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ABSTRACT

M. Sc. Thesis

DESIGN AND IMPLEMENTATION OF AN EDUCATIONAL FM
TRANSMITTER WITH FPGA USING SDR TECHNIQUES

Ahmed Ibrahim M AIGHHRIUNI

Karabiik University
Institute of Graduate Programs
The Department of Electrical and Electronics Engineering

Thesis Advisor:
Assist. Prof. Dr. Bilgehan ERKAL
December 2022, 75 pages

The basic purpose of Software Defined Radio (SDR) systems is to use a digital signal
processor to numerically handle radio signals. The use of a processor like a Field
Programmable Gate Array (FPGA) to perform tasks like modulation, demodulation,
signal creation, and line coding on these systems dramatically decreases the demand
for analog circuit-based hardware. FPGAs are digital integrated circuits with a wide
range of applications which are made up of links between programmable logic blocks.
It's aimed at assisting the creator realize the logic functions that the designer needs. In
consequence, the user may change the function of each logic block. VHSIC Hardware
Description Language (VHDL) is commonly used in FPGA programming. In this
study, VHDL code was created, and a FM transmitter was implemented on a FPGA
board (CMOD A7) in this research. The sound card interface on the PC used to send
and receive the signals while suitable ADC and DAC cards are used on the FPGA side

for the same purpose. Audacity program was used to playback the sample wav files



while HDSDR SDR program was used to monitor and record the signals in wav file
format. Finally, using the MATLAB code, the recorded transmitter signal was
demodulated offline, and the output was stored to the hard drive. The demodulated
signal obtained is identical to the initial modulation signal, indicating that the
modulation was correctly executed. As a result, a perfect foundation for the

development and training of SDR systems using FPGA has been established.

Key Words : Sdr, Matlab, Fm, Tx, Fpga
Science Code : 90523



OZET

Yiiksek Lisans Tezi

EGITSEL SDR TEKNIiKLERINE DAYALI FPGA TABANLI FM RADYO
VERICi TASARIM VE UYGULAMASI

Ahmed Ibrahim M ALGHHRIUNI

Karabiik Universitesi
Lisansiistii Egitim Enstitiisii

Elektrik ve Elektronik Miihendisligi Anabilim Dah

Tez Danismanai:
Dr. Ogr. Uyesi Bilgehan ERKAL
Aralik 2022, 75 sayfa

Yazilim Tanimli Radyo (SDR) sistemlerinin temel amaci, radyo sinyallerini sayisal
olarak islemek i¢in bir dijital sinyal islemcisi kullanmaktir. Bu sistemlerde
modiilasyon, demodiilasyon, sinyal olusturma ve hat kodlama gibi gorevleri
gerceklestirmek i¢in Alan Programlanabilir Kap1 Dizisi (FPGA) gibi bir islemcinin
kullanilmasi, analog devre tabanli donanima olan talebi onemli Ol¢iide azaltir.
FPGA'lar, programlanabilir mantik bloklar1 arasindaki baglantilardan olusan ¢ok
cesitli uygulamalara sahip dijital entegre devrelerdir. Yaraticinin, tasarimcinin ihtiyag
duydugu mantik islevlerini gergeklestirmesine yardimci olmayir amagclar. Sonug
olarak, kullanict her bir mantik blogunun islevini degistirebilir. VHSIC Donanim
Tanimlama Dili (VHDL), FPGA programlamada yaygin olarak kullanilir. Bu
calismada VHDL kodu olusturulmus ve bu arastirmada bir FPGA kartina (CMOD A7)
bir FM vericisi uygulanmistir. Sinyalleri géndermek ve almak i¢in PC tizerindeki ses

kartt araytizii kullanilirken, FPGA tarafinda ise ayn1 amag i¢in uygun ADC ve DAC

Vi



kartlar1 kullanilmaktadir. Ornek wav dosyalarmi oynatmak icin Audacity programu,
sinyalleri izlemek ve wav dosya formatinda kaydetmek icin HDSDR SDR programi
kullanildi. Son olarak, MATLAB kodu kullanilarak, kaydedilen verici sinyali
cevrimdist olarak demodiile edildi ve ¢ikti, sabit siiriiciiye depolandi. Elde edilen
demodiile edilmis sinyal, modiilasyonun dogru bir sekilde yiiriitiildiigiinii gosteren ilk
modiilasyon sinyaliyle aymidir. Sonug¢ olarak, FPGA kullanan SDR sistemlerinin

gelistirilmesi ve egitimi i¢in miikkemmel bir temel olusturulmustur.

Anahtar Kelimeler : Sdr, Fpga, Matlab, Fm, Tx
Bilim Kodu : 90523

vii



ACKNOWLEDGMENT

The present work is an effort to do the study on “Design and Implementation of an
Educational FM Transmitter with FPGA using SDR Techniques”. The work would not
have been possible to come to the present shape without the able guidance and

supervision of my thesis mentor Mr. Assist. Prof. Dr. Bilgehan ERKAL.

Also, | wish to convey my thanks to my family members for their morale during the

course of study.

viii



CONTENTS

Page

y N o 2 (@ Y PRSPPI I
ABSTRACT ..ottt ettt sttt e e et na et re et s iv
OZET .ottt vi
ACKNOWLEDGMENT ..ottt sttt nne e viii
CONTENT S ettt e et e e et e e san e beesnnas IX
LIST OF FIGURES ..ottt Xii
LIST OF TABLES ... oottt XIv
ABBREVITIONS INDEX .....citiiiiiiiiiiei e XV
(O o A el I PR SSRSTRN 1
INTRODUCTION ..ottt sttt enas 1
1.1 LITERATURE REVIEW ...ttt 2
CHAPTER 2 oottt e st e e st e e e snt e e e nne e e e nnaeeaneeens 5
SOTWARE DEFINED RADIO (SDR) ...ooiiiiiiieieeieiee e 5
2.1. SDR ADVANTAGES ...t 7
2.2. SDR DISADVANTAGES ......ootiieeseceeet et 7
2.3. APPLICATIONS OF SDR.....cotii ettt 7
CHAPTER 3 .ot ettt a et ne e 8
FIELD PROGRAMMABLE GATE ARRAYS (FPGA) ...c.ooiieieee e 8
3.1. FPGA INTERNAL STRUCTURE .....ccceoviiiiiieict e 8

B LLLOGIC CIl.ie e 9

B L2 FPGA PiNS.ciiiiiciisieese sttt et 9

3.2. FPGA PROGRAMMING ......cooii it 10
3.3. FPGA FLOW DIAGRAM ...ttt 10
3.4. FPGA MANUFACTURERS ...t 11

B L XHINX ittt 11
K L | (-] USSR 12



(O o A el I PSSR 13
FREQUENCY MODULATION (FM) ..ot 13
4.1. OVERVIEW AND THEORY OF FM SIGNALS. ..., 14
4.1.1. Information Signal..........c.ccoeiieii i 15
4.1.2.Carrier SIGNAL ....cc.voiieiiee e 16
4.1.3. Frequency Modulated Signal ..........ccccoeiieiiiiiiic e 16

4.2. COMPARISON BETWEEN FM AND AM SIGNALS.........cccccoeviveieeen. 17
4.3. BENEFIT SIGNALS OF FM OVER SIGNALS OF AM ......ccccevviieiiennnn, 17
4.4. FM SIGNALS MODULATION AND DEMODULATION.......cccceevvveeenen. 18
4.4, 1. FM MOGUIBLION ..c.viiiiiiiiciisiiee e 18
4.4.2.FM DemOdUIBLION .....ccuviieiieiiiee e 19

4.5. QUADRATURE DEMODULATOR ....ooviiiiieiieieeee e 21
CHAPTER S .ottt n e 23
VHDL — HARDWARE DESCRIPTION LANGUAGE ... 23
5.1. VHDL TERMINOLOGY ...ccviiiiiieiiiiiiieise e 23
5.1.1.Behavioral Modeling.........cccooeiiiiiiniiieeeee e 23
5.1.2. Structural MOGEIING.......ccviiiieeie e 24
5.1.3.Register Transfer LEVEl ... 24

5.2. VHDL DESIGN ....ooiiiiiiiieiee ettt 25
5.3. VHDL DESIGN SETIONS......ooiiie et 25
B3 L ENLIY oot 26
5.3.2. ATCRITECIUIE ... et 26
5.3.3.PACKAGE. ... .ottt 26
5.3 4. COMPONENT ...ttt e et e s e e annee e 26
5.3 5. PIOCESS. ...ttt ettt nns 26

5.4. VHDL MODELING BASICS ....cooiiieiceseiet e 27
T O I 04 51 - o | TP 27
5.4.2.SKGgNAL ... —————— 27
5.4.3. VHDL OPEIALOIS .....ccveiiviiiieitieite sttt 27
5.4.4. Simultaneous Signal ASSIGNMENTS .......cccveiieiiieiie e 28
5.4.5.Sequential CommAaNGS........c.coviiiriiiiiiie s 29



(O o A e I PR RR 30
MATERIALS AND METHODS ..ottt 30
6.1. DESIGN AND IMPLEMENTATION OF FPGA BASED FM
TRANSMITTER ..ot 30
6.1.1. Hardware COMPONENT ..........coueiiiiiriiiiiitisieeiee e 30
6.1.1.1. Digilent CMODA7 FPGA Card .......ccceoermiririinienneenee e, 32
6.1.1.2. Digilent PMOD ADL......cccoooiiiiiieieeniesie e 33
6.1.1.3. Digilent PMOD DA2........ccooiiiiiiiiiieseesee e 33
8.2. PROGRAIDMS ...ttt et 34
B.2.1. AUACITY ..ottt e re e nre s 34
B.2.2. HDSDR ...ttt e 34
6.2.3. XIINX VIVAAOD ....cviiiiiiiiieiieiee e 35
B.2. 4. MALIAD........ooeie i 35
6.3. SIMULATION STUDIES.......cooiiiiiriiiee e 35
6.4. BLOCK SCHEMA AND VHDL CODE OF THE SYSTEM .........cccevnnee. 39
(O o A ol I PSR 43
RESULTS AND DISCUSSION ......cooiiiiiiiiiiiiisieiniee et 43
(O o A e I G PSSR 46
CONCLUSION ...ttt ettt 46
REFERENCES.........o ittt 48
APPENDIX A. MATLAB CODE LISTINGS........cco o 51
APPENDIX B. VHDL CODE LISTINGS ......cooiiiireiiieerieeeseeeeeese e 55
APPENDIX C. DATASHEETS OF CHIPS USED IN THE PROJECT .........ccce...... 71
RESUME ..ottt ettt sttt bens 75

Xi



LIST OF FIGURES

Page
Figure 2.1. Software Defined Radio architecture transmitter and receiver.................. 6
Figure 3.1. Internal structure of FPGAL. ..o 9
FIgure 3.2. LOGIC CEILL ..o 9
Figure 3.3. FPGA design fIOW. ......cccoiiiiiiee e 11
Figure 4.1. Information signal, carrier signal and frequency modulation signal. ...... 14
Figure 4.2. Hlustration of FM Signal. ...........cccooiiiiieii i 15
Figure 4.3. Information Signal............cooiiiiiiiiiiii e 15
Figure 4.4, Carrier SIgNal. .......ccocovoiieii e 16
Figure 4.5. Frequency modulated signal. ... 17
Figure 4.6. An FM signal and a series of zero-crossing pulSes. ........c.ccccvvvevveieenenn. 19
Figure 4.7. The DASIC PLL.....c..oiiiiiiieeee e 20
Figure 4.8. Quadrature demodulator. ...........cccoveiiieii i 22
Figure 5.1. Behavioral modeling..........c.cooviiiiiiinee e 23
Figure 5.2. Structural MOdeling. .......cccoovveiiiiiieceece e 24
Figure 5.3. Example RTL modeling. ..o 25
Figure 5.4. VHDL deSign FIOW. ......cccoviiiiiii e 25
Figure 6.1. FMTX system hardware block diagram. .........ccccooeviiiiiniiniiiic 30
Figure 6.2. Photo of the FMTX system in Operation. ..........cccccevveveevievieevecrie e, 32
Figure 6.3. Digilent Cmod A7 FPGA DOAI. .......cooiviiiriiiiiieeee e 33
Figure 6.4. Digilent Pmod ADL. .......ccoiiiiieeccceese e 33
Figure 6.5. Digilent PMod DA2. .......coo oot 34
Figure 6.6 Audacity audio processing t00l. ..........ccoocereriiiniinieeie s 38
Figure 6.7. HDSDR SDR SOFtWAIE. ........coiveiiiiiiiieiie e 39
Figure 6.8. Basic block diagram of the FMTX system realized on the FPGA fabric.40
Figure 7.1. Test results of FPGA FM transmitter system with A1 modulating

signal: test signal Al at the top, waveform obtained by modulation
followed by demodulation in the middle, difference of the two signals
At The DOTIOM. ..o e 43

xii



Page
Figure 7.2. Simulation results of FPGA FM transmitter system with A1 modulating
signal: test signal Al at the top, waveform obtained by modulation

followed by demodulation in the middle, difference of the two signals at
the DOLEOM. ..o 44

Figure 7.3. Test results of the FPGA FM transmitter system with the A2 modulating
signal: test signal A2 at the top, the waveform obtained by modulation

followed by demodulation in the middle, the difference of the two signals
AL the DOTEOM. ..o.viiiiiec s 44

Figure 7.4. Simulation results of the FPGA FM transmitter system with the A2
modulating signal: test signal A2 at the top, waveform obtained by
modulation followed by demodulation in the middle, difference of the
two signals at the Dottom. ...........ccooviiiii e, 44

Xiii



LIST OF TABLES

Page
Table 4.1. Comparison among FM and AM. ........cccccoeiiiiiiieie e 17
Table 7.1. SNR and rms error for each simulation and test..........ccocccveeeevveeccveeeennn. 45

Xiv



ABBREVITIONS INDEX

ABBREVITIONS

SDR  : Software Defined Radio

FPGA : Field Programmable Gate Array

VHDL : Very High-Speed Integrated Circuit Hardware Description Language
ICNIA : Integrated Communication Navigation Identification and Avionics System
DSP  : Digital Signal Processing

MMITS : Modular Multifunction Information Transfer System

DUC : Digital Up Converter

IF . Intermediate Frequency

DAC : Digital Analog Converter

ADC : Analog Digital Converter

DDC : Digital Down Converter

FIR : Finite Impulse Response

CPLD : Complex Programmable Logic Device

PROM : Programmable Read Only Memory

AM : Ampiltude Modulation

FM : Frequency Modulation

RTL  :Register Transfer Level

XV



CHAPTER 1

INTRODUCTION

Software Defined Radio (SDR) is a combination of programmable hardware and
software technologies developed for wireless communication. John Mittola proposed
the first concepts for software defined radio in 1991, with the idea that radios may be
set and programmed in software. Other hardware devices perform actions such as
signal lowering/amplifying, modulation/demodulation, and filtering in a traditional
hardware radio system. In the software radio, on the other hand, there is a
programmable system that the user can change the location of these elements at any
time. The development of SDR systems has offered benefits such as cheaper costs and

modifying the functionality of hardware-based radios [1-4].

FM radios are commonly used to broadcast audio signals. For digital communication
systems with a narrow bandwidth and a correspondingly low receiver sensitivity, they

are also an option [5].

Software defined modems are becoming increasingly popular as an alternative to
traditional analog modems due to a number of significant advantages, including the

ability to be reprogrammed, flexibility, and a cheap cost [6].

FM implementation using analog circuits suffers from a number of deficiencies, the
most notable of which are non-linearity caused by the voltage-controlled oscillator

(VCO), as well as poor stability performance [7].

As a result of recent advancements, the growing availability of low-cost digital signal
processing integrated circuits has acquired a significant amount of importance for the
design of digital FM. In addition to that, their noise figure performance is remarkable,

and they have an amazing voice clarity.



For software-defined FM modulation and demodulation, FPGAs may create digital

Numerically Controlled Oscillators (NCOs) and high order filters.

Based on the signal that is emitted by the FM radio, two observations are possible.

The FM signal's amplitude, independent of the message signal, is maintained at a
constant level, which results in a characteristic called a constant envelope.
Furthermore, the frequency-modulated output is based nonlinearly on the message
signal. As a result, the FM signal qualities are difficult to examine. The FM signal
bandwidth, on the other hand, may be approximated using a tone message signal that
represents the number of efficient sidebands. A message signal can be extracted from
an FM transmission via frequency demodulation. It has a frequency discriminator that

works as a differentiator with a specialized envelope detector [7-8].

1.1. LITERATURE REVIEW

The first wireless communication was found in the late 1980s, and since then, various
breakthroughs in radio communication technology have evolved to ensure radio users'
connectivity. The Triumphant radio, which was created in the 1930s and employed
voice communication because of bandwidth limitations at the time, is the earliest sort
of transmission. Then, in the 1950s, broadcast communication became mainstream,
with analog television communication using a large amount of bandwidth and
providing exceptional customer service. In the 1960s, computers were more widely
used, and they were able to transport data across large distances through cable and
wireless connections. Following the introduction of cell phones, wireless voice
communications were found, allowing transmission from any location. Nonetheless,

because the mobile gadgets were not portable, they were difficult to utilize [9].

Ali HANDER designed an AM receiver using SDR methods and implemented it on
an FPGA. The study's goal was to create a simple and inexpensive FPGA-based
platform for teaching the fundamentals of SDR. To create the simulation environment,
the researchers employed MATLAB programs. A signal was utilized in the simulation

to evaluate the FPGA implementation. In addition, the simulation code serves as a



framework for the FPGA-based SDR system's VHDL architecture. Another MATLAB
script was written by the researcher to examine the simulation and test findings and
compare them. Because the greater the SNR ratio, the better, the test results on the two
signals revealed that Al tests signals are better than A2 tests signals. When the actual
real-world values were compared to the simulations of each test signal, it was
discovered that the real-world SNR findings were somewhat lower than the
simulations SNR. SNR value greater than 20dB is regarded as an acceptable level for
an AM receiver. The FPGA AM RX system has shown to be a promising contender
for AM demodulation and reception based on test and simulation findings.
Furthermore, the planned and implemented FPGA AM RX was effective in teaching

the fundamentals of basic SDR, which was the study's major focus [10].

In [11] authors utilized MATLAB algorithms to build and implement an AM radio
transmitter simulation in an FPGA. Later, using ISE Design Suite 14.7, VHDL code
was written and an amplitude modulated transmitter was constructed on the FPGA
board (Mimas Spartan 6). The sound card was utilized to send the sample sound that
was used in modulation using the Audacity programs to the FPGA card. The ADC
(LM4550) card provides an analog signal to the FPGA card, which is then received,
demodulated, and recorded using the HDSDR application. The transmitter signal is
created in analog form by the FPGA card and delivered to the microphone input of the
laptop's sound card through the DAC (LM4550) card. Finally, the recorded transmitter
is demodulated offline using the MATLAB code, and the output is stored to the hard
disk. The findings of the investigation revealed that there is only a little variation
between the simulation and real test results for the same test signal. Because the signal
in the genuine test result has been subjected to noise, this is seen to be extremely
plausible. Similarly, according to the SNR values obtained, the average value is
approximately 20dB, which can be regarded as an acceptable value for an AM
receiver. Furthermore, the system is thought to be an excellent platform for

implementing and training FPGA SDR systems [11].

Hikmat N. Abdullah created a design approach and the implementation suggested an
SDR system using an Altera Cyclone Il family board, as well as Embedded MATLAB
blocks and MATLAB/Simulink. The design was originally implemented in the



MATLAB/Simulink environment, and then translated to VHDL using the Simulink
HDL coder. The design has been synthesized and loaded onto an Altera Cyclone 1l
FPGA board using Quartus II 9.0 Web Edition® software. The findings of the study
revealed that using programmable logic tools, the implementation of SDR may be
readily produced and understood. In addition, the research revealed an efficient design
method for obtaining VHDL netlists that may be downloaded to FPGA boards [12].



CHAPTER 2

SOTWARE DEFINED RADIO (SDR)

The main goal of software defined radio (SDR) systems is to process radio beacons
entirely digitally using a digital beacon processor. The use of a digital signal processor
(DSP) that can handle digital signals and a processor such as field programmable gate
arrays (FPGA) to execute operations like as modulation, demodulation, signal
creation, and line coding in these systems minimizes the requirement for analog

circuit-based hardware [13].

First, in the early 1970s, work on software-based devices that could be programmed
by communications engineers began. During these years, the United States produced
a system called ICNIA. This system was one of the first to use DSP-based

programmable modems.

In the 1980s, prototyping of programmable digital baseband radios began.

The term 'software radio' was first coined in 1984 by a team working at E-Systems.
This expression was used for a digital baseband receiver that the team produced. By
1992, Joseph Mittola coined the term 'soft radio’ to refer to his GSM base station
project. Unlike the expression put forward in 1984, Joseph Mittola used the term

software radio for an entire system including a transmitter and a receiver [1].

In 1996, the first association was established on behalf of SDR. Although it was
originally called MMITS Forum, its name was changed to SDR Forum in 1998.

SDR is structurally composed of two subsystems, analog and digital. The analog
system consists of an RF bandpass filter, a microwave switch that positions the antenna

as a transmitter and a receiver, a low-noise amplifier, an RF power amplifier and a



reference frequency generator. The analog system includes modules that cannot be
implemented digitally [3].

The digital system, on the other hand, consists of software running on hardware. The
software is layered so that the hardware can be separated from the software. Special
software is created to create the layered structure. The software operating system, on
the other hand, includes software such as hardware drivers, resource management. The

software defined radio architecture is shown in Figure 2.1 [4].

Considering the working process of the system, firstly, the digital data is coded and
modulated in the transmitter. The data is then inserted into the digital up converter
(DUC) and the digital baseband samples are converted to mid-frequency (IF) samples.
These samples are transferred to a digital to analog converter (DAC) and an analog IF
signal is obtained. Then, this signal is inserted into the RF up converter and the RF

signal is obtained.

At the receiver, the incoming RF signal is amplified first and then converted to an
analog IF signal. An analog to digital converter (ADC) converts the IF signal into
digital samples. The signal is then inserted into the digital down converter (DDC) and
the incoming signal is converted to a baseband signal. Finally, the bandwidth of the

signal is limited by the finite impulse response (FIR) filter [17].

Transmitter :

|

N |

|

—i [ 88 7”1 F | B> oac: it ,

\ Fron-end |
S |
|

: Receiver :
| |
| F BB I
| L
: s —»| ADC |-»i > :
| Front-end |
| DSP % |
| |
| |

Figure 2.1. Software Defined Radio architecture transmitter and receiver.
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2.1. SDR ADVANTAGES

e Enables reconfigurability of communications systems (adapting to new
standards).

o Flexibility.

e Adaptable & upgradeable.

e Filters (other hardware).

e Cognitive (Smart Radio).

2.2. SDR DISADVANTAGES

e The RF hardware might need to be integrated into various sections of circuitry
meant for different frequency ranges in order to provide very broad frequency
coverage.

e The RF performances that can be achieved are constrained by technology.

e Instead of hardware constraints, software reliability may be what determines
total radio dependability.

¢ Reliant on a computer.

e Limits of Software.

2.3. APPLICATIONS OF SDR

A communication link between the Software Defined Radio (SDR) and the computer
must be established before other applications of SDR technology may be discovered.
The technology's capacity to fix mistakes in real time has become the norm. However,
the device is also related to other applications, such as dynamic spectrum positioning,
cost minimization and spectrum control, and opportunity driven multiple access. SDR
implementations are cheaper than conventional analogue devices, according to

research [18].

Particularly in telecommunications applications like GPS signal reception, HF
propagation, and the interpretation of cellular technology emissions, SDR technology

has raised significant concer.



CHAPTER 3

FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

Field Programmable Logic Arrays (FPGAs) are digital circuits that connect

programmable logic blocks and have a wide range of applications.

It was created with the intention of implementing logic functions for the user's needs.
As a result, the designer can modify the functionalities of the logic blocks. By using
FPGA, the functionality of basic logic gates and complex circuit elements is noticeably

increased [19].

Looking at its historical process, FPGAs were first used in the 1980s, usually for
intermediate adhesive logic and constrained data processing tasks. In the 1990s, it
started to be used in network and communication environments that required extensive
data processing thanks to its increased capacity. At the end of the 90s, its use in the
automotive and industrial sectors showed a great growth. In the early 2000s, high-
performance FPGAs containing millions of gates entered the market and today they

find a wide place in more than one market branch [20, 21].
3.1. FPGA INTERNAL STRUCTURE
The internal structure of the FPGA consists of three parts, namely the input-output

blocks, the interconnects, and the logic cell. Figure 3.1 shows the internal structure of
the FPGA.
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Figure 3.1. Internal structure of FPGA.
3.1.1. Logic Cell

Logic cell is the basic structure of FPGA. It consists of one D-type FF and LUT and

one 2x1 Mux. The logic cell is shown in Figure 3.2.

Il

logic cell

Il

logic cell

I

logiccell =

Il

= logic cell

l

Figure 3.2. Logic cell.
LUTSs are mini memories that perform logic operations. A LUT with N inputs creates
a memory with 2*N. Interconnections in the logic cells are realized with matrix-shaped
data buses and programmable switches.

3.1.2. FPGA Pins

FPGA pins are often classified as dedicated or user pins. Pins are separated into three
groups according on their functions: power pins, configuration pins, and clock pins.



The power pins supply the FPGA's energy requirements. The software may be loaded
into the FPGA via configuration pins. Clock pins are used to transmit clock signals.
The designer specifies the conventional input/output pins as user pins [18].

3.2. FPGA PROGRAMMING

In order to program the FPGA, graphic design and HDL are utilized. The compiler
program library's parts and logic are used to program the graphical design. Design in
HDL; VHDL or Verilog are used for programming [19, 20].

Very High Speed Integrated Circuit Hardware Description Language is another name
for VHDL. Since the 1980s, it has undergone continual development and is recognized
as a standard by the IEEE [21].

The use of VHDL has two main purposes;

Synthesis: It is used to generate the codes to be loaded into the FPGA.

Simulation: It is used to simulate the codes to be loaded into the FPGA.

3.3. FPGA FLOW DIAGRAM

The steps to be followed while creating the design are given in Figure 3.3.

10



Design Entry
{RTL design using HDL)
L ]
Behavioral Simulation
{Modelsina)

Synth esis o
5 (Quartus 1l
[ Place and Route {PAR)
(Quartus 1)

R Rp——

Timing Analysis
{QuartusII)

Programme the Device

Generate Bit Stream &
{Quartus )

Figure 3.3. FPGA design flow.

3.4. FPGA MANUFACTURERS

Altera and Xilinx are FPGA manufacturers that are in high demand in the market.

Actel, Latice and Quicklogic companies can be counted as other important
manufacturers.

3.4.1. Xilinx

It is the biggest corporation in the international market and the first company to create
FPGA. As a compiler, it provides the ISE Design Suite software. It is a producer of
FPGA and CPLD devices with several uses and products in industries including
communications, defense, automotive, and consumer goods. PROM devices, interface
circuits (CoolRunner), low-cost circuits (Spartan), and high-performance FPGA chips
are all produced by Xilinx (Virtex). Ross Freeman, Bernard VVonderschmitt, and James
Barnett started it in the USA in 1984.
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3.4.2. Altera

The greatest rival of Xilinx, the company that created the FPGA, is Altera. In 1984,
they initially hit the market. The Intel corporation bought Altera in 2015. They gave
the designers the Quartus Il software as a compiler. The business offers the Stratix,

Cyclone, and Aria ranges.
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CHAPTER 4

FREQUENCY MODULATION (FM)

Adjusting the Frequency Modulation through frequency shift (FM) is a method of
encoding data onto a carrier wave. These applications include computer systems,

signal processing, radio transmission, and telecommunications.

In analog frequency modulation, such as radio transmission, an audio signal
representing voice or music has a functional connection between the modulating signal
amplitude and the instantaneous frequency deviation, or difference between the carrier

frequency and its center frequency.

Frequency-shift keying (FSK) is a method for encoding and transmitting digital data
that uses a type of frequency modulation in which the carrier's instantaneous frequency
is shifted among a range of frequencies. The frequencies might be used as a substitute
for the digits 0 and 1. FSK is used in a wide variety of computer modems, such as fax
modems, caller 1D telephone systems, garage door openers, and other low-frequency

devices, and it is also used in radio teletype.

Frequency modulation is widely used in FM radio broadcasts. Other applications
include the monitoring of infants for convulsions, telemetry, radar, seismic
prospecting, EEG, two-way radio, sound synthesis, magnetic tape-recording, and
specific video transmission systems. Due to its greater signal-to-noise ratio, frequency
modulation is superior to an amplitude modulation (AM) signal of the same intensity
when it comes to rejecting radio frequency interference during transmission. Because

of this, most radio stations only play music on FM.

Angle modulation can be accomplished using either frequency modulation or phase

modulation, with the latter typically being used as a prelude to the former. Amplitude

13



modulation, in contrast, maintains a constant frequency and phase but varies the carrier

wave's amplitude.

A Amplitude

Time

\4

Information Signal ‘/

Time
Carrier Signal

oo IMIMMAAAA A A A
AL VUUU\/V\/\

Figure 4.1. Information signal, carrier signal and frequency modulation signal.

4.1. OVERVIEW AND THEORY OF FM SIGNALS

In reality, FM signals differ from AM signals in a number of ways. Figure 2.4 below
illustrates how the carrier wave frequency of an FM signal changes in response to the
signal strength while maintaining a constant modulated wave amplitude. As can be
seen in the following diagram, the carrier frequency doesn't change whether the
signal's voltage is equal to zero, A, C, E, or G points. The carrier frequency, on the
other hand, rises to its highest value at the positive peaks, B and F, while falling to its

lowest value at the negative peaks [22].

Both the FM signal's carrier frequency and its amplitude can be adjusted according to
the strength of the modulating signal. This suggests that the magnitude of the
instantaneous modulating signal is linked to the frequency variation. The rate of
change is proportional to the frequency of the underlying signal. In reality, the peak

voltage of the modulating signal is where the frequency fluctuation is the largest [22].
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Figure 4.2. lllustration of FM signal.

4.1.1. Information Signal

The information (message) signal is of low frequency. The information signal is shown

in Figure 4.3.

Mathematically:

Vm = vmsin2nFmt

Vm = Message signal instant value
vm = Message signal maximum value
Fm = Message signal frequency

L V (Volr)

\‘t" t{sn)

Figure 4.3. Information signal.

15



4.1.2. Carrier Signal

The carrier signal is a high frequency sin/cos signal. Shown in Figure 4.4.
Mathematically:

V= vesin2nFct

V¢ = Instantaneous value of carrier signal

vc = Maximum value of carrier signal

Fc = Frequency of carrier signal

& vivol Ve

1isn)

Figure 4.4. Carrier signal.

4.1.3. Frequency Modulated Signal

Figure 4.5 shows the frequency modulated signal.
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Figure 4.5. Frequency modulated signal.

4.2. COMPARISON BETWEEN FM AND AM SIGNALS

Table 4.1. Comparison among FM and AM.

FM signals AM signals

Throughout the whole modulation Throughout the whole modulation process,
process, the carrier amplitude remains the carrier amplitude fluctuates
constant

The value of the modulation index may The value of the modulation index should not
surpass

The modulating signal intensity The modulating signal intensity determines
determines how much the carrier the amplitude fluctuation
frequency changes

4.3. BENEFIT SIGNALS OF FM OVER SIGNALS OF AM

Compared to AM signals, FM transmissions have a number of benefits, some of which

are shown below: [22]

e FM signals operate across a much wider area.

e High-fidelity reception is provided by FM signals.
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e FM signals are more effective in transmission.

An FM receiver may reject noiseless FM signals by filtering out noises, which are
amplitude changes.

4.4. FM SIGNALS MODULATION AND DEMODULATION

4.4.1. FM Modulation

The carrier frequency is altered by the modulating signal's amplitude in frequency
modulation (FM) (i.e., intelligence signal). The FM signal may be described by the
following equation:

xFM (t) = Ac cos (8t) = Ac cos (2rfct + 2fA [ x (1) dA) (4.1)
If x (1) = Am cos (2 fmA), then:

xFM (t) = Ac cos (2rfct + B sin (2mfmt)) 4.2)
Where;

0 (t) = instantaneous modulated frequency

fc= carrier frequency

fm= modulating frequency

B = modulation index = (fA/fm)
The frequency of FM signal (t) may be expressed as:

F=1d&¢) /2rndt = f.- f,, Bcos (2T fint) (4.3)

The frequency of a frequency-modulated signal deviates from the carrier frequency

due to variations in intelligence amplitude, as shown in (4.3).
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4.4.2. FM Demodulation

e The zero-crossing-counter demodulator

By averaging the times at which zero crossings occur in the FM signal, we may
construct a simple yet effective FM demodulator. An example of this concept is shown

in Figure 4.6.
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Figure 4.6. An FM signal and a series of zero-crossing pulses.

Each pulse in the train occurs at the precise instant when the FM signal goes through
zero. It is the pulse repetition rate that alters this signal. When processing the pulse
train with a low pass filter, the data will be averaged. The message's repetition rate
affects the pace at which this average value shifts, while the generator's depth of

modulation establishes the size of this shift.
In the next stages of the experiment, a model of this zero-crossing-counter
demodulator will be utilized to demodulate low frequency FM. Following this, we'll
have a look at the phase locked loop (PLL) and its role as a demodulator.

e FM Demodulation with the PLL
A non-linear feedback loop is the phase locked loop. It is a challenging activity to

accurately assess its performance. It is easy to depict it in simpler block diagram form.

As show Figure 4.7.
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Figure 4.7. The basic PLL.

There are several uses for this configuration. The output was collected from the VCO
in order to acquire the carrier. The output is collected from the LPF and used as an FM
demodulator, as illustrated. It is easy to explain the PLL's basic mode of operation as
a demodulator, but it is more difficult to conduct a thorough investigation of its
performance. Its performance is governed by non-linear equations, whose solutions

typically involve approximation and compromise. This complicates the situation.

It would seem that the operating concept is straightforward. Consider about the open-
loop configuration of Figure 4.7 What this means is that the connection between the
control voltage input to the VCO and the filter output has been severed.

Let's pretend the input is an unmodified carrier.

This setup seems like a product or multiplier-type demodulator. In a perfectly tuned
VCO, the incoming carrier's frequency would be precisely matched, and the VCO's
output would be a DC voltage whose amplitude is proportional to the phase difference

between the VCO and the carrier.
The voltage would be exactly zero volts DC for two of the possible 360-degree angles.

Suppose the VCO's frequency started to drop down over time. The resulting voltage

would be a slowly changing alternating current, which, if sufficiently slow, might be
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misunderstood for a DC with varying amplitude. This DC voltage will take on a
positive or negative value depending on the drift direction.

Assume the loop in Figure 4.7 has closed. By changing the sign of the slowly varying
DC voltage, now a VCO control voltage, the VCO may be "locked on" to the incoming
carrier frequency wO0. This is the procedure for acquiring a carrier.

Let's pretend for a moment that the frequency of the incoming wave is being
modulated. For a low-frequency message, it is acceptable to expect the VCO to make
some effort to track the incoming carrier frequency with little change. Consider the
possibility of using wideband FM. With "correct design” of the low pass filter and

VCO circuits, the VCO will also track the incoming carrier in this case.

The VCO's control voltage will seek to generate a message that is a perfect match for

the incoming carrier so that the VCO can retain its frequency lock on it.

4.5. QUADRATURE DEMODULATOR

It is the most extensively used single "FM" demodulator, with a phase shift circuit
producing a "90 degree" phase shift at the unmodulated carrier frequency. This
detector is mostly employed in television demodulation, although it is also utilized in

some "FM" radio stations.

A relatively small number of components were needed to construct the quadrature
detector; nonetheless, a coil was essential. Nevertheless, due to the fact that the
inductor is merely a coil and not a transformer, the cost impact may be handled for
many different designs of radio receivers. Quadrature detectors, like its related

coincidence detectors, provide great performance with good linearity.

The signal application mode application employs the "FM" signal mode, where the
value of the center frequency is decided by the "Q™ of the tuned circuit, and the output
longitude is determined by altering the current in the multiplier as a function of the

"IF" signal deviation.
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In this study, used in demodulating the FM signal in the MATLAB code.

Phase Detector
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Filter —
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Figure 4.8. Quadrature demodulator.
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CHAPTER 5
VHDL - HARDWARE DESCRIPTION LANGUAGE

Very High-Speed Integrated Circuit Hardware Description Language is the literal
meaning of VHDL. It might be thought of as a language for use in very fast computer
components. There has been steady growth in this area since the 1980s, and it has been
recognized by the IEEE as well.

5.1. VHDL TERMINOLOGY

Hardware description language (HDL) refers to the software used to simulate hardware
resources. The HDL language offers the ability to use software to configure hardware
and describe hardware behavior. The HDL language most frequently used in FPGA
programming is VHDL.

5.1.1. Behavioral Modeling

The input-output responses in the model are defined behaviorally. It is not concerned
with its internal structure. The function and function of the circuit is important.

Behavioral modeling is shown in Figure 5.1.

Process(inl,in2)
begin
if in="0" and in2="0" then
Input | elsifin1="1" and in2="0" then | Output
” » output <="0"; [
elsif in1="0" and in2="1" then
output <="0";

»

end if;

Figure 5.1. Behavioral modeling.
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5.1.2. Structural Modeling

Shows the relationships between a component and its subordinate components.
Structural modeling is based on the designer constructing the structure of the model.
Most of the time, the preferred technique in VHDL designs is to create the modules at
the bottom, which are modulated differently from each other, by structural modeling,
and connect them to the modules at the top with structural modeling. Structural

modeling is shown in Figure 5.2.

v

[nput B ﬁ— ‘ Output

Figure 5.2. Structural modeling.

5.1.3. Register Transfer Level

RTL is a synthesis-oriented abstraction approach. RTL is the design of a generated
piece of code represented in registers. Simply expressed, they are logic gate-based
circuits that correlate to our VHDL code.

In order to perform RTL synthesis, the VHDL code must first be translated into a
digital circuit. Then, the corresponding VHDL-coded circuit is optimized by making
the most of the available FPGA resources. Specifically, as seen in Fig. 5.3, an example
RTL model is displayed. In this example, creating a 4-input, 1-output MUX is
requested. The VHDL code is produced first. The compiler then transforms the code
into the matching digital circuit. Finally, the RTL flow is finished and this code, which

transforms into a digital circuit, is optimized.
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Figure 5.3. Example RTL modeling.

5.2.  VHDL DESIGN

VHDL design consists of three parts: coding, simulation and synthesis. The coding
part is the part of the program where the VHDL code is generated. In the simulation
part, the VHDL code is simulated and it is observed whether the program is correct.
In the synthesis part, the written VHDL code is translated into hardware language and
the RTL scheme is extracted. The code is then converted by the compiler into a
configuration file that will be loaded into the FPGA. The VHDL design flow as seen
in Fig. 5.4.

Y

A4
v

VHDL Code Simulation Synthesizing Layout

Figure 5.4. VHDL design flow.

53. VHDL DESIGN SETIONS

A VHDL design; the entity consists of 5 parts: architecture, package, component and

process.
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5.3.1. Entity

It's the smallest building block possible for the overall layout. In other words, it
describes how the design interacts with the outside world. The input and output
channels are specified here.

5.3.2. Architecture

It is used to specify the model's intended purpose. An entity can have more than one
architecture. An architecture can be used in three different ways: behavioral modelling,
structural modeling, and data flow.

5.3.3. Package

The package groups the definitions used by the entity and also serves to group them

for use in different designs.

5.3.4. Component

The component structurally defines the name and interface of the component used as

a subcircuit in the circuit description.
5.3.5. Process
The transaction block contains states that will occur sequentially. In an architecture,

multiple transaction blocks are executed instantaneously. Transaction blocks start at
the same time and each transaction block is executed in line with itself.
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54. VHDL MODELING BASICS

5.4.1. Constant

Objects that cannot be changed after their initial value is determined. It is often used

to increase the understandability of the code.

Form of display; Constant name:data type:=value;

5.4.2. Signal

Signals provide communication between processes within the architecture.

Signal identification; Signal name: type: =initial value;

If the signal is assigning a value <= symbol is assigned.

C/C++, equals in programming languages (=) performs the same function as the

expression.

For all values;
Reg<="1100";
Reg<=x"C”;(hexadecimal)
For single bit assignment;
Reg (2)<="17;

for bit slicing;

Reg (1 to 2)<="20";

5.4.3. VHDL Operators

All arithmetic and boolean operations in VHDL are restricted to the standard package

of data types.
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Arithmetic operators (+, - <, >, <= ,>=) integer types also
apply. Boolean operators (And, Or, Not) is applied for BIT types.

In other data types, special functions in the IEEE library are used for arithmetic and

boolean operations.

Packages with special functions in the IEEE library;

std_logic_arith (arithmetic functions)

std_logic_signed (signed arithmetic functions)

std_logic_unsigned (unsigned arithmetic functions)

In the functions mentioned above, since the operator and the operator's name are the

same, the function name is indicated with quotation marks.

5.4.4. Simultaneous Signal Assignments

There are 3 different ways for simultaneous signal assignments:

e Simple signal assignments.
e Conditional signal assignments.

e Selected signal assignments.

Simple signal assignments;

Display format: name of signal <= expression

Conditional signal assignments;

Display format: name of signal <= expression ‘when' condition ‘else’,
Notation: name of signal <= expression 'when' condition 'else’,
expression ‘when' conditional 'else’, expression;

Selected signal assignments;

Notation: value <= expression 'when' choice,

expression ‘when' choice, expression 'when' others;
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5.4.5. Sequential Commands

The commands used in process, function, and procedure operations. Sequential

commands are also used for simple signal assignments. The commands are as follows:

e |f-then command
e (Case command
e Loop command

e \Wait command
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CHAPTER 6

MATERIALS AND METHODS

6.1. DESIGN AND IMPLEMENTATION OF FPGA BASED FM

TRANSMITTER

The implementation of the FM transmitter in FPGA has two stages: Hardware design

and software design in VHDL.

6.1.1. Hardware Component

Hardware design part of the study incorporates PC, FPGA card, ADC and DAC cards.

Figure 6.1 is a system block diagram depicting the components involved.

Modulation
PC ADC
Matlab
AUDACITY SOlJnd
s,
HDSDR 2 card P DAC
‘l’ PMOD DA2
FM IF output
12KHz

Figure 6.1. FMTX system hardware block diagram.

FPGA module in the system is Digilent CMODA7-35T which incorporates Xilinx
Artix7 FPGA on it. The FPGA chip is XC7A35T in 1CPG236C package whose
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capacity is 20K-LUT with 225KB Block-RAM. The board has 512KB SRAM with 8-
bit bus and 8ns access time, 4MB Quad-SPI Flash to hold FPGA programs and USB-
JTAG programming facility which also supplies necessary power from the connected
USB bus. The board is in DIP form where total of 48-pins provided at each side. The
board provides 44 Digital GP10 pins with 3.3V logic capability. All the connection to
the board is provided through a solder less breadboard.

ADC card is Digilent’s PMOD-AD1 which uses a dual channel 12-bit, 1MSPs/channel
sampling rate A/D converter chip AD7476 from Analog Devices. DAC card is
Digilent’s PMOD-DA2 which incorporates two 12-bit, 1MSPs DAC chip
DAC121S101 from Texas Instruments. The interface to both cards is through a
standardized PMOD connector which encapsulates a standard multi-channel Serial

Peripheral Interface (SPI).

There are also an external USB-soundcard and connecting audio cables to carry analog
test signals between PC and FMTX system where built-in soundcard of the PC is

reserved for listening of the results.

The recorded test signal (modulation signal) is played back through the soundcard
speaker output at a 48KSps rate repeatedly using Audacity. This analog signal is
digitized through the ADC and then sent to FPGA board for processing. After
processing and frequency modulating the signal by the internal structure of the FPGA,
the digital FM IF output is sent to D/A card for conversion to analog at 48KSps rate.
The internal structure of FMTX system is constructed through programming by the
VHDL code whose details are given in the software development part. The VHDL
code listing is provided on Appendix B. This analog output signal is taken through
the microphone input of the soundcard and sent to PC for monitoring and recording.
Demodulation, monitoring and recording of the modulated signal is through HDSDR

SDR software environment on the PC. Fig 6.2 is a photo of the FMTX system.
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Figure 6.2. Photo of the FMTX system in operation.

6.1.1.1. Digilent CMODA7 FPGA Card

The Digilent Cmod A7 is a 48-pin DIP form factor board powered by a Xilinx Artix 7
FPGA. Furthermore, the board is equipped with standard input/output (1/0) pins, a
USB-JTAG programming circuit, a USB-UART bridge, a clock source, a Pmod host
connection, SRAM, and Quad SPI Flash. With these additions, it becomes a compact
yet potent platform for digital logic circuits and Microblaze embedded softcore
processor designs. With 44 Digital FPGA 1/0 signals and 2 FPGA Analog inputs
connected to 100-mil through-hole pins, your programmable logic design may be
added to a circuit without the need for any soldering. It may also be inserted into a
regular socket and utilized in embedded systems because it is only.7" by 2.75" in size
[23].
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Figure 6.3. Digilent Cmod A7 FPGA board.
6.1.1.2. Digilent PMOD AD1

The Analog Devices AD7476A is used in the Digilent Pmod AD1 (Revision G), which
is a two-channel, 12-bit analog-to-digital converter. With a maximum sampling rate of
1 million samples per second [24], this PmodTM can handle even the most taxing

audio applications with ease.

Figure 6.4. Digilent Pmod AD1.

6.1.1.3. Digilent PMOD DA2

There is a maximum output voltage of 16.5 MSa [25] from the two channels of the
Digilent Pmod DAZ2 Digital-to-Analog Converter module.
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Figure 6.5. Digilent Pmod DA2.

6.2. PROGRAMS

On the server PC machine, numerous third-party software was employed in this study.

Brief information on them is provided in the following sections.

6.2.1. Audacity

Audacity is a free digital audio editing and recording software that can run on many
platforms such as Windows, Mac OS and Linux. It was developed in 1999 by Dominic
Mazzoni and Roger Dannenberg. If some of its features are mentioned, editing
operations such as cut, paste and merge can be done on audio files. It supports Ogg
Vorbis, WAV, MP3 file formats. Using some sound cards and Windows Vista, 7, 8
operating system, it can also record audio being played on the computer. Unlimited
number of transactions can be reversed and forwarded. In this study, an audio file that
had been edited and tested in the audacity application was then played over the
computer's audio output. In addition, audacity was used to present test and simulation

results for the FPGA FM transmitter system using the A1 modulating signal [26].

6.2.2. HDSDR

HDSDR is a free SDR tool that runs on Microsoft Windows.

Developed by Alberto Di Bene.

Some general features are;

34



e AM, ECSS, FM, SSB and CW modulation.

e The Tx output creates an I/Q modulated signal pair for the Tx input.
e The aliasing filter, bandpass filter, and squelch may all be adjusted.
e Timed recording and playback of RF, IF, and AF WAV files.

The modulated signal received in this study was visualized in the HDSDR program
and also saved to the computer for later analysis. HDSDR program also made it

possible to demodulate the modulated signal and listen via a second sound card [27].

6.2.3. Xilinx Vivado

Vivado Design Suite is a Xilinx software package for synthesis and analysis of
hardware description language (HDL) designs that replaces Xilinx ISE with new

capabilities for system on a chip development and high-level synthesis.

In this study, all the coding required to create the FPGA FM transmitter was done with
VHDL using Vivado Design Suite.

6.2.4. Matlab

With hardware like a fast A/D converter and a powerful signal processor being
necessary for a real-world SDR implementation, the usage of MATLAB in our
research is crucial. This hardware platform is too expensive for students majoring in
radio communication. Because of this, we used Matlab for our analysis, and the audio
frequency range is the only one used for wireless signals. In a single Matlab session,
we were able to set up the transmitter. All of the modulation and demodulation
experiments are carried out in Matlab. The user must just select the desired

modulation, demodulation, and related parameters to begin utilizing the system. [28]

6.3. SIMULATION STUDIES

Firstly, simulations are done in the study. Simulation of the FMTX system is done
using suitable Matlab scripts which are listed on Appendix A. Simulation of the FM
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transmitter is realized with code listed on Appendix A.1. Then FM receiver simulation
is carried over by the code listed on Appendix A.2. Analysis of the results are done

using the code listed on Appendix A.3.

The transmitter code uses a 10s sample recording sampled at 8KSPs which is a 4KHz
music recorded in wav format. This sample wav file is upsampled to 48KSPs to
provide a 24KHz frequency modulated intermediate frequency waveform whose
center frequency is 12KHz. This IF signal is then normalized and recorded as a wav
file (FM.wav). The modulating signal is normalized and integrated before modulation.
A modulation coefficient determines the maximum frequency deviation which sets the
FM bandwidth according to Carson’s rule. Maximum frequency deviation Fdmax is

derived using the formula below:

A
Famax = 2 ;_r[la; (6-1)
LT

Here,
Fdmax: Maximum frequency deviation (Hz),
Amax: Maximum amplitude (rad),

Ts: Sampling period (s)

Amax given in the code sets Fdmax as 4KHz. The integral of the signal is added into
the carrier signal phase argument. Thus, an indirectly frequency modulated signal is
derived through phase modulation which is a frequently used method in deriving FM
in sampled systems. The modulated carrier is filtered through a bandpass filter whose
center frequency is 12KHz and bandwidth is + 8KHz. The bandwidth is selected as

16KHz because Carson’s rule gives us so as below equation suggests:

BWey = 2. (Famax + BW,,) = 2.(4KHz + 4KHz) = 16KH (6.2)

So, the modulation index B, of the frequency modulated carrier is:
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_ Fimax 4KHz )
= BW,, 4KHz

(6.3)

Since B is equal to 1, the FM signal is said to be wideband. The modulated carrier, FM
IF, being an infinite bandwidth signal is further bandpass filtered through a FIR filter
in the code which limits signal to 4-20KHz range whose bandwidth is now limited but
since it has 98% of its energy reside in the Carson bandwidth it continues to represent
the modulating signal. Carson bandwidth is sufficient for a successful demodulation
and reproduction of the original modulating signal. This filtering is mandatory to
eliminate residual spectral components by bandpass filtering before transmitting to

prevent interference to neighbouring stations.

So, a 16KHz wideband FM IF is obtained which is normalized and recorded as a wav
file for further use in simulations and tests. In the simulations and tests two different
music recordings are used which will be called as A1 and A2 and their FM results are
FM1 and FM2 respectively.

To test the transmitter, receiver simulation is done through the receiver code
(Appendix A.2). Firstly FM.wav file at 48KSPs is loaded. It is normalized and then
sent for demodulation. Demodulation method used is quadrature FM demodulation. It
is achieved by delaying the input signal by one sample and then multiplying itself.
Selection of 12KHz as IF signal center frequency is not arbitrary. Phase interval
between two samples corresponds exactly 90 degrees for an unmodulated 12KHz
carrier sampled at 48KSPs. So, one sample delay represents 90 degrees phase delay. if
we multiply delayed signal by non-delayed signal, we get zero DC level other than a
high frequency component which is filtered after demodulation. This process provides
a changing level if instantaneous frequency of the carrier is slightly changed by time.
To get a demodulated signal, the strength and polarity of the output signal must be
proportionate to the sign and magnitude of the frequency shift. Since the bandwidth of
the modulating signal is 4 Kilohertz, the filter at the output is a lowpass FIR filter with
a cut-off frequency of 4 Kilohertz. The replicated signal is standardised before being

captured as a wav file for further examination.
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Analysis of the results done using the code listed on Appendix.A3, provides us a
comparison between original test signal with the signal resulted from demodulation.
The result is pre-processed before the analysis operation. It is very important to time
synchronize each signal that will be compared to obtain consistent results. Gain errors
are corrected using a suitable amplitude scaling. It is possible to see the distortion and
noise effects of demodulation over the signal after this pre-processing. Pre-processing
of test results is done using the software tool called Audacity which is a easy to use
and free audio processing software. It provides many functions for processing of audio

files in wav format. The Audacity audio processing software is shown in Fig 6.6.
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Figure 6.6 Audacity audio processing tool.

The analysis code uses a dual channel wav file. The input wav file's right channel
contains the original signal while the left channel contains the resultant signal. The
recording is prepared in the Audacity program. Both signals are added to the project
file as stereo. After this both signals are normalized to same level (-1dB). As a last
step, result signal is time synchronized to the original by setting a zero crossing as
reference which is at the same time point. The synchronization is achieved by
discarding enough samples at the beginning of the result signal. The unused parts at
the end of the signals are also discarded to set the record length to ten seconds. The
test result recordings usually lasts longer than ten seconds to ensure that one full ten

second signal is captured in the recording. Recordings are made using the SDR
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software HDSDR. HDSDR program is also useful in visual and spectral monitoring of
the result in real time. HDSDR SDR program in operation is shown in Figure 6.7.

W RN W TR T U M e— c—.
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Figure 6.7. HDSDR SDR software.

After analysis code takes this prepared dual channel recording as input, the channels
are separated, and then a suitable scaling factor is applied to correct for gain errors.
The scaling factor is determined by trial and error. At the conclusion of the code's
execution, the Signal-to-Noise ratio (SNR) is calculated and made available; a good
value will maximize this ratio. SNR in dB is calculated by dividing rms original signal
level to rms error signal level and then this ratio is converted to deciBells. Error is
calculated by taking sample by sample difference of original and result signals. The
rms level then calculated by squaring and adding each sample and then taking the

square root of the average.
6.4. BLOCK SCHEMA AND VHDL CODE OF THE SYSTEM
Software for the FMTX system on FPGA is developed under the XILINX VIVADO

integrated development environment (IDE). It is the standard development
environment for XILINX Artix-7 series FPGAs. The language used is VHDL which
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is a standard language for implementation of hardware logic circuits in FPGAs. The
code listings for the FMTX system are provided in Appendix B.

The top module code FMTX listed on Appendix B.1 provides a main body for the
other functional modules. The internal workings of the FM transmitter are seen in
Figure 6.8.

=
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Figure 6.8. Basic block diagram of the FMTX system realized on the FPGA fabric.

PC connection for programming of the module is provided through a spare USB port.
This USB port also provides power to the module. Signal flow to the FPGA is analog
through an external USB soundcard interface. This external soundcard provides
modulating signal through the speaker output and inputs frequency modulated IF
signal through microphone input. Both input and output are single channel (mono)
ports with a sampling rate of 48KSPs. The input to the FPGA is through the PMOD-
AD1 A/D module. The digital output from this module is through a high-speed serial
data link in SPI format. This is a synchronous serial interface as can be seen from the
datasheet of the ADC chip AD7476. The clock provided by the FPGA is 24MHz which
is an integer multiple of sampling rate (960 KHz). So, 12-bit samples are provided at
a rate 960 KHz by the ADC. This being an integer multiple of the sampling rate of the
soundcard interface at 48 KHz, is a very high rate than the required signal bandwidth

of 24 KHz. However, it does not make any harm because the processed signals remain
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in the 24 KHz bandwidth limit. Such a high sampling rate as 960KSPs is necessary
because stable operation of ADC and DAC cards used can only be possible at such

high rates.

The PMOD-DA2 D/A module receives serial digital data from the FPGA and
transforms it into analog form. The interface is again SPI where the clock rate is
24MHz which must be in conformance to the A/D converter and sampling rate of the
FPGA. This clock frequency is derived from an on board crystal clock module running
at 12MHz by a Digital Clock Management (DCM) IP module. The other necessary
clocks are derived from 24MHz master clock using suitable divider module which

ensure synchronicity through all the FPGA fabric.

Handling of the data acquisition to and from DAC and ADC modules is carried over
by the ADAC module whose listing is given on Appendix B.2. It provides the data to
FM modulator and sends the modulator output to the DAC. It also derives the

necessary sampling clock of 960 KHz which is used by the modulator.

Frequency modulator is a simple direct modulator. A Numerically Controlled
Oscillator (NCO) is used as a VCO in this case. Phase increment value is controlled
by the digital input samples. A higher phase step means an increase in the
instantaneous frequency of the NCO. So, changing phase increment input of the NCO
causes a frequency modulation at the output. The output of the ADC is first normalized
by adjusting the bit length and then factorized and put as a modulator input. Second
input to the modulator, which is a simple 32-bit adder, is an offset value which is
factorized to give out a frequency offset adjusted to 12-KHz. So, without a modulation
input NCO provides a 12-KHz smooth sinusoid. The phase increment input of the
NCO is 32-bit while the output is 16-bits, as the code on listing Appendix B.1 reveals.
32-bit is standard to obtain a suitable frequency resolution in NCOs. The NCO is
operated at 960K Hz, so the input and output sample rates are 960K Sps. The frequency

output of the NCO, fo is calculated using the equation below:

_ fclk- A6
fo = ZEsm

(6.4)
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And for calculating the phase increment value (A8) necessary to generate an output

frequency is:

25000, f,

A = ————
fclk

(6.5)

Here,

fo: Output frequency in Hz,

B6(n) : Phase increment bit length in number of bits,
fclk: Clock speed in Hz,

AO: Phase increment value.

So, for 32-bit phase increment register, 960 KHz clock rate and 12-KHz output the
phase increment value must be 0x03333333. And for the same parameters the
frequency resolution will be 0.0002235174Hz which is a very small value and hence

the error in the actual frequency output will be very low.

Another useful feature of the FMTX system implemented in the FPGA is the clipping
indicator (clip indicator) whose listing is given on Appendix B.3. For the purpose of
checking the output level, this module has two LEDs built right in. If output or input
of any module is overloaded (the level crosses a determined threshold) the
corresponding led is lit for approximately 1 seconds. One second time delay is
necessary to see even a one-time event since human eye cannot follow an event that
lasts only 1/960000 of a second. Use of this feature ensures that the analog input of the
ADC and digital output of DAC is not overloaded which leads to clipping distortion.
Overloading of input of any module in the signal chain can lead to unexpected results

and hard to determine faults.
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CHAPTER 7

RESULTS AND DISCUSSION

The experiments in the study are obtained in two steps: simulation results and test
results. Simulation results come from ideal simulation efforts using MATLAB codes
listed on Appendix A. Test results come from as recordings from actual operational
tests of FMTX system implemented on FPGA.

Two modulation test signals used in each stage are A1 and A2. Each test signal lasts
10 seconds and sampled at a rate 48KSps. Results from simulation and tests, which
are demodulated audio, are recorded as a separate wave file. These results are also
48KSps wave files. A post-processing is applied to these results under audio
processing program Audacity. These post-processes are mainly normalization and
synchronization processes which after demodulation results and original modulating
signals are combined into a single stereo (2-channel) recording which lasts exactly 10
seconds. These recordings hold demodulation product on left channel (upper signal in
the stereo track), while original is held on right channel (bottom signal in the stereo
track). Figure 7.1 shows the result for the simulation A1, while Figure 7.2 shows the
result for the simulation A2. Results for the test Al and A2 are provided on Figure 7.3
and Figure 7.4 respectively.

Figure 7.1. Test results of FPGA FM transmitter system with A1 modulating signal:
test signal Al at the top, waveform obtained by modulation followed by
demodulation in the middle, difference of the two signals at the bottom.
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Figure 7.2. Simulation results of FPGA FM transmitter system with A1 modulating
signal: test signal Al at the top, waveform obtained by modulation
followed by demodulation in the middle, difference of the two signals at
the bottom.

Figure 7.3. Test results of the FPGA FM transmitter system with the A2 modulating
signal: test signal A2 at the top, the waveform obtained by modulation
followed by demodulation in the middle, the difference of the two signals
at the bottom.

Figure 7.4. Simulation results of the FPGA FM transmitter system with the A2
modulating signal: test signal A2 at the top, waveform obtained by
modulation followed by demodulation in the middle, difference of the
two signals at the bottom.
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These results are analysed using the code listed on Appendix A.3. This analysis code
compares two signals by subtracting from each other. From this difference (error)
signal rms error is calculated. Then S/N ratio is calculated in dB using rms error and

rms original signal level whose definition is given on Equation 1.

S
S/Ngg = 201log (E”"S) (7.1)

rms

Signal-to-Noise ratio and rms error results for each simulation and test is given on
Table 7.1.

Table 7.1. SNR and rms error for each simulation and test.

Test or simulation | rms error (x107%) SNR (dB)
Al simulation 1.048 44,18
Al test 15.597 20.73
A2 simulation 1.181 43.09
A2 test 17.144 19.86

For the comparison of results, higher SNR and lower rms error level is better. So, when
we compare the performances, the best results are obtained from the simulations with
Al test signal. Simulating with test signal A2 produced somewhat less favorable
results. The worst result belongs to experiments with test signal A2. It is slightly below
the 20dB acceptable performance threshold, while the experiments with test signal A1
provided slightly higher performance above the 20dB threshold. The results prove the
FMTX system as a good candidate for generating quality FM signals for broadcast
purposes.
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CHAPTER 8

CONCLUSION

In this study, an FM transmitter (FMTX) system utilizes SDR methods in its design
and implementation on an FPGA platform. The aim to primarily a platform for
education of practical SDR systems. The PC is used as a data administration and
control central. The obtained results are evaluated using MATLAB scripts. Suitable
ADC and DAC modules are used to process analog signals on the FPGA side and an
external soundcard is used for the same purposes on the PC side. The collected signals
are processed by the FPGA fabric. A signal chain is developed using VHDL hardware
description language under XILINX VIVADO IDE for this purpose. The FMTX
system generates a 12 KHz IF signal as a frequency modulated signal. The frequency
modulator depends on a wideband direct modulation method which is a very simple
technique to encode frequency modulated signals. An NCO IP is used to provide this
facility. Minimal use of filters is preferred in the design of the system to keep it as
simple as possible. That the system's price, complexity, and energy usage be kept to a

minimum.

The study consists of two stages: first one is the simulation and design of the FMTX
system and the second stage is the implementation on FPGA and verification of the
actual results. The first stage is accomplished through suitable MATLAB codes which
simulates a FM transmitter using a 10 second music recording. Two different samples,
Al and A2 are derived using different audio recordings in wav format. A demodulator
code provides an ideal demodulation result used for comparison purposes in the design
verification stage. So, a suitable MATLAB code is also used to analysis the experiment

and simulation results.

Design of the FMTX system is made on XILINX VIVADO IDE. The codes are written
using VHDL. The design is based on the FM transmitter code written under MATLAB.
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The modulating signals are continuously played back using Audacity through the PC
soundcard speaker output and modulation signal is recorded through microphone input
of the same soundcard interface using HDSDR SDR software. HDSDR provides both
a visual means for monitoring the results in frequency domain using its waterfall and
spectrogram displays and recording them in the hard disk while listening the
demodulation products through another spare soundcard output. The recorded results
from the experiments are then analysed and compared to the results from the
simulation stages. The analysis results include rms error level which shows the level
of noise from the original and calculation of SNR in dB from the rms error and original

rms signal level.

Analysis of the results show that FMTX system implemented on FPGA is successful
in the generation of FM signals. So, it can be accepted as a good candidate in the
training and studying of the practical SDR principles of FM signals. The designed
FMTX system can be utilized as a practical FM backend for a SDR equipment such as
Softrock Ensemble TX which can be set to accept a 12KHz IF. Thus, FM
communication can be possible on Civilization Band (CB) which is located at 27MHz.
The FMTX system can be integrated with a suitable FM receiver built on the same
FPGA and can be used as a transceiver on HF or VHF band if combined with a suitable

up-down converter which can operate with a 12-KHz IF.
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Appendix A.1 Transmitter (Modulation) code (fmtx.m)

% (WBFM) Mod. with MUSIC by B. ERKAL 2021

% FM transmitter simulation code by Bilgehan ERKAL
% Karabuk 2022

clear all;

% sound file 1 loading (4Khz mono (8KSps))
[iffl , afs]=audioread('al.wav');
[yl,~]=size(iffl);

% upsample x6 (8x6=48Khz)
yul=upsample (iff1l, 6);

% Baseband signal is filtered and normalized
yul=filter (firl (128,4e3/24e3),1,yul);
yul=yul./ (1.01l*max (abs (yul)));
audiowrite('al 48k.wav', yul, 48e3);

fs=48e+3; % sampling frequency
ts=1/fs; % sampling interval
t=0:ts:10-ts; % time axis

% FM modulation
% message signal integral

ati=0;

% Deltafmax = Amax / (2*pi*ts) = 0.524 / 1.31*10"-4 = 4KHz
yul=0.524*yul;

[y,~]=size(yul);

at(l:y,1)=0;

for i=1l:1:y
ati=ati+yul (i, 1);
at(i,1l)=ati;

end

o\

(BTFM=2* (Deltafmax+BWm)= 2* (4K+4K)=16KHz and Beta=deltafmax/BWm=1)

o\

carrier parameters

C=22938; fct=12e+3;tetac=0* (pi/180) ;

% FM IF signal

m=intl6 (C*cos ((2*pi*fct*t'+tetac+at)));

m=intl6 (filter (firl (2048, [ (fct-8e3)/24e3 (fct+8e3)/24e+3],
'bandpass'),1l,m));

% IF signal is recorded in wav file
audiowrite ('FM.wav', m, fs);
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Appendix A.2 Receiver (Demodulation) code (fmrx.m)

% (WBFM) Demod. with MUSIC by B. ERKAL 2021
% FM receiver code by Bilgehan ERKAL

% Karabuk 2022

clear all;

% IF file loading (48Khz stereo)
[yul , afs]=audioread('FM.wav');
[yl,~]=size(yul);

% IF signal is normalized
yul=yul./ (1.01l*max (abs (yul)));

oe

fs=afs;
ts=1/fs;
t=0:ts:10-ts;

sampling frequency
sampling interval
time axis

o°

o°

% Quadrature FM Demodulation

dem=yul (l:end-1,1) .*yul (2:end, 1) ;

dem (end+1,1)=dem(end, 1) ;

% Final filtering (lowpass fc=4KHz)
dem=filter (firl (256, 4e3/24e3),1,dem);
% Demodulated signal normalized and written to file
dem=dem./ (1.1*max (abs (dem))) ;

audiowrite ('DEM.wav', dem, fs);
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Appendix A.3 Signal Analysis code (an.m)

% FM Demod. performance analysis

% FM receiver analysis by Bilgehan ERKAL
% Karabuk 2022

clear all;

% stereo comparison file loading (48Khz stereo)
[1ffl , afs]=audioread('st Ldem Ral.wav');
[yl,~]=size(iffl);

% channel seperation and gain error correction
rec=0.9566*1iffl1(1:y1,1)"';

al=1*1iff1(1l:y1,2)"';

% Calculate rms error and rms signal
diff=(al-rec)/2;
err=(mean (diff.”2))"0.5;
al rms=(mean(al.”2))"0
fprintf ('rms error: %d
20*1logl0(al rms/err))

5
\nSNR (dB) : %4 \n', err,

audiowrite ('diff.wav', diff, afs);
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APPENDIX B.

APPENDIX B. VHDL CODE LISTINGS
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Appendix B.1 (FMTX.VHD - top module)

—-— Company: KARABUK UNIVERSITY
-—- Engineer: Bilgehan ERKAL

-— Create Date: 19.05.2022 16:23:24
-- Design Name: FMTX FM XMITTER
-— Module Name: fmtx - Behavioral

library IEEE;

use IEEE.STD LOGIC 1164.ALL;
use IEEE.NUMERIC STD.ALL;

use IEEE.STD LOGIC SIGNED.ALL;

entity fmtx is
Port (
led : out std logic vector(l downto 0); -- LED Indicators

-— adc module connections

sync_nl : out std logic; -- chip select 1 - 43
sdi0 : in std logic; -- serial data out O 2 - 44
sdil : in std logic; -- serial data out 1 3 - 45
sclkl : out std logic; -- serial clock 4 - 46
gndl : out std logic; -- negative supply 5 - 47
vcel @ out std logic; -- positive supply 6 — 48
-- dac module connections

sync_n2 : out std logic; —-— chip select 1 -6

sdo0O : out std logic; -- serial data in O 2 -5

sdol : out std logic; -- serial data in 1 3 -4

sclk2 : out std logic; -- serial clock 4 - 3

gnd2 : out std logic; -- negative supply 5 -2

vcc2 @ out std logic; -- positive supply 6 - 1

clk : in std logic -- master clock 12MHz

)7

end fmtx;

architecture Behavioral of fmtx is
component clk wiz 1

port

(-— Clock in ports

-- Clock out ports

clk outl : out std logic;
clk out2 : out std logic;
-—- Status and control signals

reset : in std logic;
locked : out std logic;
clk inl : in std logic

)7

end component;

COMPONENT clip indicator
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PORT (

clip in : in std logic vector (1l downto 0);
clip out : out STD LOGIC;
clk : in STD LOGIC --960KHZ

)7
END COMPONENT;

COMPONENT c_addsub 0
PORT (

A : IN STD LOGIC VEC
B : IN STD LOGIC_VEC
CLK : IN STD LOGIC;

S : OUT STD_LOGIC_VE

END COMPONENT;

COMPONENT dds_compiler O
PORT (
aclk
s _axis phase tvalid
s_axis phase tdata
m axis data tvalid
m _axis data_ tdata
)7
END COMPONENT;

component adac

Port ( clk 24MHz
reset n :
-- adc module
sync _nl
43
sdi0
44
sdil
45
-- dac module
sync n2
6
sdo0
5
sdol
4
-- dac signals
dac_inputl
dac_input2
-- adc signals
adc_regl
adc_reg2
clk 960KHz out
output

)7

end component;

-- Reset and clock signals

TOR (31 DOWNTO O0) ;
TOR (31 DOWNTO O0) ;

CTOR (31 DOWNTO O0)

IN STD_LOGIC;
IN STD LOGIC;
IN STD LOGIC_ VECTOR (63 DOWNTO 0);
OUT STD_LOGIC;
OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

in STD_LOGIC;
in STD_LOGIC;

connections

out std logic;-- chip select 1
in std logic;-- serial data out 0 2
in std logic;-- serial data out 1 3
connections

out std logic;-- chip select 1
out std logic;-- serial data in 0 2
out std logic;-- serial data in 1 3

in std logic_vector (15 downto 0);
in std logic_vector (15 downto 0);

out std logic vector (15 downto 0);
out std logic_vector (15 downto 0);

out STD LOGIC -- 960KHz sampler clock

57



signal res count : std logic vector (26 downto 0) := (others =>
0');

signal reset n : std logic := '1"';
signal clk 48MHz : std logic;
signal clk 960KHz : std logic;
signal clk 24MHz : std logic := '0';

-—- DDS and modulator signals

signal mod in : std logic_vector (31 downto 0) := (others => '0"');
signal s : std logic_vector (6 downto 0) := (others => '0'");
signal mod out : std logic vector (31 downto 0) : (others => '0");
signal freq : std logic vector (31 downto Q) : (others => '0");
signal phi : std logic_vector (63 downto 0) := (others => '0"');
signal dds out : std logic vector (15 downto 0) := (others => '0'");

-- Dual channel ADC-DAC output/ input signals (ADAC MODULE)

signal adc_outl : std logic vector (15 downto 0) := (others =>
sgg;gl dac_inputl : std logic_vector (15 downto 0) := (others =>
sgg;;l adc_outz2 : std logic_vector (15 downto 0) := (others =>
sgg;;l dac_input2 : std logic_vector (15 downto 0) := (others =>
0 ;

-—- 2-channel clipping indicator signals

signal clip inl : std logic _vector (1l downto 0) := (others =>
lOl);
signal clip in2 : std logic_vector (ll downto 0) := (others =>
0 ;
begin

-- module connectors

freg <= X"03333333"; -- 12KHz

s <= (others => not adc outl(1ll)); -- sign of adc output

mod _in <= s & adc_outl (6 downto 0) & "000000000000000000";--
modulator input from ADC

phi <= X"00000000" & mod out; -- modulation input of DDS (phase
increment input)

dac_inputl <= "0000" & not(dds out(1l5)) & dds out(ll downto 1);-- FM
signal output from DDS

-—-dac_inputl <= "0000" & adc outl(ll) & adc outl(6 downto 0) &
"0000"; --loopback data

--dac_inputl <= X"QFFF";--fixed data

dac_input2 <= X"0000";--fixed data

--dac_input2 <= adc_out2;--loopback data

-- clock and power supply connections
sclkl <= clk 24MHz;

sclk2 <= clk 24MHz;

gndl <= '0';

gnd2 <= '0';

veel <= '1"';

vee2 <= '1"';

-- clipping indicators

-—clip inl <= X"59B";-- 1435 threshold value
clip inl <= not adc outl(1ll) & adc outl (10 downto O0);
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clip in2 <= not dac_inputl(ll) & dac_inputl (10 downto 0);

--clip in2 <= x"A65";-- -1435 negative threshold
inst ¢ _indl : clip indicator
port map (

clip in => clip inl,
clip out => led(0),
clk => clk 960KHz

)7

inst ¢ ind2 : clip indicator
port map (
clip in => clip_ in2,
clip out => led(1l),
clk => clk 960KHz

)7

-— Clock module
plll : clk wiz 1
port map (
-—- Clock out ports
clk outl => clk 48MHz,
clk out2 => clk 24MHz,
-- Status and control signals
reset => '0',
locked => open,
-- Clock in ports
clk inl => clk -- 12MHz master clock
)

-- Master reset of FPGA fabric
reset proc: process(clk 24MHz)

begin
if rising edge(clk 24MHz) then
if res count(26) = 'l' then
res count <= res count;
else
res count <= res count + 1;
end if;
end if;

end process;
reset n <= res count (26);

-- Frequency modulator
fm modulator : c_addsub 0

PORT MAP (
A => freq, -- frequency input
B => mod in, -- modulator input
CLK => clk 960KHz, -- sampling clock input (960KHz)
S => mod out -- modulator output

)7

-- DDS (Direct Digital Synthesis) or NCO (Numerically Controlled
Oscillator) module
ddsl : dds_compiler 0
PORT MAP (
aclk => clk 960KHz,
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s _axis phase tvalid => '1',
s _axis phase tdata => phi,

m _axis data tvalid => open,
m axis data tdata => dds out

)7

-— ADAC mdoule
inst adac : adac

port map (

clk 24MHz => clk 24MHz,

reset n => reset n,

-— adc module connections
sync_nl => sync_nl,
sdi0 => sdio,
sdil => sdil,

-- dac module connections
sync_n2 => sync n2z,

sdo0 => sdoO0,

sdol => sdol,

-- dac signals
dac_inputl => dac_inputl,
dac_input2 => dac_input2,

-- adc signals
adc_regl => adc_outl,

adc_reg2 => adc_out2,

clk 960KHz out => clk 960KHz
)7

end Behavioral;
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Appendix B.2 (ADAC.VHD)

—-— Company: KARABUK UNIVERSITY
-- Engineer: BILGEHAN ERKAL

-— Create Date: 09.10.2021 12:39:05

-—- Design Name: High speed version (960KSps)
—-- Module Name: adac - Behavioral

-— Project Name:

-- Target Devices:

-- Tool Versions:

—-— Description:

-—- Dependencies:

-— Revision:
-— Revision 0.01 - File Created
-— Additional Comments:

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

—-—- Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned wvalues
use IEEE.NUMERIC STD.ALL;

-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

—--library UNISIM;

--use UNISIM.VComponents.all;

use IEEE.STD LOGIC UNSIGNED.ALL;

entity adac is

Port ( clk 24MHz : in STD_LOGIC;
reset n : in STD LOGIC;
-- adc module connections
sync_nl : out std logic;-- chip select 1 -
43
sdi0 : in std logic;-- serial data out O 2 -
44
sdil : in std logic;-- serial data out 1 3 -
45
-- dac module connections
sync_nz2 : out std logic;-- chip select 1 -
6
sdo0 : out std logic;-- serial data in O 2 -
5
sdol : out std logic;-- serial data in 1 3 -
4

-- dac signals
dac_inputl : in std logic vector (15 downto 0);
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dac_input2 : in std logic vector (15 downto 0);

-- adc signals

adc_regl : out std logic vector (15 downto 0);
adc_reg2 : out std logic vector (15 downto 0);

clk 960KHz out : out STD LOGIC) ;

end adac;
architecture Behavioral of adac is
—-—- ADAC process vars
signal adac_state : std logic_vector (7 downto 0) := (others => '0');
signal cs_n : std logic;
signal clk 960KHz : std logic := '0';
signal sd regl : std logic vector (15 downto 0) := (others => '0');
signal adc_outl : std logic vector (15 downto 0) := (others => '0");
signal dac_inl : std logic vector (15 downto 0) := (others => '0');
signal sd _reg2 : std logic vector (15 downto 0) := (others => '0');
signal adc_out2 : std logic vector (15 downto 0) := (others => '0");
signal dac_in2 : std logic_vector (15 downto 0) := (others => '0');
begin
-- module connectors
sync _nl <= cs n;
sync_nz2 <= cs _n;
sdo0 <= dac_inl(15);
sdol <= dac_in2(15);
clk 960KHz out <= clk 960KHz;
adc_regl <= adc_outl;
adc_reg2 <= adc_out2;
—— ADAC process
adac_proc: process(clk 24MHz)
begin
if rising edge(clk 24MHz) then
if reset n = 'l' then
CASE adac_state(7 downto 0) IS
WHEN X"00" => --
adac_state <= adac_state + 1;
cs n <= "'0";
sd regl <= (others => '0");
adc_outl <= adc_outl;
dac_inl <= dac_inl;
sd reg2 <= (others => '0");
adc_out2 <= adc_out2;
dac_in2 <= dac_in2;
clk 960KHz <= '0';
WHEN X"01" => --
adac_state <= adac_state + 1;
cs n <= "'0";
sd regl <= sd regl (14 downto 0) &
sdi0;
adc_outl <= adc_outl;
dac inl <= dac inl (14 downto 0) & 'O';
sd reg2 <= sd reg2(1l4 downto 0) &
sdil;
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sdi0;

sdil;

sdi0;

sdil;

sdi0;

sdil;

sdi0;

sdil;

adc_out2 <= adc_out2;
dac _in2 <= dac_in2 (14 downto 0)
clk 960KHz <= '0';

WHEN X"02" => --

adac_state <= adac state + 1;
cs n <= "'0"';
sd regl <= sd regl (14 downto 0)

adc_outl <= adc_outl;
dac _inl <= dac_inl (14 downto 0)
sd reg2 <= sd reg2(14 downto 0)

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto 0)
clk 960KHz <= '0';

X"o3" => --

adac_state <= adac_state + 1;
cs n <= "'0";

sd regl <= sd regl (14 downto 0)

adc_outl <= adc_outl;
dac_inl <= dac_inl (14 downto 0)
sd reg2 <= sd reg2 (14 downto 0)

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto 0)
clk 960KHz <= '0';

X"04" => --

adac_state <= adac_state + 1;
cs n <= '0";

sd regl <= sd regl (14 downto O0)

adc_outl <= adc_outl;
dac_inl <= dac_inl (14 downto 0)
sd reg2 <= sd reg2(14 downto 0)

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto 0)
clk 960KHz <= '0';

X"05" => --
adac_state <= adac_state + 1;
cs n <= "'0"';

sd regl <= sd regl (14 downto 0)

adc_outl <= adc_outl;
dac_inl <= dac_inl (14 downto 0)
sd reg2 <= sd reg2(14 downto 0)

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto 0)
clk 960KHz <= '0';

WHEN X"06" => --

adac_state <= adac_state + 1;
cs n <= "'0";
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sdi0;

sdil;

sdi0;

sdil;

sdi0;

sdil;

sdi0;

sdil;

sdi0;

sdil;

sd regl <= sd regl (14 downto

adc_outl <= adc_outl;
dac_inl <= dac_inl (14 downto
sd reg2 <= sd _reg2 (14 downto

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto
clk 960KHz <= '0';

WHEN X"Q7" => --
adac_state <= adac state + 1;

cs n <= "'0"';
sd regl <= sd regl (14 downto

adc_outl <= adc_outl;
dac_inl <= dac_inl (14 downto
sd reg2 <= sd reg2 (14 downto

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto

clk 960KHz <= '0';

X"08" => --

adac_state <= adac_state + 1;

cs n <= "'0"';
sd regl <= sd regl (14 downto

adc_outl <= adc_outl;
dac_inl <= dac_inl (14 downto
sd reg2 <= sd reg2 (14 downto

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto

clk 960KHz <= '0';

X"0o" => --

adac_state <= adac_state + 1;

cs n <= "'0";
sd regl <= sd regl (14 downto

adc_outl <= adc_outl;
dac_inl <= dac inl (14 downto
sd reg2 <= sd reg2 (14 downto

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto
clk 960KHz <= '0';

WHEN X"OA"™ => --
adac_state <= adac_state + 1;

cs n <= "'0"';

sd regl <= sd regl (14 downto
adc_outl <= adc_outl;
dac_inl <= dac_inl (14 downto

sd reg2 <= sd _reg2(l4 downto

adc_out2 <= adc_out2;
dac in2 <= dac in2(14 downto
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sdi0;

sdil;

sdi0;

sdil;

sdi0;

sdil;

sdi0;

sdil;

sdi0;

clk 960KHz <= '0';

WHEN X"0B" => --

adac_state <= adac_state + 1;
cs n <= "'0"';
sd regl <= sd regl (14 downto

adc_outl <= adc_outl;
dac_inl <= dac_inl (14 downto
sd reg2 <= sd _reg2 (14 downto

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto
clk 960KHz <= '0';

x"oc" => --

adac_state <= adac state + 1;
cs n <= "'0";
sd regl <= sd regl (14 downto

adc_outl <= adc_outl;
dac_inl <= dac_inl (14 downto
sd reg2 <= sd reg2 (14 downto

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto
clk 960KHz <= '0';

X"0D" => --

adac_state <= adac_state + 1;
cs n <= "'0"';
sd regl <= sd regl (14 downto

adc_outl <= adc_outl;
dac_inl <= dac inl (14 downto
sd reg2 <= sd reg2 (14 downto

adc_out2 <= adc_out2;
dac_in2 <= dac in2 (14 downto
clk 960KHz <= '0';

X"OE" => --

adac_state <= adac_state + 1;
cs n <= "'0";
sd regl <= sd regl (14 downto

adc_outl <= adc_outl;
dac_inl <= dac inl (14 downto
sd reg2 <= sd reg2 (14 downto

adc_out2 <= adc_out2;
dac_in2 <= dac_in2 (14 downto
clk 960KHz <= '0';

WHEN X"OQF" => --

adac_state <= adac_state + 1;
cs n <= "'0"';
sd regl <= sd regl (14 downto

adc_outl <= adc_outl;
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dac_inl <= dac_inl (14 downto 0)

sd reg2 <= sd reg2(14 downto 0)
sdil;

adc_out2 <= adc_out2;

dac_in2 <= dac_in2 (14 downto 0)

clk 960KHz <= '0';

WHEN X"10" => --

adac_state <= adac_state + 1;

cs n <= "'1";

sd regl <= sd regl (14 downto 0)
sdi0;

adc_outl <= adc_outl;

dac_inl <= dac_inl;

sd reg2 <= sd _reg2 (14 downto 0)
sdil;

adc_out2 <= adc_out2;

dac_in2 <= dac_in2;

clk 960KHz <= '0';

WHEN X"11" => --
adac_state <= adac_state + 1;
cs n <= "'1l";
sd regl <= sd regl;
adc_outl <= sd regl;
dac_inl <= dac_inl;
sd reg2 <= sd _reg2;
adc_out2 <= sd_reg2;
dac_in2 <= dac_in2;
clk 960KHz <= '0';

WHEN X"12" => --
adac_state <= adac_state + 1;
cs n <= "'1l";
sd regl <= sd regl;
adc_outl <= adc_outl;
dac_inl <= dac_inputl;
sd reg2 <= sd _reg2;
adc_out2 <= adc_out2;
dac_in2 <= dac_input2;
clk 960KHz <= '0';

WHEN X"13" => --
adac_state <= adac_state + 1;
cs n <= "1";
sd regl <= sd regl;
adc_outl <= adc_outl;
dac_inl <= dac_inl;
sd reg2 <= sd _reg2;
adc_out2 <= adc_out2;
dac_in2 <= dac_in2;
clk 960KHz <= '0';

WHEN X"14" => --
adac_state <= adac_state + 1;
cs n <= "'1l"';
sd regl <= sd _regl;
adc_outl <= adc_outl;
dac_inl <= dac_inl;
sd reg2 <= sd reg2;
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adc_out2 <= adc_out2;
dac_in2 <= dac_in2;
clk 960KHz <= '0';

WHEN X"15" => --
adac_state <= adac state + 1;
cs n <= "'1"';
sd regl <= sd _regl;
adc_outl <= adc_outl;
dac_inl <= dac_inl;
sd reg2 <= sd reg2;
adc_out2 <= adc_out2;
dac_in2 <= dac_in2;
clk 960KHz <= '0';

WHEN X"1l6" => --
adac_state <= adac state + 1;
cs n <= "'1l";
sd regl <= sd _regl;
adc_outl <= adc_outl;
dac_inl <= dac_inl;
sd reg2 <= sd _reg2;
adc_out2 <= adc_out2;
dac_in2 <= dac_in2;
clk 960KHz <= '0';

WHEN X"17" => --
adac_state <= adac_state + 1;
cs n <= "'1l";
sd regl <= sd _regl;
adc_outl <= adc_outl;
dac_inl <= dac_inl;
sd reg2 <= sd _reg2;
adc_out2 <= adc_out2;
dac_in2 <= dac_in2;
clk 960KHz <= '1';

WHEN X"18" => --
adac_state <= (others => '0'");
cs n <= "1";
sd regl <= sd regl;
adc_outl <= adc_outl;
dac_inl <= dac inl;
sd reg2 <= sd _reg2;
adc_out2 <= adc_out2;
dac_in2 <= dac_in2;
clk 960KHz <= '0';

WHEN OTHERS =>--
adac_state <= (others => '0'");
cs n <= "'1"';
sd regl <= sd _regl;
adc_outl <= adc_outl;
dac_inl <= dac inl;
sd reg2 <= sd reg2;
adc_out2 <= adc_out2;
dac_in2 <= dac_in2;
clk 960KHz <= '0';

END CASE;
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else -- reset in order
adac_state <= (others => '0");
cs n <= "1";
sd regl <= (others => '0");
adc_outl <= (others => '0'
dac_inl <= (others => '0")
sd reg2 <= (others => '0");
adc_out2 <= (others => '0'
dac_in2 <= (others => '0
clk 960KHz <= '0';

end if;
end if;

end process;

end Behavioral;
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Appendix B.3 (CLIP_INDICATOR.VHD)

—-— Company: KARABUK UNIVERSITY
-- Engineer: BILGEHAN ERKAL

-—- Create Date: 19.05.2022 17:00:00

-—- Design Name: Signed version

-— Module Name: clip indicator - Behavioral
-—- Project Name:

-- Target Devices:

-- Tool Versions:

—-—- Description:

-- Dependencies:

-- Revision:
-—- Revision 0.01 - File Created
-— Additional Comments:

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC SIGNED.ALL;

—-—- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;

entity clip indicator is

Port (
clip in : in std logic vector (1l downto 0);
clip out : out STD LOGIC;
clk : in STD LOGIC --960KHZ

);
end clip indicator;

architecture Behavioral of clip indicator is

signal ¢ in s : std logic vector(ll downto 0) := (others => '0");
signal timex : std logic vector (18 downto 0):= (others => '0'");
begin

c in s <= clip in (11 downto 0);

69



clip proc:process (clk)
begin
if rising edge(clk) then
if ((c_in s < -1434) or (c_in s > 1434)) then
clip out <= '1";
timex <= "000" & X"00O01";

else
if (timex = 0) then
clip out <= '0';
timex <= timex;--(others => '0"'");
else
clip out <= '1";
timex <= timex + 1;
end 1if;
end 1if;
end if;

end process;

end Behavioral;
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Appendix C.1 XILINX Artix-7 FPGA (CX7A35T-1CPG236C) Datasheet

& XILINX. XA Artix-7 FPGAs Data Sheet: Overview

D597 (w1.3) Novermnber 15, 2017 Product Specification

General Description

Kl XA Art®-7 (Automotive) FPGAS are optimized for the lowest Gost and power with small form factor packaging for high-volume autormotive
applications. Designers can leverage more logic per watt compared to the Spartan@-& tamily.

Built on a state-ofdhe-art high-performancedow-power (HPL) 28 nm high-k metal gate (HKMG) process technology, XA Antix-7 FPGAS redefine low-cost
alternatives with more logic per watt. Unparalleled increase in system performance with 52 Gi/s 10 bandwidth, 100,000 logic cell capacity, 264 GMAC/
DSP, and flexible built-in DDR3 memary interfaces enable a new class of high-throughput, low-cost automotive applications. X4 Arix-7 FPGAS also offer
many high-end features, such as integrated advanced Analog Mixed Signal (AMS) technology. Analog becomes the next level of integration through the
seamless implementation of independent dual 12-bit, 1 MSPS, 17-¢hannel analog-o-digital converters. Most importantly, XA Artix-7 FPGAS proudly mest
the high standards of the automotive grade with a maximum temperature of 125°C.

Summary of XA Artix-7 FPGA Features

+ Automothve Temperatures: +  Auser corfigurable analog Interface (XADC), incorporating dual
+ I-Grade Tie —40°G to +100°G 12-bit 1MSPS analog-to-digital comverters with on-chip thermal and

) SUPPIY SENSOrS.
+ O-Grade: Ti=—40°Cto +125°C ) ) . )
+ Single-ended and differential 110 standards with speeds of up to
. Altomative Standards: 1_28 Ghis P P

+  I150-TE18940 compliant + 240 DSP4BE1 slices with up to 254 GMACS of signal processing
+ AEGC-Q100 qualification +  Powerful clock management tiles (GMT), combining phase-locked
+  Production Part Approval Process (PPAP) documentation locp (PLLY and mixed-mode dockmanager (MW G blocks Tor high
+ Beyond AEC-CH1 00 gualification is available upon reguest precision and low Jitter

+ Advanced high-performance FPGA logic based on real -4nput look- * Eﬁ%ggﬁd block for PCI Express® (PCle@), for up o x4 Gen2
up table (LUT) technology configurable as distributed memory W'dp ety of confi i " inoluci i

. ) . ' o . ide variety of configuration options, including support for
efoD, dhial-port lock RAM with bUIILIN FIFG logie for on-Gfip data commodity mermories, 256-bit AES encryption with HMAG/SHA-256

authentication, and built-in SEU detection and correction

* Subwall parformance in 100,000 legic cells s Low-costwire-bond packaging, offering easy migration betwean

+  High-performance SelectiO™ technology with support for DDR3 family members inthe same package, all packades available Pb-free
Imenaces upto.BUU MWS_ L o ) _ +  Designedfor high performance and lowest power with 28 nm,
. ?{Ij%hﬁgfetd serial Conneft:tl\ﬂt}ff\glgsbélg-lﬂ Se”&" traggcglgfrs frOIEﬂ HKMG, HPL process, 1.0 core voltage process technology
5 to maximum rates of 6. 5, enabling s pea . . I "
bandwicth (full duplex) Strong automotive-specific third-party ecosystem with [P,

development boards, and design services

XA Artix-7 FPGA Summary Tables
Table 1 XA Artix-7 FPGA Device-Feature Table

O ate foge Block RAM Blocks !
g | R e | vows | ome | 08 | g, | ey
Sices!) | Dtribited 18K | 36Kb | fAX
XATAIZT | 12,800 | 2000 7 40 w | 20 | 1™ 3 1 2 1 3 150
XATAIET | 16,640 | 2800 200 45 0 | 25 | s 5 1 4 1 5 210
Xa7A25T | 2330 | 350 313 80 0 | 45 | 1820 3 1 4 i 3 150
XA7A3ET | 33,280 | 5,200 400 80 100 | B0 | 1,300 5 1 4 1 5 o
XATAROT | 52160 | 8150 600 120 180 | 75 | 2700 5 1 4 1 5 210
XATATET | 75,620 | 11,800 832 180 210 | 105 | a7m 5 1 4 1 5 25
XATA100T | 101,440 | 15,850 1188 240 270 | 135 | 4,800 & 1 4 1 & 85

Hotes:

1 Each 7 series FPGA slice contains four LUTs and eight flipfleps; only some slices can use their LUIT s as distributed Ral or SRLs.
2. Each DSP slice contains a pre-adder, 2 25 % 18 multiplier, an adder, and an sccurmulator.

3 Block Rals are fundamentally 26 Kb in size; each bleckcan alse be used as twe independent 18 Kb blocks.

4. Each CMT containg one MMCM and one PLL.

3 XA a7 FPGA (nterface Blocks for P21 Express support up to xd Gen 2.

[ Diees not include configuration Bank .

7 This number dees not include GTP fransceivers.

Copyright 20042017 Xilir, Inc., Xilinx, the Xilinx logo, Arix, 1SE, Kintex, Spartan, UltraScale, Wirtex, Vivado, Zyng, and other designated brands included herein are
trademarks of Xilire in the United States and other countries, PCI, PCle, and PCI Exprass are tradermarks of PC-31G and used urder licenze. All other trademarks are the
property of their respective owners.

DS197 (wv1.3) November 15, 2017 sy ilinx com
Product Specification 1
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Appendix C.2 ADC Chip Analog Devices AD747

ANALOG
DEVICES

2.35V 10 5.25 V, 1 MSPS,

12-/10-/8-Bit ADCs in 6-Lead SC70

AD7476A/ADT4T1A/ADT4T8A

FEATURES

Fast throughput rate: 1 MSPS
Specified for Voo of 235V to 525V
Low power
3.6 mW at 1 MSPS with 3V supplies
12.5 mW at 1 MSPS with 5V supplies
Wideinput bandwidth
71 dB SNR at 100 kHz input frequency
Flexible power{serial clock speed management
No pip eline delays
High speed serial interface
SPI/QSPI™TMICROWIRE™/DSP compatible
Standby mode: 1 pA maximum
6-lead 5C70 package
8-lead MSOP package
Qualified for automotive applications

APPLICATIONS

Battery-powered systems

Personal digital assistants

Medical instruments

Mobile communications
Instrumentation and control systems
Data acquisition systems
High speed modems
Optical sensors

GENERAL DESCRIPTION

The ADP47EAIADTATTAIADT478A are 12-bit, 10-bit, and 8-bit
high speed, low power, successive-approximation analog-to-
digital converters (ADCs), respectively The parts operate from
asingle 235V to 525V power supply and feature throughput
rates up to 1 MSPS, The parts contain a low noise, wide
bandwidth track-and-held amplifier that can handle input
frequencies in excess of 13 MHz. The conversion process and
data acquisition are controlled using CF and the serial clock,
allowing the devices to interface with microprocessors or DEPs,
The input signal is sampled on the falling edge of C3, and the
conversion is also initiated at this point. There are no pipeline
delays associated with the parts, The ADV476A/ADTA77AS
AD74784 use advanced design techniques to achieve low power
dissipation at high throughput rates. The reference for the part
is taken internally from Vo to allow the widest dynamic input
range to the ADC, Thus, the analog input range for the part is

0 to Voo, The conversion rate is determined by the SCLE

Rev. F

Infomaation fumehad by Analog Davicas & balkavor 10 b accurate and salibla Howsvar, e
e RsUsa, norksrany P

nghtscof P from Msarse. Spa iy el Fher
Mcansa sgrankad by I plcation of cthanyr sz undar any patentor patznt iohtsof Analog Devias,
el aspac thaz onrmars,

6 Datasheet
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FUNCTIONAL BLOCK DIAGR AM
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Figure T,

PRODUCT HIGHLIGHTS
First 12-/10-/8-bit ADCs in a SC70 package.
2. High throughput with low power consumption.

w

Flexible powerfserial clock speed managerment. The
conversion rate s determined by the serial clock, allowing
the conwersion time to be reduced through the serial clock
speed increase. This allows the average power consumnption
to be reduced when a power-down mode is used while not
converting. The parts also feature a power-down mode to
mazximize power efficiency at lower throughput rates,
Current consurmption is 1 pA maximumand 50 n4
typically when in power-down mode.

4. Reference derived from the power supply.

5. No pipeline delay. The parts feature a standard successive
approximation ADC with accurate control of the sampling
instant via a CS inputand once-off conversion control

One Technology Way, P.O. Box 9106, Nonvood, MA 02062-9106, U.SA.
Tel: 741.329.4700 wivrranalog.com
Fax: 731.461.3113  ©@2002-2011 Analog Devices, Inc. All right s resenved.




Appendix C.3 Texas Instruments DAC121S101 DAC Chip Datasheet

I3 TEXAS
INSTRUMENTS

DAC1218101, DAC1218101 Q1
SNAS265)—JUNE 2005-REVISED SEPTEMBER 2015

DAC1215101/-Q1 12 Bit Micro Power, RRO Digital-to-Analog Converter

1 Features

¢ DACIZ2135101-Q1 15 AEC-Q100 Grade 1 Qualified

and is Manufactured on an Automotive Grade
Flow.

+  Ensured Monotonicity
¢+ Low Power Operation
+  Raito-Rail Voltage Output
+ Power-on Reset to Zero Volts Qutput
+ Wide Temperature Range of -40°C to +125°C
+ Wide Power Supply Range of 2.7 Vo 55V
+  Small Packages
+  Power Down Feature
¢+ Key Spedcifications
— 12-Bit Resolution
— DNL-015, +0.25 LSE (Typical)
—  8-Js Qutput Settling Time (Typical)
— 4-mV Zero Code Error (Typical)
- Full-Scale Error at -0.06 %FS (Typical)

—  0.84-mW (3.6-Y)/ 1.43-mW (5.5-V) Normal
Mode Power Consumption (Typical)

— 0 14-pWW (3.6-Y) 7 0.39UW (5 5-V) Power-
Daown Made (T ypical )

2 Applications

+  Battery-FPowered Instruments

+  Digital Gain and Offset Adjustment

+  Programmable Yoltage and Current Sources
+ Programmable Attenuators

+  Automotive

Simplified Block Diagram
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3 Description

The DAC1215101 device is a ful-featured, general-
purpose,  12-hit  wvoltage-cutput  digital-to-analog
converter (DAC) that can operate from a single 2.7-Y
to 5.5-Y supply and consumes just 177 pA of current
at 3.6 V. The on-chip output amplifier allows rail-to-
rail output swing and the three wire serial interface
operates at clock rates up to 30 MHz over the
specified supply voltage range and is compatible with
standard SPI™, QSPI, MICROWIRE and DSP
interfaces. Competitive devices are limited to 20-MHz
clock rates at supply voltages inthe 27 Vto 36 W
range.

The supply voltage for the DAC1215101 serves as its
voltage reference, providing the widest possible
output  dynamic range. A power-on reset circuit
ensures that the DAC output powers up to zero volts
and remains there until there is a wvalid wrte to the
device. A powerdown feature reduces power
consumption to less than a microyatt.

The low power consumption and small packages of
the DACT1215101 make it an excellent choice for use
in battery operated equipment.

Device InformationtV

PART NUMBER PACKAGE BODY SIZE (NOM)
50T (6) 2.90 mm % 1.60 mm

DAC1215101
VSSO0P (8) .00 mm x 3.00 mm
DACI215101-Q1 | 50T (6) 2.90 mm x 1.60 mm

{1} For all available packages, see the orderable addendurn at
the end of the data sheet.

DML vs. Output Code

10

035

00 kbl

DNL (LSBs)

4] 1024 2048 3072 4096

QUTPUT CODES
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