

HYBRID MALWARE DETECTION AND
CLASSIFICATION IN REAL-TIME BY DEEP

LEARNING TECHNIQUES

 2022
MASTER THESIS

COMPUTER ENGINEERING

Hussein Sadraldeen ALMUSAWI

Thesis Advisor
Assist.Prof.Dr. Adnan ALAJEELI

 HYBRID MALWARE DETECTION AND CLASSIFICATION IN REAL-

TIME BY DEEP LEARNING TECHNIQUES

Hussein Sadraldeen ALMUSAWI

T.C.

Karabuk University

Institute of Graduate Programs

Department of Computer Engineering

Prepared as

Master Thesis

Thesis Advisor

Assist.Prof.Dr. Adnan ALAJEELI

KARABUK

August 2022

ii

I certify that in my opinion the thesis submitted by Hussein Sadraldeen ALMUSAWI

titled “HYBRID MALWARE DETECTION AND CLASSIFICATION IN REAL-

TIME BY DEEP LEARNING TECHNIQUES” is fully adequate in scope and in

quality as a thesis for the degree of Master of Science.

Assist.Prof.Dr. Adnan ALAJEELI

Thesis Advisor, Department of Computer Engineering

APPROVAL

This thesis is accepted by the examining committee with a unanimous vote in the

Department of Computer Engineering as a Master of Science thesis. August 18, 2022

Examining Committee Members (Institutions) Signature

Chairman : Assist.Prof.Dr. Abdulkadir TAŞDELEN (AYBU)

Member : Assist.Prof.Dr. Adnan ALAJEELI (KBU)

Member : Assist.Prof.Dr. Oğuzhan MENEMENCİOĞLU (KBU)

The degree of Master of Science by the thesis submitted is approved by the

Administrative Board of the Institute of Graduate Programs, Karabuk University.

Prof. Dr. Hasan SOLMAZ

Director of the Institute of Graduate Programs

iii

“I declare that all the information within this thesis has been gathered and presented

in accordance with academic regulations and ethical principles and I have according

to the requirements of these regulations and principles cited all those which do not

originate in this work as well.”

Hussein Sadraldeen ALMUSAWI

iv

ABSTRACT

M. Sc. Thesis

HYBRID MALWARE DETECTION AND CLASSIFICATION IN REAL-

TIME BY DEEP LEARNING TECHNIQUES

Hussein Sadraldeen ALMUSAWI

Karabük University

Institute of Graduate Programs

The Department of Computer Engineering

Thesis Advisor:

Assist. Prof. Dr. Adnan ALAJEELI

August 2022, 78 pages

In the consequence of communication between people, the sending of crucial data,

particularly between them, the downloading of a great number of programs and files

are attractive for the cybercriminals. Because the cybercriminals are becoming more

sophisticated in their methods, there is a need to develop a robust security mechanism

against malicious software, which is growing daily and has become more risky and

more complex.

In this research project, we presented two new datasets that belong to the same samples

that we collected. The first is built on visualization (static analysis) whereas the second

is built on API call sequences (dynamic analysis) to detect malware in different

methods in case it is encrypted or uses obfuscation techniques.

v

In this study, different models of deep learning used to protect against malware by

identifying and categorizing the family to which it belongs are presented. The first

dataset, which contains benign and malware images after converted from malware

binary numbers, used our custom model and three of the common pretrained network

models of CNN (VGG16, Inception V3, and Resnet50). The second dataset, which

contains API call sequences, uses two algorithms of RNN (LSTM and GRU). Also,

with the second dataset, a CNN was used with API call sequence numbers after

reshaping and normalizing it.

Finally, we choose three best models for real-time detection and classification: one for

CNN using the first dataset, one for RNN using the second dataset, and one for the

CNN model using the second dataset after normalizing and reshaping it. We selected

the best models depending on their accuracy, number of parameters, and cost-

effectiveness (memory).

Our framework achieved high accuracy in all models and when testing for examples

of malware that belong to the same families but are absent from the dataset that was

gathered. These models were found and categorized in a manner that was both very

accurate and carried out in real time.

Key Words : CNN, LSTM, GRU, Hybrid analysis, API call, Malware images.

Science Code : 92403

vi

ÖZET

Yüksek Lisans Tezi

DERİN ÖĞRENME TEKNİKLERİYLE HİBRİT ZARARLI YAZILIM

TESPİTİ VE GERÇEK ZAMANLI SINIFLANDIRMA

Hussein Sadraldeen ALMUSAWI

Karabük Üniversitesi

Lisansüstü Eğitim Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Tez Danışmanı:

Dr. Öğr. Üyesi. Adnan ALAJEELI

Ağustos 2022, 78 sayfa

İnsanlar arasındaki iletişim sonucunda, özellikle kendi aralarında önemli verilerin

gönderilmesi, çok sayıda program ve dosyanın indirilmesi siber suçlular için cazip hale

gelmektedir. Siber suçlular yöntemlerinde daha karmaşık hale geldikleri için, her

geçen gün büyüyen ve daha riskli ve daha karmaşık hale gelen kötü amaçlı yazılımlara

karşı sağlam bir güvenlik mekanizması geliştirmeye ihtiyaç vardır.

Bu araştırma projesinde, topladığımız aynı örneklere ait 2 yeni veri seti sunulmuştur;

bunlardan ilki görselleştirme statik analizi üzerine inşa edilmiştir, ikincisi ise

şifrelenmiş olması veya gizleme teknikleri kullanması durumunda kötü amaçlı

yazılımları farklı yöntemlerle tespit etmek için bir API çağrı dizileri dinamik analizi

üzerine inşa edilmiştir.

vii

Bu çalışmada, ait olduğu aileyi tanımlayarak ve kategorize ederek kötü amaçlı

yazılımlara karşı korunmak için kullanılan farklı derin öğrenme modelleri

sunulmuştur. Kötü amaçlı yazılım ikili sayılarından dönüştürüldükten sonra iyi huylu

ve kötü amaçlı yazılım görüntülerini içeren ilk veri setinde özel modelimiz ve CNN'in

yaygın ön eğitimli ağ modellerinden üçü (VGG16, Inception V3 ve Resnet 50)

kullanılmıştır. API çağrı dizilerini içeren ikinci veri setinde, RNN (LSTM ve Gru)

dışında iki algoritma kullanılmıştır. Ayrıca, ikinci veri setinde, yeniden

şekillendirildikten ve normalleştirildikten sonra API çağrı dizisi numaraları ile bir

CNN kullanılmıştır.

Son olarak, gerçek zamanlı tespit ve sınıflandırma için en iyi üç modeli seçtik: biri ilk

veri setini kullanan CNN, diğeri ikinci veri setini kullanan RNN ve diğeri de

normalleştirip yeniden şekillendirdikten sonra ikinci veri setini kullanan CNN modeli.

Doğruluklarına, parametre sayılarına ve maliyet etkinliğine (bellek) bağlı olarak en iyi

modelleri seçtik.

Aynı ailelere ait olan ancak toplanan veri setinde bulunmayan kötü amaçlı yazılım

örnekleri için test yapıldığında tüm çerçeve tüm modellerde yüksek doğruluk elde etti.

Bu modeller hem çok doğru hem de gerçek zamanlı olarak gerçekleştirilecek şekilde

bulundu ve kategorize edildi.

Anahtar Kelimeler : CNN, LSTM, GRU, Hibrit analiz, API çağrısı, Kötü Amaçlı

Yazılım görüntüleri.

Bilim Kodu : 92403

viii

ACKNOWLEDGMENT

To begin with, from the bottom of my heart, I would like to express my thankfulness

to God.….

To my supervisor, Assistant Professor Dr. Adnan ALAJEELI, for his contribution, and

interest in the production of this thesis…...

To my family, who have stood by my side throughout this journey.......

To my wonderful mother, who has never wavered in her love and support……

To my father, whose faith in me was instrumental to my success, will always be in my

memory........

ix

CONTENTS

Page

APPROVAL .. ii

ABSTRACT .. iv

ÖZET .. vi

ACKNOWLEDGMENT... viii

CONTENTS .. ix

LIST OF FIGURES ..xii

LIST OF TABLES... xiv

SYMBOLS AND ABBREVITIONS INDEX ... xv

PART 1 .. 1

INTRODUCTION .. 1

1.1. OVERVIEW .. 1

1.2. COMMON TYPES OF MALWARES .. 2

1.2.1. Virus ... 3

1.2.2. Worm .. 3

1.2.3. Adware ... 3

1.2.4. Trojans .. 3

1.2.5. Spyware .. 4

1.2.6. Backdoor ... 4

1.2.7. Ransomware ... 4

1.3. PROBLEM STATEMENT ... 4

1.4. OBJECTIVE .. 5

1.5. CONTRIBUTION .. 5

1.6. THESIS STRUCTURE... 6

PART 2 .. 7

LITERATURE REVIEW ... 7

2.1. STATIC ANALYSIS APPROACH .. 7

x

Page

2.2. DYNAMIC ANALYSIS APPROACH ..13

2.3. HYBRID ANALYSIS APPROACH ..16

PART 3 .. 20

THEORETICAL BACKGROUND .. 20

3.1. CONVOLUTIONAL NEURAL NETWORK ..20

3.1.1 Convolutional Layers ..21

3.1.2. Pooling Layers ...21

3.1.3. Fully Connected Layers (FC) ...22

3.1.4. Activation Functions ..23

3.1.5. Batch Size ..23

3.1.6. Epoch ...23

3.1.7. Loss Function ...23

3.1.8. Dropout Learning ...24

3.2. CNN MODELS ...24

3.2.1. VGG16 ..24

3.2.2. ResNet50 ...26

3.2.3. Inception V3 ..28

3.3. RECURRENT NEURAL NETWORKS (RNN)...31

3.3.1. Long Short-Term Memory (LSTM)..32

3.2.2. Gated Recurring Units (GRU) ..33

PART 4 .. 34

METHODOLOGY ... 34

4.1. DATA COLLECTION ..34

4.1.1. Malware Images Dataset (First Dataset) ...36

4.1.2. API Call Sequences Dataset (Second Dataset)39

4.2. PROPOSED METHOD ...41

4.2.1. CNN Models with Malware Images Dataset ...41

4.2.2. RNN Models with API Call Sequences Dataset43

4.2.3. CNN Model with API Call Sequences Dataset44

4.2.4. Real Time Malware Detection and Classification46

xi

Page

PART 5 .. 48

RESULTS AND DISCUSSION ... 48

5.1. CONFUSION MATRIX ..48

5.2. IMPLEMENTING CNN MODELS ...49

5.2.1. Implementing our Model ..49

5.1.2. Implementing Pretrained Models ..51

5.2. IMPLEMENTING RNN MODELS ...59

5.2.1. LSTM ..59

5.2.2. GRU ..61

5.3. IMPLEMENTING OUR CNN MODEL WITH API CALL SEQUENCES..63

5.4. IMPLEMENTING REAL TIME FRAMEWORK68

PART 6 .. 69

CONCLUSION .. 69

6.1. CONCLUSION ...69

6.2. FUTURE WORK ..70

REFERENCES ... 71

RESUME ... 78

xii

LIST OF FIGURES

Page

Figure 1.1. Malware statistics in millions for the previous ten years. 2

Figure 2.1. Windows API call mechanism . .. 14

Figure 3.1. Basic CNN Architecture ... 20

Figure 3.2. Convolutional layer process . .. 21

Figure 3.3. Max pooling operation . .. 22

Figure 3.4. Fully connected layers. ... 22

Figure 3.5. VGG16 layers 24

Figure 3.6. VGG16 architecture. ... 25

Figure 3.7. Skip connection . .. 26

Figure 3.8. Resnet50 architecture. ... 27

Figure 3.9. 5×5 conv layer(left) was replaced by two 3×3 conv layers(right) 28

Figure 3.10. One 5x5 conv layer replaced two 3x3 conv layers 28

Figure 3.11. Asymmetric factorization in the Inception module 29

Figure 3.12. The Auxiliary classifier works as a regularization 30

Figure 3.13. A Detail structure for efficient grid size reduction 30

Figure 3.14. Google Inception v3 architecture 31

Figure 3.15. Structure of LSTM .. 32

Figure 3.16. Structure of Gated Recurring Units (GRU) .. 33

Figure 4.1. A Screenshot of the website for VirusShare.com. 34

Figure 4.2. The distribution of malware samples collected. 36

Figure 4.3. Method for converting malware to an image ... 36

Figure 4.4. Malware image samples belong to various families. 38

Figure 4.5. Our CNN architecture with the first dataset. .. 42

Figure 4.7. General flowchart of proposed method. ... 47

Figure 5.1. Accuracy and loss for our CNN model with first dataset. 49

Figure 5.2. Confusion Matrix for our CNN model. .. 51

Figure 5.3. The VGG16 model's accuracy and loss with the first dataset. 52

Figure 5.4. The Inception V3 model's accuracy and loss with the first dataset. 53

xiii

Page

Figure 5.5. The Resnet50 model's accuracy and loss with the first dataset. 53

Figure 5.6. Confusion matrix for VGG16 model. .. 54

Figure 5.7. Inception V3 model's confusion matrix. .. 55

Figure 5.8. Resnet50 model's confusion matrix. .. 56

Figure 5.9. The LSTM model's accuracy and loss. .. 60

Figure 5.10. The LSTM model's confusion matrix. ... 60

Figure 5.11. The GRU model's accuracy and loss. .. 61

Figure 5.12. The GRU model's confusion matrix. ... 62

Figure 5.13. Accuracy and loss for our CNN model with second dataset. 64

Figure 5.14. The CNN model's confusion matrix with the second dataset. 65

xiv

LIST OF TABLES

Page

Table 2.1. A summary of static malware detection methods. 12

Table 2.2. A summary of dynamic malware detection methods. 17

Table 2.3. A summary of hybrid malware detection methods. 19

Table 4.1. Malware families and types. ... 35

Table 4.2. Width of an image for different file sizes. ... 39

Table 4.3. Examples of API call sequences taken from malware samples. 39

Table 4.4. API's index numbers. ... 40

Table 4.5. Summary of the CNN model with the first dataset. 43

Table 4.6. Summary of the LSTM model with the second dataset. 44

Table 4.7. Summary of the GRU model with the second dataset. 44

Table 4.8. Summary of the CNN model with the second dataset. 46

Table 5.1. Classification metrics for our CNN model with first dataset. 50

Table 5.2. Classification metrics for pretrained CNN models. 57

Table 5.3. Comparison between our model and pretrained network models. 58

Table 5.4. The test accuracy of our model for 5-fold cross validation. 58

Table 5.5. A comparison between our model and a set of previous studies. 59

Table 5.6. Classification metrics for LSTM and GRU models with second dataset. . 63

Table 5.7. Classification metrics for our CNN model with second dataset. 66

Table 5.8. Comparison between CNN model and RNN models in API call dataset. 66

Table 5.9. The test accuracy of our model for 5-fold cross validation. 67

Table 5.10. A comparison between our model and a set of previous studies. 67

xv

SYMBOLS AND ABBREVITIONS INDEX

ABBREVITIONS

CNN : Convolutional Neural Network

API : Application Programming Interface

RNN : Recurrent Neural Network

SVM : Support Vector Machine

PE : Portable Executable

LSTM : Long Short-Term Memory

BiLSTM : Bidirectional Long Short-Term Memory

DLL : Dynamic link library

BN : Bayesian Network

GRU : Gated Recurring Unit

BGRU : Bidirectional Gated Recurring Unit

RBM : Restricted Boltzmann Machine

IoT : Internet of Things

DNN : Deep Neural Network

SVD : Single Value Decomposition

DCNN : Deep Convolutional Neural Network

MKL : Multiple Kernel Learning

SPP-Net : Spatial Pyramid Pooling Network

AUC : Area Under the Curve

MLP : Multilayer Perceptron

NB : Naive Bayes

LR : Logistic Regression

DT : Decision Tree

KNN : K-Nearest Neighbors

RF : Random Forest

PUA : Potentially Unwanted Applications

1

PART 1

INTRODUCTION

1.1. OVERVIEW

Malware, also known as malicious software or software with malicious intent, is

created by hackers for the purpose of performing a specific action, such as monitoring

a user's computer to steal personal information (known as spyware) or encrypting data

and holding it for ransom (known as ransomware). Figure 1.1 from the AV-TEST

Institute's research depicts the meteoric rise of malware over the last decade. Over 450

thousand new harmful and potentially unwanted applications (PUA) software samples

are logged daily by the institution [1]. Obfuscation, cryptography, and many other

techniques are used by malware developers to keep their software out of the reach of

security systems. This is a major factor in the wide variety of malicious software [2].

At the present, an investigation into malicious software may be broken down into two

distinct categories: static analytics and dynamic behavior analytics. The primary

distinction between the two lies in whether or not the program in concern is really

executed [3].

When malicious code is encrypted, compressed, or obfuscated, static analysis is

rendered useless despite its speed and efficiency. Obfuscation is a way to modify or

enhance source code without impacting the functionality of the original. In this

scenario, malware is detected by a dynamic analysis technique that examines the

program as it runs [4].

Deep learning is a kind of artificial intelligence that relies heavily on computer

simulations of the brain's neural networks. As with other aspects of data science, such

as statistical data prediction and modeling, it is crucial. There is widespread agreement

2

that deep learning algorithms are an effective tool for detecting malware, and they have

found use in a wide variety of niche areas, including the protection of sensitive user

information [5], vulnerability recognition [6], and others.

Figure 1.1. Malware statistics in millions for the previous ten years.

In this study, our primary emphasis is on hybrid approaches, which integrate aspects

of static and dynamic analysis to improve performance based on two deep learning

algorithms. The first is a CNN algorithm that identifies malware based on visualizing

malware binary numbers as grayscale images and API call sequences after converting

them to a 2D array and normalizing them. The second algorithm is RNN, which is

utilized to deal with the API call sequences for each harmful program application.

1.2. COMMON TYPES OF MALWARES

Malicious software, or "malware," is defined as any program that was created with the

goal of doing damage. There is a wide variety of malicious software, and each of these

programs has its own unique technique for infiltrating your computer system. These

techniques could involve snooping on you, trying to steal your private information,

encrypting your essential data, or causing various kinds of harm to your systems.

182.9

326.04

470.01

597.49

719.15

856.62

1001.52

1139.24

1312.64
1363.92

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

3

1.2.1. Virus

In simple terms, a virus is malicious software that infiltrates your system and causes

damage. It may slow down your device or steal your personal information. A virus can

infect other files by copying itself and then attaching to them. When one virus infects

a network, it has the potential to launch a denial-of-service attack or encrypt data in an

attempt to hold the network hostage.

1.2.2. Worm

A self-replicating and infectious computer software is known as a "worm." Worms

may delete data and files from a computer. By taking advantage of weaknesses in

operating systems, a worm may travel from one computer network to another. The vast

majority of the time, they are distributed by mass email with malicious attachments.

1.2.3. Adware

Adware is malicious software that secretly delivers advertisements to a user's computer

without their knowledge or consent. Users often activate adware without their

knowledge when they attempt to install legal programs that come packed with adware.

There is also the risk that visitors may be tricked into downloading even more

malicious software because of these advertising.

1.2.4. Trojans

Trojans are harmful programs that masquerade as legitimate programs in order to

deceive users into downloading and installing them. As far as malware goes, this is the

worst kind. Trojans can be used for a wide range of bad things, such as collecting

sensitive financial information, stealing sensitive information (login credentials,

electronic accounts), stealing computer system resources, or harming your information

or network in some other way.

4

1.2.5. Spyware

Spyware is a kind of program that is placed on computers and mobile devices to spy

on their activities and record what they find by installing itself into a user's system.

This kind of malware is able to access sensitive data such as passwords and email

addresses after being given administrative privileges. Key logging is a common

method through which this is accomplished.

1.2.6. Backdoor

A backdoor is a way into a computer system without the need to authenticate using the

system's normal authentication procedures. As a result, hackers may get access to

sensitive data and databases used by the targeted applications.

1.2.7. Ransomware

Ransomware is software that is meant to locate all files on a computer, encrypt those

files, and then transmit messages to the user. It requires customers to pay a ransom to

regain access to their data. The distribution of ransomware often occurs either via

network weaknesses or through downloaded files. The data on the computer is

encrypted, and then it utilizes a key for the encryption that is only known to the

attackers.

1.3. PROBLEM STATEMENT

The detection of a zero-day assault is notoriously tough. Anti-malware tools are

frequently unsuccessful since new malware does not have a signature in the anti-

malware database [7].

Obfuscated strings, used by most of the malicious software, conceal the instructions

that inform an infected machine when to do certain actions. Obfuscation prevents static

code analyzers from identifying harmful data. Before the malicious program is

executed, the original code is hidden.

5

1.4. OBJECTIVE

The main goal is to collect samples (malware and benign) in portable executable file

format and first convert them to images, and second, extract API call sequences from

samples to create two new datasets.

Develop a hybrid deep learning method that can detect and accurately classify malware

in real time. This will be done by using deep learning methods to develop three

different models based on static and dynamic approaches to identify and classify

malicious software in case it is encrypted or uses techniques to hide itself. These

models will be used to overcome the zero-attack.

1.5. CONTRIBUTION

We can summarize contributions as:

• Created two new datasets, each containing 7,513 malware and 1,000 benign in

30 classes (29 classes of malware family and 1 class of benign): The first

dataset includes grayscale images after converting all samples to grayscale

images, while the second dataset (a csv file) includes API call sequences for

each sample extracted by the Python Pefile library.

• After conducting experiments, we chose the most efficient models trained on

two datasets in terms of accuracy, memory consumption, and speed to detect

and classify malware in real time. These models successfully predicted real

malware after passing samples that belong to the same families but do not exist

in the dataset.

• The first 50 API call sequences were extracted by the Python Pefile module for

each malicious and benign program to create the dynamic dataset as a CSV file

to make detection as quick as possible.

• Designed a light-weighted 2D-CNN model with a 7x7 array of API call

sequences after reshaping by calling the first 49 API call sequences of the

dynamic dataset, which is a small array, and experiments proved the model has

high accuracy and very high speed in detection and classification.

6

• The year 2022 was the source of the great majority of the samples of malicious

software that were gathered.

1.6. THESIS STRUCTURE

In the first part of this study, we'll look at what malware is, what kinds of analysis can

be used to find it, and what new techniques are being used to find and classify it.

In the second part, we'll go over the most important studies that have been done on

how deep learning can be used to find malware.

The third part presents a detailed study of deep learning, focusing on CNNs and RNNs

as well as the models associated with each network type.

In the fourth part, we'll talk about how to make our dataset, our method, and the

methods we used in our study.

In the fifth part, we will talk about the study's results and what they mean.

The study's conclusion and what will come next in future work will be in the sixth part.

7

PART 2

LITERATURE REVIEW

An overview of the most significant approaches used in prior investigations is provided

in this section based on deep learning for three types of analysis: static, dynamic, and

hybrid analysis, and a comparison between the techniques used in each type in terms

of model, accuracy, advantage, and dataset used.

2.1. STATIC ANALYSIS APPROACH

Malware may be analyzed using a method known as static analysis, which does not

involve actually running the malware. The binary files of malware are turned around

into readable format so that specialists may better comprehend the malware's intended

behavior. Assembly codes and file header information are also retrieved as static parts.

This form of investigation is usually a quick and simple way to examine malware

without needing to run it.

In 2011, Nataraj et al. proposed a new and entirely distinct technique for visualizing

and analyzing malware. Malware PE (portable executable) is displayed as a binary

image and can identify malware based on visual similarities in images belonging to

different families by identifying substantial visual similarities in image textures [8].

The malicious binary was converted into an image by first converting the Portable

Executable (PE) file into an 8-bit vector and then translating that vector into a

grayscale image. Since every pixel in the image is made up of 8 bits, with 0

representing black and 255 representing white, and grayscale gradients being in

between those two values.

Jin et al. presented a way to detect malware by using the Autoencoder model, one of

the unsupervised deep learning models, by understanding the functional properties of

8

malware, and then examining the Autoencoder's reconstruction error in order to

achieve malware classification and detection [9].

The ResNeXt model is one of the CNN models used to detect malware with a dataset

consisting of the Malimg dataset, which consists of 25 families [8]. Then add malware

samples from the websites of VirusTotal [10], Malshare [11], and VirusShare [12].

The result proved that ResNeXt is better than the ResNet and InceptionNet models in

features and performance [13].

CNN's VGG19 fine-tuning is another of CNN’s models used to fit visualization images

of malware and solve imbalanced samples in the Malimg dataset without using data

augmentation by undersampling the dataset via defining the highest limit of malware

files, which must belong to every category of malware [14].

Another method used to solve the dataset imbalance in the Malimg dataset and the

overfitting problem by using a fine-tuned CNN and data augmentation, as well as using

a color-map to convert the Malimg grayscale dataset to color, explained that the

calculation cost was reduced and the accuracy of the results improved over previous

studies [15].

It achieved high classification performance to detect malware on the basis of a

technique displaying malicious software in the manner of entropy graphs based on

structural entropy and then extracting features using a combined framework consisting

of CNN and Support Vector Machine (SVM) as classifiers [16].

Both packed and unpacked malware are effectively detected by the architecture, which

consists of CNN and multiple class SVM for classification, fine-tuned CNN with

Softmax for classification and fine-tuned CNN with multiple class SVM for

classification [17].

Some studies used two approaches in deep learning, CNN and RNN, by making use

of minhash to produce feature images based on the combination of the original codes

9

and the RNN's predicted codes, and then training a CNN to identify feature images to

detect malware [18].

The imbalance in the dataset is considered one of the most important problems facing

researchers, which is the lack of evenly collected models within the dataset, which

causes low accuracy with little data .To deal with imbalanced data problems, CNN's

DenseNet model is implemented on four data sets(Malimg, Microsoft BIG 2015 [19],

Malevis [20], and Malicia [21]), three are used to train the data, and the fourth is used

for test data. [22].

Anandhi et al. suggested two models: VGG-3 and DenseNet. This method visualizes

malware as Markov images and extracts textures from Markov images using the Gabor

filter [23].

Mai et al. offer up A decomposing deep neural network with the purpose of improving

the malware variants detection approach, which consists of deep convolutional neural

networks (DCNN) and Single Value Decomposition (SVD), to process the problem of

significant computational resource consumption and time cost by splitting the pre-

trained conventional operation into two smaller convolution processes [24].

They used a disassembly technique to gather executable file samples and convert them

to bytes and asm files. In this method, visualization techniques are utilized with data

augmentation to extract key features from the data samples, then the samples will be

converted into three-channel RGB images, and to boost the detection method's

performance, a model consisting of three layers was implemented: the SEResNet50

layer, which consists of two models (ResNet50 and SENet), the Bidirectional LSTM

layer, and the Attention layer [25].

The categorization of malware is accomplished by the use of multi-channel

visualization, and the LeNet5 model was suggested. Assembly instructions and

malware binary bytes were used to generate a matrix using Word2Vec. The findings

demonstrate that the approach for classifying malware has a high level of consistency

in its correctness, and further examples of malware were found [26].

10

To identify malicious applications, it employs machine learning and signature

matching algorithms. It builds a random forest algorithm with the features in the

Portable Executable file header to recognize the malware. This RF design will be

employed to analyze a sample and determine whether or not it is harmful by utilizing

the signature matching approach, which compares the MD5 hash of the sample to the

database, which contains the MD5 hashes of the known malware and its families [27].

The drawback of this strategy is that it can be evaded by new malware.

Markel and Bilzor suggested a malware detection approach for Windows PE files that

relied on information in the PE header. The method builds the model using the

metadata for the file. The testing findings demonstrated that the executable's metadata

may be utilized to distinguish between goodware and malicious software. On the

constructed feature of the portable executable header, three machine learning

algorithms were applied; however, the Decision Tree algorithm beat the logistic

regression and NB algorithms [28,29]. The fundamental disadvantage of the NB

classification is that it performs poorly when the data characteristics in the training

data are correlated [29].

Nagano and Uda suggested a malicious detection mechanism in which runtime files

were analyzed using static analytical techniques to acquire features such as hex dumps,

DLL imports, and assembly code. These features were employed by the paragraph

vectors, and the KNN and SVM algorithms were based on them. The investigation

employed 3600 malicious files and had an accuracy rate of 99% [29,30]. Simple

obfuscation strategies, on the other hand, can circumvent the suggested methodology

[29].

Darabian et al. proposed approach for detecting IoT malware utilizing opcode

sequences employs 247 IoT malicious files and 269 benign apps. It has been

effectively detecting IoT malware, benign apps, and polymorphic malware by

integrating sequential pattern mining methods with machine learning approaches

(SVM, KNN, MLP, Decision Tree, Random Forest, and AdaBoost) and obtaining

higher than 99% accuracy and an F1-score [31]. The disadvantage of this strategy is

that some obscured code is never disclosed.

11

Lu offered an innovative and efficient technique for automatically learning malware

opcode sequence patterns First, utilized the disassembly program IDA Pro to get the

malware's opcode sequence. The feature vector representation of the opcode is then

learned using the word embedding approach. Finally, for malware detection, it

suggested a two-stage LSTM model. Training was conducted on a dataset including

969 malicious with 123 goodware software. The result proves that in the best situation,

The suggested approach can obtain a mean AUC of 99% and a mean AUC of 98.7%.

The study used only the opcodes and ignored the operands, which may have shown

other sensitive information between malicious and goodware files [32].

Sanz suggested using machine learning algorithms to categorize Android applications.

They retrieved three distinct set of features: the frequency of printed strings, the app's

varied permissions, and the app's permissions obtained from the Android store. They

performed studies on 820 data from seven different families using Random Forest,

J48, KNN, Bayesian Networks, Naive Bayes, and SVM as classifier and determined

that Bayes TAN was the best case with an AUC of 0.93 [33,34]. The study's

disadvantage Malicious applications were not considered [34].

Milosevic et al. presented two static analysis strategies for Android malware that use

machine learning. The first method relies on permissions. The logistic regression

model as a classifier achieves 82% for three metrics (precision, recall and F-score).

The alternative method collects features about code files. Following the inversion of

Android applications into many Java files, followed by a bag-of-words model is

utilized to produce feature vectors using the natural language processing approach.

The framework incorporates logistic regression, SVM with SMO, simple logistic

regression, and AdaBoostM1 with SVM algorithms, which obtain 95.8% Precision,

95.7% Recall, and 95.6% F1-score [34,35]. The authors' dataset in this study was tiny,

and no tests were performed on the larger sample [34].

The most significant past research using static analysis with artificial intelligence

approaches is outlined in Table 2.1 following.

12

Table 2.1. A summary of static malware detection methods.

Authors Model Advantage Accuracy Dataset

Sun and
Qian [18]

CNN
RNN

high accuracy and good
generalization

99.5%
Microsoft BIG
2015

Hemalatha
et al. [22]

DenseNet

Detect new malware samples

and effective against

obfuscation attacks.

98.23%

98.46%
98.21%

89.48%

Malimg

Microsoft BIG

2015

Malevis
Malicia

Anandhi et
al. [23]

VGG-3
DenseNet

The detection, classification,

and execution times have

been enhanced.

99.94%
98.98%

Malimg

Microsoft BIG

2015

Mai et al.

[24]
Dec-DCNN

Reduce the computational

resource consumption and

time cost of malware

detection.

98.5%
Microsoft BIG

2015

Jian et al.
[25]

SEResNet50

+ Bi-LSTM

+ Attention

High performance 98.31%
Microsoft BIG
2015

Mitsuhashi
and

Shinagawa

[14]

VGG19

High accuracy and solved

the problem of sample data
imbalance

99.72% Malimg

Jin et al. [9] Autoencoder
results against redundant API
injection

93%
Korea
University

Go et al.

[13]
ResNeXt

good performance in

malware detection
98.8%

Malimg,

VirusTotal,

Malshare,
VirusShare

Vasan et al.

[15]
CNN

Using minimum run-time,

identify hidden code,

disguised malware, and
malware family variations

98.82%

97.35%

Malimg

IoT-Android

Xiao et al.
[16]

CNN -SVM

Entropy

graphs

resistant to the effects of data

imbalance and obfuscation

techniques

99.7%
100%

Malimg

Microsoft BIG

2015

Vasan et al.

[17]

CNN -SVM

flexible, practical, and
efficient by detecting new

malware in 1.18 s

99%

98%

Malimg

Virusshare

Qiao et al.
[26]

LeNet5
High, stable accuracy and
classifies new malware.

98.76%
Microsoft BIG
2015

Acharya et

al. [27]
RF

identify malware that has

been altered or polished by
the hackers.

99%
MD5 hashes

dataset

Markel and

Bilzor [28]

DT
LR

NB

The implementation of the

NB prediction model is
simple and straightforward.

It can do effectively with

irrelevant datasets.

97%

94.5%

122799
Malware

42003 Benign

13

Nagano and

Uda [30]

SVM

k-NN

KNN is incredibly easy to

implement and can be

upgraded for very little cost
as new samples with

established class labels.

99%

MWS 2016

Malware
Dataset

Darabian et

al. [31]

SVM - KNN
MLP - DT

RF

AdaBoost

Identifying polymorphic

Internet of Things malicious

files.

99% VirusTotal

Lu [32] LSTM

efficacy of the suggested
opcode approach for

identifying and classifying

malware.

99%
Opcode

dataset

Sanz [33]
RF - KNN

BN - SVM

The suggested approach
allows for quick

categorization of benign

applications.

93%

Collected by

the
researchers

Milosevic et

al. [35]

SVM -SMO

+ LR +

Simple LR +
AdaBoostM1

+ SVM

Good efficiency may be
attained by using the

ensemble learning approach.

95.8%
95.7%

95.6%

Collected by

the researchers

2.2. DYNAMIC ANALYSIS APPROACH

The malicious functions are discovered via dynamic analysis while the program is

operating. It digs deep into malware's code obfuscations, which static analysis may

find difficult to grasp, and explores true functionality behind them. This method of

malware analysis is always considered as the most efficient. Furthermore, the dynamic

approach necessitates a closed and isolated setting with sufficient monitoring.

User programs in Windows need interfaces like kernel32.dll and user32.dll to

communicate with the operating system and its hardware and software parts. These

interfaces are provided by dynamic link libraries (DLL). Figure 2.1 shows how calls

to the Windows API can be made. The Win32 API is the name of this interface. For

instance, when a user application needs the Win32 API method for reading a file, the

operation immediately goes to the NtReadFile procedure in the ntdll.dll kernel case.

The NtReadFile function then calls the kernel mode service method. The best way to

keep an eye on a program is to actively keep track of its API calls. The functionality

of APIs cannot be classified as either dangerous or goodware. In other words, the

malware exploits standard API calls to commit illegal actions. Both harmful and

14

benign files have access to the same API. Only by analyzing the context of a series of

API requests can malicious and benign activities be distinguished [36].

Figure 2.1. Windows API call mechanism [36].

A new dataset that portrays the behavior of malicious software and is offered by Catak

et al. includes API calls that were executed on the Windows operating system. A

method of categorization that is based on the different types of malwares was

developed. In this particular piece of work, the LSTM classification technique was

used; it is an approach to classification that is employed commonly when working with

sequential data [37].

The cuckoo sandbox was used to retrieve the malware's API call sequence. After

applying certain filters and doing some sorting, the repeated API calls were removed

down to the distinct API sequences. The sequence was vectorized using the word2vec

approach, and 21,378 samples from the Virus Share website were used as test datasets.

On the massive dataset, BLSTM was shown to have the best malware detection

performance when compared to GRU, BGRU, LSTM, and Simple RNN [38].

There are several ways to combine the LSTM model with other machine learning

techniques, such as the Random Forest method, which uses API statistics as well, in

order to design a system architecture that is a good alternative method. This

15

architecture can be designed by combining two algorithms. The malicious samples

were chosen at random from VirusShare and VirusTotal, and the sequence data

preparation method was explored in order to eliminate redundant data. Experiments

demonstrate that the combined classifier outperforms machine learning or deep

learning on its own [39].

The Malbert model suggested by Xu et al. [40] is a dynamic analysis-based deep

learning model for identifying malicious Windows apps. The experiments made use

of the Ki dataset [41] , which had a total of 44262 samples, whilst the Catak dataset

[42] , which contained a total of 7207 samples, was used for the second dataset. The

results demonstrated that the model outperformed previous models in detecting

anomalies in perturbed test data.

To discover previously unidentified malware, researchers have developed a

multimodal deep learning system made up of an autoencoder layer in the first place,

numerous layers of Restricted Boltzmann Machines (RBM), and an associative

memory layer. Each prediction for the detection of unidentified dangerous software

takes 0.1 seconds [43].

Jindal et al. developed a neural network for malware detection that learns

spontaneously from dynamic analysis reports that describe behavioral information

rather than relying on feature engineering. The model is based on document

classification principles and uses word sequences in reports to determine whether or

not a report is from a malicious binary. The result is better than the previous works in

terms of performance and can be used effectively [44].

In the IoT environment, A new deep learning malicious program identification system

relying on behavior was built. Combining behaviors with the Stack Autoencoder

yielded the greatest detection results. The model can acquire deeper abstract semantic

features and improve detection precision by 1.5 percent on average, according to the

results of the experiments [45].

16

A new method for detecting malware was proposed by Deep Graph of CNN during

the conversion of API call sequences extracted from Cuckoo sandbox environments to

behavior graphs. The experiment was applied to a dataset of more than 40,000 malware

programs. The results showed the possibility of detecting malware through graphs

converted from API calls [46].

Tang and Qian presented a deep learning and visualization strategy by extracting API

calls based on dynamic way, after that producing important images feature that reflect

virus behavior using color mapping algorithms. Finally, CNN is utilized to categorize

the feature images. The result shows that visualization and CNN are efficient for

malware categorization [47].

An API call-based deep learning framework was utilized to detect and categorize

malware. LSTM and GRU recurrent neural networks were used to build the model.

When the two architectures are compared, LSTM outperforms GRU. According to the

test results, the model using the LSTM structure has an accuracy rate of 97.3 percent

in binary classification and 56.05 percent in multiple-class classification [48].

The most important findings from previous research that combined dynamic analysis

with deep learning methods are summarized in the table that follows (Table 2.2).

2.3. HYBRID ANALYSIS APPROACH

The benefits of a static approach and a dynamic approach are integrated in this method

so that the best of both worlds may be achieved.

Huang et al. developed a method for merging static and dynamic images using two

VGG-16 network models, the first for hybrid images and the second for static

visualization with the dataset from virussign.com [49].

17

Table 2.2. A summary of dynamic malware detection methods.

Authors Model Advantage Accuracy Dataset

Xiaofeng et

al. [39]
LSTM – RF

Combined classifier

outperforms machine

learning or deep learning on
its own.

95.7%
Virus Share

Virus Total

Liu and

Wang [38]

GRU, BGRU

LSTM, BLSTM
Simple RNN

BLSTM increases model
performance for sequence

classification problems

more than other models.

93.70%

93.72%

97.55%
97.85%

95.70%

Virus Share

Catak et al.

[37]
LSTM High level of accuracy 98.50% API call dataset

Xu et al. [40]
Encoders +

Attention layer

On altered test samples, it

has a high detection rate

and surpasses previous

models.

99.98%

99.82%

Ki dataset

Catak et al.

Ye et al. [43]
Autoencoder

RBMs

detect newly unknown

malware
98.20%

Comodo Cloud

Security Center

Jindal et al.

[44]

CNN-LSTM-

Attention

outperforms similar

approaches for malware

classification

87%

86.7%

Vendor Dataset

Ember Dataset

Xiao et al.
[45]

Autoencoder -ML

Learn deeper features and

enhance detection precision

by 1.5 % on average.

98% VX Heaven

Oliveira et al.

[46]
LSTM

Malware detection using
graphs generated from API

calls

99% API call dataset

Tang and
Qian [47]

CNN

For malware categorization,

visualization with color
images and CNN are

efficient.

98%-99% Virus Share

Aditya et al.
[48]

LSTM-Adam

LSTM-RMSProp
GRU-Adam

GRU-RMSProp

The best binary

classification model is
achieved using LSTM and

the RMSProp

96.44%

97.30%
96.44%

96.62%

Catak dataset

Andrade et al.
[50]

An efficient system is used that consists of static analysis, dynamic analysis, and image

processing approaches relied on CNN as well as LSTM for detecting and classifying

zero-day malware with two datasets, dataset1 is Malimg [8] and dataset 2 was

collected from VirusSign [51] and VirusShare [12] , the results proved that BLSTM

has the best performance [52].

A hybrid malware detection system was built by coupling a Bidirectional LSTM with

a Spatial Pyramid Pooling Network (SPP-Net). The goal of this system was to secure

18

Internet of Things equipment and decrease the effect of malware using obfuscation

techniques, It detects encrypted malware by doing simultaneous static and dynamic

analyses, which is hard to achieve with static analysis alone and the Shannon entropy

is used to detect obfuscated malware [53].

Researchers simplified both the static and dynamic analysis of crypto mining

malicious files by using several methodologies from deep learning. They employed

LSTM, Attention-based LSTM, and CNN to examine the opcodes of crypto mining

malicious files, and as a result, they identified a high degree of accuracy with a low

percentage of false – positive. The Cuckoo sandbox was used to run the malware in

order to record system call event sequences for the dynamic analysis [54].

In a smart city environment, offer a two-stage hybrid malware detection approach for

protecting IoT devices against obfuscated malware. After completing static analysis,

the opcode is extracted, and benign files are recognized using the learnt knowledge

using a Bi-LSTM. The files designated as benign are then subjected to a dynamic

analysis in a layered virtual environment. Malware may be discovered using the

EfficientNet-B3 model after extracting information on behavior and process memory

from the behavior log [55].

To offer a new Android malware classification technique based on deep neural

network (DNN), extracted static and dynamic information, then translated it into

vector-based representations, after that, the dynamic information is transformed into

graph-based forms, and graph kernels are used on the collections of graphs that have

been created. hierarchical Multiple Kernel Learning, often known as MKL, is used as

a hybrid classifier to combine a number of different vector and graph feature sets [56].

Table 2.3 summarizes the most significant results from prior studies that integrated

hybrid analysis with deep learning approaches.

19

Table 2.3. A summary of hybrid malware detection methods.

Authors Model Advantage Accuracy Dataset

Huang et al.

[49]
VGG-16

Detection of unknown

malware effectiveness
94.70% Virussign

Vinayakumar

et al. [52]
CNN - LSTM

detecting and classifying

zero-day malware
96.3%

Malimg

Virussign
Virusshare

Jeon et al.

[53]

BiLSTM

SPP-Net

Detect and classify IoT

malware

92.5%

92.09%

Korea Internet

& Security

Agency
(KISA)

Darabian et

al. [54]

LSTM, ATT-

LSTM, CNN

Detect crypto mining

malware

95%

99%
Virustotal.com

Baek et al.

[55]

BiLSTM,

EfficientNet
B3

Safeguard IoT devices

against obfuscated
malware in a smart city.

94.46%

94.98%

Korea Internet
& Security

Agency

(KISA)

Xu et al. [56] DNN
Detect malware for

android.
94.7%

Google Play,

VirusShare

20

PART 3

THEORETICAL BACKGROUND

The purpose of this section is to offer a description of the different deep learning

approaches that were used in our research to identify and classify malware.

3.1. CONVOLUTIONAL NEURAL NETWORK

When it comes to deep learning methods for identifying and categorizing malicious

software, Convolutional Neural Network (CNN) have become one of the most well-

known and widely used techniques. As indicated in Figure 3.1, The basic components

that make up a CNN are known as the convolution layers, the pooling layers, and the

fully connected layers. While using kernels in the convolution layers, each kernel is

convolved throughout the input's spatial dimensions to generate an activation map in

two dimensions. The pooling layers will down sample the input dimension, thereby

decreasing the number of parameters within that activation. The next step involves the

fully connected layers making an effort to generate a class that can be applied to the

data [57].

Figure 3.1. Basic CNN Architecture

Input image
Convolutional

layers

Pooling

layers

Flattening

Fully Connected layers

21

3.1.1 Convolutional Layers

Convolutional layer is the major component that goes into the building of a CNN. It

includes several filters or kernels, whose parameters must be learned as part of the

training procedure. In most instances, the dimensions of the filter will be more

diminutive than those of the image. To generate an activation map, each filter

convolves the input image. In convolution, we iteratively move the kernel across the

vertical and horizontal distance of the image, calculate the cross product between

every kernel value, and identifying the input for every location [58]. Figure 3.2 offers

a visual representation of the procedure that is known as convolution.

Figure 3.2. Convolutional layer process [58].

3.1.2. Pooling Layers

To do pooling, just move a 2-dim kerel over every channel for the feature map, and

any features that lie within the kernel's coverage region will be added together to form

the final feature set. Pooling layers is one way to cut down on the overall size of the

feature maps. As a consequence of this, it reduces the amount of load that is imposed

on the network as well as the quantity of parameters that need to be learned. The

convolution layer's output, the feature map, is used as the basis for the pooling layer's

creation of a summarization of the features found in a specific region of the map.

Examples of pooling layers include Max pooling, which gets the greatest value in

every kernel region part of the feature map. To do this, a max-pooling layer would

create a feature map made up of the most important parts of the feature map that was

given as input [59]. Example of the Max Pooling procedure is shown in Figure 3.3.

22

Figure 3.3. Max pooling operation [59].

3.1.3. Fully Connected Layers (FC)

Linking the final feature maps, which are produced by the last convolution layer or

pooling layer, with a great number of layers that are entirely connected is a popular

method. Dense layers are often used to describe these layers, in addition, it is common

practice to guarantee that every input is related to every output by a weight that may

be trained. Finally, a series of fully connected layers transforms the features discovered

by the layers of convolution and pooling into the final outputs of the network, which

include possibilities for categorization. [60]. Figure 3.4 shows layers that are fully

connected to one another.

Figure 3.4. Fully connected layers.

23

3.1.4. Activation Functions

The activation function may behave as either a terminal or an intermediate node in

neural networks. They play a role in deciding whether the neuron will fire. Rectified

Linear Units are an example of a typical kind of activation function that may be found

(ReLU). The fact that ReLU does not activate all neurons simultaneously is one of its

major advantages over other activation mechanisms. ReLU function transforms all

negative inputs to zero, preventing neuron activation. Few neurons are stimulated at a

time, resulting in an extremely efficient use of computing resources [61].

3.1.5. Batch Size

The "batch size" hyperparameter specifies the number of samples that must be handled

before the inner parameters of the model may be updated. Batches could be regarded

as a for loop that predicts again and over again based on a collection of data from

samples. By comparing the actual output variables with the projected ones, an error

may be calculated after the batch has finished processing. These errors are taken into

consideration by the update approach so that the model may be improved [62].

3.1.6. Epoch

For each iteration of the learning process, the number of times it will examine the

whole training dataset is controlled by a hyperparameter called epochs. Every epoch

has provided a chance for every training dataset to influence the inner parameters of

the model. Numerous batches make up the epoch [62].

3.1.7. Loss Function

The loss function is the measure that establishes the degree to which the real output

produced by the algorithm differs from the result that was expected by the approach.

It is a technique for determining how well your algorithm mimics the data. It is possible

to separate it into two distinct categories. One for classification (using discrete values

such as 0, 1, 2, etc.), and the other for regression (continuous values) [63].

24

3.1.8. Dropout Learning

One of the strategies that is used in order to prevent memorization is known as

Dropout. During the training phase of this approach, the activation of a number of

neurons within the network is chosen at random and assigned the value zero. Each

iteration of the training results in a different set of selected neurons. By using this

strategy, the process of learning and the chance of overfitting are both slowed down

[54,55].

3.2. CNN MODELS

This is the explanation and architecture of three common models of CNN implemented

in this study.

3.2.1. VGG16

In 2014, Oxford University researchers Karen Simonyan and Andrew Zisserman [64]

conceived of the VGG based on the architecture of a CNN. The model was entered

into the 2014 Large Scale Visual Recognition Challenge (ILSVRC2014), where it got

a score of 92.7 percent on the ImageNet dataset and a top-five test accuracy rating. As

shown in Figure 3.5, there are sixteen weighted layers, thus the number "16" in

VGG16. Even though VGG16 has a total of 21 layers (13-layer of convolution , 5-

layer of max pooling , and 3-layer of dense), it only has sixteen weighted layers [65].

Figure 3.5. VGG16 layers [66].

25

The 1st and 2nd convolution layers each include 64 kernel filters that make them up,

and the shape of each kernel is 3x3. When the image (3-channel) is processed through

the 1st and 2nd convolution layers, its dimensions become 224,224,64. After that, a

max pooling layer receives the outcome with two strides.

The 3rd and 4th convolution layers are consisting of 128 kernels, with the shape of

3x3. A layer of max pooling with two strides follows these two convolution layers,

and after that the output is lowered to 56,56,128.

The 5th, 6th, and 7th layers are convolution with a filter shape of 3x3 using a 256-

kernel. When they are complete, a max pooling layer that uses two strides will be

added.

The 8th–13th layers are groups of convolution layers with a kernel shape of 3x3. These

groups of layers of convolution use 512 kernels. A layer of max pooling with one stride

follows these two convolution layers.

Both the 14th and 15th layers are hidden layers with 4096 units each, while the 16th

layer is an output layer using SoftMax with 1000 units [67]. See Figure 3.6 for a

schematic of the components that make up the VGG16 model.

Figure 3.6. VGG16 architecture [66].

26

3.2.2. ResNet50

Residual Network was the winner of the ILSVRC [68] in 2015, which is a yearly

competition in which software is judged on its ability to accurately identify and

recognize objects. Kaiming He [69] is the inventor of ResNet to build ultra-deep

networks that did not suffer from the vanishing gradient issue that plagued previous

generations by creating shortcut pathways between layers. The identity connection

between the layers is the sole addition that must be made to the basic network to

transform it into a residual network. The remnant block that was utilized in the network

is shown in the Figure 3.7. You can recognize the link to the identity by the curving

arrow that starts at the input and travels all the way to the bottom of the residual block.

Figure 3.7. Skip connection [69].

The size of the image in this architecture that is sent in is 224x244 with 3 channels and

started with the kernel of the convolution layer is 7x7x64 with a stride of 2 and

following that will be max pooling using 2-step strides. After that, we have 4 stages of

convolutional layers, as illustrated in Figure 3.8. The identity link is shown by the

curving arrows in the diagram. The convolution process that takes place in the residual

block makes use of two strides, as can be seen from dotted arrows.

Stage 1's convolution layers consist of a 1x1x64 kernel, a 3x3x64 kernel, and a

1x1x256 kernel. With three repetitions of these three layers, we now have nine total

layers. The second stage of convolution layers consists of the following kernel sizes:

(1x1x128), (3x3x128), and (1x1x512). This process of layering was performed four

27

times, for a total of 12 layers. The third stage is made up of a 1x1x256 kernel and two

more kernels that are 3x3x256 and 1x1x1024. For the fourth stage, we used a kernel

of 1x1x512, followed by 3 x3x512, and 1x1x2048, for a grand total of 9 layers.

Following that, a global average pooling is performed, and at the end of the model, we

are left with a fully connected layer that has a total of one thousand neurons [70].

Figure 3.8. Resnet50 architecture.

Conv 1x1, 64, Conv 3x3, 64, Conv 1x1, 256

Conv 1x1, 64, Conv 3x3, 64, Conv 1x1, 256

Conv 1x1, 64, Conv 3x3, 64, Conv 1x1, 256

Conv 1x1, 128, Conv 3x3, 128, Conv 1x1, 512

Conv 1x1, 128, Conv 3x3, 128, Conv 1x1, 512

Conv 1x1, 128, Conv 3x3, 128, Conv 1x1, 512

Conv 1x1, 128, Conv 3x3, 128, Conv 1x1, 512

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024

Conv 1x1, 256, Conv 3x3, 256, Conv 1x1, 1024

Conv 1x1, 512, Conv 3x3, 512, Conv 1x1, 2048

Conv 1x1, 512, Conv 3x3, 512, Conv 1x1, 2048

Conv 1x1, 512, Conv 3x3, 512, Conv 1x1, 2048

Max pooling 3x3, stride 2

Conv 7x7, 64, stride 2

Global Avg pooling 7x7

Fully connected, 1000

Input (244,224,3)

28

3.2.3. Inception V3

The design of this model (3rd version) was released in the year 2015 [71].This version

of the model consists of 42 layers and has a lower error rate than the previous two

versions. In this type of version of Inception 3, there were a lot of important changes

to increase the performance of the model, and these changes can be seen in the

switching from larger to smaller convolutions, an asymmetrical convolution, an

auxiliary classifier, and efficient scaling down of grid sizes. The Inception V1 model's

considerable decrease in dimensions was one of its greatest assets and one of its most

beneficial aspects. In Inception V3, the model's performance was increased by

partitioning the larger convolutions into a collection of smaller convolutions. The

factorization into smaller convolutions is shown in Figures 3.9, 3.10.

Figure 3.9. 5×5 conv layer(left) was replaced by two 3×3 conv layers(right) [71].

Figure 3.10. One 5x5 conv layer replaced two 3x3 conv layers [71].

29

The decrease in the total number of parameters leads to a drop in the total amount of

computing effort required. The reduction of bigger convolutions by replacing them

with smaller convolutions led to a gain of 28 percent as a consequence of this

factorization. They were able to do this by performing a 1x3 convolutional operation

first, followed by a 3x1 convolution in place of the conventional 3x3 convolutions.

When considering the same shape of output and input filters, the two-layer technique

is 33 percent more cost-effective. Figure 3.11 shows the factorization in the Inception

module.

Figure 3.11. Asymmetric factorization in the Inception module [71].

Auxiliary classifiers are often utilized because they make it easier for very deep neural

networks to converge. When dealing with very deep networks, the primary function of

the auxiliary classifier is to overcome the issue of vanishing gradients. Early on in the

training, the auxiliary classifiers did not contribute to any progress. At the conclusion,

however, the network with auxiliary classifiers demonstrated more accuracy than the

network without auxiliary classifiers. Thus, the auxiliary classifiers in the Inception

V3 model architecture work as a regularizer. The auxiliary classifiers are explained in

Figure 3.12.

30

Figure 3.12. The Auxiliary classifier works as a regularization [71].

Typically, max pooling and average pooling were employed to lower the feature map

grid size. As part of the Inception V3 model, the activation dimensionality for the

network kernels has been expanded to help efficiently reduce the grid size. And this is

accomplished by concatenating two parallel blocks of convolution and pooling [72],

as shown in Figure 3.13.

Figure 3.13. A Detail structure for efficient grid size reduction [71].

31

Following all optimizations, the final Inception V3 structure appears in Figure 3.14.

Figure 3.14. Google Inception v3 architecture [73].

3.3. RECURRENT NEURAL NETWORKS (RNN)

A recurrent neural network, often known as an RNN, is an artificial neural network

that can analyze sequential input, detecting patterns, and predicting the final outcome.

This neural network is referred to as "recurrent" because it can repeatedly execute the

same task or operation on a set of inputs. An RNN has an internal memory that allows

it to memorize information from the input it receives, which assists in context

acquisition for the system. As a result, a recurrent neural network is an excellent choice

for the handling of sequential data, for example, a time series.

The short-term memory of RNN is a concern because it will have difficulty sending

information from earlier time phases to later time phases if the sequence is lengthy.

When attempting to make a prediction, RNN may leave out essential information in

the beginning. LSTM and GRU are two technologies that were created as a means of

improving short-term memory, which include gateways that control the flow of data.

32

3.3.1. Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber were the ones that came up with the idea for LSTM first

[74]. In the field of deep learning, one sophisticated version of RNN architecture

known as long short-term memory (LSTM) is used. LSTM, in contrast to the more

prevalent feed-forward in common neural networks, may also process information

through its feedback connections. In addition to being able to process data streams

such as audio, it can also handle visual information. LSTM is employed for a variety

of tasks including handwriting recognition [75], voice recognition [76] and anomaly

detection. An input gate, an output gate, and a forget gate make up each cell in a typical

LSTM unit, as shown in Figure 3.15. It is up to the forget gate to decide which data

has to be carefully considered and which may be safely discarded. With the aid of the

input gate, it is possible to gauge the importance of the fresh data given by the input.

The value of the following hidden state is set by the output gate [77]. The flow of data

inside and outside of the cell is controlled by the cell's three gates, and the cell is able

to retain information for extended periods of time. LSTM is ideal to categorizing and

making expectations relied on time series information since major events in a time

series may have unforeseen delays. LSTM was developed to address the issue of

vanishing gradients that may arise when using normal RNN for training.

Figure 3.15. Structure of LSTM

yt

Ct

ht

xt

ht-1

Ct-1

σ tanh σ

σ

tanh f
i

ot

33

3.2.2. Gated Recurring Units (GRU)

The GRU is a more recent form of recurrent neural network that mimics an LSTM in

its work, introduced in 2014 by Kyunghyun Cho et al. [78]. It is composed of two

gates, one of which serves as a reset gate, whereas the other is an update gate. Each

gate performs a different function. The GRU's update gate performs the same function

as the forget gate as well as the input gate in the LSTM model. It makes decisions on

what data should be thrown away and what data should be kept, whereas it was decided

how much of the previous data should be erased using the reset gate mechanism. The

GRU will not take into consideration the cell state that made use of the concealed state

to transmit data. The structure of the GRU is shown in Figure 3.16.

GRU has short parameters in training since it has two gates (reset and update),

indicating that it uses less memory, executes quicker, and learns faster than LSTM,

even though LSTM is more accurate on datasets with longer sequences.

Figure 3.16. Structure of Gated Recurring Units (GRU)

rt zt

ht

xt

ht-1

tanh σ σ

1-

~ht

34

PART 4

METHODOLOGY

4.1. DATA COLLECTION

The virusshare website [12], which is a store of malware samples for researchers

working in the field of information security, was used to gather 7513 malicious

Portable Executable (PE) files from 29 families for this investigation. We gather

malware families by generating queries based on the Microsoft Malware Protection

for labeling malware. As can be seen in Figure 4.1, which depicts the query that was

used during the search for AKO family names that belong to the ransomware, which

is a type of malware after 1-3-2022 in date. While 1000 of the EXE benign files were

collected from the site [79], so that the classifications became 30 categories as shown

in Table 4.1. We gathered data over the course of a month, and the primary purpose of

this data gathering was to build two datasets, one by converting samples to images and

the other by extracting API call sequences for each sample, to finally categorize

malware families and benign applications using deep learning techniques.

Figure 4.1. A Screenshot of the website for VirusShare.com.

35

Table 4.1. Malware families and types.

No. Family Type samples

1 Benign Benign 1000

2 Ako Ransomware 260

3 Autorun.NE Virus 249

4 Banker.LY TrojanSpy 260

5 Delf.DU Backdoor 260

6 Drolnux.B Worm 259

7 Eggnog.A Worm 300

8 GandCrab.AE Ransomware 220

9 Ganelp.E Worm 260

10 Linkury.RS!MTB Adware 244

11 Neconyd.A Trojan 259

12 Nemucod TrojanDownloader 260

13 Neojit.A TrojanDownloader 300

14 OpenInstaller PUA 260

15 Playtech PUA 260

16 QQPass.GP PWS 260

17 Qukart TrojanSpy 260

18 Resur.A!epo Virus 258

19 Shodi.A Virus 220

20 Simda.D PWS 159

21 Sivis.A Virus 260

22 Small.M TrojanSpy 260

23 Soltern!rfn Worm 260

24 Trickbot.GML!MTB Trojan 300

25 Unruy.F TrojanDownloader 260

26 Upatre.A TrojanDownloader 300

27 Urelas.AA Trojan 260

28 Wabot.A Backdoor 260

29 Yoof.E Worm 289

30 Zombie!rfn Trojan 256

During the course of this research, 8,513 malicious and benign samples were gathered

and distributed among 30 different classes of samples. The statistical chart in Figure

4.2 illustrates the distribution of these samples.

36

Figure 4.2. The distribution of malware samples collected.

4.1.1. Malware Images Dataset (First Dataset)

The method that was described by Nataraj et al. [8] was used to convert each sample

that was collected (malware and benign) to grayscale images to create the first dataset.

Figure 4.3, which depicts the process of translating data from one format into another,

shows that the binary sample was first transformed into an 8-bit vector. This step of

the process was necessary before moving on to the next step of the process. The 8-bit

vector was then converted into an image when that was completed.

Figure 4.3. Method for converting malware to an image

37

However, relying on the image's size, the height of the image may vary, although the

width of the image will still stay constant, as shown in Table 4.2. Since every pixel in

the image is made up of 8 bits, the final image is made up of integers ranging from 0

to 255. This is since 0 symbolizes black and 255 represents white, with gray scale

gradients being in between (0-255). The ability to distinguish between the various

components of a binary is the primary advantage of seeing a malicious executable in

the form of an image. Figure 4.4 displays several examples of malware images, and

we observe the similar appearance that exists between the visuals of different models

that come from the same family.

(a) Ako

(b) Autorun.NE

38

(c) Delf.DU

(d) Zombie!rfn

(e) Sivis.A

Figure 4.4. Malware image samples belong to various families.

39

Table 4.2. Width of an image for different file sizes.

File Size Range Image Width

<10 kB 32

10 kB – 30 kB 64

30 kB – 60 kB 128

60 kB – 100 kB 256

100 kB – 200 kB 384

200 kB – 500 kB 512

500 kB – 1000 kB 768

>1000 kB 1024

4.1.2. API Call Sequences Dataset (Second Dataset)

Using the Pefile module, A Python library called Pefile makes it easier to read and

deal with portable executable files, the first 50 API call sequences were taken ("none"

API call was ignored) from each sample to create the second dataset. Using 50 API

call sequences for each malware to increase the reading speed for API call sequences

to detect malicious software in the shortest amount of time. If a sample's API call

sequence is less than 50, we added 0 to complete the 50 sequences. Examples of API

call sequences extracted from malware samples are shown in Table 4.3.

Table 4.3. Examples of API call sequences taken from malware samples.

API call sequences class

LoadLibraryA, GetProcAddress,

ExitProcess,RegOpenKeyA, ShellExecuteA,

ShowWindow, InternetOpenA, gethostbyname

Ako

(Ransomware)

LoadLibraryA, GetProcAddress, VirtualProtect,

VirtualAlloc, VirtualFree, ExitProcess,

InitCommonControls, memset, CoInitialize,

ShellExecuteExA, MessageBoxA

Sivis.A

(Virus)

LoadLibraryA, GetProcAddress, ExitProcess,

RegOpenKeyA, SysFreeString, CharNextA

Yoof.E

(Worm)

40

Then we made indexes for all the unique API calls for all samples, and each one was

given a unique id number. The names of API calls were then replaced by the unique

numbers of each sample, equal to its index, and saved to a CSV file at the end. This

CSV file dataset has a sha256 hash for all files, a class indicating whether the sample

contained one of the malware family or benign, a class number containing numbers

(0–29) for all classes, and 50 API calls. So, we have two datasets that belong to the

same sample in different ways [80]. Table 4.4 displays the API index numbers, which

range from 1 to 484 in this data collection.

Table 4.4. API's index numbers.

GetDiskFreeSpaceW=1

UpdateResourceA=2

SetLastError=3

FreeEnvironmentStringsA=4

DestroyCaret=5

GetActiveWindow=6

_ismbblead=7

MessageBoxW=8

FindNextFileW=9

_iob=10

GetSystemWindowsDirectoryW=11

ScaleViewportExtEx=12

CloseHandle=13

RegSetValueExW=14

GetSystemMetrics=15

WaitForSingleObject=16

MessageBoxA=17

SizeofResource=18

VirtualProtect=19

GetCurrentProcessId=20

:

GetWindowTextW=484

41

4.2. PROPOSED METHOD

In this research, we utilize a methodology that is relied on selecting the three models

that are the most effective for real-time detection and classification based on accuracy.

Additionally, the computational efficiency of a model is measured by how few

parameters it generates and how little it costs to run simulations (memory and also

other resources).

4.2.1. CNN Models with Malware Images Dataset

In the first dataset, which is made up of images of both malicious and good software,

we will be doing experiments on the custom CNN model we created and three of the

common pretrained network models of CNN, which are (VGG16, Inception V3, and

Resnet50) to do training and testing and make comparisons between them.

In our model, Initially, images were reformatted, including re-sizing the images to 150

x 150 pixels, and normalization was done. The dataset was split so that 80% was used

for training, 10% was used for testing, and 10% for validation. The data was also

shuffled to improve accuracy.

The suggested model has three layers of convolution—64, 3x3, 128, 3x3, and 256,

3x3—with a Relu activation function to execute non-linear transformations.

Additionally, the model contains six layers of Max pooling, as can be seen in Figure

4.5. (2x2 with stride 2). After that comes a layer that is fully connected and has 256

neurons, and then after that comes an output layer that has 30 different classes. In order

to prevent overfitting, the dropout was placed after each Max pooling layer as well as

after a layer that was fully connected. Adam was used as the optimizer for this model,

while Sparse Category Crossentropy was utilized as the loss function [80]. Table 4.5

contains a summary that may be seen in its entirety for the CNN model.

In this study, there will also be tests on VGG16, Inception V3, and Resnet50 with the

first dataset (malware images), which are three of the most popular CNN-pretrained

network models. Before going through these models, the images are resized to 224 by

42

224 pixels so that they can be processed properly because these models were designed

and worked with this size. Because our dataset only includes grayscale images for the

samples in the first dataset, and because these models were meant to work with color

images (three channels), we had to add a convolutional layer with a 3x3 kernel and an

input size of 224x224x1 to make these models work with grayscale images correctly.

Figure 4.5. Our CNN architecture with the first dataset.

43

Table 4.5. Summary of the CNN model with the first dataset.

Layer Output Shape Parameters

Conv2D (None, 150, 150, 64) 640

MaxPooling2D (None, 75, 75, 64) 0

Dropout (None, 75, 75, 64) 0

MaxPooling2D (None, 37, 37, 64) 0

Dropout (None, 37, 37, 64) 0

Conv2D (None, 37, 37, 128) 73856

MaxPooling2D (None, 18, 18, 128) 0

Dropout (None, 18, 18, 128) 0

MaxPooling2D (None, 9, 9, 128) 0

Dropout (None, 9, 9, 128) 0

Conv2D (None, 9, 9, 256) 295168

MaxPooling2D (None, 4, 4, 256) 0

Dropout (None, 4, 4, 256) 0

MaxPooling2D (None, 2, 2, 256) 0

Dropout (None, 2, 2, 256) 0

Flatten (None, 1024) 0

Dense (None, 256) 262400

Dropout (None, 256) 0

Dense (None, 30) 7710

Total params: 639,774

Trainable params: 639,774

Non-trainable params: 0

4.2.2. RNN Models with API Call Sequences Dataset

In the second dataset, which consists of API call sequences, we use two RNN

algorithms: LSTM and GRU. In the LSTM model, we divide the data into 70% training

data, 15% testing data, and 15% validation data. The model consists of an embedding

layer, a 64-cell long short-term memory (LSTM) layer with a linear activation

function, and a dense layer using a SoftMax classifier for multiple classes. This model

employed SpatialDropout1D to prevent dropout [80]. Summarized results from the

LSTM model applied to the second dataset are shown in Table 4.6.

For the GRU model, we allocate the same portion of the dataset as in the LSTM model

for training, testing, and validation. We used an embedding layer, a GRU layer with

64 cells and a linear activation function, and a dense layer with a SoftMax classifier

44

for multiple classes and without SpatialDropout1D, which is used in the LSTM model.

In Table 4.7, we can see a summary of the GRU model applied to the second dataset.

Table 4.6. Summary of the LSTM model with the second dataset.

Layer Output Shape Parameters

Embedding (None, 50, 50) 24250

SpatialDropout1D (None, 50, 50) 0

LSTM (None, 64) 29440

Dense (None, 30) 1950

Total params: 55,640

Trainable params: 55,640

Non-trainable params: 0

Table 4.7. Summary of the GRU model with the second dataset.

Layer Output Shape Parameters

Embedding (None, 50, 50) 24250

GRU (None, 64) 22272

Dense (None, 30) 1950

Total params: 48,472

Trainable params: 48,472

Non-trainable params: 0

4.2.3. CNN Model with API Call Sequences Dataset

The last of our proposed models also In the second dataset, which is made up of API

Call Sequences, CNN technology is used to call 49 API Call Sequences, which are

then reshaped into an array of 7x7, normalized by dividing them by a larger number in

the API unique index , which is 484 in this study, to make them numbers between 0

and 1, and put into a simple model made up of the Convolutional 2D Layer (64, 3, 3)

and a Fully Connected layer, with training taking up 70%, testing, and validation each

taking up 15%. The flow chart of the CNN model using the API call dataset method is

shown in Figure 4.6, and a summary of the CNN model architecture with parameters

is shown in Table 4.8.

45

 50 API call sequences

483 280 306 106 163 43 429

288 220 77 37 411 30 26

353 384 129 103 275 29 351

369 171 227 348 240 28 229

83 440 253 169 98 179 13

299 17 167 320 70 99 476

433 244 288 35 136 227 16

0.998 0.579 0.632 0.219 0.337 0.089 0.886

0.595 0.455 0.159 0.076 0.849 0.062 0.054

0.729 0.793 0.267 0.213 0.568 0.060 0.725

0.762 0.353 0.469 0.719 0.496 0.058 0.473

0.171 0.909 0.523 0.349 0.202 0.370 0.027

0.618 0.035 0.345 0.661 0.145 0.205 0.983

0.895 0.504 0.595 0.072 0.281 0.469 0.033

Figure 4.6. CNN model with API call sequences method.

483 280 306 106 163 43 429 288 220 77 37 411 30 26 353 384 129 103 275 29
351 369 171 227 348 240 28 229 83 440 253 169 98 179 13 299 17 167 320 70 99
476 433 244 288 35 136 227 16 33

Reshaping the first 49 API calls to 7x7

Normalization

46

Table 4.8. Summary of the CNN model with the second dataset.

Layer Output Shape Parameters

Conv2D (None, 5, 5, 64) 640

Activation (None, 5, 5, 64) 0

Flatten (None, 1600) 0

Dense (None, 512) 819712

Activation (None, 512) 0

Dense (None, 30) 15390

Activation (None, 30) 0

Total params: 835,742

Trainable params: 835,742

Non-trainable params: 0

4.2.4. Real Time Malware Detection and Classification

In the end, after training and making tests, the three most efficient models will be

selected to classify and detect malware in real time. One model is for the first dataset

, which includes malware and benign images. The second model is for the second

dataset, which includes API call sequences. The last model is made up of a shallow

CNN model that is based on API call sequences after reshaping it to 7x7 and applying

normalization. The general flowchart of the approach that was suggested for this

research can be seen in Figure 4.7.

47

Figure 4.7. General flowchart of proposed method.

.

48

PART 5

RESULTS AND DISCUSSION

In this section displays the results of all experiments that were carried out in this study

and explains the confusion matrix, as well as the discussion and comparison among

CNN models and between RNN models with detailed figures and tables. Some

experiments were carried out by using the Python programming language on a Jupyter

notebook on a PC equipped with an Intel(R) Core (TM) i7- 6600U CPU @ 2.60GHz

and 2.80 GHz with 8.00 GB of RAM, while others were carried out on Google Colab.

5.1. CONFUSION MATRIX

The performance of a classification algorithm may be described with the use of a table

called a confusion matrix, which displays essential predictive metrics such as recall,

f1 score, accuracy, and precision. Confusion matrices are helpful tools because they

provide direct comparisons of measurements like True Positive (TP), False Negative

(FN), False Positive (FP), and True Negative (TN). In our study, we used these

measurements to measure our model’s predictive classification. The following

equations, numbered 5.1 through 5.4, represent the performance metrics:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.3)

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (5.4)

49

TP: The situation in which the real number and expected number are identical is a True

Positive number.

FN: A class's False-negative number is the total of all the numbers in the relevant rows,

excluding the TP number.

FP: A class's False-positive number is the total of all the numbers in the relevant

column, excluding the TP number.

TN: The total of all columns and rows, excluding those for the class for which we are

computing the numbers, will represent the True Negative number for a given class.

5.2. IMPLEMENTING CNN MODELS

5.2.1. Implementing our Model

The first model that was developed used CNN technology with the malware and

benign images that were used to construct the dataset. We noticed that after testing the

model with a total of 50 epochs, it had an accuracy of 98.23%. Figure 5.1 demonstrates

the accuracy and the validation accuracy of this model. Additionally, the figure shows

both the loss and the validation loss for this model. Table 5.1 outlines the classification

metrics (accuracy, precision, recall, and F1 score) that our CNN model achieved on

the very first dataset it was applied to.

Figure 5.1. Accuracy and loss for our CNN model with first dataset.

50

Table 5.1. Classification metrics for our CNN model with first dataset.

Class Accuracy Precision Recall F1-score

Benign 0.99 0.96 0.95 0.95

Ako 1.00 1.00 1.00 1.00

Autorun.NE 1.00 0.94 1.00 0.97

Banker.LY 1.00 1.00 1.00 1.00

Delf.DU 0.99 0.81 0.94 0.87

Drolnux.B 1.00 1.00 1.00 1.00

Eggnog.A 1.00 1.00 1.00 1.00

GandCrab.AE 1.00 1.00 0.96 0.98

Ganelp.E 1.00 1.00 1.00 1.00

Linkury.RS!MT

B
1.00 1.00 1.00 1.00

Neconyd.A 1.00 0.96 1.00 0.98

Nemucod 1.00 1.00 1.00 1.00

Neojit.A 1.00 1.00 1.00 1.00

OpenInstaller 1.00 1.00 1.00 1.00

Playtech 1.00 0.96 1.00 0.98

QQPass.GP 1.00 1.00 1.00 1.00

Qukart 1.00 1.00 1.00 1.00

Resur.A!epo 1.00 1.00 1.00 1.00

Shodi.A 1.00 0.94 1.00 0.97

Simda.D 1.00 1.00 0.88 0.93

Sivis.A 1.00 0.91 1.00 0.95

Small.M 1.00 1.00 1.00 1.00

Soltern!rfn 1.00 1.00 1.00 1.00

Trickbot.GML!

MTB
1.00 1.00 1.00 1.00

Unruy.F 1.00 1.00 1.00 1.00

Upatre.A 1.00 1.00 1.00 1.00

Urelas.AA 1.00 1.00 0.96 0.98

Wabot.A 1.00 1.00 0.97 0.98

Yoof.E 1.00 1.00 1.00 1.00

Zombie!rfn 1.00 1.00 0.89 0.94

Accuracy 0.98

Macro Avg 0.98 0.98 0.98

Weighted Avg. 0.98 0.98 0.98

We observed that all classes had a high degree of accuracy in their classifications by

comparing the predicted and actual values, as shown in Figures 5.2, which demonstrate

the confusion matrices produced by our approach.

51

Figure 5.2. Confusion Matrix for our CNN model.

5.1.2. Implementing Pretrained Models

We conducted experiments on our first dataset, which is comprised of images of

samples, using three pre-trained CNN models, including VGG16, Inception V3, and

Resnet50, so that we could perform a comparison between our CNN model and those

of other models. In the preprocessing stage, the images are resized to 224x224 before

passing through the models. These models are designed with color images (3 channels)

and our dataset only contains grayscale images for samples in the first dataset.

52

In the Vgg16 model, after the normalization process was done and the dataset was split

into three parts (70:15:15) for training, testing, and validation, respectively, the model

had a 98 percent accuracy rate.

After the dataset was normalized for the Inception V3 model, it was then split into

thirds: (80:10:10) for training, testing, and validation, respectively. The model's

accuracy was determined to be 97.17 percent.

Without doing any normalization, the dataset was partitioned in the Resnet50 model

as follows: (70:15:15) for training, testing, and validation, respectively. When we used

this model to normalize the data, we discovered that the accuracy was lower than when

we used normalization. The accuracy of the model was 98.35 percent.

Classification metrics for pretrained CNN models (VGG16, Inception V3 and

Resnet50) are given in Table 5.2. Figures 5.3, 5.4, and 5.5, respectively, illustrate

accuracy and loss for the VGG16, Inception V3, and Resnet50.

Figure 5.3. The VGG16 model's accuracy and loss with the first dataset.

53

Figure 5.4. The Inception V3 model's accuracy and loss with the first dataset.

Figure 5.5. The Resnet50 model's accuracy and loss with the first dataset.

Figures 5.6, 5.7, and 5.8 illustrate the confusion matrices for the VGG16, Inception

V3, and Resnet 50 models, respectively.

54

Figure 5.6. Confusion matrix for VGG16 model.

55

Figure 5.7. Inception V3 model's confusion matrix.

56

Figure 5.8. Resnet50 model's confusion matrix.

57

Table 5.2. Classification metrics for pretrained CNN models.

Class
Inception V3 Resnet 50 VGG 16

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

Benign 0.99 0.96 0.94 0.95 0.99 0.99 0.94 0.96 0.99 0.91 0.97 0.94

Ako 1.00 0.91 0.95 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Autorun.NE 1.00 0.93 0.93 0.93 1.00 0.97 0.89 0.93 1.00 0.98 0.94 0.96

Banker.LY 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00

Delf.DU 1.00 0.96 0.96 0.96 1.00 0.98 1.00 0.99 1.00 1.00 0.95 0.98

Drolnux.B 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Eggnog.A 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.96 1.00 0.98

GandCrab.AE 1.00 0.93 1.00 0.96 1.00 0.97 1.00 0.99 1.00 1.00 0.95 0.97

Ganelp.E 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Linkury.RS!MT

B

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.98

Neconyd.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Nemucod 1.00 0.96 1.00 0.98 1.00 0.97 1.00 0.99 1.00 0.97 1.00 0.98

Neojit.A 1.00 0.97 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

OpenInstaller 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Playtech 1.00 1.00 0.95 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.96

QQPass.GP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Qukart 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Resur.A!epo 1.00 0.91 1.00 0.95 1.00 0.94 1.00 0.97 1.00 0.97 1.00 0.99

Shodi.A 1.00 0.90 0.86 0.88 1.00 0.94 0.88 0.91 1.00 1.00 0.87 0.93

Simda.D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.97

Sivis.A 0.99 1.00 0.71 0.83 1.00 1.00 0.95 0.97 1.00 0.97 1.00 0.99

Small.M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Soltern!rfn 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Trickbot.GML!

MTB

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unruy.F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99

Upatre.A 1.00 0.96 1.00 0.98 1.00 0.94 1.00 0.97 1.00 1.00 0.97 0.99

Urelas.AA 1.00 0.96 0.93 0.95 1.00 0.95 0.97 0.96 1.00 0.98 0.96 0.97

Wabot.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.99

Yoof.E 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Zombie!rfn 0.99 0.84 0.96 0.90 1.00 0.88 0.97 0.92 1.00 0.91 1.00 0.96

Accuracy 0.97 0.98 0.98

Macro Avg 0.97 0.97 0.97 0.98 0.99 0.98 0.99 0.98 0.98

Weighted Avg. 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98

The results showed that our proposed CNN network-based model is more efficient

than the other models (VGG16, Inception V3, and Resnet50) in terms of how many

parameters the model generates and how much memory it consumes, especially since

our model used images of 150x150 input size as shown in Table 5.3. The Resnet50

model and our own model both have an accuracy that is about close to one another.

58

Table 5.3. Comparison between our model and pretrained network models.

Model Image size Total
layers

Total

parameters
Accuracy Precision Recall F1

score

VGG16 220x220 16 134,383,484 0.98 0.99 0.98 0.98

Inception V3 220x220 42 21,864,284 0.97 0.97 0.97 0.97

Resnet50 220x220 50 23,649,212 0.98 0.98 0.99 0.98

Our Model 150x150 5 639,774 0.98 0.98 0.98 0.98

The model was also trained with 5-fold cross validation and the result is shown in

Table 5.4.

Table 5.4. The test accuracy of our model for 5-fold cross validation.

Fold Test accuracy

1 0.987

2 0.978

3 0.985

4 0.978

5 0.981

Average 0.982

We compared our CNN model in this study with many previous studies, and it was

found that our model is characterized by high accuracy as well as high efficiency in

terms of speed, low memory consumption, and the least number of weighted layers for

the model in dealing with grayscale malware images, as shown in Table 5.5.

59

Table 5.5. A comparison between our model and a set of previous studies.

Reference Model Accuracy weighted

layers
İmage size Type

Sun and

Qian [18]

CNN

RNN
99.5% 7 128x128 Classification

Hemalatha et

al. [22]
DenseNet201

98.23%
98.46%

98.21%

89.48%

201 64x64
Detection and

Classification

Anandhi et
al. [23]

DenseNet201
99.94%
98.98%

201 256x256

Detection and

Classification

İn Real time

Jian et al.

[25]

SEResNet50
+ Bi-LSTM

+ Attention

98.31% > 50
256x256x3

3- channel

Detection and

Classification

Mitsuhashi

and
Shinagawa

[14]

VGG19 99.72% 19 224 x 224 Classification

Jin et al. [9] Autoencoder 93% 10 Unknown Detection

Go et al. [13] ResNeXt50 98.8% 50 224 x 224 Classification

Vasan et al.

[15]
CNN

98.82%

97.35%
> 15

224x224x3

3-channel

Detection and

Classification

Xiao et al.
[16]

CNN -SVM

Entropy

graphs

99.7%
100%

14 300 x 300 Classification

Vasan et al.

[17]

VGG16
Resnet50

SVM

99%

98%

16

50
224 x 224 Classification

Qiao et al.

[26]
LeNet5 98.76% 5

256x256x3
3- channel Classification

Our method
[80]

CNN 98% 5 150x150

Detection and

Classification

İn Real time

5.2. IMPLEMENTING RNN MODELS

5.2.1. LSTM

When applied to the second dataset, which is comprised of API call sequences, the

suggested LSTM model was assessed using 30 epochs, and the findings showed that

it had an accuracy of 99.45 percent. A representation of the LSTM's accuracy and

validation accuracy can be seen in Figure 5.9. The figure also shows both losses and

60

the validation loss. A confusion matrix is shown in Figure 5.10, which was generated

using the LSTM model.

Figure 5.9. The LSTM model's accuracy and loss.

Figure 5.10. The LSTM model's confusion matrix.

61

5.2.2. GRU

The accuracy of the recommended GRU model was measured using 30 epochs, and

the findings indicated that it had the same accuracy as the LSTM model, which was

99.45 percent. The training accuracy, validation accuracy, loss, and validation loss of

the GRU are shown graphically in Figure 5.11. The GRU model's confusion matrix is

displayed in Figure 5.12.

Figure 5.11. The GRU model's accuracy and loss.

62

Figure 5.12. The GRU model's confusion matrix.

In this study the findings showed that the proposed model based on the GRU network

outperforms the LSTM method in term of having fewer parameters although they have

the same accuracy. Table 5.6 compares classification metrics for LSTM and GRU

models with a second dataset.

63

Table 5.6. Classification metrics for LSTM and GRU models with second dataset.

Class
LSTM GRU

Acc Pre Rec F1 Acc Pre Rec F1

Benign 0.99 0.95 0.99 0.97 1.00 0.97 0.99 0.98

Ako 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Autorun.NE 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00

Banker.LY 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Delf.DU 1.00 0.97 1.00 0.98 1.00 1.00 1.00 1.00

Drolnux.B 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Eggnog.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GandCrab.AE 1.00 0.97 1.00 0.98 1.00 1.00 0.97 0.98

Ganelp.E 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Linkury.RS!MTB 1.00 1.00 0.94 0.97 1.00 1.00 0.93 0.97

Neconyd.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Nemucod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Neojit.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

OpenInstaller 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Playtech 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

QQPass.GP 1.00 1.00 0.84 0.92 1.00 1.00 1.00 1.00

Qukart 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Resur.A!epo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Shodi.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Simda.D 1.00 1.00 0.96 0.98 1.00 1.00 0.96 0.98

Sivis.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Small.M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Soltern!rfn 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Trickbot.GML!M

TB

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unruy.F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Upatre.A 1.00 1.00 0.98 0.99 1.00 0.98 1.00 0.99

Urelas.AA 1.00 0.98 1.00 0.99 1.00 0.96 1.00 0.98

Wabot.A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Yoof.E 1.00 1.00 0.98 0.99 1.00 1.00 0.98 0.99

Zombie!rfn 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.99 0.99
 Macro Avg 0.99 0.99 0.99 1 0.99 1

Weighted Avg. 0.99 0.99 0.99 0.99 0.99 0.99

5.3. IMPLEMENTING OUR CNN MODEL WITH API CALL SEQUENCES

This model was applied to the second dataset, which was based on API call sequence

numbers, after calling 49 API call sequences to reshape it to 7x7 and applying CNN

with a division of 70%, 15%, and 15% of training, testing, and verification data,

respectively, and 15 epochs to get 99% accuracy. The model's accuracy and loss during

64

training and validation are represented in Figure 5.13. Our CNN model's confusion

matrix for the second dataset is shown in Figure 5.14 and classification metrics are

included in Table 5.7. In the end, we compared the three models trained on the API

call dataset, as can be seen in Table 5.8. The accuracy was nearly the same for all three,

but the CNN model was the fastest because it was working with a 2D image consisting

of a 7x7 matrix, and also because the CNN models were characterized by feature

extraction.

Figure 5.13. Accuracy and loss for our CNN model with second dataset.

65

Figure 5.14. The CNN model's confusion matrix with the second dataset.

66

Table 5.7. Classification metrics for our CNN model with second dataset.

Class Accuracy Precision Recall F1-score

Benign 0.99 0.96 0.97 0.97

Ako 1.00 1.00 1.00 1.00

Autorun.NE 1.00 1.00 1.00 1.00

Banker.LY 1.00 1.00 1.00 1.00

Delf.DU 1.00 1.00 1.00 1.00

Drolnux.B 1.00 1.00 1.00 1.00

Eggnog.A 1.00 1.00 1.00 1.00

GandCrab.AE 1.00 0.97 0.89 0.93

Ganelp.E 1.00 1.00 1.00 1.00

Linkury.RS!MTB 1.00 1.00 0.97 0.99

Neconyd.A 1.00 1.00 1.00 1.00

Nemucod 1.00 1.00 1.00 1.00

Neojit.A 1.00 1.00 1.00 1.00

OpenInstaller 1.00 0.95 1.00 0.97

Playtech 1.00 1.00 1.00 1.00

QQPass.GP 1.00 1.00 1.00 1.00

Qukart 1.00 1.00 1.00 1.00

Resur.A!epo 1.00 0.97 1.00 0.99

Shodi.A 1.00 1.00 1.00 1.00

Simda.D 1.00 1.00 0.96 0.98

Sivis.A 1.00 1.00 1.00 1.00

Small.M 1.00 1.00 1.00 1.00

Soltern!rfn 1.00 1.00 1.00 1.00

Trickbot.GML!MTB 1.00 1.00 1.00 1.00

Unruy.F 1.00 1.00 1.00 1.00

Upatre.A 1.00 0.98 1.00 0.99

Urelas.AA 1.00 0.97 0.97 0.97

Wabot.A 1.00 1.00 1.00 1.00

Yoof.E 1.00 1.00 0.98 0.99

Zombie!rfn 1.00 1.00 1.00 1.00

Accuracy 0.99

Macro Avg 0.99 0.99 0.99

Weighted Avg. 0.99 0.99 0.99

Table 5.8. Comparison between CNN model and RNN models in API call dataset.

Model API length Accuracy Precision Recall F1 Score

LSTM 50 0.99 0.99 0.99 0.99

GRU 50 0.99 1 0.99 1

CNN 49 (7x7) 0.99 0.99 0.99 0.99

67

The model was also trained using 5-fold cross validation, and Table 5.9 displays the

outcome. According to Table 5.10, which compares our weighted lite CNN model to

much other research, our model is distinguished by high accuracy as well as great

efficiency in terms of low memory consumption and the fewest number of weighted

layers.

Table 5.9. The test accuracy of our model for 5-fold cross validation.

Fold Test accuracy

1 0.991

2 0.987

3 0.989

4 0.992

5 0.997

Average 0.99

Table 5.10. A comparison between our model and a set of previous studies.

Authors Model Accuracy weighted

layers
API length Type

Xiaofeng et
al. [39]

LSTM – RF 95.7% Unknown >100 Detection

Liu and

Wang [38]
BLSTM 97.85% Unknown Unknown Detection

Catak et al.

[37]
LSTM 98.50% > 4 100

Detection and

Classification

Xu et al. [40] Malbert
99.98%
99.82%

> 12 Unknown Detection

Ye et al. [43]
Autoencoder

RBMs
98.20% > 5 Unknown Detection

Oliveira et al.
[46]

LSTM 99% Unknown 100 Detection

Tang and

Qian [47] CNN 98%-99% 4
16 × 16 × 3

3-channel
Classification

Aditya et al.

[48]
LSTM-RMSProp 97.30% 4 Unknown

Detection and

Classification
İn Real time

Our method 2D-CNN 99% 3
49

(7x7)

Detection and

Classification

İn Real time

68

5.4. IMPLEMENTING REAL TIME FRAMEWORK

In this study, our framework consists of the best three models. After training and

testing, we discovered the best model treated with the first dataset, which contained

images of malicious and goodware software, was our approach in regard to the

parameters and amount of memory used. When it came to accuracy, our model was

very close to the resnet50 model.

The second model used for real-time detection is GRU, which proved it's efficient in

terms of smaller parameters and faster than LSTM, although the two models have the

same accuracy.

The third model was the proposed model with the second dataset, which contained API

call sequences numbers by calling 49 numbers from the API call and converting them

to a 2D array and making normalization.

Our framework proved it's efficient in classification and detection in real time when

implemented on samples collected and not existing in our dataset but belonging to the

same families.

69

PART 6

CONCLUSION

6.1. CONCLUSION

In this study, we presented two new datasets that we created using two methods: The

first dataset consists of images of samples (malware and benign) to detect samples

statically. The second dataset includes API call sequences for the same samples in the

first dataset to detect samples dynamically.

Different models were developed based on deep learning approaches for training and

testing on these two datasets. Our proposed CNN model based on the first dataset

which included malicious and benign images proved it has the best performance

compared to pretrained networks (VGG16, Inception V3, and Resnet50) through

which it reached an accuracy of 98.23% with a smaller quantity of parameters and

memory consumption.

In the second dataset, which comprises API call sequences, we ran experiments on two

model types of the RNN algorithms (LSTM and GRU). Although the two models got

the same accuracy, which is 99.45%. In terms of the quantity of parameters generated

by these two RNN models, the GRU model has been shown to have the best

performance.

also in the second dataset, which included API call sequence numbers, our proposed

model, which used CNN as its foundation, was implemented and achieved 99%

accuracy while being faster than all other models in our experiments.

After the training was done, best three models were saved and use to find and classify

malware in real time.

70

Through the results, it was found that the detection and classification of malware into

the families to which it belongs by the dynamic method based on API call sequences

is faster than the static method based on malware images. According to the findings of

our investigation, different methods of models are superior to one. Even if one of the

models can't find malware, the others can, especially if the malware is encrypted or

uses other methods to hide itself.

6.2. FUTURE WORK

In a future study, we will collect a larger number of benign files and malicious software

and convert them to RGB color images since they have good feature extraction.

SPP.NET will be used to deal with images of different sizes and not be restricted to a

certain size. In terms of detecting malware with API call sequences, there are types of

malware models from which API call sequences cannot be extracted by the Pefile

library for python language. In the future, we would like to analyze these kinds of

malware samples in-depth.

71

REFERENCES

1. Internet: AV-TEST, "Last 10 Years Malware Statistics", https://www.av-

test.org/en/statistics/malware/ (2021).

2. You, I. and Yim, K., "Malware obfuscation techniques: A brief survey", (2010).

3. Gandotra, E., Bansal, D., and Sofat, S., "Malware analysis and classification: A

survey", Journal Of Information Security, 2014: (2014).

4. Moser, A., Kruegel, C., and Kirda, E., "Limits of static analysis for malware

detection", (2007).

5. Qiu, H., Noura, H., Qiu, M., Ming, Z., and Memmi, G., "A user-centric data

protection method for cloud storage based on invertible DWT", IEEE Transactions

On Cloud Computing, 9 (4): 1293–1304 (2019).

6. Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., and Zhong, Y.,

"Vuldeepecker: A deep learning-based system for vulnerability detection", ArXiv

Preprint ArXiv:1801.01681, (2018).

7. Idika, N. and Mathur, A. P., "A survey of malware detection techniques", Purdue

University, 48 (2): (2007).

8. Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B. S., "Malware images:

Visualization and automatic classification", ACM International Conference

Proceeding Series, (July): (2011).

9. Jin, X., Xing, X., Elahi, H., Wang, G., and Jiang, H., "A malware detection

approach using malware images and autoencoders", Proceedings - 2020 IEEE 17th

International Conference On Mobile Ad Hoc And Smart Systems, MASS 2020,

631–639 (2020).

10. "VirusTotal", https://www.virustotal.com/ (2021).

11. "Malshare", https://malshare.com/ (2021).

12. "Virusshare", https://virusshare.com/ (2022).

13. Go, J. H., Jan, T., Mohanty, M., Patel, O. P., Puthal, D., and Prasad, M.,

"Visualization Approach for Malware Classification with ResNeXt", 2020 IEEE

Congress On Evolutionary Computation, CEC 2020 - Conference Proceedings,

4–10 (2020).

72

14. Mitsuhashi, R. and Shinagawa, T., "High-Accuracy Malware Classification with

a Malware-Optimized Deep Learning Model", (2020).

15. Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., and Zheng, Q.,

"IMCFN: Image-based malware classification using fine-tuned convolutional

neural network architecture", Computer Networks, 171 (April): (2020).

16. Xiao, G., Li, J., Chen, Y., and Li, K., "MalFCS: An effective malware

classification framework with automated feature extraction based on deep

convolutional neural networks", Journal Of Parallel And Distributed

Computing, 141: 49–58 (2020).

17. Vasan, D., Alazab, M., Wassan, S., Safaei, B., and Zheng, Q., "Image-Based

malware classification using ensemble of CNN architectures (IMCEC)",

Computers And Security, 92: 101748 (2020).

18. Sun, G. and Qian, Q., "Deep Learning and Visualization for Identifying Malware

Families", IEEE Transactions On Dependable And Secure Computing, 18 (1):

283–295 (2021).

19. Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., and Ahmadi, M., "Microsoft

malware classification challenge", ArXiv Preprint ArXiv:1802.10135, (2018).

20. Bozkir, A. S., Cankaya, A. O., and Aydos, M., "Utilization and comparision of

convolutional neural networks in malware recognition", (2019).

21. Nappa, A., Rafique, M. Z., and Caballero, J., "The MALICIA dataset:

identification and analysis of drive-by download operations", International

Journal Of Information Security, 14 (1): 15–33 (2015).

22. Hemalatha, J., Roseline, S. A., Geetha, S., Kadry, S., and Damaševičius, R., "An

Efficient DenseNet-Based Deep Learning Model for Malware Detection",

Entropy, 23 (3): 344 (2021).

23. Anandhi, V., Vinod, P., and Menon, V. G., "Malware visualization and detection

using DenseNets", Personal And Ubiquitous Computing, (c): (2021).

24. Mai, J., Cao, C., Shi, F., and Chen, X., "Malware Variant Detection Based on

Decomposed Deep Convolutional Network", 2021 IEEE 6th International

Conference On Big Data Analytics, ICBDA 2021, 333–338 (2021).

25. Jian, Y., Kuang, H., Ren, C., Ma, Z., and Wang, H., "A novel framework for

image-based malware detection with a deep neural network", Computers &

Security, 109: 102400 (2021).

26. Qiao, Y., Jiang, Q., Jiang, Z., and Gu, L., "A multi-channel visualization method

for malware classification based on deep learning", Proceedings - 2019 18th

IEEE International Conference On Trust, Security And Privacy In Computing

73

And Communications/13th IEEE International Conference On Big Data

Science And Engineering, TrustCom/BigDataSE 2019, 757–762 (2019).

27. Acharya, J., Chuadhary, A., Chhabria, A., and Jangale, S., "Detecting malware,

malicious URLs and virus using machine learning and signature matching", 2021

2nd International Conference For Emerging Technology, INCET 2021, 1–5

(2021).

28. Markel, Z. and Bilzor, M., "Building a machine learning classifier for malware

detection", WATeR 2014 - Proceedings Of The 2014 2nd Workshop On Anti-

Malware Testing Research, (2015).

29. Singh, J. and Singh, J., "A survey on machine learning-based malware detection

in executable files", Journal Of Systems Architecture, 112 (July 2020): 101861

(2021).

30. Nagano, Y. and Uda, R., "Static analysis with paragraph vector for malware

detection", (2017).

31. Darabian, H., Dehghantanha, A., Hashemi, S., Homayoun, S., and Choo, K. R.,

"An opcode‐based technique for polymorphic Internet of Things malware

detection", Concurrency And Computation: Practice And Experience, 32 (6):

e5173 (2020).

32. Lu, R., "Malware Detection with LSTM using Opcode Language", (2019).

33. Sanz, B., "On the automatic categorisation of android applications", In

Proceedings Of The 2012 IEEE Consumer Communications And Networking

Conference (CCNC), IEEE, Las Vegas, NV, USA, .

34. Wu, Q., Zhu, X., and Liu, B., "A Survey of Android Malware Static Detection

Technology Based on Machine Learning", Mobile Information Systems, 2021:

(2021).

35. Milosevic, N., Dehghantanha, A., and Choo, K.-K. R., "Machine learning aided

Android malware classification", Computers & Electrical Engineering, 61: 266–

274 (2017).

36. Zhao, Y., Bo, B., Feng, Y., Xu, C., Yu, B., and Chen, J., "A Feature Extraction

Method of Hybrid Gram for Malicious Behavior Based on Machine Learning",

Security And Communication Networks, 2019: (2019).

37. Catak, F. O., Yazi, A. F., Elezaj, O., and Ahmed, J., "Deep learning based

Sequential model for malware analysis using Windows exe API Calls", PeerJ

Computer Science, 6 (July): 1–23 (2020).

38. Liu, Y. and Wang, Y., "A robust malware detection system using deep learning

on API calls", Proceedings Of 2019 IEEE 3rd Information Technology,

74

Networking, Electronic And Automation Control Conference, ITNEC 2019,

(Itnec): 1456–1460 (2019).

39. Xiaofeng, L., Xiao, Z., Fangshuo, J., Shengwei, Y., and Jing, S., "ASSCA: API

based Sequence and Statistics features Combined malware detection

Architecture", Procedia Computer Science, 129: 248–256 (2018).

40. Xu, Z., Fang, X., and Yang, G., "Malbert : A novel pre-training method for

malware detection", Computers & Security, 111: 102458 (2021).

41. Ki, Y., Kim, E., and Kim, H. K., "A novel approach to detect malware based on

API call sequence analysis", International Journal Of Distributed Sensor

Networks, 2015: (2015).

42. Internet: Catak, F. O., "Malware API Call Dataset", https://ieee-

dataport.org/open-access/malware-api-call-dataset (2022).

43. Ye, Y., Chen, L., Hou, S., Hardy, W., and Li, X., "DeepAM : a heterogeneous

deep learning framework for intelligent malware detection", Knowledge And

Information Systems, 54 (2): 265–285 (2018).

44. Jindal, C., Salls, C., Aghakhani, H., Long, K., Kruegel, C., and Vigna, G.,

"Neurlux: Dynamic malware analysis without feature engineering",

PervasiveHealth: Pervasive Computing Technologies For Healthcare, 444–455

(2019).

45. Xiao, F., Lin, Z., Sun, Y., and Ma, Y., "Malware Detection Based on Deep

Learning of Behavior Graphs", Mathematical Problems In Engineering, 2019:

(2019).

46. Oliveira, A. S. de and Jos´e Sassi, R., "Behavioral Malware Detection using Deep

Graph Convolutional Neural Networks", International Journal Of Computer

Applications, 174 (29): 1–8 (2021).

47. Tang, M. and Qian, Q., "Dynamic API call sequence visualisation for malware

classification", IET Information Security, 13 (4): 367–377 (2019).

48. Aditya, W. R., Girinoto, Hadiprakoso, R. B., and Waluyo, A., "Deep Learning for

Malware Classification Platform using Windows API Call Sequence", 25–29

(2022).

49. Huang, X., Ma, L., Yang, W., and Zhong, Y., "A Method for Windows Malware

Detection Based on Deep Learning", Journal Of Signal Processing Systems,

(August 2020): 265–273 (2020).

50. Internet: Andrade, E. de O., "MC-Dataset-Multiclass",

https://figshare.com/articles/dataset/MC-dataset-multiclass/5995468/1

(2022).

75

51. "VirusSign", https://www.virussign.com/ (2021).

52. Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., and

Venkatraman, S., "Robust Intelligent Malware Detection Using Deep Learning",

IEEE Access, 7: 46717–46738 (2019).

53. Jeon, J., Jeong, B., Baek, S., and Jeong, Y.-S., "Hybrid Malware Detection Based

on Bi-LSTM and SPP-Net for Smart IoT", IEEE Transactions On Industrial

Informatics, PP (c): 1–1 (2021).

54. Darabian, H., Homayounoot, S., Dehghantanha, A., Hashemi, S., Karimipour, H.,

Parizi, R. M., and Choo, K. K. R., "Detecting Cryptomining Malware: a Deep

Learning Approach for Static and Dynamic Analysis", Journal Of Grid

Computing, 18 (2): 293–303 (2020).

55. Baek, S., Jeon, J., Jeong, B., and Jeong, Y., "Two-Stage Hybrid Malware

Detection Using Deep Learning", Human Centric Computing And Information

Sciences, 11: (2021).

56. Xu, L., Zhang, D., Jayasena, N., and Cavazos, J., "HADM: Hybrid Analysis for

Detection of Malware", Lecture Notes In Networks And Systems, 16: 702–724

(2018).

57. O’Shea, K. and Nash, R., "An introduction to convolutional neural networks",

ArXiv Preprint ArXiv:1511.08458, (2015).

58. Mostafa, S. and Wu, F.-X., "Diagnosis of autism spectrum disorder with

convolutional autoencoder and structural MRI images", Neural Engineering

Techniques for Autism Spectrum Disorder, Elsevier, 23–38 (2021).

59. Internet: GeeksforGeeks, "CNN | Introduction to Pooling Layer",

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/ (2022).

60. Yamashita, R., Nishio, M., Do, R. K. G., and Togashi, K., "Convolutional neural

networks: an overview and application in radiology", Insights Into Imaging, 9

(4): 611–629 (2018).

61. Internet: Udofia, U., "Basic Overview of Convolutional Neural Network (CNN)",

https://medium.com/dataseries/basic-overview-of-convolutional-neural-

network-cnn-4fcc7dbb4f17 (2022).

62. Internet: Brownlee, J., "Difference Between a Batch and an Epoch in a Neural

Network", https://machinelearningmastery.com/difference-between-a-batch-

and-an-epoch/ (2022).

63. Internet: Pere, C., "What Are Loss Functions?",

https://towardsdatascience.com/what-is-loss-function-1e2605aeb904 (2022).

76

64. Simonyan, K. and Zisserman, A., "Very deep convolutional networks for large-

scale image recognition", ArXiv Preprint ArXiv:1409.1556, (2014).

65. Internet: G, R., "Everything You Need to Know about VGG16",

https://medium.com/@mygreatlearning/everything-you-need-to-know-

about-vgg16-7315defb5918 (2022).

66. Internet: neurohive, "VGG16 - Convolutional Network for Classification and

Detection", https://neurohive.io/en/popular-networks/vgg16/ (2022).

67. Internet: Bansal, M., "Face Recognition Using Transfer Learning and VGG16",

https://medium.com/analytics-vidhya/face-recognition-using-transfer-

learning-and-vgg16-cf4de57b9154 (2022).

68. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., and Bernstein, M., "Imagenet large scale visual

recognition challenge", International Journal Of Computer Vision, 115 (3):

211–252 (2015).

69. He, K., Zhang, X., Ren, S., and Sun, J., "Deep residual learning for image

recognition", (2016).

70. Internet: SACHAN, A., "Detailed Guide to Understand and Implement ResNets",

https://cv-tricks.com/keras/understand-implement-resnets/ (2022).

71. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z., "Rethinking the

Inception Architecture for Computer Vision", Proceedings Of The IEEE

Computer Society Conference On Computer Vision And Pattern Recognition,

2016-Decem: 2818–2826 (2016).

72. Internet: OpenGenus, "Inception V3 Model Architecture",

https://iq.opengenus.org/inception-v3-model-architecture/ (2022).

73. Internet: JORDAN, J., "Common Architectures in Convolutional Neural

Networks.", https://www.jeremyjordan.me/convnet-architectures/ (2022).

74. Hochreiter, S. and Schmidhuber, J., "Long short-term memory", Neural

Computation, 9 (8): 1735–1780 (1997).

75. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., and

Schmidhuber, J., "A novel connectionist system for unconstrained handwriting

recognition", IEEE Transactions On Pattern Analysis And Machine

Intelligence, 31 (5): 855–868 (2008).

76. Li, X. and Wu, X., "Constructing long short-term memory based deep recurrent

neural networks for large vocabulary speech recognition", (2015).

77

77. Internet: Phi, M., "Illustrated Guide to LSTM’s and GRU’s: A Step by Step

Explanation", https://towardsdatascience.com/illustrated-guide-to-lstms-and-

gru-s-a-step-by-step-explanation-44e9eb85bf21 (2022).

78. Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y., "On the properties

of neural machine translation: Encoder-decoder approaches", ArXiv Preprint

ArXiv:1409.1259, (2014).

79. "Https://Download.Cnet.Com/", https://download.cnet.com/ (2022).

80. Al-Musawi, H. S. and Mohammed, A. S., "Hybrid Malware Detection and

Classification in Real-Time by Deep Learning Techniques", Proceedings Of 2022

SAARD 184th World Conference On Applied Science Engineering And

Technology, WCASET 2022, Putrajaya, Malaysia, 43–47 (2022).

78

RESUME

Hussein Sadraldeen ALMUSAWI graduated from high school education at Kirkuk,

Iraq. He obtained a bachelor's degree from Northern Technical University/Kirkuk/

Software Engineering Techniques in 2011. He worked as a computer teacher at an

industrial secondary school for over eight years.

In 2020, he moved to Karabük, Turkey, and started his master's degree in Computer

Engineering at Karabük University.

