concurrently [4]. This may also allow
large financial gains [5] and reduce emissions of dangerous gases including nitrogen
oxide (NOx), sulfur oxide (SOx), and carbon dioxide (CO2). Since these objectives
are conflicting, multi-objective CEED issues may result, which can be tackled using
traditional numerical programming processes such as gradient search and lambda
iteration, or even by modern heuristic optimization. The resolution of these CEED
issues will be advantageous if heuristic optimization methods are employed in place
of traditional population-based numerical programming. No mathematical data or
gradient information is necessary for heuristic searches. Stochastic operators are
utilized for searches, and the method is flexible and simple to use. It involves an
inherently scalable parallel structural design and performs calculations swiftly [5].

No single best result is achievable when such multi-objective CEED problems are
being solved since there are conflicting objectives in these cases, namely reduced
emissions and optimized fuel costs. Thus, these objectives are minimized
concurrently to approach a transactional for multi-objective optimization. Further

processing is necessary for a single favored outcome.

It is described in the literature how domination-based structures are employed via

multi-objective evolutionary algorithms that decrease emissions and fuel costs when



the CEED problem is being dealt with. Population-based approaches yield numerous
non-dominant outcomes simultaneously [6]. These non-dominant outcomes indicate

how emissions and fuel costs interact [7][8].

2.2. CONVENVENTIONAL METHODS

These methods comprise the gradient-based method [9], the lambda iteration method
[10][11], linear programming [12], quadratic programming [13], and the Lagrangian
multiplier method [14].

2.3. CLASSICAL TECHNIQUES

Classical techniques based on coordination equations [15] are employed to solve
ELD problems. These conventional methods cannot satisfactorily solve such
problems since they are sensitive to initial estimates and converge into a local

optimal solution. Moreover, they are computationally complex.

2.4. FUZZY LOGIC CONTROL

In recent decades many studies and techniques have tackled ELD problems. Fuzzy
logic control (FLC) has attracted interest for control applications. Unlike the
conventional techniques, FLC devises the control action based on linguistic rules
related to the behavior of a human operator instead of from an algorithm generated
from a model of the system [16][17][18][19]. However, it needs more fine tuning and

simulation before it is operational.

2.5. ARTIFICAL NEURAL NETWORK

There are both advantages and disadvantages inherent in the artificial neural network
(ANN). The system’s characteristics are improved by ANN, but the technique’s
foremost drawbacks include the long training time as well as selecting the number of

layers and the number of neurons in each layer [20][21][22].



2.6. EVOLUTIONARY ALGORITHM

Another approach is evolutionary algorithm (EA) techniques. Based on its ability to
deal with nonlinear objective functions, EA is thought to be very effective for solving
the ELD problem.

The authors of [23] employed a simple novel indirect approach to track maximum
power under rapid or gradual irradiation and temperature changes using a simple
novel indirect algorithm. Simply put, every EA has its own qualities, and thus
combination of the algorithms required is a natural way to tackle CEED issues. The
integration of an EA with two or more optimization algorithms is termed

hybridization.

M. F. Zaman et al. [24] employed two evolutionary algorithms to give the optimal
generators’ output according to the minimum fuel costs and solving the dynamic
EPD problems. The self-adaptive differential evolution and real-coded GA were the
algorithms recommended for a network. A diversity mechanism and constraint
handling mechanism were used to improve the execution of the proposed algorithms.
Using those techniques made the algorithm give better results in solving the dynamic
EPD. In the future, these algorithms will be applied in solving the dynamic EPD

problems, including renewable energy sources with thermal generation units.

2.7. EVOLUTIONARY PROGRAMMING

Evolutionary programming (EP) is examined in [25]; however, for large problems its

convergence rate is slow.

2.8. TABU SEARCH

An improved tabu search (TS) is proposed in [26], but due to the use of highly

epistatic objective functions and the numerous parameters to be optimized its

efficiency is limited. Moreover, it is a time-consuming method.



2.9. GENETIV ALGORITHM

Another EA technique, GA, is described in [27][28]. However, a very long run time
is required depending on the size of the system being studied. In addition, it results in
the same suboptimal solutions being revisited continuously.

2.10. SIMULATED ANNEALING

Simulated annealing (SA) is explored in [29][30], but getting caught in a local

optimal may lead to this technique’s failure.

2.11. GRAVITATIONAL SEARCH ALGORITHM

The gravitational search algorithm (GSA) in described in [31]. While this algorithm
seems effective for solving ELD problems, it performs poorly at the later search

stage as a result of the limited agents’ diversity.

2.12. META-HEURISTIC OPTIMIZATION ALGORITHMS

A number of meta-heuristic optimization algorithms are currently in use, such as GAs
[32], PSO [33], scatter search (SS) [34], the bacterial foraging algorithm (BFA) [35],
differential evolution (DE) [36], the grey wolf algorithm [37], teaching-learning-
based optimization (TLBO) [38], the harmony search algorithm (HSA) [39], the
hybrid big bang-big crunch algorithm [40], the glowworm swarm optimization
algorithm [41], the “Blue Battery Concept for Energy Management of High
Penetration of Renewable Energy Sources with Techno-Economic and
Environmental Considerations™ [42], [43] and the energy management concept for
evolution of a smart grid [44], all of which are used to solve complicated, non-
convex, and substantially nonlinear CEED problems. Multi-objective CEED prob-
lems can be converted into single-purpose problems by the application of a biased
addition approach with the help of h parameter values, which assists in dealing with
the dimensional issue when solving converted single and multiple objectives via

evolutionary algorithms [38][39]. For resolving CEED problems without applying



the h parameter, an alternative way is to regularize emissions and fuel costs. These
approaches yield one objective solution at a time for the weights chosen. In [45] a

renewable energy system was optimized using the EMO.

2.13. FIREFLY ALGORITHM

J. Merlin and Nagajothi [46] employed a developed firefly algorithm (FA) to resolve
the EPD and minimize the expenditure of generating units. The proposed algorithm
was applied to a dataset consisting of the IEEE 30 bus system. Employing the FA
was the best option to minimize these fuel costs and it gave better results than the

other optimization methods, such as GA and EP.

Sreelekha and Scaria [47] employed the FA and self-adaptive differential Evolution
(SDE) algorithm to reduce the power generators’ costs by solving EPD for 10-
generation units with valve point effect and multiple fuel equations for each unit. In
short, the comparison between the results of both algorithms showed that the FA was
capable of getting good quality optimal results when solving non-smooth EPD

problems compared with the other algorithm.

Jaswant and Wadhwani [48] mainly used the FA to resolve the economic power
dispatch (EPD) problem; also the lambda-iteration method (LIM) was applied for the
same purpose. Both of them were applied to see which one will give the most
optimal results in minimizing the fuel costs for the generation units. A virtual
network was used, including 6 generation units, and the transmission line losses were
considered in this work and also virtual data. As a result of this study, the results of
the FA were more accurate and gave a more optimal solution than the other method
(LIM).

2.14. ANT SWARM OPTIMIZATION

Ant swarm optimization is described in [49], but the theoretical analysis involved is
complex and probability distribution changes with iteration.
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2.15. ANT COLONY OPTIMIZATION

Rahmat et al. [50] utilized the differential evolution immunized ant colony
optimization technique (DEIANT) in order to solve the EPD problems. The
researchers got this algorithm by making improvement to the standard ant colony
optimization (ACO) algorithm to get more accurate and efficient results of the power
system. The objective was to determine the generators’ output at the minimum fuel
costs. Many constraints were calculated in this study, for example prohibited
operating zones, valve loading effect, and ramp rate limits. Also, the transmission
line losses were counted. These operational constraints made the system more
complicated and non-linear. The results were obtained using MATLAB. The
performance of the DEIANT algorithm was superior and accurate in reducing the

generation units’ fuel costs and in decreasing the losses.

Rahmat et al. [51] presented the DEIANT to solve the EPD problem and reduce the
cost of electricity production for a power system, including prohibited operating
zones. The intent of this study was to resolve the EPD problem for the power system
economically and make the generation units operate according to the minimum fuel
costs and with the same amount of power. The database includes the IEEE 30 bus
unit system. The proposed algorithm DEIANT was compared with the differential
evolution (DE) and ACO algorithms. The numerical results were obtained using
MATLAB. The proposed algorithm gave a good performance in solving the power
system and the comparison indicated that the DEIANT algorithm was the best in term

of minimizing the fuel costs of generation units.

2.16. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization is examined in [52][53], but it suffers from partial
optimism. Further, the algorithm is not able to solve scattering or optimization

problems.

Naveed et al. [54] presented the combined emission economic dispatch of a power

system involving solar photovoltaic generation based on the PSO method. They used

11



13 solar panels with 6 thermal units. They implemented their method in Egypt. In
[54] CEED models were developed for a system including numerous photovoltaic
(PV) plants and thermal units. They used the mixed integer optimization problem
(MIOP). For solving the problem, they used PSO. In their scenario 13 PV plants and

6 conventional ones are used.

2.17. ARTIFICAL BEE COLONY

In [55] the artificial bee colony (ABC) was used to solve the complex non-linear
optimization problem, but its convergence is slow and the exploration and
exploitation processes conflict with each other. Therefore, to achieve good

optimization, good balance should be ensured between the two abilities.

Rahmat et al. [51] used the DEIANT to solve the ED problem. They used the IEEE

30-Bus reliable test system.

2.18. HYBRID METHODS

Emmanuel et al. [56] used ABC combined with PSO for multi-objective
environmental/economic dispatch solution. They used the 30-bus with 6 generator
IEEE standard.

Raul et al. [57] used PSO and GA together to solve the ED problem. The mutation
operation was used to explore the region in the search area of the PSO method.
Barros et al. [58] applied a hybrid algorithm based on PSO and GAs for solving the
problem of ED. They based their method on the demand for energy that reaches a
low cost. The mutation operation from the GA is used to explore regions of the
search area in this scenario by the canonical version of the PSO method. They used 3
scenarios with 3, 13, and 20 generators.

Elyas et al. [59] described a new hybrid optimization algorithm based on the clonal
selection algorithm (CSA). Their method combines the positive features of two other
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optimization techniques, namely gases Brownian motion optimization (GBMO) and

PSO, in local searches.

In previous research [60] the successful use of hybrid algorithms was demonstrated
for solving CEED problems as well as a number of other composite engineering
issues and test functions. Broadly speaking, the outcomes show that these hybrid
algorithms are useful and are able to exchange the hybrid structure’s elite
information, and are employed in parallel processing, exploring, and exploiting
potential with a better performance than a single algorithm. A transaction is required
between tasks such as exploitation and exploration in order to guarantee an
internationally recognized best solution. In all algorithms, the exploration phase is
critical for locating the solution area and estimating the global optimal point. When
looking for outstanding solutions through neighborhood searches, it's also important
to use an algorithm. [60]. As explained in [61], solar energy was employed in vehicle

systems.

The present thesis explores the bat algorithm in combination with the crow search
algorithm [62] to solve the CEED problem for a hybrid structure because when
combined the useful features of the two algorithms are obtained and their individual
flaws are restricted. In population-based techniques like these, different procedures
are utilized to explore the space and integrate in order to enhance the transaction
between exploitation and exploration for obtaining high quality solutions. A major
reason for this hybridization is to obtain a diverse and fully distributed objective
solution. We spoke about how the CEED problem is formulated and how
transmission losses and limitations are handled. The relevant hybrid, crow search,
and bat algorithms were then examined. The outcomes of applying the hybrid
method to various standard IEEE bus systems were evaluated. Hybrid optimization
methods outperform single optimization methods; additionally, as evidenced by the
data, our hybrid method was just as successful as the bat-crow search algorithm.

When solving such multi-objective CEED problems, a single optimal result is not
possible because in these cases the objectives are conflicting, namely emission

reduction and fuel cost optimization. Thus, these objectives are minimized
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concurrently to approach a transactional for multi-objective optimization. Further
processing is necessary for a single favored outcome to be obtained. The literature
describes dominance-based architectures that use multi-objective evolutionary

algorithms to reduce pollution and fuel costs while tackling the CEED challenge.

2.19. OTHER METHODS

As the demand for electricity continues to rise and conventional energy resources are
being depleted rapidly, the search for renewable energies as alternative energy
sources has become crucial. PV solar and wind power are considered the most viable
sources of electricity as the market for power from multiple clean energy sources
continues to grow. Furthermore, the current penetration rates of PV systems are high,
and the use of PV cells and advanced electronic technologies is predicted to grow
worldwide. In addition, wind power is regarded as the most important form of
renewable energy due to its efficiency, ubiquity, and high capacity. However, there is
not yet full confidence in wind and PV energy and they involve some disadvantages,
including being vulnerable to unpredicted natural conditions and being hugely
dependent on variations in environmental conditions like sunlight and wind speed.
Therefore, PV energy and wind energy combined may make up for individual
variances in PV and wind hybrid power generation networks, increase overall power
capacity, and be more efficient, which means better quality electricity is supplied to
the grid [63], [64], [65], [66].

In mountainous and rural regions where systems might be set up near demand areas,
renewable energy has been shown to be the best solution for micro-networks, thus
making traditional electricity grids unnecessary [67]-[70]. Similarly, on-grid and off-
grid renewable energy frameworks have been constructed. Generally, the issue
concerning the potential use of renewable energy sources is resolved by many
different energy supplies that are wholly dependent on unpredictable environmental
conditions and that are not completely specified in terms of their energy output. For
instance, while wind and solar energy are generally used in combination, a more

stable energy source, such as biomass energy, can be used to ensure that constant
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production of energy is obtained using such hybrid combinations that is more
predictable and stable [71-77].

The sizing of a hybrid renewable energy system (HRES) is complicated due to the
unpredictability of renewable resources, and it is important to maintain a balance
between economic aspects and reliability. As a result, many models, algorithms, and
software tools have been employed for the optimization of HRES frameworks. They
include Tiryns, Rescreen and PVSOL, Hybrid2, TRANSYS, SAMS, and RAPSYS, as
well as HOMER (Hybrid Optimization of Multiple Energy Resources) [78-79]. These
tools generally are still commonly used for checking optimized outcomes based on
energy costs and the technical integration of elements of the infrastructure including
wind turbines, solar modules, and inverters, with relation to controllers and power
storage [80-81].

There are easily available software solutions for the optimization of HRESs [78], and
when it comes to system modification no user-defined constraints are needed for the
associated configuration and size processes. Moreover, mathematical models and
algorithms are often used in the current HRES design process to alleviate the

drawbacks.

In [82] and [83], HOMER Pro used a combination of technical, environmental, and
related economic domains to develop a policy application system for effectively
planning and appraising hybrid microgrid-based systems based on renewable energy.
Further, for establishing how to best combine diverse subsystems in terms of
technological, environmental, and financial efficiency, net present value (NPV) was
found to be the most dependent parameter for hybrid microgrids based on renewable
energy. Consequently, system configurations were determined using the total cost of
life cycles, also known as the NPV. HOMER was also used in [84] and [85], in which
configurations of technically feasible and eco-friendly distributed energy systems
were examined based on the annualized overall cost, which is connected to the

levelized cost of energy (LCOE).
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For HRESs the current method is still optimization with respect to the use of
metaheuristic implementation using algorithms for design as well as sizing. Among
the algorithms that exist, the bat optimization algorithm [85], crow search algorithm
[86], PSO, evolutionary metaheuristic algorithm, computational annealing,

differential evolution, and cuckoo scan are the most common metaheuristic ones.

In [87], the resilience of a microgrid for assisting in decision-making was determined
using five main parameters: technological, social, cultural, political/institutional, and
climate factors. Likewise, the analytic hierarchy process (AHP) [88], which is
objective, has been employed to find the values of requirements for optimal hybrid
systems. Further, in [89][90], renewable energy was integrated into the grid by using
multi-criteria decision analysis (MCDA), which appraises the technical and financial
optimization of seasonal change to yield the optimum configuration for the AHP
application framework. The principal aim in the present thesis is to define the
optimal number and types of components in a hybrid grid network, keeping both
financial and environmental issues in mind. It was also aimed to improve the MOBA
by using actual hourly electricity information from the Faculty of Engineering in
Gharyan, Libya, through testing to decrease the objective attributes of loss of
probability of power supply (LPSP), process cost of energy (COE), and

environmental effects (reduction of GHGs).
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CHAPTER 3

MATERIALS AND METHODS

3.1. BACKGROUND

In computer science, a problem-solving technique is intuitive or heuristic. It doesn't
matter if the result is provable or not, but it usually gets close to good solutions.
Heuristic algorithms, on the other hand, are algorithms that reduce the solution time
by giving up searching for the best solution in order to become more efficient in the
transition time. Heuristic algorithms do not guarantee that they will find the best
solution, but they do guarantee that they will find a solution within a reasonable time.
They usually reach the solution that is close to the best quickly and easily. As an

example of heuristic search algorithms.

A* search (A star)

Beam search

Hill climbing algorithm

Best first search

Greedy best first search

Simulated Annealing algorithm

Backtracking

In other words, heuristic algorithms are known as functions that calculate the cost of
the shortest path from one node to another.

3.2. HEURISTIC OPTIMIZATION
Heuristic algorithms can provide near-optimal solutions when optimizing large-scale

problems within a reasonable time. General purpose heuristic optimization

algorithms are divided into six different groups: those based on biology, physics,

17



herds, society, music, and chemistry. Swarm intelligence-based optimization
algorithms have been formulated based on the movements of swarms of animals such

as birds, fish, cats, and bees [1].

Examples of heuristic optimization methods:

Genetic Algorithm (GA)

Ant Colony Optimization (ACO)

Particle Swarm Optimization (PSO)
Artificial Bee Colony (ABC)

Differential Evolution Algorithm (DEA)
Simulated Annealing (SA)

Gravity Search Algorithm (GSA)

Gases Brownian Motion Optimization (GBMO)
Heat transfer search (HTS)
Electromagnetic Field Optimization (EFO)
Optical Inspired Optimization (O10)
Weighted Superposition Attraction (WSA)
Forest Optimization Algorithm (FOA)
Hurricane Based Optimization Algorithm
Black Hole Optimization Algorithm
Water Cycle Optimization Algorithm
Fruit Fly Optimization Algorithm

Krill Swarm Optimization Algorithm
Bacterial Foraging Behavior

Bat Algorithm

Firefly Algorithm

Lion Algorithm

Gray Wolf Algorithm

Dolphin Algorithm

Bush Colony Algorithm

Artificial Algae Algorithm

Virus Colony Search Algorithm
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Shark Smell Optimization Algorithm
Social Spider Algorithm

Tree-Seed Algorithm (TSA)

Taboo search algorithm

3.3. PROPOSED METHOD BASED BASED ON A HBRID METHODS

The bat-crow search algorithm is simple to implement and finds the optimum
solution quickly. Furthermore, it ensures escape from the local minimum solution.
Thus, this algorithm is presented herein to surmount the disadvantages previously
seen. Moreover, a literature survey clearly shows that use of the bat-crow search
algorithm has not been proposed for solving the CEED problems of power systems
including solar PV generation. This prompted us to use this algorithm to deal with
these problems. Also, in this thesis solar energy was used. We employed
optimization methods for a part of the generating units in order to solve the economic
power dispatch for the system. We employed the best known algorithms, such as the
bat algorithm, PSO, and GA. Figure 3.1 shows the sample solar energy that we used

in this study.

Figure 3.1. Solar panels in Libya.
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Also for confirming the result the following data are used (see Table 3.1):

Table 3.1. Data and the information.

Time Global solar radiation Power demand Temperature
(W/m?) (Mw) (°C)
1 0 978 24
2 0 1156 23.6
3 1 1205 22.8
4 1 1209 23.2
5 8 1176 23.5
6 103 1156 22.7
7 293.7 1160 23
8 581.2 1083 23.6
9 590.4 1175 28.2
10 893.9 1274 32.8
11 1067 1148 33.1
12 1134 1274 34
13 1035 1178 35.2
14 878 1334 36
15 756 1085 36.3
16 673 1206 37.2
17 422.9 1287 31
18 360 1179 29
19 107 1354 27.9
20 30 1358 26.3
21 1 1278 26
22 1 1175 25.5
23 0 1226 24.5
0 0 1312 23.8
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For the global solar radiation (W/m?) the result is shown in Figure 3.2.
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Figure 3.2. Global solar radiation (W/m?).

For the fuel cost coefficients and generating capacities of the thermal generating

units the following data are used (see Table 3.2); these data are from [91].

Table 3.2. Fuel cost coefficients and generating capacities of thermal generating

units.

Machine |a ($/MW2 h)| B ($/MW h) c ($/h) Pmin (MW)|  Pmax
no. (MW)

1 0.15251 38.49932 757.80344 11 126

2 0.10603 | 46.16023 |451.31567 11 151

3 0.02834 41.00341 |1050.31456 41 251

4 0.03576 38.29654 1256.5432 36 211

5 0.02209 | 36.33005 1660.5687 131 326

6 0.01803 38.28345 | 1359.29322 126 316
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3.4. METHOD

3.4.1. Mathematical Modeling

The ED problem that can be found in thermal power and solar PV generators is
described in this article. A static or dynamic model can be used to create ED

challenges in general. Both case studies were completed, and the numerical model

for each is shown below.

3.4.1.1. Solar Power with CEED

The environmental and ED problem may be regarded as a multi-objective functional
problem, and it is more commonly referred to as CEED. The numerical model for

this problem is the following:
minG = Y-, (F;(P) + E;(Py), (3.1)
where Fi (Pi) represents the fuel cost of the i generation unit and Ei(Pi) the

emissions of the i generating unit, and G is a problem minimization function with

the following constraints:

(Z?=1Pi)—PL_Pd=O, (3.2)
where P is the transmission losses, Pd is power system demand, n is the power
generating units, and P; is the generated power of the i unit. The inequality
constraint is

Pimin < PL' < Pimax (33)
Pimin and Pimax represent the lower and upper power generation limits of the i

generation unit, respectively. The following equation includes emission cost, fuel

cost, and transmission losses:
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F,(P) = a;P? + biP; + ¢; + le; * sin(f; * (Pynin — P))I$/h (3.4)
The fuel cost coefficients are shown by ai, b, ci, €i, and fi for the i unit generation.
E;(P) = a;P? + BiP; +v; + & * exp(5; * P)Kg/h (3.5)

The emission cost coefficients are expressed by ai, fi, 7i, &, and ¢i for the i unit
generation. The losses occurring in the transmission line are determined via the
following equation, where B is the losses coefficient for the transmission-line
equation:

Py =iy Z?:l P;B;;jP; (3.6)

U]

The penalty factor (hi) and the multi-problem objective function for emission and

cost dispatches are as follows:

Min FC = ?:1(aiPl-2 + biPL' + Ci + |el- * Sin(fi * (Pimin - Pl))l + hi(aiPl-z + .Bipi +

$
vi+ & *exp(8; * P))) 3.7)

The penalty factor hi is determined as follows:

2 .
. = YPimaxtbiPimax*Citleisin(/fi*(Pimin—Pimax))| (3.8)
' %PhnaxtBiPimax+Vitei exp(8i+Pimax)

Solar PV power generation is calculated using

Si
1000’

Pgs = Prated{]- + (Tref - Tamb) *OC} * (3-9)

where Prated is the nominal power of the solar PV power plant (SPVPP), Trer is the
temperature reference for the SPVPP, Tamb is the environment's ambient temperature,

and S; is the solar incident radiation. The scheduled sharing of solar PV power is
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computed as follows if m SPVPPs are available in the system for fulfilling demand

and sharing the SPVPP system:
Solar share = }7L, Pgs; X Us; (3.10)

Pgsi is the accessible power level of the j" SPVPP and Usj is the ON (1) or OFF (0)
state of the j™ SPVPP. The solar power cost is determined by

Solar cost = Y7L PUCost; X Pgs; X Us; (3.12)

PUCost; is the per unit cost of the j™ SPVPP. The objective for the static dispatch
(cost and emission) with the SPVPP, which is the first major point of the present

study, is given as follows:

Min FT = Z{‘zl(aipiz + bipi + Ci + |ei * Sin(fi * (Pimin - PL))l + hi(aiPiz + ,Bipi +
Yi + & xexp(8; * P))) + 2jt1 PUCost; X Pgs; X Us; + Ks(Z}"zl Pgs; —
Yj=1 Pgs;j x Usj) (3.12)

The second major point of this research is the goal for dynamic dispatch (emission

and economy) with the SPVPP, which is as follows:

Min Fr = ¥, S, (ai(Pit)Z + b + ¢ + |eg + sin(fi + (Pamin — P )| +
hi(a;(PH)? + B;Pf +y; + & = exp(8; * Pl-t))) + XL, PUCost; x Pgs; x Us} +

Ks(X7k, Pgs; — X, Pgs} x Usf) (3.13)
3.5. ALGORITHMS USED FOR MODELING

3.5.1. Principles of the PSO Algorithm

In 1995 Kennedy and Eberhart reported a new approach for the optimization of

particle swarms. They were inspired by the social behaviors of groups such as birds,
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fish, and ants. Their algorithm emulates the exchange of information between
members. PSO has been applied for optimization alone and combined with other
algorithms in various areas. The algorithm searches for the optimum solution via
agents, called particles, whose trajectories are modified by a stochastic and
deterministic component. Every particle is affected by its “best” position and the
“best” position achieved in the group, but they usually shift randomly. Particle
position and velocity are determined by the following equations [92]. The best
particle position is shown by xBest and the global particle position by gBest, inertia
weight is shown by w, positive constants are shown by ci and c2, and random
variables between 0 and 1 are shown by r1 and r2, respectively. In every iteration the
velocity and particle position are altered in order to minimize or maximize the

problem being examined.

vi*t = wo!f + ¢y (xBestf — xP) + ¢ 1, (gBest! — x§) (3.14)

xf*t=xf +vlt (3.15)

3.5.2. Fundamentals of the Bat Algorithm

Yang created this meta-heuristic optimization algorithm in 2010, which is currently
among the best [93]. Bats are winged mammals that have the ability to determine
location and direction by echolocation using reflected sounds. This is a sonar
technique that bats use it to find their prey and to avoid hitting obstacles in the dark.
They emit short high frequency sounds and receive echoes from the objects around
them. This technique enables bats to know the sizes, shapes, distances, motions, and
directions of objects. The bat algorithm is based on the echolocation mechanism of

bats and it is shown mathematically as follows:

Movement of a bat:

fi = fmin — fnax

VE=Vit+ (XE = X)f; xrand (3.16)
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Xt=x"t4+vt (3.17)

As £ is between 0 and 1,

Xnew = Xold + SAt (318)

Here ¢ is between -1 and 1, and it is a random number at a specific time t. It

represents the average loudness of all bats; thus, At= < Ai' >,

Pulse emission and loudness:

AT = ad] (3.19)

it =11 - exp(—yt)], (3.20)

where a and y are constants.

The initial bat algorithm did not take into account the effect of Doppler shifts or the
principles of bats’ foraging behavior, with each bat being expressed in terms of
position and velocity, hunting prey in the dimensional spaces according to the
trajectory achieved. This should not be treated in isolation though. The Doppler
effect should be considered in the bat algorithm, and bats show successful adaption

to the Doppler effect, which explains how echoes work [93].

Simply put, a bat has habitats where it forages, and these are diverse in the bat
algorithm. It searches for food in a single habitat in this algorithm due to the virtual
bat’s mechanical behavior. To sum up, the bat algorithm must take the following

idealized basics into consideration:

e Bats move in various habitats.

e Bats are able to adapt to the Doppler effect in echoes.

e Bats acclimate and establish compensation averages based on the proximity of
the target [93].
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3.5.2.1. Quantum Behavior

The assumption is that when one bat in a group finds prey in a specific habitat, the
other bats will instantly start to feed on the same prey. This is the mathematical basis

for the following formulation of bat positions [93]:

t+1
)(i,j=
t 1 (3.21)
g 0*|mean] — X ;| *In( - ).ifrand;(0,1) <0.5
i
t - ¢ t | 1..
g—0*|mean; — X{ ;|*In(—),ifrand, (0,1) > 0.5

j ' Ui j

3.5.2.2. Mechanical Behavior

In addition, it is assumed that a virtual bat’s velocity will not be greater than the
speed of the sound, estimated to be 340 m/s. The bat will make allowance for the
Doppler effect, and this will be expressed mathematically as CR as it differs between
different bats. CR and the inertia weight w take values from 0 to 1. The & value
expresses the smallest constant for avoiding the probability of division by 0. CR will
be 0 if the bat’s Doppler effect is not compensated for and will be 1 if it is. This can

be expressed mathematically as shown below [93]:

fij = fmin — fmax (3.22)
ﬁ,jz%g*ﬁ_j * (1+CRi*£f;—§"j+E (3.23)
Vit =wx V5 + (gF = XE) * f (3.24)
X = Xy 0 @29

3.5.2.3. Local Search

It is logically assumed that the sound volume will be reduced, and the pulse emission

rate will be increased as bats approach their prey. Regardless of the loudness value
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used, calculations of the loudness factor should be based on the environment. This is
expressed in the following equations [93] If (rand (0, 1) >ri), where rand n (0,6?%)
shows the Gaussian distribution with mean value 0, o?is the standard deviation, and

AL ... is the arithmetic mean of loudness.

Xt =gt + (1 + randn(0,02)) (3.26)
0% = A = Aol + & (3.27)
3.5.3. Crow Search Algorithm

The crow search algorithm, developed by Askarzadeh [94], mimics the behavior of a
crow when looking for food and sharing the location and type of food with another
crow; it is regarded as one of the world’s most intelligent animals by some people
[95]. Its behaviors are useful in terms of heuristics. This algorithm is based on the
activities for acquiring food that crows constantly engage in, which include the
hiding of food and communication with another crow in order to enable the stealing
of food. The crow’s behavior also includes random movements to mislead a rival or

to protect food from other crows [96].
3.5.4. Hybrid Bat-Crow Search Algorithm

The emission cost, fuel cost optimization, and SPVPPs required for ED using the
new hybrid bat-crow algorithm are explained here. The bat algorithm obtains the
global maximum/minimum value in order to solve a problem. In comparison with the

bat algorithm, faster convergence rates are achieved with the crow search algorithm.
The flowchart in Figure 3.3 for the hybrid of the two algorithms involves different

parameters, including the number of generations, initial population, loudness,

frequency, bat pulse rate, and speed of the bat during flight.
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Begin with a Hybrid
Algorithm

Set the BAT Algorithm's parameter

y

Examine the costs of emissions, fuel, and
the number of solar plants under various
scenarios

v

Using the BAT Algorithm, find various
CEED solutions for solar power plants

v

Apply the Crow Search Algorithm to the BAT
Algorithm's solution

:

Using the Crow Search Algorithm, find the
best CEED solution with solar power

C Print the outcome)

Figure 3.3. Flowchart of the Hybrid Bat-Crow Search Algorithm.

In the crow search algorithm for flight length, which also considers awareness
probability, the fuel cost, emission cost, and number of SPVPPs are read when, for
the initial population, the bat algorithm is used with a variety of operating conditions

when seeking different solutions.

The specific initial population of the crow search algorithm helps us to solve the bat
algorithm. The bat algorithm has the following parameters: maximum frequency of
2, minimum frequency of 0, pulse rate of 0.1, loudness factor of 0.2, and number or
population size of 100, while the crow search algorithm has the parameters
awareness probability of 0.01, flight length of 2, and number or population size of
100.
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The application framework’s energy management strategy is described here along
with details of the components of mathematical platform models needed for the
proposed application framework, as well as estimates of GHGs and definitions of the
objective functions. The reduced calculation of the energy costs via the system was
based on the lifespan of the project as well as various elements through reduced cash
flow analysis. The required life cycle of the PV devices, wind turbines, and battery
banks was assumed to be (20,15) as well as 20 years [97], with a project lifespan of
20 years. Furthermore, the precision of the estimates is enhanced using
measurements via the economic factors of interest rate (Ir) and inflation rate (If). A

schematic of the PV-wind turbine-battery on-grid system is shown in Figure 3.4.

o _‘ﬁ
= =R AR - - s

Inverter

Wind Turbine

Faculty Load

Battery

Figure 3.4. A schematic representation of the PV-wind turbine-battery on-grid
system.

3.6. PV SYSTEM
The optimization algorithm’s main purpose is to determine the optimum number of

systems using a full solar-PV framework comprising sixty-two 250-W solar panels,

connected to a 15-kW inverter.
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The production power of the PV generator in a year can by calculated using the

following equation:

oy = Zea Pove X N X D) (2 (14 Kr ((Tamo ) +6(0) x (F2552) =

Gpase

1000) = Tyase) ) . T = 8760 (3.28)

The total net present cost NPCypv is based on original costs ICpyv as well as operational
and repair costs O&MCpv. Since the lifespan of the device matches that of the
project, no replacement costs are incurred. Thus, NPCpy is calculated as follows
[98][99]:

OMPy,
n-1
I—1I f>
1+
< 1+If

All the necessary information was recorded on an hourly basis. The solar radiation

NPCyy, = 1Cpy + 0&MCypy, = Npyy, X [IPRyy, + Zrzlgo (3.29)

and weather temperature profiles for the year 2020 are shown in Figures 3.5 and 3.6,

respectively.
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Figure 3.5. Global solar radiation in 2020.
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Figure 3.6. Weather temperature profile for 2020.
3.7.WIND TURBINE SYSTEM

The production capacity of wind turbine generators is mainly dependent on wind
speed. The following equation is used to determine the output power of a wind

turbine over one year [100]:

r (VO3-V§
Nwr X Ny X Pyrpr X Y=y B ) V<
Fwr = Nyr X1y, X Pyry V. <V < Ve , T = 18760 (3.30)
0, Veo <VorV <V,

V(t) represents the wind speed of the blades (m/s) at the hub height:

X
V() =V, (%) (3.31)
Hwr is the height of the wind turbine hub, while Hr is the reference height, which is
related to (a), the coefficient of friction, which is normally employed with low

surface ruggedness and exposed spots [101], [102].
As the lifetime of the wind turbine is 15 years, replacement is necessary every 15
years. Further, the net cost of the wind turbine method is gauged by the following

equation:
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Ir—1
(++iset)
20 _ OMPwr (3.32)

n=0 n—1
Iy—1
<1+ : f)
1+tf

The mean wind speed profile for 2020 is shown in Figure 3.7.
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Figure 3.7. Mean monthly wind speed for 2020.
3.8. BATTERY SYSTEM MODELING

The surplus capacity of the system is stored in batteries for use whenever necessary.

Battery energy storage involves the following restrictions:
EBat,min < EBat(t) < EBat.max (333)

(3.34)

EBat,max = EBat.cap

EBat,min = Egatmax(1 — DOD) (335)
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Battery charging and discharging are determined as follows [81], [103]:
C(t)=C(t—1)(A — o)+ (surplus power)n, (3.36)
C(t) =C(t—1)(1 —o0)— (deficit power) (3.37)
The battery discharge output is kept at 1 during discharge.

In the experimental project we implemented, the usable battery energy is 18.4 kWh,
with a total of 300 Ah, a 24-kWh nickel-iron (Ni-Fe) battery bank with 80% DOD,
and 1% self-discharge every 24 hours. The lifespan of the battery bank is 20 years
and so during the project there are no replacement costs. The net present cost of the

battery bank is determined by the following equation:

OMPBAT

NG
IT_If
<1+ 1+tf>

NPCpar = ICgpr + O&MCppr = Npar X |IPRppr + 21210=0 (3.38)

3.9. GRID SYSTEM

Grids are energy sources capable of absorbing energy and modeling an infinite
source. Herein a grid is used to make up any lack of power if the PV or wind turbine
device is unable to provide the electrical charge necessary for the Faculty of
Engineering and if the batteries do not make up for the electricity shortfall. The
income generated by sales of resources to the utility is determined as follows:

Ryria = Li23° rateeea—in: Egridsening (3.39)
Here ratefecd-in represents the feed-in tariff rate of 0.05 $/kWh.

The cost incurred when buying power from the grid is computed by

Coria = Cp X 2E2° Egriayurenasea (3.40)
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Here Cp is the cost of purchasing 1 kW from the grid in Libya, which is equal to
$0.04/kWh.

3.10. ESTIMATION OF GHG EMISSIONS

GHG emissions are calculated for the PV system, wind turbines, and grid. The results
found in the present study were also used for implementation of the planned program
to meet the needs of the Faculty of Engineering and to determine the cumulative
volume of the net reduction in GHG emissions in Gharyan via renewable energy.
GHG emissions are specifically assessed herein solely for meeting the needs of the

Faculty of Engineering in Gharyan.

Base Case GHG emissions = Total load X Grid electricity — specific factor X

GWP (3.41)

GHGs per unit emitted have a variety of effects on global warming because of gases’
specific qualities. All emissions considered herein are expressed as CO2 equivalents
(CO2e) in order to compare the emissions of various GHGs. This is a scale that
measures the global warming potential of COz in comparison with the other GHGs
specified in the Kyoto Protocol [104]. According to the 5th Assessment Document of
the International Panel on Climate Change (IPCC) in 2014 [105], the global warming
potential of methane (CH4) and nitrous oxide (N20) is 21 and 310, respectively,
while the value for sulfide hexafluoride (SFe) is very high, i.e., 23,900.

The grid estimates of GHG emissions are determined using the following equation:

Grid GHG emissions = Total load supplied by the grid X Gridgs X
GWP, (3.42)

Here Gridesr = Electricity-specific factor for Libya (0.919629045); kgCO2/kWh
[106].
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It is assumed herein that solar PV systems generate energy from the sun directly and
produce no GHG emissions. Nevertheless, during their lifetime, they do emit some
GHGs, for example when they are being built and assembled, in the balance of
system, during the transfer of materials or installation, and during disposal or
recycling. The emissions of the PV application framework, Empv are computed as

follows:

Emy, = Y878° Poy (t) X €y, X GWP, (3.43)
Here:

Ppv = Electricity from the PV generator annually.

epv = PV framework emission factor equivalent to 47 g CO2-eq/kWh mono-Si PV

emissions.

Emissions from the wind turbine system, Emwr, are determined with the following

equation:

Emyr = X25° Py (t) X ey (3.44)
Here:

Pwr = Power generated by the wind turbine system annually.

ewr = Emission factor of the wind turbine framework.

The overall reduction in the system’s GHG emissions are calculated by
SyStemGHG_tOtal = PVGHG + WTGHG + GT‘idGHG (345)

net (3.46)

savinggug=Basecaseqy;~SYSteMGHG_total
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3.11. COMPONENT ACCESSIBILITY

The reliability of a system is normally dependent on the quality of the components
used, and production halts due to repairs or a complete malfunction. In addition, the
probability of availability (PA) based on PVs, which is related to the wind turbines,
is set at 96%. Thus, the renewable energy generated from the PVs and the wind

turbine generators can be calculated by [107-109].

Bren = 0.966 X (Byy + Pyr) (3.47)

3.12. OPTIMIZATION PROBLEM

The main aim was to establish the cheapest way to achieve the optimum number of
hybrid green energy framework components. For achieving this, the MOBA was used
in the optimization of the device’s REF as a third objective function, while keeping
the loss of likelihood of power supply and energy cost as low as possible. When
seeking an optimum solution, the fact that the three functions targeted are
interdependent means LPSP needs to be minimized, which is related to optimization
of the REF of the system and thus increasing the COE, necessitating balance between

the three aims during planning.

For resolving the multi-objective sizing question concerning the energy exchange
between the HRES and the grid, the following three cases are presented.

e Case one: Sales and purchases of electricity from the grid can be conducted via
the system.

e Case two: Power from the grid can only be bought via the system.

e Case three: Only sales of electricity to the grid can be conducted through the

system.

Analysis of the outcomes of these cases can indicate the consequences when energy

is shared between system and grid.
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For applying the proposed MOPA and the strategy for energy management of the
hybrid system, a MATLAB code was written to run on an Intel Core i7-7500 2.9 GHz
processor. The simulation lasts less than an hour, and the results are used for

operation over a year.

3.13. FORMULATION OF THE PROBLEM

The principal objective functions are the following:

A. First objective function: minimal energy cost

The project’s COE is determined using Eqn. (3.48):

COE = (CRFXTx NPCx)+Cgria—Rgrid ' (348)

Eserved +Egrid_selling

where CRF is used to measure the present value while the project is running using a

sequence of equivalent cash flows [105]:

() (3.49)

N
Ir—I¢
(1+1+]f) 1

CRF =

B. Second objective function: minimum loss of power supply probability:

LPSP is considered to represent the framework’s reliability over a year via the
equation [110] .

Yot Paeficie(t) . At
z:'{=1Pdemand(t)- At’

LPSP = T = 8760 and At =1, (3.50)

where 0 < LPSP < 1.
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C. Third objective function: maximum renewable energy fraction:

The REF is the energy component from clean sources used to supplement the load. It

is determined as follows:

T
REF = Le=a(Ppy +Pwr)xAL T = 8760 and At = 1 (3.51)

1 PPV HPWT+Pgridpy,chasea) <O
The grid contribution factor (GCF) represents the contribution to the electricity
market. It is the opposite of the REF and is taken into account in order to minimize
the REF. Reducing the GCF leads to maximization of the REF:
GCF =1-REF (3.52)
Therefore, the minimum GCF is included in the third objective function [111].
3.14. CONSTRAINTS
The principal functions face some restrictions:
A- Boundaries of decision variables:
NDin < N, < Na& x e {PV,WT, BAT},
where (Nx) represents the number of components (x).
The minimum and maximum restrictions concerning the decision variables were
considered according to the problem (search space complexity and number of
variables). Trial and error was used to determine these limits in all optimization

algorithms.

B- Energy balance constraint:
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Equivalence has to be established between the cumulative hourly energy output of all
online units and the device load demand for the whole scheduled time span in order

for the machine requirements is be met in terms of hourly load. That is,

Epy(t) + Ewr(t) £ Egriq(t) £ Epat(t) — Eqump(t) = Fi0aa® (3.53)

Ninv
Where;

Epv = PV generator’s energy.

Ewr = Wind turbine generator’s energy.

Egat = Battery bank’s energy generated and used.

Egria = Electricity marketed, linked to storage in the system.
Eaump = Disposability of waste energy via overload besides grids.

ninv = Efficiency of the inverter.

C- Battery storage parameter constraint

The battery energy capacity is limited as follows:

EBat,min < EBat(t) < EBat,max (3-54)

Fpat, min ANA £rar, mar are the battery banks’ minimum and maximum stock sizes,

respectively.
3.15. MULTI-OBJECTIVE BAT ALGORITH (MOBA)

An approach based on optimization, MOBA, is used herein to solve the energy
management problem. The bat algorithm is bio-inspired and based on swarm
intelligence. It was developed by Yang in 2010. It uses sonar echoes to detect and
avoid obstacles like in bats’ echolocation system. Sonic pulses are converted into
frequencies reflecting obstacles [112]. The MOBA used herein was specifically
adapted from the literature [113]. This algorithm is recommended for use in

MATLAB with the run-time measured in seconds, depending on the purpose.
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Moreover, a variety of method parameters are included, such as population size (n),
reduction in loudness (a), pulse decrease rate (y), speed (vi), and frequency (fmin,
fmax) to xi. Clearly, the MOBA undergoes nearly exponential convergence.
Exponential convergence in all cases is also feasible. In addition, the optimal fronts
are estimated as set out in the literature [99,114].

The following strategy can be used for the actualized MOBA:
MOBA parameters:

BA: Population (N = 50), number of iterations = 100, loudness (o)) = 0.95, pulse rate

(r) = 0.45, minimum frequency (fmin) = 0, maximum frequency (fmax) = 1.

: Objective functions f1(x); ...; fk(x), x= (x1,..., xd)T;

- Initialize the bat population xi (i =1, 2, ..., n) as well as (vi).
: for (j=1to N) do (points on Pareto-fronts);

: Generate k weights wk >= 0 so that:

1

2

3

4

5: Form a single objective.
6: while t < Max number of iterations do.

7: Generate new solutions by adjusting frequency.
8: Update velocities and locations/solutions.

9: if rand > ri then;

10: Random walk around a selected best solution.
11:end if

12: Generate a new solution by flying randomly;
13: if rand < and then

14: Accept the new solutions;

15: Increase and reduce.

16: end if.

17: Rank the bats and find the current x*.

18: end while

19: Record x* as non-dominated solution.

20: end for

21: Post process results and visualization.

41



3.16. AREA OF RESEARCH AND RENEWABLE RESOURCES

The framework proposed herein was designed for a hybrid system involving
PV/wind turbines connected to a grid. In the scheme suggested for supplying the
Faculty of Engineering with power, the electricity generated by the PV system linked
to the wind turbines is used. Surplus energy is used to charge the batteries and is only
directed to the grid when the batteries are fully charged. In addition, the batteries’
power is used first if the energy services of the Faculty of Engineering are not
accessible from the PV network connected to the wind turbines. If the generators do

not meet the demand, energy is supplied by the grid.

The study was performed at 32°10.6'N and 13°1.6'E, at the Faculty of Engineering in
Gharyan, Libya. The area is characterized by RES with a mean radiation of 2047
kWh/m? per year and mean wind speeds of 5.31 m/s. The Faculty’s electricity use is
as follows: mean 112.8 kWh per hour, total output 199 kW, and charging factor
0.636. The usual regular load for a year (March, July, and December) is shown in
Figure 3.8.
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Figure 3.8. The study area's daily average load profile for the months of March, July,
and December.
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Concerning the products commercially available in Libyan, various components
were chosen from among those available, and their prices were learned from
different companies supplying manufacturers. The appropriate components were thus
selected with regards to operating and repair costs, and life and essential costs as well
as any further expenses. Table 3.3 shows the components selected along with their

prices.
Table 3.3. Features of the components selected and their costs.

Component Cost of ggs:a(;:femen ¢ Operating and Duration of

P Capital ($) ($)p Maintenance Costs ($) Life (Years)

(1) Percentage for cost
PV (15 kW) 21000 0 of PV panel [115] 20
Wind Turbine (10 (3) Percentage for cost
kW) 11000 0 of wind turbine [115] 20
. 15200 x Rate
375-Ah Nickel- 115549 of price 20
Iron Battery .
increase

Charge Controller | 1200 15
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1. SIMULATION RESULTS

The dynamic and static economic and emission dispatches were validated using

SPVPPs. The case study system used for testing comprises 10 IEEE thermal units

and 13 SPVPPs. The data concerning these thermal units and their emissions are

shown in Table 4.1.

Table 4.1. Data on the generation and emissions of ten thermal power plant units.

Unit
No A b c Pmin Pmax o B Y e f

1 0.128 | 40.432 | 1011.393 | 11.000 | 56.000 | 0.043 | -3.899 | 359.003 | 0.261 | 0.014
2 0.112 | 40.780 | 962.599 | 21.000 | 81.000 | 0.043 | -3.987 | 349.011 | 0.261 | 0.014
3 0.131 | 36.499 | 907.803 | 48.000 | 119.000 | 0.043 | -3.914 | 329.011 | 0.265 | 0.014
4 0.128 | 40.010 | 808.698 | 21.000 | 129.000 | 0.043 | -3.914 | 329.011 | 0.265 | 0.014
5 0.149 | 38.487 | 761.802 | 51.000 | 159.000 | 0.0039 | 0.331 | 14.065 | 0.261 | 0.014
6 0.111 | 46.161 | 465.345 | 71.000 | 239.000 | 0.0039 | 0.331 | 14.065 | 0.261 | 0.014
7 0.041 | 38.298 | 1252.631 | 61.000 | 299.000 | 0.0068 | -0.551 | 39.176 | 0.254 | 0.015
8 0.031 | 40.403 | 1054.765 | 71.000 | 339.000 | 0.0068 | -0.551 | 39.176 | 0.261 | 0.014
9 0.019 | 36.299 | 1662.603 | 129.000 | 469.000 | 0.0049 | -0.509 | 41.876 | 0.261 | 0.014
10 | 0.021 | 39.306 | 1365.712 | 149.000 | 469.000 | 0.0049 | -0.509 | 40.966 | 0.268 | 0.014

The area of research at the beginning is the center for solar energy and it is at the
Engineering Faculty in Gharyan, Libya, at 32°10.6'N and 13°1.6'E.

The SPVPP data are shown in Table 4.2 while the hourly solar irradiation,

temperature, and energy demand are given in Table 4.3.
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Table 4.2. Ratings and the cost per units of generation in SPVPPs.

Plant | Prated (kW) Unit rate ($/kWh)
1 20 0.22
2 25 0.23
3 25 0.23
4 30 0.24
5 30 0.24
6 35 0.25
7 35 0.26
8 40 0.27
9 40 0.27
10 40 0.275
11 40 0.28
12 40 0.28
13 40 0.28

Table 4.3. Solar irradiation, temperature, and energy demands of the system on an

hourly basis.

Time (h) | Solar Irradiation (W/m?) | Energy Demands (MW) | Temperature (°C)
1 0 965 30
2 0 1142 29
3 0 1177 28
4 0 1198 28
5 5.4 1153 28
6 101 1136 28
7 253.7 1138 29
8 541.2 1060 31
9 530.4 1155 33

10 793.9 1244 34
11 1078 1088 35
12 1125.6 1240 36
13 10135 1135 37
14 848.2 1318 37
15 726.7 1074 37
16 654 1190 38
17 392.9 1276 38
18 215.1 1154 37
19 38.5 1333 35
20 0 1322 34
21 0 1269 34
22 0 1139 33
23 0 1202 32
0 0 1291 32
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MATLAB was used to test the hybrid bat-crow search algorithm for cost and
emissions combined via SPVPPs. Convergence graphs hours are divided into three

parts and shown in Figures 4.1, 4.2, and 4.3 for 24 hours.
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Figure 4.1. Convergence curve for 1 to 8 hours.

7
o5 X 10 .
9 hour 11 hour 13 hour 15 hour
10 hour 12 hour 14 hour 16 hour
2 - -

1.5 i

Objective function value

0 L I I I I . I | I
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 4.2. Convergence curve for 9 to 16 hours.

46



=107

w
o

17 hour 19 hour 21 hour 23 hour
18 hour 20 hour 22 hour 24 hour

w
(@]
T

w
N

w
N
T
1

N
o
T
I

Objective function value
b oo

N
I
T
|

N

NN

K
| |

1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Iteration

-
o

Figure 4.3. Convergence curve for 17 hours to 24 hours.

As shown in Figure 4.1, convergence of the algorithm occurs within 900 iterations in
a maximum of 2.16 s when using a 4-GHz Core i7 processor. After 900 iterations the
value of the objective function for 8 hours is 2.3 x 107. For other hours the value is
above 2.9 x 10",

As shown in Figure 4.2, convergence occurs within 440 iterations. After 440
iterations the value of the objective function for 12 hours is 0.045 x 107. This is 1.98
x 10" for 9 hours and is above 2.9 x 107 for other hours. In the last 8 hours (Figure
4.3), convergence occurs within 620 iterations. After 620 iterations the value of the

objective function for 17 hours is 1.9 x 10". For other hours it is above 2.61 x 10",
Thermal power, solar power emission costs, power loss, solar power costs, fuel

expenses, and combined economic and emission costs with solar costs are

summarized in Table 4.4.
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Table 4.4. CEED analysis and solar cost.

Time Demand | Pot SP Pl FC EC TC

Hour | MW MW MW MW $/kWh

1 974 967.085 | 0 11.918 | 42197.9 | 1468.09 | 43653.05
2 1176 1165.95 | 1 14.408 | 45304.3 | 1416.71 | 46815.1
3 1189 1178.84 | 0 15.152 | 46475.42 | 1467.9 | 47931.33
4 1210 119391 |5 16.0694 | 47463.36 | 1516.4 | 48967.7
5 1167 117043 | 0 14.5675 | 45845.1 | 1464.7 | 47293.8
6 1176 1146.07 | 19.76 14.189 | 45567.41 | 1423.45 | 47301.5
7 1176 1095.37 | 53.236 | 14.398 | 45196.82 | 1423.09 | 47611.4
8 1080 943.399 | 137.974 | 12.668 | 42834.34 | 1448.4 | 46891.1
9 1176 996.576 | 156.694 | 14.799 | 45692.32 | 1483.6 | 50201.6
10 1274 994.741 | 248.52 | 16.737 | 48773.05 | 1502.5 | 55153.2
11 1108 770.612 | 356.4 12.981 | 44062.63 | 1496.82 | 52072.45
12 1278 873.384 | 382 15.615 | 48834.66 | 1475.7 | 57742.3
13 1176 792.049 | 349.5 16.453 | 45221.91 | 1487.3 | 53501.3
14 1348 918.802 | 395.4 18.784 | 51102.36 | 1546.3 | 60542.7
15 1094 770.708 | 329.7 13.925 | 43595.67 | 1465.17 | 51492.21
16 1230 829.635 | 368 15.362 | 47065.72 | 1445.3 | 55632.94
17 1293 887.29 | 392.8 16.911 | 49734.32 | 1523.8 | 58892.00
18 1186 797.23 | 367.2 14.697 | 45935.86 | 1484.5 | 54333.5
19 1373 975.762 | 403.7 19.38 51693.34 | 1545.3 | 61223.6
20 1392 133493 | 1 18.012 | 51334.54 | 1562.1 | 52886.2
21 1297 127373 | 1 16.25 49786.65 | 1527.2 | 51301.3
22 1186 1156.64 |1 14.338 | 45476.45 | 1441.7 | 46921.21
23 1231 119793 | 0 15.0065 | 50387.57 | 1734.8 | 52101.3
24 1302 1295.19 | 0 16.807 | 50576.93 | 1512.7 | 52078.76
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The solar plant was studied when both ON and OFF for various hours, and the

results are given in Table 4.5.

Table 4.5. SPVPPs when ON and OFF in different hours.

Solar Plant
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These findings clearly show that the use of solar PV energy led to major decreases in
emissions and fuel costs in the system. This hybrid algorithm manages the
percentages of energy supplied by thermal power plants and SPVPPs successfully.
Thus, the algorithm is the most successful in terms of optimizing the combination of
emission and economic dispatches with SPVPPs. The findings for the PSO, bat, and
crow search algorithms are compared and the usefulness of the method proposed in

terms of fuel cost, emission cost, solar cost, and CEED is shown in Figure 4.4.
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Algorithm 44198 14421 309105 559698

Figure 4.4. Results for the bat algorithm, crow search algorithm and proposed
method in terms of fuel cost, emission cost, solar cost, and CEED.

In Figure 4.4 it is seen that the method proposed results in the lowest cost among all
the methods considered here. This proves that it performs better than when the three
algorithms are used separately; in other words, the bat and crow algorithms yield
good results when combined.

Finally, we compared the process time for each algorithm that used in this

simulation. The result is shown in figure 4.5.
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Figure 4.5. The convergence speed of different algorithms.

Figure 4.5, it can be inferred that using the proposed Bat-Crow algorithm to the
selection and migration operators enhances the algorithm's convergence speed
considerably when compared to other techniques. This is because using these maps
improves the algorithm's exploration power and expands the search space. This
improved search space exploration improves convergence speed and prevents the
algorithm from becoming stuck in local minimums. Also as seen in this figure the

proposed Bat-Crow search algorithm has low process time than other methods.

The hybrid method produces better results because the crow algorithm has a specific
initial population that is useful for solving the bat algorithm. It is proposed herein to
use the hybrid algorithm for minimizing the cost from combined ED between 10
conventional and 13 solar PV power plants. The cost comprises fuel cost, emission
cost, solar cost, and the state of sharing cost. Lower cost is obtained from the hybrid

algorithm than from the PSO, bat, and crow algorithms.

The ED problem in thermal power and solar PV generators is described here. In

general, these problems may be formulated using a static or dynamic model. Both
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case studies were performed, and the corresponding numerical model is shown

below.

This is illustrated for the two-dimensional case in Figure 4.6.

Figure 4.6. A discretized 2-D fitness function.

The PSO search algorithm for combined economic and emission dispatch with
SPVPP was tested using MATLAB in an Intel Core i7 processor. Convergence

graphs for 24 hours are shown in 3 parts in Figures 4.7, 4.8, and 4.9.
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Figure 4.7. Convergence curve for 1 hour to 8 hours.

This figure shows that convergence occurs within 30 iterations, which is equivalent
to a maximum of 2.16 s with a 4 GHz core i7 processor. After 1000 iterations the
value of the objective function for 8 hours is 2.3 x 107. For other hours it is above
2.9 x 107,

Elapsed time for 1 to 8 hours is shown in Figure 4.10.
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Figure 4.8. Elapsed time for 1 to 8 hours.
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Figure 4.9. Convergence curve for 9 hours to 16 hours.
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Figure 4.10. Elapsed time for 9 to 16 hours.
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As seen in this figure, convergence occurs within 30 iterations. After 30 iterations the
value of the objective function for 15 hours is 0.25 x 10’. For 9 hours it is 1.98 x 107
and for other hours it is above 2.9 x 107. The convergence curve for 17 hours to 24

hours is shown in Figure 4.11.
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Figure 4.11. Convergence curve for 17 hours to 24 hours.

Elapsed time for 17 to 24 hours is shown in Figure 4.12.
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Figure 4.12. Elapsed time for 17 to 24 hours.
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Table 4.6 shows the results for thermal power, solar power, power loss, fuel cost,

solar power cost, emission cost, and combined economic and emission cost with

solar cost.

Table 4.6. CEED analysis with solar cost via the PSO method.

Time |Demand |Pot SP PI FC Irradiation |EC TC

Hour |MW (MW) (MW) (MW) ($/kWh) |/ / /

1 963 1124.583 | 440000 |23.38848 |61773.48 |0 1856.581 [598371.4
2 1142 1074.961 | 440000 22.47567 |58267.36 |0 1784.818 |591131.4
3 1177 1086.853 | 440000 |22.12171 |60925.81 |0 1852.54 |597313.5
4 1198 886.7549 |440000 |14.68616 [49273.21 |0 1565.37 |570719.4
5 1153 965.4468 |439049.8 |17.58578 |54510.44 |0 1800.766 |587254.1
6 1136 1004.019 |422228.6 |17.87347 |54821.99 |355.52 1681.048 |564515.5
7 1138 1116.576 |389780.5 |21.02342 |{59909.43 |1004.652 |[1835.567 |545194.4
8 1060 1106.704 |309063.6 |17.88002 |54136.79 |2619.408 |[1815.81 |457677

9 1155 1257.824 |288345 |22.39013 |61250.26 |3033.888 |1820.225 |444301.6
10 1244 1342.966 |195542.3 |22.28864 |60612.01 [4890.424 |1771.636 |348332.6
11 1088 1445.299 |112642.9 |23.34002 |61191.84 |6528 1789.004 |266916.6
12 1240 1449.652 |115910.2 |23.81131 |61789.95 | 7440 1934.362 (278345
13 1135 1281.085 |112725.6 |16.65843 |54325.88 |6810 1635.695 |252156.7
14 1318 1319.243 |122855.6 |18.68421 |54815.45 | 7908 1762.357 |269366.5
15 1074 1340.347 |168284.8 |20.6472 |59915.57 |6444 1893.828 |326736.3
16 1190 1316.345 |181083.3 |20.73662 |59399.7 |7140 1763.929 |332260.2
17 1276 1276.249 | 284452 |23.82309 |60406.58 |7656 1867.86 |442043.4
18 1154 1102.829 |359573.5 |19.14874 |57846.93 |6924 1679.831 |504822.1
19 1333 1056.921 |427298.3 |21.16889 |56358.15 |7998 1762.58 |575363.5
20 1322 1079.451 | 440000 |20.93744 |60402.25 |0 1815.111 |594842.5
21 1269 978.9142 440000 |17.39472 |55548.44 |0 1641.294 |580945
22 1139 930.5013 [440000 |16.08157 |52920.19 |0 1632.683 |577868.7
23 1202 1043.826 | 440000 |20.20332 |58158.47 |0 1736.955 |588532.2
24 1291 949.829 |440000 |16.85681 |52544.07 |0 1588.3 575183.3

The proposed method was used to analyze a hybrid PV and wind network connected

to a grid meeting the need of the Faculty of Engineering in Gharyan, Libya. Thus, the

multi-objective issue concerning the sharing of electricity between the HRES and the

grid was examined for the three situations listed below:

e Case one: The purchasing and selling of electricity from the grid with be

conducted via the system.
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e Case two: Only the buying of energy from the grid can be done via the system.

e Case three: The system can only be used to sell energy to the grid.

A one-hour MATLAB code was used in the simulation, with data over a year with
8784samples/year, and a discounted cash flow (DCF) was applied over 20 years in

order to calculated the system’s total net present cost (TNPC).

The results are divided into 3 categories. Table 4.7 contains the results obtained from

the MOBA review of the sizing problem:

e The lowest economically optimal COE solution.
e Use of renewable energy with the highest REF.

e Optimal solution giving the lowest emissions of GHGs.

Table 4.7 shows convergence of the results for the first and second cases in terms of
the goals, but they are considerably surpassed by the results for the third case.
Economically speaking, the COE value for the first and second cases converges at
0.0313 $/kWh and 0.0317 $/kWh, respectively, at zero LPSP. However, for the third
case, COE is much higher, $0.365/kWh, when the system is dependent on renewable
energy supplies alone and excess energy is not exported to the grid. It is worth noting
that the sale price of electricity in Libya is $0.04/kWh, which is above the price in the

first and second cases.

From the perspective of renewable energy consumption, in the first and second cases,
the sale price of the energy unit rose by 127.68 percent in economic terms, and the
share of LPSP grew to 1.39 percent and 2.05 percent, respectively. In the third case,
however, the criterion is reliability (minimum LPSP) rather than renewable energy

use, since REF is constant at 100 percent.
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Table 4.7. Results for the size problem in the three cases.

L COE NPC
0, 0,
Cases Obijective ($/kwh) LPSP (%) | REF (%)
Economic 0.0313 361716.6 0.00% 40%
Caseone | enewable 0.0876 | 1009117.8 | 1.39% 78%
energy usage
Environment 0.0874 1009117.7 1.39% 78%
Economic 0.0317 364709 0% 41%
Casetwo | enewable 00914 | 10429774 | 2.05% 78%
energy usage
Environment 0.0914 1042977.4 2.05% 78%
Economic 0.365 4019002 5.23% 100%
Reliability 0 0
Case three (lowest LPSP) 0.457 5307404 0.115% 100%
Environment 0.365 4019002 5.21% 100%
Total
. emissions of
N N N
Cases Objective PV WT BAT GHGs per
ton
Economic 30 0 0 109939.4
Case one Renewable 39 11 2 85714
energy usage
Environment 39 11 2 85714
Economic 32 0 0 109939.4
Casetwo | Renewable 36 11 5 85128
energy usage
Environment 36 11 5 85128
Economic 132 14 172 27231.6
Reliability
h 152 224.7 2061.
Case three (lowest LPSP) 5 36 32061.6
Environment 132 14 172 27231.6

When a machine running at a low LPSP of 0.115 percent was used, COE rose by
127.68 percent. In environmental terms, it is clear that the third case produces the
highest GHG emissions, with an annual mean of 27231.6 tons, compared with 85714
and 85128 tons for the first and second cases, respectively. The large increase in the
cost of the system, regarding both renewable energy use and the environment, can be
explained by the fact that the objective is greater dependency on RES instead of
obtaining energy from the grid, which is plainly less expensive. The steep cost of the
system overall is a result of the high dependency on wind turbines and PV systems.
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The amount of energy produced in the three cases in shown in Table 4.8 for each
variable. In the first case, with regard to the use of renewable energy and the
environmental perspective, the electricity produced by wind turbines that were not
used when the economic perspective was considered makes up for the fact that power
Is not bought from the grid.

The total power generated by the PV system and the wind turbines rose from 509.15
MWh to 636.44 MWh and from zero to 300.947 MWh, respectively, and the total
power purchased from the grid fell from 761.184 MWh to 565.342 MWh. In the
second case, since power is not bought from the grid, there was an idle surplus of
63.45 MW in terms of the economic perspective, and this increased to 298 MW

regarding the use of renewable resources and the environmental perspective.

In the third case, in which it is not allowed to obtain power from the grid, there was
greater dependence on the PV system for power production. The amount produced by
the PV system was 2202.13 MW at 93.3 percent with regard to both economic and
environmental perspectives and rose to 2545.81 MW at 88.67 percent with regard to
reliability. While the power generated by the wind turbines was 108.34 MW (6.8
percent) with regard to both economic and environmental perceptions, it increased
sharply to 294.92 MW (10.33 percent) with regard to reliability.

For establishing how the Pareto fronts (PFs) are related to the three objectives (COE,
LPSP, and REF), the COE PF and LPSP PF are shown together in Figure 4.12, and
the COE PF and REF PF are shown together in Figure 4.14. In the first and third
cases, LPSP has a minimal effect on COE, where most of the outcomes are
concentrated near 0 in terms of LPSP. However, in the third case, the system might
be regarded as an off-grid system. Please refer to Figure 4.14. Furthermore, the COE
rises due to the rise in REF, and more PV units and wind turbines are used in the

hybrid framework, which makes the framework’s energy unit more expensive.
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Table 4.8. The electricity produced in the three cases for each component.

. Purchase
Cases | Objective Pev Pwr Sell to grid from grid
(MWh) (MWh) (kwh) (MWHh)
Economic 510.21 - 63.815 763.23
Case | Renewable | o0 o 302.67 280.76 567.41
One energy usage
Environment 638.53 302.67 280.76 567.41
Economic 510.21 - - 761.184
Case | Renewable | oo0 o 302.67 i 563
Two | energy usage
Environment 638.53 302.67 - 563
Economic 2214.26 112.42 954.56 -
Case Reliability
Three (lowest 2565.46 298.8 145351 -
LPSP)
Environment 2214.26 112.42 954.56 -
Proportion Proportion of Propo53rtion | Emissions
Cases | Objective of PV wind turbines of grid net savings
(%) (%) (%) in CO2 (%)
Economic 41 0 59% 24.2%
Case | Renewable 42 20 35 41.8%
One energy usage
Environment 42 20 35 41.8%
Economic 40 0 58% 24.2%
Case | Renewable | ) o 18 37.6 41.8%
Two | energy usage
Environment 41.8 18 37.6 41.8%
Economic 92.6% 5.8% 0 81.4%
Reliability
Case
Three (lowest 87.72% 11.33 % 0 76.65%
LPSP)
Environment 92.6% 5.8% 0 81.4%
Economic 62.93
Case | Renewable 276.1 Dump of
Two | energy usage ' Energy (MWh)
Environment 276.1
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Figure 4.13. Pareto fronts of COE and LPSP in the three cases.
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Figure 4.14. Pareto fronts of COE and REF in the three cases.
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4.2. PERFORMANCE EVALUATION

The proposed MOBA is assessed differently in terms of performance from the single-
objective BA since for the former different options are available. To determine the
MOBA’s performance, various statistical metrics were used, namely minimum,
maximum, mean, standard deviation, and average Pareto solutions. The results of the

evaluation are summarized in Table 4.9.

Table 4.9. Performance metrics determined with the MOBA for Pareto solutions in
the three cases.

Case Objectives Min. Max. Mean
Obj. 1 (COE) 0.032 0.091 0.063

Case one Obj. 2 (LPSP) 00 0.039 0.030
Obj. 3 (REF) 0.36 0.91 0.603
Obj. 1 (COE) 0.0321 0.094 0.0620

Case two Obj. 2 (LPSP) 000 0.062 0.0316
Obj. 3 (REF) 0.36 0.82 0.602
Obj. 1 (COE) 0.372 0.496 0.439

Case three Obj. 2 (LPSP) 0.0023 0.0909 | 0.0504
Obj. 3 (REF) 1 1 1
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CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

5.1. CONCLUSION

Based on the principles of sensor use for determining fatigue failure in steel bridges,

the stages that should be considered are detailed below.

Various numerical and optimization techniques are used for determining optimal
power system costs, raising system efficiency, and solving CEED problems. Better
results and designs may be achieved by heuristic methods as mathematical data and
gradient information are not needed. In the present thesis, a hybrid method is
suggested for finding a solution to this optimization problem more quickly and more
accurately. A novel hybrid bat-crow search algorithm for minimizing CEED
problems via a solar PV system in a multi-area system was described. The efficiency
of this algorithm was tested over 24 hours with the data from a solar system and 10
thermal power plants. In addition, the algorithm was used to calculate the economic
costs, convergence efficiency, and SPVPPs in both ON and OFF conditions. The
hybrid algorithm was successful in minimizing complex problems in a multi-area
power system. Furthermore, a comparison of four parameters was conducted. The
fuel cost, emission, solar cost, and CEED were determined as 44203 $/h, 1449.6 $/h,
439.870 $/h, and 558900, respectively. These results were compared with those
obtained using other techniques, i.e., PSO, the bat algorithm, and the crow search
algorithm. The hybrid algorithm produced lower results for fuel cost, emission cost,

solar cost, and CEED compared with those of the other techniques.
We aimed herein to produce a grid-connected renewable energy framework to supply

ongoing stable energy in the least expensive way under varying conditions. The

objective was to meet the demand of the Faculty of Engineering in Gharyan, Libya,
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via a PV/wind hybrid grid-connected system. The optimization problem involved 3
major objective functions: minimizing COE, decreasing LPSP, and optimizing the
REF of the proposed method. Furthermore, to enable an optimal variety of elements
the MOBA was used.

For solving the multifunctional energy exchange problem between the HRES and the
grid three cases were examined. In the first case, sales and purchases of energy from
the grid are permitted; in the second case, only sales of energy from the grid are
permitted; and finally, in the third case, only sales of energy to the grid are permitted.

In summary, the results obtained from this MOBA research on the sizing issue were
examined in three cases with focus on the economic, renewable energy, and
environmental perspectives. The framework simulation results led to the following

conclusions:

e An elevated REF ratio is linked to high COE and LPSP values. Moreover, a
higher REF gives a greater total value of both the PV and wind turbine sys-
tems, with a subsequent increase in the COE.

¢ In the third case, there is a steep rise in overall cost, since the energy demand is
now met by the renewable framework, i.e., off-grid.

The first case is financially optimal since the total current framework cost was
$361716.6, with costs for the second and third cases being $364709 and $4019002,

respectively.

5.2. FUTURE WORK

In the future we can apply the proposed algorithm to different meta-heuristic
methods, and we can use the artificial intelligence and deep learning method for
training the data and use them in the real world. Also we can use fuzzy logic based
on the neural network and obtain the tunable value for the controlling parameter in

the method proposed.
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%CSA for CEED Optimization

close all; clear all; clc

tic

global data B Pd datal Bi0 BOO PL_solar PL_D Solar_data Ks Solar_env Pgs hour
lam1

%Plant data

%no of rows denote the no of plants(n)

da-
ta=[0.129510000000000,40.5407000000000,1000.40300000000,10,55,33,0.0174000
000000000;

0.109080000000000,39.5804000000000,950.606000000000,20,80,25,0.0178000000
000000;

0.125110000000000,36.5104000000000,900.705000000000,47,120,32,0.016200000
0000000;

0.121110000000000,39.5104000000000,800.705000000000,20,130,30,0.016800000
0000000;

0.152470000000000,38.5390000000000, 756.799000000000,50,160,30,0.014800000
0000000;

0.105870000000000,46.1592000000000,451.325000000000,70,240,20,0.016300000
0000000;

0.0354600000000000,38.3055000000000,1243.53100000000,60,300,20,0.01520000
00000000;

0.0280300000000000,40.3965000000000,1049.99800000000,70,340,30,0.01280000
00000000;

0.0211100000000000,36.3278000000000,1658.56900000000,135,470,60,0.0136000
000000000;

0.0179900000000000,38.2704000000000,1356.65900000000,150,470,40,0.0141000
000000000];
% Loss coefficients it should be squarematrix of size nXn where n is the no
% of plants
B=[0.000049 0.000014 0.000015 0.000015 0.000016 0.000017 0.000017 0.000018
0.000019 0.000020

0.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016
0.000018 0.000018

0.000015 0.000016 0.000039 0.000010 0.000012 0.000012 0.000014 0.000014
0.000016 0.000016

0.000015 0.000016 0.000010 0.000040 0.000014 0.000010 0.000011 0.000012
0.000014 0.000015
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0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013
0.000015 0.000016

0.000017 0.000015 0.000012 0.000010 0.000011 0.000036 0.000012 0.000012
0.000014 0.000015

0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016
0.000016 0.000018

0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.000040
0.000015 0.000016

0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015
0.000042 0.000019

0.000020 0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016
0.000019 0.000044];
Bi0 = 0.001 *[ 0.287 0.012 0.0896 0.1471 0.0087 0.3121 0.233 0.1123 0.0912
0.1121];
BOO = 0.038;

%Emission data

datal=[0.0470200000000000,-
3.98640000000000,360.001200000000,10,55,0.254750000000000,0.0123400000000
000;

0.0465200000000000,-
3.95240000000000,350.005600000000,20,80,0.254750000000000,0.0123400000000
000;

0.0465200000000000;,-
3.90230000000000,330.005600000000,47,120,0.251630000000000,0.012150000000
0000;

0.0465200000000000;,-
3.90230000000000,330.005600000000,20,130,0.251630000000000,0.012150000000
0000;

0.00420000000000000,0.327700000000000,13.8593000000000,50,160,0.249700000
000000,0.0120000000000000;

0.00420000000000000,0.327700000000000,13.8593000000000,70,240,0.249700000
000000,0.0120000000000000;

0.00680000000000000,-
0.545500000000000,40.2669000000000,60,300,0.248000000000000,0.01290000000
00000;

0.00680000000000000,-
0.545500000000000,40.2669000000000,70,340,0.249900000000000,0.01203000000
00000;

0.00460000000000000,-
0.511200000000000,42.8955000000000,135,470,0.254700000000000,0.0123400000
000000;

0.00460000000000000,-
0.511200000000000,42.8955000000000,150,470,0.254700000000000,0.0123400000
000000];

Solar_data= [1200.22
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2250.23
3250.23
4300.24
5300.24
6 350.25
7 350.26
8 40 0.27
9400.27
10 40 0.275
11400.28
12 40 0.28
1340 0.28];
Solar_env= [1 0965 30
201142 29
30117728
401198 28
55.41153 28
6 101 1136 28
7 253.7 1138 29
8541.2 1060 31
9530.4 1155 33
10 793.9 1244 34
11 1078 1088 35
12 1125.6 1240 36
131013.51135 37
14 848.2 1318 37
15 726.7 1074 37
16 654 1190 38
17 392.9 1276 38
18 215.1 1154 37
19 38.51333 35
2001322 34
2101269 34
2201139 33
2301202 32
001291 32];
Tref=40;
for i=1:length(Solar_env)
Pgs(i)=(1+(Tref-Solar_env(i,4))*(-5/100))*(Solar_env(i,2)/1000);
end
hour=12;
pgg=Pgs(hour);
for i=1:length(Solar_data)
PISS(i)=Solar_data(i,2)*pgg;
end
Total=sum(PISS)
Ks=1e3;
PL_D=1088;
PL_solar=(30/100)*PL_D; %% Load share by Solar Plant

80



% Demand (MW)

Pd=PL_D-PL_solar;

% setting the CSA

LB =data(:,4)"; % Lower bound

UB = data(:,5)"; % Upper bound

pd=10; % Problem dimension (number of decision variables)
N=100; % Flock (population) size

AP=0.00001; % Awareness probability

f1=20; % Flight length (fI)

h1=52.03;

[X]=init(N,pd); % Function for initialization
[xx]=rand(N,length(Solar_data));

[x1]=[xx]<0.5;

Qmin=0; % Frequency minimum

Qmax=100; % Frequency maximum
Q=zeros(N,1); % Frequency

v=zeros(N,pd); % Velocities

para=[5 10 0.7 0.3 0.9 0.9 0.9];

AO=para(3); % Loudness (constant or decreasing)
rO=para(4); % Pulse rate (constant or decreasing)
sigma=para(5);

alpha=para(6);

zeta=para(7);

iter=0;

A=A0;

r=r0*(1-exp(-zeta*iter));

XN=X;
for i=1:N

S(i)=ceed1(x1(i,:)); % Function for fitness evaluation
F(i)=ceed(x(i,:)); % Function for fitness evaluation
end

mem=x; % Memory initialization

Sol=x;

mem1=x1,

fit_mem=F; % Fitness of memory positions
best=min(F);

fit. mem1=S;

tmax=1000; % Maximum number of iterations (itermax)
for t=1:tmax

% CROW SEARCH LOOP

num=ceil(N*rand(1,N)); % Generation of random candidate crows for following
(chasing)

for i=1:N

if rand>AP
xnew(i,:)= x(i,:)+fI*rand*(mem(num(i),:)-x(i,:)); % Generation of a new po-

sition for crow i (state 1)
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else
for j=1:pd
xnew(i,:)=data(j,5)-(data(j,5)-data(j,4))*rand;% Generation of a new posi-
tion for crow i (state 2)
end
end
end

XN=XNEW;
num=ceil(N*rand(1,N)); % Generation of random candidate crows for follow-
ing (chasing)
for i=1:N
if rand>AP
xnewl(i,:)= x1(i,:)+fI*rand*(mem21(num(i),:)-x1(i,:)); % Generation of a new
position for crow i (state 1)
else
for j=1:length(Solar_data)
xnewl(i,:)=rand;% Generation of a new position for crow i (state 2)
end
end
end

xnl=xnewl;

for i=1:N
S(i)=ceed1(xnl(i,:)); % Function for fitness evaluation

F(i)=ceed(xn(i,:)); % Function for fitness evaluation
end % Function for fitness evaluation of new solutions

for i=1:N % Update position and memory
if xnew(i,:)>=LB & xnew(i,:)<=UB
X(1,:)=xnew(i,:); % Update position
if F(i)<fit_mem(i)
mem(i,:)=xnew(i,:); % Update memory
fit_mem(i)=F(i);
end
end
end
for cc=1:N
for vv=1:length(Solar_data)

if xnewl(cc,vv)>1
xnl(cc,v)=1;
elseif xnewl(cc,vv)<0
xnl(cc,vv)=0;
else
xnl(cc,vv)=xnewl(cc,vv)<0.5;
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end
end
end

ffit(t)=min(fit_mem); % Best found value until iteration t
ffitl(t)=min(fit_mem2l); % Best found value until iteration t
a(t)= min(fit_mem);
aa(t)= min(fit_mem1);

end

ngbest=find(fit_mem== min(fit_mem));
ngbest1=find(fit_mem1== min(fit_mem1));
g_best=mem(ngbest,:); % Solutin of the problem
g_bestl=mem1(ngbestl,:); % Solutin of the problem
P1=g_best
Pl_S=g_bestl
pgg=Pgs(hour)
Pl_S1=pgg*g_bestl.*transpose(Solar_data(:,2))
PL=P1*B*P1'
Popt=sum(P1)+sum(PI_S1)
n=length(data(:,1));
for i=1:n
F1(i)=data(i,1)*
P1(i)"2+data(i,2)*P1(i)+data(i,3)+(data(i,6)*sin(data(i,7)*(data(i,4)-P1(i))));
E1(i)=datal(i,1)*
P1(i)"2+datal(i,2)*P1(i)+datal(i,3)+(datal(i,6)*exp(datal(i,7)*P1(i)));
end
n=Ilength(Solar_data(:,1));
for i=1:n
S1(i)=Solar_data(i,3)* Solar_data(i,2)*P1_S(i)*pgg+ Ks*(Solar_data(i,2)-
Solar_data(i,2)*PI_S(i)*pgQ);
end
Fuel=sum(F1)
Emmission=sum(E1)
Solar=sum(S1)
CEED=Fuel+h1*Emmission+Solar
plot(a+aa)
toc

function s=simplebounds(s,Lb,Ub)
% Apply the lower bound vector
ns_tmp=s;
I=ns_tmp<Lb;
ns_tmp(1)=Lb(l);

% Apply the upper bound vector

J=ns_tmp>Ub;
ns_tmp(J)=Ub(J);
% Update this new move
s=ns_tmp;
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Flowchart of Bat Search Algorithm.
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Abstract- This paper deals with the multi-objective fuel cost optimization of a conventional power plant (CPP) and emission
minimization in CPPs and solar PV power plants (SPVPPs) using a hybrid bat-crow search algorithm. To resolve this
complicated, non-convex, and excessively nonlinear problem, a variety of meta-heuristic optimization algorithms are developed
and effectively employed. To handle evolutionary multi-objective algorithms’ inadequacies, such as early convergences, slowly
meeting the Pareto-optimal front, and narrow trapping, applying a combination of different algorithms is unusual.

This paper offers a hybrid evolutionary multi-objective optimization process based on combining the crow search optimization
with the bat algorithm for dealing with the combined economic emission dispatch problem for SPVPPs. A hybrid technique
combined with the proposed constriction handling method can balance exploitation and exploration tasks. Different IEEE
standard bus systems were tested with the proposed hybrid method using the quadratic cost function and monitoring the
transmission losses. The results of the proposed algorithm have also been compared with those of the bat, PSO, and crow search
algorithms. The proposed method can be said to be effective considering the simulation results.

Keywords Bat algorithm, Multi-objective optimization, Crow search algorithm, Combined economic emission dispatch.

1. Introduction based numerical programming methods. A heuristic method
does not need mathematical data or gradient information for
It is important to optimize power system costs and protect its searches. It uses stochastic operators for searching, and it
the atmosphere from greenhouse gas emissions, and is flexible and straightforward to implement. It has an
algorithms for these aims are also important. For the inherently scalable parallel structural design and, additionally,
mentioned purposes, an appropriate algorithm may assure the it proceeds quickly while making calculations [2].
best active power scheduling to concurrently reduce fuel costs
and emissions of conventional fossil fuel-powered power
generation plants [1]. This can also make it possible to attain
great financial gains [2] and reduce dangerous emissions
including nitrogen oxide (NOx), sulfur oxide (SOx), and
carbon dioxide (CO2). Since the objectives mentioned here are
contradictory, they can create multi-objective combined
economic emission dispatch (CEED) issues, which are
resolvable through traditional numerical programming pro-
cesses like gradient search and lambda iteration, or even
through modern heuristic optimization methods. Resolving
these CEED issues has benefits if heuristic optimization
methods are used rather than using traditional population-

It is not possible to obtain a single best result to solve such
multi-objective CEED problems since we are struggling to
achieve contradictory objectives in these cases, such as
emission reduction and fuel cost optimization. In this context,
contradictory objectives are concurrently minimized for the
multi-objective  optimization problem to approach a
transactional. This requires further processing to obtain a
single favored outcome. The literature shows the application
of domination-based structures through multi-objective
evolutionary algorithms that reduce the emissions and fuel
costs while resolving the CEED problem. The mentioned
population-based approaches result in simultaneous numerous
non-dominant outcomes [3]. Such non-dominant outcomes
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Abstract

The assessment of the performance of grid hybrid frameworks depends primarily on the costs and reliability, associated
with reduced greenhouse gas (GHG) emissions of the system. In this work, with objectives based on the minimization
of two optimization features, namely loss of power supply probability (LPSP) and cost of energy (COE), multi-objective
optimization of a grid-connected PV/wind turbine framework was implemented in the Faculty of Engineering in Gharyan,
Libya, with the aim of providing adequate electricity, while optimizing the system’s renewable energy fraction (REF) was
the third objective. This research also aimed to estimate the resulting amount of power produced by the hybrid system and
mathematical models were submitted. The results showed the share of the total energy supplying the electricity demand for
each part of the network. This study subsequently explored the interrelationship of the grid and the proposed hybrid system
in relation to the capacity of the network to sell or obtain electricity from the hybrid system. In addition, multi-objective bat
algorithm (MOBA) findings were divided into three dominant regions: the first region was the economically optimal solu-
tion (lowest COE), the second region was the conceptual perspective of utilizing renewable energies (highest REF), and the

final region was the optimal solution with optimal environmental effects (lowest GHG emissions).

Keywords GHG emission - Cost of energy - Renewable energy fraction - Multi-objective - Grid-connected - PV

1 Introduction

The current continual increase in the demand for electric-
ity and the rapid decline in conventional energy resources
has required an imperative search for renewable energies
as alternative energy sources. In this process, PV solar and
wind power have been identified as the most viable sources
of electricity with the ongoing growth of the market with
solar power from multiple clean energy sources. Moreo-
ver, the penetration rates of PV systems are high at present,
and the usage of PV cells and advanced electronic tech-
nologies is expected to grow globally. Furthermore, wind
power is known as the most significant and exciting form

4 Abdurazaq Elbaz
abdalrazaklabz @gmail.com

Muhammet Tahir Guneser
mtguneser @karabuk.edu.t

Department of Electrical and Electronic Engineering,
Karabuk University, Karabuk 78100, Turkey

of renewable energy because it is efficient, universal, and
of high capacity. On the other hand, wind and PV energy
still do not provide full confidence and they have certain
disadvantages, such as vulnerability to unpredicted natural
conditions and enormous dependence on variations in envi-
ronmental conditions like sunlight and wind speed. There-
fore, a mixture of PV energy and wind energy can mitigate
individual variances in PV as well as wind hybrid power
generation networks, improve overall power capacity, and
provide greater efficiency, which is associated with better
quality for the electricity grid [1, 2].

Particularly in mountainous regions and rural areas
where systems might be installed close to demand areas,
renewable energy has proven to be the optimal solution for
deploying micro-networks, thereby removing the need for
traditional electricity grids [3-6]. Likewise, on-grid and
off-grid renewable energy frameworks have been created.
Overall, the question of the possible utilization of renewable
energy sources is solved via many different energy supplies
where they depend entirely upon unpredictable environmen-
tal conditions, which are not completely specified in terms

@ Springer
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Algorithms to Model and Optimize a Stand-Alone Photovoltaic-Diesel-Battery System: An
Application in Rural Libya

Abdurazaq ELBAZ*, Muhammet TAHIR GUNESER

Abstract: This paper introduces a new optimum calculation technique for a stand-alone hybrid photovoltaic-diesel-battery system (PDBS), which meets the energy
requirements of a small village in southern Libya. The bat algorithm design strategy is applied to reduce the annual cost of the system, taking into consideration the controlled
electricity restriction and the optimal numbers of PV panels, diesel generators, and batteries. Comparative tests are performed using MATLAB for the bat algorithm with the
grey wolf search algorithm and parficle swarm optimization, demonstrating that the bat algorithm determines the optimum size of the PDBS effecfively at a lower expense.
Results then indicate that, taking into account the reliability characteristics, this has a significant effect on optimum capacity, load supply, and cost.

Keywords: annual system cost; bat algorithm; grey wolf optimization algorithm; particle swarm optimization algorithm; photovoltaic-diesel-battery system

1 INTRODUCTION

There is a need for sustainable power sources in remote
rural areas, which rely on the national power grid for their
power needs. So far, solar photovoltaic (PV) energy has
been beneficial because it is sustainable, it does not require
complicated maintenance, and, above all, it does not
release greenhouse gases. Thus, experts in several
countries have recommended PV systems because they
complement the national grid; however, PV systems have
a fundamental problem, which is their discontinuous power
flow because solar energy varies with seasonal and weather
changes in the sunlight. To make the power flow reliable,
hybrid systems are generally equipped with PV arrays and
different types of generators [1-3].

Hybrid photovoltaic-diesel-battery devices have been
suggested for this reason in rural Libya in previous
research since they seem appropriate for satisfying the
regular energy requirements. Such a hybrid system uses a
battery bank for storing excessive power that PV arrays
generate to meet the night-time needs. In this system, a
diesel generator is added to overcome the unevenness of
the generated power [4, 5]. Thus, a PV-diesel system offers
more excellent power generation reliability as compared to
PV-only or diesel-only systems. In a nutshell, hybrid
systems offer more flexibility, efficiency, and cost-savings.

Moreover, when a battery and a backup diesel
generator are combined with a PV system, it substantially
reduces the operational costs and pollutants [6, 7]. When a
PV-diesel-battery system is first implemented, it results in
higher equipment costs; however, if we avoid this initial
investment/cost, we will have to adopt a sub-optimal
design, which has a negative economic impact in the long
run [8]. Thus, the complications of the optimal design of a
hybrid renewable energy system should be embraced
because classical designs can be either active or efficient,
but not both at the same time [9]. In the last 20 years, meta-
heuristic optimization methods have become widespread.
Some, including ant colony optimization [10], genetic
algorithms [11], grey wolf optimization (GWO) [12], and
particle swarm optimization (PSO) [13], are still popular
among experts in different fields. They are commonly
applied and easy-to-implement techniques because they
are straightforward, flexible, and derivation-free. The

mentioned methods each have their own benefits, which
sometimes make them good choices to solve optimization
issues, and they are based on natural phenomena, which
make them useful and straightforward. This implies that
the meta-heuristic process might yield useful outcomes in
some cases; however, they are likely to show poor
performance in more demanding situations. Therefore,
researchers have made efforts to propose and test a new
algorithm to assure hybrid sustainable power supplies [13,
14].

The bat algorithm is a concept based on the echo
location of bats (or microbats). Yang developed it in 2010,
and it gradually became a frequently used technique
because it offers a diversity of solutions. It also uses
automatic zooming for balancing exploitation and
exploration that mimics different pulse emissions of bats
when they search for their prey. Consequently, it is
beneficial and it starts quickly [15]. Since it is meta-
heuristic in nature, a bat algorithm has "microbats" that use
echoes with changing frequency, loudness, and pulse rates
during the "random walk" process. In this case, it is
possible to reach the best solution when optimization ends.
This process can be applied to solve real-world problems
by optimizing objective functions. In this form of
optimization, the number and types of PV panels and
batteries are limited. As soon as the iteration begins, it
generates a random value for the battery modules with PV
panel type in kilowatts, which is computed and saved as a
fitness value. As the iteration loops continue, new bats are
selected from the existing bats, which means that new
modules and types of power generation are chosen. When
the parent and offspring bats' fitness values are compared,
we choose the best bat for decreasing the cost; therefore,
this approach is used in various industrial and engineering
applications to optimize real-world issues [16].

The use of the unstable bat algorithm to solve
economic dispatch problems containing a variety of equity
and discrimination restrictions, like the forbidden
operational areas of the power balance and the ramp rate
cap, has been demonstrated in the literature. Most research
has also verified that the bat algorithm is simple to execute
and delivers good performance. In this respect, this
algorithm is proposed and applied in this study to
determine the perfect size for a stand-alone hybrid

Tehnicki viesnik 28, 2(2021), 523-529
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izing optimization should be used to design an efficient, sustainable, and feasible hybrid
system. In this paper, a hybrid power plant consisting of an off-grid photovoltaic and wind
energy system was planned to supply the demand of residential houses in Libya. To minimize
installation and operational costs by sizing each part of the hybrid system, the crow search
technique was applied. We optimized the number of photovoltaic modules, wind turbine
power, and battery capacity and then we compared the performance of the crow algorithm
with the particle swarm optimization algorithm for hybrid system design. The results of the
crow algorithm suggest better efficiency for sizing lower-cost hybrid power plants consisting
of photovoltaic and wind systems.

1. Introduction

Renewable energy systems are basically designed to achieve
two objectives: cost-effectiveness and environmental protection.
It is possible to achieve these objectives by reducing both
dangerous emissions and fuel costs. This type of power system
has clear financial benefits [1] other than reducing emissions of
carbon dioxide (COy), nitrogen oxide (NOx), and sulfur oxide
(SOx), which can be detrimental for life on this planet [2].
Whenever these objectives are pursued at the same time, the
combined economic emission dispatch (CEED) problem emerges,
which can be addressed through traditional mathematical methods
like lambda iteration, gradient search, and optimization through
modern heuristics [1]. However, in this case, it is not possible to
solve the CEED problem because the procedure does not give a
single result. Additionally, for achieving two contradictory aims,
such as reduction of both pollution and fuel -costs,
mathematical/gradient information is not required. On the
contrary, this optimization problem needs some kind of
transactional solution like the Pareto optimal (PO) solution [3],
requiring further processing for finding the best optimized and
most favorable solution. The literature shows that some multi-
objective algorithms help reduce greenhouse gases while
decreasing fuel costs at the same time. These algorithms include
scatter search [4], the bacterial foraging algorithm [5], particle

swarm optimization [6], teaching-learning-based optimization [7],

the harmony search algorithm [8], and differential evolution [9].

“Corresponding Author: Abdurazaq Elbaz, Email: abdalrazaklabz@gmail com
Wwww.astesj.com
https://dx.doi.org/10.25046/aj060130

We have tested different methods to solve the non-convex and
non-linear CEED problem.

In this case, the “h” parameter is used to handle dimensional
problems that can be solved through the sketched evolutionary
algorithm [8]-[10]. We can also solve the CEED problem without
using the mentioned parameter by regularizing fuel costs and
pollutants. This is possible using evolutionary algorithms (EAs)
by solving a single objective function, but such methods have a
shortcoming: researchers need to make repeated efforts to find the
objective solution.

Results show that hybrid algorithms are useful and efficient
in performing parallel processing. For achieving the best solution,
a balance is required between exploration and exploitation. While
exploration is pivotal for any kind of algorithm, exploitation helps
in finding excellent solutions. The present research involves
bat [11] and crow [12]algorithms for solving the CEED issue. We
have selected a hybrid structure that combines the properties of
crow search and bat algorithms and resolves the problems of the
mentioned population-based methods. Hybridization was also
chosen because it gives more diverse and acceptable solutions.

2. Types of Algorithms
2.1. Particle Swarm Optimization (PSO)

Potential solutions, which are also referred to as “particles,”
lie within the problem space. Here, “swarms” means the multi-
dimensional modeling spaces in which the particles exist, and they
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ABSTRACT

Renewable energy systems are spread all over the world due to the security problems encountered in ac-
cessing fossil fuels, the desire to reduce the environmental damage and to respond to the rapid increase in
energy demand. However, the problems are experienced in renewable energy technologies in sustainable
supply and reduction of production costs. Obtaining the optimum power distribution planning between
photovoltaic, wind, biomass, and other systems depending on the relevant parameters and optimizing the
distribution of energy supply-demand planning among the same sources can be applied as an effective
solution by using several single optimization methods or new updated hybrid versions of them. In this
chapter, common methods were evaluated and an application of crow and particle swarm as a hybrid
method was examined in a certain region of Libya for a PV/wind hybrid renewable power system.
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