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ABSTRACT 

 

M. Sc. Thesis 

 

LINEAR CODES OVER FINITE COMMUTATIVE RINGS  

 

Midya Jasim Ismael HESEEN 

 

Karabük University 

Institute of Graduate Programs  

The Department of Mathematics 

 

Thesis Advisor: 

Assist. Prof. Dr. Tülay YILDIRIM TURAN  

March 2022, 76 pages 

 

In this thesis, we consider linear codes over finite commutative rings. In especially, 

we give our attention to fourth order commutative rings and their algebraic 

structures. The first aim of this paper is to get knowledge on linear codes and 

literature review in detail, then study algebraic structure of linear codes over the 

fourth order commutative rings. In the beginning of this thesis, theoretical 

background on ring and field theory are discussed and then it continues with 

important theories and definitions on linear codes. Furthermore, all the theories are 

supported with good examples. 

 

Key Words : Linear codes, Rings of order four, Generators, Gray maps.  

Science Code : 20401 
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ÖZET 

 

Yüksek Lisans Tezi 

 

SONLU DEĞİŞİMLİ HALKALAR ÜZERİNDEKİ  

LİNEER KODLAR 

 

Midya Jasim Ismael HESEEN 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü  

Matematik Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi Tülay YILDIRIM TURAN 

Mart 2022, 76 sayfa 

 

Bu tezde, sonlu değişmeli halkalar üzerinde lineer kodları ele alıyoruz. Özellikle, 

dördüncü dereceden değişmeli halkalar ve onların cebirsel yapıları üzerine 

dikkatimizi veriyoruz. Bu makalenin ilk amacı, lineer kodlar hakkında bilgi sahibi 

olmak ve detaylı literatür taraması yapmak, ardından lineer kodların cebirsel yapısını 

dördüncü mertebeden değişmeli halkalar üzerinden incelemektir. Bu tezin 

başlangıcında, halka ve cisim teorisinin teorik arka planı tartışılmakta ve daha sonra 

lineer kodlar üzerine önemli teoriler ve tanımlarla devam edilmektedir. Ayrıca, tüm 

teoriler iyi örneklerle desteklenmektedir. 

 

Anahtar Kelimeler  : Doğrusal kodlar, Dördüncü mertebeden halkalar, Üreteçler, 

Gray görüntüler. 

Bilim Kodu :   20401 
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ℝ : Ring 

ℤ : The set of all integer numbers 

ℤ𝑛     : The set of integer numbers with modulo n 

𝐼 : Ideal 

𝑀 : Maximal ideal  
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𝑑(𝑥, 𝑦): Distance between               

|𝐶| : Order of code C 

( 𝑛
𝑚

) : Binomial coefficient 

𝐶⊥ : Dual code of C 

𝐺 : Generator matrix  

𝐺𝑇 : Transpose of 𝐺  
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PART 1 

 

INTRODUCTION 

 

Linear codes are an important class of codes. They have been studied over a wide 

variety of rings, including rings theory, fields theory [11-14]. A ring has an important 

part in the pure and applied algebra. Family of the rings were always chosen for a 

particular application, with understanding that all the finite commutative rings was 

being direct products of the local rings by the Chinese Remainder Theorem. Thus, 

we are studying codes over rings, and using the assumption that all the rings work as 

the alphabets to the codes in a finite Frobenius ring. On the other hands, fields are 

very important class for the rings, because in linear algebra we always take scalars 

form the field, and we have vector spaces over the finite fields.  

 

In this thesis, we give our consideration to coding theory especial codes over the 

rings of order four. That is related to the codes over the commutative rings of order 

four and we will generalize these codes over finite commutative Frobenius rings and 

give evidence that this is the most broadly defined class of codes for which the 

generalization is natural. Finite Frobenius rings have arisen as a large class of rings 

and it is most important class of the rings that could be using as the alphabets see in 

[2], [7].  

 

This thesis is organized as follows: 

In part 2, we considered history of coding theory and linear codes with some way 

and technical of the solving problems, with using some references to be sure about 

the history of our subjects.  

 

In part 3, ring theory has an importance part in the applied and pure algebra, So, we 

explained finite commutative rings with its important definitions, examples, and 

theories. One of the importance of this section is Frobenius rings because by the  
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Frobenius rings it was easy to study on linear codes. In the fallowing of the section, 

we explained the Chinese Remainder Theorem. Then we studied filed theory 

especially finite filed. Fields are very important class for the rings with definition of 

filed and properties, we also supported this section with some definitions, theorems, 

lemmas and examples. 

 

In part 4, we gave some basic definitions and preliminary about linear codes and also 

with some examples we clarified it.  In continues, one of the main Theorem 4.1.2.14 

is studied and we deduced that perfect codes can be found by this theorem. In the 

following of the section, linear codes and one of essential Definition 4.3.3.7 is about 

dual code and self-dual code with examples are studied in detail. By the end of this 

part, generators for the linear codes, with its important definitions, examples are 

explained and also, we mentioned about the parity-check matrix and standard form of 

generator matrix. 

 

In part 5, linear codes of order four, ℤ4, 𝐹2 + 𝑢𝐹2 with 𝑢2 = 0, 𝐹2 + 𝑣𝐹2 with 𝑣2 =

𝑣, and 𝐹2 + 𝑤𝐹2  with 𝑤2 = 𝑤 + 1, are consider.  The codes over rings have become 

an increasingly important area in coding theory. Especially, linear codes over rings 

have been shown to have many interesting connections to Gleason-Pierce theory, see 

[20]. Beginning with the realization that several important rings of order four to the 

linear codes are studied (see [9]). The classical Chinese Remainder Theorem is more 

powerful method for coding over the commutative rings. By the knowledge of the 

Chinese Remainder Theory into local rings, we identified Gray maps for each of the 

rings. Then for further develop our subjects, we considered rings with order 9 such as 

𝐹3 + 𝑣𝐹3  with 𝑣2 = 𝑣, 𝐹3 + 𝑣𝐹3 with 𝑣2 = 1, and defined their Gray maps. Many 

of the results of coding theory have been extended to ℝ𝑛. In the following of the 

chapter, we also explained the different weights over these rings namely, the Lee 

weight, Hamming weight, Bachoc weight and Euclidean weight. Then we consider to 

the inner products which are basically representing a relationship between two 

vectors one of the highly used inner products is the Hermitian inner product and 

Euclidean inner products for the ring of order four  
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Applying both MacWilliams theorems have been shown that for the binary linear 

codes and for general linear codes, that is for the larger classes of rings, afterwards 

both MacWilliams theorems are holding over any finite ring of ℝ in [11]. The second 

MacWilliams Theorem generalizes that the complete weight enumerator of ring of 

order four, The MacWilliams identity we can use to find the weight enumerate of 𝐶 

and relationship with the rings of order four and its important way to using 

MacWilliams identity is an inefficient way of determining the weight enumerators. 

 

In the coding theory, to find the generator matrix for code is one of the more 

important ways. Generally, we do not need a matrix whose rows generate code, we 

also need a matrix whose rows generate code with the minimum number of rows. We 

can easily determine a minimal generating set to codes over rings and codes over 

fields. 

 

Generators for the rings are very important and widely studied in linear coding 

theory [7-9]. We talked about generator matrices for the codes over ℤ4, 𝐹2 + 𝑢𝐹2,

with 𝑢2 = 0, 𝐹2 + 𝑣𝐹2 with 𝑣2 = 𝑣, especially. With using residue code and the 

torsion in the generators.  

 

In part 6, we are just talk about the summary in details, important references and 

resume with some information.  
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PART 2 

 

LITERATURE REVIEW 

 

The birth of coding theory was inspired by a classic paper of Shannon in 1948 [18]. 

In 1949, the American Scientist, Physicist and Mathematician Warren Weaver 

(1894-1978) established, “The Mathematics of Communication” appeared in the 

Scientific American [17]. Coding theory studies started in 1998 by the paper “A 

Mathematical Theory of Communication” [18]. 

 

 Moreover, other roots of the later so-called “Information Theory” could be found in 

the Cybernetics of the Norbert Wiener (1894-1964) in [17]. In the 20th century 

Coding theory arose as a problem in engineering concerning the efficient 

transmission of information. Hence, coding theory, in this perspective, using the 

binary field as the alphabet was largely done. Although, the alphabets were quickly 

generalized to finite fields, at least for mathematicians, because a lots of the 

techniques and proofs were identical to the binary case seen as the field with two 

elements [7].  

 

In the very beginning of it is study, coding theory was viewed by mathematicians not 

only as an application to electrical engineering and computer science, but also as a 

part of pure mathematics [7]. They were interested not only in the fundamental 

questions of coding theory, but also into its connections by other areas of discrete 

mathematics. The early results of the connected codes to lattices, combinatorics, and 

designs. While the alphabets were a finite field these connections were generally 

made by codes [7].  

 

Some papers were written when the alphabets were a ring, such as Blake’s early 

papers [2] and [3]. It was not until, coding theorists in 1990s stared to study codes 

over finite rings in earnest [7]. This study stared by the understanding that certain 
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non-linear binary codes, which had a few properties of linear codes, in general, the 

images of codes over ℤ4 under a non-linear map [9]. Families of rings presented 

themselves for studying and a great literature emerged studying codes over rings, for 

some specific application were always chosen by the families of rings [7].  

 

The interested reader could consult Sloane’s seminal text and MacWilliams “The 

Theory of Error-Correcting Codes”, for the description of classical coding theory 

[24]. For more description, see Pless’s and Huffman, “Fundamentals of Error 

Correcting Codes” [12]. For the description of the connection between codes and 

designs see Key’s and Assmus “Designs and their Codes” [25]. Codes are generally 

defined over finite fields, in these all three classic texts. 

 

A great deal of research has been devoted to finding efficient schemes by which 

digital information can be coded for reliable transmission through a noise channel 

[11]. Error-correcting codes are now widely used in applications such as returning 

pictures from deep space, design of registration numbers, and storage of date on 

magnetic tape [12]. Coding theory is also of great mathematical interest, relying on 

ideas from pure mathematics and, in particular, illustrating the power and the beauty 

of algebra [11].   

 

The rings of order four are especial interest in terms of algebraic coding theory. 

Because they have natural Gray maps to the binary field which makes them of 

especial interest in terms of constructing interesting binary codes [7]. The four rings 

of order four are the finite field of order four denoted  ℤ4, 𝐹2 + 𝑢𝐹2 with 𝑢2 = 0,

𝐹2 + 𝑣𝐹2 with 𝑣2 = 𝑣, and 𝐹2 + 𝑤𝐹2  with 𝑤2 = 𝑤 + 1. Codes over ℤ4 have been 

widely studied, in reality it was the realization that codes over ℤ4, together with their 

Gray map, could be used to understand certain binary codes that began the study of 

codes over rings [8],[10] and [22]. 
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PART 3 

 

BASIC NOTIONS 

 

3.1. RING THEORY  

 

Starting from number theory to the modern algebraic geometry, ring has an 

importance part in the pure algebra and applied algebra. It is important in the number 

theory, cryptology, and many types of another a mathematical sections. A 

multiplication ring has a multiplication identity, and it is also commutative. Family 

of the rings were always chosen for a particular application, with understanding that 

all the finite commutative rings was being direct products of the local ring by 

Chinese Remainder Theorem. Thus, in this study we are studying codes over rings, 

and using the assumption that all the rings work like the alphabets to the codes in a 

finite Frobenius ring. There is now a rapidly expanding literature on codes over 

various ring families [6], [7] and [9].The binary field was largely used as the 

alphabet in coding theory. The alphabet, on the other hand, was applied to finite 

fields quickly and effectively. Rings and codes could be communicate through two 

an important ways. In the first way, a ring structure can have the alphabet to the any 

codes, including finite field. In second way, some rings could become an ideal or 

even a module over through the code. 

 

3.1.1. Finite Commutative Rings  

 

Definition 3.1.1.1. Assume ℝ be a ring and a non-empty set with two binary 

operations, multiplication, and addition. Furthermore, (ℝ, . ) is a semigroup and 

(ℝ, +) is an abelian group, so satisfies in the following axioms. 

 

(i) Commutativity: 𝑎 + 𝑏 = 𝑏 + 𝑎 and  𝑎. 𝑏 = 𝑏. 𝑎   for all  𝑎, 𝑏 ∈ ℝ; 

(ii) Associativity: (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) ; (𝑎𝑏). 𝑐 = 𝑎. (𝑏𝑐) 

 for all 𝑎, 𝑏 and 𝑐 ∈ ℝ.
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(iii) There is an additive identity element 0 in ℝ in such a way 𝑎 + 0 = 𝑎 and 

𝑎. 1 = 𝑎 under multiplication for all 𝑎 ∈ ℝ; 

(iv) The −𝑎 is an inverse additive element in ℝ in such a way 𝑎. 𝑎−1 = 𝑎−1. 𝑎 =

1 under multiplication, and 𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0 addition for every 

element 𝑎 ∈ ℝ; 

(v) Distributive:𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 or  (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐 for all 𝑎, 𝑏 and 𝑐 ∈

ℝ; 

 

Note 3.1.1.2. The first four axioms require that a ring be abelian group under 

addition (ℝ, +).  

 

Definition 3.1.1.3. Let (ℝ, +, . ) be a ring. Then ℝ is a commutative ring if 𝑎. 𝑏 =

𝑏. 𝑎, for all 𝑎, 𝑏 ∈ 𝑅. 

 

Definition 3.1.1.4. If the element 𝑎 in ℝ has a multiplicative inverse 𝑏 in ℝ in such a 

way, 𝑎. 𝑏 = 𝑏. 𝑎 = 1, then a is called unit element in ℝ with identity, and it is inverse 

is denoted by 𝑎−1. Therefore, all non-zero element of the ℂ, ℚ and ℝ  has always a 

unit but the unit in ℤ is only ∓1. 

 

Definition 3.1.1.5. An element 𝑎 of a ring ℝ is called a right (left) zero-divisor if 

there exists a non-zero 𝑏 in ℝ such that 𝑎. 𝑏 = 0 (𝑏. 𝑎 = 0). 

 

Definition 3.1.1.6. The commutative ring ℝ with an identity is called integral 

domain, if it has no zero-divisor element. 

 

Definition 3.1.1.7. If every non-zero elements in a ring ℝ is a unit so it is called 

division ring. Commutative division ring is also a filed. 

 

Example 3.1.1.8. Let (ℝ, +, . ) be a division ring with identity, for all 𝑎 ≠ 0 ∈ ℝ,

∃ 𝑎−1 ∈ ℝ, such that 𝑎. 𝑎−1 = 𝑎−1. 𝑎 = 1. 
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Definition 3.1.1.9. Let (ℝ, +, . ) be a ring and 𝐼 be the non-empty subset of the ℝ. 

Then (𝐼, +, . ) be an ideal of ℝ if and only if it is satisfying the followings: 

 

(i) 𝑎 − 𝑏 , 𝑎 + 𝑏 ∈ 𝐼, for all 𝑎 and 𝑏 𝑖𝑛 𝐼. 

(ii) 𝑟. 𝑎 ∈ 𝐼, for all 𝑟 ∈ ℝ and 𝑎 ∈ 𝐼. 

 

Definition 3.1.1.10. An ideal (𝐼, +, . ) in the ring (ℝ, +, . ) is called prime ideal if 

𝑎. 𝑏 ∈ 𝐼 implies that either 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 for all  𝑎, 𝑏 ∈ ℝ. 

 

Example 3.1.1.11. Let (ℤ6, +6, .6 ) be a ring and (𝐼 = 〈2̅〉, +6, .6 ) a prime ideal of 

ℤ6, where 𝐼 = 〈2̅〉 = {0̅, 2̅, 4̅} and ℤ6 = {0̅, 1̅, 2̅, 3̅, 4̅, 5̅}. So we have the followings: 

 

(i) 2̅, 3̅ ∈ ℤ6 such that 2̅. 3̅ = 0̅ ∈ 𝐼 ⟹ 2̅. ∈ 𝐼 , 3̅ ∉ 𝐼 

(ii)  1̅, 4̅ ∈ ℤ6 such that 1̅. 4̅ = 4̅ ∈ 𝐼 ⟹ 1̅ ∉ 𝐼, 4̅ ∈ 𝐼  

(iii) 1̅, 2̅ ∈ ℤ6 such that 1̅. 2̅ = 2̅ ∈ 𝐼 ⟹  1̅ ∉ 𝐼 , 2̅ ∈ 𝐼 

Therefore, for all a̅ , b̅ ∈ ℤ6, if  a̅. b̅ ∈ 𝐼, then either a̅ ∈ 𝐼 or b̅ ∈ 𝐼. 

 

Definition 3.1.1.12. A principal ideal of the ring (ℝ, +, . )  is generated by a single 

element 𝑎 ∈ ℝ, and it is denoted by 〈𝑎〉 such that 

 

𝐼 = 〈𝑎〉 = {𝑟. 𝑎: 𝑟 ∈ ℝ} 

 

Definition 3.1.1.13. Suppose (ℝ, +, . )  is ring, then ℝ is called principal ideal ring if 

and only if every ideal of ℝ is a principal ideal. 

 

Remark 3.1.1.14. 

 

(i) The principal ideal generated by zero is a ring of zero is (0, +). Since  

𝐼 = 〈0〉 = {𝑟. 0: ∀𝑟 ∈ ℝ} = 0 

 

(ii) The principal ideal generated by one be a ring of (𝑅, +). Since   

 

𝐼 = 〈1〉 = {𝑟. 1: ∀𝑟 ∈ ℝ} = ℝ 
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Example 3.1.1.15. Find the principal ideal of the ring (ℤ18, +18, .18 ) is: 

𝐼1 = 〈1̅〉 = (ℤ18, +18, .18 ) 

𝐼2 = 〈0̅〉 = ({0̅}, +18, .18 ) 

𝐼3 = 〈2̅〉 = ({0̅ , 2̅, 4̅, 6̅, 8̅, 10̅̅̅̅ , 12̅̅̅̅ , 14̅̅̅̅ , 16̅̅̅̅ } , +18, .18 ) 

𝐼4 = 〈3̅〉 = ({0̅, 3̅, 6̅, 9̅, 12̅̅̅̅ , 15̅̅̅̅ } , +18, .18 ) 

𝐼5 = 〈6̅〉 = ({0̅ , 6̅, 12̅̅̅̅ } , +18, .18 ) 

𝐼6 = 〈9̅〉 = ({0̅ , 9̅} , +18, .18 ) 

 

Definition 3.1.1.16. Let 𝑀 be an ideal of the ring ℝ. If 𝑀 ≠ ℝ and there is no-proper 

ideal 𝐼 of ring the ℝ that containing 𝑀, then M is called maximal ideal of ℝ. 

 

Example 3.1.1.17. Determine the ideal and maximal ideal in the ring (ℤ8, +8, .8 ). 

The proper ideals of the ring (ℤ8, +8, .8 ) are; 

 

𝐼1 = 〈1̅〉 = ({0̅, 1̅, 2̅, 3̅, 4̅, 5̅, 6̅, 7̅}, +8, .8 ) 

𝐼2 = 〈2̅〉 = ({0̅, 2̅, 4̅, 6̅} , +8, .8 ) 

𝐼3 = 〈4̅〉 = ({0̅, 4̅} , +8, .8 ) 

 

𝐼2 = 〈2̅〉 is ta maximal ideal in ℤ8, since there is no-proper ideal of the ring 

(ℤ8, +8, .8 ) containing 𝐼2 = 〈2̅〉, but 𝐼3 = 〈4̅〉 is not a maximal ideal, since 〈4̅〉 ⊆ 〈2̅〉. 

 

Definition 3.1.1.18. Assume ℝ be a ring if it has a unique maximal ideal 𝑀, then ℝ 

is called local ring. In this occasion the filed  ℝ /𝑀 is said to be the residue field of 

 ℝ . 

 

Definition 3.1.1.19. If 𝑀 is a maximal ideal of  ℝ, then ℝ/𝑀 be a field.  

 

Definition 3.1.1.20. ℝ is called semi-local ring if it has finitely many maximal 

ideals. Semi-local rings are commutative with unity. 

 

Definition 3.1.1.21. If ℝ is a commutative ring, then it is two ideals 𝐼1 and 𝐼2 are 

called coprime ideals if  𝐼1 +  𝐼2 = ℝ. 
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3.1.2. Frobenius Rings 

 

In coding theory, finite Frobenius rings have arisen like a large class of rings that 

could be using as the alphabets. In algebraic coding theory, the Frobenius rings have 

been the most important class of the rings. Maybe it is one of the most important 

implications of the code 𝐶 with the length 𝑛 over the Frobenius ring ℝ, it has the 

|𝐶|. |𝐶⊥| = |ℝ𝑛| where 𝐶⊥ is a dual of 𝐶. When the ring is not a Frobenius, this is 

not always fact. 

 

Theorem 3.1.2.1. We assume that ℝ be the finite commutative ring, then the 

following conditions are equivalent: 

 

(i) ℝ is a Frobenius ring. 

(ii) ℝ is an injective by  ℝ- module. 

(iii) Assuming that ℝ be the finite local ring with a maximal ideal 𝑀 and residue 

field 𝑘, then those conditions must be equal with the 𝑑𝑖𝑚𝑘𝐴𝑛𝑛(𝑀) = 1. 

 

Proof. See the Theorem 2.1 in [7]. 

 

Example 3.1.2.2. Let ℝ1 = 𝐹2 + 𝑣𝐹2 be a ring of order four where 𝐹2 + 𝑣𝐹2 =

{𝑣, 1 + 𝑣, 0, 1} with 𝑣2 = 𝑣. Also, ℝ2 = 𝐹2 + 𝑢𝐹2 be a ring of order four where 

𝐹2 + 𝑢𝐹2 = {0,1, 𝑢, 1 + 𝑢} with 𝑢2 = 0.  

 

Consider the ring ℝ = 𝐹2[𝑥, 𝑦] 〈𝑥2, 𝑦2, 𝑥𝑦〉⁄ = {𝑥, 𝑦, 𝑥 + 𝑦, 1 + 𝑥, 1 + 𝑦, 𝑥 + 𝑦 +

1, 0, 1} such that 𝑥2 = 𝑦2 = 𝑥𝑦 = 0, so we have ℝ1[𝑣] 〈𝑣2 = 𝑣〉⁄  and 

ℝ2[𝑢] 〈𝑢2 = 0〉⁄ . The maximal ideal of the 𝑀 = {0, 𝑥, 𝑦, 𝑥 + 𝑦}, and its dual could 

be defined as 𝑀⊥ = {𝑥 ∈ ℝ: 〈𝑥, 𝑦〉 = 0 , ∀ 𝑦 ∈ 𝑀} = {𝑥, 𝑦, 𝑥 + 𝑦, 0}. So 

 

𝑑𝑖𝑚𝑘𝐴𝑛𝑛(𝑀) = 𝑑𝑖𝑚𝐴𝑛𝑛(𝑀⊥) = 2 , i. e.  𝑀 = 〈𝑥, 𝑦〉 

 

By the Theorem 3.1.2.1, we can see that 𝑑𝑖𝑚𝑘𝐴𝑛𝑛(𝑀) ≠ 1 and so the ring ℝ is not a 

Frobenius ring. So, we have |𝑀|. |𝑀⊥| ≠ |ℝ|.    
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Theorem 3.1.2.3. Let ℝ be a finite rings. Then the following conditions are 

equivalent: 

 

(i) ℝ is a Frobenius ring. 

(ii) ℝ̂ ≅ ℝℝ like the left module.  

(iii) ℝ̂ ≅ ℝℝ like the right module. 

 

It's important to mention that a few of the conclusions are more complex of the non-

commutative rings while we should determine if the module is on the left or right 

side. We assume ℝ be the Frobenius ring and module isomorphism is : ℝ → ℝ̂ . Then 

the set 𝜒 = 𝜑(1), and so 𝜑(𝑟) = 𝜒𝑟for some 𝑟 ∈ ℝ. Thus, we can conclude that 𝜒 is 

a character and generating character of  ℝ̂. For more details, one can follow the 

Theorem 2.2 in [7]. 

 

3.1.3. Chinese Remainder Theorem for Ring Theory 

 

The classical Chinese Remainder Theorem is more powerful method for coding over 

the commutative rings. 

 

Definition 3.1.3.1. Let we have two ideals 𝑎, 𝑏 in the ring ℝ is called relatively 

prime (coprime), if a+𝑏 = ℝ. 

 

Lemma 3.1.3.2. Since 𝑎, 𝑏 be a relative prime ideal of the commutative ring ℝ, so 

𝑎. 𝑏 = 𝑎 ∩ b. 

Proof. We can proof that directly, let 𝑎. 𝑏 ⊆ 𝑎 ∩ b and as we said in the definition 

above if 𝑎 + 𝑏 = ℝ, then 𝑎 ∩ b = (𝑎 ∩ b)ℝ = (𝑎 ∩ b)(𝑎 + 𝑏) ⊆ 𝑎𝑏. As a result, 

𝑎. 𝑏 = 𝑎 ∩ b. 

 

Lemma 3.1.3.3. Assume that  𝑎, 𝑏 and 𝑐 are ideals of a commutative ring ℝ, by 

many of pairs that seem to be relatively prime. Then 𝑎 be a relatively prime for 𝑏𝑐. 

 

Proof. It has a ℝ = (𝑎 + b). (𝑎 + c) ⊆ 𝑎 + 𝑏𝑐. Consequently 𝑎 + 𝑏𝑐 = ℝ so 𝑎 and 

𝑏𝑐 be the relatively prime. 
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Lemma 3.1.3.4. Assume that 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑠 be ideals of a commutative ring ℝ in 

that pairs seem to be relatively prime. Then 𝑎1. 𝑎2. 𝑎3 … 𝑎𝑠 = 𝑎1 ∩ 𝑎2 ∩ 𝑎3 … ∩ 𝑎𝑠. 

 

Lemma 3.1.3.5. Assume that 𝑎 and 𝑏 are relatively prime ideals of a commutative 

ring ℝ. Then 𝑅 𝑎. 𝑏⁄ ≅ ℝ 𝑎⁄ × ℝ 𝑏.⁄  

 

Proof. Let ψ: ℝ → (ℝ 𝑎⁄ × ℝ 𝑏⁄ ) be a map and defined by ψ(x) = (𝑥. (𝑚𝑜𝑑 𝑎),

𝑥. (𝑚𝑜𝑑 𝑏)). It has ker(ψ) = 𝑎 ∩ b = a. b, which gives us ℝ 𝑎. 𝑏⁄ ≅ ℝ 𝑎⁄ × ℝ 𝑏.⁄   

 

Lemma 3.1.3.6. Let 𝑎1, 𝑎2, 𝑎3 … , 𝑎𝑠 be ideals of commutative ring ℝ such that they 

are relatively prime in the pairs. Then ℝ 𝑎1, 𝑎2, 𝑎3 … , 𝑎𝑠⁄ ≅ ℝ 𝑎1⁄ × ℝ 𝑎2⁄ ×

ℝ 𝑎3⁄ … × ℝ 𝑎𝑠⁄ . Assume that ℝ is a finite commutative ring, with the ideal of the ℝ. 

Assume ψ𝑎 is a canonical homomorphism ψ𝑎: ℝ → ℝ 𝑎⁄ , giving by ψ𝑎(𝑥) = 𝑥 + 𝑎. 

Assume that 𝑀1, … , 𝑀𝑠 are maximal ideals of a finite commutative ring ℝ, and 

assume 𝑒1, … , 𝑒𝑠 are individual indices of the stability. The ideals  𝑀1
𝑒1, … , 𝑀𝑠

𝑒𝑠 are 

relatively prime in pair and ∏ 𝑀𝑖
𝑒𝑖𝑠

𝑖=1 = ⋂ 𝑀𝑖
𝑒𝑖𝑘

𝑖=1 = {0}.  

 

Theorem 3.1.3.7. (Chinese Remainder Theorem) Assume that ℝ is a finite 

commutative ring, with maximal ideals 𝑀1, 𝑀2, 𝑀3, … , 𝑀𝑠 where the index of 

stability of 𝑀𝑖 is 𝑒𝑖. Then the map ψ: ℝ → ∏ ℝ 𝑀𝑖
𝑒𝑖⁄𝑠

𝑖=1  is defined by ψ(x) =

(𝑥 + 𝑀1
𝑒1, 𝑥 + 𝑀2

𝑒2, … , 𝑥 + 𝑀𝑘
𝑒𝑘) is a ring isomorphism. 

 

Proof. See the Theorem 2.6 in [7]. 

 

Note 3.1.3.8. Let ℝ𝑖 denote the local ring ℝ 𝑀𝑖
𝑒𝑖⁄ . According to the Theorem 3.1.3.7, 

one gets  ℝ ≅ ℝ1 × ℝ2 × ℝ3 × … × ℝ𝑠.  Thus, ℝ is Frobenius ring if and only if 

each ℝ𝑖 is Frobenius. For more information one can easily see the Remark 1.3 in [7]. 

The inverse of the isomorphism of ψ, given by Chinese Remainder Theorem, is 

ℝ1 × ℝ2 × ℝ3 × … × ℝ𝑠 → ℝ. 
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Example 3.1.3.9. Let ∏ 𝑃𝑖
𝑒𝑖𝑠

𝑖=1  be a prime factorization. By the Theorem 3.1.3.7 we 

get ℤ𝑛 ≅ ℤ𝑝1𝑒1 × ℤ𝑝2𝑒2 × … × ℤ𝑝𝑠𝑒𝑠 . This is a classical application for the Chinese 

Remainder Theorem. Especially, it permits to the unique solution modulo ∏ 𝑛𝑖  to the 

system of the equations 𝑥 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑛𝑖) while 𝑛𝑖 be a relatively prime in the pairs. 

For more details, reader can follow [7]. 

 

Corollary 3.1.3.10. Let ℝ𝑖 be the finite commutative rings, 

ℝ = 𝐶𝑅𝑇(ℝ1, ℝ2, ℝ3, … , ℝ𝑠) and 𝐶𝑖 be the codes over ℝ𝑖 with 

𝐶 = 𝐶𝑅𝑇(𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑠). Then 

 

(i) |𝐶| = ∏ |𝐶𝑖|; 
𝑠
𝑖=1  

(ii) 𝑟𝑎𝑛𝑘(𝐶) = 𝑚𝑎𝑥{𝑟𝑎𝑛𝑘(𝐶𝑖), 𝑖 = 1, … , 𝑠}; 

(iii) 𝐶 is free if and only if 𝐶𝑖 are free to every 𝑖 each the same rank 

 

Proof. For more details see the Corollary 2.1 in [7]. 

 

Theorem 3.1.3.11. Assume ℝ = 𝐶𝑅𝑇(ℝ1, ℝ2, ℝ3, … , ℝ𝑠) is a finite commutative 

rings. Let 𝐶 = 𝐶𝑅𝑇(𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑠) is a code over ℝ. Next 

 

𝐶⊥ = 𝐶𝑅𝑇(𝐶1
⊥, 𝐶2

⊥, 𝐶3
⊥, … , 𝐶𝑠

⊥) 

 

Proof. Consider vectors 𝑣, 𝑤 ∈ ℝ. Then 

 

 ψ𝑎 (∑ 𝑣𝑖𝑤𝑖) = ∑ ∑ ψ𝑎(𝑣𝑖) ∑ ψ𝑎(𝑤𝑖) 

 

Hence, while [𝑣, 𝑤] = 0, we have that 

 

[∑ ψ𝑎(𝑣), ∑ ψ𝑎(𝑤)] = 0 

 

Then the standard cardinality argument gives equivalent. 
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Theorem 3.1.3.12. Assume that ℝ = 𝐶𝑅𝑇(ℝ1, ℝ2, ℝ3, … , ℝ𝑠) be a finite 

commutative ring. Let 𝐶 = 𝐶𝑅𝑇(𝐶1, 𝐶2, … , 𝐶𝑠)) be a code over ℝ. Then  𝑑(𝐶) =

𝑚𝑖𝑛{𝑑(𝐶𝑖)}.   

 

Proof. Let 𝑑1 be the minimum of {𝑑(𝐶𝑖)}. Then, there exists 𝑗 with 𝑑(𝐶𝑗) = 𝑑1. Let 

𝑣𝑗  is a minimum weight of vectors in 𝐶𝑗 , later 𝐶𝑅𝑇(0,0, … ,0, 𝑣𝑗 , 0, … ,0) has been 

Hamming weight 𝑑1 whichever giving 𝑑(𝐶) ≤ 𝑑1. Then we assume that 𝑣 is a 

minimum weight of vector in 𝐶. The projection ψ𝑎(𝑣) the weight less than or equal 

to 𝑑(𝐶) that giving 𝑑(𝐶) ≤ 𝑑1. Therefore, 𝑑1 = 𝑑(𝐶) and we have the result. 

 

Theorem 3.1.3.13. Assuming that ℝ be a finite commutative ring. Then ℝ is 

isomorphic, by the Chinese Remainder Theorem ways, to direct product of the local 

rings.  

Proof. For more information one can see the Theorem 2.10 in [7]. 

 

Theorem 3.1.3.14. Let ℝ be a finite commutative ring. ℝ is a principal ideal ring if 

and only if 𝑅 = 𝐶𝑅𝑇(𝑅1, 𝑅2, … , 𝑅𝑡) where 𝑅𝑖 is a chain ring for 𝑖 = 1, … , 𝑡. 

 

Proof. For more information one can see the Theorem 2.11 in [7]. 

 

Note 3.1.3.15. The standard examples of the Theorem 3.1.3.14 can be the example 

give in the Example 3.1.3.9. Namely, ℤ𝑛 ≅ ℤ𝑝1𝑒1 × ℤ𝑝2𝑒2 × … × ℤ𝑝𝑠𝑒𝑠 . Here, ℤ𝑛 be a 

principal ideal ring also all, ℤ𝑝𝑖𝑒𝑖  be a chains ring. 

 

Example 3.1.3.16. For the integers 𝑘 ≥ 1, we defined the family of the rings 𝐴𝑘 to 

be 𝐴𝑘 = 𝐹2[𝑣1, 𝑣2, … , 𝑣𝑘] 〈𝑣𝑖
2 − 𝑣𝑖 , 𝑣𝑖𝑣𝑗 − 𝑣𝑗𝑣𝑖〉⁄ . The ideal 〈𝑤1, 𝑤2, … , 𝑤𝑘〉, where 

𝑤𝑖 ∈ {𝑣𝑖, 1 + 𝑣𝑖}, be a maximal ideal of cardinality 22𝑘
− 1 and denoted those 

maximal ideals by 𝑀𝑖. We noted in here 2𝑘 is any ideal and 𝑀𝑖
𝑒𝑖 = 𝑀𝑖 for every 

𝑖 and 𝑒 ≥ 1. It can be elementary for seen that a direct sum of each two of those 

ideals be 𝐴𝑘. After, by the Chinese Remainder Theorem, one gets that 𝐴𝑘 is 

isomorphic to 𝐹2
2𝑘

. Such that, 𝐴𝑘 is the principal ideal ring and which is also 

isomorphic to the direct product of the chain rings.  
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3.2. FIELD THEORY  

 

Fields, we are realized from the linear algebra, are very important class for the rings, 

because in linear algebra we always take scalars form the field. Even if a ring with 

the any single element can be technically qualified like a field under the definition, 

we always try to rule it out for this case. One more way in the field is that we must 

have 1 ≠ 0. (When their any element 1 ≠ 0 in a ring with identity, then 1. 𝑥 = 𝑥 ≠

0 = 0. 𝑥 and so 1 ≠ 0 ). 

 

3.2.1. Finite Fields 

 

Definition 3.2.1.1. A filed 𝐹 be a set of elements with both operations additions and 

multiplications. Let 𝐹𝑞 is a finite field of order 𝑞 where q is a prime number. A non-

empty set 𝑉, together with the some (vector) scalar multiplication (.) and addition 

(+) by the elements of 𝐹𝑞 , be a (linear space or) vector space over 𝐹𝑞 if it satisfies all 

the following axioms for all 𝑎, 𝑏 and 𝑐 ∈ 𝐹𝑞 ; 

 

(i) Closure: 𝑎 + 𝑏 and 𝑎. 𝑏 in 𝐹𝑞 are closed under addition and multiplication 

respectively; 

(ii) Commutativity: 𝑎 + 𝑏 = 𝑏 + 𝑎 and  𝑎. 𝑏 = 𝑏. 𝑎; 

(iii) Associativity: (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) ;  𝑎. (𝑏𝑐) = (𝑎𝑏). 𝑐 ;  

(iv)  Distributive:  𝑎. (𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 ;  (𝑎 + 𝑏). 𝑐 = 𝑎𝑐 + 𝑏𝑐; 

(v) There exists an identity element 0 and 1 in 𝐹 like that 𝑎 + 0 = 𝑎 and  

𝑎. 1 = 𝑎; 

(vi) −𝑎 additive inverse element be exists  in 𝐹𝑞 such that 𝑎 + (−𝑎) = 0; 

(vii) 𝑎−1 multiplicative inverse element be exists in  𝐹𝑞 such that 𝑎. 𝑎−1 = 1;  

 

Definition 3.2.1.2. The axioms of filed from (i –vii), whole the set of elements with 

both multiplication (.) and addition (+) is called a ring. 

 

Definition 3.2.1.3. The finite filed be a filed, if we have finite numbers of any 

elements, those numbers are called order of the field and denoted by 𝑞.  
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Lemma 3.2.1.4. For a field  𝐹, we have the following axioms: 

 

(i) 𝑎. 0 = 0 for all 𝑎 in 𝐹. 

(ii) 𝑎. 𝑏 = 0 ⇒ 𝑎 = 0 or 𝑏 = 0. (So the product of any two non-zero elements of 

the filed be also non-zero). 

 

Proof. For more information see Lemma 3.1 in [11].  

 

Theorem 3.2.1.5. The order of field 𝑞 exists if and only if 𝑞 is a prime power such 

that (𝑞 = 𝑝ℎ where p is a prime number and also h is positive integer ). In the 

addition, when 𝑞 is a prime power, so there is up to the relabeling, at most one filed 

of that order 𝑞. A Galois field of the order 𝑞 is denoted by 𝐺𝐹(𝑞).  

 

Proof. For more information see Theorem 3.2 in [11]. 

 

Definition 3.2.1.6. Let 𝑚 be a fixed positive integer. Two integers 𝑎 and 𝑏 are called 

congruent (𝑚𝑜𝑑𝑢𝑙 𝑚), if 𝑎 − 𝑏 be a divisible by 𝑚.  

 

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) 

 

In another words, if  𝑎 = 𝑘𝑚 + 𝑏 to some 𝑘 integer, then 𝑎 ≢ 𝑏(𝑚𝑜𝑑 𝑚) where 𝑎 

and 𝑏 are not congruent (𝑚𝑜𝑑𝑢𝑙 𝑚). 

 

Theorem 3.2.1.7. ℤ𝑚 is a field if and only if 𝑚 is a prime number.  

 

Proof. For more information see the Theorem 3.5 in [11]. 
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Example 3.2.1.8.  Find 𝐺𝐹(3) such that ℤ3 = {0, 1, 2} with tables. 

 

+ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

 

ℤ4 is not a field by Theorem 3.2.1.7 (examination of the multiplication table of ℤ4 

shows that 2 dose not have an inverse and so we cannot divide by 2 in ℤ4). However, 

while 4 = 22 is not prime, it is a prime power, and so the field 𝐺𝐹(4) dose exist, by 

the Theorem 3.2.1.5. 

 

3.2.2. Vector Space over the Finite Fields 

 

It is also very useful be able to perform certain operations with a codewords 

themselves, in carrying out of the arithmetic operations within the alphabet of the 

codes. Now, we assume that 𝑞 is a prime power and also, 𝐺𝐹(𝑞) denotes the finite 

field with 𝑞 elements. The element of 𝐺𝐹(𝑞) is called scalars. The set 𝐺𝐹(𝑞)𝑛of all 

ordered 𝑛-tuples over 𝐺𝐹(𝑞) is denoted that by 𝑉(𝑛, 𝑞) where 𝑛 is be length and also 

it is element will be called vectors. We define two operations within 𝑉(𝑛, 𝑞): 

 

(i) Addition of vectors: if 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = ( 𝑦1,  𝑦2, … ,  𝑦𝑛) ∈

 𝑉(𝑛, 𝑞), then 𝑥 + 𝑦 = (𝑥1 +  𝑦1, 𝑥2 +  𝑦2, … , 𝑥𝑛 +  𝑦𝑛) . 

(ii) A scalar multiplication of a vector: if 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈  𝑉(𝑛, 𝑞) and 𝑎 ∈ 𝐺𝐹(𝑞).Next 

𝑎𝑥 = (𝑎𝑥1, 𝑎𝑥2, … , 𝑎𝑥𝑛). 

 

For all 𝑢, 𝑣, and 𝑤 ∈ 𝑉(𝑛, 𝑞) and for all 𝑎 and 𝑏 ∈ 𝐺𝐹(𝑞), we have the following 

axioms: 

 

(i) 𝑢 + 𝑣 ∈ 𝑉(𝑛, 𝑞); 

(ii) (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤); 

. 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 
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(iii) The all-zero vector 0 = (0,0, … ,0) ∈ 𝑉(𝑛, 𝑞) and satisfying  𝑢 + 0 = 0 +

𝑢 = 𝑢; 

(iv) The vector of  𝑢 = {𝑢1, 𝑢2, … , 𝑢𝑟} ∈ 𝑉(𝑛, 𝑞), and the element of the 

−𝑢 = {−𝑢1, −𝑢2, … , −𝑢𝑟} ∈ 𝑉(𝑛, 𝑞) and satisfies 𝑢 + (−𝑢) = 0; 

(v) 𝑢 + 𝑣 = 𝑣 + 𝑢 from axioms (i)-(iv) mean that 𝑉(𝑛, 𝑞) is abelian group 

under addition; 

(vi) 𝑎. 𝑣 ∈ 𝑉(𝑛, 𝑞) it is closure under scalar multiplication; 

(vii) Distributive : 𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣, (𝑎 + 𝑏)𝑢 = 𝑎𝑢 + 𝑏𝑢; 

(viii) (𝑎𝑏). 𝑢 = 𝑎. (𝑏𝑢); 

(ix) 1. 𝑢 = 𝑢, where 1 is the multiplicative identity of 𝐺𝐹(𝑞); 

 

Definition 3.2.2.1.  Let 𝑉 a vector space is a non-empty subset of 𝐶 and also its be a 

subspace of 𝑉, if it is a vector space by the same scalar multiplication and vector 

addition as 𝑉, then it is a vector space. 

 

Theorem 3.2.2.2. A non-empty subset 𝐶 of  𝑉(𝑛, 𝑞) is a subspace if and only if 𝐶 is 

closed under scalar multiplication and addition, if and only if 𝐶 satisfy the 

followings:  

 

(i) If 𝑥, 𝑦 ∈ 𝐶, then 𝑥 + 𝑦 ∈ 𝐶; 

(ii) If 𝑎 ∈ 𝐺𝐹(𝑞) and 𝑥 ∈ 𝐶, then 𝑎. 𝑥 ∈ 𝐶; 

 

Proof. For more information see Theorem 4.1 in [11]. 

 

Definition 3.2.2.3. Assume 𝑉 be a vector space over 𝐹𝑞. A linear combination of 𝑟 

vectors {𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑟} in 𝑉(𝑛, 𝑞) is a vector of the form 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 … +

𝑎𝑟𝑣𝑟 where 𝑎𝑖’s are scalar numbers for 𝑖 = 1, … , 𝑟. 

 

Definition 3.2.2.4. Assume that 𝑉 be a vector space over 𝐹𝑞. The set of the vectors 

{𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑟} is called a linearly dependent if there are scalar 𝑎1, 𝑎2, 𝑎3 … , 𝑎𝑟 not 

all zero, so that 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 … + 𝑎𝑟𝑣𝑟 = 0. 

 

A set of vectors {𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑟} is called linearly independent if it is not linearly 

dependent such that, if 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 … + 𝑎𝑟𝑣𝑟 = 0 ⟹ 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑟 =

0. 
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Definition 3.2.2.5. Let 𝐶 be a subspace of  𝑉(𝑛, 𝑞), then a subset {𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑟} is 

a non-empty subset of 𝐶 is called generating set or (spanning set ) of 𝐶, providing 

that every single vector in 𝐶  could be expressed as a linear combination of 

𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑟 .  

 

Moreover, if {𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑟} is a generating set and linearly independent, so it is 

called basis of the 𝐶. 

 

Theorem 3.2.2.6. Let 𝐶 be a non-trivial and subspace of 𝑉(𝑛, 𝑞). Then, 

{𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑟}  is any generating set that containing bases of 𝐶. 

 

Proof. For more information see the Theorem 4.2 in [11]. 

 

Theorem 3.2.2.7. Suppose {𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑟} be a basis of subspace 𝐶 of  𝑉(𝑛, 𝑞). 

Then 

 

(i) All vector of 𝐶 may be expressed uniquely like a linear combination of the 

basis vectors. 

(ii) 𝐶 exactly includes 𝑞𝑘 vectors. 

 

Proof. For more information see Theorem 4.3 in [11]. 

 

Note 3.2.2.8. It follows from Theorem 3.2.2.7 that any two bases of a subspace 𝐶 

contains the same number 𝑘 of vectors, where |𝐶| = 𝑞𝑘, and also the number of 𝑘 is 

said to be dimension of the subspace 𝐶 and it is denoted by dim(𝐶). We have already 

exhibited a basis of  𝑉(𝑛, 𝑞) having 𝑛 vectors and so dim(𝑉(𝑛, 𝑞)) = 𝑛. 
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Definition 3.2.2.9. Let 𝑤 = {𝑤1, 𝑤2, 𝑤3 … 𝑤𝑛} and 𝑣 = {𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛} ∈ (𝐹𝑞)
𝑛

. 

 

(i) The scalar product (also known as the Euclidean inner product or dot 

product) of 𝑣 and also 𝑤 are defined as  𝑣. 𝑤 = 𝑣1𝑤1 + 𝑣2𝑤2 +

𝑣3𝑤3 … + 𝑣𝑛𝑤𝑛 ∈ 𝐹𝑞 . 

(ii) 𝑣 and 𝑤 are are called orthogonal if 𝑣. 𝑤 = 0. 

(iii) Assume S be a non-empty subset of (𝐹𝑞)
𝑛

. The complement of 

orthogonal 𝑆⊥ of 𝑆 be a definite as 𝑆⊥ = {𝑣 ∈ (𝐹𝑞)
𝑛

|𝑣. 𝑠 = 0 , ∀𝑠 ∈ 𝑆}. 

If 𝑆 = ∅, then we define  𝑆⊥ = (𝐹𝑞)
𝑛

. 

 

Definition 3.2.2.10. 𝐹𝑞2
𝑛 × 𝐹𝑞2

𝑛 → 𝐹𝑞2
𝑛

  be defined as 〈𝑢, 𝑣〉𝐻 = ∑ 𝑢𝑖𝑣𝑖
𝑛
𝑖=1 , where 

𝑢, 𝑣 ∈ 𝐹𝑞2
𝑛

. This inner product is said to be the Hermitian inner product. To the linear 

code 𝐶 over 𝐹𝑞2
𝑛

. Its be a Hermitian dual be definite as 𝐶⊥𝐻 = {𝑣 ∈ 𝐹𝑞2
𝑛 : 〈𝑢. 𝑐〉𝐻 =

0, ∀ 𝑐 ∈ 𝐶}. If 𝐶 = 𝐶⊥𝐻, after that we can say that 𝐶 be a self-dual with respect for 

the Hermitian inner product. 
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PART 4 

 

INTRODUCTION TO LINEAR CODES 

 

4.1 LINEAR CODES  

 

4.1.1. Introduction  

 

In the coding theory, linear codes be an error-correcting codes in some linear 

combination of the codewords. We are also worried about sending a message via the 

channel that may be affect by the "noise." Linear code is introduced in forwards the 

error-correction and are apply in the ways for sending signal as a (bits). In the 

communications channel thus, we hope to obtain the decode and encode if occur the 

errors in a communication, a few errors may be detected up or corrected by the 

receiver a block message. That information about the manner that will be allowed to 

detect up, and also possible the correction, of the errors caused by the noise. This 

circumstance rises in several areas of the communications, consists computer 

communications, television, telephone and radio and also even compact disc player 

technologies. In coding theory, probability, polynomial rings, linear algebra and 

group theory over finite field every play a very valuable role. Also, in this part, let 

the alphabet 𝐹𝑞 be a Galois field 𝐺𝐹(𝑞), where 𝑞 be a prime power, and regarded 

(𝐹𝑞)
𝑛

even as a vector space 𝑉(𝑛, 𝑞). A vector (𝑥1, 𝑥2, … , 𝑥𝑛) is usually written as 

𝑥1𝑥2 … 𝑥𝑛. For some positive integer n, a linear code over 𝐺𝐹(𝑞) be just a subspace 

of  𝑉(𝑛, 𝑞).  

 

Definition 4.1.1.1. A binary code be a linear if and only if the sum of any two 

codewords are a codeword. A binary code be just given a set of sequence of {0s and 

1s} whichever is called codewords. If we have 2-ary code is always said binary 

codes, and 3-ary code sometimes refer to like the ternary codes.  

https://en.wikipedia.org/wiki/Communications_channel
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Definition 4.1.1.2. The massage symbol is encoded by repeating the symbol five 

times, then the code called is binary repetition code of length 𝑛 and also, we have 

binary date is {0,1}. We used binary code in the digital computers, based on a binary 

number system there are only 0 and 1 possible.  

 

Example 4.1.1.3. 2-ary repetition code of length 3 and 3-ary repetition code of 

length 4 can be shown by followings: 

 

(i) (𝐹2)3 = {000, 111} so (𝑛, 𝑞, 𝑑) = (3, 2, 3). 

(ii) (𝐹3)4 = {0000, 1111, 2222} so (𝑛, 𝑞, 𝑑) = (4, 3, 4). 

 

Definition 4.1.1.4. A code in any codeword be a sequence including of a fixed 

number 𝑛 of symbol is said to be a block code with length 𝑛.  

 

Definition 4.1.1.5. A code 𝐶 with codewords 𝑀 of the length 𝑛 be frequently written 

just as an 𝑀 × 𝑛 array whose rows are the codewords of 𝐶. Such that, the binary 

repetition code of length 5 be {00000, 11111}. Let (𝐹𝑞)
𝑛

denote 𝑎 = 𝑎1𝑎2 … 𝑎𝑛 be a 

set of ordered 𝑛-tuples where any 𝑎𝑖 ∈ 𝐹𝑞. The elements of (𝐹𝑞)
𝑛

 are said to be 

words or vector. 

 

Definition 4.1.1.6. The Hamming distance between two vectors 𝑥 and 𝑦 of distance 

function (𝐹𝑞)
𝑛

is the number of places in which they differ and denote by 𝑑(𝑥, 𝑦). 

The Hamming distance be a legitimate distance matric or function, since it is 

satisfying the following axioms: 

 

(i) 𝑑(𝑥, 𝑦) = 0 , if and only if  𝑥 = 𝑦 

(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ (𝐹𝑞)
𝑛

. 

(iii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦 and 𝑧 ∈ (𝐹𝑞)
𝑛

. 

 

Definition 4.1.1.7. The decoded likelihood of correcting-errors provided the 

following assumptions are made about the channel. 

 

https://www.britannica.com/technology/digital-computer
https://www.britannica.com/science/binary-number-system
https://www.britannica.com/science/binary-number-system
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(i) Any symbol transmitted has been the same probability 𝑝 < (
1

2
) from to 

being received in errors. 

(ii) Supposing that each symbol being received in the error, after that any of 

(𝑞 − 1) be possible errors are the equally likely. 

 

Definition 4.1.1.8. A minimum distance is an important parameter of a code 𝐶, 

giving a measure of how good it is at the error correcting, and the minimum distance 

denote by 𝑑(𝐶). To be smallest of the distance between codewords, 

 

𝑑(𝐶) = 𝑚𝑖𝑛{𝑑(𝑥, 𝑦)| 𝑥, 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦}. 

 

Example 4.1.1.9. Let 𝐶 = {000, 001, 010, 100, 011, 101, 110, 111} being a linear 

code, the minimum distance of 𝐶 can be calculate as follows: 

 

𝑑(000, 001) = 1;  𝑑(000, 111) = 3;  𝑑(110, 111) = 1;  𝑑(100, 111) = 2  

 

and if we continue with the process of finding the distance between the codewords, 

one can obtain that 𝑑(𝐶) = 𝑚𝑖𝑛{𝑑(𝑥, 𝑦)|𝑥 and 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦} = 1. 

 

Theorem 4.1.1.10. 

 

(i) 𝐶 is a code may be detect up to 𝑠 errors in each codeword if 𝑑(𝐶) ≥ 𝑠 + 1. 

(ii) 𝐶 is a code may be correct up to 𝑡 errors in each codeword if  𝑑(𝐶) ≥ 2𝑡 + 1. 

 

Proof. For more details see the Theorem 1.9 in [11]. 

 

Corollary 4.1.1.11. If 𝐶 has a minimum distance 𝑑, then 𝐶 may be used either; 

 

(i)  𝑑 − 1 errors for detect up, or 

(ii) ⌊
(𝑑−1)

2
⌋ errors for correct up in each codeword. 
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Proof. 

(i) 𝑑 ≥ 𝑠 + 1 if and only if 𝑠 ≤ 𝑑 − 1. 

(ii) 𝑑(𝐶) ≥ 2𝑡 + 1 if and only if 𝑡 ≤
(𝑑−1)

2
. 

 

4.1.2. The Aim of the Coding Theory 

 

Definition 4.1.2.1. An (𝑛, 𝑀, 𝑑)-code be a code of length 𝑛. Including codewords 𝑀 

and 𝑑 has the minimum distance. 

 

Note 4.1.2.2. A good (𝑛, 𝑀, 𝑑)-code have small 𝑛 (for quickly transference of 

massages), large 𝑀 (to enable transference of wide variety of the massage) and 𝑑 is 

large (many errors be correct). This is a conflicted goals and also be frequently 

mentions to the coding theory main problem to find a way to optimize one of the 

parameters (𝑛, 𝑀, 𝑑) to given values of the others two. The normal version of the 

problems is to find the hugest code of given minimum distance. We denoted by 

𝐴𝑞(𝑛, 𝑑) the largest value of the 𝑀 such that there exist a 𝑞 − ary (𝑛, 𝑀, 𝑑)- code.  

 

Theorem 4.1.2.3. 

 

(i) 𝐴𝑞(𝑛, 1) = 𝑞𝑛; 

(ii) 𝐴𝑞(𝑛, 𝑛) = 𝑞; 

Proof. 

 

(i) To the minimum distance of a code to be at least 1 we require that codewords 

are distinct, and the largest 𝑞 − ary (𝑛, 𝑀, 𝑑)- code be the whole of 

(𝐹𝑞)
𝑛

 𝑤ith 𝑀 = 𝑞𝑛. 

(ii) Suppose 𝐶 is a 𝑞 − ary (𝑛, 𝑀, 𝑛)- code. Then any two distinct codewords of 

𝐶 are different in all 𝑛 positions. Thus symbol appearing in any fixed 

position. e.g., The first, in the 𝑀 codewords must be the distinct. Giving 

𝑀 ≤ 𝑞. Thus 𝐴𝑞(𝑛, 𝑛) ≤ 𝑞. On the other side, the 𝑞 − ary repetition code of 

length 𝑛. Is an (𝑛, 𝑞, 𝑛)- code and so 𝐴𝑞(𝑛, 𝑛) = 𝑞.  
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Definition 4.1.2.4. A permutation of a set 𝑆 = (𝑥1, 𝑥2, … , 𝑥𝑛) is one-to-one mapping 

from 𝑆 to itself. We denoted by a permutation 𝑓 by; 

 

(

𝑥1

↓
𝑓(𝑥1)

𝑥2

↓
𝑓(𝑥2)

… 

𝑥𝑛

↓
𝑓(𝑥𝑛)

). 

 

If one of the two 𝑞-ary codes is obtained from the other by using combination of 

operation of the following operations, then they are said to be equivalent. 

 

(i) Permutation of the positions of the code. 

(ii) A non-zero scalar multiplies symbols appearing at a fixed position. 

 

Clearly the distances between any codewords are not changed by such operations and 

so equivalent codes have the same parameters  (𝑛, 𝑀, 𝑑) will be correct the same 

number of the errors. 

 

Example 4.1.2.5. Apply the permutation to the code 𝐶 = {00100, 00011, 11111, 

11000};  

(i) Apply the permutation (
0 → 1
1 → 0

)to the symbol in third position. 

(ii) Interchange position two and four. 

(iii) Multiply by 1 in one and five position. 

We can obtain equivalent code 𝐶 = {00000, 01101, 11011, 10110}.  

 

Lemma 4.1.2.6. Each 𝑞-ary (𝑛, 𝑀, 𝑑)-code over the alphabets {0, 1, … , 𝑞 − 1} be 

equal to an (𝑛, 𝑀, 𝑑)-code which includes all zero vectors 0 = 00 …  0. 

 

Proof. Choose any codewords 𝑥1𝑥2 … 𝑥𝑛 and for each 𝑥𝑖 ≠ 0, apply the permutation 

(
0 
↓ 
𝑥𝑖

 𝑥𝑖

 ↓
 0

…   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 0, 𝑥𝑖) to the symbols in position 𝑖.  
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Note 4.1.2.7. We take the set {0, 1} for 𝐹2, and define two operations in (𝐹2)𝑛. 

Assume that 𝑥 = 𝑥1𝑥2 … 𝑥𝑛 and 𝑦 = 𝑦1𝑦2 … 𝑦𝑛 are two vectors in (𝐹2)𝑛. Then, 

𝑥 + 𝑦 is in (𝐹2)𝑛 and defined by 𝑥 + 𝑦 = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2 , … , 𝑥𝑛 + 𝑦𝑛), while the 

intersection 𝑥 ∩ 𝑦 is in (𝐹2)𝑛 defined by 𝑥 ∩ 𝑦 = (𝑥1𝑦1, 𝑥2𝑦2 , … , 𝑥𝑛𝑦𝑛). The terms 

𝑥𝑖 + 𝑦𝑖 and 𝑥𝑖𝑦𝑖 are calculated modulo of 2 (without carrying); that are, according to 

multiplication and addition table 

 

 

 

 

 

For example, 1011 + 1111 = 0100 and 1011 ∩ 1111 = 1011. The weight of the 

vector 𝑥 𝑖𝑛 (𝐹2)𝑛, denoted 𝑤(𝑥), be define to be a number of 1s appeared in 𝑥. 

 

Lemma 4.1.2.8. If  𝑥 and 𝑦 ∈  (𝐹2)𝑛, then 𝑑(𝑥, 𝑦) = 𝑤(𝑥) + 𝑤(𝑦) − 2𝑤(𝑥 ∩ 𝑦). 

 

Proof.  𝑑(𝑥, 𝑦) = 𝑤(𝑥 +  𝑦) =  (number of 1𝑠 𝑖𝑛 𝑥) + (number of 1𝑠 𝑖𝑛 𝑦) −

2(number of positions where both 𝑥 and 𝑦 have 1) = 𝑤(𝑥) + 𝑤(𝑦) − 2𝑤(𝑥 ∩ 𝑦). 

 

Theorem 4.1.2.9. Suppose 𝑑 be odd. Next the binary (𝑛, 𝑀, 𝑑)-code exists if and 

only if a binary (𝑛 + 1, 𝑀, 𝑑 + 1)-code exist. 

Proof. For more information see the Theorem 2.7 in [11]. 

 

Corollary 4.1.2.10. If 𝑑 is odd, then 𝐴2 (𝑛 + 1, 𝑑 + 1) = 𝐴2  (𝑛, 𝑑), equivalently, if  

𝑑 is even, then  𝐴2  (𝑛, 𝑑) = 𝐴2 (𝑛 − 1, 𝑑 − 1). 

 

Example 4.1.2.11. We will determine the value 𝐴2 (5, 3). The code 𝐶 is a binary 

(5, 4, 3)-code and so 𝐴2 (5, 3) ≥ 4. By the Corollary 4.1.2.10, 𝐴2 (6, 4) = 4. To 

illustrate the ‘only if’ part of Theorem 4.1.2.9 we construct below a (6, 4, 4)-code 

from the (5, 4, 3)-code of 𝐶. (5, 4, 3)-code adds overall parity-check (6, 4, 4)-code 

are; 

00000 → 000000  

01101 → 011011 

. 0 1 

0 0 0 

1 0 1 

+ 0 1 

0 0 1 

1 1 0 
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10110 → 101101 

11011 → 110110   

The trial-and error method of 𝐶, which proved that a binary (5, 4, 3)-code must have 

𝑀 ≤ 4, would not be practical for sets of larger parameters.  

 

Definitions 4.1.2.12. If 𝑛 and 𝑚 are integers with 0 ≤ 𝑚 ≤ 𝑛. Then the binomial 

coefficient ( 𝑛
𝑚

). Pronounced ‘𝑛 choose 𝑚’, is defined by  

 

(
𝑛

𝑚
) =

𝑛!

𝑚! (𝑛 − 𝑚)!
 

 

Where 𝑚! = 𝑚(𝑚 − 1) … 3.2.1 for 𝑚 > 0. 

 

Lemma 4.1.2.13. The number of unordered selections of 𝑚 distinct objects from the 

set of 𝑛 distinct objects be ( 𝑛
𝑚

).  

 

Proof. An ordered selection of 𝑚 distinct objects from the set of 𝑛 distinct objects 

may be made in 𝑛(𝑛 − 1) … (𝑛 − 𝑚 + 1) =
𝑛!

(𝑛−𝑚)!
. Ways, for the first object can be 

chosen in any of  𝑛 ways, then the second in any of 𝑛 − 1 ways, and so on. Since 

there are 𝑚(𝑚 − 1) … 3.2.1 = 𝑚! Ways of ordering the 𝑚 objects chosen, the 

number of unordered selections is 

 

𝑛!

𝑚! (𝑛 − 𝑚)!
 

 

Definition 4.1.2.14. For any vector 𝑣 in (𝐹𝑞)
𝑛

and each integer 𝑟 ≥ 0, the sphere of 

radius 𝑟 and center 𝑢 denoted by 𝑆(𝑢, 𝑟) is the set  {𝑣 ∈  (𝐹𝑞)
𝑛

| 𝑑(𝑢, 𝑣) ≤ 𝑟}. 

 

Lemma 4.1.2.15. A sphere of radius 𝑟 in (𝐹𝑞)
𝑛

 (0 ≤ 𝑟 ≤ 𝑛) includes exactly 

(𝑛
0
) + (𝑛

1
)(𝑞 − 1) + (𝑛

2
)(𝑞 − 1)2 + ⋯ + (𝑛

𝑟
)(𝑞 − 1)𝑟 vectors. 

 

Proof. For more information look at Lemma 2.15 in [11]. 
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Theorem 4.1.2.16. (Hamming bound or the sphere-packing) A 𝑞-ary (𝑛, 𝑀, 2𝑡 + 1)-

code satisfying  

 

𝑀 {(
𝑛

0
) + (

𝑛

1
) (𝑞 − 1) + ⋯ + (

𝑛

𝑡
) (𝑞 − 1)𝑡} ≤ 𝑞𝑛. 

 

Proof. For more information look at the Theorem 2.16 in [11]. 

 

Definitions 4.1.2.17. A code which achieves the sphere-packing bound, such that 

equality occurs in Theorem 4.1.2.16, is called a perfect code. As a result, the 𝑀 

spheres of 𝑡 radius centered on the codewords ‘fill’ the all of space (𝐹𝑞)
𝑛

without 

overlapping for perfect 𝑡-error-correcting codes. In other words, every vector in 

(𝐹𝑞)
𝑛

 be at distance ≤ 𝑡 from exactly one codeword. The binary repetition code  

 

{
0 0 … 0

1 1 … 1
 

 

of length 𝑛, where 𝑛 is odd, is a perfect code (𝑛, 2, 𝑛)-code. As a result, codes 

contain only one codeword or are the whole of (𝐹𝑞)
𝑛

are referred to as trivial perfect 

codes. The problem of finding all perfect codes, has provide mathematicians with 

one of the greatest challenges in coding theory. 

  

4.1.3. Introduction to the Linear Codes 

 

Definitions 4.1.3.1. A code is called a linear code or a group code. For some positive 

integer, a linear code over 𝐺𝐹(𝑞)  is just a subspace of 𝑉(𝑛, 𝑞). A ternary code or 

binary code is used to explain the code, especially. The vectors in 𝐶 are said to 

be codewords. So a subset 𝐶 of  𝑉(𝑛, 𝑞) be a linear code if and only if, 

 

(i) 𝑢 + 𝑣 ∈ 𝐶, for all 𝑢 and 𝑣 𝑖𝑛 𝐶 . 

(ii) 𝑎. 𝑢 ∈ 𝐶, for all 𝑢 ∈ 𝐶, 𝑎 ∈ 𝐺𝐹(𝑞). 
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A binary code is said to be linear if and only if the sum of any two codewords are 

also a codeword. For example, the binary repetition of code 𝐶 of length 3. We 

assume that 𝑛 is length = 3, 𝑞 is distinct elements or [number of digit] = 2 and 𝑀 is 

the elements of 𝐶 [number of codewords] = 4. 

 

(𝑛, 𝑀, 𝑑) − code = (3, 4, 1) 

 

In normal case, we have (𝐹𝑞)
𝑛

= (𝐹2)3, 𝑖. 𝑒  𝑞𝑛 = 23 = 8 codewords, and we have 

 

𝐶 = {000, 001, 010, 100, 011, 101, 110, 111}. 

 

If linear subspace 𝐶 is a 𝐾-dimensional subspace of (𝑛, 𝑞) where be the finite 

field with the q elements as a code be called a q-ary code, then the linear code 𝐶 is 

called [𝑛, 𝑘]-code and also the minimum distance 𝑑 of 𝐶 is an [𝑛, 𝑘, 𝑑]-code. 

 

Note 4.1.3.2. 

 

(i) A 𝑞-ary [𝑛, 𝑘, 𝑑]-code is also a 𝑞-ary (𝑛, 𝑞𝑘, 𝑑)-code by (Theorem 4.3 in 

[11]). However, not every (𝑛, 𝑞𝑘, 𝑑)-code is an [𝑛, 𝑘, 𝑑]-code. 

 

(ii) The all-zero vector 0 automatically belong to a linear code. 

 

Definition 4.1.3.3. The weight of a vector 𝑥 in (𝐹𝑞)
𝑛

denoted 𝑤(𝑥) be defined as the 

number of 1s appeared in 𝑥, 𝑤𝑡𝐻(𝑥) = {𝑥𝑖 ≠ 0}. The minimum Hamming weight of 

a code 𝐶 be  𝑚𝑖𝑛{𝑤𝑡𝐻(𝑥)| 𝑥 ∈ 𝐶, 𝑥 ≠ 0}. 

 

Example 4.1.3.4. Let 𝐶 = {000, 100, 011, 101} be a code and its weights of 

codewords are calculated as follows: 

 

𝑤(000) = 0;  𝑤(100) = 1;  𝑤(011) = 2;   𝑤(101) = 2 

 

 

 

https://en.wikipedia.org/wiki/Linear_subspace
https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Finite_field
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Lemma 4.1.3.5.  Even if 𝑥 and 𝑦 ∈ 𝑉(𝑛, 𝑞). Then 𝑑(𝑥, 𝑦) = 𝑤(𝑥 − 𝑦). 

 

Proof. The vector 𝑥 − 𝑦 have a non-zero entries in precisely those places where 

𝑥 and 𝑦 different. 

 

Theorem 4.1.3.6. Suppose 𝐶 is a linear code and 𝑤(𝐶) is a smallest of the weights 

of a non-zero codewords of 𝐶.Then, 𝑑(𝐶) = 𝑤(𝐶). 

Proof. For more details see the Theorem 5.2 in [11]. 

Definition 4.1.3.7. A linear  [𝑛, 𝑘]-code 𝐶, and 𝐶 be dual code, denote by 𝐶⊥, is 

defined to be the set of these vectors of  𝑉(𝑛, 𝑞), which is orthogonal for all 

codeword of 𝐶. i.e  

 

𝐶⊥ = {𝑣 ∈ 𝑉(𝑛, 𝑞)| 𝑣. 𝑢 = 0, for all 𝑢 ∈ 𝐶} 

 

𝐶⊥ is a linear code of dimension 𝑛 − 𝑘, so |𝐶⊥| = |𝑛 − 𝑘|. 𝐶 is self-orthogonal if 

𝐶 ⊆ 𝐶⊥,  self-dual if 𝐶 = 𝐶⊥. Self-dual codes exist whenever the length n is even. 

 

Definition 4.1.3.8. Let 𝐶 be a linear code, then 𝐶 is said to be self-dual if 𝐶 = 𝐶⊥. 

 

Note 4.1.3.9. Self-dual is self-orthogonal code, but self-orthogonal is not self-dual 

code. 

 

Lemma 4.1.3.10. Suppose 𝐶 is an [𝑛, 𝑘]-code have 𝐺 is a generator matrix. Then 𝑣 is 

a vector of 𝑉(𝑛, 𝑞) belongs to 𝐶⊥ if and only if 𝑣 is orthogonal to every rows of 𝐺; 

i.e. 

 

𝑣 ∈ 𝐶⊥ ⟺ 𝑣𝐺𝑇 = 0,  

 

where 𝐺𝑇 denoted the transpose of 𝐺. 

 

Proof. For more details see the Lemma 7.2 in [11]. 
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Theorem 4.1.3.11. Suppose 𝐶 is an [𝑛, 𝑘]-code over 𝐺𝐹(𝑞). Then 𝐶⊥dual code of  𝐶 

be a linear [𝑛, 𝑛 − 𝑘]-code. 

 

Proof. Firstly we want to show that 𝐶⊥ be a linear code. Let 𝑣1, 𝑣2 ∈ 𝐶⊥ and 𝜆, 𝜇 ∈

𝐺𝐹(𝑞). Then, for all 𝑢 ∈ 𝐶. For more information can one see the Theorem 7.3 in 

[11]. 

Example 4.1.3.12. Let 𝐶 be a linear binary code, if  𝐶 = {000, 110, 011, 101}, then 

the dual of 𝐶 be, 𝐶⊥ = {𝑣 ∈ 𝑉(𝑛, 𝑞)| 𝑣. 𝑢 = 0, ∀𝑢 ∈ 𝐶}. Let 𝑣 = 𝑎1𝑎2𝑎3, then 

 

(i) (𝑎1𝑎2𝑎3). (000) = (000) so  𝑎1 = 𝑎2 = 𝑎3 = 0; 

(ii) (𝑎1𝑎2𝑎3). (110) = (000 or 110) so  𝑎1 + 𝑎2 = 0 and  𝑎3 = 0 or 𝑎3 = 1; 

(iii) (𝑎1𝑎2𝑎3). (011) = (000 or 011) so  𝑎3 + 𝑎2 = 0 and  𝑎1 = 0 or 𝑎1 = 1; 

(iv) (𝑎1𝑎2𝑎3). (101) = (000 or 111) so  𝑎1 + 𝑎3 = 0 and  𝑎2 = 0 or 𝑎2 = 1; 

 

      So dual code of 𝐶 is 𝐶⊥ = {000, 111}. 

 

(2)  If 𝐶 = {0000, 1100, 0011, 1111} , let 𝑣 = 𝑎1𝑎2𝑎3𝑎4 

 

(i) (𝑎1𝑎2𝑎3𝑎4). (0000) = (0000) so  𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 0; 

(ii) (𝑎1𝑎2𝑎3𝑎4). (1100) = (0000 ) so  𝑎1 + 𝑎2 = 0 and  𝑎3 = 𝑎4 = 0;  

(iii) (𝑎1𝑎2𝑎3𝑎4). (0011) = (0000) so 𝑎1 = 𝑎2 = 0 and 𝑎3 + 𝑎4 = 0; 

(iv) (𝑎1𝑎2𝑎3𝑎4). (1111) = (0000) so  𝑎1 + 𝑎2 +  𝑎3 + 𝑎4 = 0; 

 

      So dual code of 𝐶 are equal to self-dual code, such that  𝐶 = 𝐶⊥. 

 

4.2. GENERATORS  

 

4.2.1. Introduction  

 

In the coding theory, to find the generator matrix for code is one of the more 

important methods. In general, we don't need a matrix whose rows generate code, we 

also need a matrix whose rows generate code with the minimum number of rows. We 

can easily determine a minimal generating set to codes over fields and codes over 

rings. 
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Definition 4.2.1.1. A matrix 𝑘 × 𝑛 whose rows from a basis of a linear [𝑛, 𝑘]-code is 

said to be a generator matrix of the code. 

 

Note 4.2.1.2. The 𝑞-ary repetition code with length 𝑛 over 𝐺𝐹(𝑞) be an [𝑛, 1, 𝑛]-

code with generator matrix of  [11 … 1]. 

 

Theorem 4.2.1.3. Let 𝑘 × 𝑛 two matrices which generate equivalent linear [𝑛, 𝑘]-

code over 𝐺𝐹(𝑞) if one of the matrix can be obtain by other matrix by a sequence of 

following operations: 

 

(R1) Permutation of rows; 

(R2) Multiplying of any row by a non-zero scalar number; 

(R3)  Additive of a scalar multiple of one row to another;  

(C1) Permutation of columns; 

(C2) Multiplying of any column by a non-zero scalar number; 

 

Proof. For more details see the Theorem 5.4 in [11]. 

 

Theorem 4.2.1.4. Suppose 𝐺 is a generator matrix of an [𝑛, 𝑘]-code. Then by 

performing operations of type (R1 to C2), 𝐺  can be transformed for the standard 

form [𝐼𝑘|𝐴], where 𝐼𝑘 be 𝑘 × 𝑘 identity matrix, and  𝐴 be a 𝑘 × (𝑛 − 𝑘) matrix. 

 

Proof. For more details see the Theorem 5.5 in [11]. 

 

Example 4.2.1.5. Let 𝐶 be linear code is a [7,4,3]-code, then by the Theorem 4.2.1.3 

to transform the generator matrix to the standard form.  

 

                (1)               [

1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1

]

4×7

 
𝑟2 → 𝑟2 − 𝑟1

𝑟3 → 𝑟3 − 𝑟1
 [

1 1 1 1 1 1 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 1 1 0 0 0 1

] 
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𝑟1 → 𝑟1 − 𝑟2

𝑟4 → 𝑟4 − 𝑟2
[

1 0 0 0 1 0 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 0 0 1 0 1 1

] 𝑟2 → 𝑟2 − 𝑟3 [

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 1 1 0 1
0 0 0 1 0 1 1

] 

 

𝑟2 → 𝑟2 − 𝑟3 [

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 1 1 0 1
0 0 0 1 0 1 1

]  𝑟3 → 𝑟3 − 𝑟4 [

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

] 

 

=  [𝐼4×4|𝐴]   

 

(2)   Consider the code [6,3]-code over 𝐺𝐹(3) having generator matrix. 

 

     [
0 0 0 1 1 1
0 1 1 0 1 2
1 0 2 0 1 1

]

3×6

 

 

Interchanging column 1 and column 4   

 

[
1 0 0 0 1 1
0 1 1 0 1 2
0 0 2 1 1 1

] 

 

Interchanging column 3 and column 4   

 

                    [
1 0 0 0 1 1
0 1 0 1 1 2
0 0 1 2 1 1

] = [𝐼3×3|𝐴3×3] 

 

It is a generator matrix for an equivalent code, where 𝐼𝑘 be the 𝑘 × 𝑘 identity matrix, 

and  𝐴 is a 𝑘 × (𝑛 − 𝑘) matrix.  

 

Theorem 4.2.1.6. For any [𝑛, 𝑘]-code 𝐶.  (𝐶⊥)⊥ = 𝐶. 

 

Proof. Clearly 𝐶 ⊆ (𝐶⊥)⊥since every vector in 𝐶 is orthogonal to every vector in 𝐶⊥. 

But dim((𝐶⊥)⊥) = 𝑛 − (𝑛 − 𝑘) = 𝑘 = dim 𝐶 , and so (𝐶⊥)⊥ = 𝐶. 
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Definition 4.2.1.7. A parity-check matrix  𝐻 for an [𝑛, 𝑘]-code 𝐶 be a generate 

matrix of 𝐶⊥. so 𝐻 is an (𝑛 − 𝑘) × 𝑛 matrix satisfying 𝐺𝐻𝑇 = 0 where 𝐻𝑇 denotes 

the transpose of 𝐻 and 0, is an all-zero matrix. It follows from the Lemma 4.1.3.10 

and Theorem 4.2.1.6 that if 𝐻 is a parity – check matrix of 𝐶, then  

 

𝐶 = {𝑥 ∈ 𝑉(𝑛, 𝑞)|𝑥. 𝐻𝑇 = 0} 

 

Theorem 4.2.1.8. If 𝐺 = [𝐼𝑘|𝐴] be a standard form of generator matrix for [𝑛, 𝑘]-

code 𝐶, then a parity-check matrix of 𝐶 be 𝐻 = [−𝐴𝑇|𝐼𝑛−𝑘]. 

 

Proof. For more details see the Theorem 7.6 in [11]. 

 

Definition 4.2.1.9. A parity-check matrix 𝐻 is called standard form if 𝐻 = [𝐵|𝐼𝑛−𝑘]. 

 

Example 4.2.1.10. The code [7,4,3]-code, has standard form of generating matrix as 

we founded in Example 4.2.1.5 in (1) so,  

 

                                    𝐺 = [

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

] =  [𝐼𝑘|𝐴𝑛−𝑘] 

 

𝐴𝑇 = [
1 1 1 0
0 1 1 1
1 1 0 1

] , −𝐴𝑇 = [
−1 −1 −1 −0
−0 −1 −1 −1
−1 −1 −0 −1

] , −𝐴𝑇 = [
1 1 1 0
0 1 1 1
1 1 0 1

] 

 

𝐻 = [−𝐴𝑇|𝐼𝑛−𝑘] = [
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

] 

 

Note 4.2.1.11. If the minus signs are unnecessary in the binary case, if 𝑞 = 2 then −

1 ≡ 1 𝑚𝑜𝑑 (2) 𝑤here a parity-check matrix of 𝐶 is  𝐻 = [−𝐴𝑇|𝐼𝑛−𝑘]. 
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PART 5 

 

LINEAR CODES OF ORDER FOUR 

 

5.1. INTRODUCTION 

 

In this chapter, we are studying coding theory. Especial, codes over the rings of order 

four. Specifically, we consider the linear codes of order four such as the rings of 

ℤ4, 𝐹2 + 𝑢𝐹2, with 𝑢2 = 0, 𝐹2 + 𝑣𝐹2 with 𝑣2 = 𝑣, and 𝐹2 + 𝑤𝐹2  with 𝑤2 = 𝑤 +

1. The maps of these rings are isometric form Hamming distance to the Lee distance 

and are said to be Gray map. To further develop the subject, we also study on the 

Gray maps for the rings of order nine such that 𝐹3 + 𝑣𝐹3 with 𝑣2 = 𝑣 and 𝐹3 +

𝑣𝐹3 with 𝑣2 = 1.  In the continuity, we observed that there are different weights over 

these rings namely, Lee weight, the Hamming weight, Bachoc weight and the 

Euclidean weight. We also give our consideration to the inner products which are 

basically representing a relationship between two vectors.  The highly used inner 

products are Euclidean inner product and Hermitian inner products for the ring of 

order four. In [9], authors studied on symmetrized weight enumerators for the ring 

𝐹2 + 𝑣𝐹2 with 𝑣2 = 𝑣. However, in this chapter we also generalized symmetrized 

weight enumerators for the ring ℤ4, 𝐹2 + 𝑢𝐹2, with 𝑢2 = 0. Generators for the rings 

are widely studied in linear coding theory, for more details we recommend [8], [9] 

and [10]. Therefore, in this study generators for the rings of order four are also 

considered and some important theories are denoted. 

 

Theorem 5.1.1. (Gleason-Pierce) Let 𝐶 be a formally self-dual divisible code of 

length 𝑛 over 𝐹𝑞, also suppose 𝛿 is the largest positive integer divide every non-zero 

weights of 𝐶. Next we have following conditions: 
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Type (I)  𝑞 = 2 and 𝛿 = 2; 

Type (II)  𝑞 = 2 and 𝛿 = 4; 

Type (III) 𝑞 = 3 and 𝛿 = 3; 

Type (IV) 𝑞 = 4 and 𝛿 = 2 or  

Type (V)  𝑞 be arbitrary, 𝛿 = 2,  and  𝑤𝐶(𝑥, 𝑦) = (𝑥2 + (𝑞 − 1)𝑦2)𝑛 2⁄ . 

 

Proof. For more details see [20]. 

 

5.2. CODES OVER RINGS OF ORDER FOUR 

 

This section is related to the codes over the commutative rings of order four. There 

are four commutative rings with order four. So, we give their properties and 

examples with related to the coding theory. 

 

5.2.1. The Element of Rings of Order Four 

 

(i) ℤ4, it is elements are {0, 1, 2, 3}. We can give some examples of 

codewords over the ring ℤ4 with the lengths 4 or 5 such that 

{0221, 1102} or {20201, 11022}. 

 

(ii) 𝐹2[𝑢]/< 𝑢2 > .  It is also written as  𝐹2 + 𝑢𝐹2 = {0, 1, 𝑢, 1 + 𝑢} with 

𝑢2 = 0, we can give some examples of codewords over the ring 𝐹2 + 𝑢𝐹2 

with the lengths 4 or 5 such that  {𝑢110, 11𝑢1} or {𝑢𝑢001, 110𝑢(1 +

𝑢)}. 

 

(iii) 𝐹2[𝑣]/< 𝑣2 + 𝑣 > .  It is also written as 𝐹2 + 𝑣𝐹2 = {0,1, 𝑣, 1 + 𝑣} 

with 𝑣2 = 𝑣, we can give some examples of codewords over the ring 

𝐹2 + 𝑣𝐹2 with the lengths 4 or 5 such that  

{1𝑣10, (1 + 𝑣)100} or {11𝑣𝑣0, 11𝑣𝑣𝑣}. 

 

(iv) 𝐹4 = 𝐹2[𝜔]/< 𝜔2 + 𝜔 + 1 >= {0, 1, 𝜔, 1 + 𝜔}. We can give some 

examples of codewords over the ring 𝐹4 with the lengths 3 or 6 such that 

{11𝑤, 1𝑤1} or {𝑤𝑤0111, (1 + 𝑤)11𝑤01}. 
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Definition 5.2.2. A linear code of 𝐶 of length 𝑛 over ℝ is defined to be an ℝ-

submodule of ℝ𝑛, and the elements of 𝐶 are said to be a codewords. A matrix whose 

rows generate 𝐶 is described as a 𝐶 generator matrix. 

 

Definition 5.2.3. Suppose ℝ is a finite ring and linear code over the alphabets of ℝ 

with length 𝑛 is a submodule of ℝ𝑛. 

 

5.3. WEIGHTS OF CODES  

 

In this section, we considered different weights of the codewords over the rings ℤ4, 

𝐹2 + 𝑢𝐹2, 𝐹2 + 𝑣𝐹2 𝑜𝑟 𝐹4.  Also, we considered Hamming distance and Lee distances 

and between two codewords. In the following of the section, the minimum Lee, 

Bachoc, Hamming and Euclidean weights, 𝑑𝐿, 𝑑𝐵, 𝑑𝐻 and 𝑑𝐸 of 𝐶 are considered as 

the smallest Lee, Bachoc, Hamming and Euclidean weights among all non-zero 

codewords of 𝐶. 

 

5.3.1. Hamming Weights 

 

The number of non-zero components in a codeword defines a Hamming weight. Let 

{00000, 01101, 10110, 11011} be codewords over ℤ4. Then Hamming weights of 

each codewords are 𝑤𝐻(00000) = 0, 𝑤𝐻(01101) = 3, 𝑤𝐻(10110) = 3,

𝑤𝐻(11011) = 4. 

 

Let (01𝑢(1 + 𝑢)0) and (110 𝑢𝑢) be two codewords over the ring 𝐹2 + 𝑢𝐹2 with 

𝑢2 = 0.  Then the Hamming weights are 𝑤𝐻(01𝑢(1 + 𝑢)0 ) = 3 and 𝑤𝐻(110𝑢𝑢 ) =

4. 

 

Let (101𝑣𝑣) and  (11𝑣00) be two codewords over the ring 𝐹2 + 𝑣𝐹2 with 𝑣2 = 𝑣. 

Then the Hamming weights are 𝑤𝐻(101𝑣𝑣) = 4 and 𝑤𝐻(11𝑣00) = 3. 
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5.3.2. Euclidean Weights 

 

The elements of the Euclidean weights for the ring ℤ4 are 𝑤𝐸(0) = 0, 𝑤𝐸(1) = 1, 

𝑤𝐸(2) = 4 and 𝑤𝐸(3) = 1. The Euclidean weights of a codewords are the rational 

sum of the Euclidean weights. For example, Euclidean weights of (2130011) and 

(1023012) codewords are 

 

𝑤𝐸(2130011) = 𝑤𝐸(2) + 𝑤𝐸(1) + 𝑤𝐸(3) + 𝑤𝐸(0) + 𝑤𝐸(0) + 𝑤𝐸(1) + 𝑤𝐸(1)

= 4 + 1 + 1 + 0 + 0 + 1 + 1 = 8. 

 

𝑤𝐸( 1023012) = 𝑤𝐸(1) + 𝑤𝐸(0) + 𝑤𝐸(2) + 𝑤𝐸(3) + 𝑤𝐸(0) + 𝑤𝐸(1) + 𝑤𝐸(2)

= 1 + 0 + 4 + 1 + 0 + 1 + 4 = 11. 

 

The elements of the Euclidean weights for the ring 𝐹2 + 𝑢𝐹2 = {0,1, 𝑢, 1 +

𝑢} with 𝑢2 = 0 are 𝑤𝐸(0) = 0, 𝑤𝐸(1) = 1, 𝑤𝐸(𝑢) = 4  and 𝑤𝐸(1 + 𝑢) = 1. The 

Euclidean weight of a codeword is a rational sum of the Euclidean weights of it is 

component. For example, Euclidean weights of (𝑢1𝑢(1 + 𝑢)110) and (011(1 +

𝑢)0𝑢1) codewords are 

 

𝑤𝐸(𝑢1𝑢(1 + 𝑢)110) = 𝑤𝐸(𝑢) + 𝑤𝐸(1) + 𝑤𝐸(𝑢) + 𝑤𝐸(1 + 𝑢) + 𝑤𝐸(1) + 𝑤𝐸(1) 

+𝑤𝐸(0) = 4 + 1 + 4 + 1 + 1 + 1 + 0 = 12 

 

𝑤𝐸(011(1 + 𝑢)0𝑢1) = 𝑤𝐸(0) + 𝑤𝐸(1) + 𝑤𝐸(1) + 𝑤𝐸(1 + 𝑢) + 𝑤𝐸(0) + 𝑤𝐸(𝑢) 

+ 𝑤𝐸(1) = 0 + 1 + 1 + 1 + 0 + 4 + 1 = 8 

 

5.3.3. Lee Weights 

 

The elements of the Lee weights for the ring ℤ4 are 𝑤𝐿(0) = 0, 𝑤𝐿(1) = 1, 𝑤𝐿(2) =

2 and 𝑤𝐿(3) = 1. The Lee weight of a codeword is a rational sum of the Lee 

weights. For example, Lee weights of (0113122) and (3310200) codewords are 

 

𝑤𝐿(0113122) = 𝑤𝐿(0) + 𝑤𝐿(1) + 𝑤𝐿(1) + 𝑤𝐿(3) + 𝑤𝐿(1) + 𝑤𝐿(2) + 𝑤𝐿(2)

= 0 + 1 + 1 + 1 + 1 + 2 + 2 = 8 
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𝑤𝐿(3310200 ) = 𝑤𝐿(3) + 𝑤𝐿(3) + 𝑤𝐿(1) + 𝑤𝐿(0) + 𝑤𝐿(2) + 𝑤𝐿(0) + 𝑤𝐿(0)

= 1 + 1 + 1 + 0 + 2 + 0 + 0 = 5 

 

The elements of the Lee weights for the ring 𝐹2 + 𝑢𝐹2 = {0,1, 𝑢, 1 + 𝑢} with 𝑢2 =

0  are 𝑤𝐿(0) = 0, 𝑤𝐿(1) = 1, 𝑤𝐿(𝑢) = 2 and 𝑤𝐿(1 + 𝑢) = 1. Respectively, such 

that Lee weight of (𝑢𝑢1101(1 + 𝑢)) and (00𝑢1110) codewords are 

 

𝑤𝐿(𝑢𝑢1101(1 + 𝑢)) = 𝑤𝐿(𝑢) + 𝑤𝐿(𝑢) + 𝑤𝐿(1) + 𝑤𝐿(1) + +𝑤𝐿(0) + 𝑤𝐿(1) + 

𝑤𝐿(1 + 𝑢) = 2 + 2 + 1 + 1 + 0 + 1 + 1 = 8 

 

𝑤𝐿(00𝑢1110) = 𝑤𝐿(0) + 𝑤𝐿(0) + 𝑤𝐿(𝑢) + 𝑤𝐿(1) + 𝑤𝐿(1) + 𝑤𝐿(1) + 𝑤𝐿(0)

= 0 + 0 + 2 + 1 + 1 + 1 + 0 = 5 

 

The elements of the Lee weights for the ring  𝐹2 + 𝑣𝐹2 = {0,1, 𝑣, 1 + 𝑣} with 𝑣2 =

𝑣 are 𝑤𝐿(0) = 0, 𝑤𝐿(1) = 2, 𝑤𝐿(𝑣) = 1 and 𝑤𝐿(1 + 𝑣) = 1. Respectively, such 

that Lee weight of (001(1 + 𝑣)𝑣1𝑣) and (1𝑣𝑣0010 ) codewords are 

 

𝑤𝐿(001(1 + 𝑣)𝑣1𝑣) = 𝑤𝐿(0) + 𝑤𝐿(0) + 𝑤𝐿(1) + 𝑤𝐿(1 + 𝑣) + 𝑤𝐿(𝑣) + 𝑤𝐿(1) + 

𝑤𝐿(𝑣) = 0 + 0 + 2 + 1 + 1 + 2 + 1 = 7 

 

𝑤𝐿(1𝑣𝑣0010 ) = 𝑤𝐿(1) + 𝑤𝐿(𝑣) + 𝑤𝐿(𝑣) + 𝑤𝐿(0) + 𝑤𝐿(0) + 𝑤𝐿(1) + 𝑤𝐿(0)

= 2 + 1 + 1 + 0 + 0 + 2 + 0 = 6 

 

5.3.4. Bachoc Weights 

 

The elements of the Bachoc weights for the ring 𝐹2 + 𝑣𝐹2 = {0,1, 𝑣, 1 +

𝑣} with 𝑣2 = 𝑣 are 𝑤𝐵(0) = 0, 𝑤𝐵(1) = 1, 𝑤𝐵(𝑣) = 2 and 𝑤𝐵(1 + 𝑣) = 2. Bachoc 

weights of the following codewords are calculated as 

 

𝑤𝐵(1𝑣1𝑣01(1 + 𝑣)) = 𝑤𝐵(1) + 𝑤𝐵(𝑣) + 𝑤𝐵(1) + 𝑤𝐵(𝑣) + 𝑤𝐵(0) + 𝑤𝐵(1) + 

𝑤𝐵(1 + 𝑣) = 1 + 2 + 1 + 2 + 0 + 1 + 2 = 9 
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𝑤𝐵(𝑣𝑣1001𝑣) = 𝑤𝐵(𝑣) + 𝑤𝐵(𝑣) + 𝑤𝐵(1) + 𝑤𝐵(0) + 𝑤𝐵(0) + 𝑤𝐵(1) + 𝑤𝐵(𝑣)

= 2 + 2 + 1 + 0 + 0 + 1 + 2 = 8 

 

Note 4.3.4.1. The Lee and the Hamming distance between two codewords 𝑥 and 𝑦 

are the Lee and Hamming weights of 𝑥 − 𝑦. For example, let 𝑥 = 01123 and 

𝑦 = 11200 be two codewords over ℤ4. The Hamming distance and Lee distance of 𝑥 

and 𝑦 are  

 

     𝑑𝐻(𝑥, 𝑦) = 𝑤𝐻(𝑥 − 𝑦) = 𝑤𝐻(01123 − 11200) =  𝑤𝐻(30323) = 4 

𝑑𝐿(𝑥, 𝑦) = 𝑤𝐿(𝑥 − 𝑦) = 𝑤𝐿(01123 − 11200) =  𝑤𝐿(30323) = 

𝑤𝐿(3) + 𝑤𝐿(0)  + 𝑤𝐿(3) + 𝑤𝐿(2) + 𝑤𝐿(3) = 1 + 0 + 1 + 2 + 1 = 5 

 

The minimum Lee, Bachoc, Hamming and Euclidean weights, 𝑑𝐿, 𝑑𝐵, 𝑑𝐻 and 𝑑𝐸 of 

𝐶 are the smallest Lee, Bachoc, Hamming and Euclidean weights. 

 

5.4. CHINESE REMAINDER THEOREM FOR RINGS   

 

Definition 5.4.1. In a commutative ring ℝ, two ideals 𝐼1 and 𝐼2 are said coprime 

ideal if, 𝐼1 + 𝐼2 = ℝ. 

 

Proposition 5.4.2. Suppose ℝ is a commutative ring with unity 𝐼 and 𝐽 are two 

ideals of ℝ. Afterwards,  

(i) If summations of two ideals 𝐼 + 𝐽 = ℝ, then 𝐼𝐽 = 𝐼 ∩ 𝐽. 

(ii) If 𝐼1, 𝐼2, … , 𝐼𝑛 are coprime in pairs, then the multiplication are  

 

𝐼1. 𝐼2  … 𝐼𝑛 = ⋂ 𝐼𝑖

𝑛

𝑖=1

 

 

Proof. (i)  𝐼𝐽 ⊆ 𝐼 ∩ 𝐽 is straight forward. Let  𝑥 ∈ 𝐼 ∩ 𝐽, since 𝐼 + 𝐽 = ℝ, there exists 

𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐽 such that 𝑎 + 𝑏 = 1. So we have 𝑥 = 𝑥. 1 = 𝑥(𝑎 + 𝑏) = 𝑥𝑎 +

𝑥𝑏 and 𝑥𝑎, 𝑥𝑏 ∈ 𝐼 ∩ 𝐽. Hence 𝑥 ∈ 𝐼𝐽. 

 

(ii) Prove is extended version of (i). 
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Theorem 5.4.3. (Chinese Remainder Theorem) If ℝ is a commutative ring and 𝐼, 𝐽 

are proper ideals with  𝐼 + 𝐽 = ℝ,  then  ℝ 𝐼 ∩ 𝐽 ⁄ ≅  ℝ 𝐼 ⁄ ⊕  ℝ  𝐽⁄ . 

 

Proof. Define a map between ℝ 𝐼 ∩ 𝐽 ⁄  and ℝ 𝐼 ⁄ ⊕ ℝ 𝐽,⁄  such that 𝜑: ℝ → ℝ 𝐼 ⁄ ⊕

 ℝ 𝐽⁄  for any 𝑟 ∈ 𝑅, we have 𝜑(𝑟) = (𝑟 + 𝐼, 𝑟 + 𝐽). 

 

(i)  Let 𝑟1, 𝑟2 ∈ ℝ such that 𝑟1 = 𝑟2, then 𝜑(𝑟1) = (𝑟1 + 𝐼, 𝑟1 + 𝐽) = (𝑟2 + 𝐼, 𝑟2 +

𝐽) = 𝜑(𝑟2) so 𝜑 is a well-defined function. 

 

(ii)  Let 𝑟1, 𝑟2 ∈ ℝ, 𝜑(𝑟1 + 𝑟2) = ((𝑟1 + 𝑟2) + 𝐼, (𝑟1 + 𝑟2) + 𝐽) = (𝑟1 + 𝐼, 𝑟1 + 𝐽) +

(𝑟2 + 𝐼, 𝑟2 + 𝐽) = 𝜑(𝑟1) + 𝜑(𝑟2). 

 

      Suppose  𝑟1, 𝑟2 ∈ ℝ,  𝜑(𝑟1. 𝑟2) = (𝑟1. 𝑟2 + 𝐼, 𝑟1. 𝑟2 + 𝐽) = (𝑟1 + 𝐼, 𝑟1 + 𝐽). (𝑟2 +

𝐼, 𝑟2 + 𝐽)  = 𝜑(𝑟1). 𝜑(𝑟2). 

 

(iii)  Let 𝑟1̅, 𝑟2̅ ∈ ℝ 𝐼 ⁄ ⊕ ℝ 𝐽 ⁄  here (𝑟1̅, 𝑟2̅) = (𝑟1 + 𝐼, 𝑟2 + 𝐽) since 𝐼 + 𝐽 = ℝ, let 

𝑟1 = 𝑎1 + 𝑏1 and 𝑟2 = 𝑎2 + 𝑏2, 𝑎1, 𝑎2 ∈ 𝐼 and 𝑏1, 𝑏2 ∈ 𝐽. 

 𝜑(𝑏1 + 𝑎2) = (𝑏1 + 𝑎2 + 𝐼, 𝑏1 + 𝑎2 + 𝐽) = (𝑏1 + 𝐼, 𝑎2 + 𝐽) = (𝑟1̅, 𝑟2̅). 

 

(iv)  Let 𝜑(𝑟1) = 𝜑(𝑟2) such that (𝑟1 + 𝐼, 𝑟1 + 𝐽) = (𝑟2 + 𝐼, 𝑟2 + 𝐽), so it is easy to 

see that   𝑟1 = 𝑟2.  Hence 𝜑 be an isomorphism. 

 

(v)  Now we want to show that  ker 𝜑 = 𝐼 ∩ 𝐽. 

   (⊆) Let 𝑟 ∈ ker 𝜑, then ker 𝜑 = {𝑟 ∈ ℝ: 𝜑(𝑟) = (0 + 𝐼, 0 + 𝐽) = (𝐼, 𝐽) } so 

𝑟 ∈ 𝐼 and 𝑟 ∈ 𝐽. If 𝑟 ∈ 𝐼 and 𝑟 ∈ 𝐽, then 𝑟 ∈ 𝐼 ∩ 𝐽. 

 

   (⊇)  Let 𝑠 ∈  𝐼 ∩ 𝐽, so 𝑠 ∈ 𝐼 and 𝑠 ∈ 𝐽. Then, 𝜑(𝑠) = (𝑠 + 𝐼, 𝑠 + 𝐽) =

(𝐼, 𝐽) and 𝑠 ∈  ker 𝜑. So, by the first isomorphism theorem we can say that  

ℝ ker 𝜑 ⁄ ≅  ℝ 𝐼 ⁄ ⊕ ℝ 𝐽 ⁄ such that 

 

ℝ 𝐼 ∩ 𝐽 ⁄ ≅  ℝ 𝐼 ⁄ ⊕  ℝ 𝐽 ⁄  
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5.5. GRAY MAPS  

 

In this section, we want to know what is the difference between codes on finite field 

and codes on rings. At this point, we studied on the Gray maps to learn the 

relationship between codes over finite fields and codes over rings, and also we use 

Gray maps with knowledge of the Chinese Remainder Theory to easily identify the 

Gray maps. In the beginning, Gray maps are defined for the ring of order four and 

then continue with order nine to further enrich the topics.   

 

5.5.1. Gray Map for the Ring ℤ𝟒 

 

Let ℝ = ℤ4 = {0, 1, 2, 3}, we now define a Gray map between (ℝ, Lee distance) and 

(𝐹2
2, Hamming distance). This map is a distance preserving for the binary Hamming 

spaces. To all element 𝑎 + 2𝑏 ∈  ℝ where 𝑎, 𝑏 ∈  𝐹2, we have 

𝜑ℤ4
: ℤ4 →  𝐹2 ×  𝐹2 

  𝜑ℤ4
(𝑎 + 2𝑏) =  (𝑏, 𝑎 + 𝑏). 

 

𝜑ℤ4
 is a non-linear map. In general, the Gray image of a ℤ4 linear code cannot be a 

binary linear code. However, it has a significant importance about the isometry from 

(ℝ𝑛, Lee distance) to (𝐹2
2𝑛, Hamming distance). Moreover, the Gray image of linear 

codes over ℤ4 are distance-invariant binary codes, even if they are non-linear. 

 

5.5.2. Gray Map for the Ring 𝑭𝟐 + 𝒖𝑭𝟐 With 𝒖𝟐 = 𝟎 

 

Let ℝ = 𝐹2 + 𝑢𝐹2 = {0, 1, 𝑢, 1 + 𝑢} with 𝑢2 = 0, we now define a Gray map 

between (ℝ, Lee distance) and (𝐹2
2, Hamming distance). Since only maximal ideal 

of 𝐹2 + 𝑢𝐹2 with 𝑢2 = 0 is 〈𝑢〉, ℝ is a local ring. The Gray map of 𝐹2 + 𝑢𝐹2 can be 

define as follow: 

 

𝜑𝑢: 𝐹2 + 𝑢𝐹2 → 𝐹2 × 𝐹2, 

 

  𝜑𝑢(𝑎 + 𝑢𝑏) =  ( 𝑏, 𝑎 + 𝑏). 
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Theorem 5.5.2.1. 𝜑𝑢 is a 𝐹2-linear map.  

 

Proof. Let 𝑥 = 𝑎1 + 𝑢𝑏1 and 𝑦 =  𝑎2 + 𝑢𝑏2 be two elements of  ℝ = F2 + 𝑢F2. 

 

𝜑𝑢(𝑥 − 𝑦) = 𝜑𝑢((𝑎1 + 𝑢𝑏1) − (𝑎2 + 𝑢𝑏2)) = 𝜑𝑢((𝑎1 − 𝑎2) + 𝑢(𝑏1 − 𝑏2))

= ( (𝑏1 − 𝑏2), (𝑎1 − 𝑎2) +  (𝑏1 − 𝑏2))

= ((𝑏1 − 𝑏2), (𝑎1 + 𝑏1) − (𝑎2 + 𝑏2) )

= (𝑏1, 𝑎1 + 𝑏1) − (𝑏2, 𝑎2 + 𝑏2) = 𝜑𝑢(𝑎1 + 𝑢𝑏1) − 𝜑𝑢(𝑎2 + 𝑢𝑏2)

= 𝜑𝑢(𝑥) − 𝜑𝑢(𝑦) 

 

Theorem 5.5.2.2. 𝜑𝑢 is a distance preserving map from (ℝ, Lee distance) to (𝐹2
2, 

Hamming distance). 

 

Proof. Let 𝑥 = 𝑎1 + 𝑢𝑏1 and 𝑦 =  𝑎2 + 𝑢𝑏2 be elements of ℝ = F2 + 𝑢F2. By the 

Theorem 5.5.2.1, we have 𝜑𝑢 is a linear map so 

 

𝑑𝐿(𝑥, 𝑦) = 𝑤𝐿(𝑥 − 𝑦) = 𝑤𝐻(𝜑𝑢(𝑥 − 𝑦)) = 𝑤𝐻(𝜑𝑢(𝑥) − 𝜑𝑢(𝑦))

= 𝑑𝐻(𝜑𝑢(𝑥), 𝜑𝑢(𝑦)). 

 

5.5.3. Gray Map for the Ring 𝑭𝟐 + 𝒗𝑭𝟐 𝐖𝐢𝐭𝐡 𝒗𝟐 = 𝒗 

 

Let ℝ = 𝐹2 + 𝑣𝐹2 = {0, 1, 𝑣, 1 + 𝑣} with 𝑣2 = 𝑣, we now define a Gray map 

between (ℝ, Lee distance) and (𝐹2
2, Hamming distance) by using the Chinese 

remainder theorem,  

 

𝜑: ℝ → ℝ 𝐼 ⁄ ⊕ ℝ 𝐽 ⁄  

 

and 𝐼 + 𝐽 = ℝ, maximal ideals of ℝ are 〈𝑣〉 = {𝑣𝑘: 𝑘 ∈ ℝ} = {0, 𝑣} and 〈1 + 𝑣〉 =

{(1 + 𝑣)𝑙: 𝑙 ∈ ℝ} = {0, 1 + 𝑣}. So ℝ is a semi-local ring. 
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By the Definition 3.1.1.21, we can show that  ℝ 〈𝑣〉⁄ ≅ field  and ℝ 〈1 + 𝑣〉 ⁄ ≅

field 

 

ℝ 〈𝑣〉⁄ = {(𝑎 + 𝑣𝑏) + 〈𝑣〉: 𝑎, 𝑏 ∈ 𝐹2} = {(𝑎 + 𝑣𝑏) + {0, 𝑣}: 𝑎, 𝑏 ∈ 𝐹2} = {0,1}

≅  𝐹2  

 

ℝ 〈1 + 𝑣〉 ⁄ = {(𝑎 + 𝑣𝑏) + 〈1 + 𝑣〉: 𝑎, 𝑏 ∈ 𝐹2} = {(𝑎 + 𝑣𝑏) + {0, 1 + 𝑣}: 𝑎, 𝑏 ∈ 𝐹2}

= {0,1} ≅ 𝐹2 

 

So, we have 𝜑: 𝐹2 + 𝑣𝐹2 → 𝐹2 × 𝐹2 𝑏𝑦 𝜑(𝑎 + 𝑣𝑏) →  (𝑎 + 𝑏, 𝑎). 

 

Theorem 5.5.3.1. 𝜑 is a linear map.  

 

Proof. We need to show that 𝜑(𝑥 − 𝑦) = 𝜑(𝑥) − 𝜑(𝑦). Let 𝑥 = 𝑎1 + 𝑣𝑏1 and 𝑦 =

 𝑎2 + 𝑣𝑏2 be elements of ℝ = F2 + 𝑣F2. 

 

𝜑(𝑥 − 𝑦) = 𝜑((𝑎1 + 𝑣𝑏1) − (𝑎2 + 𝑣𝑏2)) = 𝜑((𝑎1 − 𝑎2) + 𝑣(𝑏1 − 𝑏2))

= ((𝑎1 − 𝑎2) +  (𝑏1 − 𝑏2), (𝑎1 − 𝑎2))

= ((𝑎1 + 𝑏1) − (𝑎2 + 𝑏2), (𝑎1 − 𝑎2) )

= (𝑎1 +  𝑏1, 𝑎1) − (𝑎2 + 𝑏2, 𝑎2) = 𝜑(𝑎1 + 𝑣𝑏1) − 𝜑(𝑎2 + 𝑣𝑏2) 

 

Theorem 5.5.3.2. 𝜑 is a distance preserving map from (ℝ, Lee distance) to (𝐹2
2, 

Hamming distance). 

 

Proof. Let 𝑥 = 𝑎1 + 𝑣𝑏1 and 𝑦 =  𝑎2 + 𝑣𝑏2 be elements of ℝ = F2 + 𝑣F2. By the 

Theorem 5.5.3.1, we have 𝜑 is a linear map so 

 

𝑑𝐿(𝑥, 𝑦) = 𝑤𝐿(𝑥 − 𝑦) = 𝑤𝐻(𝜑(𝑥 − 𝑦)) = 𝑤𝐻(𝜑(𝑥) − 𝜑(𝑦)) = 𝑑𝐻(𝜑(𝑥), 𝜑(𝑦)). 

 

In the following, we can mention some rings with order 9 and then define their Gray 

maps. 
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5.5.4. Gray Map for the Ring 𝑭𝟑 + 𝒗𝑭𝟑 With 𝒗𝟐 = 𝒗 

 

Let ℝ = 𝐹3 + 𝑣𝐹3 = {0, 1, 2, 𝑣, 2𝑣, 1 + 𝑣, 1 + 2𝑣, 2 + 𝑣, 2 + 2𝑣} with 𝑣2 = 𝑣, we  

now define a Gray map between (ℝ, Lee distance) and (𝐹3
𝑛, Hamming distance)  

by using Chinese remainder theorem,  

𝜑3,1: ℝ → ℝ 𝐼 ⁄ ⊕ ℝ 𝐽 ⁄  

and 𝐼 + 𝐽 = ℝ, maximal ideals of ℝ are 〈𝑣〉 = {𝑣𝑘: 𝑘 ∈ ℝ} = {0, 𝑣, 2𝑣} ⊂ ℝ and 

〈𝑣 − 1〉 = {(𝑣 − 1)𝑙: 𝑙 ∈ ℝ} = {0, 1 + 2𝑣, 2 + 𝑣} ⊂ ℝ. So ℝ is a semi-local ring. 

By the Definition 3.1.1.21, we can show that  ℝ 〈𝑣〉⁄ ≅ field  and ℝ 〈𝑣 − 1〉 ⁄ ≅

field 

 

ℝ 〈𝑣〉⁄ = {(𝑎 + 𝑣𝑏) + 〈𝑣〉: 𝑎, 𝑏 ∈ 𝐹3} = {(𝑎 + 𝑣𝑏) + {0, 𝑣, 2𝑣}: 𝑎, 𝑏 ∈ 𝐹3} = {0,1,2}

≅  𝐹3 

 

ℝ 〈𝑣 − 1〉 ⁄ = {(𝑎 + 𝑣𝑏) + 〈𝑣 − 1〉: 𝑎, 𝑏 ∈ 𝐹3} = {(𝑎 + 𝑣𝑏) + {0, 1 + 2𝑣, 2 +

𝑣}: 𝑎, 𝑏 ∈ 𝐹3} = {0,1, 2} ≅ 𝐹3. 

 

𝜑3,1: ℝ → ℝ 〈𝑣〉 ⁄ ⊕  ℝ 〈𝑣 − 1〉 ⁄  

 

Let 𝑎 + 𝑣𝑏 = 𝑥(𝑣) + 𝑦(𝑣 − 1), so 𝑥 = 𝑎 + 𝑏, 𝑦 = −𝑎 for any 𝑎, 𝑏 ∈ 𝐹3. So, we 

have 𝜑3,1: 𝐹3 + 𝑣𝐹3 → 𝐹3 × 𝐹3 , the Gray map of 𝜑3,1(𝑎 + 𝑣𝑏) =  (𝑎 + 𝑏, − 𝑎). 

 

Theorem 5.5.4.1. 𝜑3,1 is a linear map.  

Proof. We need to show that 𝜑3,1(𝑥 − 𝑦) = 𝜑3,1(𝑥) − 𝜑3,1(𝑦). Let 𝑥 = 𝑎1 +

𝑣𝑏1 and 𝑦 =  𝑎2 + 𝑣𝑏2 are the elements of ℝ = 𝐹3 + 𝑣𝐹3. 

 

𝜑3,1(𝑥 − 𝑦) = 𝜑3,1((𝑎1 + 𝑣𝑏1) − (𝑎2 + 𝑣𝑏2)) = 𝜑3,1((𝑎1 − 𝑎2) + 𝑣(𝑏1 − 𝑏2)) 

= ((𝑎1 − 𝑎2) + (𝑏1 − 𝑏2), −(𝑎1 − 𝑎2)) = ((𝑎1 + 𝑏1) − (𝑎2 + 𝑏2), −(𝑎1 − 𝑎2))

= (𝑎1 +  𝑏1, −𝑎1) − ( 𝑎2 + 𝑏2, −𝑎2)

= 𝜑3,1(𝑎1 + 𝑣𝑏1) − 𝜑3,1(𝑎2 + 𝑣𝑏2) 
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Theorem 5.5.4.2. 𝜑3,1 is a distance preserving map from (ℝ, Lee distance) to (𝐹3
𝑛, 

Hamming distance). 

 

Proof. Let 𝑥 = 𝑎1 + 𝑣𝑏1 and 𝑦 =  𝑎2 + 𝑣𝑏2 be elements of ℝ = 𝐹3 + 𝑣𝐹3. By the 

Theorem 5.5.4.1, we have 𝜑3,1 is a linear map so 

 

𝑑𝐿(𝑥, 𝑦) = 𝑤𝐿(𝑥 − 𝑦) = 𝑤𝐻 (𝜑3,1(𝑥 − 𝑦)) = 𝑤𝐻 (𝜑3,1(𝑥) − 𝜑3,1(𝑦))

= 𝑑𝐻 (𝜑3,1(𝑥), 𝜑3,1(𝑦)) 

 

5.5.5. Gray Map For The Ring 𝑭𝟑 + 𝒗𝑭𝟑 With 𝒗𝟐 = 𝟏 

 

Let ℝ = 𝐹3 + 𝑣𝐹3 = {0, 1, 2, 𝑣, 2𝑣, 1 + 𝑣, 1 + 2𝑣, 2 + 𝑣, 2 + 2𝑣} with 𝑣2 = 1, we 

now define a Gray map between (ℝ, Lee distance) and (𝐹3
𝑛, Hamming distance) by 

using Chinese Remainder Theorem,  

 

𝜑3,2: ℝ → ℝ 𝐼 ⁄ ⊕ ℝ 𝐽 ⁄  

 

and 𝐼 + 𝐽 = ℝ, maximal ideals of ℝ are 〈1 + 𝑣〉 = {(1 + 𝑣)(𝑎 + 𝑣𝑏): 𝑎, 𝑏 ∈ 𝐹3} =

{0,1 + 𝑣, 2 + 2𝑣} ⊂ ℝ and 〈𝑣 − 1〉 = {(𝑣 − 1)(𝑎 + 𝑣𝑏): 𝑎, 𝑏 ∈ 𝐹3} = {0, 1 +

2𝑣, 2 + 𝑣} ⊂ ℝ. So ℝ is a semi-local ring. 

By the Definition 3.1.1.21, we can show that  ℝ 〈𝑣 − 1〉 ⁄ ≅ field  and ℝ 〈1 + 𝑣〉 ⁄ ≅

field 

 

ℝ 〈𝑣 − 1〉 ⁄ = {(𝑎 + 𝑣𝑏) + 〈𝑣 − 1〉: 𝑎, 𝑏 ∈ 𝐹3} = {(𝑎 + 𝑣𝑏) + {0, 1 + 2𝑣, 2 +

𝑣}: 𝑎, 𝑏 ∈ 𝐹3} = {0,1, 2} ≅ 𝐹3. 

 

ℝ 〈1 + 𝑣〉⁄ = {(𝑎 + 𝑣𝑏) + 〈1 + 𝑣〉: 𝑎, 𝑏 ∈ 𝐹3} = {(𝑎 + 𝑣𝑏) + {0,1 + 𝑣, 2 +

2𝑣}: 𝑎, 𝑏 ∈ 𝐹3} = {0,1,2} ≅  𝐹3. 

 

𝜑3,2: ℝ → ℝ 〈𝑣 − 1〉 ⁄ ⊕  ℝ 〈1 + 𝑣〉 ⁄  
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So, 𝜑3,2: 𝐹3 + 𝑣𝐹3 → 𝐹3 × 𝐹3 .  Also, for any 𝑥, 𝑦 ∈  𝐹3, we have 𝑎 + 𝑣𝑏 = (𝑎 −

𝑏)(𝑣 − 1) − (𝑎 + 𝑏)(1 + 𝑣). Thus, the Gray map of 𝜑3,2(𝑎 + 𝑣𝑏) = (𝑎 − 𝑏, −(𝑎 +

𝑏)). 

 

Theorem 5.5.5.1. 𝜑3,2 be a linear map.  

Proof. We need to show that 𝜑3,2(𝑥 − 𝑦) = 𝜑3,2(𝑥) − 𝜑3,2(𝑦). Let 𝑥 = 𝑎1 +

𝑣𝑏1 and 𝑦 =  𝑎2 + 𝑣𝑏2 be elements of ℝ = 𝐹3 + 𝑣𝐹3. 

 

𝜑3,2(𝑥 − 𝑦) = 𝜑3,2((𝑎1 + 𝑣𝑏1) − (𝑎2 + 𝑣𝑏2)) = 𝜑3,2((𝑎1 − 𝑎2) + 𝑣(𝑏1 − 𝑏2))

= ( (𝑎1 − 𝑎2) − (𝑏1 − 𝑏2), −((𝑎1 − 𝑎2) +  (𝑏1 − 𝑏2)))

= ( (𝑎1 − 𝑏1) − (𝑎2 − 𝑏2), −((𝑎1 + 𝑏1) − (𝑎2 + 𝑏2)) )

= (𝑎1 − 𝑏1, −(𝑎1 +  𝑏1)) − (𝑎2 − 𝑏2, −(𝑎2 + 𝑏2))

= 𝜑3,2(𝑎1 + 𝑣𝑏1) − 𝜑3,2(𝑎2 + 𝑣𝑏2) 

 

Theorem 5.5.5.2. 𝜑3,2 is a distance preserving map from (ℝ, Lee distance) to (𝐹3
𝑛, 

Hamming distance). 

Proof. Let 𝑥 = 𝑎1 + 𝑣𝑏1 and 𝑦 =  𝑎2 + 𝑣𝑏2 be elements of ℝ = 𝐹3 + 𝑣𝐹3. By the 

Theorem 5.5.5.1, we have 𝜑3,2 is a linear map so 

 

𝑑𝐿(𝑥, 𝑦) = 𝑤𝐿(𝑥 − 𝑦) = 𝑤𝐻 (𝜑3,2(𝑥 − 𝑦)) = 𝑤𝐻 (𝜑3,2(𝑥) − 𝜑3,2(𝑦)) 

= 𝑑𝐻 (𝜑3,2(𝑥), 𝜑3,2(𝑦)). 

 

Note 5.5.5.3. Let 𝜑ℤ4
, 𝜑𝑢 and 𝜑 be three Gray maps defined as above and they are 

also isometries from (ℝ, Lee distance) to (𝐹2
2, Hamming distance). So we have the 

followings: 

(i) 𝜑𝑢(0) = 00, 𝜑𝑢(1) = 11,  𝜑𝑢(1 + 𝑢) = 10, 𝜑𝑢(𝑢) = 11, 

(ii)  𝜑ℤ4
(0) = 00,  𝜑ℤ4

(1) = 11,  𝜑ℤ4
(3) = 10, 𝜑ℤ4

(2) = 11, 

(iii) 𝜑(0) = 00, 𝜑(1) = 11, 𝜑(1 + 𝑣) = 10, 𝜑(𝑣) = 11, 

These Gray maps can be extended to ℝ𝑛. The maps 𝜑𝑢 and 𝜑 are 𝐹2-linear, but 𝜑ℤ4
 

is not. 
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5.6. INNER PRODUCT OF ELEMENTS OF ℝ𝑛   

 

Geometric concepts like the length of a vector, the angle between two vectors, 

orthogonality, and so on are all expressed by the dot product. Now, we are going to 

apply geometric principles to abstract vector spaces, allowing us to abstract vectors 

using geometric concepts. 

 

5.6.1. Basic Notions 

Definition 5.6.1.1. For 𝑥, 𝑦 ∈ ℝ𝑛, dot product of 𝑥 and 𝑦 is denoted by 𝑥. 𝑦, is 

defined as  𝑥. 𝑦 = 𝑥1. 𝑦1 + ⋯ + 𝑥𝑛. 𝑦𝑛 where  𝑥 = (𝑥1, … , 𝑥𝑛) and 𝑦 = (𝑦1, … , 𝑦𝑛). 

Example 5.6.1.2. Assume that 𝑥 = (𝑢, 1, (1 + 𝑢), 0) and 𝑦 = (0, 𝑢, 1, 𝑢) be two 

codewords over 𝐹2 + 𝑢𝐹2 with 𝑢2 = 0. The dot product of 𝑥 and 𝑦 is  

𝑥. 𝑦 = (𝑢, 1, (1 + 𝑢), 0). (0, 𝑢, 1, 𝑢) = 𝑢. 0 + 1. 𝑢 + (1 + 𝑢). 1 + 0. 𝑢
= 0 + 𝑢 + 1 + 𝑢 + 0 = 1 

Definition 5.6.1.3. The length of a vector 𝑥 in ℝ𝑛 is called the norm of 𝑥, denoted 

‖𝑥‖. The norm of x= (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 is  ‖𝑥‖ = √𝑥1
2 + ⋯ + 𝑥𝑛

2 . The norm is not 

linear on ℝ𝑛. 

Note 5.6.1.4. The dot product of two vectors in ℝ𝑛 is a scalar number, not a vector. 

Obviously 𝑥. 𝑥 = ‖𝑥‖2 for all 𝑥 ∈ ℝ𝑛. The properties of the dot product on ℝ𝑛 are as 

follows: 

(i) 𝑥. 𝑥 ≥ 0 for all 𝑥 ∈ ℝ𝑛; 

(ii) 𝑥. 𝑥 = 0 if and only if 𝑥 = 0; 
(iii) For 𝑦 ∈ ℝ𝑛 fixed, the map from ℝ𝑛 to ℝ that sends 𝑥 ∈ ℝ𝑛 to 𝑥𝑦 is a linear; 

(iv) 𝑥. 𝑦 = 𝑦. 𝑥 For all 𝑥, 𝑦 ∈ ℝ𝑛; 

Definition 5.6.1.5. A generalization of the dot product is an inner product. It is a 

method for multiplying vectors together in a vector space, with the results being a 

scalar. An inner product 〈. , . 〉 is more exact for a real vector space, satisfies the 

following axioms. Suppose 𝑢, 𝑣 and 𝑤 ∈ 𝑉 be vectors and 𝛼 be a scalar in ℝ, then: 

(i) 〈𝑢 + 𝑣, 𝑤〉 = 〈𝑢, 𝑤〉 + 〈𝑣, 𝑤〉; 

(ii) 〈𝛼𝑣, 𝑤〉 = 𝛼〈𝑣, 𝑤〉; 

(iii) 〈𝑣, 𝑤〉 = 〈 𝑤, 𝑣〉; 

(iv)  〈𝑣, 𝑣〉 ≥ 0, if and only if 𝑣 = 0; 
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An inner product space is a vector space and it has an inner product on it. This 

concept also stands true for an abstract vector space over any field. 

 

5.6.2. Euclidean Inner Products 

 

Definition 5.6.2.1. Let 𝑣 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛}, 𝑤 = {𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛} ∈ 𝐹𝑞
𝑛. 

(i) The scalar product also known as the Euclidean inner product or the dot 

product of 𝑣 and 𝑤 is defined as  𝑣. 𝑤 = {𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3 + ⋯ +

𝑣𝑛𝑤𝑛} ∈ 𝐹𝑞
𝑛 

(ii) 𝑣 and 𝑤 are called orthogonal if 𝑣. 𝑤 = 0. 

(iii) Assume 𝐶 be a non-empty subset of 𝐹𝑞
𝑛. The orthogonal complement 

𝐶⊥of  𝐶 is defined to be  

 

𝐶⊥ = {𝑣 ∈ 𝐹𝑞
𝑛|𝑣. 𝑢 = 0 , ∀ 𝑢 ∈ 𝐶} 

 

Example 5.6.2.2. Assume that 𝑥 = (𝑣, (1 + 𝑣)1,1,0, ) and 𝑦 = (1,0, 𝑣, 𝑣, (1 + 𝑣)) 

be two codewords over 𝐹2 + 𝑣𝐹2, with 𝑣2 = 𝑣. Then their Euclidean inner product is 

𝑥. 𝑦 = (𝑣, (1 + 𝑣)1,1,0). (1,0, 𝑣, 𝑣, (1 + 𝑣))

= 𝑣. 1 + (1 + 𝑣). 0 + 1. 𝑣 + 1. 𝑣 + 0. (1 + 𝑣) = 𝑣 + 0 + 𝑣 + 𝑣 + 0

= 𝑣 

 

5.6.3. Hermitian Inner Products 

 

Definition 5.6.3.1. Let 𝑥 = {𝑥1, … , 𝑥𝑛} and 𝑦 = {𝑦1, … , 𝑦𝑛} be two elements of ℝ𝑛 

wherever the operations are performing to ℝ. To codes over 𝐹2 + 𝑣𝐹2 with 𝑣2 = 𝑣, 

we can defined the Hermitian inner product of 𝑥 and 𝑦 in ℝ𝑛such that ∑ 𝑥𝑖𝑦𝑖̅  where 

 0̅ = 0, 1̅ =  1, 𝑣̅ = 𝑣 + 1 and 𝑣 + 1̅̅ ̅̅ ̅̅ ̅ = 𝑣.  

 

Example 5.6.3.2. Assume that 𝑥 = (𝑣, (1 + 𝑣), 0, 1) and 𝑦 = (1, (1 + 𝑣), 𝑣, 0) be 

two codewords over 𝐹2 + 𝑣𝐹2. Then the Hermitian inner product is 

 

∑ 𝑥𝑖𝑦𝑖̅ =  𝑣. 1̅ + (1 + 𝑣). (1 + 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 0. 𝑣̅ + 1. 0̅ = 𝑣 + 0 + 0 + 0 = 𝑣 
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5.7. WEIGHT ENUMERATORS  

 

We start this section with basic notions about the weight enumerators and its 

relationship with Macwilliam identities. Then we continue with the description of the 

symmetrized weight enumarators and its relationship with the rings of order four. 

 

Definition 5.7.1. If 𝐶 is a linear [𝑛, 𝑘]-code, its weight enumerators are define to be 

the polynomial.  

𝑤𝑐(𝑧) = ∑ 𝐴𝑖𝑧
𝑖

𝑛

𝑖=0

= 𝐴0 + 𝐴1𝑧 + 𝐴2𝑧2 … + 𝐴𝑛𝑧𝑛 

where 𝐴𝑖 defines the number of weights 𝑖 codewords in 𝐶. Another way of writing 

𝑤𝑐(𝑧) is  

𝑤𝑐(𝑧) = ∑ 𝑧𝑤(𝑥)

𝑥∈𝐶

 

 

Example 5.7.2. (i) Let 𝐶 be binary even weight code of length 5, for 𝐶 =

{00000, 01101, 10110, 11011}, one gets 𝑤(00000) = 0, 𝑤(01101) =

3,   𝑤(10110) = 3 and 𝑤(11011) = 4. Also, 𝐶⊥={00000, 11011} and weight of 

each codewords is 𝑤(00000) = 0 and 𝑤(11011) = 4. The weight enumerators of 

𝐶 and 𝐶⊥ are, 

 

𝑤𝐶(𝑧) = ∑ 𝐴𝑖𝑧𝑖

𝑛

𝑖=0

= 𝐴0 + 𝐴1𝑧 + 𝐴2𝑧2 + 𝐴3𝑧3 + 𝐴4𝑧4 = 1 + 0 + 0 + 2𝑧3 + 𝑧4

= 1 + 2𝑧3 + 𝑧4 

 

𝑤𝐶⊥(𝑧) = ∑ 𝐴𝑖𝑧𝑖

𝑛

𝑖=0

= 𝐴0 + 𝐴1𝑧 + 𝐴2𝑧2 + 𝐴3𝑧3 + 𝐴4𝑧4 = 1 + 0 + 0 + 1𝑧4

= 1 + 𝑧4 

 

(ii) The code 𝐶 = {00, 11} is self-dual code and so 𝑤(00) = 0 and (11) = 2 

𝑤𝐶(𝑧) = 𝑤𝐶⊥(𝑧) = 1 + 𝑧2. 
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Lemma 5.7.3. Suppose 𝑥 is a fixed vector in 𝑉(𝑛, 2) and assume 𝑧 is indeterminate. 

Then the following polynomial identity holds 

 

∑ 𝑧𝑤(𝑦)(−1)𝑥.𝑦

𝑦∈𝑉(𝑛,2)

= (1 − 𝑧)𝑤(𝑥)(1 + 𝑧)𝑛−𝑤(𝑥) 

Proof. For more details see Lemma (13.4) in [11]. 

 

Theorem 5.7.4. (The MacWilliams identity for the binary linear codes) If  𝐶 is a 

binary [𝑛, 𝑘]-code with the dual code 𝐶⊥, then  

 

𝑤𝐶⊥(𝑧) =
1

  2𝑘
(1 + 𝑧)𝑛𝑤𝐶 (

1 − 𝑧

1 + 𝑧
) 

 

Proof. For more details see Theorem (13.5) in [11]. 

 

Theorem 5.7.5. (The MacWilliams identity for general linear codes) If  𝐶 is a linear 

[𝑛, 𝑘]-code over 𝐺𝐹(𝑞)  with the dual code 𝐶⊥, then 

 

𝑤𝐶⊥(𝑧) =
1

  𝑞𝑘
[1 + (𝑞 − 1)𝑧]𝑛 𝑤𝐶 (

1 − 𝑧

1 + (𝑞 − 1)𝑧
) 

 

Remark 5.7.6. If 𝐶 is a binary [𝑛, 𝑘]-code, then, since the dual code 𝐶⊥is just 𝐶, we 

can write the MacWilliams identity is the (often more useful) from,   

 

𝑤𝐶(𝑧) =
1

  2𝑛−𝑘
(1 + 𝑧)𝑛𝑤𝐶⊥ (

1 − 𝑧

1 + 𝑧
) 

 

Example 5.7.7. For the code 𝐶 = {000, 011, 101, 110} and 𝑘 = 2, 

 

(i) We have 𝑤𝐶(𝑧) = 1 + 3𝑧2 and  by the Theorem 5.7.4, 



52 

 

𝑤𝐶⊥(𝑧)
1

  2𝑘
(1 + 𝑧)𝑛𝑤𝐶 (

1 − 𝑧

1 + 𝑧
) =

1

4
(1 + 𝑧)3𝑤𝐶 (

1 − 𝑧

1 + 𝑧
)

=
1

4
[(1 + 𝑧)3. 1 + 3 (

1 − 𝑧

1 + 𝑧
)

2

]

=
1

4
[(1 + 𝑧)3. 1 + (1 + 𝑧)3. 3

(1 − 𝑧)2

(1 + 𝑧)2
]

=
1

4
[(1 + 𝑧)3 + (1 + 𝑧)3. 3

(1 − 𝑧)2

(1 + 𝑧)2
]

=
1

4
[(1 + 𝑧)3 + 3(1 − 𝑧)2(1 + 𝑧)]

=
1

4
[1 + 3𝑧 + 3𝑧2 + 𝑧3 + 3 − 3𝑧 − 3𝑧2 + 3𝑧3] 

=
1

4
[4 + 4𝑧3] = 1 + 𝑧3. 

 

As already found directly from 𝐶⊥. Let changing the formula by using Remark 5.7.6 

to get 𝐶. We have  𝑤𝐶⊥(𝑧) = 1 + 𝑧3, and 𝐶⊥ = {000,111}, so 𝑘 = 2. 

𝑤𝐶(𝑧) =
1

  2𝑛−𝑘
(1 + 𝑧)𝑛𝑤𝐶⊥ (

1 − 𝑧

1 + 𝑧
) =

1

2
(1 + 𝑧)3𝑤𝐶⊥ (

1 − 𝑧

1 + 𝑧
)

3

=
1

2
[(1 + 𝑧)3. 1 + (

1 − 𝑧

1 + 𝑧
)

3

] =
1

2
[(1 + 𝑧)3. 1 + (1 + 𝑧)3.

(1 − 𝑧)3

(1 + 𝑧)3
]

=
1

2
[(1 + 𝑧)3 + (1 + 𝑧)3.

(1 − 𝑧)3

(1 + 𝑧)3
] =

1

2
[(1 + 𝑧)3 + (1 − 𝑧)3]

=
1

2
[1 + 3𝑧 + 3𝑧2 + 𝑧3 + 1 − 3𝑧 + 3𝑧2 − 𝑧3] =

1

2
[2 + 6𝑧2]

= 1 + 3𝑧2 

 

which is indeed 𝑤𝐶(𝑧). 

 

(ii) We have 𝑤𝐶(𝑧) = 1 + 𝑧2.  In the example 5.7.2, Hence, 
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𝑤𝐶⊥(𝑧) =
1

  2𝑘
(1 + 𝑧)𝑛𝑤𝐶 (

1 − 𝑧

1 + 𝑧
) =

1

2
(1 + 𝑧)2𝑤𝐶 (

1 − 𝑧

1 + 𝑧
)

2

=
1

2
[(1 + 𝑧)2. (1 +

(1 − 𝑧)2

(1 + 𝑧)2
)]

=
1

2
[(1 + 𝑧)2. 1 + (1 + 𝑧)2.

(1 − 𝑧)2

(1 + 𝑧)2
] =

1

2
[(1 + 𝑧)2 + (1 − 𝑧)2]

=
1

2
[2 + 2𝑧2] = 1 + 𝑧2 

 

Thus 𝑤𝐶⊥(𝑧) = 𝑤𝐶(𝑧), as we expect, since 𝐶 is self-dual.  For the very small codes 

just considered, the use of the MacWilliams identity is an inefficient method of 

determining the weight enumerators for the very small codes just considered, which 

can be written directly down from the lists of codewords. But suppose we are 

required to calculate the weight enumerate of an [𝑛, 𝑘]-code 𝐶 over 𝐺𝐹(𝑞) where 𝑘 

is large. To enumerate all 𝑞𝑘codewords by weight be a formidable task. However, if 

𝑘 is so large that 𝑛 − 𝑘 is small, then the dual code 𝐶⊥ maybe small enough to find 

its weight enumerate, and then the MacWilliams identity can be used to find the 

weight enumerate of 𝐶. 

 

5.8. SYMMETRIZED WEIGHT ENUMERATORS 

 

Some weight enumerators are associative with a code over ℝ. In this section, we deal 

by the symmetrized weight enumerators. The symmetrized weight enumerator (𝑠𝑤𝑒) 

of a code 𝐶 over ℝ  is given by  

 

𝑠𝑤𝑒𝐶(𝑎, 𝑏, 𝑐) = ∑ 𝑎𝑛0(𝑥)
𝑥∈𝐶  𝑏𝑛1(𝑥)+𝑛3(𝑥)𝑐𝑛2(𝑥). 

 

Where 𝑛𝑖(𝑥) is the number of components of 𝑥 ∈ 𝐶 that are 𝑖 in ℤ4, and 

𝑛0(𝑥), 𝑛1(𝑥), 𝑛2(𝑥) and 𝑛3(𝑥) are the number of component of 𝑥 ∈ 𝐶 that are 

0, 1, 𝑢, and 1 + 𝑢, respectively, in 𝐹2 + 𝑢𝐹2. For codes over 𝐹2 + 𝑣𝐹2 we defined the 

symmetrized weight enumerator (swe) by  

 

𝑠𝑤𝑒𝐶(𝑎, 𝑏, 𝑐) = ∑ 𝑎𝑛0(𝑥)
𝑥∈𝐶  𝑏𝑛1(𝑥)𝑐𝑛2(𝑥). 
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Where 𝑛𝑖(𝑥) is the number of components of 𝑥 whose Lee weight is 𝑖. For codes 

over 𝐹2 + 𝑣𝐹2  the MacWilliams relations to the 𝑠𝑤𝑒 are the same for both inner 

products [9]. Wood [21] established the MacWilliams identities for codes over any 

finite Frobenius ring. Klemm [13] established the MacWilliams identities for a code 

over ℤ4.  

 

Example 5.8.1. (i) Let 0120111, 1130133 be codewords of length 7 over ℤ4. 

For the codeword 𝑥1 =0120111, we have 𝑛0(𝑥1)=2, 𝑛1(𝑥1)=4, 𝑛2(𝑥1)=1, 𝑛3(𝑥1)=0. 

For the codeword 𝑥2 = 1130133, we have 𝑛0(𝑥2)=1, 𝑛1(𝑥2)=3, 𝑛2(𝑥2)=0, 

𝑛3(𝑥2)=3. 

𝑠𝑤𝑒𝐶(𝑎, 𝑏, 𝑐) ∑ 𝑎𝑛0(𝑥)

𝑥∈𝐶

 𝑏𝑛1(𝑥)+𝑛3(𝑥)𝑐𝑛2(𝑥) 

= 𝑎𝑛0(𝑥1) 𝑏𝑛1(𝑥1)+𝑛3(𝑥1)𝑐𝑛2(𝑥1) + 𝑎𝑛0(𝑥2) 𝑏𝑛1(𝑥2)+𝑛3(𝑥2)𝑐𝑛2(𝑥2) 

= 𝑎2 𝑏4+0𝑐1 + 𝑎1 𝑏3+3𝑐0 = 𝑎2 𝑏4𝑐1 + 𝑎1 𝑏6 

 

(ii) Let  01𝑢0(1 + 𝑢), (1 + 𝑢)11𝑢𝑢 be codewords of length 5 over  𝐹2 + 𝑢𝐹2. For 

the codeword 𝑥1 = 01𝑢0(1 + 𝑢), we have 𝑛0(𝑥1)=2, 𝑛1(𝑥1)=1, 𝑛𝑢(𝑥1)=1, 

𝑛1+𝑢(𝑥1)=1. 

 

For the codeword 𝑥2 = (1 + 𝑢)11𝑢𝑢, we have 𝑛0(𝑥2)=0, 𝑛1(𝑥2)=2, 𝑛𝑢(𝑥2)=2, 

𝑛1+𝑢(𝑥2)=1. 

𝑠𝑤𝑒𝐶(𝑎, 𝑏, 𝑐) ∑ 𝑎𝑛0(𝑥)

𝑥∈𝐶

 𝑏𝑛1(𝑥)+𝑛3(𝑥)𝑐𝑛2(𝑥) 

= 𝑎𝑛0(𝑥1) 𝑏𝑛1(𝑥1)+𝑛1+𝑢(𝑥1)𝑐𝑛𝑢(𝑥1) + 𝑎𝑛0(𝑥2) 𝑏𝑛1(𝑥2)+𝑛1+𝑢(𝑥2)𝑐𝑛𝑢(𝑥2) 

= 𝑎2 𝑏1+1𝑐1 + 𝑎0 𝑏2+1𝑐2 = 𝑎2 𝑏2𝑐1+ 𝑏3𝑐2 

 

(iii) Let  (1 + 𝑣)001𝑣𝑣𝑣, 011𝑣0(1 + 𝑣)(1 + 𝑣) be codewords of length 7 over  

𝐹2 + 𝑣𝐹2, we have 𝑤𝐿(0) = 0, 𝑤𝐿(1) = 2, 𝑤𝐿(𝑣) = 1, 𝑤𝐿(1 + 𝑣) = 1.  

For the codeword 𝑥1 = (1 + 𝑣)001𝑣𝑣𝑣, we have 𝑛0(𝑥1)=2, 𝑛1(𝑥1)=4, 𝑛2(𝑥1)=1. 

For the codeword 𝑥2 = 011𝑣0(1 + 𝑣)(1 + 𝑣) , we have 𝑛0(𝑥2)=2, 𝑛1(𝑥2)=3, 

𝑛2(𝑥2)=2, 
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𝑠𝑤𝑒𝐶(𝑎, 𝑏, 𝑐) = ∑ 𝑎𝑛0(𝑥)

𝑥∈𝐶

 𝑏𝑛1(𝑥)𝑐𝑛2(𝑥) 

= 𝑎𝑛0(𝑥1) 𝑏𝑛1(𝑥1)𝑐𝑛2(𝑥1) + 𝑎𝑛0(𝑥2) 𝑏𝑛1(𝑥2)𝑐𝑛2(𝑥2) = 𝑎2 𝑏4𝑐1 + 𝑎2 𝑏3𝑐2 

 

Theorem 5.8.2. Klemm [13], Wood [21]: For a code 𝐶 over a commutative ring of 

order 4 we have,   

𝑠𝑤𝑒𝐶⊥(𝑎, 𝑏, 𝑐) =
1

|𝐶|
𝑠𝑤𝑒𝐶(𝑎 + 2𝑏 + 𝑐, 𝑎 − 𝑐, 𝑎 − 2𝑏 + 𝑐) 

 

Definition 5.8.3. 𝐾𝑛 is a Klemm codes of length 𝑛 = 4𝑚 are constructed with a 

bilevel construction in this repetition code 𝑅𝑛 and its dual the parity-check code 𝑃𝑛, 

𝐾𝑛 ∶= 𝑅𝑛 + 2𝑃𝑛 ⋃(1 + 2𝑃𝑛), where 1 is the every-one’s vector. Their symmetrized 

weight enumerators are 

𝑠𝑤𝑒𝐾𝑛
(𝑎, 𝑏, 𝑐) =

1

2
((𝑎 + 𝑐)𝑛 + (𝑎 − 𝑐)𝑛) + 2𝑛−1𝑏𝑛 

 

Theorem 5.8.4. Let 𝐶 be a linear code over ℤ4. Then 𝐶⊥, 𝐿𝐶⊥(𝑥, 𝑦) =
1

|𝐶|
𝐿𝐶(𝑥 +

𝑦, 𝑥 − 𝑦). In other side, the Lee weight enumerator to linear codes over ℤ4 follows 

the several MacWilliams relations such as a binary linear code even though it is 

image cannot be a linear code. The same MacWilliams relations will hold to codes 

over 𝐹2 + 𝑢𝐹2. 

Proof. For more information one can see the Theorem 4.1 in [7]. 

 

5.9. GENERATORS   

 

In this section we are talking about generator matrices for the codes over  ℤ4, 𝐹2 +

𝑢𝐹2 and 𝐹2 + 𝑣𝐹2 , respectively. With using residue code and the torsion in the 

generators.  

 

5.9.1. Generator Matrix for the Code Over ℤ𝟒   

 

Every code over ℤ4 is permutation-equivalent for a code 𝐶 with generator matrix of 

the form 
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(
𝐼𝑘1

𝐴 𝐵1 + 2𝐵2

0 2𝐼𝑘2
2𝐷

)   (1) 

 

where 𝐴, 𝐵1, 𝐵2  and 𝐷 are (1, 0)-matrices and 𝐼𝑘𝑖
 are identity matrices for 𝑖 = 1, 2. 

We said that a code with generator matrix form (1) have type 4𝑘12𝑘2 [15]. The 

binary [𝑛, 𝑘1]-code  𝐶(1) with generator matrix 

 

𝐺1 = (𝐼𝑘1
𝐴 𝐵1)   (2) 

 

is said to be the residue code of  ℤ4-code. The binary [𝑛, 𝑘1 + 𝑘2]-code 𝐶(2) with 

generator matrix 

𝐺2 = (
𝐼𝑘1

𝐴 𝐵1

0 2𝐼𝑘2
𝐷

)   (3) 

 

is said to be torsion code of the ℤ4-code. 

 

5.9.2. Generator Matrix for the Code Over 𝑭𝟐 + 𝒖𝑭𝟐 With 𝒖𝟐 = 𝟎 

 

Any code over 𝐹2 + 𝑢𝐹2, with 𝑢2 = 0, is permutation-equivalent for a code 𝐶 with 

generator matrix 

𝐺 = (
𝐼𝑘1

𝐴 𝐵1 + 𝑢𝐵2

0 𝑢𝐼𝑘2
𝑢𝐷

)   (1) 

 

where 𝐴, 𝐵1, 𝐵2 and 𝐷 are matrices over 𝐹2 and 𝐼𝑘𝑖
 are identity matrices for 𝑖 = 1, 2. 

We associate two binary codes:  the residue code 𝐶(1) and the torsion code  𝐶(2) as 

follows: 

𝐶(1) = {𝑥 ∈ 𝐹2
𝑛| 𝑦 ∈ 𝐹2

𝑛| 𝑥 + 𝑢𝑦 ∈ 𝐶} and 𝐶(2) = {𝑥 ∈ 𝐹2
𝑛| 𝑢𝑥 ∈ 𝐶}. 

 

A generator matrix of  𝐶(1) is: 

 

𝐺1 = (𝐼𝑘1
𝐴 𝐵1)   (2) 

 

And generator matrix of  𝐶(2) is: 
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𝐺2 = (
𝐼𝑘1

𝐴 𝐵1

0 𝐼𝑘2
𝐷

)  (3) 

 

We have |𝐶| = |𝐶(1)|. |𝐶(2)| = 2𝑘12𝑘1+𝑘2 = 22𝑘1+𝑘2 . 

 

5.9.3. Generator Matrix for the Code Over 𝑭𝟐 + 𝒗𝑭𝟐 With 𝒗𝟐 = 𝟏 

 

If 𝐴 and 𝐵 are codes, we denote that 𝐴 ⊗ 𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, and 𝐴 ⊕ 𝐵 =

{(𝑎 + 𝑏)|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Let 𝐶 be a linear code of length 𝑛 over ℝ. Define 𝐶(1) =

{𝑥 ∈ 𝐹2
𝑛| 𝑥 + 𝑣𝑦 ∈ 𝐶, for some 𝑦 ∈ 𝐹2

𝑛}, and 𝐶(2) = {𝑥 + 𝑦 ∈ 𝐹2
𝑛| 𝑥 + 𝑣𝑦 ∈ 𝐶}. 

Obviously, 𝐶(1) and 𝐶(2) are binary linear codes.  

 

Theorem 5.9.3.1. Assume that  𝐶 is a linear code of length 𝑛 over ℝ. 𝜑(𝐶) =

𝐶(1) ⊗ 𝐶(2), and |𝐶| = |𝐶(1)|. |𝐶(2)|. Moreover, 𝜑(𝐶) is linear. 

Proof. For more details see the Theorem 3.1 in [23]. 

 

Corollary 5.9.3.2. If 𝐺1 and 𝐺2 are the generator matrices of binary linear codes 𝐶(1) 

and 𝐶(2), especially, the generator matrix of 𝐶 is 

 

(
(1 + 𝑣)𝐺1

𝑣𝐺2
)   (1) 

 

furthermore, if  𝐺1 = 𝐺2 then 𝐺 = 𝐺1. 

Proof. For more information see Corollary (3.2) in [23]. 

 

Corollary 5.9.3.3. If 𝜑(𝐶) = 𝐶(1) ⊗ 𝐶(2), then 𝐶 can be uniquely expressed as 

 

𝐶 = (1 + 𝑣)𝐶(2) ⊕ 𝑣𝐶(1) 

 

A non-zero linear code 𝐶 over ℝ has a generator matrix which after a suitable 

permutation of the coordinates may be written in the form  
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𝐺 = (

𝐼𝑘1
𝐴 𝐵 𝐷1 + 𝑣𝐷2

0 𝑣𝐼𝑘2
0 𝑣𝐶1

0 0 (1 + 𝑣)𝐼𝑘3
(1 + 𝑣)𝐸

)  (2) 

 

where 𝐴, 𝐵, 𝐶1, 𝐷1, 𝐷2  and 𝐸 are (1, 0)-matrices and 𝐼𝑘𝑖
 are identity matrices for 

𝑖 = 1, 2 3, and |𝐶| = 4𝑘12𝑘22𝑘3. Hence, the generator matrix of 𝜑(𝐶) = 𝐶(1) ⊗ 𝐶(2) 

is  

(
𝐺1 0
0 𝐺2

)   (3) 

where,   

 

𝐺1 = (
𝐼𝑘1

𝐴 𝐵 𝐷1

0 0 𝐼𝑘3
𝐸

)  (4) 

 

𝐺2 = (
𝐼𝑘1

𝐴 𝐵 𝐷1 + 𝐷2

0 𝐼𝑘2
0 𝐶1

) (5) 

 

are the generator matrices of binary linear codes 𝐶(1) and 𝐶(2). Furthermore, 

|𝐶(1)| = 2𝑘12𝑘3 and |𝐶(2)| = 2𝑘12𝑘2. 
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PART 6 

 

SUMMARY 

 

In this thesis, our main subject is to study on coding theory. Especial, we consider 

linear codes over the commutative rings of order four such as the rings of ℤ4, 𝐹2 +

𝑢𝐹2, with 𝑢2 = 0, 𝐹2 + 𝑣𝐹2 with 𝑣2 = 𝑣, and 𝐹2 + 𝑤𝐹2  with 𝑤2 = 𝑤 + 1. We 

used Gray maps with knowledge of Chinese Remainder Theory to easily identify 

linear codes over the rings. By the Gray maps, 𝜑ℤ4
, 𝜑𝑢 and 𝜑, it is shown that 

isometries and a distance preserving properties between (ℝ, Lee distance) and (𝐹2
2, 

Hamming distance). However, it is explained that the Gray map of 𝜑ℤ4
 is a non-

linear map, as we prove it the Gray image of ℤ4 linear code cannot be a binary linear 

code. Also, the Gray image of linear codes over ℤ4 are distance-invariant binary 

codes, even if they are non-linear. Gray map for the ring 𝐹2 + 𝑢𝐹2, with 𝑢2 = 0 is 

𝜑𝑢(𝑎 + 𝑢𝑏) =  ( 𝑏, 𝑎 + 𝑏) since only have a maximal ideal is 〈𝑢〉, so ℝ is a local 

ring. 𝜑𝑢 is a 𝐹2-linear map. Gray map for the ring 𝐹2 + 𝑣𝐹2 with 𝑣2 = 𝑣 is 𝜑(𝑎 +

𝑣𝑏) →  (𝑎 + 𝑏, 𝑎), since maximal ideals of ℝ are 〈𝑣〉 and 〈1 + 𝑣〉 So ℝ is a semi-

local ring. 𝜑 is a linear map. These Gray maps are extended to ℝ. To further develop 

the subject, we also talked about some rings with order 9 such that 𝐹3 + 𝑣𝐹3,

with 𝑣2 = 𝑣, 𝐹3 + 𝑣𝐹3 with 𝑣2 = 1, and defined their Gray maps and both rings are 

linear map and a distance preserving properties between (ℝ, Lee distance) and (𝐹2
2, 

Hamming distance). In the following of the study, we observed that there are 

different weights over these rings namely, Lee weight, Hamming weight, Bachoc 

weight and the Euclidean weight. By the examples of these weights, we ensure our 

theories. Moreover, we considered inner products which are basically representing a 

relationship between two vectors. The highly used inner products are known as 

Euclidean inner product and Hermitian inner products for the ring of order four. 
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We continue our study with some basic notions about the weight enumerators and it 

is relationship with Macwilliam identities for the binary linear codes and for general 

linear codes. Using MacWilliams identity is an inefficient method of determining the 

weight enumerators for the very small codes just considered, which can be written 

directly down from the lists of codewords and the MacWilliams identity can be used 

to find the weight enumerate of 𝐶 and relationship with the rings of order four.  

 

Furthermore, generators for the rings are very important and widely studied in linear 

coding theory [7-9]. Thus, we introduced generator matrices for the codes over ℤ4, 

𝐹2 + 𝑢𝐹2 with  𝑢2 = 0 and 𝐹2 + 𝑢𝐹2 with 𝑣2 = 𝑣, respectively.  
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