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ABSTRACT 
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ESTIMATION OF THE ENERGY OUTPUT OF A PHOTOVOLTAIC PANEL 

BY METAHEURISTIC OPTIMIZATION BASED ARTIFICIAL NEURAL 

NETWORKS 

 

Ali Kamil Gumar GUMAR 

 

Karabük University 

Faculty of Engineering 

Department of Mechatronics Engineering 

 

Thesis Advisor: 

Assist. Prof. Dr. Funda Demir 

November 2022, 71 pages 

 

Photovoltaic (PV) solar energy has become the most prominent concern of global 

investments. In addition, it is considered low carbon and its manufacture has a lower 

carbon impact compared to other energy sources. It is one of the solutions to avoid the 

risks of climate and global warming and to serve the consumer. Accurate forecasting 

of photovoltaic power output is very important in terms of panel installation, energy 

management and distribution, system reliability and integrating it into the daily 

demand schedule of electrical power supply networks. It is necessary to create a 

prediction model of photovoltaic energy that is commensurate with the changing 

weather conditions to develop advanced technology. Our study aims to develop a new 

data acquisition system dedicated to photovoltaic systems, meteorological 

observations and prediction of solar energy outputs. We use micro-controllers and 

sensors for barometer measurements. Weather and   
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electrical balances are archived on our websites and monitored through the Internet of 

Things via the thinkspeak platform. The Artificial Neural Networks (ANN) model 

which was improved by metaheuristic algorithms was used to predict the solar energy 

outputs collected during 37 days from Monday May 9, 2022 to Wednesday June 15, 

2022. Three main algorithms, Genetic Algorithm  (GA), Particle Swarm Optimization 

(PSO) and Artificial Bee Colony (ABC) were used to train ANN to predict an 18-

degree solar panel. They used three common methods to evaluate and compare the 

results of the algorithms used which are mean square error (MSE), mean absolute 

percentage error (MAPE) and coefficient of determination (R2). The results show that 

traditional NN with basic finding methods is the best. PSO-ANN is the best between 

PSO-ANN, GA-ANN and ABC-ANN. 

 

Key Word : Artificial neural network (ANN); artificial bee colony (ABC); genetic 

algorithm (GA); particle swarm optimization (PSO); solar 

photovoltaic (PV); PV power production forecasting; Internet of 

Things (IoT) in PV systems; online systems monitoring. 
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Yüksek Lisans Tezi 

 

BİR FOTOVOLTAİK PANELİN ENERJİ ÇIKIŞININ METAHEURİSTİK 

OPTİMİZASYON TABANLI YAPAY SİNİR AĞLARI İLE TAHMİNİ 

 

Ali Kamil Gumar GUMAR 

 

Karabük Üniversitesi 

Fen Bilimleri Enstitüsü 

Mekatronik Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi Funda Demir 

Kasım 2022, 71 sayfa 

 

Fotovoltaik (PV) güneş enerjisi, küresel yatırımların en önemli endişesi haline 

gelmiştir. Bunu yanı sıra, diğer enerji kaynaklarına kıyasla daha düşük karbon etkisine 

sahiptir. İklim ve küresel ısınma risklerinden korunmak ve bu anlamda tüketiciye 

hizmet etmek için kullanılan  çözüm yollarından biridir. Fotovoltaik güç çıkışının 

doğru tahmini, panel kurulumu, enerji yönetimi ve dağıtımı, sistem güvenilirliği ve 

elektrik güç kaynağı şebekelerinin günlük talep çizelgesine entegre edilmesi açısından 

çok önemlidir. Bu nedenle, ileri teknoloji geliştirmek için değişen hava koşulları ile 

orantılı bir fotovoltaik enerji tahmin modelinin oluşturmak gerekir. Gerçekleştirilen 

çalışmada fotovoltaik sistemlere, meteorolojik gözlemlere ve güneş enerjisi 

çıktılarının tahminine yönelik yeni bir veri toplama sistemi geliştirmek 

amaçlanmaktadır. Barometre ölçümleri için mikro denetleyiciler ve sensörler 

kullanılmaktadır. Hava durumu ve elektrik dengeleri web sitesinde arşivlenmekte ve 

Thinkspeak platformu aracılığıyla Nesnelerin İnterneti üzerinden izlenmektedir. 
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9 Mayıs 2022 Pazartesi ile 15 Haziran 2022 Çarşamba arasındaki 37 gün boyunca 

toplanan güneş enerjisi çıktılarını tahmin etmek için metasezgisel algoritmalarla 

geliştirilmiş Yapay Sinir Ağları (YSA) modeli kullanılmıştır. Üç ana algoritma, 

Genetik Algoritma ( GA), Parçacık Sürü Optimizasyonu (PSO) ve Yapay Arı Kolonisi 

(ABC), 18 derecelik eğim ile yerleştirilmiş güneş paneline ait verileri tahmin etmek 

için kullanılmıştır. Bu algoritmaların sonuçlarını değerlendirmek ve karşılaştırmak 

için ortalama kare hatası (MSE), ortalama mutlak yüzde hatası (MAPE) ve 

belirleyicilik katsayısı (R2) olmak üzere üç yöntem kullanılmıştır. Sonuçlar, temel 

belirleme yöntemlerini kullanan geleneksel yapay zeka yönteminin en iyisi olduğunu 

göstermektedir. PSO-ANN ise GA-ANN ve ABC-ANN ile karşılaştırıldığında en iyi 

sonucu vermektedir. 

 

Anahtar Sözcükler : Yapay sinir ağı (YSA); yapay arı kolonisi (ABC); genetik 

algoritma (GA); parçacık sürüsü optimizasyonu (PSO); güneş 

fotovoltaik (PV); PV güç üretimi tahmini; PV sistemlerinde 

Nesnelerin İnterneti (IoT); çevrimiçi sistem izleme. 

Bilim Kodu : 92906 
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SECTION 1 

 

INTRODUCTION 

 

The development of any country going to depend primarily on energy generation, 

consumption, and secure storing. The development of technology and the expansion 

of industry have increased our need on energy. Fossil fuels are the main source of 

electricity, and they primarily and directly damage the environment [1]. The melting 

of glaciers, the rise of sea levels, and the drying out of agricultural regions are all 

consequences of global warming, which is caused by the combustion of fossil fuels. 

The demand for energy by the population all over the world is at the highest rate than 

ever before, causes an increase in the rate of fossil fuel combustion, leads to global 

warming  a changing in the environment worldwide and energy resources are getting 

more scarce [2]. To satisfy the rising global energy demand, environmentalists and 

economists support climate accords and switch to cleaner energy that is more 

environmentally friendly, less expensive, and more effective. Clean energy, which 

includes wind power and solar photovoltaic (PV) electricity, among many other 

renewables, is a cheap form of energy for the global energy market. There has been a 

lot of buzz about Solar PV lately because they can convert solar power into useful 

electrical energy. Due to the fact that it gives the world's energy market access to a 

free fuel source, solar PV energy has emerged as the most important global issue and 

thus improves the medium- and long-term levelized cost of electricity (LCOE), in 

addition, bank green is considered low carbon and its manufacture has a lower carbon 

impact compared to other energy sources. It is one of the ways to reduce climate 

change and global warming threats while also benefiting consumers [3]. Solar energy 

is 516 times more abundant than oil and 157 times more than coal [4]. The COVID-

19 pandemic caused many effects on the industrial sectors, especially in the solar 

energy sector, which was primarily affected by the spread of COVID-19 [5]–[9]. The 

year 2020 was considered a year of decline for the first time since 1980 and when 

revising expectations, it was 121-152 gigawatts for the year 2020, decreased by 8% to
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become 108-143 gigawatts due to the outbreak of the epidemic [10]. And losses 

amounting to 1,700 megawatts which is enough to supply 288,000 homes with energy 

and about 3.2 billion dollars in the economic investment sector. In the first quarter of 

2020, the price increased from 0.228 to 0.27 dollars/watt in the second quarter of 2020 

[10], [11]. In order to lessen these detrimental impacts on the solar energy sector, 

governments must encourage investments and offer the appropriate incentives. It also 

urged certain governments to acknowledge the importance of solar energy outside of 

the grid [12]. On the one hand, expectations also indicate that the trend is not going in 

this way and predict that by 2025, solar energy will be the least expensive source of 

electricity [13]. Increased sales of digital applications that urged sustainable energy 

development organizations to raise awareness about solar energy and businesses 

started to provide data with ease of sales, planning, and follow-up to users through 

various digital channels are two positive effects of the epidemic in the solar energy 

sector [8]. Additions are becoming exceptionally large in the new normal in 2020 with 

270 GW commissioned in 2021 and 280 GW in 2022. Annual solar additions reached 

162 by 2022 which is 50% higher than the pre-coronavirus level in 2019 [14]. With 

Increasing continuous additions, the global capacity of solar PV energy could grow by 

22% to become approximately 260 gigawatts in the year 2026 and it is expected that 

the global installed storage capacity will expand by about 56% to reach 270 gigawatts. 

This is due to the increasing need for energy and the flexibility of the storage system 

around the world [15]. Despite all the successes and benefits mentioned previously, 

the PV system was disadvantage due to the instability and regulation of the variable 

electric power generation when connected with the electrical network and this makes 

the schedule of processing and production very difficult [16]. When PV energy is 

widely integrated with electrical supply and distribution networks, meteorological 

conditions, which are the primary factor determining the generation of PV energy, 

enjoy a significant deal of unpredictability. As a result, precise and trustworthy solar 

PV forecasting is crucial to the PV power system's safe and cost-effective functioning. 

Based on previous weather data and solar panel PV characteristics, a specific approach 

is applied [17].  

The development of prediction parameters for the design and installation of PV 

systems, such as solar radiation intensity, panel temperature, dust, wind, humidity, and 

ambient temperature, has been a focus of increased study due to the extensive forecast 
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rates in the area of solar PV systems. It was discovered that the solar panel's surface 

temperature rises as a result of the dust that is present there [18]. Since semiconductors 

are used in the production of PV electricity, the temperature has a major effect on the 

output voltage and current produced by the semiconductor, hence reducing the 

performance of the system. According to a research by Virtuani et al., the open-circuit 

voltage output declined by 0.45%, the rate of power production decreased by 0.65%, 

and the fill factor of the system reduced by 0.2% with each Kelvin increase in 

temperature [19], [20]. In a study done by Bahaidarah et al., when the temperature is 

lowered by 20% due to cooling, a solar panel's output increases by 9% [21]. Most solar 

panel manufacturers design their systems under hypothetical environments with cell 

temperatures of 25 °C, solar radiation of 1000 W/m2, and air pressure of 1.5 atm. the 

production of power of  PV systems may explained depending on the variation of 

external environmental parameters [22]. During the manufacturing process of Solar 

panels, flaws and abnormalities may appear, causing solar panels to function less 

efficiently and produce less energy. Component difficulties, especially inside this DC 

portion (PV modules and Maximum power point tracking (MPPT)) have lowered PV 

productivity according to a report from the International Energy Agency (IEA). efects 

such as cell cracks, debonding, hot surfaces, and dirt buildup, Common PV array flaws 

include mismatched modules, shorted modules, poor connections, corroded 

connections, open circuit-short circuit faults, and MPPT failures [23]. Incorporating 

PV system output predictions daily data analysis and presentation demand schedule 

gives operators a strategy for electricity grids and system dependability [24]. Studies 

found that the extremely short, medium, and long periods used to categorize the energy 

projections for the PV system [25]. A very short time period is less than four hours, a 

short time period is one to three days, a medium time period is one week, and a long 

time period is months. A short prediction plays a critical role in predicting energy 

distribution over such four timeframes [26]–[28]. As a result, forecasting has a long-

term focus, relies on the gathering of past data, and is based on statistical techniques 

[29]. In order to develop more advanced technology, it is required to establish a 

forecast model for photovoltaic energy that is appropriate with the various weather 

circumstances [30]. A lot of research has been done by scientists on the method of 

forecasting and optimization of renewable energy supply systems and how to solve the 

problems of uncertainty and prediction accuracy. Several different types of prediction 
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models, including persistence models, physical models, statistical models, machine 

learning (ML) models, metaheuristic models, and hybrid models made up of two or 

more models, were found after a thorough analysis of the literature. A particular 

emphasis was placed on the hybrid machine learning and metaheuristic models, which 

were examined and critically contrasted with other models and it was found that the 

hybrid models with optimization algorithms are the best for prediction, and it was clear 

through the analysis of the values for performance criteria MSE, MAPE and R2 which 

decreases by about 15% compared to other models such as artificial intelligence and 

other specific models. Combining a few optimization techniques, such as Group 

Search Optimization (GRO), Firefly algorithm (FA), and Glowworm Swarm 

Optimization, (GSO) with ANN, Support Vector Machines (SVM), and Extreme 

Learning Machines (ELM) are the most often used approaches in hybrid models. 

Finding the optimum answers for hybrid approaches is one of these optimization 

algorithms' main tasks. Input data that are reliable and closely connected to solar 

energy output are also necessary for successful prediction. 

 

There are two primary sections to the thesis study. Creating the measurement setup is 

the first step in measuring the "solar radiation level," "the current, voltage, and power 

output of the PV panel, battery, and load," "the temperature of the solar panel surface, 

ambient air, and battery," and "the humidity and pressure of the environment" in which 

the panel is situated. Thanks to the Internet of Things (IoT) and smart gadgets, these 

measures may be tracked and recorded locally or online from anywhere in the globe. 

Data management and power output estimation make up the second section. In this 

section, research is done utilizing the ANN model and optimization methods to 

forecast and maximize the power production of a PV system. 

 

We will work on the data that we have quoted from the first part, and the work steps 

are as follows: 

1. Training an ANN using MATLAB ANN-TOOL. 

2. ANN Estimation Optimization by Using Optimization Algorithms like PSO, GA 

and ABC. 

3. Comparing the results of optimization algorithms with three different common 

evaluation methods called MAPE, RMSE and R2 used to make the comparison. 
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SECTION 2 

 

LITERATURE REVIEW 

 

In this part, we will present a literature review of modern renewable energy forecasting 

methodologies.  

 

We will discuss and analyze different forecasting methodologies. Successful 

integrations of renewable energy sources into small grids need to build a reliable and 

accurate prediction model for solar energy and understand the random behaviours of 

renewable energy.  

 

This is what we must do as engineers to choose the accurate and appropriate approach 

to predicting renewable energy, especially solar energy.  Reliable renewable energy is 

one of the most prominent concerns in literary studies. Numerous studies have been 

done so far that focus on the flaws and errors in solar energy forecast models. 

 

These models may be divided into several categories, including physical models, 

statistical models, AI models, metaheuristic models, and hybrid models, which 

combine two or more of the preceding models. Recently, researchers' attention has 

been drawn to artificial intelligence models among these prediction models, 

particularly machine learning with metaheuristics, which is represented by a hybrid 

model. In our literature review, we will concentrate on these models. 

 

Figure 2.1 displays the uses of the electrical sector and the variations in the horizons 

of those uses [31].  

 

Researchers have multiple perspectives and different ways of forecasting renewable 

energy sources (mainly solar energy) that will be reviewed in the following sections.
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Figure 2.1. Forecasting time horizons [3]. 

 

2.1. Persistence Model 

 

It is used as a model to test the prediction accuracy of a proposed model and is also 

considered a criterion for other models [32]. Simply put, this model only requires 

historical data from previous studies [33]. These methodologies are considered 

unsuitable for long-term forecasting and give better results for forecasting the very 

short and short-term for some time from some seconds to 6 hours [34] and it is more 

widely used for one hour for forecasting solar energy production [35]. Simply put, the 

solar data values should be similar to the energy values measured on the next day [36]. 

The solar energy output is expressed by the following equation [37]. 

 

𝑃𝑓 𝑡 +  ℎ =  𝑃𝑝𝑑 (𝑡) (2.1) 

 

where 𝑃𝑓 𝑡 +  ℎ is the expected power output and 𝑃𝑝𝑑 (𝑡) is the power output from 

the previous day to the expected day in the same period. In many studies, the use of 

persistence model allows for better results compared to other methods. In Ahmad’s 

study, where he explained the percentage difference between the persistence methods 

and the methods of machine learning is less than 2.5%   [38]. In the study of  Sanfilippo 

eat al. as well as a study by Martín et al. it showed a percentage of less than 5% in a 

comparative study they conducted between the method of machine learning and the 



 

7 

methods of stability [39], [40]. In a study by Lauret eat al. for the solar forecast an 

hour ago, it was shown that the accuracy of the prediction depends on clarity and clear 

sky conditions, and the percentage difference reached 2%, and the non-linear methods 

improve the gradual stability very little [41]. 

 

And the results of a difference appeared for the unstable sky conditions, the difference 

is clear between the machine learning and the fixed models, with an average of Nrmse 

to 2%. persistence models are sometimes as effective as complex models [43], [44]. 

And sometimes it excels and is better than svm [40]. In conclusion, as mentioned 

earlier, persistence models can be interesting, but it must be taken into account that the 

dynamics of the atmosphere have a direct and strong impact on forecasting, especially 

if the time horizon is more than one hour, so this model is intended for very short time 

horizons. 

 

2.2. Physical Models 

 

Physical models are a collection of mathematical equations that explain the physical 

condition of the atmosphere as well as its dynamical movements [42]. These physical 

models are made utilizing the characteristics of solar power plants. and wind turbines 

as well as geographical locations. These models are based on numerical weather 

predictions (NWPs) based on weather variables such as temperature, wind speed, 

intensity, pressure, etc., geographical location and historical trend data. It is basic when 

solar is only used, but  after adding additional parameters, it becomes complex [43], 

[44]. When atmospheric variables are stable, prediction accuracy becomes better [45]. 

Physical models are considered reliable when predicting the medium and long terms 

but  inaccurate in the short term [46]. According to various studies carried out by 

Dolara et al. and Gandelli et al., the physical prediction model has been combined with 

machine learning models as a form of a hybrid model to improve prediction. Despite 

this, the forecast accuracy was sensitive to weather conditions, so these models were 

suggested that to  be applied in special sites or factories to improve forecast accuracy 

[43], [47]. Therefore, these models did not attract the attention of researchers, and they 

turned to other modern methodologies that are better and outperform the physical 

models in performance [44].
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Simply put, statistical models represent a linear relationship between the historical 

time-series data as well as the intended result [48].  

 

The relationship between the data and the mathematical equation is described as a clear 

linear relationship [31]. They can be easily formulated and used for short-term 

predictions, however in studies of the literature few predictions are used in this way 

[49]. using the equation below can be used to represent the ARMA model, which is a 

mixture of the commonly used and well-known moving average (MA) and 

autoregressive (AR) statistical models. [50]. 

 

𝑥(𝑡) = ∑ 𝛼𝑖𝑥

𝑝

𝑖=1

(𝑡 − 𝑖) + ∑ 𝛽𝑗ⅇ(𝑡 − 𝑗)

𝑞

𝑗=1

 (2.2) 

 

where x(t) represents the forecasted PV power, which is the summation of the AR and 

MA functions. Hence, 𝑝 and 𝑞 indicate the order, αi and 𝛽𝑗 are the AR and MA models' 

coefficients, respectively. e(t) is white noise, which generates random uncorrelated 

variables with constant variance and zero means. 

 

The main reason for the importance of this model is its ability to distinguish statistical 

properties and take the box-Jenkins method [51]. There is also a model called the AR 

integrated part MA (ARIMA) has wide uses and has an acceptable level of accuracy 

in prediction, which is the mainstay of the ARMA model [52]. The ARIMA model 

removes non-stationarity data by integral shear [53]. In research, Pasari and Shah 

employed an ARIMA model to forecast temperature and wind speed, and they came 

to the conclusion that the model is universal and requires certain adjustments, such as 

expanding the amount of data input [54]. Atique et al. studied solar energy forecasting 

and used the ARMA mode. It was  concluded that this model requires constant data, 

so they converted the seasonal non-fixed data to fixed [55]. An ARMA model in some 

other form considering external input is the auto - regressive movement averaged 

(ARMAX). This approach is not dependent on the sun's radiation but rather on 

meteorological conditions, unlike the ARIMA method. In the study of Li et al., use 

ARMAX model and input weather characteristics such as temperatures, pressure, wind 

speed and direction, brick, duration of insolation and amount of precipitation to predict 
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PV output one day in advance and based on performance parameters. The model 

outperforms ARIMA, Radial Basis Function Neural Network (RBFNN), and other 

approaches. RMSE (125.84 W/m2), MAPE (82.69%), and mean absolute deviation 

(MAD) were the performance metrics (98.61) [56]. They provide an acceptable short-

term prediction accuracy of up to two days and yet fail to make a long-term and stable 

[49]. After these studies, the researchers started using other hybrid methods, a mixture 

of statistics and artificial intelligence methods, to solve the problems of future 

forecasting methods. 

 

2.3. Regression Models 

 

It is a statistical technique for establishing a connection between both the explanatory 

and the relationship between variables. When using PV energy, the predicted energy 

is the regression coefficient, while the atmospheric factors are the responsible factors. 

In research by Keshtegar et al., four different types of regression models were 

employed to evaluate their accuracy in Turkey: Kriging, Response Surface Method 

(RSM), Multivariate Adaptive Regression (MARS), and M5 Model Tree (M5 Tree) 

for modeling solar irradiation. They use a wide range of data, such as high and low 

temperatures, duration of sunshine, velocity of wind, and relative humidity. The solar 

radiation was estimated from two stations in Adana and Antakya, the station located 

in Adana gave better prediction accuracy results for mars type than kriging RSM m5, 

and the station located in Antakya type M5 showed better results than MARS RSM 

M5. The results were improved by entering periodic data, and the Kriging type showed 

the best results in Antakya and Adana [57]. In a comparative study, Abuella and 

Chowdhury used a multiline regression model to predict solar energy and, in another 

study, Lauret et al. employed three distinct probability models to forecast events 

occurring 1-6 hours beforehand.  The author applied numerical weather prediction for 

the following day's radiation as an external input when applied in two distinct places, 

and historical data for radiation from the sun as an internal input. The PV power output 

was predicted applying both simple and complex linear regression techniques. The 

constraints of this model are that it requires a large number of inputs at once and that 

the findings reveal that the linear regression model performs better when two inputs 

are used than when one is [58], [59].  Wang et al. created a structured partly functional 
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linear regression model (PFLRM) to forecast the PV production one day in advance 

and showed better results and improved prediction accuracy compared to Multiple 

linear regression (MLR) and RBFNN according to the performance value of MAPE, 

where the value of PFLRM showed 11.34% and the value of MLR was 20.92 % and 

the value of RBFNN was 63.88% [60]. Although regression models give results with 

more accurate prediction in some applications, they cannot be relied upon and 

generalized because they depend heavily on input data and need explanatory variables 

to improve prediction accuracy [61]. 

 

2.4. Machine Learning 

 

Artificial intelligence is the ability to think, create, recognize patterns, make decisions, 

and learn from experience. It emerged as a major in computer science and has produced 

several powerful tools of practical use in engineering fields to solve difficult problems 

that require human intelligence. Artificial intelligence techniques have a very 

important role in modelling, analyzing and forecasting renewable energy systems and 

can be used as a way to address complex and undefined problems. they can learn from 

examples and tolerate errors so they can deal with incomplete data, once trained and 

they can make predictions and generalizations quickly. According to the results 

published in the various papers, it is a testament to the ability of artificial intelligence 

to predict faster, more accurately and more practically than any other traditional 

method in renewable energy processes [62]. Therefore, in the past few years, a focus 

has been placed on artificial intelligence techniques,  many models have been 

developed to predict and take them as an alternative to traditional models [63]. This 

duality consists of three main types, which are machine learning, artificial intelligence, 

and deep learning. Figure 2.2 shows the difference between these types and their 

applications [64]. In the following sections, we will present modern methods based on 

the ML methodology on solar energy. 

 

ML is a training process that automatically predicts the outputs of certain systems and 

is trained with what is available using a set of inputs and outputs. It allows the 

computer, as opposed to models that rely on statistics, to learn from this data via 

experience. ML can adapt to unstable data and deal with non-linear systems. These are 
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what made them reliable methodologies in the accuracy of forecasting and their 

outputs, and it is generally used for any data processing and analysis studies [65]–[67]. 

This technology consists of three main types, and according to the survey, it is the 

most widely used type to predict solar energy output. 

 

 

 

Figure 2.2. The relationship between types of artificial intelligence and their 

applications [64]. 

 

2.4.1. ANN 

 

Ann is regarded as the most reliable method for forecasting renewable power output 

in response to shifts in weather conditions. However, when compared to statistical 

techniques, it is the most suited because of its limited skills for analyzing non-linear 

datasets. There are three main layers in all types of Ann: the input layer, which has an 

input feature so that each neuron can take one, the output layer, which determines the 

output's goal, and the hidden layer, which connects the input layer and output layer 

and is where all the necessary calculations are done. In order to assign any input to any 

output of any data and to provide activation functions for the ANN network that help 

to find any complex relationship between the input data and the output data, each layer 

in the neural network attempts to learn specific decimal weights that are determined at 

the conclusion of the learning process. This process is known as global approximation. 

The basic artificial neural retina of an artificial neuron and  represents the equivalent 

model and can be expressed Curse with the following equation [32]. 
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𝑈𝑁 = 𝑏 + ∑(𝑤𝑗 × 𝐼𝑗)

𝑁

𝑗=1

 (2.1) 

 

where 𝑈𝑁, 𝑤𝑗, 𝐼𝑗, 𝑏, 𝑁 are the ultimate output of the network, connection weight, input 

quantity, bias weight, and other inputs, in that order.  

 

In a study carried out by Karami et al., a model was used to develop Ann using ten 

groups for four variables of weather to estimate the output of PV energy. They applied 

it for a week over 4 seasons. The outcomes demonstrate that the ANN model, which 

uses 27 cells in the hidden layer and 4 neurons in the input layer, produces results that 

are quite satisfying. A deciding factor of 0.9972, 0.9856, 0.9487, and 0.9942 for 

summer, breach, winter, and spring, respectively, indicated that the accuracy of the 

forecast was dependent on the season [68]. Two ANN models were utilized in the work 

by Geetha et al. to forecast solar irradiance based on atmosphere balances. Training 

and testing data for the models were gathered from 6 distinct locations using the 

backpropagation technique [69]. In a study by Mohammad et al., they designed four 

multi-layer artificial neural networks (MLANN)  structures with return to forecast 

PV Solar electricity production in Iraq from July 1 to August 31, 2018, between 7 am 

to 6 pm and they used the input data, temperature, radiation, output voltage, current 

and power. The model showed that MLANN had high accuracy and the model was 

affected by the number of hidden neurons to improve prediction accuracy   [70]. Lopes 

and Hajimirza compared the performance analysis of 4 models of ANN to forecast 

PV Solar power output. They used localized PV data and online remote data for 

meteorology. The findings demonstrated significant accuracy in handling 

meteorological information that is adequate and helpful for planning PV installations. 

When it comes to PV data, it produced positive results for usage by power providers 

[71]. In their study Abuella and Chowdhury showed that the 14-entry Feedforward 

neural networks (FFNNs) methodology can give results that are superior to the multi-

line regression methodology for solar energy forecasting. And they also showed that 

the data settings and their demonstration helped greatly to improve the training 

process's simplicity and effectiveness ANN. Additionally, their findings indicated that 

removing the nighttime hours from either the inputs somewhat improved performance. 

The prediction showed that the hours, when the sky was clear, give reliable predictions, 
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unlike the hours when the sky appears overcast with clouds and rain. This was one of 

the problems related to solar energy forecasting [72]. To solve this problem O’Leary 

and Kubby suggested input masking techniques which depend on groupings of error 

in a specific time scale. They recommended categorizing the hours into four groups: 

daytime, nighttime, sunrise, and sunset. The outcomes also demonstrated that masking 

inputs can enhance the approach's prediction output. They proposed using the same 

methods across various locations and circumstances to increase the ANN rating 

by approximately 1.3% and also to underline how crucial it is to hide these entries 

[73]. Ann was cross-hybrid with Articulated Neural Rendering (ANR) by Ozoegwu to 

increase the correlation factor for the monthly solar prediction by 9% and decrease the 

number of inputs ANR. And this provided a memory that helps to stabilize and 

generalize the prediction. Using data from multiple climates in Nigeria and the results 

of this methodology are good for the prediction of in the long run. Itis suitable for solar 

energy scheduling applications [74]. Bhaumik et al. used a multilayer feedforward 

neural network (MLFFNN) to predict solar radiation for 2016 by using hourly 

radiation data from 2011-2015. The data was sampled by taking 1 of photovoltaic 

geographical information system (PVGIS) 31325 data. Using time and day values as 

input parameters month, longitude, latitude, altitude, slope and high solar radiation 

were taken as outputs. The results showed a high accuracy of 98.74% and this showed 

the reliability and accuracy of the methodology used in this study [75]. To forecast 

global solar radiation for two distinct locations, Hashunao et al. suggested two multi-

layer feed-forward back-propagation (MLFFBP) models. Data were gathered over a 

5-year period to train the model, and the results demonstrated agreement with the 

actual output, allowing it to be used to the prediction of solar radiation by 

demonstrating that the MSE and R sections' performance values are almost zero and 

that the examined site's percentage is greater than 92% [76]. 

 

2.4.2. Recurrent Neural Networks (RNN) 

 

It is a subtype of ANN and it is good at learning computational structures and complex  

relationships. It works powerfully when the data is important and affects the upcoming 

predictions. So it is considered one of the important and widely used tools for time-

series predictions [77], [78]. As mentioned in our previous discussion, FFNN does a 
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good job of associating a set of inputs with outputs and learns independently without 

any memory of the previous outputs. Yona et al. mentioned that the errors are 

significantly reduced by using RNN compared to FFNN when they made a prediction 

24 hours before the output of the PV power and the results appeared that the RNN was 

significantly superior to FFNN and also confirmed the validity of the results by 

simulation [77]. 

 

Geetha et al. proposed a based-term-short  RNN algorithm to estimate PV power 

generation. It used data from sensors installed at the site where solar energy was 

installed. The experiment was for three periods: 5 to 15 minutes, 1 hour and 3 hours. 

The results showed that short-term memory based on RNN give the best results. for 

short-level prediction [79]. 

 

RNN is good for solving complex problems of time series prediction and stores the 

input data but fails to hold it for a long time. To address this issue, Hochreiter and 

Schmidhuber introduced the Long Short-Term Memory model for RNN (LSTM) [80]. 

The transmission of knowledge from earlier examples into long-term memory is 

regulated by this paradigm. The forgetting gate, the input gate, and the output gate are 

some of the gates that it has and consists of. This gate serves to determine if this 

information is kept or forgotten, and thus the model builds a long-term memory. Thus 

the model solves the problems related to the RNN which is fading [81]. 

 

Sabri and El Hassouni used real data from 1BDKASC Springs in Australia to perform 

a comparison study between the RNN and LSTM models to forecast the production of 

PV electricity. MAE, MSE, R2, and root-mean-square error (RMSE) comparison 

between the two models revealed that the LSTM model surpasses the RNN in 

performance and can forecast stability as well as increase accuracy [82]. 

 

A comparative study was carried out by Ananthu and Neelashetty to show that LSTM 

networks are more accurate in predicting time series. They analyzed a large number of 

time-series data to predict solar power generation. Sampling data for two years 

previously recorded for power generation of 100 kW for 720 days was tested on 220 

samples per hour to estimate monthly and daily solar energy generation and compare 
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the results with other models such as ARIMA SARIMA RNN fbProphet based on 

RMSE-based results show that LSTM gives better results than other models [83]. 

 

We look at the success and accuracy of LSTM in prediction compared to the models 

we referred to in previous studies, but they suffer from the problem of a large 

computational burden that may cause a slowdown in the LSTM network. 

 

Cho et al. designed the Gates Repeated Unit (GRU) to solve this problem [84]. Its 

function is to combine a unit between the ratio gate and the input gate of the LSTM 

network. It contains only two gates, the first is reset and the second is refresh. Thus 

makes GRU faster than LSTM, but also it is not qualified for some problems. Because 

it has less computing power compared to LSTM [85]. 

 

This work by Hosseini et al. used GRU and LSTM to evaluate the univariate technique 

and the multivariate approach and estimate the hourly direct sun radiation. They found 

that GRU performed much better than LSTM from a computational standpoint. 

Because LSTM takes more time with no significant superiority[86]. 

 

However, GRU fails computationally in its ability to treat long-term consequences as 

demonstrated by Jebli et al. In a comparative study of the prediction accuracy of three 

models of RNN LSTM GRU for real-time solar energy forecasting based on 

meteorological data for the Errachidia region in Morocco from 2016 to 2018, 6 

measures of efficiency performance were established, including mean absolute error 

(MAE), mean squared error (MSE), RMSE, mean error (ME), and R2, or normalized 

root mean square error (NRMSE). By contrasting RNN with LSTM's propensity for 

dealing with long-term effects, the results demonstrated the superiority of RNN over 

LSTM. They also showed very high accuracy and fewer errors compared to RGU [87]. 

 

2.4.3. SVM 

 

When training an ANN, a local minimum problem might occur. The support vector, a 

supervised machine learning technology, overcomes this problem. SVM is based on 

the kernel learning technique [88]. SVM offers a fundamental idea for mapping 
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linearity as a future space and non-linear data in spaces. Support vector regression, 

which is based on the idea of statistical education and structural risk reduction, is 

another approach that has been created to address challenges with linear regression 

[89]. The key characteristic of SVM is the kernel function, which allows a collection 

of data to be mapped and shown in higher dimensional spaces. As a result, the mapping 

of that data in SVM can effectively anticipate non-uniform estimates like solar and 

wind energy and capture non-linear data [88]. It's described as 

 

𝐾 = ⅇ𝑥𝑝 (−
1

𝜎2
‖𝑥 − 𝑥𝑖

2‖) (2.2) 

 

where x and xi are the input and output vectors, respectively. Greater objectives 

resemble lower-dimensional input objects. [90]. 

 

Jang et al. developed a one-day prediction model for SVM (15-300 minutes) and the 

prediction results showed that the prediction accuracy of SVM is better compared to 

nonlinear autoregressive (NAR) and ANN, and it was noted that the prediction 

accuracy decreases with the increase in the time horizon [91]. In general, SVM is 

highly efficient in high-dimensional scans and relative memory efficiency. It also 

solves optimization problems in L training, so its performance is poor in large training 

data and the calculations are somewhat complex and expensive. To solve this problem, 

a type of SVM least-squares SVM (LSSVM) was used whose function is  to convert 

inequality into equality constraints, reduce computational complexity and speed up 

training for ripple SVM [92]. A proper kernel function has a significant impact on the 

performance of both the SVM and LSSVM models. Linear kernel function, radial basis 

kernel function, polynomial kernel function and wave kernel are the most common 

and used functions in SVM assembly. 

 

In general, the SVM model can outperform other ML techniques and it can also 

tolerate noise and data changes positively [93]. The superiority of the SVM technology 

has been demonstrated by Quej et al. When they compared SVM with adaptive 

network-based fuzzy inference system (ANFIS) and ANN to estimate global solar 

radiation in highly humid regions. Solar irradiance in highly humid locations is very 

chaotic and affected by cloud coverage and precipitation.  So that the solar radiation in 
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the locations where the humid areas are highly chaotic and affected by cloud cover and 

rain. So that rainfall was included as an input for the three ML techniques that were 

mentioned. The outcomes clearly demonstrated SVM's superiority; both other 

approaches were comparable and of little significance [94].  Ahmad et al. proposed 

four different SVM models to predict the generation of PV energy depending on the 

seasons. The four models were trained individually. As the inputs of the SVM 

historical data on weather and PV information were used. They adopted the RBF 

kernel and the polynomial kernel to determine the appropriate function for each of the 

four models. The results showed that the RBF kernel performs. The performance is 

better to predict the accuracy of the PV module, on the other hand, the polynomial 

kernel shows a decrease in MSE and MAE to predict the production of PV energy 

based on the prediction accuracy[95]. In a study carried out by Hamamy and Omar to 

predict solar radiation at different time horizons, they applied the LSSVM model with 

the RBF kernel and to build the model, they entered the sunrise periods and weather 

data as input of  the model and concluded that the LSSVM model shows better 

accuracy results for prediction for a short period and the accuracy decreases for long 

periods [96]. These are consistent with the results and conclusions obtained by Liu et 

al. The LSSVM model was not a model with appropriate accuracy for 48 hours before 

prediction. Malvoni and Hatziargyriou addressed the weakness of LSSVM for long-

term prediction by hybridizing it with a 3-D waveform for 24-hour prediction[97]. 

 

2.4.4. Levenberg–Marquardt Algorithm (LMA) 

 

The ELM model was first proposed by Guang-Bin and Qin-Yu [98]. And the goal was 

to train single-hidden layer feedforward networks (SLFN) which were different from 

gradient-heaping methods that allocate random values between input layers, hidden 

layers and biases in the hidden layer. It is fairly similar to previous methods, with the 

exception that it just learns the weight in between the hidden and the output layers 

layer and it does not repeat learning any other parameters [99]. It is widely used in 

learning problem applications such as classification, regression, clustering and feature 

mapping, and then developed with numerous suggestions to further improve stability 

for specific applications[100]–[103]. The loss function in the ELM model depends on 

second-order statistics. It cannot apply and fails to perform with non-linear and non-
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Gaussian data. When used, it is combined with optimization algorithms or other 

techniques to augment. In a study by Tang et al., the entropy method and ELM method 

were combined for a period of one or two hours. The findings revealed that MAPE 

resulted in a decrease of 2.5538% in CPU time (measured in milliseconds) and an 

increase in values for R2 (0.99292). They claimed that the technique's good predictive 

accuracy, fast convergence, and minimal parameter adjustment made it ideal for 

forecasting PV output. When compared with GRNN and RBFNN, however, minor 

differences were shown by the value of R2 compared to RBFNN [104].  A comparative 

study was conducted to train two RBF and ANN nuclei using the Levenberg–

Marquardt algorithm and the ELM to predict PV power in hours and days for three 

different networks. Over long periods, its capacity was high compared to other models, 

and they also made it clear that it was not possible to include external data and 

suggested  the treatment in future work [105]. 

 

2.5. Hybrid Methods  

 

Hybrid methods are the methods combined from two or more models with some 

optimization algorithms. This method increases the prediction accuracy of the general 

hybrid system by combining some of the individual features of each model. Through 

previous studies, it became clear that in most cases are not enough one method or one 

model to obtain an accurate and reliable prediction of PV energy. Therefore, modern 

methods are used to improve the accuracy of prediction by integrating two or more 

models compared to using one model [43]. It will increase the computational 

complexity and the cost, space, structural maintenance, durability and reliability must 

be taken into consideration. The performance of each model individually determines 

how well the hybrid technique works. Poor performance will result in a weak model. 

If the performance is good, the results will be good [32]. The hybrid method also can 

improve the performance of complex systems through solutions to individual 

problems. With a group of the best appropriate techniques it is used in many 

applications of PV energy prediction Metaheuristic is a term used when proposing 

solutions to a large group of problems to improve, and it is one of the high-level 

research methods. In modern applications, many metaheuristics algorithms are applied 

in a successful and accurate form for problems that are difficult to improve. One of the 
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reasons that attract the use of these algorithms to solve complex and large problems is 

that they get solutions for them. Even if the size of the problems is very large, they are 

implemented in short periods compared to the size of the big problems. 

 

Optimization problems that attract the attention of using metaheuristics algorithms 

have a large variance that is divided into several goals; restricted to unrestricted, 

continuous to non-continuous, and multi-objective. Implementation is impractical due 

to computational requirements when it is large data But the metaheuristics 

methodology provides an elegant and practical solution to many of these problems and 

is designed to arrive at the most approximate and ideal solutions to optimization 

problems   [106]. To build accurate, efficient and inexpensive ML models to predict 

accurately and reliably, scientists have used metaheuristic optimization techniques 

with ML for different purposes to adjust the model, estimate parameters, train 

channels, and adjust hyperparameters related to the network structure[107]. 

 

The performance of ML models is improved by adjusting and optimizing model 

parameters such as Biases, weights, and/or penalties of kennel functions all are 

examples of ML model parameters. Therefore, a lot of descriptive features have been 

incorporated to improve the parameters of the ML approach. 

 

2.5.1. Metaheuristic and ANNs 

 

Cho  et al. proposed a model for estimating the PV energy per hour by ANN and the 

optimization algorithm PSO. They used real measured data related to seasons and 

geographic regions. The PSO algorithm helped to improve the training processes of 

the ANN network to reach accurate and optimal solutions. The accuracy and reliability 

of the estimation was confirmed by the actual details of the PV power plant in different 

and measured areas. It helped greatly to meet the demand for load more accurately 

while coordinating with other traditional stations [108].  Bao et al.  proposed a GA-NN 

model for predicting solar radiation and historical data include variables like ambient 

temperature, atmospheric pressure, as well as wind velocity [109]. Pedro and Coimbra 

tested the GA-ANN model for prediction of solar energy output for one and two hours 

without external inputs and compared it to other models such as ARIMA, K- Nearest 
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Neighbor (KNN) and ANN the GA-ANN model outperformed other models in the 

short term and likewise did not succeed in the long-term prediction, he said.   [110], 

[111]. 

 

2.5.2. Metaheuristic and SVMs 

 

We mentioned that tuning kernel parameters for SVM are one of the defects in using 

this method. Studies have been put forward to solve this defect with a combination of 

metaheuristic optimization algorithms. For example ,Wang et al. proposed a model to 

predict electric power generation based on PV in micro-networks using ABC-SVM to 

train weather data and PV power outputs and classify them as into 4 categories. They 

used PSO-RF (Random Forest) to train thousands of data for each set of classified data 

and that is how 4 individual trained models were obtained. To predict after obtaining 

the optimal parameters the model was improved by differentiating and training the 

data and obtaining the appropriate model. By using this method, they obtained a high 

prediction accuracy under different weather conditions [112]. VanDeventer et al. used 

the GA-SVM model method to predict the energy of a short-term PV system an hour 

earlier at Deakin University. The SVM model was used to classify historical weather 

data and then improved by GA. Through their analysis, the accuracy of the individual 

classifiers was greatly enhanced by the GA algorithm that was. The main step in 

increasing the accuracy was the difference in the superiority of the GA-SVM system 

over the traditional SVM system with a value of 669.624 Watts for RMSE and an error 

rate of 98.7648% for MAPE [113].   Niu et al. in their research, experimented with the 

(Ant Colony Optimization) ACO-SVM model to predict the power load in the short 

term. The proposed model obtained a higher prediction accuracy compared to SVM 

and Back Propagation Neural Network (BPNN). In this way, they were able to 

overcome the defects in large data and fast processing [114]. 

 

2.5.3. Metaheuristic and ELM 

 

We mentioned earlier in the Single ELM Methodology section that when the ELM 

approach is based on an improvement approach, it results in reliable models and better 

performance. For example, in this study  Behera et al. developed an approach for PV 
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power prediction based on ELM optimized with the PSO algorithm to increase the 

prediction accuracy and the results. The experiment was compared with BPNN, so the 

ELM algorithm showed better results. After that, they applied the PSO optimization 

algorithm for the PSO-ELM, accelerate PSO (APSO) APSO-ELM, and craziness PSO 

(CRPSO) CRPSO-ELM models. And the models were able to improve the ELM 

results. Therefore, the PSO optimization algorithm was able to obtain a generalized 

weight and bias which enabled ELM to achieve better results with a low error rate 

[115].   

 

Mansoury et al. proposed an integrated model from ELM and the PSO optimization 

algorithm to predict the generated solar energy. The aim of which is to control the 

amount of energy generated to ensure the availability of energy supply by sensing the 

average energy per hour based on the previous hour’s data using the variables of 

temperature, radiation and wind speed the results obtained were much better than those 

methods mentioned in the literature in terms of prediction accuracy and time 

convergence [116]. 

 

2.6. Summary 

 

Machine learning model techniques (ANN, RNN, SVM, ELM) have been successfully 

used to predict solar energy according to many references and statistical evaluations 

with scales such as MAE, MSE, RMSE and R2. They have been tested and confirmed 

their ability to predict and outperform various traditional methods.  

 

In particular over the medium and short term, the non-linearity and chaotic 

characteristics of solar energy data were advantageously captured by the 

straightforward ANN architectures [110].  

 

Nonlinear solar energy patterns can be mapped using a powerful ANN called 

(BPFFANN), although it is vulnerable to fluctuations and can easily enter local 

minimums. [117]. RBFANN model is used for predicting the problems of solar and 

wind energy, due to the speed of learning and less computational complexity compared 

to the usual BPFFANN [118].  
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There are many different types of ANNs. If the parameters are related to the training 

or the hill of the network, it directly affects its reliability [119]. To adjust these 

parameters, integration of different optimization algorithms is required and in some 

cases, it is time-consuming and large historical data is needed to train networks. RNNs 

are a special type of ANN that can preserve and use the advantages of previous time 

steps.  This makes them able to learn and reach a temporal relationship between the 

data [120].  

 

RNNs can form accurate prediction models, but they have a short memory problem 

associated with them and this causes training problems. GRU and LSTM are nodes 

introduced to solve the RNN regression problem. These nodes process data in various 

mathematical activation functions to take advantage of the time-step characteristics 

that preceded long memory periods. And their superiority is confirmed by activating 

time-series prediction with rather short training intervals. However, the use of this 

mechanism in different types of RNNs causes an accumulation of errors and leads to 

an explosion of scaling fears, which in turn affects the network training process [121].  

 

The SVM model of ML is also powerful, well known for its global approximation 

ability and can simplify complex mathematical computations. Unlike an ANN that can 

learn small patterns of sorts from data sets with little dependence on prior knowledge 

[122]. However, performance is highly dependent on kernel function parameters and 

this requires the integration of optimization algorithms for tuning and training [123]. 

When the training data sets are large-scale, this leads to the instability of the prediction 

in the horizons of the long prediction [124]. One of the problems associated with SVM 

training is overfitting, and this requires taking different decisions during the training 

process [61]. One of the system improvement tools for estimating weights and 

appropriate biases is ELM  [97]. Despite training and rapid convergence when training, 

the problem may appear that convergence is premature in some cases, and the model 

fails to predict accuracy and generalization. This is what encouraged thinking that 

integrates DL with ELM  [63]. 

 

Integrating ML hybrid with metaheuristic are reliable and recommended solutions for 

forecasting accuracy. metaheuristic is developed to adjust the parameters of the ML 
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model or the network architecture. It aims to integrate the properties that achieve the 

necessary convergence, and this leads to high reliability and prediction accuracy 

compared to independent ML approaches. 

 

Based on the investigation and review of previous literature evaluating the MSE, 

MAPE, R/R2 SAMPE, RMSE metrics. The ML hybrid Model with descriptive 

characteristics is the model with the highest accuracy for prediction. A favorable 

population-based metaheuristic model integrated with the ML model is known for its 

ability to identify optimal global variables for different functions. Swarm-based 

evolutionary optimization techniques are a branch of population-based optimizers that 

are preferred by scientists for parameter optimization with ML modelling. Hybrid 

models can strongly determine the optimal values that exceed the independent 

improved values. Although hybrid models have given accuracy and reliability in 

prediction, they take more time to implement and require powerful computational 

machines in some cases, unlike individual models. Some researchers rely on 

experience and computational knowledge to adjust these parameters are super. 

 

Finally, based on research in the prior literature, which includes a thorough analysis of 

the significance of enhancing ML-based prediction approaches in general and neural 

networks in particular, through 2022, this has been a significant and hot issue. The 

studies shown that the neural network could be improved by adjusting and adjusting 

parameters including weight and starting weight, overall rate and bias, number of 

hidden layers, number of nodes in the hidden layer, and activation functions. The 

reference research also concentrated on ANN-based metaheuristic optimization 

methods, including ANN-GA and ANN-PSO, and compared them in terms of training 

effectiveness, training duration, and needed micro-network administration. 

 

From this review, its study of the previous literature emphasizes the importance of 

hybridizing the neural network by means of the metaheuristic optimization algorithm 

to search for the best parameters of the ANN to achieve the best structural network 

based on test results to improve the performance of the ANN by means of 

metaheuristic optimization techniques. While studying these reviews of the ANN-

based optimization method.  
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• When data is big working with ANN is the best choose. 

• Hybridization of ANN with metaheuristic optimization algorithms improves 

the results. But may slow down the training in some cases.  It depends on 

finding the appropriate optimization method and the optimal values for the 

system. 

• Conventional NN techniques create complex, sensitive and non-linear 

computation problems to obtain high accuracy and reliability, the appropriate 

optimization must be chosen for the system. 

• By cutting down on time or utilizing ANN to identify the best data by 

minimizing trial and error and random selection, optimization techniques 

enhance neural network architecture. 
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SECTION 3  

 

HARDWARE AND DATA ACQUISITION SYSTEM 

 

In this section, information on how to produce power from a photovoltaic panel, 

hardware setup and how to quote the reference are provided. 

 

3.1. Power Cell Working 

 

A solar cell (also known as a photovoltaic cell or PV cell) is defined as an electrical 

device that converts light energy into electrical energy through the photovoltaic effect. 

A solar cell is basically a p-n junction diode. Solar cells are a form of photoelectric 

cell, defined as a device whose electrical characteristics vary when exposed to light, 

light can be produced from many sources, but the most effective light is sun light. 

Individual solar cells can be combined in series or in parallel to form modules 

commonly known as solar panels. The common single junction silicon solar cell can 

produce a maximum open-circuit voltage of approximately 0.5 to 0.6 Volts.  When sun 

light touches the p-n junction, the light photons will enter in the junction easily, 

through very thin p-type layer. The light energy, in the form of photons, supplies 

sufficient energy to the junction to create a number of electron-hole pairs. The incident 

light breaks the thermal equilibrium condition of the junction. The free electrons in the 

depletion region can quickly come to the n-type side of the junction. Similarly, the 

holes in the depletion can quickly come to the p-type side of the junction. Once, the 

newly created free electrons come to the n-type side, cannot further cross the junction 

because of barrier potential of the junction. Similarly, the newly created holes once 

come to the p-type side cannot further cross the junction became of same barrier 

potential of the junction. Since the density of electrons is greater just on the n-type side 

of the partition and the density of gaps is larger just on the p-type side, the p-n joint 

will function like such a tiny battery. The term "photonic voltage" describes the 

induced electrical potential.
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A current via the joint will be negligible if only a minor load is connected across it. 

Figure 3.1 displays the relationship between illumination and voltage output. 

 

 

 

Figure 0.1. Solar cell output vs light intensity [125] 

 

These applications necessitate the utilization of metals with band gaps closer to 1.5 

eV. Silicone, Gallium arsenide, Cadmium telluride, and copper indium selenide are all 

frequently employed materials. There are some conditions of materials to be used in 

solar cell: 

• It must have a band gap from 1ev to 1.8 ev. 

• It must have high optical absorption. 

• It must have high electrical conductivity. 

• The raw material must be available in abundance and the cost of the material 

must be low. 

 

3.1.1.  Advantages of solar cell 

1. No pollution associated with it. 

2. It must last for a long time. 

3. No maintenance cost. 

 

3.1.2. Disadvantages of solar cell 

1. It has high cost of installation. 

2. It has low efficiency. 

3. During cloudy day, the energy cannot be produced and also at night we will 

not get solar energy. 

https://www.electrical4u.com/solar-energy-system-history-of-solar-energy/
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The Table 3.1. below are the data for the poly type solar panel used in our study. 

 

Table 3.1. Table of electrical ratings for PV panel. 

 

Peak Power (Pmax) 80 W 

Voltage (Vmp) 16.6 V 

Current (Imp) 4.55 A 

Open Circuit voltage (Voc) 21.8 V 

Short Circuit Current (ISC) 5.23 A 

Maximum Bypass Diode  A 

Maximum Series Fuse  A 

 

3.2. System Set-up of The PV and Location 

 

The PV panel and DAS that contains the sensor collection has been installed on the 

roof of the building of the Technology Department of the faculty of engineering, 

Karabuk university in the city of Karabuk, Turkey, which is located in a geographical 

location shown in Figure 3.2 at the coordinates of latitude 41.205, longitude 32.628 

and height of 1.037. The sun is 15 hours and 9 minutes where the highest average low 

temperature around 16 °C, as well as the average high temperature, ranges from 29 °C. 

the humidity is 20% during the summer season in 2022. The amount of average 

shortwave solar energy generated decreased by 0.6k Wh from 6.9 kWh to 6.2 kWh. 

 

 

 

Figure 3.2. Location setup the photovoltaic panel and data acquisition device system 

(DAS). 
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The experimental data acquisition system consists of two subsystems, the first as seen 

in Figure 3.3. 

 

 

 

Figure 3.3. PV system setup block diagram: rooftop subsystem on the left and lab 

subsystem on the right. 

 

One of them is on the rooftop which contains the sensors for obtaining data and 

archiving the site via SD card data logger and saving the data on an excel file. The 

other branch, which is located in the lab, is utilized for Internet-based data archiving 

and monitoring. 

 

The rooftop system consists of PV panel modules  are installed at an angle of 18°, data 

acquisition circuits for all weather and electrical parameter sensors, an esp32 

microcontroller containing Wi-Fi, a dc-dc converter and a solar controller MPPT for 

the modification of pulse width (PWM) signal output. A real load consists of three fans 

and is used to cool the contents of the DAS. 

 

The subsystem in the laboratory records the data from the subsystem in the rooftop 

and is monitored and recorded at specific time intervals through an open-source IoT 
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platform called Thingspeak and communication between the two systems is via the 

esp32 microcontroller that contains the internal Wi-Fi. 

 

3.3. Measurements 

 

In this study, a DAS with 6 environmental parameters and 9 electrical parameters is 

developed. The DAS was designed internally for flexibility and to make signal 

adaptation circuits for some sensors that fit the parameter values we need. 

 

Figure 3.4 shows the sensors and adaptive circuits that were chosen in order to create 

a reliable and weatherproof DAS on location. 

 

 

 

Figure 3.4. Data Acquisition System (DAS). 

 

The measurements and sensors are included in Table 3 together with the production 

source and measurement parameter. 
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Table 3.2. Table of specifications of each sensor. 

 

Parameter to be 

measured 
sensor Manufacturer/Model 

Measurement 

range 

Dc Voltage, 

Current, Power 

for the solar 

panel, battery 

load 

INA219 High Side 

DC Current 

Sensor Breakout 

Texas Instruments, 

2W current sense 

resistor, 0.1 ohm 

Up to +26V target 

voltage 

Current 

measurement with 

a precision of 

0.8mA and a 

maximum of 3.2A 

Irradiance 
MS-602 

Pyranometer 
EKO 0 - 2000 W/m² 

Surface Solar, 

battery, Ambient 

temperature 

DS18B20 

Programmable 

Resolution 

1-Wire Digital 

Thermometer 

Maxim Integrated -55 to 125°C 

Humidity, 

pressure 
BME280 Bosch 

0 to 100 % 

300 to 1100 hPa 

 

3.3.1. DC electrical voltage, current and power 

 

3.3.1.1. Sensor 

 

The Ina219 is a bi-directional zero-drift bus voltage monitor module provided by 

Texas Instruments Inc. It features a built-in interface that can transport data to 

microcontrollers through SMBus or I2C. It has a versatile, programmable, high 

resolution 12-bit chip with 16 addresses and a double register that converts power to 

watts. Although the INA219 chip works on 3 or 5 volts, it is able to measure current 

and voltage with an independent external system and it can deal with measuring high 

side current up to +26 VDC. It also reports this high side voltage. Just connect the 

measurement input directly to a voltage source from 0 to 26 V which is very good for 

tracking solar panels and batteries. Since it can measure current and voltage, it can 

measure the power used as an I2C device that senses the switching is connected to the 

bypass voltage via an external resistance and uses the negative analog input to measure 

the load and with the measurement of current the power is dissipated in the load.  
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The chip contains an internal amplifier which means that you do not need to convert 

the level or amplify the voltage. The voltage is measured via the amplifier. The 

accuracy through the resistor is 0.1 ohms 1%. It can be measured up to ± 3.2 A because 

the input difference for the maximum amplifier is ± 320 mV. Accuracy at range ±3.2A 

is 0.8 mA with 12-bit internal ADC, maximum current is ±400 mA, accuracy is 0.1 

mA with the internal gain set to minimum. 

 

3.3.1.2. Calibration 

 

A multimeter was used for calibration in order to compare the measurement findings 

between both the calibrator as well as the sensor, optimize performance, improve 

reading accuracy, and check the linearity of the signal. They significantly affect how 

well the measurement system performs. The objective of these tests is to know the 

accuracy and readings of voltage and current between the sensor and the calibrator. 

The INA219 sensor is calibrated in the laboratory with an accuracy of ± 0.10%. 

 

3.3.1.3. Wiring 

 

The sensor is connected via I2C protocol, so we need to change the I2C address. We 

use 3 each for the solar panel, battery, and load. Figure 3.5 showed the three locations 

of the sensors. 

 

 

 

Figure 3.5. INA219 voltage, current and power sensor. 
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It has two inputs A1 and A0 which are two lower bits that are multiplied in the same 

way as ADS1115. That means  the inputs can be set to GND, VCC, SCL and SDA. The 

addresses of the sensor board A1 and A0 are pulled to a low level by the resistors so 

that when soldering two points it is allowed to give a different band address and the 

addresses can be changed. Sensor and circuit wiring: We connect V+ to the circuit's 

power supply's positive terminal. Connect V- to the load's positive terminal. Then the 

sense resistor is connected. Connect the power supply's negative terminal to GND. The 

sensor can monitor load voltage and current with this connecting method. 

 

3.3.2. Irradiance 

 

3.3.2.1. Sensor 

 

The MS-602 pyranometer sensor is a part of the EKO pyranometer series for 

measuring solar radiation based on heat. It is considered one of the most economical 

measurement solutions in the EKO company industry. The sensitivity and affordable 

cost of such a sensor are two of its best features. It is integrated into all weather 

conditions and is found in many meteorological balances and small professional 

photovoltaic sites. 

 

The sensor contains an internal and external glass dome. This sealed dome provides 

an environment for the detector and protection from influencing factors such as dirt, 

rain and wind. In addition to the mechanical aspect and the optical properties of the 

glass dome reduce the unwanted effects from the Earth's atmosphere as it prevents 

infrared contrast. Glass domes allow global solar radiation measurement of all EKO 

thermostats with a 180-degree field of view. Figure 3.6 shows the installation angle of 

the sensor. 

 

When sunlight hits the black side of the detection, the sensor produces a voltage that 

increases in relation to the amount of light absorbed. And, thanks to the high black 

absorbent material, very stable and timely measurement is ensured for most of the 

measurement features such as response time, non-linearity, sensitivity, zero offset B, 

etc. 
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Figure 3.6. MS-602 pyranometer sensor. 

 

3.3.2.2. Calibration 

 

The data acquisition system defines a measurement range in which the signal can be 

measured with an accuracy range from 0 to 10 mV. The global broadband solar 

radiation does not exceed 2000 𝑊 ∕ 𝑚2  in all horizontal and tilt measurement 

positions and the maximum level of the output signal voltage is 10 mV. Calculating 

the maximum output voltage requires multiplying the maximum solar radiation value 

by the calibration factor. For example, the sensitivity of the calibrated temperature 

scale is 0.005 𝑚𝑉 𝑊⁄ . 𝑚−2 and the maximum solar radiation is 2000 𝑊 ∕ 𝑚2, the 

maximum output voltage is 10 mV. We have created a signal amplification circuit to 

convert the voltage output from 0-10 mV to 0-5 V so that the controller can read it. 

The output voltage 𝐸 (𝑚𝑉)  is divided by the sensitivity of the pyranometer S (𝑊 ⋅

𝑚−2) and Equation may be used to compute the total solar irradiation. 

 

𝐼(𝑊 ∕ 𝑚2) =
𝐸(𝑚𝑉)

S (𝑚𝑉 𝑊⁄ ⋅ 𝑚−2)
 (3.1) 

 

The sensitivity S is a fixed number on the product and can be calibrated by checking 

the sensitivity of the sensor. 
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3.3.2.3. Wiring 

 

First, it must be ensured that the cable is not exposed to direct sunlight wind or rain by 

lining the cable through a cable channel.  

 

These effects may cause a detractive signal. It is also isolated well to make sure that it 

is not affected by the weather conditions and by magnetic emissions. So, we must be 

sure to place it at a safe distance place from sources that are likely to emit 

electromagnetic noise such as high voltage lines and AC power sources. 

 

We connect the output cable to the sensor directly, making sure that the other end of 

the output cable is connected to the continuous voltage signal amplification circuit that 

we designed to amplify and strengthen the output signal as in Figure 3.7. Because the 

sensor’s output signal is very small and the controller cannot accurately record and 

read it. So, we amplify the signal and convert it from 0- 10 mV to 0-5 mV. 

 

 

 

Figure 3.7. Signal amplification circuit. 

 

We used uA74 type Op-Amp (operation amplifier) in the amplification as the 

electronic device. The circuit consists of two stages; the first one is to amplify the 

signal and the second one is to strengthen it with the use of a section of resistors as a 

sample to get the appropriate amplification from 0-5V and a symmetrical external 

supply source 12V. 
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3.3.3. Temperature 

 

3.3.3.1. Sensor 

 

The DS18B20 can measure the surface temperature, ambient temperature, and battery 

temperature of a solar panel, a single-wire digital temperature sensor by Dallas 

Semiconductor Corp. It requires a single data line to communicate with the controller. 

It can be powered by an external power source or draw power from a data line (called 

"parasitic mode"). You can find two distinct variations of the DS18B20 sensor module. 

One of them operates similarly to any other transistors. The other comes with a 

waterproof probing that may come in handy when taking readings from a great 

distance. 

 

This method is fairly precise and can function with no additional parts. The ds18b20 

sensor provides temperature readings from -55 degrees to +125 degrees, with an error 

of only 0.5 degrees. The sensor has a preset resolution of 12 bits (0.0625°C), but the 

user can change it to 9 or 10 bits to fine-tune the precision. Figure 3.8 showed the three 

locations of the temperature sensor. 

 

 

 

Figure 3.8. DS18B20 temperature sensor.  
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In order to make it simple to identify between them, the sensor includes a 64-bit serial 

code that is closed at the factory. The benefit of this sensor being able to cohabit on 

the same 1-Wire bus is its finest feature. It is a big advantage when we want to control 

many ds18b20 sensors.  

 

Employing this feature, that we used multiple sensors of the same type and distributed 

our scientific message to different places.  

 

3.3.3.2. Calibration 

 

The DS18B20 is an accurate temperature sensor between -10 and +85 degrees Celsius, 

with a sensitivity of 0.0625 degrees Celsius and an operating temperature range of -

125 degrees Celsius up +125 degrees Celsius. The linear scale voltage of the 

temperature sensor is 10.0 mV/°C. 

 

To calibrate a temperature sensor, we must measure something whose temperature we 

know or use a known reference. We used two methods here for calibration. The first 

one is the location of the weather conditions. The correct temperature values were 

confirmed by experimenting with the sensor on boiling water. As we know that boiling 

water boils at a temperature of 100 ° C. As for the second method, it is to monitor the 

temperature of the temperature from the sites specialized in the weather conditions to 

make sure that the temperature is within the required and reasonable range during the 

working period of the sensor. 

 

3.3.3.3. Wiring 

 

We connect three DS18B20 sensors to the microcontroller and display all values for 

the sensors in degrees. It only requires one pin of the microcontroller to connect 

multiple ds18b20 temperature sensors using the I2C protocol. 

 

In order to measure anything far away or in rainy conditions, we employed a 

waterproof sensor. The cable is PVC-coated and since the sensor is digital, there is no 

signal deterioration. It is pretty accurate with an error rate of ± 0.5 ° C and can give 
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12-bit accuracy when converting from digital to analogue.  We use a 1-wire protocol. 

We connect a resistance of 4.7 kΩ which is required as a pull from DATA to the VCC 

line. 

 

3.4. Microcontroller and Dataset Archive 

 

3.4.1. ESP32-WROOM-32 

 

The ESP32 development board is an integrated Wi-Fi controller launched by Espressif 

Systems in China after the ESP8266 chip. It has stronger performance than the 

ESP8266 which has a dual core LX6 processor and can be used to develop more 

complex applications. Figure 3.9 shows the general structure of the microcontroller. 

 

 

 

Figure 3.9. ESP32-WROOM-32. 

 

The ESP32 chip or module has the following characteristics: 

 

▪ Included in the package is a Tensilica LX6 a double processor, of which one 

core is designed to handle increased communications while the second core is 

used for developing standalone apps. 

▪ 32-bit (dual core) processor main frequency and CPU normal operating speed 

80 MHz up to 240 MHz. 
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▪ The 4 Megabytes of RAM, 448 Kilobytes of ROM, 520 Megabytes of SRAM, 

and 4 Megabytes of flash memory (for storing programs and data) are more 

than enough to process the massive string that makes it up modern internet 

content, Javascript object records, and all we frequently send on IoT. 

▪ Support up to a maximum of 16 MB for devices using the Serial Peripheral 

Interface (SPI). 

▪ The ESP32 integrates the HT40 Wireless Transceiver of 802.11b/g/n, so it can 

not only connect to Wi-Fi and interact with the Internet but also can set up its 

own network, permitting different devices to attach on to it. 

▪ Supports WIFI Direct, a peer-to-peer connection method that works well 

without an access point. Compared to Bluetooth, WIFI Direct is simpler to set 

up and offers far faster data transmission rates. 

▪ Operates at frequencies range of 2.4–2.5 Gigahertz. 

▪ Bluetooth v4.2 is fully supported by that the protocols, which means that it can 

communicate at both the Bluetooth Low Energy (BLE) and the more traditional 

Bluetooth basic rate/enhanced data rate (BR/EDR) data rates. 

▪ Supports a lot of peripheral interfaces such as general-purpose input/output 

(GPIO), ADC, Digital -to- Analog Converter (DAC), SPI, I²C, Inter-IC Sound 

(I²S), Universal Asynchronous Receiver-Transmitter (UART) and other 

common interfaces. 

 

The ESP32's operational voltage spans from 2.2V to 3.6V; the 3.3V voltage on the 

board is reliably maintained via an LDO regulator. When the ESP32 draws up to 

250mA during RF transmission, its maximum current output of 600mA should be 

more than sufficient. The board's MicroB USB port provides power to the ESP32 

development board. Alternatively, the VIN pin may be utilized to directly power the 

ESP32 and its peripherals provided you have a 5V regulated voltage source. 

The ESP32 chip may be programmed and communicated with using your computer 

thanks to a USB to UART Bridge controller from Silicon Labs that is included inside 

the CP2102 board. 

 

ESP32 may be developed in a variety of methods, but the most popular option is to 

utilize the official Arduino kernel from Espressif for ESP32. The official Arduino 
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software support, easy to start, most of the programming syntax is compatible with 

Arduino and with the help of the Arduino environment, there are very rich resources 

that can be used directly. 

 

3.4.2. Data logging and monitoring 

 

Researchers and engineers always rely on data to design and improve a particular 

system.  

 

Data recording and analysis is a common practice in most industries, and we recorded 

data in a certain period of time using an esp32 microcontroller to read the data and 

save it to the SD card, display it online on the computer, mobile monitoring using 

ThingSpeak  and also displayed locally on the 20×4 LCD screen.  Figure 103.  shows 

data archiving and monitoring online and on site. 

 

 

 

Figure 3.10. Dataset logging and monitoring by ThingSpeak, locally by Lcd. 

 

Recorded data is saved to a text file stored on an original SanDisk Ultra 32GB microSD 

card. Time and date information is acquired using the ds3231 real-time clock board.  
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The following Figure 3.11 shows the data logger file (data.csv) generated by DAS. 

 

 

 

Figure 3.11. Dataset logger file (data.csv). 

 

The system operates automatically for 12 hours a day, from 7 am to 7 pm and data are 

taken every 1 minute. 
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SECTION 4 

 

NEURAL NETWORK WITH OTHER ALGORITHMS 

 

In this section, we are going to introduce the three main implemented algorithms: 

Genetic algorithm, Particle swarm optimization and Artificial bee colony. The basic 

idea is how each of these algorithms will help neural network to get high accuracy 

prediction of PV output. 

 

4.1. Genetic Algorithm 

 

The genetic algorithm (GA) is a branch of learning algorithms which cross over the 

ideas of biases and weights of two good neural networks; the crossing produces the 

best neural network with optimal biases and weights. GAs often provide the best 

solutions which reveal valuable insights about a problem. 

 

4.1.1. Concept of GA working 

 

Suppose an agent with weights needs to be optimized; initially, groups of random 

values of biases and weights are generated. This stage refers to neural networks as the 

first agent. Many tests are evaluated by the agent. The agent produces the result of the 

tests as a score. It repeats those many times to generate a population. It chooses the top 

10% of the population to be used later by the crossover. Whenever crossover happens, 

mutations might occur. GA needs a cost function to be reduced. When this cost 

function reaches its minimum, the tested weights are the optimal values for the tested 

agent. This is GA with simple use. This process will slowly optimize the accuracy and 

performance. In our case, the agent was a neural network with weights needing to be 

optimized for better model performance.  

Figure 4.1 shows the process of the GA with an agent (NN). In our case the cost 

function is Mean Square Error.
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Figure 4.1. Loop of GA. 

 

4.1.2. Advantages and disadvantages: 

 

There are many advantages of Genetic Algorithms: a large domain of solutions, 

working on parallelism, simply needs less details about problem, solutions are 

multiple, global optimization. 

Disadvantages of Genetic Algorithms: it requires special definitions for its parameters. 

Its calculation complexity. 

 

4.1.3. GA vs ordinary algorithms  

 

• In GA, the term "domain of searching" refers to the collection of all possible 

answers to the problem at hand. As opposed to Genetic Algorithms, which use 

several groups within a search area, conventional algorithms only keep one. 

• Ordinary Algorithms need more details to achieve searching while Genetic 

Algorithms need only cost formula to compute the fitness of an individual 

solution. 

• Ordinary Algorithms are not able to work on parallelism while GA has ability 

to do that (fitness function is calculated of each individual independently). 

Set initial value of 
weights and 

domains for GA

Run agent (NN) 
with initial values 

of weights

Get cost function 
value

Update GA loss 
function

Change Weights
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• Ordinary Algorithms will result in only one solution for the optimization 

problem, while Genetic Algorithms will give multiple optimal solutions from 

different generations. 

• GA are stochastic and probabilistic, while traditional algorithms are 

predictable. 

• GA has ability to handle multimodal problems. 

 

Real-life applications of Genetic Optimization 

• Traveling salesman problem (TSP) 

• Vehicle routing problem (VRP)  

• Financial markets.  

• Manufacturing system. 

• Mechanical engineering design. 

• Data clustering and mining. 

• Image processing. 

• Neural networks. 

 

In our study, Neural network is used to predict the solar power output with weight 

optimal selection using Genetic Algorithms. 

  

4.2. Particle Swarm Optimization (PSO)  

 

PSO is a computation technique which can be used to optimize a problem by itera-

tively trying to enhance a proposed solution with regard to a given quality metric (cost 

function). PSO works to optimize the best selection of parameters by defining 

candidate solutions as populations for these parameters, and then moving these 

particles in a search space counting on mathematic formulas by changing the particle’s 

location and velocity. The motion of each particle is affected by its better location and 

is driven to achieve the best position in the search-space; the best positions are updated  

 

PSO was original defined in [126] as a stylized representation of the motion of 

organisms in a bird flock or fish school. PSO does not guarantee finding the best 

solution. More specifically, PSO does not depend on the error gradient, optimization 
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is performed compared with ordinary optimization techniques such as gradient descent 

and quasi-Newton methods. PSO is used for optimization issues that are partially 

noisy, irregular, changeable with respect to time, etc. 

 

4.2.1. Concept of PSO 

 

The basics of the PSO algorithm are that it works depending on a population (named 

as a swarm) of candidate solutions (named particles). These particles change positions 

from current position to new positions around the search space. The process is repeated 

with the hope of finding a satisfactory solution; however, this is not guaranteed. Figure 

4.2 shows the basic of PSO. 

 

 

 

Figure 4.2. basic PSO diagram [127]. 

 

Formally, let 𝑓:  ℝ𝑛 →  ℝ be the objective function which must be decreased. The 

function has an input a vector of candidate solution of real numbers and outputs a real 

number as value of the cost function to be minimized. The gradient of 𝒇 is not known. 

The aim is to find a position in the space (solution) 𝒂 for which 𝒇(𝒂) ≤  𝒇(𝒃) for all 

𝒃 in the search-space, the position 𝒂 is the global minimum. Cost function might be in 

a form of 𝒉 = −𝒇, thus we need to maximize the function instead of minimizing it.  

 

Let 𝑺 be the total count of particles in the swarm; every particle has its own position 

and velocity 𝒙𝑖  ∈  ℝ𝑛 and 𝒗𝒊  ∈  ℝ𝒏. Let 𝒑𝑖 be the optimal position of particle 𝒊, and 

let 𝒈 be the optimal position of the entire swarm. A basic PSO algorithm is then: 
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• For every particle 𝒊 =  𝟏, . . . , 𝑺, perform the following steps: 

o Start with the position of a particle by a random vector with uniform 

distribution: 𝒙𝑖 ~ 𝑈(𝒃𝒍𝒐, 𝒃𝒖𝒑), where 𝒃𝒖𝒑 and 𝒃𝒍𝒐 are the upper 

boundary and lower boundaries of the search space, respectively; 

o Set the initial value of the particle’s best position to: 𝒑𝑖  ←  𝒙𝑖; 

o When (𝑓(𝒑𝑖)  <  𝑓(𝒈)), change 𝒈 ←  𝒑𝑖; 

o Set the initial value of the particle’s velocity: 𝒗𝒊 ~ 𝑼(−|𝒃𝒖𝒑 −

𝒃𝒍𝒐|, |𝒃𝒖𝒑 − 𝒃𝒍𝒐|). 

• Until a termination condition is met (i.e., the final iteration is met, or a solution 

with adequate objective function value is found) : 

o For every particle 𝒊 =  𝟏, . . . , 𝑺, perform the following steps: 

▪ Choose random numbers: 𝒓𝒑, 𝒓𝒈 ~ 𝑼(𝟎, 𝟏); 

▪ For every 𝒅 =  𝟏, . . . , 𝒏, perform the following steps: 

▪ Update the velocity of the particle; 

▪ Update the position of particle: 𝒙𝒊  ←  𝒙𝒊  +  𝑻𝒊𝒎𝒆 ∗ 𝒗𝒊. 

▪ When (𝒇(𝒙𝒊)  <  𝒇(𝒑𝒊)), perform the following steps: 

▪ Update the best-known position of the particle: 𝒑𝒊  ←  𝒙𝒊; 

▪ When (𝒇(𝒙𝒊)  <  𝒇(𝒈)), update the best-known position of the 

swarm: 𝒈 ←  𝒑𝑖. 

• Now g represents the best-found solution. 

In our project, the PSO attempted to find optimal values of ANN weights. 

 

 4.3. Artifical Bee Colony (ABC) 

 

The artificial bee colony (ABC) is an optimization algorithm that depends on the in-

telligent foraging behavior of a honeybee swarm. The ABC algorithm is a swarm-

based meta-heuristic algorithm; it was first introduced by Karaboga in 2005 [128] to 

optimize numeric problems. The main idea was inspired by the smart searching of 

honeybees.  

 

The algorithm specifically depends on the model proposed by Tereshko and 

Loengarov [129] for searching methods performed by bee colonies. The basic structure 
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contains three important parts: unemployed foraging bees; employed foraging bees; 

and food sources. 

 

The role of the first two parts is to search for rich sources of food (third part) close to 

the hive. The structure also defines smart stages of leading of behavior; leading 

methods are very important for organization and how to collect food. The two stages 

are: 

• The mobilization of foragers to find and retrieve rich sources of food, which is 

reconsidered as positive feedback; 

• Foragers neglecting poor food sources, leading to negative feedback. 

 

In summary, ABCs have bees which are named agents; these are smart forager bees 

with a problem to solve, i.e., smartly finding sources of rich food. To implement ABCs 

for any problem, we must convert the optimization problem into a problem of finding 

a solution in the form of searching for the best parameters that make cost functions as 

minimal as possible. As a result, the agents (smart bees) randomly find some initial 

solutions for the parameters, and then enhance the parameters iteratively using the 

following technique: moving to better positions by means of a neighbor search 

mechanism while abandoning poor solutions. 

 

A global optimization problem can be defined as finding parameters as an array of one 

dimension, x, which minimizes the cost function f(x): 

𝑚𝑖𝑛 𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛−1, 𝑥𝑛) ∈ 𝑅𝑛           (4.1) 

 

It has some constraints, as follows: 

 

        𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖,   𝑖 = 1, … , 𝑛 (4.2) 

  

subject to: 

 
 

               𝑔𝑗(𝑥) ≤ 0, 𝑓𝑜𝑟  𝑗 = 1, … , 𝑝 (4.3) 

 

 
 

                   ℎ𝑗(𝑥) = 0, 𝑓𝑜𝑟  𝑗 = 𝑝 + 1, … , 𝑞 (4.4) 
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𝑓(𝑥) is defined on a search space, 𝑺, which has dimensions of n in 𝑅𝑛 (𝑆 ⊆ 𝑅𝑛). There 

are limits for each variable, lower and upper: 𝑙𝑖 and   𝑢𝑖, respectively. 

 

This problem is also known as a constrained optimization problem. If it is an 

unconstrained optimization problem, then both 𝑝 = 0 and 𝑞 = 0. 

 

4.3.1. The artificial bee colony meta-heuristic 

 

In ABC, there are three groups of bees:  

• Employed: which are associated with finding specific sources of food; 

• Onlookers: which watch the movements of Employed bees in the hive to select 

sources of foods; 

• Scouts: which randomly look for sources of food. 

 

Scouts and onlookers are also called Unemployed bees. Initially, Scout bees work to 

find all food source positions. Thereafter, Onlooker bees and Employed bees test the 

nectar of food sources that are discovered by Scout bees. This is a continuous process 

until all sources are exhausted. Employed bees whose food sources have been 

exhausted become Scout bees. In ABCs, the location of food sources is a potential 

solution, and the quantity of nectar in this source considers the quality (fitness) of the 

solution.  

The general flowchart of the ABC method is as follows: 

REPEAT 

Employed Bees Phase 

Onlooker Bees Phase 

Scout Bees Phase 

Memorize the best solution achieved so far 

UNTIL(Cycle = Maximum Cycle Number) 

 

4.3.2. phase of initialization 

 

All necessary parameters are initialized with random values as follows (𝑚=1…𝑚, 𝑚: 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧ⅇ) by scout bees, and the control parameters are set. 
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The following definition might be used for initialization purposes: 

 

𝑥𝑚𝑖 = 𝑙𝑖 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑢𝑖 − 𝑙𝑖) (4.5) 

 

Where 𝑙𝑖 and 𝑢𝑖 are the lower and upper bounds of parameter 𝑥𝑚𝑖 , respectively. 

 

4.3.3. Employed bees phase 

 

Employed bees search for new food sources (𝜐𝑚) with the condition of finding more 

nectar within the neighborhood of the food source 𝑥𝑚𝑖 in their memory. After they 

find a source of food, they check its quality (fitness). They might choose a neighbor 

source of food 𝜐𝑚 by the following formula: 

 

𝜐𝑚𝑖 = 𝑥𝑚𝑖 + 𝜙𝑚𝑖(𝑥𝑚𝑖 − 𝑥𝑘𝑖) (4.6) 

 

Where 𝑥𝑘𝑖 is a randomly chosen source, 𝑖 is also selected randomly, and 𝜙𝑚𝑖 is a 

random term in the range [−𝑎, 𝑎]. The quality value of the solution, 𝐹𝑚(𝑥𝑚), can be 

calculated to minimize problems using the subsequent equation: 

 

𝐹𝑚(𝑥𝑚) =  {

1

1 + 𝐹𝑚(𝑥𝑚)
𝑖𝑓   𝐹𝑚(𝑥𝑚) ≥ 0 

1 + 𝑎𝑏𝑠(𝐹𝑚(𝑥𝑚)) 𝑖𝑓   𝐹𝑚(𝑥𝑚) ≤ 0

} (4.7) 

 

𝐹𝑚  a measure of something like the solution′s goal function′s 𝑥𝑚. 

 

4.3.4. Onlooker bees phase 

 

Smart Employed bees share information details about sources of food with smart 

Onlooker bees which are waiting in the hive. Smart Onlooker bees use the shared 

information with probabilities from the fitness function Fm to choose their food 

sources. Fitness-based selection methods might be used, such as the roulette wheel 

selection method [130]. 

 

The probability 𝑝𝑚 that explains which 𝑥𝑚 should be chosen can be calculated by: 
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𝑝𝑚 =
𝐹𝑚(𝑥𝑚)

∑ 𝐹𝑚(𝑥𝑚) 𝑀
𝑚=1 

 (4.8) 

 

After Onlooker bees choose the location of food 𝑥𝑚, a neighborhood source, 𝜐𝑚, is 

defined by Equation (4.6) and its performance is calculated. It is in a phase of 

Employed bees; therefore, greedy selection is applied between 𝜐𝑚 and 𝑥𝑚. 

 

4.3.5. Scout bees phase 

 

Solutions of Employed bees cannot be enhanced by a specific number of tries, defined 

by the user of the ABC algorithm and called “abandonment condition”. Then, the 

converted Scouts begin to find new solutions. If solution 𝑥𝑚 is being abandoned, the 

new solution is found by Scouts which were previously Employed bees of 𝑥𝑚, as be 

calculated by Equation (4.5). Hence, those sources which are initially poor or have 

been made poor by exploitation are abandoned, and negative feedback behavior arises 

to balance the positive feedback. Figure 4.3 displays the ABC flowchart. 

 

 

 

Figure 4.3. ABC flowchart. 
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.4.4. Validation Metrics 

 

Suppose a vector of real values 𝒀 and a vector �̂�  as predicted values of 𝒀. The length 

of vectors is N. 

 

4.4.1. Mean square error 

 

𝑴𝑺𝑬 =
𝟏

𝑵
∑(𝒀𝒊 − �̂�𝒊)

𝟐
𝑵

𝒊=𝟏

 

 

 

(4.9) 

4.4.2. Mean absolute percentage error 

 

𝑴𝑨𝑷𝑬 =
𝟏

𝑵
∑ |

𝒀𝒊 − �̂�𝒊

𝒀𝒊
|

𝑵

𝒊=𝟏

 

 

 

(4.10) 

4.4.3. Coefficient of determination 𝑹𝟐 

 

𝑹𝟐 = 𝟏 −
𝑹𝑺𝑺

𝑻𝑺𝑺
 (4.-11) 

 

RSS: residual sum of squares, TSS: total sum of squares. 

 

𝑹𝑺𝑺 = ∑(𝒀𝒊 − �̂�𝒊)
𝟐

𝑵

𝒊=𝟏

   (4.-12) 

𝑻𝑺𝑺 = ∑(𝒀𝒊 − �̅�)𝟐

𝑵

𝒊=𝟏

   (4.-13) 

�̅� is the mean of 𝒀𝒊 
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SECTION 5 

 

IMPLEMENTATIONS AND RESULTS 

 

5.1. Data Processing  

 

The data are measured in the study: ‘DATE’, ‘TIME’, ‘Humidity’, ‘Pressure’, 

‘Tempsur’, ‘TempAmp’, ‘SolarV’, ‘SolarC’, ‘SolarIr’, and ‘SolarP’. The label of data 

is the last column ‘SolarP’. Other columns were gathered as the features or inputs for 

the tested algorithm. The prediction accuracy of all data has been improved in different 

weather conditions. 

 

The setup for all methods is shown below: 

 

For GA: Tolerance function: 1 ∗ 10−10, number of generations: 200, cost function 

desired limit 1 ∗ 10−7. 

 

For PSO: Personal learning coefficient: 0.8, population size: 150, iterations: 500, range 

of values [–5,5]. 

 

For ABC: Tolerance function: 1 ∗ 10−8, iterations: 1000. 

 

5.2. Traditional ANN 

 

We define the number of neurons as 18; ANN is a traditional feedforward network. 

 

As shown in Figure 5.1 and Figure 5.2, the final error is around “0”. 

 

 During training, the error is 0.0252%. The error gradient is about “0.0001”. 
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Figure 5.1. Training process. 

 

 

 

Figure 5.2. ANN results on real data. 
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Figure 5.2 shows the neural network results. The true values and predicted values are 

the same and errors around “0” with “mean 0” and standard deviation is “0.1”. It can 

be shown that there are 18 neurons in hidden layer of network and there are 9 features 

as input. It is shown in Figure 5.3. 

 

 

 

Figure 5.3. The ANN. 

 

The performance when NN ends training is shown in Figure 5.4. It reached about 

”0.0005”. 

 

 

 

Figure 5.4. Traditional ANN performance. 

 

Now let us test the Genetic algorithm with Neural network. 
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5.3. ANN with Genetic Algorithm  

 

We define the same network as previous with 18 neurons. Then we get the weights 

from the ANN and define the GA options:  

ga_opts = gaoptimset('PopInitRange', [-2;2], 'TolFun', 1e-10,'display','iter'); 

ga_opts = gaoptimset(ga_opts, 'StallGenLimit', 100, 'FitnessLimit', 1e-5, 

'Generations', 200); 

 

Number of generations is 200 and initial range for population is [-2, +2], with 

minimum value of fitness function and tolerance function. We pass the weights as 

input for GA and cost function is Mean Square Error. If the objective function does 

not improve within a period of time equal to the Stall time limit ('StallGenLimit') in 

seconds, the algorithm terminates. Table 5.1 depicts the procedure in detail. 

 

Table 5.1. The cost function process of the GA–ANN. 

 

Generation Best Cost Function Mean Cost Function 

1 10.61 445.6 

2 10.61 617.2 

3 10.61 725.2 

4 10.61 726.6 

5 10.61 819.7 

6 10.61 896.7 

7 10.61 795.7 

8 10.61 753.2 

9 10.61 771.9 

10 10.61 761.1 

11 9.497 834.7 

12 9.464 828.7 

13 9.438 775.7 

14 7.963 733.7 

15 7.518 772.8 



 

55 

The process output shows that many iterations the best fitness cost function is 

decreased. The final results are shown in Figure 5.5. and Figure 5.6. at second test. 

 

 

 

Figure 5.5. GA-ANN results (first test). 

 

 

 

Figure 5.6. GA-ANN results (second test). 

 

According to second test, the mean error is around 0 and standard deviation is less than 

10, it can be seen that it is bad algorithm. 
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5.4. ANN with PSO 

 

Table 5.2 shows changes in the first 10 epochs. 

 

Table 5.2. Best function during the process of the PSO–ANN. 

 

Iteration Best Cost Function 

1 43.4098 

2 43.4098 

3 18.8759 

4 1.368 

5 1.368 

6 1.368 

7 1.368 

8 1.368 

9 1.368 

10 1.368 

 

 

The process output shows that after many iterations the best fitness cost function is 

decreased. It reached “0.005” after 500 iterations.  The cost function is shown in Figure 

5.7. 

 

 

 

Figure 5.7. PSO-ANN cost function. 
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Figure 5.8 displays the results. 

 

 

 

Figure 5.8. PSO-ANN results. 

 

According to previous results, the mean error is around “0” and standard deviation is 

less than “2.5”. It can be seen that it is a good algorithm. 

 

5.5. ANN with ABC 

 

In this algorithm, splitting dataset was implemented. Data set was split into test and 

train part. The results are shown in Figure 5.9 as test part and Figure 5.10 as train part. 

 

 

Figure 5.9. ABC-ANN for testing part. 
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Figure 5.10. ABC-ANN for training part. 

 

5.6. Results Comparisons  

 

The fitness function is Normalized Mean Square Error (NMSE) for all methods. The 

citeria for GA is global minimum. The solution found by PSO is quite close to the 

global optimal. ABS is also searching for global minimum. 

 

All methods are compared in Table 5.3. 

 

Table 5.3. Table of comparison. 

 

 MSE MAPE 𝑅2 

Traditional ANN 0.000020349 0.00040514 1 

GA-ANN 6.1440 0.6790 0.4841 

PSO-ANN 0.4607 0.0524 0.9971 

ABC-ANN 35.1428 0.7890 0.5004 

 

The results show that the traditional NN with basic finding methods is the best. PSO–

ANN is the best between PSO–ANN, GA–ANN and ABC–ANN. Each study has its 

own dataset, the comparison would not be valuable because it is not the same dataset. 

However, we can tell that our methods have achieved a great accuracy, especially 

PSO-ANN, since the accuracy was 99.71%. The dataset can be shared with other 

researchers to obtain a comparison in the future. 
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SECTION 6 

 

CONCLUSION AND FUTURE SCOPES 

 

6.1. Conclusion  

 

DAS system was developed at Karabuk University and contains the sensors for 

obtaining environment and electrical parameters and archiving the site via SD card 

data logger and saving the data on an excel file, and the other branch is in the 

laboratory, which is used for archiving and monitoring data via the locally and IOT by 

ThingSpeak. 

 

In this work, implementation for solar power output predicting was performed with 

ANN and three different optimization algorithms: genetic algorithm, particle swarm 

optimization and artificial bee colony. Each method has been ran more than 10 times 

and results were monitored. The results showed that the PSO is best algorithm for 

finding optimal parameters of ANNs. Its performance (with respect to R2) was 99.71% 

with minimum MSE and MAPE values. In the future, these algorithms can be analyzed 

and more details about their parameters can be determined. Utilizing more features of 

the datasets can also enhance the model of prediction. 

 

6.2. Future Scopes 

 

New optimization algorithms can be implemented and tested for future scopes. 

However, by changing the parameters used as inputs for the ANN algorithm, different 

features in the study can be tested and the effect of the inputs on the final results can 

be investigated. Separating the dataset into steady, sunny, and cloudy groups can help 

increase the forecast's precision. 
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