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ABSTRACT 
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The Department of Computer Engineering 

 

Thesis Advisor: 
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In the consequence of communication between people, the sending of crucial data, 

particularly between them, the downloading of a great number of programs and files 

are attractive for the cybercriminals. Because the cybercriminals are becoming more 

sophisticated in their methods, there is a need to develop a robust security mechanism 

against malicious software, which is growing daily and has become more risky and 

more complex. 

 

In this research project, we presented two new datasets that belong to the same samples 

that we collected. The first is built on visualization (static analysis) whereas the second 

is built on API call sequences (dynamic analysis) to detect malware in different 

methods in case it is encrypted or uses obfuscation techniques. 
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In this study, different models of deep learning used to protect against malware by 

identifying and categorizing the family to which it belongs are presented. The first 

dataset, which contains benign and malware images after converted from malware 

binary numbers, used our custom model and three of the common pretrained network 

models of CNN (VGG16, Inception V3, and Resnet50). The second dataset, which 

contains API call sequences, uses two algorithms of RNN (LSTM and GRU). Also, 

with the second dataset, a CNN was used with API call sequence numbers after 

reshaping and normalizing it.  

 

Finally, we choose three best models for real-time detection and classification: one for 

CNN using the first dataset, one for RNN using the second dataset, and one for the 

CNN model using the second dataset after normalizing and reshaping it. We selected 

the best models depending on their accuracy, number of parameters, and cost-

effectiveness (memory). 

 

Our framework achieved high accuracy in all models and when testing for examples 

of malware that belong to the same families but are absent from the dataset that was 

gathered. These models were found and categorized in a manner that was both very 

accurate and carried out in real time. 

 

Key Words : CNN, LSTM, GRU, Hybrid analysis, API call, Malware images. 

Science Code :  92403 
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TESPİTİ VE GERÇEK ZAMANLI SINIFLANDIRMA 
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Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi. Adnan ALAJEELI 

Ağustos 2022, 78 sayfa 

 

İnsanlar arasındaki iletişim sonucunda, özellikle kendi aralarında önemli verilerin 

gönderilmesi, çok sayıda program ve dosyanın indirilmesi siber suçlular için cazip hale 

gelmektedir. Siber suçlular yöntemlerinde daha karmaşık hale geldikleri için, her 

geçen gün büyüyen ve daha riskli ve daha karmaşık hale gelen kötü amaçlı yazılımlara 

karşı sağlam bir güvenlik mekanizması geliştirmeye ihtiyaç vardır. 

 

Bu araştırma projesinde, topladığımız aynı örneklere ait 2 yeni veri seti sunulmuştur; 

bunlardan ilki görselleştirme statik analizi üzerine inşa edilmiştir, ikincisi ise 

şifrelenmiş olması veya gizleme teknikleri kullanması durumunda kötü amaçlı 

yazılımları farklı yöntemlerle tespit etmek için bir API çağrı dizileri dinamik analizi 

üzerine inşa edilmiştir. 
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Bu çalışmada, ait olduğu aileyi tanımlayarak ve kategorize ederek kötü amaçlı 

yazılımlara karşı korunmak için kullanılan farklı derin öğrenme modelleri 

sunulmuştur. Kötü amaçlı yazılım ikili sayılarından dönüştürüldükten sonra iyi huylu 

ve kötü amaçlı yazılım görüntülerini içeren ilk veri setinde özel modelimiz ve CNN'in 

yaygın ön eğitimli ağ modellerinden üçü (VGG16, Inception V3 ve Resnet 50) 

kullanılmıştır. API çağrı dizilerini içeren ikinci veri setinde, RNN (LSTM ve Gru) 

dışında iki algoritma kullanılmıştır. Ayrıca, ikinci veri setinde, yeniden 

şekillendirildikten ve normalleştirildikten sonra API çağrı dizisi numaraları ile bir 

CNN kullanılmıştır. 

 

Son olarak, gerçek zamanlı tespit ve sınıflandırma için en iyi üç modeli seçtik: biri ilk 

veri setini kullanan CNN, diğeri ikinci veri setini kullanan RNN ve diğeri de 

normalleştirip yeniden şekillendirdikten sonra ikinci veri setini kullanan CNN modeli. 

Doğruluklarına, parametre sayılarına ve maliyet etkinliğine (bellek) bağlı olarak en iyi 

modelleri seçtik. 

 

Aynı ailelere ait olan ancak toplanan veri setinde bulunmayan kötü amaçlı yazılım 

örnekleri için test yapıldığında tüm çerçeve tüm modellerde yüksek doğruluk elde etti. 

Bu modeller hem çok doğru hem de gerçek zamanlı olarak gerçekleştirilecek şekilde 

bulundu ve kategorize edildi. 

 

Anahtar Kelimeler  : CNN, LSTM, GRU, Hibrit analiz, API çağrısı, Kötü Amaçlı 

Yazılım görüntüleri. 

Bilim Kodu :   92403 
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PART 1 

 

INTRODUCTION 

 

1.1. OVERVIEW 

 

Malware, also known as malicious software or software with malicious intent, is 

created by hackers for the purpose of performing a specific action, such as monitoring 

a user's computer to steal personal information (known as spyware) or encrypting data 

and holding it for ransom (known as ransomware). Figure 1.1 from the AV-TEST 

Institute's research depicts the meteoric rise of malware over the last decade. Over 450 

thousand new harmful and potentially unwanted applications (PUA) software samples 

are logged daily by the institution [1]. Obfuscation, cryptography, and many other 

techniques are used by malware developers to keep their software out of the reach of 

security systems. This is a major factor in the wide variety of malicious software [2]. 

 

At the present, an investigation into malicious software may be broken down into two 

distinct categories: static analytics and dynamic behavior analytics. The primary 

distinction between the two lies in whether or not the program in concern is really 

executed [3]. 

 

When malicious code is encrypted, compressed, or obfuscated, static analysis is 

rendered useless despite its speed and efficiency. Obfuscation is a way to modify or 

enhance source code without impacting the functionality of the original. In this 

scenario, malware is detected by a dynamic analysis technique that examines the 

program as it runs [4]. 

 

Deep learning is a kind of artificial intelligence that relies heavily on computer 

simulations of the brain's neural networks. As with other aspects of data science, such 

as statistical data prediction and modeling, it is crucial. There is widespread agreement 
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that deep learning algorithms are an effective tool for detecting malware, and they have 

found use in a wide variety of niche areas, including the protection of sensitive user 

information [5], vulnerability recognition [6], and others. 

 

 

  

Figure 1.1. Malware statistics in millions for the previous ten years. 

 

In this study, our primary emphasis is on hybrid approaches, which integrate aspects 

of static and dynamic analysis to improve performance based on two deep learning 

algorithms. The first is a CNN algorithm that identifies malware based on visualizing 

malware binary numbers as grayscale images and API call sequences after converting 

them to a 2D array and normalizing them. The second algorithm is RNN, which is 

utilized to deal with the API call sequences for each harmful program application.  

 

1.2. COMMON TYPES OF MALWARES 

 

Malicious software, or "malware," is defined as any program that was created with the 

goal of doing damage. There is a wide variety of malicious software, and each of these 

programs has its own unique technique for infiltrating your computer system. These 

techniques could involve snooping on you, trying to steal your private information, 

encrypting your essential data, or causing various kinds of harm to your systems. 
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1.2.1. Virus  

 

In simple terms, a virus is malicious software that infiltrates your system and causes 

damage. It may slow down your device or steal your personal information. A virus can 

infect other files by copying itself and then attaching to them. When one virus infects 

a network, it has the potential to launch a denial-of-service attack or encrypt data in an 

attempt to hold the network hostage. 

 

1.2.2. Worm  

 

A self-replicating and infectious computer software is known as a "worm." Worms 

may delete data and files from a computer. By taking advantage of weaknesses in 

operating systems, a worm may travel from one computer network to another. The vast 

majority of the time, they are distributed by mass email with malicious attachments. 

 

1.2.3. Adware 

 

Adware is malicious software that secretly delivers advertisements to a user's computer 

without their knowledge or consent. Users often activate adware without their 

knowledge when they attempt to install legal programs that come packed with adware. 

There is also the risk that visitors may be tricked into downloading even more 

malicious software because of these advertising. 

 

1.2.4. Trojans 

 

Trojans are harmful programs that masquerade as legitimate programs in order to 

deceive users into downloading and installing them. As far as malware goes, this is the 

worst kind. Trojans can be used for a wide range of bad things, such as collecting 

sensitive financial information, stealing sensitive information (login credentials, 

electronic accounts), stealing computer system resources, or harming your information 

or network in some other way. 
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1.2.5. Spyware  

 

Spyware is a kind of program that is placed on computers and mobile devices to spy 

on their activities and record what they find by installing itself into a user's system. 

This kind of malware is able to access sensitive data such as passwords and email 

addresses after being given administrative privileges. Key logging is a common 

method through which this is accomplished. 

 

1.2.6. Backdoor 

 

A backdoor is a way into a computer system without the need to authenticate using the 

system's normal authentication procedures. As a result, hackers may get access to 

sensitive data and databases used by the targeted applications. 

 

1.2.7. Ransomware  

 

Ransomware is software that is meant to locate all files on a computer, encrypt those 

files, and then transmit messages to the user. It requires customers to pay a ransom to 

regain access to their data. The distribution of ransomware often occurs either via 

network weaknesses or through downloaded files. The data on the computer is 

encrypted, and then it utilizes a key for the encryption that is only known to the 

attackers.  

 

1.3. PROBLEM STATEMENT 

 

The detection of a zero-day assault is notoriously tough. Anti-malware tools are 

frequently unsuccessful since new malware does not have a signature in the anti-

malware database [7]. 

 

Obfuscated strings, used by most of the malicious software, conceal the instructions 

that inform an infected machine when to do certain actions. Obfuscation prevents static 

code analyzers from identifying harmful data. Before the malicious program is 

executed, the original code is hidden. 



5 

 

1.4. OBJECTIVE 

 

The main goal is to collect samples (malware and benign) in portable executable file 

format and first convert them to images, and second, extract API call sequences from 

samples to create two new datasets. 

 

Develop a hybrid deep learning method that can detect and accurately classify malware 

in real time. This will be done by using deep learning methods to develop three 

different models based on static and dynamic approaches to identify and classify 

malicious software in case it is encrypted or uses techniques to hide itself. These 

models will be used to overcome the zero-attack. 

 

1.5. CONTRIBUTION 

We can summarize contributions as: 

• Created two new datasets, each containing 7,513 malware and 1,000 benign in 

30 classes (29 classes of malware family and 1 class of benign): The first 

dataset includes grayscale images after converting all samples to grayscale 

images, while the second dataset (a csv file) includes API call sequences for 

each sample extracted by the Python Pefile library. 

• After conducting experiments, we chose the most efficient models trained on 

two datasets in terms of accuracy, memory consumption, and speed to detect 

and classify malware in real time. These models successfully predicted real 

malware after passing samples that belong to the same families but do not exist 

in the dataset. 

• The first 50 API call sequences were extracted by the Python Pefile module for 

each malicious and benign program to create the dynamic dataset as a CSV file 

to make detection as quick as possible. 

• Designed a light-weighted 2D-CNN model with a 7x7 array of API call 

sequences after reshaping by calling the first 49 API call sequences of the 

dynamic dataset, which is a small array, and experiments proved the model has 

high accuracy and very high speed in detection and classification. 
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• The year 2022 was the source of the great majority of the samples of malicious 

software that were gathered. 

 

1.6. THESIS STRUCTURE 

 

In the first part of this study, we'll look at what malware is, what kinds of analysis can 

be used to find it, and what new techniques are being used to find and classify it. 

 

In the second part, we'll go over the most important studies that have been done on 

how deep learning can be used to find malware. 

 

The third part presents a detailed study of deep learning, focusing on CNNs and RNNs 

as well as the models associated with each network type. 

 

In the fourth part, we'll talk about how to make our dataset, our method, and the 

methods we used in our study. 

 

In the fifth part, we will talk about the study's results and what they mean. 

 

The study's conclusion and what will come next in future work will be in the sixth part. 
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PART 2 

 

LITERATURE REVIEW

 

An overview of the most significant approaches used in prior investigations is provided 

in this section based on deep learning for three types of analysis: static, dynamic, and 

hybrid analysis, and a comparison between the techniques used in each type in terms 

of model, accuracy, advantage, and dataset used. 

 

2.1. STATIC ANALYSIS APPROACH 

 

Malware may be analyzed using a method known as static analysis, which does not 

involve actually running the malware. The binary files of malware are turned around 

into readable format so that specialists may better comprehend the malware's intended 

behavior. Assembly codes and file header information are also retrieved as static parts. 

This form of investigation is usually a quick and simple way to examine malware 

without needing to run it.   

 

In 2011, Nataraj et al. proposed a new and entirely distinct technique for visualizing 

and analyzing malware. Malware PE (portable executable) is displayed as a binary 

image and can identify malware based on visual similarities in images belonging to 

different families by identifying substantial visual similarities in image textures [8]. 

The malicious binary was converted into an image by first converting the Portable 

Executable (PE) file into an 8-bit vector and then translating that vector into a 

grayscale image. Since every pixel in the image is made up of 8 bits, with 0 

representing black and 255 representing white, and grayscale gradients being in 

between those two values.  

 

Jin et al. presented a way to detect malware by using the Autoencoder model, one of 

the unsupervised deep learning models, by understanding the functional properties of 
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malware, and then examining the Autoencoder's reconstruction error in order to 

achieve malware classification and detection [9].  

 

The ResNeXt model is one of the CNN models used to detect malware with a dataset 

consisting of the Malimg dataset, which consists of 25 families [8]. Then add malware 

samples from the websites of VirusTotal [10], Malshare [11], and VirusShare [12]. 

The result proved that ResNeXt is better than the ResNet and InceptionNet models in 

features and performance [13].  

 

CNN's VGG19 fine-tuning is another of CNN’s models used to fit visualization images 

of malware and solve imbalanced samples in the Malimg dataset without using data 

augmentation by undersampling the dataset via defining the highest limit of malware 

files, which must belong to every category of malware [14]. 

 

Another method used to solve the dataset imbalance in the Malimg dataset and the 

overfitting problem by using a fine-tuned CNN and data augmentation, as well as using 

a color-map to convert the Malimg grayscale dataset to color, explained that the 

calculation cost was reduced and the accuracy of the results improved over previous 

studies [15].  

 

It achieved high classification performance to detect malware on the basis of a 

technique displaying malicious software in the manner of entropy graphs based on 

structural entropy and then extracting features using a combined framework consisting 

of CNN and Support Vector Machine (SVM) as classifiers [16].  

 

Both packed and unpacked malware are effectively detected by the architecture, which 

consists of CNN and multiple class SVM for classification, fine-tuned CNN with 

Softmax for classification and fine-tuned CNN with multiple class SVM for 

classification [17].  

 

Some studies used two approaches in deep learning, CNN and RNN, by making use 

of minhash to produce feature images based on the combination of the original codes 
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and the RNN's predicted codes, and then training a CNN to identify feature images to 

detect malware [18].  

 

The imbalance in the dataset is considered one of the most important problems facing 

researchers, which is the lack of evenly collected models within the dataset, which 

causes low accuracy with little data .To deal with imbalanced data problems, CNN's 

DenseNet model is implemented on four data sets(Malimg, Microsoft BIG 2015 [19], 

Malevis [20], and Malicia [21]), three are used to train the data, and the fourth is used 

for test data. [22].  

 

Anandhi et al. suggested two models: VGG-3 and DenseNet. This method visualizes 

malware as Markov images and extracts textures from Markov images using the Gabor 

filter [23]. 

 

Mai et al. offer up A decomposing deep neural network with the purpose of improving 

the malware variants detection approach, which consists of deep convolutional neural 

networks (DCNN) and Single Value Decomposition (SVD), to process the problem of 

significant computational resource consumption and time cost by splitting the pre-

trained conventional operation into two smaller convolution processes [24].  

 

They used a disassembly technique to gather executable file samples and convert them 

to bytes and asm files. In this method, visualization techniques are utilized with data 

augmentation to extract key features from the data samples, then the samples will be 

converted into three-channel RGB images, and to boost the detection method's 

performance, a model consisting of three layers was implemented: the SEResNet50 

layer, which consists of two models (ResNet50 and SENet), the Bidirectional LSTM 

layer, and the Attention layer [25].  

 

The categorization of malware is accomplished by the use of multi-channel 

visualization, and the LeNet5 model was suggested. Assembly instructions and 

malware binary bytes were used to generate a matrix using Word2Vec. The findings 

demonstrate that the approach for classifying malware has a high level of consistency 

in its correctness, and further examples of malware were found [26]. 
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To identify malicious applications, it employs machine learning and signature 

matching algorithms. It builds a random forest algorithm with the features in the 

Portable Executable file header to recognize the malware. This RF design will be 

employed to analyze a sample and determine whether or not it is harmful by utilizing 

the signature matching approach, which compares the MD5 hash of the sample to the 

database, which contains the MD5 hashes of the known malware and its families [27]. 

The drawback of this strategy is that it can be evaded by new malware. 

 

Markel and Bilzor suggested a malware detection approach for Windows PE files that 

relied on information in the PE header. The method builds the model using the 

metadata for the file. The testing findings demonstrated that the executable's metadata 

may be utilized to distinguish between goodware and malicious software. On the 

constructed feature of the portable executable header, three machine learning 

algorithms were applied; however, the Decision Tree algorithm beat the logistic 

regression and NB algorithms [28,29]. The fundamental disadvantage of the NB 

classification is that it performs poorly when the data characteristics in the training 

data are correlated [29]. 

 

Nagano and Uda suggested a malicious detection mechanism in which runtime files 

were analyzed using static analytical techniques to acquire features such as hex dumps, 

DLL imports, and assembly code. These features were employed by the paragraph 

vectors, and the KNN and SVM algorithms were based on them. The investigation 

employed 3600 malicious files and had an accuracy rate of 99% [29,30]. Simple 

obfuscation strategies, on the other hand, can circumvent the suggested methodology 

[29]. 

 

Darabian et al. proposed approach for detecting IoT malware utilizing opcode 

sequences employs 247 IoT malicious files and 269 benign apps. It has been 

effectively detecting IoT malware, benign apps, and polymorphic malware by 

integrating sequential pattern mining methods with machine learning approaches 

(SVM, KNN, MLP, Decision Tree, Random Forest, and AdaBoost) and obtaining 

higher than 99% accuracy and an F1-score [31]. The disadvantage of this strategy is 

that some obscured code is never disclosed. 
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Lu offered an innovative and efficient technique for automatically learning malware 

opcode sequence patterns First, utilized the disassembly program IDA Pro to get the 

malware's opcode sequence. The feature vector representation of the opcode is then 

learned using the word embedding approach. Finally, for malware detection, it 

suggested a two-stage LSTM model. Training was conducted on a dataset including 

969 malicious with 123 goodware software. The result proves that in the best situation, 

The suggested approach can obtain a mean AUC of 99% and a mean AUC of 98.7%. 

The study  used only the opcodes and ignored the operands, which may have shown 

other sensitive information between malicious and goodware files [32]. 

 

Sanz suggested using machine learning algorithms to categorize Android applications. 

They retrieved three distinct set of features: the frequency of printed strings, the app's 

varied permissions, and the app's permissions obtained from the Android store. They 

performed studies on 820 data from seven different families using Random Forest, 

J48, KNN, Bayesian Networks, Naive Bayes, and SVM as classifier and determined 

that Bayes TAN was the best case with an AUC of 0.93 [33,34]. The study's 

disadvantage Malicious applications were not considered [34]. 

 

Milosevic et al. presented two static analysis strategies for Android malware that use 

machine learning. The first method relies on permissions. The logistic regression 

model as a classifier achieves 82% for three metrics (precision, recall and F-score). 

The alternative method collects features about code files. Following the inversion of 

Android applications into many Java files, followed by a bag-of-words model is 

utilized to produce feature vectors using the natural language processing approach. 

The framework incorporates logistic regression, SVM with SMO, simple logistic 

regression, and AdaBoostM1 with SVM algorithms, which obtain 95.8% Precision, 

95.7% Recall, and 95.6% F1-score [34,35]. The authors' dataset in this study was tiny, 

and no tests were performed on the larger sample [34]. 

 

The most significant past research using static analysis with artificial intelligence 

approaches is outlined in Table 2.1 following. 
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Table 2.1.  A summary of static malware detection methods. 

 

Authors Model Advantage Accuracy Dataset 

Sun and 
Qian [18] 

CNN  
RNN 

high accuracy and good 
generalization 

99.5% 
Microsoft BIG 
2015 

Hemalatha 
et al. [22] 

DenseNet 

Detect new malware samples 

and effective against 

obfuscation attacks. 

98.23% 

98.46% 
98.21% 

89.48% 

Malimg 

Microsoft BIG 

2015 

Malevis 
Malicia 

Anandhi et 
al. [23] 

VGG-3  
DenseNet 

The detection, classification, 

and execution times have 

been enhanced. 

99.94% 
98.98% 

Malimg 

Microsoft BIG 

2015 

Mai et al. 

[24] 
Dec-DCNN 

Reduce the computational 

resource consumption and 

time cost of malware 

detection. 

98.5% 
Microsoft BIG 

2015 

Jian et al. 
[25] 

SEResNet50 

+ Bi-LSTM 

+ Attention 

High performance 98.31% 
Microsoft BIG 
2015 

Mitsuhashi 
and 

Shinagawa 

[14] 

VGG19 

High accuracy and solved 

the problem of sample data 
imbalance 

99.72% Malimg 

Jin et al. [9] Autoencoder 
results against redundant API 
injection 

93% 
Korea 
University 

Go et al. 

[13] 
ResNeXt 

good performance in 

malware detection 
98.8% 

Malimg, 

VirusTotal, 

Malshare, 
VirusShare 

Vasan et al. 

[15] 
CNN 

Using minimum run-time, 

identify hidden code, 

disguised malware, and 
malware family variations 

98.82% 

97.35% 

Malimg 

IoT-Android 

Xiao et al. 
[16] 

CNN -SVM 

Entropy 

graphs 

resistant to the effects of data 

imbalance and obfuscation 

techniques 

99.7% 
100% 

Malimg 

Microsoft BIG 

2015 

Vasan et al. 

[17] 

CNN -SVM 

 

flexible, practical, and 
efficient by detecting new 

malware in 1.18 s 

99% 

98% 

Malimg 

Virusshare  

Qiao et al. 
[26] 

LeNet5 
High, stable accuracy and 
classifies new malware. 

98.76% 
Microsoft BIG 
2015 

Acharya et 

al. [27] 
RF 

identify malware that has 

been altered or polished by 
the hackers. 

99% 
MD5 hashes 

dataset 

Markel and 

Bilzor [28] 

DT 
LR 

NB 

The implementation of the 

NB prediction model is 
simple and straightforward. 

It can do effectively with 

irrelevant datasets. 

97% 

94.5% 

122799 
Malware 

42003 Benign 
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Nagano and 

Uda [30] 

SVM 

k-NN 

KNN is incredibly easy to 

implement and can be 

upgraded for very little cost 
as new samples with 

established class labels. 

99% 

MWS 2016 

Malware 
Dataset 

Darabian et 

al. [31] 

SVM - KNN 
MLP - DT 

RF 

AdaBoost 

Identifying polymorphic 

Internet of Things malicious 

files. 

99% VirusTotal 

Lu [32] LSTM 

efficacy of the suggested 
opcode approach for 

identifying and classifying 

malware. 

99% 
Opcode 

dataset 

Sanz [33] 
RF - KNN 

BN - SVM 

The suggested approach 
allows for quick 

categorization of benign 

applications. 

93% 

Collected by 

the 
researchers 

Milosevic et 

al. [35] 

 

SVM -SMO 

+ LR + 

Simple LR + 
AdaBoostM1 

+ SVM  

Good efficiency may be 
attained by using the 

ensemble learning approach. 

95.8% 
95.7% 

95.6% 

Collected by 

the researchers 

 

2.2. DYNAMIC ANALYSIS APPROACH 

 

The malicious functions are discovered via dynamic analysis while the program is 

operating. It digs deep into malware's code obfuscations, which static analysis may 

find difficult to grasp, and explores true functionality behind them. This method of 

malware analysis is always considered as the most efficient. Furthermore, the dynamic 

approach necessitates a closed and isolated setting with sufficient monitoring. 

 

User programs in Windows need interfaces like kernel32.dll and user32.dll to 

communicate with the operating system and its hardware and software parts. These 

interfaces are provided by dynamic link libraries (DLL). Figure 2.1 shows how calls 

to the Windows API can be made. The Win32 API is the name of this interface. For 

instance, when a user application needs the Win32 API method for reading a file, the 

operation immediately goes to the NtReadFile procedure in the ntdll.dll kernel case. 

The NtReadFile function then calls the kernel mode service method. The best way to 

keep an eye on a program is to actively keep track of its API calls. The functionality 

of APIs cannot be classified as either dangerous or goodware. In other words, the 

malware exploits standard API calls to commit illegal actions. Both harmful and 
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benign files have access to the same API. Only by analyzing the context of a series of 

API requests can malicious and benign activities be distinguished [36]. 

 

 

 

Figure 2.1. Windows API call mechanism [36]. 

 

A new dataset that portrays the behavior of malicious software and is offered by Catak 

et al. includes API calls that were executed on the Windows operating system. A 

method of categorization that is based on the different types of malwares was 

developed. In this particular piece of work, the LSTM classification technique was 

used; it is an approach to classification that is employed commonly when working with 

sequential data [37].  

 

The cuckoo sandbox was used to retrieve the malware's API call sequence. After 

applying certain filters and doing some sorting, the repeated API calls were removed 

down to the distinct API sequences. The sequence was vectorized using the word2vec 

approach, and 21,378 samples from the Virus Share website were used as test datasets. 

On the massive dataset, BLSTM was shown to have the best malware detection 

performance when compared to GRU, BGRU, LSTM, and Simple RNN [38]. 

There are several ways to combine the LSTM model with other machine learning 

techniques, such as the Random Forest method, which uses API statistics as well, in 

order to design a system architecture that is a good alternative method. This 
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architecture can be designed by combining two algorithms. The malicious samples 

were chosen at random from VirusShare and VirusTotal, and the sequence data 

preparation method was explored in order to eliminate redundant data. Experiments 

demonstrate that the combined classifier outperforms machine learning or deep 

learning on its own [39]. 

 

The Malbert model suggested by Xu et al. [40] is a dynamic analysis-based deep 

learning model for identifying malicious Windows apps. The experiments made use 

of the Ki dataset [41] , which had a total of 44262 samples, whilst the Catak dataset 

[42] , which contained a total of 7207 samples, was used for the second dataset. The 

results demonstrated that the model outperformed previous models in detecting 

anomalies in perturbed test data. 

 

To discover previously unidentified malware, researchers have developed a 

multimodal deep learning system made up of an autoencoder layer in the first place, 

numerous layers of Restricted Boltzmann Machines (RBM), and an associative 

memory layer. Each prediction for the detection of unidentified dangerous software 

takes 0.1 seconds [43].  

 

Jindal et al. developed a neural network for malware detection that learns 

spontaneously from dynamic analysis reports that describe behavioral information 

rather than relying on feature engineering. The model is based on document 

classification principles and uses word sequences in reports to determine whether or 

not a report is from a malicious binary. The result is better than the previous works in 

terms of performance and can be used effectively [44].  

 

In the IoT environment, A new deep learning malicious program identification system 

relying on behavior was built. Combining behaviors with the Stack Autoencoder 

yielded the greatest detection results. The model can acquire deeper abstract semantic 

features and improve detection precision by 1.5 percent on average, according to the 

results of the experiments [45]. 
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A new method for detecting malware was proposed by Deep Graph of CNN during 

the conversion of API call sequences extracted from Cuckoo sandbox environments to 

behavior graphs. The experiment was applied to a dataset of more than 40,000 malware 

programs. The results showed the possibility of detecting malware through graphs 

converted from API calls [46]. 

 

Tang and Qian presented a deep learning and visualization strategy by extracting API 

calls based on dynamic way, after that producing important images feature that reflect 

virus behavior using color mapping algorithms. Finally, CNN is utilized to categorize 

the feature images. The result shows that visualization and CNN are efficient for 

malware categorization [47].  

 

An API call-based deep learning framework was utilized to detect and categorize 

malware. LSTM and GRU recurrent neural networks were used to build the model. 

When the two architectures are compared, LSTM outperforms GRU. According to the 

test results, the model using the LSTM structure has an accuracy rate of 97.3 percent 

in binary classification and 56.05 percent in multiple-class classification [48]. 

 

The most important findings from previous research that combined dynamic analysis 

with deep learning methods are summarized in the table that follows (Table 2.2). 

 

2.3. HYBRID ANALYSIS APPROACH 

 

The benefits of a static approach and a dynamic approach are integrated in this method 

so that the best of both worlds may be achieved.  

 

Huang et al. developed a method for merging static and dynamic images using two 

VGG-16 network models, the first for hybrid images and the second for static 

visualization with the dataset from virussign.com [49]. 
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Table 2.2. A summary of dynamic malware detection methods. 

 

Authors Model Advantage Accuracy Dataset 

Xiaofeng et 

al. [39] 
LSTM – RF 

Combined classifier 

outperforms machine 

learning or deep learning on 
its own. 

95.7% 
Virus Share 

Virus Total 

Liu and 

Wang [38] 

GRU, BGRU 

LSTM, BLSTM 
Simple RNN 

BLSTM increases model 
performance for sequence 

classification problems 

more than other models. 

93.70% 

93.72% 

97.55% 
97.85% 

95.70% 

Virus Share 

Catak et al. 

[37] 
LSTM High level of accuracy 98.50% API call dataset 

Xu et al. [40] 
Encoders + 

Attention layer 

On altered test samples, it 

has a high detection rate 

and surpasses previous 

models. 

99.98% 

99.82% 

Ki dataset 

Catak et al. 
 

Ye et al. [43] 
Autoencoder 

RBMs 

detect newly unknown 

malware 
98.20% 

Comodo Cloud 

Security Center 

Jindal et al. 

[44] 

CNN-LSTM-

Attention 

outperforms similar 

approaches for malware 

classification 

87% 

86.7% 

Vendor Dataset 

Ember Dataset 

Xiao et al. 
[45] 

Autoencoder -ML 

Learn deeper features and 

enhance detection precision 

by 1.5 % on average. 

98% VX Heaven 

Oliveira et al. 

[46] 
LSTM 

Malware detection using 
graphs generated from API 

calls 

99% API call dataset 

Tang and 
Qian [47] 

CNN 

For malware categorization, 

visualization with color 
images and CNN are 

efficient. 

98%-99% Virus Share 

Aditya et al. 
[48] 

LSTM-Adam 

LSTM-RMSProp 
GRU-Adam 

GRU-RMSProp 

The best binary 

classification model is 
achieved using LSTM and 

the RMSProp 

96.44% 

97.30% 
96.44% 

96.62% 

Catak dataset 

Andrade et al. 
[50] 

 

An efficient system is used that consists of static analysis, dynamic analysis, and image 

processing approaches relied on CNN as well as LSTM for detecting and classifying 

zero-day malware with two datasets, dataset1 is Malimg [8]  and dataset 2 was 

collected from VirusSign [51] and VirusShare [12] , the results proved that BLSTM 

has the best performance [52]. 

 

A hybrid malware detection system was built by coupling a Bidirectional LSTM with 

a Spatial Pyramid Pooling Network (SPP-Net). The goal of this system was to secure 
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Internet of Things equipment and decrease the effect of malware using obfuscation 

techniques, It detects encrypted malware by doing simultaneous static and dynamic 

analyses, which is hard to achieve with static analysis alone and the Shannon entropy 

is used to detect obfuscated malware [53]. 

 

Researchers simplified both the static and dynamic analysis of crypto mining 

malicious files by using several methodologies from deep learning. They employed 

LSTM, Attention-based LSTM, and CNN to examine the opcodes of crypto mining 

malicious files, and as a result, they identified a high degree of accuracy with a low 

percentage of false – positive. The Cuckoo sandbox was used to run the malware in 

order to record system call event sequences for the dynamic analysis [54]. 

 

In a smart city environment, offer a two-stage hybrid malware detection approach for 

protecting IoT devices against obfuscated malware. After completing static analysis, 

the opcode is extracted, and benign files are recognized using the learnt knowledge 

using a Bi-LSTM. The files designated as benign are then subjected to a dynamic 

analysis in a layered virtual environment. Malware may be discovered using the 

EfficientNet-B3 model after extracting information on behavior and process memory 

from the behavior log [55].  

 

To offer a new Android malware classification technique based on deep neural 

network (DNN), extracted static and dynamic information, then translated it into 

vector-based representations, after that, the dynamic information is transformed into 

graph-based forms, and graph kernels are used on the collections of graphs that have 

been created. hierarchical Multiple Kernel Learning, often known as MKL, is used as 

a hybrid classifier to combine a number of different vector and graph feature sets [56]. 

 

Table 2.3 summarizes the most significant results from prior studies that integrated 

hybrid analysis with deep learning approaches. 
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Table 2.3. A summary of hybrid malware detection methods. 

 

Authors Model Advantage Accuracy Dataset 

Huang et al. 

[49] 
VGG-16 

Detection of unknown 

malware effectiveness 
94.70% Virussign 

Vinayakumar 

et al. [52] 
CNN - LSTM 

detecting and classifying 

zero-day malware 
96.3% 

Malimg 

Virussign 
Virusshare 

Jeon et al. 

[53] 

BiLSTM  

SPP-Net 

Detect and classify IoT 

malware 

92.5% 

92.09% 

Korea Internet 

& Security 

Agency 
(KISA) 

Darabian et 

al. [54] 

LSTM, ATT-

LSTM, CNN 

Detect crypto mining 

malware 

95% 

99% 
Virustotal.com 

Baek et al. 

[55] 

BiLSTM, 

EfficientNet 
B3 

Safeguard IoT devices 

against obfuscated 
malware in a smart city. 

94.46% 

94.98% 

Korea Internet 
& Security 

Agency 

(KISA) 

Xu et al. [56] DNN 
Detect malware for 

android. 
94.7% 

Google Play, 

VirusShare 
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PART 3 

 

THEORETICAL BACKGROUND 

 

The purpose of this section is to offer a description of the different deep learning 

approaches that were used in our research to identify and classify malware. 

 

3.1. CONVOLUTIONAL NEURAL NETWORK 

 

When it comes to deep learning methods for identifying and categorizing malicious 

software, Convolutional Neural Network (CNN) have become one of the most well-

known and widely used techniques. As indicated in Figure 3.1, The basic components 

that make up a CNN are known as the convolution layers, the pooling layers, and the 

fully connected layers. While using kernels in the convolution layers, each kernel is 

convolved throughout the input's spatial dimensions to generate an activation map in 

two dimensions. The pooling layers will down sample the input dimension, thereby 

decreasing the number of parameters within that activation. The next step involves the 

fully connected layers making an effort to generate a class that can be applied to the 

data [57]. 

 

 

 

Figure 3.1. Basic CNN Architecture 

Input image 
Convolutional 

layers 

Pooling 

layers 

Flattening 

Fully Connected layers 
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3.1.1 Convolutional Layers 

 

Convolutional layer is the major component that goes into the building of a CNN. It 

includes several filters or kernels, whose parameters must be learned as part of the 

training procedure. In most instances, the dimensions of the filter will be more 

diminutive than those of the image. To generate an activation map, each filter 

convolves the input image. In convolution, we iteratively move the kernel across the 

vertical and horizontal distance of the image, calculate the cross product between 

every kernel value, and identifying the input for every location [58]. Figure 3.2 offers 

a visual representation of the procedure that is known as convolution. 

 

 

 

Figure 3.2. Convolutional layer process [58]. 

 

3.1.2. Pooling Layers 

 

To do pooling, just move a 2-dim kerel over every channel for the feature map, and 

any features that lie within the kernel's coverage region will be added together to form 

the final feature set. Pooling layers is one way to cut down on the overall size of the 

feature maps. As a consequence of this, it reduces the amount of load that is imposed 

on the network as well as the quantity of parameters that need to be learned. The 

convolution layer's output, the feature map, is used as the basis for the pooling layer's 

creation of a summarization of the features found in a specific region of the map. 

Examples of pooling layers include Max pooling, which gets the greatest value in 

every kernel region part of the feature map. To do this, a max-pooling layer would 

create a feature map made up of the most important parts of the feature map that was 

given as input [59]. Example of the Max Pooling procedure is shown in Figure 3.3. 
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Figure 3.3. Max pooling operation [59]. 

 

3.1.3. Fully Connected Layers (FC) 

 

Linking the final feature maps, which are produced by the last convolution layer or 

pooling layer, with a great number of layers that are entirely connected is a popular 

method. Dense layers are often used to describe these layers, in addition, it is common 

practice to guarantee that every input is related to every output by a weight that may 

be trained. Finally, a series of fully connected layers transforms the features discovered 

by the layers of convolution and pooling into the final outputs of the network, which 

include possibilities for categorization. [60]. Figure 3.4 shows layers that are fully 

connected to one another. 

 

 

 

Figure 3.4. Fully connected layers. 
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3.1.4. Activation Functions  

 

The activation function may behave as either a terminal or an intermediate node in 

neural networks. They play a role in deciding whether the neuron will fire. Rectified 

Linear Units are an example of a typical kind of activation function that may be found 

(ReLU). The fact that ReLU does not activate all neurons simultaneously is one of its 

major advantages over other activation mechanisms. ReLU function transforms all 

negative inputs to zero, preventing neuron activation. Few neurons are stimulated at a 

time, resulting in an extremely efficient use of computing resources [61]. 

 

3.1.5. Batch Size 

 

The "batch size" hyperparameter specifies the number of samples that must be handled 

before the inner parameters of the model may be updated. Batches could be regarded 

as a for loop that predicts again and over again based on a collection of data from 

samples. By comparing the actual output variables with the projected ones, an error 

may be calculated after the batch has finished processing. These errors are taken into 

consideration by the update approach so that the model may be improved [62]. 

 

3.1.6. Epoch 

 

For each iteration of the learning process, the number of times it will examine the 

whole training dataset is controlled by a hyperparameter called epochs. Every epoch 

has provided a chance for every training dataset to influence the inner parameters of 

the model. Numerous batches make up the epoch [62]. 

 

3.1.7. Loss Function  

 

The loss function is the measure that establishes the degree to which the real output 

produced by the algorithm differs from the result that was expected by the approach. 

It is a technique for determining how well your algorithm mimics the data. It is possible 

to separate it into two distinct categories. One for classification (using discrete values 

such as 0, 1, 2, etc.), and the other for regression (continuous values) [63]. 
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3.1.8. Dropout Learning 

 

One of the strategies that is used in order to prevent memorization is known as 

Dropout. During the training phase of this approach, the activation of a number of 

neurons within the network is chosen at random and assigned the value zero. Each 

iteration of the training results in a different set of selected neurons. By using this 

strategy, the process of learning and the chance of overfitting are both slowed down 

[54,55]. 

 

3.2. CNN MODELS 

 

This is the explanation and architecture of three common models of CNN implemented 

in this study. 

 

3.2.1. VGG16 

 

In 2014, Oxford University researchers Karen Simonyan and Andrew Zisserman [64] 

conceived of the VGG based on the architecture of a CNN. The model was entered 

into the 2014 Large Scale Visual Recognition Challenge (ILSVRC2014), where it got 

a score of 92.7 percent on the ImageNet dataset and a top-five test accuracy rating. As 

shown in Figure 3.5, there are sixteen weighted layers, thus the number "16" in 

VGG16. Even though VGG16 has a total of 21 layers (13-layer of convolution , 5-

layer of max pooling , and 3-layer of dense ), it only has sixteen weighted layers [65]. 

 

 

 

Figure 3.5. VGG16 layers [66]. 
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The 1st and 2nd convolution layers each include 64 kernel filters that make them up, 

and the shape of each kernel is 3x3. When the image (3-channel) is processed through 

the 1st and 2nd convolution layers, its dimensions become 224,224,64. After that, a 

max pooling layer receives the outcome with two strides. 

 

The 3rd and 4th convolution layers are consisting of 128 kernels, with the shape of 

3x3. A layer of max pooling with two strides follows these two convolution layers, 

and after that the output is lowered to 56,56,128. 

 

The 5th, 6th, and 7th layers are convolution with a filter shape of 3x3 using a 256-

kernel. When they are complete, a max pooling layer that uses two strides will be 

added. 

 

The 8th–13th layers are groups of convolution layers with a kernel shape of 3x3. These 

groups of layers of convolution use 512 kernels. A layer of max pooling with one stride 

follows these two convolution layers. 

 

Both the 14th and 15th layers are hidden layers with 4096 units each, while the 16th 

layer is an output layer using SoftMax with 1000 units [67]. See Figure 3.6 for a 

schematic of the components that make up the VGG16 model. 

 

 

 

Figure 3.6. VGG16 architecture [66]. 
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3.2.2. ResNet50 

 

Residual Network was the winner of the ILSVRC [68] in 2015, which is a yearly 

competition in which software is judged on its ability to accurately identify and 

recognize objects. Kaiming He [69] is the inventor of ResNet to build ultra-deep 

networks that did not suffer from the vanishing gradient issue that plagued previous 

generations by creating shortcut pathways between layers. The identity connection 

between the layers is the sole addition that must be made to the basic network to 

transform it into a residual network. The remnant block that was utilized in the network 

is shown in the Figure 3.7. You can recognize the link to the identity by the curving 

arrow that starts at the input and travels all the way to the bottom of the residual block.  

 

 

 

Figure 3.7. Skip connection [69]. 

 

The size of the image in this architecture that is sent in is 224x244 with 3 channels and 

started with the kernel of the convolution layer is 7x7x64 with a stride of 2 and 

following that will be max pooling using 2-step strides. After that, we have 4 stages of 

convolutional layers, as illustrated in Figure 3.8. The identity link is shown by the 

curving arrows in the diagram. The convolution process that takes place in the residual 

block makes use of two strides, as can be seen from dotted arrows. 

 

Stage 1's convolution layers consist of a 1x1x64 kernel, a 3x3x64 kernel, and a 

1x1x256 kernel. With three repetitions of these three layers, we now have nine total 

layers. The second stage of convolution layers consists of the following kernel sizes: 

(1x1x128), (3x3x128), and (1x1x512). This process of layering was performed four 
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times, for a total of 12 layers. The third stage is made up of a 1x1x256 kernel and two 

more kernels that are 3x3x256 and 1x1x1024. For the fourth stage, we used a kernel 

of 1x1x512, followed by 3 x3x512, and 1x1x2048, for a grand total of 9 layers. 

Following that, a global average pooling is performed, and at the end of the model, we 

are left with a fully connected layer that has a total of one thousand neurons [70]. 

 

 

 

Figure 3.8. Resnet50 architecture. 

 

Conv 1x1, 64, Conv 3x3, 64, Conv 1x1, 256 

Conv 1x1, 64, Conv 3x3, 64, Conv 1x1, 256 

Conv 1x1, 64, Conv 3x3, 64, Conv 1x1, 256 

Conv 1x1, 128, Conv 3x3, 128, Conv 1x1, 512 

Conv 1x1, 128, Conv 3x3, 128, Conv 1x1, 512 

Conv 1x1, 128, Conv 3x3, 128, Conv 1x1, 512 

Conv 1x1, 128, Conv 3x3, 128, Conv 1x1, 512 

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024 

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024 

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024 

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024 

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024 

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024 

Conv 1x1, 512, Conv 3x3, 512, Conv 1x1, 2048 

Conv 1x1, 512, Conv 3x3, 512, Conv 1x1, 2048 

Conv 1x1, 512, Conv 3x3, 512, Conv 1x1, 2048 

Max pooling 3x3, stride 2 

 

Conv 7x7, 64, stride 2 

Global Avg pooling 7x7 

Fully connected, 1000 

Input (244,224,3) 
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3.2.3. Inception V3  

 

The design of this model (3rd version) was released in the year 2015 [71].This version 

of the model consists of 42 layers and has a lower error rate than the previous two 

versions. In this type of version of Inception 3, there were a lot of important changes 

to increase the performance of the model, and these changes can be seen in the 

switching from larger to smaller convolutions, an asymmetrical convolution, an 

auxiliary classifier, and efficient scaling down of grid sizes. The Inception V1 model's 

considerable decrease in dimensions was one of its greatest assets and one of its most 

beneficial aspects. In Inception V3, the model's performance was increased by 

partitioning the larger convolutions into a collection of smaller convolutions. The 

factorization into smaller convolutions is shown in Figures 3.9, 3.10. 

 

   

 

Figure 3.9.  5×5 conv layer(left) was replaced by two 3×3 conv layers(right) [71]. 

 

 

 

Figure 3.10. One 5x5 conv layer replaced two 3x3 conv layers [71]. 
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The decrease in the total number of parameters leads to a drop in the total amount of 

computing effort required. The reduction of bigger convolutions by replacing them 

with smaller convolutions led to a gain of 28 percent as a consequence of this 

factorization. They were able to do this by performing a 1x3 convolutional operation 

first, followed by a 3x1 convolution in place of the conventional 3x3 convolutions. 

When considering the same shape of output and input filters, the two-layer technique 

is 33 percent more cost-effective. Figure 3.11 shows the factorization in the Inception 

module. 

 

 

 

Figure 3.11. Asymmetric factorization in the Inception module [71]. 

 

Auxiliary classifiers are often utilized because they make it easier for very deep neural 

networks to converge. When dealing with very deep networks, the primary function of 

the auxiliary classifier is to overcome the issue of vanishing gradients. Early on in the 

training, the auxiliary classifiers did not contribute to any progress. At the conclusion, 

however, the network with auxiliary classifiers demonstrated more accuracy than the 

network without auxiliary classifiers. Thus, the auxiliary classifiers in the Inception 

V3 model architecture work as a regularizer. The auxiliary classifiers are explained in 

Figure 3.12. 
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Figure 3.12. The Auxiliary classifier works as a regularization [71]. 

 

Typically, max pooling and average pooling were employed to lower the feature map 

grid size. As part of the Inception V3 model, the activation dimensionality for the 

network kernels has been expanded to help efficiently reduce the grid size. And this is 

accomplished by concatenating two parallel blocks of convolution and pooling [72], 

as shown in Figure 3.13. 

 

 

 

Figure 3.13. A Detail structure for efficient grid size reduction [71]. 
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Following all optimizations, the final Inception V3 structure appears in Figure 3.14. 

 

 

 

Figure 3.14. Google Inception v3 architecture [73]. 

 

3.3. RECURRENT NEURAL NETWORKS (RNN) 

 

A recurrent neural network, often known as an RNN, is an artificial neural network 

that can analyze sequential input, detecting patterns, and predicting the final outcome. 

This neural network is referred to as "recurrent" because it can repeatedly execute the 

same task or operation on a set of inputs. An RNN has an internal memory that allows 

it to memorize information from the input it receives, which assists in context 

acquisition for the system. As a result, a recurrent neural network is an excellent choice 

for the handling of sequential data, for example, a time series. 

 

The short-term memory of RNN is a concern because it will have difficulty sending 

information from earlier time phases to later time phases if the sequence is lengthy. 

When attempting to make a prediction, RNN may leave out essential information in 

the beginning. LSTM and GRU are two technologies that were created as a means of 

improving short-term memory, which include gateways that control the flow of data. 
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3.3.1. Long Short-Term Memory (LSTM) 

 

Hochreiter and Schmidhuber were the ones that came up with the idea for LSTM first 

[74]. In the field of deep learning, one sophisticated version of RNN architecture 

known as long short-term memory (LSTM) is used. LSTM, in contrast to the more 

prevalent feed-forward in common neural networks, may also process information 

through its feedback connections. In addition to being able to process data streams 

such as audio, it can also handle visual information. LSTM is employed for a variety 

of tasks including handwriting recognition [75], voice recognition [76] and anomaly 

detection. An input gate, an output gate, and a forget gate make up each cell in a typical 

LSTM unit, as shown in Figure 3.15. It is up to the forget gate to decide which data 

has to be carefully considered and which may be safely discarded. With the aid of the 

input gate, it is possible to gauge the importance of the fresh data given by the input. 

The value of the following hidden state is set by the output gate [77]. The flow of data 

inside and outside of the cell is controlled by the cell's three gates, and the cell is able 

to retain information for extended periods of time. LSTM is ideal to categorizing and 

making expectations relied on time series information since major events in a time 

series may have unforeseen delays. LSTM was developed to address the issue of 

vanishing gradients that may arise when using normal RNN for training. 

 

 

 

Figure 3.15. Structure of LSTM 
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3.2.2. Gated Recurring Units (GRU) 

 

The GRU is a more recent form of recurrent neural network that mimics an LSTM in 

its work, introduced in 2014 by Kyunghyun Cho et al. [78]. It is composed of two 

gates, one of which serves as a reset gate, whereas the other is an update gate. Each 

gate performs a different function. The GRU's update gate performs the same function 

as the forget gate as well as the input gate in the LSTM model. It makes decisions on 

what data should be thrown away and what data should be kept, whereas it was decided 

how much of the previous data should be erased using the reset gate mechanism. The 

GRU will not take into consideration the cell state that made use of the concealed state 

to transmit data. The structure of the GRU is shown in Figure 3.16. 

 

GRU has short parameters in training since it has two gates (reset and update), 

indicating that it uses less memory, executes quicker, and learns faster than LSTM, 

even though LSTM is more accurate on datasets with longer sequences. 

 

 

 

Figure 3.16. Structure of Gated Recurring Units (GRU) 

 

 

rt zt 

ht 

xt 

ht-1 

tanh σ σ 

1- 

~ht 



34 

 

PART 4 

 

METHODOLOGY 

 

4.1. DATA COLLECTION 

 

The virusshare website [12], which is a store of malware samples for researchers 

working in the field of information security, was used to gather 7513 malicious 

Portable Executable (PE) files from 29 families for this investigation. We gather 

malware families by generating queries based on the Microsoft Malware Protection 

for labeling malware. As can be seen in Figure 4.1, which depicts the query that was 

used during the search for AKO family names that belong to the ransomware, which 

is a type of malware after 1-3-2022 in date. While 1000 of the EXE benign files were 

collected from the site [79], so that the classifications became 30 categories as shown 

in Table 4.1. We gathered data over the course of a month, and the primary purpose of 

this data gathering was to build two datasets, one by converting samples to images and 

the other by extracting API call sequences for each sample, to finally categorize 

malware families and benign applications using deep learning techniques. 

 

 

 

Figure 4.1. A Screenshot of the website for VirusShare.com. 
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Table 4.1. Malware families and types. 

 

No. Family Type samples 

1  Benign  Benign 1000 

2  Ako Ransomware 260 

3  Autorun.NE Virus 249 

4  Banker.LY TrojanSpy 260 

5  Delf.DU  Backdoor 260 

6  Drolnux.B  Worm 259 

7  Eggnog.A  Worm 300 

8  GandCrab.AE  Ransomware 220 

9  Ganelp.E  Worm 260 

10  Linkury.RS!MTB  Adware 244 

11  Neconyd.A  Trojan 259 

12  Nemucod  TrojanDownloader 260 

13  Neojit.A  TrojanDownloader 300 

14  OpenInstaller  PUA 260 

15  Playtech  PUA 260 

16  QQPass.GP  PWS 260 

17  Qukart  TrojanSpy 260 

18  Resur.A!epo  Virus 258 

19  Shodi.A  Virus 220 

20  Simda.D  PWS 159 

21  Sivis.A  Virus 260 

22  Small.M  TrojanSpy 260 

23  Soltern!rfn  Worm 260 

24  Trickbot.GML!MTB  Trojan 300 

25  Unruy.F  TrojanDownloader 260 

26  Upatre.A  TrojanDownloader 300 

27  Urelas.AA  Trojan 260 

28  Wabot.A  Backdoor 260 

29  Yoof.E  Worm 289 

30  Zombie!rfn  Trojan 256 

 

During the course of this research, 8,513 malicious and benign samples were gathered 

and distributed among 30 different classes of samples. The statistical chart in Figure 

4.2 illustrates the distribution of these samples. 
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Figure 4.2. The distribution of malware samples collected. 

 

4.1.1. Malware Images Dataset (First Dataset) 

 

The method that was described by Nataraj et al. [8] was used to convert each sample 

that was collected (malware and benign) to grayscale images to create the first dataset. 

Figure 4.3, which depicts the process of translating data from one format into another, 

shows that the binary sample was first transformed into an 8-bit vector. This step of 

the process was necessary before moving on to the next step of the process. The 8-bit 

vector was then converted into an image when that was completed.  

 

 

 

Figure 4.3. Method for converting malware to an image 
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However, relying on the image's size, the height of the image may vary, although the 

width of the image will still stay constant, as shown in Table 4.2. Since every pixel in 

the image is made up of 8 bits, the final image is made up of integers ranging from 0 

to 255. This is since 0 symbolizes black and 255 represents white, with gray scale 

gradients being in between (0-255). The ability to distinguish between the various 

components of a binary is the primary advantage of seeing a malicious executable in 

the form of an image. Figure 4.4 displays several examples of malware images, and 

we observe the similar appearance that exists between the visuals of different models 

that come from the same family. 

 

     

 

(a) Ako 

 

   

 

(b) Autorun.NE 
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(c) Delf.DU 

 

   

 

(d) Zombie!rfn 

 

     

 

(e) Sivis.A 

 

Figure 4.4. Malware image samples belong to various families. 
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Table 4.2. Width of an image for different file sizes. 

 

File Size Range Image Width 

<10 kB 32 

10 kB – 30 kB 64 

30 kB – 60 kB 128 

60 kB – 100 kB 256 

100 kB – 200 kB 384 

200 kB – 500 kB 512 

500 kB – 1000 kB 768 

>1000 kB 1024 

 

 

4.1.2. API Call Sequences Dataset (Second Dataset) 

 

Using the Pefile module, A Python library called Pefile makes it easier to read and 

deal with portable executable files, the first 50 API call sequences were taken ("none" 

API call was ignored) from each sample to create the second dataset. Using 50 API 

call sequences for each malware to increase the reading speed for API call sequences 

to detect malicious software in the shortest amount of time. If a sample's API call 

sequence is less than 50, we added 0 to complete the 50 sequences. Examples of API 

call sequences extracted from malware samples are shown in Table 4.3. 

 

Table 4.3. Examples of API call sequences taken from malware samples. 

 

API call sequences class 

LoadLibraryA, GetProcAddress, 

ExitProcess,RegOpenKeyA, ShellExecuteA, 

ShowWindow, InternetOpenA, gethostbyname 

Ako 

(Ransomware) 

LoadLibraryA, GetProcAddress, VirtualProtect, 

VirtualAlloc, VirtualFree, ExitProcess, 

InitCommonControls, memset, CoInitialize, 

ShellExecuteExA, MessageBoxA 

Sivis.A 

(Virus) 

LoadLibraryA, GetProcAddress, ExitProcess, 

RegOpenKeyA, SysFreeString, CharNextA 

Yoof.E 

(Worm) 
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Then we made indexes for all the unique API calls for all samples, and each one was 

given a unique id number. The names of API calls were then replaced by the unique 

numbers of each sample, equal to its index, and saved to a CSV file at the end. This 

CSV file dataset has a sha256 hash for all files, a class indicating whether the sample 

contained one of the malware family or benign, a class number containing numbers 

(0–29) for all classes, and 50 API calls. So, we have two datasets that belong to the 

same sample in different ways [80]. Table 4.4 displays the API index numbers, which 

range from 1 to 484 in this data collection. 

 

Table 4.4. API's index numbers. 

 

GetDiskFreeSpaceW=1 

UpdateResourceA=2 

SetLastError=3 

FreeEnvironmentStringsA=4 

DestroyCaret=5 

GetActiveWindow=6 

_ismbblead=7 

MessageBoxW=8 

FindNextFileW=9 

_iob=10 

GetSystemWindowsDirectoryW=11 

ScaleViewportExtEx=12 

CloseHandle=13 

RegSetValueExW=14 

GetSystemMetrics=15 

WaitForSingleObject=16 

MessageBoxA=17 

SizeofResource=18 

VirtualProtect=19 

GetCurrentProcessId=20 

: 

GetWindowTextW=484 
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4.2. PROPOSED METHOD 

 

In this research, we utilize a methodology that is relied on selecting the three models 

that are the most effective for real-time detection and classification based on accuracy. 

Additionally, the computational efficiency of a model is measured by how few 

parameters it generates and how little it costs to run simulations (memory and also 

other resources). 

 

4.2.1. CNN Models with Malware Images Dataset 

 

In the first dataset, which is made up of images of both malicious and good software, 

we will be doing experiments on the custom CNN model we created and three of the 

common pretrained network models of CNN, which are (VGG16, Inception V3, and 

Resnet50) to do training and testing and make comparisons between them. 

 

In our model, Initially, images were reformatted, including re-sizing the images to 150 

x 150 pixels, and normalization was done. The dataset was split so that 80% was used 

for training, 10% was used for testing, and 10% for validation. The data was also 

shuffled to improve accuracy. 

 

The suggested model has three layers of convolution—64, 3x3, 128, 3x3, and 256, 

3x3—with a Relu activation function to execute non-linear transformations. 

Additionally, the model contains six layers of Max pooling, as can be seen in Figure 

4.5. (2x2 with stride 2). After that comes a layer that is fully connected and has 256 

neurons, and then after that comes an output layer that has 30 different classes. In order 

to prevent overfitting, the dropout was placed after each Max pooling layer as well as 

after a layer that was fully connected. Adam was used as the optimizer for this model, 

while Sparse Category Crossentropy was utilized as the loss function [80]. Table 4.5 

contains a summary that may be seen in its entirety for the CNN model. 

 

In this study, there will also be tests on VGG16, Inception V3, and Resnet50 with the 

first dataset (malware images), which are three of the most popular CNN-pretrained 

network models. Before going through these models, the images are resized to 224 by 
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224 pixels so that they can be processed properly because these models were designed 

and worked with this size. Because our dataset only includes grayscale images for the 

samples in the first dataset, and because these models were meant to work with color 

images (three channels), we had to add a convolutional layer with a 3x3 kernel and an 

input size of 224x224x1 to make these models work with grayscale images correctly. 

 

 

 

Figure 4.5. Our CNN architecture with the first dataset. 
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Table 4.5. Summary of the CNN model with the first dataset. 

 

Layer  Output Shape Parameters 

Conv2D (None, 150, 150, 64) 640 

MaxPooling2D (None, 75, 75, 64) 0 

Dropout (None, 75, 75, 64) 0 

MaxPooling2D (None, 37, 37, 64) 0 

Dropout (None, 37, 37, 64) 0 

Conv2D (None, 37, 37, 128) 73856 

MaxPooling2D (None, 18, 18, 128) 0 

Dropout (None, 18, 18, 128) 0 

MaxPooling2D (None, 9, 9, 128) 0 

Dropout (None, 9, 9, 128) 0 

Conv2D (None, 9, 9, 256) 295168 

MaxPooling2D (None, 4, 4, 256) 0 

Dropout (None, 4, 4, 256) 0 

MaxPooling2D (None, 2, 2, 256) 0 

Dropout (None, 2, 2, 256) 0 

Flatten (None, 1024) 0 

Dense (None, 256) 262400 

Dropout (None, 256) 0 

Dense (None, 30) 7710 

Total params: 639,774 

Trainable params: 639,774 

Non-trainable params: 0 

 

4.2.2. RNN Models with API Call Sequences Dataset 

 

In the second dataset, which consists of API call sequences, we use two RNN 

algorithms: LSTM and GRU. In the LSTM model, we divide the data into 70% training 

data, 15% testing data, and 15% validation data. The model consists of an embedding 

layer, a 64-cell long short-term memory (LSTM) layer with a linear activation 

function, and a dense layer using a SoftMax classifier for multiple classes. This model 

employed SpatialDropout1D to prevent dropout [80]. Summarized results from the 

LSTM model applied to the second dataset are shown in Table 4.6.   

 

For the GRU model, we allocate the same portion of the dataset as in the LSTM model 

for training, testing, and validation. We used an embedding layer, a GRU layer with 

64 cells and a linear activation function, and a dense layer with a SoftMax classifier 
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for multiple classes and without SpatialDropout1D, which is used in the LSTM model. 

In Table 4.7, we can see a summary of the GRU model applied to the second dataset. 

 

Table 4.6. Summary of the LSTM model with the second dataset. 

 

Layer Output Shape Parameters 

Embedding (None, 50, 50) 24250 

SpatialDropout1D (None, 50, 50) 0 

LSTM (None, 64) 29440 

Dense (None, 30) 1950 

Total params: 55,640 

Trainable params: 55,640 

Non-trainable params: 0 

 

Table 4.7. Summary of the GRU model with the second dataset. 

 

Layer  Output Shape Parameters 

Embedding (None, 50, 50) 24250 

GRU (None, 64) 22272 

Dense (None, 30) 1950 

Total params: 48,472 

Trainable params: 48,472 

Non-trainable params: 0 

 

4.2.3. CNN Model with API Call Sequences Dataset 

 

The last of our proposed models also In the second dataset, which is made up of API 

Call Sequences, CNN technology is used to call 49 API Call Sequences, which are 

then reshaped into an array of 7x7, normalized by dividing them by a larger number in 

the API unique index , which is 484 in this study, to make them numbers between 0 

and 1, and put into a simple model made up of the Convolutional 2D Layer (64, 3, 3) 

and a Fully Connected layer, with training taking up 70%, testing, and validation each 

taking up 15%. The flow chart of the CNN model using the API call dataset method is 

shown in Figure 4.6, and a summary of the CNN model architecture with parameters 

is shown in Table 4.8. 
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 50 API call sequences 

 

 

 

 

483 280 306 106 163 43 429 

288 220 77 37 411 30 26 

353 384 129 103 275 29 351 

369 171 227 348 240 28 229 

83 440 253 169 98 179 13 

299 17 167 320 70 99 476 

433 244 288 35 136 227 16 

 

 

0.998 0.579 0.632 0.219 0.337 0.089 0.886 

0.595 0.455 0.159 0.076 0.849 0.062 0.054 

0.729 0.793 0.267 0.213 0.568 0.060 0.725 

0.762 0.353 0.469 0.719 0.496 0.058 0.473 

0.171 0.909 0.523 0.349 0.202 0.370 0.027 

0.618 0.035 0.345 0.661 0.145 0.205 0.983 

0.895 0.504 0.595 0.072 0.281 0.469 0.033 

 

 

 

 
Figure 4.6. CNN model with API call sequences method. 

 

 

483 280 306 106 163 43 429 288 220 77 37 411 30 26 353 384 129 103 275 29 
351 369 171 227 348 240 28 229 83 440 253 169 98 179 13 299 17 167 320 70 99 
476 433 244 288 35 136 227 16 33 

Reshaping the first 49 API calls to 7x7 

Normalization 
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Table 4.8. Summary of the CNN model with the second dataset. 

 

Layer Output Shape Parameters 

Conv2D        (None, 5, 5, 64)                  640 

Activation                   (None, 5, 5, 64) 0 

Flatten                          (None, 1600) 0 

Dense            (None, 512)                819712    

Activation          (None, 512)               0 

Dense         (None, 30)                 15390 

Activation (None, 30)                0 

Total params: 835,742 

Trainable params: 835,742 

Non-trainable params: 0 

 

4.2.4. Real Time Malware Detection and Classification 

 

In the end, after training and making tests, the three most efficient models will be 

selected to classify and detect malware in real time. One model is for the first dataset 

, which includes malware and benign images. The second model is for the second 

dataset, which includes API call sequences. The last model is made up of a shallow 

CNN model that is based on API call sequences after reshaping it to 7x7 and applying 

normalization. The general flowchart of the approach that was suggested for this 

research can be seen in Figure 4.7. 
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Figure 4.7. General flowchart of proposed method. 

 

.
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PART 5 

 

RESULTS AND DISCUSSION

 

In this section displays the results of all experiments that were carried out in this study 

and explains the confusion matrix, as well as the discussion and comparison among 

CNN models and between RNN models with detailed figures and tables. Some 

experiments were carried out by using the Python programming language on a Jupyter 

notebook on a PC equipped with an Intel(R) Core (TM) i7- 6600U CPU @ 2.60GHz 

and 2.80 GHz with 8.00 GB of RAM, while others were carried out on Google Colab. 

 

5.1. CONFUSION MATRIX 

 

The performance of a classification algorithm may be described with the use of a table 

called a confusion matrix, which displays essential predictive metrics such as recall, 

f1 score, accuracy, and precision. Confusion matrices are helpful tools because they 

provide direct comparisons of measurements like True Positive (TP), False Negative 

(FN), False Positive (FP), and True Negative (TN). In our study, we used these 

measurements to measure our model’s predictive classification. The following 

equations, numbered 5.1 through 5.4, represent the performance metrics: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
                                                                         (5.1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
                                                                                                          (5.2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
                                                                                                   (5.3) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒  = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                                        (5.4) 
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TP: The situation in which the real number and expected number are identical is a True 

Positive number. 

FN: A class's False-negative number is the total of all the numbers in the relevant rows, 

excluding the TP number.  

FP: A class's False-positive number is the total of all the numbers in the relevant 

column, excluding the TP number.  

TN: The total of all columns and rows, excluding those for the class for which we are 

computing the numbers, will represent the True Negative number for a given class. 

 

5.2. IMPLEMENTING CNN MODELS 

 

5.2.1. Implementing our Model 

 

The first model that was developed used CNN technology with the malware and 

benign images that were used to construct the dataset. We noticed that after testing the 

model with a total of 50 epochs, it had an accuracy of 98.23%. Figure 5.1 demonstrates 

the accuracy and the validation accuracy of this model. Additionally, the figure shows 

both the loss and the validation loss for this model. Table 5.1 outlines the classification 

metrics (accuracy, precision, recall, and F1 score) that our CNN model achieved on 

the very first dataset it was applied to. 

 

  

 

Figure 5.1. Accuracy and loss for our CNN model with first dataset. 
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Table 5.1. Classification metrics for our CNN model with first dataset. 

  

Class Accuracy Precision Recall F1-score 

Benign 0.99 0.96 0.95 0.95 

Ako 1.00 1.00 1.00 1.00 

Autorun.NE 1.00 0.94 1.00 0.97 

Banker.LY 1.00 1.00 1.00 1.00 

Delf.DU 0.99 0.81 0.94 0.87 

Drolnux.B 1.00 1.00 1.00 1.00 

Eggnog.A 1.00 1.00 1.00 1.00 

GandCrab.AE 1.00 1.00 0.96 0.98 

Ganelp.E 1.00 1.00 1.00 1.00 

Linkury.RS!MT

B 
1.00 1.00 1.00 1.00 

Neconyd.A 1.00 0.96 1.00 0.98 

Nemucod 1.00 1.00 1.00 1.00 

Neojit.A 1.00 1.00 1.00 1.00 

OpenInstaller 1.00 1.00 1.00 1.00 

Playtech 1.00 0.96 1.00 0.98 

QQPass.GP 1.00 1.00 1.00 1.00 

Qukart 1.00 1.00 1.00 1.00 

Resur.A!epo 1.00 1.00 1.00 1.00 

Shodi.A 1.00 0.94 1.00 0.97 

Simda.D 1.00 1.00 0.88 0.93 

Sivis.A 1.00 0.91 1.00 0.95 

Small.M 1.00 1.00 1.00 1.00 

Soltern!rfn 1.00 1.00 1.00 1.00 

Trickbot.GML!

MTB 
1.00 1.00 1.00 1.00 

Unruy.F 1.00 1.00 1.00 1.00 

Upatre.A 1.00 1.00 1.00 1.00 

Urelas.AA 1.00 1.00 0.96 0.98 

Wabot.A 1.00 1.00 0.97 0.98 

Yoof.E 1.00 1.00 1.00 1.00 

Zombie!rfn 1.00 1.00 0.89 0.94 

Accuracy         0.98 

Macro Avg  0.98 0.98 0.98 

Weighted Avg.  0.98 0.98 0.98 

 

We observed that all classes had a high degree of accuracy in their classifications by 

comparing the predicted and actual values, as shown in Figures 5.2, which demonstrate 

the confusion matrices produced by our approach. 
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Figure 5.2. Confusion Matrix for our CNN model. 

 

5.1.2. Implementing Pretrained Models 

 

We conducted experiments on our first dataset, which is comprised of images of 

samples, using three pre-trained CNN models, including VGG16, Inception V3, and 

Resnet50, so that we could perform a comparison between our CNN model and those 

of other models. In the preprocessing stage, the images are resized to 224x224 before 

passing through the models. These models are designed with color images (3 channels) 

and our dataset only contains grayscale images for samples in the first dataset. 
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In the Vgg16 model, after the normalization process was done and the dataset was split 

into three parts (70:15:15) for training, testing, and validation, respectively, the model 

had a 98 percent accuracy rate.  

 

After the dataset was normalized for the Inception V3 model, it was then split into 

thirds: (80:10:10) for training, testing, and validation, respectively. The model's 

accuracy was determined to be 97.17 percent. 

 

Without doing any normalization, the dataset was partitioned in the Resnet50 model 

as follows: (70:15:15) for training, testing, and validation, respectively. When we used 

this model to normalize the data, we discovered that the accuracy was lower than when 

we used normalization. The accuracy of the model was 98.35 percent.  

 

Classification metrics for pretrained CNN models (VGG16, Inception V3 and 

Resnet50) are given in Table 5.2. Figures 5.3, 5.4, and 5.5, respectively, illustrate 

accuracy and loss for the VGG16, Inception V3, and Resnet50. 

 

 

 

Figure 5.3. The VGG16 model's accuracy and loss with the first dataset. 
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Figure 5.4. The Inception V3 model's accuracy and loss with the first dataset. 

 

 

 

Figure 5.5. The Resnet50 model's accuracy and loss with the first dataset. 

 

Figures 5.6, 5.7, and 5.8 illustrate the confusion matrices for the VGG16, Inception 

V3, and Resnet 50 models, respectively. 
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Figure 5.6. Confusion matrix for VGG16 model. 
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Figure 5.7. Inception V3 model's confusion matrix.  
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Figure 5.8. Resnet50 model's confusion matrix. 
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Table 5.2. Classification metrics for pretrained CNN models. 

  

Class 
Inception V3 Resnet 50 VGG 16 

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 

Benign 0.99 0.96 0.94 0.95 0.99 0.99 0.94 0.96 0.99 0.91 0.97 0.94 

Ako 1.00 0.91 0.95 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Autorun.NE 1.00 0.93 0.93 0.93 1.00 0.97 0.89 0.93 1.00 0.98 0.94 0.96 

Banker.LY 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 

Delf.DU 1.00 0.96 0.96 0.96 1.00 0.98 1.00 0.99 1.00 1.00 0.95 0.98 

Drolnux.B 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Eggnog.A 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.96 1.00 0.98 

GandCrab.AE 1.00 0.93 1.00 0.96 1.00 0.97 1.00 0.99 1.00 1.00 0.95 0.97 

Ganelp.E 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Linkury.RS!MT

B 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.98 

Neconyd.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Nemucod 1.00 0.96 1.00 0.98 1.00 0.97 1.00 0.99 1.00 0.97 1.00 0.98 

Neojit.A 1.00 0.97 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

OpenInstaller 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Playtech 1.00 1.00 0.95 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.96 

QQPass.GP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Qukart 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Resur.A!epo 1.00 0.91 1.00 0.95 1.00 0.94 1.00 0.97 1.00 0.97 1.00 0.99 

Shodi.A 1.00 0.90 0.86 0.88 1.00 0.94 0.88 0.91 1.00 1.00 0.87 0.93 

Simda.D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.97 

Sivis.A 0.99 1.00 0.71 0.83 1.00 1.00 0.95 0.97 1.00 0.97 1.00 0.99 

Small.M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Soltern!rfn 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Trickbot.GML!

MTB 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Unruy.F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 

Upatre.A 1.00 0.96 1.00 0.98 1.00 0.94 1.00 0.97 1.00 1.00 0.97 0.99 

Urelas.AA 1.00 0.96 0.93 0.95 1.00 0.95 0.97 0.96 1.00 0.98 0.96 0.97 

Wabot.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.99 

Yoof.E 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Zombie!rfn 0.99 0.84 0.96 0.90 1.00 0.88 0.97 0.92 1.00 0.91 1.00 0.96 

Accuracy  0.97   0.98   0.98 

Macro Avg  0.97 0.97 0.97  0.98 0.99 0.98  0.99 0.98 0.98 

Weighted Avg.  0.97 0.97 0.97  0.98 0.98 0.98  0.98 0.98 0.98 

 

The results showed that our proposed CNN network-based model is more efficient 

than the other models (VGG16, Inception V3, and Resnet50) in terms of how many 

parameters the model generates and how much memory it consumes, especially since 

our model used images of 150x150 input size as shown in Table 5.3. The Resnet50 

model and our own model both have an accuracy that is about close to one another. 
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Table 5.3. Comparison between our model and pretrained network models. 

 

Model Image size Total 
layers 

Total 

parameters 
Accuracy Precision Recall F1 

score 

VGG16 220x220 16 134,383,484 0.98 0.99 0.98 0.98 

Inception V3 220x220 42 21,864,284 0.97 0.97 0.97 0.97 

Resnet50 220x220 50 23,649,212 0.98 0.98 0.99 0.98 

Our Model 150x150 5 639,774 0.98 0.98 0.98 0.98 

 

The model was also trained with 5-fold cross validation and the result is shown in 

Table 5.4. 

 

Table 5.4. The test accuracy of our model for 5-fold cross validation. 

 

Fold Test accuracy 

1 0.987 

2 0.978 

3 0.985 

4 0.978 

5 0.981 

Average 0.982 

 

We compared our CNN model in this study with many previous studies, and it was 

found that our model is characterized by high accuracy as well as high efficiency in 

terms of speed, low memory consumption, and the least number of weighted layers for 

the model in dealing with grayscale malware images, as shown in Table 5.5. 
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Table 5.5. A comparison between our model and a set of previous studies. 

 

Reference Model Accuracy weighted 

layers 
İmage size Type 

Sun and 

Qian [18] 

CNN 

RNN 
99.5% 7 128x128 Classification 

Hemalatha et 

al. [22] 
DenseNet201 

98.23% 
98.46% 

98.21% 

89.48% 

201 64x64 
Detection and 

Classification 

Anandhi et 
al. [23] 

DenseNet201 
99.94% 
98.98% 

201 256x256 

Detection and 

Classification 

İn Real time 

Jian et al. 

[25] 

SEResNet50 
+ Bi-LSTM 

+ Attention 

98.31% > 50 
256x256x3 

3- channel 

Detection and 

Classification 

Mitsuhashi 

and 
Shinagawa 

[14] 

VGG19 99.72% 19 224 x 224 Classification 

Jin et al. [9] Autoencoder 93% 10 Unknown Detection 

Go et al. [13] ResNeXt50 98.8% 50 224 x 224 Classification 

Vasan et al. 

[15] 
CNN 

98.82% 

97.35% 
> 15 

224x224x3 

3-channel 

Detection and 

Classification 

Xiao et al. 
[16] 

CNN -SVM 

Entropy 

graphs 

99.7% 
100% 

14 300 x 300 Classification 

Vasan et al. 

[17] 

VGG16 
Resnet50 

SVM 

99% 

98% 

16 

50 
224 x 224 Classification 

Qiao et al. 

[26] 
LeNet5 98.76% 5 

256x256x3 
3- channel Classification 

Our method 
[80] 

CNN 98% 5 150x150 

Detection and 

Classification 

İn Real time 

 

5.2. IMPLEMENTING RNN MODELS 

 

5.2.1. LSTM 

 

When applied to the second dataset, which is comprised of API call sequences, the 

suggested LSTM model was assessed using 30 epochs, and the findings showed that 

it had an accuracy of 99.45 percent. A representation of the LSTM's accuracy and 

validation accuracy can be seen in Figure 5.9. The figure also shows both losses and 
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the validation loss. A confusion matrix is shown in Figure 5.10, which was generated 

using the LSTM model. 

 

 

 

Figure 5.9. The LSTM model's accuracy and loss. 

 

 

 

Figure 5.10. The LSTM model's confusion matrix. 
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5.2.2. GRU 

  

The accuracy of the recommended GRU model was measured using 30 epochs, and 

the findings indicated that it had the same accuracy as the LSTM model, which was 

99.45 percent. The training accuracy, validation accuracy, loss, and validation loss of 

the GRU are shown graphically in Figure 5.11. The GRU model's confusion matrix is 

displayed in Figure 5.12.  

 

 

 

Figure 5.11. The GRU model's accuracy and loss. 
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Figure 5.12. The GRU model's confusion matrix. 

 

In this study the findings showed that the proposed model based on the GRU network 

outperforms the LSTM method in term of having fewer parameters although they have 

the same accuracy. Table 5.6 compares classification metrics for LSTM and GRU 

models with a second dataset. 
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Table 5.6. Classification metrics for LSTM and GRU models with second dataset. 

 

Class 
LSTM GRU 

Acc Pre Rec F1 Acc Pre Rec F1 

Benign 0.99 0.95 0.99 0.97 1.00 0.97 0.99 0.98 

Ako 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Autorun.NE 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 

Banker.LY 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Delf.DU 1.00 0.97 1.00 0.98 1.00 1.00 1.00 1.00 

Drolnux.B 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Eggnog.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

GandCrab.AE 1.00 0.97 1.00 0.98 1.00 1.00 0.97 0.98 

Ganelp.E 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Linkury.RS!MTB 1.00 1.00 0.94 0.97 1.00 1.00 0.93 0.97 

Neconyd.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Nemucod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Neojit.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

OpenInstaller 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Playtech 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

QQPass.GP 1.00 1.00 0.84 0.92 1.00 1.00 1.00 1.00 

Qukart 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Resur.A!epo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Shodi.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Simda.D 1.00 1.00 0.96 0.98 1.00 1.00 0.96 0.98 

Sivis.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Small.M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Soltern!rfn 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Trickbot.GML!M

TB 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Unruy.F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Upatre.A 1.00 1.00 0.98 0.99 1.00 0.98 1.00 0.99 

Urelas.AA 1.00 0.98 1.00 0.99 1.00 0.96 1.00 0.98 

Wabot.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Yoof.E 1.00 1.00 0.98 0.99 1.00 1.00 0.98 0.99 

Zombie!rfn 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Accuracy   0.99   0.99 
 Macro Avg  0.99 0.99 0.99  1 0.99 1 

Weighted Avg.  0.99 0.99 0.99  0.99 0.99 0.99 

 

5.3. IMPLEMENTING OUR CNN MODEL WITH API CALL SEQUENCES 

 

This model was applied to the second dataset, which was based on API call sequence 

numbers, after calling 49 API call sequences to reshape it to 7x7 and applying CNN 

with a division of 70%, 15%, and 15% of training, testing, and verification data, 

respectively, and 15 epochs to get 99% accuracy. The model's accuracy and loss during 
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training and validation are represented in Figure 5.13. Our CNN model's confusion 

matrix for the second dataset is shown in Figure 5.14 and classification metrics are 

included in Table 5.7. In the end, we compared the three models trained on the API 

call dataset, as can be seen in Table 5.8. The accuracy was nearly the same for all three, 

but the CNN model was the fastest because it was working with a 2D image consisting 

of a 7x7 matrix, and also because the CNN models were characterized by feature 

extraction. 

 

  

 

Figure 5.13. Accuracy and loss for our CNN model with second dataset. 
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Figure 5.14. The CNN model's confusion matrix with the second dataset. 
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Table 5.7. Classification metrics for our CNN model with second dataset. 

 

Class Accuracy Precision Recall F1-score 

Benign 0.99 0.96 0.97 0.97 

Ako 1.00 1.00 1.00 1.00 

Autorun.NE 1.00 1.00 1.00 1.00 

Banker.LY 1.00 1.00 1.00 1.00 

Delf.DU 1.00 1.00 1.00 1.00 

Drolnux.B 1.00 1.00 1.00 1.00 

Eggnog.A 1.00 1.00 1.00 1.00 

GandCrab.AE 1.00 0.97 0.89 0.93 

Ganelp.E 1.00 1.00 1.00 1.00 

Linkury.RS!MTB 1.00 1.00 0.97 0.99 

Neconyd.A 1.00 1.00 1.00 1.00 

Nemucod 1.00 1.00 1.00 1.00 

Neojit.A 1.00 1.00 1.00 1.00 

OpenInstaller 1.00 0.95 1.00 0.97 

Playtech 1.00 1.00 1.00 1.00 

QQPass.GP 1.00 1.00 1.00 1.00 

Qukart 1.00 1.00 1.00 1.00 

Resur.A!epo 1.00 0.97 1.00 0.99 

Shodi.A 1.00 1.00 1.00 1.00 

Simda.D 1.00 1.00 0.96 0.98 

Sivis.A 1.00 1.00 1.00 1.00 

Small.M 1.00 1.00 1.00 1.00 

Soltern!rfn 1.00 1.00 1.00 1.00 

Trickbot.GML!MTB 1.00 1.00 1.00 1.00 

Unruy.F 1.00 1.00 1.00 1.00 

Upatre.A 1.00 0.98 1.00 0.99 

Urelas.AA 1.00 0.97 0.97 0.97 

Wabot.A 1.00 1.00 1.00 1.00 

Yoof.E 1.00 1.00 0.98 0.99 

Zombie!rfn 1.00 1.00 1.00 1.00 

Accuracy       0.99 

Macro Avg  0.99 0.99 0.99 

Weighted Avg.  0.99 0.99 0.99 

 

Table 5.8. Comparison between CNN model and RNN models in API call dataset. 

 

Model API length Accuracy Precision Recall F1 Score 

LSTM 50 0.99 0.99 0.99 0.99 

GRU 50 0.99 1 0.99 1 

CNN 49 (7x7) 0.99 0.99 0.99 0.99 
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The model was also trained using 5-fold cross validation, and Table 5.9 displays the 

outcome. According to Table 5.10, which compares our weighted lite CNN model to 

much other research, our model is distinguished by high accuracy as well as great 

efficiency in terms of low memory consumption and the fewest number of weighted 

layers. 

 

Table 5.9. The test accuracy of our model for 5-fold cross validation. 

 

Fold Test accuracy 

1 0.991 

2 0.987 

3 0.989 

4 0.992 

5 0.997 

Average 0.99 

 

Table 5.10. A comparison between our model and a set of previous studies. 

 

Authors Model Accuracy weighted 

layers 
API length Type 

Xiaofeng et 
al. [39] 

LSTM – RF 95.7% Unknown >100 Detection 

Liu and 

Wang [38] 
BLSTM  97.85% Unknown Unknown Detection 

Catak et al. 

[37] 
LSTM 98.50% > 4 100 

Detection and 

Classification 

Xu et al. [40] Malbert 
99.98% 
99.82% 

> 12 Unknown Detection 

Ye et al. [43] 
Autoencoder 

RBMs 
98.20% > 5 Unknown Detection 

Oliveira et al. 
[46] 

LSTM 99% Unknown 100 Detection 

Tang and 

Qian [47] CNN 98%-99% 4 
16 × 16 × 3 

3-channel 
Classification 

Aditya et al. 

[48] 
LSTM-RMSProp 97.30% 4 Unknown 

Detection and 

Classification 
İn Real time 

Our method 2D-CNN 99% 3 
49 

(7x7) 

Detection and 

Classification 

İn Real time 
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5.4. IMPLEMENTING REAL TIME FRAMEWORK 

 

In this study, our framework consists of the best three models. After training and 

testing, we discovered the best model treated with the first dataset, which contained 

images of malicious and goodware software, was our approach in regard to the 

parameters and amount of memory used. When it came to accuracy, our model was 

very close to the resnet50 model. 

 

The second model used for real-time detection is GRU, which proved it's efficient in 

terms of smaller parameters and faster than LSTM, although the two models have the 

same accuracy. 

 

The third model was the proposed model with the second dataset, which contained API 

call sequences numbers by calling 49 numbers from the API call and converting them 

to a 2D array and making normalization. 

 

Our framework proved it's efficient in classification and detection in real time when 

implemented on samples collected and not existing in our dataset but belonging to the 

same families.  
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PART 6 

 

CONCLUSION 

 

6.1. CONCLUSION 

 

In this study, we presented two new datasets that we created using two methods: The 

first dataset consists of images of samples (malware and benign) to detect samples 

statically. The second dataset includes API call sequences for the same samples in the 

first dataset to detect samples dynamically. 

 

Different models were developed based on deep learning approaches for training and 

testing on these two datasets. Our proposed CNN model based on the first dataset 

which included malicious and benign images proved it has the best performance 

compared to pretrained networks (VGG16, Inception V3, and Resnet50) through 

which it reached an accuracy of 98.23% with a smaller quantity of parameters and 

memory consumption. 

 

In the second dataset, which comprises API call sequences, we ran experiments on two 

model types of the RNN algorithms (LSTM and GRU). Although the two models got 

the same accuracy, which is 99.45%. In terms of the quantity of parameters generated 

by these two RNN models, the GRU model has been shown to have the best 

performance. 

 

also in the second dataset, which included API call sequence numbers, our proposed 

model, which used CNN as its foundation, was implemented and achieved 99% 

accuracy while being faster than all other models in our experiments. 

After the training was done, best three models were saved and use to find and classify 

malware in real time. 
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Through the results, it was found that the detection and classification of malware into 

the families to which it belongs by the dynamic method based on API call sequences 

is faster than the static method based on malware images. According to the findings of 

our investigation, different methods of models are superior to one. Even if one of the 

models can't find malware, the others can, especially if the malware is encrypted or 

uses other methods to hide itself. 

 

6.2. FUTURE WORK 

 

In a future study, we will collect a larger number of benign files and malicious software 

and convert them to RGB color images since they have good feature extraction. 

SPP.NET will be used to deal with images of different sizes and not be restricted to a 

certain size. In terms of detecting malware with API call sequences, there are types of 

malware models from which API call sequences cannot be extracted by  the Pefile 

library for python language. In the future, we would like to analyze these kinds of 

malware samples in-depth.
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