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ABSTRACT

M. Sc. Thesis

INVERSE SEMIGROUPS AND ITS RELATION WITH LEAVITT PATH
ALGEBRA

Mounzer Khihf MLEHAN ALJADAAN

Karabiik University
Institute of Graduate Programs
The Department of Mathematics

Thesis Advisor:
Assist. Prof. Dr. Tiilay YILDIRIM TURAN
January 2023, 48 pages

In this thesis, we consider an inverse semigroup class constructed from Leavitt path
algebras. In the beginning of the thesis, theoretical background on directed graphs
and its properties are discussed. Then it continues with important theories and
definitions of the Leavitt path algebras. Furthermore, all the theories are supported
with good examples. In the following, we examined the role of inverse semigroups in
algebra and investigated its structures, ideals and homomorphisms in details. In this
thesis, we especially give our attention to analyze the class of inverse semigroups
related to the Leavitt path algebras. We studied a presentation for the Leavitt inverse

semigroups and defined the structure of the Leavitt inverse semigroups.
Key Words : Semi Groups, Inverse Semi groups, Graph Theory, Leavitt Path

Algebra, ideals.
Science Code:
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OZET

Yiiksek Lisans Tezi

TERS YARI GRUPLAR VE LEAVITT YOL CEBIRLERI ILE ILISKILERI

Mounzer Khihf MLEHAN ALJADAAN

Karabiik Universitesi
Lisansiistii Egitim Enstitiisii

Matematik Anabilim Dah

Tez Danismanai:
Dr. Ogr. Uyesi Tiilay YILDIRIM TURAN
Ocak 2023, 48 sayfa

Bu tezde, Leavitt yol cebirlerinden olusturulmus bir ters yarigrup smifini ele
aliyoruz. Tezin baslangicinda yonlendirilmis ¢izgeler ve ozellikleri ile ilgili teorik
bilgiler caligtik, devaminda Leavitt yol cebirleri hakkinda onemli teorilere ve
tamimlara yer verildik. Ayrica tiim teorileri iyi Orneklerle destekledik. Tezin
devaminda, ters yar1 gruplarin cebirdeki roliinii inceledik ve bu cebirsel yapinin
ideallerini ve homomorfizmlerini ayrintili olarak inceledik. Bu tezi oOzellikle
calimamizda ki amac, Leavitt yol cebirleri ile ilgili ters yarigruplar arasi 1iliskiyi
incelemektir. Bu sebeple, Leavitt ters yarigruplarinin tanimi {izerinde calistik ve

Leavitt ters yarigruplarinin yapisini inceledik.

Anahtar Kelimeler: Yar1 Gruplar, Ters Yar1 gruplar, Cizge Teorisi, Leavitt Yol
Cebirleri, idealler.
Bilim Kodu
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PART 1

INTRODUCTION

Leavitt path algebra is an algebraic structure and constructed from a directed graph.
This algebra generalizes the Laavitt algebras and it has similary construction with the
graph C*-algebras. For a directed graph E and field K, Lx (E) Leavitt path algebra is
first defined in 2005 by G. Abrams and G. Aranda Pino as a generalization of Leavitt
algebras and expanded to arbitrary graphs in 2008 [14-15]. In the following years,
many researchers interested the infinitely simple properties, socle, finite dimensional
structures, prime and maximal ideals of Lg(E) [16], [17], [18]. In 2011, M.
Tomforde examined the Lz (E) Leavitt path algebras for a finite directed graph E and
commutative ring R. He defined necessary an d sufficient conditions for Lz (E) to be
basically simple [19]. In 2015, H. Larki Lr(E) extended Leavitt path algebras to
countable graphs and studied the characterization of prime and primitive ideal

structures with Lz (E) being prime and primitive rings. [20].

Algebraic structural information about Leavitt path algebras can be obtained from the
theory of inverse semigroups. Recently, inverse semigroups became increasingly
important in algebraic natures. In [8] authors studied on inverse semigroups which is
obtained from the Leavitt inverse semigroups. They observed that inverse
semigroups are related to the Leavitt path algebras. By the this study, they showed
that the Leavitt inverse semigroups can be represent by a graph in terms of
generators and relations. Considering this study, we firtsly give our attention to
understand algebraic structure of the Leavitt path algebra and inverse semigroups and
then observed a relation between them. Therefore, this thesis is organized as follows:
In part 2, we considered history of Leavitt path algebra and inverse semigroups with
some way and technical of the solving problems, with using some references to be

sure about the history of our subjects.



In part 3, graph theory has an importance part in the applied and pure algebra, So, we
explained graph theory with its important definitions, examples, and theories. One of
the importance of this section is nature of the Leavitt path algebra. In this part we
firstly studied basic properties of the Leavitt path algebras and supported them with
good examples, then we examined the ideal of the Leavitt path algebras. Throughout
the study of the Leavitt path algebras, the main book we followed was Leavitt path
Algebras written by G. Abrams, P. Ara and M. Molina [1].

In part 4, our first aim is to study inverse semigroups in detail to better understand
the next section. Thus, we examined all the nature of the inverse semigroups. In the
beginning of this section, we reminded the partial bijections and then give the
definition of the inverse semigroups. In the following, we stated the importance of
the ordered groupoids. Then inverse properties, ideals, natural partial orders,
compatibility relations, meets and joins and also homomorphisms between inverse
semigroups are studied in detail. Theories and definitions of all subjects are

emphasized, and their importance is mentioned. Throughout the section, we follow

2]

In part 5, the main purpose of this thesis study was to examine the relationship
between inverse semigroups and Leavitt path algebras. Therefore, in this section we
gave our consideration to the paper [8]. Considering this study, we have learned
about the relationship between these two algebraic structures, and we have outlined

the important theories and results for this study in this part.

In part 6, we concluded the thesis by stating the purpose and importance of the

studies.



PART 2

LITERATURE REVIEW

V. V. Wagner defined inverse semigroups for the first time in 1952 [3], by the
meanwhile this study also introduced by Gordon Preston in 1954 [4], [9] and [10]. In
the following years many researchers interested in inverse semigroups [5], [7] and
[6], [11] [12]. In the 1940s and 1950s Charles Ehresmann considered this theory with
a different mathematical perspective. Inverse semigroups were introduced as part of
the legacy of the Klein's Erlanger Program and Lie's theory of infinite continuous

groups.

The Leavitt path algebra was initially introduced in 2007 by Ara, Moreno and Pardo
[13], and almost simultaneously but independently by Abrams and Pino [14]. Nearly
a decade later, this algebra has attracted considerable attention not only ring
theorists, but also Cx -algebras and group theorists. In 2005, G. Abrams and G. A.
Pino defined the Leavitt path algebra, Li(E), of a finite graph E with coefficients
from a field K as a generalization of the Leavitt path algebras and expanded it to the
arbitrary graph in 2008. In 2015 G. Aranda Pino, K.M. Rangaswamy and M. Siles
Molina obtained that the Leavitt path algebra is a right R-module on itself. Also, they
observed that Endomorphism ring of the Leavitt path algebras are von Neumann

regular.

Structural knowledge of Leavitt path algebras can be obtained from the theory of
inverse semigroups. Therefore, J. Meakin, David Milan and Zhengpan Wang studied
a class of inverse semigroup which is obtained by the Leavitt path algebras in 2021
[8]. They observed that these semigroups are also related to the graph inverse

semigroups.



PART 3

PRELIMINARIES

In the first section, we give the necessary background of the graph theory. For the
convenience of the reader, we also give the necessary examples of the graph. We
refer reader to [15], [16], [18] for more details about the graph theory. In the
following of this chapter, we also discuss the Leavitt path algebra. The main

references for the second section are [1], [13] and [14].

3.1. PRELIMINARIES ON GRAPH THEORY

Interest in graph theory and its applications has grown rapidly in the last two
decades. The reason for this increase is that we can find solutions to many problems
in our daily life with graph theory. Many situations we encounter can be described by
a set of points and diagrams of lines connecting these points. Graph is also used in
algebraic structures, constructing graph group and ring graphs, and explaining
various algebraic properties. This chapter contains background information on the

graph theory.

3.1.1. Definition

A graph E is an ordered pair E = (E°, E') comprising:

e E° asetof vertices

e E' asetof edges which are unordered pairs of vertices



3.1.2. Definition

A directed graph E = (E °, E', r, s) consists of two sets E °, E!, and two functions r, s:
E' ->E% Forany e € E!, s () is called the source of edge and r (e) is called the range
of edge. Let e € E' and v, w € E°, then s (e) is called source of e and r (e) is called
range of e. For any two edges e, e2 € E !, if r (e1) = s (e2), then ei, e, are called

adjacent edges.

3.1.3. Definition

For a vertex u, s “'( u) is the set of edges with source u and r ! () is the set of edges
with a range. The vertex u which s " (u) = @ is called the sink, and r ~! (U) = @ is
called the source. A vertex which is both a source and a sink is called isolated.

3.1.4. Example

[1] In the following graph E, the vertices of ui, Uz, V2, and vs are sink, and the vertex u

is a source

Uz ‘ V2
€4 €2
u
€5 €3
U2 ® V3

Figure 3.1. Directed graph.

Moreover, s(e1) = u, I (€1) = Vi, r(e:) = vi = s(e2) = s(es), s * (u) = {1, €4, €5}, r 1(u) =
@,s " (vi)={ez, €3}, r *(vi) ={er }, r 1 (va) = {ea}, s T (va) =@ =5 " (v2), r " (v2) ={
g2}, s TUu)=0,r ()= {es},s T(u2) =09, r 1(u2) = {es}.



3.1.5. Definition

A vertex u is called infinite emitter if | (s X (u) | = c. Moreover, if u is a sink or

infinite emitter, then u is a singular vertex otherwise it is called a regular vertex.
3.1.6. Example

[1] Let E be a graph given in the following Figure 3.2, since v has infinite edges, it is
infinitely emitter and therefore it is a singular vertex. Also u is a regular vertex
because it spreads finite edges. So, the graph E is a finite and non-sequence graph.

E:

(0)

[

() 1%

Soe

Figure 3.2. Sequence finite graph.

3.1.7. Definition

A path p in a graph E is a sequence of edges p = ez1€>.... ensuch that for i =1, 2, 3, ...,
n— 1. Also, s (p) = s (e1) is the source of p and r(p) = r (en) is the range of p. If the
number of edges forming a path p is infinite, then the path p is called an infinite path.
The set of all paths in a graph E is denoted by Path (E).

3.1.8. Definition

Let p =e1e>.... en be a path of length n, if s (p) = r (p) = u,, then p is called closed
path.A closed simple path based at u is a closed path p = e1ez.... en, such that s (ei) #
u for every i > 1. The set of all closed simple paths based on vertex u is denoted by

CSP(u). Every closed simple path is a closed path.



3.1.9. Definition

For the pathp =e1ez....en, ifs(p)=r(p)=uands™(ei)#s (g) foreachi+]j,
base the vertex u on the path p is called loop. A graph that does not contain a loop is
called an acyclic graph, or a noncyclic graph. For the path p = e1 ez .... en, if there
exists e € E such that s(e) =s (ei) (1 <i<n)and e #ei, then e is called the output of
the p path.

3.1.10. Example

[1] If the n -cornered finite line is generalized for the graph that is Mn graph seen in
Figure 3.3:

Vi e1 V2 €2 V3 Vn-1 €n1 Vn

Figure 3.3. n -angular line finite graph.

The vertex set of the graph M °= {v1, ..., va }, set of edges Mo' = {e 1, ..... ,€n }
and foreachei(i=1,..n-1),s(e)=vi,andr (&) =Vi+1.

3.1.11. Example

[1] According to the rose graph with n leaves, which consists of a single v vertex and

n loops represented by Ry as seen in (Figure 3.4), R °={ v1, ..., Vo }, Ra! = {e1, ...

en }, and for each ei (i =1, ..., n -1) s(&i) = vi = r(ej).

..
.....

......

€n

Figure 3.4. n -leaf rose graphy

7



3.2. PRELIMIMARIES ON LEAVITT PATH ALGEBRA

In the first part of this section, we introduced the Leavitt path algebras and
emphasized that it is a ring with local units. In the following, we considered graphs
frequently encountered in the literature and defined the properties of the Leavitt path
algebras. In the third part, the subject of ideals in Leavitt path algebras briefly
introduced and some important results considered. Proofs of some important
theorems presented with their references. Throughout the section, the Leavitt path
algebra is defined on any directional graph E, is denoted by Lk(E) where K is any
field. Moreover, all the notions are prepared by considering [1].

3.2.1. The Basic Features of Leavitt Path Algebra

3.2.1.1. Definition

Let R be a ring, if the isomorphic Rm and R free left R modules require m=n, then R

is said to have the property of IBN (Invariant Base Number).

3.2.1.2. Definition

For a given ring R and natural numbers m<n, with R™ = R"and 1 < k <m, if R™% R,
then the R ring has (m,n) type IBN property and it is called a ring that does not satisfy
the property.

3.2.1.3. Theorem

[1] For each positive integers (m,n) and field K, there is one K-algebra with Lk(m,n)
units. According to the K-algebra isomorphism:

(i) The algebra Lk(m,n) has module with type (m,n)
(if) For any K-algebra of the (m,n) module A, there is a ¢: Lk(m,n) —A, K-

algebra homomorphism.



3.2.1.4. Definition

[1] Suppose K is any field and that n > 1. Then, (1, n) type Leavitt K-algebra is
denoted by Lk (1, n) and defined as K < X1, X2, ..., Xn, Y1, Y2, ..., Yo >/ < Y12, X;V; —
1, XiYj —dijl|l <i,j<n>

3.2.1.5. Theorem
[1] For each field K, Lk (1, n) is simple where n> 2.
3.2.1.6. Definition

A path u = ege2.... enis a finite sequence of edges in E where s (ei +1) = r (&) for
I<i<n-1.Also,s (u) =s (e1) is a source of pand r(u) =r (en) is a range of u. Also,
the length of path p is shown as n = #( ) or n = | u | The vertices angles are treated
as paths of zero length. For v € E 0, it is defined as's (v) = r (v) = v. For a path u = &1
€2 .... en, the set of vertices of path u is represented as u®= {s (ei), r (&) I 1<i <

n}.Moreover, Path(E) = U5, E" represents all paths set in graph E.
3.2.1.7. Definition

Suppose E is any directional graph and K a field. Also, (E})" = {&" 1 ee E'}.
Accordingly, the Leavitt path algebra on E, the coefficients of which are the elements
of K, is a free-joining K-algebra produced by E° UEuU (E1)”, which provides the

followings:

MVV,VeE,vv =35, vv,

(E1) Ve e EL, s(e)e = er(e) = e,
(E2) V e € EL, r(e)e* = e*s(e) = e,
(CK1) Ve, e €EL e e =dee r(e),

(CK2) for all regular vertex v €E°, V= Yee s_1(v) €€ * .



3.2.1.8. Definition

Let E be a graph and A a K-algebra, then, A consists the set {a,|v € E °} and the sets
{acle € E} and {bele € E'} consist of orthogonal idempotents satisfying the

following conditions.
I. For each e € E, as() @e = @e = @e ar(e) and also are) be = bedise) = be,

ii. For each e, f € E, br @ = de,i are),

iii. For each regular vertex v € E®, a, = Yees—1(v) Aebe.

Thus, A is called an E-family, and in this case, there is a K-algebraic homomorphism
of Lk(E) — A such that it is v — ay, € — a. and " — be. This is also called the

universal property of the Leavitt path algebras.

3.2.1.9. Example [1]

Figure 3.5.
Hence, some operations in Lk(E) are given below:
El:vif=fand f="fv..
E2: v, f*=f+and f* = f* vi.

CKL: f*f=wv, f*h =0=fe.
CK2: vi=ee* + f f* + hh*, vo= gg*.
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Since the vertex vs is infinitely radiating and the vertices vs, vs are sink, for these
vertices (CK2) is not defined.

3.2.1.10. Definition

For an associative ring R, F CR consisting of idempotent elements is defined as a set

of local units if the following condition is satisfied.

For every {ry, ...., m} finite subset of R, frif =r;, there are f e F, 1<i <n. In other
words, for any finite subset N of R, there exists a f € F such that Nc f R f. For an
orthogonal idempotent subsets E of R, if RR =@eee Re, then R is said to have

sufficient idempotent.

3.2.1.11. Lemma

[1] Suppose E is a graph and K any field. If y, 4, u, p €Path(E), then

ykp* if u = Ak, k € Path(E)
(1) (YA*) (up*) =yyo *p* if A = po, o € Path(E)
0

In accurately, A = u if and only if £(2) = £(u) then A*u # 0. Thus, A*u = r(4).

(if) The K-effect on Lk(E) is ordinary. It means that (kyA*) (k' up*) = KK'(yL*up”)
for k, k' eK.

(iii) Lk(E) Leavitt path algebra as a K - vector space {y1* |y,A € Path(E),r(y) =
r(2)} consists of mononomials of the form r (y) =r (A)}. So, every X € L«(E)
element, x = Y, k;y;A;. For ki€ K* i, 2i € Path(E), r(yi) = r(4i) where 1<i
<n.

(iv) Lk(E) is unitary if and only if E° is finite. S0, 1ikE) =Xve 5o V-

(v) For every a€ Lk(E) there is a V(a) finite set such that faf =a, where f =

Zvev(a) V.

Moreover, Lk(E) is a sufficient locally idempotent ring.
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Proof.

(i) By the (CK1), Either e* f € Lk(E) is equal to zero or is the vertex r(e) as
desired.

(ii) It is follows by the definition of Lk(E).

(i) It is obtained from (i).

(iv) If EC is finite, the proof is clear. Otherwise, there is no unit element in
Lk(E).

(v) It is easy to see that sum of the different vertices in Lk(E) is idempotent.
On the other hand, for any element o =X, Kiyi Ai* €LK(E), V(a)
represents the set of vertices on a. Thus, if /=) verV IS defined as a = fof,

then we done.
3.2.1.12. Definition
Let E be a graph. Let £ =E*U(EY)*, u,v € E® and there is a #= hiho,...,hn such that
s(#) = u, r(y) = v and hih,...hm € E, then E is called depend. Dependent
components of E are {Ei}iea graphs. Moreover, E =Liea can be defined as a discrete
combination of connected graphs E;.

3.2.1.13. Proposition

[1] For a E a graph and field K, the dependent expression of E in terms of its bound

components is E =Uiea Ei with Lk(E) = @iealk(Ei).

In the following, we present some Leavitt path algebra examples:

3.2.1.14. Example

[1] Rn represent a graph with only one vertex and n edges.
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Figure 3.6.

3.2.1.15. Example

[1] [Laurent polynomial ring] The following diagram R; with one vertex and edge

plays an important role in the theory.

Figure 3.7.
3.2.1.16. Example
[1]. [Matrix algebra] The graph an consists n vertices and n-1 edges.
Vi e V2 e V3 Vo1 €n1 Vi

® -@ >@----mono- @
Figure 3.8.

3.2.1.17. Proposition

[1] If K is a field, and n > 2 where n is any positive integer, then Lk (1, n) = LK(Rn).
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3.2.1.18. Definition

[1] Let K be a field, the Laurent polynomial is a K-algebra obtained by x and y that

provides a relation xy = yx =1 and is denoted by K [x, x 1].
3.2.1.19. Proposition
[1] If K is a field, then we have Lk(R1). = K [x, x 1].

Proof. Through the (CK3), we have e*e = v =1 in Lk (R1). Also, since e is just edge
of v, ee* =1. is obtained from (CK3) in Lk (Ru1).

3.2.1.20. Theorem

[1] Mn(K)=Lk (An) where K is a field and n > 1 is any positive integer.

Proof. Suppose {fi,j :1 <1, j <n} represents the matrix units in Mn(K).Accordingly, if
the transform ¢:LK (An) — Mn(K) is defined as ¢(vi) = fi,i, ¢ (&) = fi,i+1, it can be
easily shown that ¢ is a K-algebraic isomorphism.

3.2.1.21. Example

[1] The graph below is called the Toeplitz graph and is denoted by Er.

-
4 ¢ —— oV

Figure 3.9.
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3.2.2. ldeals of the Leavitt Path Algebras

3.2.2.1. Definition

Let R be a ring or algebra. The ideal of R obtained by X, with X € R, is denoted by I
(X).

3.2.2.2. Definition

For a graph E = (E°, E%, r, s), we have the followings:

o Letu =eiez..en €Path(E) and €(u) > 1, if s(u) = v = r(u), then x is called a
v-based closed path.

e Letu=-eies...enbe aclosed path that depends on v. If s(ei )# v,i > 2, it is called
a v-dependent simple closed path based. A set of simple closed paths based
on v in E is denoted by CSP(v).

e Let u = eieor..en € CSP(V). If s(ei) # s(gj) for each i #, then u is called a v-
based loop.

e A loop of length 1 is called curl.

3.2.2.3. Definition

Let E be a graph and ve E, if |CSP(v)| = 0 or |CSP(v)| > 2, then E satisfy the K-

condition.

3.2.2.4. Definition

For a graph E = (E°, E%, r, s), the preorder, >, is defined on E° as follows:

P >v ifand only if there is a path x € Path(E) where s(u) = p, r(u) = v.
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3.2.2.5. Definition

Let E be a graph and ve E°. The set T'(v) = {w|w € E°, v >w} is called tree of v. For a
subset X € EY, it is defined as T(X) = Upex T (V).

3.2.2.6. Definition

Let E be a graph and H <E°.

e If ve H and we E° such that v > w requires we H,then H is said to be
inherited.

e If r(s!(v)) € H with ve Reg(E) such that vé H then H is called saturated.

3.2.2.7. Definition

Let E be any graph and XSE°. The smallest heritable-saturated subset of E°
containing the set X is called the hereditary-saturated closure of X and is denoted by

X.

3.2.2.8. Lemma

[1] For a graph E, the hereditary-saturated closure of X, with X cE°, is X =
Uneo An(X) where

o A(X)=T(X)={veE’x>v, 3x € X} and
o A(X)=T(X)={ye E% 0 <|s ()| <oo, r(s™ ()| € 4n 1 (X)} U 4n 1
(X),n>1.

Proof. It is clear that any heritable-saturated subset of set E° containing X also
contains the set ), Xn . Also, since every X, set is inherited, the set Y,,5, Xn is also
inherited. Now we need to prove that ).,,5, Xn is saturated. Let ve Reg(E) be a vertex
so that r(s(v)) € X,.50 Xn. Since Xn € Xn+1 and r(s*(v)) is finite, there is N € N, so

r(s(v)) € Xn. Therefore, v € Xn+1 as desired.
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PART 4

INVERSE SEMIGROUPS

In this chapter, we focused on studying on inverse semigroups. This subject was
firstly introduced by Wagner in 1952 [3] and independently by Preston in 1954 [4].
In the following years, numerous studies on this subject continued. For more details
on inverse semigroups, we refer readers to see [5, 6, 7]. The aim of this chapter is to
give properties of inverse semigroups and study on its ideals. The main reference for
this chapter is [2].

4.1. PARTIAL BIJECTIONS

Let A and B be two sets, and f a function from A to B. If f is defined from a subset
of A to a subset of B, then f is called partial function. The subset of A consisting of
all elements a € A is called as a domain of f and denoted by domf. imf = f(domf)

is a image of f which is also a subset of B.

Let A and B be two sets. 0z, is a unique empty partial function defined from A to B.

Empty function refers to any partial function of this type.

1y is an identity function on X CA. It is also a partial function from A to A. These
partial functions are called partial identites. d(f) is the partial identity function on
domf and r(f). is the partial identity function on imf. The identity function 1a on A
and the identity function 1, on the empty subset of A that is the empty function from

A to itself. To shortly, we define these functions by 1 and O respectively.
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4.1.1. Definition

Let g be a partial function defined from A to B and f a partial function defined from
B to C, their composite is also a partial function from A to C and denoted by fog,
where the domain of fog is dom(fog) = g' (domf N img) and if a € dom (f o Q)
then (f o g) (a) = f(g(a)). The image of fog is denoted by f (domfN img). If domf
and img have empty intersection, then fog is the empty function. Also, may we

generally write be fg as short for fog.

4.1.2. Definition

If f is a partial bijection from A to B, the empty functions and all partial identities
are partial bijections. Then the inverse of f is the partial bijection from B to A,
denoted by f ~ '. Thus, the domain of f ™ is imf and be the image is domf. The
formation of partial bijections is also a partial bijection.

4.1.3. Proposition

Let A, B and C be sets, and f: A — B a partial bijection. Then we have the
followings:

(i) ff "=14oms IS a partial identity on A, and ff ~'=1;n¢ is a partial identity
on B.

(ii) Let g:B—A be a partial bijection, then one gets g=f ™' if and only if
f=fef and g=gfg.

@iy (fH=/
(iv)  For all partial identities 1, and 1y, we have 141,=144y = 1,15 Where
X, Y CA

(v) For any partial bijection g: B—C, we have (gf)'=f"g.
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Proof:

(i)

(i)

(iii)

(iv)

v)

4.1.4. Note

Since x € domf, we have x € dom(f 7). So, one gets that domain of f is
the same as f7'f. However, f7'f is the identity function on its domain.
Thus, 7' f= 1qomy-

By the hypothesis we have g: B—A. Also let f=fgf and g = gfg, ye
domg and x = g(y). So, x =(gfg)(y) thus x = g(f(x)). Since g is a
partial bijection, g=f™'. Let y € dom(f ™) and x=f "!(y) so f(x)=y and if
we substitute in the equation (i), we have (fgf)(x) = y this means that
f(g(f(x))=y thus f(g(y))=y. Now let x=g(y), thus f(x)=y then f is a partial
bijection which gives that f "'€g. So gSf ' = f "'€g. Hence f "'=g as
desired.

We have f =fgf and g=f" so f=fgf. Thus, f"'=(fgf)"'= f "'g "'f "'=(f
T'g T)f T =(f T'g 7g. So one gets that (f 7)'=((f 'g ")) '=g 'gf =f as
desired.

Since 1,1,=1xny=1ynX, xNy=ynx. Let a € dom(1,1,) then
(1x1y)(a)=1x(ly (a))=a. Hence 1,1, and 1,1, are a partial identities,
therefore dom(1,1,)= x Ny and dom(1,/1,)= y N x this means that 1,1,,
=1Xny = 1lynX.

Since partial identities commute, we have

gf(f'g ef=g(ff g ') f=eg ') (ff )f=¢f.
Moreover, (f'g™)gf (f'g™) =/"'g ' implies (gf)"' =f"g "

Each element in a semigroup equal to its square is called an idempotent.

4.2. INVERSE SEMIGROUPS

The inverse semigroup S is defined by Wagner and Preston by the followings:
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I. S is regular i.e., for each element x € S there is another element y, called an
inverse of x, such that x = xyx and y =yxy.
ii. The idempotents elements of the S commute.

4.2.1. Proposition

A regular semigruop is inverse if and only if its idempotetns commute.

Proof Let S be a regular semigroup and its idempotents commute and u and v inverse
of x. Then we have u = uxu = u(xvx)u = (ux)(vx)u, v = vxv and u =uxu. Since ux and
vx are idempotents and commute, one gets u = (vXx)(ux)u =v(Xux)u= vxu = (VXV)Xu =
v(xv)(xu). Since ux and vx are idempotents commute, we have that u = v(xu)(xv) =
v(xux)v = vxv = v.This means u = V. For the converse, it is easy to see that the result
multiplication of two idempotents f, ¢ has an idempotent inverse in a regular
semigroup. Because, let x = (ef)’ is inverse for ef. Thus, the element fxe is an

idempotent inverse of ef.

First, suppose that S is a semigroup, and each element has a single inverse. Secondly,
we must prove that any two idempotents elements have a fixed inverse. Such as ef =
fe. From the above we have f(ef)'e is a fixed inverse of ef. Through the uniqueness
of inverses, we find (ef)’ = f(ef)'e is idempotent element, all idempotent elements
are self-inverse. We also find that the inverse of ef is (ef)’. Through, the uniqueness
of inverses, we find ef = (ef)’. This means that ef is idempotent. Since the
multiplication operation commutative, ef(fe)ef = (ef)(ef) = ef, and fe(ef)fe = fe. It
results that fe idempotent. This means that fe and ef, they are inverses for ef. Thus

ef = fe.

In an inverse semigroups, if any element se S,then there is another single element

s'e S, where s'=s"'ss ' and s =s s”'s is called the a inverse of S and defined by s™.
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4.3. ORDERED GROUPOIDS

Let g be a partial function from A to B and f a partial function from B to C. We say
that f. g is bound product of f, g, if and only if dom f= im g and is denoted by f- g
=f g. The bound product f. g is fully defined if d (f) =r (g).

If f and g are partial functions defined from A to B, then domf Sdomg and f(x) =

g(x) for every x € dom f, then is f € thus f is a restriction of g.

4.3.1. Proposition

Let A, B and C be sets and f, g: A—B partial bijections, then

(1) If f Sgthen f 'Cg™.
(ii) Let p, q: B—C be partial bijections. If f ©g and p Sq, then pf €qg.
(ili) f <g precisely if there exists a partial identity In € I(A) such that f = g In.

Proof:

(i) Let f, g A—>B, and f Sg i.e., dom f Sdom g also im(f™') = dom(f) and
dom(f™) = imf. So f Sg, dom f< domg, im(f™) = domf< domg=im(g™).
This means that im(f™') =im(g'). Hence f 'Cg".

(if) Let p, q: B—C. and pf Sqg i.e., dom pf Sdom qg also im(p~'f ™) =dom(pf)
and dom(p~'f™") =im pf. So pf €qg, dom pf< dom qg, im(p'f™") =dom pf <
dom qg =im(q'g™"). This means that im(p'f™') = im(q'g"). Hence p'f
Eqigt

(iii) Let f € gand Let In = f 7'f where N = dom f thus f ©g In, f Sdom(g In). Let
x edom(g In). Then In (X) is defined as X edomf. Thus domf = dom(g In).
Hence f=g In.

Conversely, assume that f =g In for a partial identity In. Let x€dom(f), then f(x) and
so (g In)(x) are defined. Moreover X edom(f ). Thus domf Sdom g. But we have
that (g In)(x)= g(x). Thus f =g.
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If f is a partial function from A to B and X € dom f. We say that (f | X) is a new
partial function the restriction of f to X, there is also the partial function, from A to B
be dom (f | X) = X such as (f | X) (x) = f(x)for each x €X. If Y is a subset of imf.
We say that (Y | f), the corestriction of f to Y, to be the partial function from Ato Y
with dom (Y | f) = f7'(Y) such as (Y | f) (x) = f(x)for each x € dom (Y | f).

4.3.2. Proposition

Let f,g € I(X) and B=domfN img. Then fg=(f | B) - (B | g).

Proof.

By the definition, dom ((f | B) - (B | g)) =dom ((B | g)), and dom ((B | g)) =g ™ (B)
=g (dom fN im g). Hence dom ((f | B) - (B | g)) = dom(fg).

4.4. INVERSES PROPERTIES
4.4.1. Proposition
Let S be an inverse semigroup, then we have the followings:
(i) Foreverys € S, both ss' and s ~'s are idempotents and (ss™") s = s and s(s™'s)
=s.
(i) (s )'=sforeverys e S.
(iii) For every idempotente in Sand any s € S, s “'e s is idempotent.
(iv) For every e”'= e. If and only if e be idempotent in S.
(V) (si...sn)t=sn!...si"tforeachsi,....sn € Sifn>2.

Proof.

(i) Lets=ss's,s'=s"'ss . Then we have (s"'s)>=s"(ss's)=s'sand (s s7!)?

=s(s'ss')=ss'. Hence s 's and ss™' are idempotents.
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(i) We have that s =s™'x s™! and x = x 57X, let e =s s™!, then by the uniqueness
of inverses result follows.

(iii) Let (s'e s)> =s 'e s s''e s. Since e and s are idempotents commute, So we
haves 'ess’es=(s'ss ')e(es)=s"es,as desired.

(iv) Let e be an idempotent, so (e!)>=¢™' e ' = ¢, this means that e =e¢.

(v) When n =2, we find (s1 s2)! =s27's1"! ; 81,52 € S. when n > 2 This case is a
generalization of the two cases (i) - (ii) and prove holds by the induction
method. We'll writed (s) =s™'s,r(s) =ss .

By the above, we find deduce the characteristics:

(1) (s =sforall seS.
() (st)y'=t's'foralls, teS.

4.4.2. Proposition

Let S be an inverse semigroup. Then we have

(i) For any idempotent e and s, there is an idempotent f such as, es = Sf.

(i) For any idempotent e and s, there is an idempotent f such as, se = fs.

Proof.

(1) Let f=s" es be an idempotent, then sf=s(s'es) = (ss™') es = e(ss ') s = es.

(i1) Let f=s™" es be an idempotent, then fs= (s'es) s =(s"'s) es = (s s' s) € =se.
4.4.3. Proposition
Let A be a non-empty subset of S, the product of the intersection of all the inverse

subsets of S that contain A is called an inverse subset of S. It consists carefully of all

products of elements drawn from the set A UA™.
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4.4.4. Proposition

Groups are exactly the inverse semigroups with precisely one idempotent.

Proof.

Let S be an inverse semigroup with precisely one idempotent, say e. Thens™'s=e =5
s' foreachs € S. Butes = (s s™') s=s=s (s 7's) = se, and so e is the identity of S.

Hence S is a group.

Suppose S is an inverse semigroup and has an identity we say that S is an inverse
monoid for example an element; e and symbolize it S'. If S has a zero element, then
S is an inverse semigroup with zero and denoted by S°. Each inverse semigroup can
be converted to an inverse monoid or inverse semigroup with zero through aligning

zero or adjoining an identity by the following way.

4.4.5. Example

Let S is a semigroup. We define a monoid S in the following. If S is inverse, then S
is an inverse monoid S'. If S is a monoid, then S! = S. If S isn't a monoid, then S'= S
U {1} also with the multiplication in S extended to S' by defining 1s = s1=s for each

s€ Sand 1.1 =1. Then S'is a monoid.

4.4.6. Example

Let S is a semigroup. We define a zero monoid S° in the following. if S is inverse
then S° is an inverse zero S°. If S is a zero monoid, then S°= S. If S isn't a zero, then

S°= S U {1} also with the multiplication in S extended to S° by defining Os = s0= s

foreach s € S and 0.0 = 0. Then S° is a zero.
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4.5. IDEALS

Suppose X and Y are two subgroups of a semigroup S. Where X ={x} and Y = {y},
their product XY is a subset of the product of X elements with Y elements, denoted
by XY instead of {x}Y and the same for the other set Xy by X {y}.

Suppose S is a semigroup, a subset A of S, If sa e Awherea eA and s € S are called
left ideals, and if as € A are called right ideals, where a €A and s € S. Each of the
subsets representing left and right ideals is called ideals, then is considered the result
of the intersection of any empty set of right ideals is a right ideal and similarly for the
left ideals (left ideal). We say about the left ideal that contains s the basic left ideal, if
there is a smaller left ideal that contains s where s € S. And the same for the right

ideal.

Suppose S is arbitrary group. We say about the basic left ideal that contains s is a
generator of this ideal, and defined by the S's.Likewise, we say about the basic right

ideal that contains s is a generator of this ideal and defined by the s S*.

Suppose S is a semigroup, if s = (ss™!)s = s(s's), where se sS and se Ss. then We
say about the right ideal that contains s is called the basic right ideal and symbolizes
by sS. We say about the left ideal that contains s is called the basic left ideal and
symbolizes by Ss. And we say both basic right ideal and basic left ideal is called the

basic two-sided ideal and symbolizes by SsS.

Suppose A is a group, for every ae A, then aA = Aa = A. We note that ideals have
no influence in group theory, on the contrary, in inverse semigroup theory they have
a very important role.

4.5.1. Proposition

Let S is an inverse semigroup. Then
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(i) if aS = aa™'S for each aeS, there exists aa™! is the only idempotent generator
for aS.

(if) if Sa = Sa™a for each a€S, there exists a™'a is the only idempotent generator
for Sa.

(iii) for e and f are idempotents, so eS NfS = efS.

(iv) for e and f are idempotents, so Se N Sf = Sef.

Proof.

(i) We have that aS = aa™'aS= (aa™) aS C (aa™) S € aS, so aS =aa "'S. Now let e
any idempotent like that aS =eS, this means that aS = aa™'S=es, so aa™'=es and
e =aa't fors, t €S. Since aa! and e idempotents commute, eaa '= aa"' and
aa'e =e. Hence aa™! =e, so aS =aa™'S.

(i) We have that Sa = Saa™'a= Sa(a™'a) SS(a™'a) € Sa, so Sa =Sa "'a. Now let e
be any idempotent such that Sa =Se, this means Sa = Sa™'a=se. Thus a'a=se
and e = a'a t for s,t €S. Since a'a and e idempotents commute, ea 'a= a”'a
and a 'ae =e. Hence a 'a=e¢, so Sa= Sa'a.

(iii) Suppose that aceS Nf S, then ea = a and fa = a. Thus (ef)a = e(fa) =ea = a,
and so aeefS. To prove the Converse, if acefS then ea = a and fa = a since
and f are idempotents commute. So, aceS NfS, Thus, eS NfS = efS.

(iv) Let acSe NS/, then ae = a and af = a. Thus a(ef) = (af)e =ae = a, and so
aeSef. Conversely, if acSef then ae = a and af = a since e and f are

idempotents commute. So, acSe NSf, Thus, Se N Sf = Sef.

4.6. THE NATURAL PARTIAL ORDER

The symmetric inverse monoid is ordered by the restriction order. One can define a

relation < for some idempotent e for all inverse semigroup S, in the following way:

s<t«<>Ss=te.
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4.6.1. Proposition

Suppose S is an inverse semigroup. Then the followings hold:

(i) s<t

(if) s = ft for some idempotent f.
(iii) s' <t 7.

(iv) s=ss't.

(V) s=tsts.

Proof.

(1) Suppose s = te, then s = ft. Let f = t'et be an idempotent, then S=(t""e t)t=(t
t 1) (te) =(t t 't)e=te. Thus s=te and s= fe and so S <.

(i1) Suppose s =ft for idempotent f. Thus, s'=t™" f 7!, by definition 3.6. We find
that s™'<t™".

(iii) Suppose s™' < t™! for some idempotent e. Then s =t"'e. But s = et, es = s and
soess'=ss ' Thuss=ss"t.

(iv) Suppose s =ss™! t for some idempotent e. Then s=te . But se= s and
s 'se=s”'s. Thus s = ss™'t.

(v) It holds by (iv).

Suppose (K, <) is a partiallly ordered set. So, we have a subset H of K be an order
ideal if d < z € H denotes that d € H. The principal order ideal of K containing d is
the set [d] = {z € K: z < d} Moreover, if M is any subset of K then [M] = {z € K: z

< a for some a € M}. The order ideal is generated by M.

4.6.2. Proposition

Let S be an inverse semigroup. Then

(i) The relation < is a partial order on S.

(i) For idempotents e, f € Swehavee <fif andonlyife=e¢ f=fe.
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(ii1) If s<tand x <y, then sx <ty.
(iv) If s<t,thenss™' <tt'and s's <t't.

(v) E(S) is an order ideal of S.

Proof.

(i) We have that s = s(s™'s), this means that the relationship is reflexive. Also
suppose that s <t and t <s. Thus s = ts"'s and t = st™'t. It means that s =ts™'s =
st "'ts "'s = st "'t = t, so that a relation is antisymmetric. Let s <tand t<Vv, S0 S
=te and t = vf for some idempotetns e, f. Thus s = te =(Vf)e = v(fe). This
means that s <V.

(if) Let e <f. So, e =fi. For idempotent i, fe = e and thus the e = fe = ef. To
prove the opposite, suppose S be an inverse semigrup and e, f€S, thene < f
ana thus that e, f idempotents.

(ii1) Assume that s <t and x < oy. For some idempotents e, f. Like that s = te and
X = yf. Thus sx = teyf. By the Proposition 3.4.2, we have ey = yi for some
idempotent i. Hence sx = ty(if), and so sx < ty.

(iv) By Proposition 3.6.1. Let s <t, then s7'=t"'f. If s7'<t™!, then s7!'s=t"'tf. I[f s7's <
t't. We also have ss™' =f t t* for idempotent f. So ss™'=tt™'f. Thus, by the
definition ss™' <tt™'. Hence s 's <t 't and ss™' < tt™".

(V) E(S) is closed under multiplication. By the definition of the natural partial

order, E(S) is called the natural partial order on S.

Suppose S is a semigroup and < partial order defined in S. If for each x, y, zand d S.
So, we have x <y and z < d which means that xz < yd. We say S be compatible with
multiplication and partially ordered by <. Note that if G is an inverse subset of S, the
natural partial order is defined on G agrees with the restriction on G for the natural
partial order on S.

suppose (K, <) be positive. We say k be the lower bound of a and b if k < v,u.We
say k be the greatest lower bound if k is the largest lower bound and denoted by v A
u. In a poset, if every pair of elements has a greatest lower bound, then it is called

meet semilattice.
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4.6.3. Proposition

Let S be any semigroup. A relation < on E(S) defined by
e<fee=cf = fe.
Thus, < s a partial order on E(S). Moreover, if S is an inverse semigroup, then (E(S),

<) is a meet semilattice.

Proof.

(1) Reflexivity: suppose ecE(S), thus e < e since e is idempotent.

(i1) Antisymmetric: Lete < fand f <e. Thene=c¢f = feand f = fe =¢f. Thus e
= f.

(ii1) Transitivity: Lete < fand f <g. Thene =ef = fe and f = fg = gf. This leads
e=cf = fe,e =ef = e(fg) = (ef)g = cg. Also, f = fg=gf, e= fe=(fg)e =
ge. It is produced from both e =ge =eg. Thus e < g. Now let S is an inverse
semigroup. Let e, f €E(S). Then (ef)e = (fe)e = fe. This leads to ef <e. Also
(ef)f = (fe)f =ef = f(ef)= fe. This leads to Thus ef <f. Also, suppose i <e,
f. Theni(ef) =(ie)f =if asi<e,and if =1asi< f. So, 1 < ef. this results in

e A f =ef. This means that (E(S), <) is a meet semilattice.

4.6.4. Proposition

All meet semilattices are inverse semigroups, and also an inverse in which every

element is an idempotent is a meet semilattice.

Proof.

Suppose (G, <) be a meet semilattice. So, one gets e = e A e for all element ee G.
This means that (G, A) be an inverse semigroup where any element is idempotent. To
prove the converse clear by Proposition 3.6.3. Suppose S is semigroup and define a

relation < on G by

e<feoe=ef = fe
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Now suppose i <e, f. Thus, i(ef) = (ie)f =ifasi<e,and if =iasi<f.So,i<ef.

this results in e A f = ef. This means that (G, <) is a meet semilattice.

4.6.5. Proposition

An inverse semigroup is a group if and only if natural partial order is the equality

relation.

Proof.

Let the natural partial order is the equality relation. And the natural partial order has
two idempotents e, f then ef < e, f. So, e = f. We know S has single only
idempotent. This means S an inverse semigroup. The converse is immediate by
Proposition 3.4.4. Let S be an inverse semigroup, and it S has completely one
idempotent, so s's =e =ss™! for seS but es = (ss™!) s =ss7!s = s= 5(5's) =se. Thus, e is
the identiity of S. Hence S is group.

4.7. THE COMPATIBILITY RELATIONS

If f, g € I(X), then f U g is a partial function accurately, then f g is an idempotent
and if f U g is a partial bijection accurately, then f g ' and f ~'g are idempotents. For
S, t € S, the left compatibility relation is

s~1 te st e E(9),

the right compatibility relation is

s~tostte E(S),

and intersection of these two relations is

s~t— st s'teE(S).
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All previous relations are symmetric, reflexive and but that any of them have don't to

be transitive.

4.7.1. Proposition

Let S be an inverse semigroup and s, t € S. Then

(i) s~t t if and only if the greatest lower bound s A t of s, t exists and (s A t)"!(s A

t)=s 'st't.

(if) s ~ t if and only if the greatest lower bound s A t of s, t exists and (s A

t)(sAt) '=ss 't

(iii) s ~ t if and only if the greatest lower bound s A t of's, t exists and

(sAt)(sAt)y'=ss'tt Tand (s At) (s At)=s 'st 't

Proof.

(i)

(i)

Let s~ tand say x = st 't, then x < s and x <t since st ! is idempotent. Now
let y <s, t, then y <s and y <t, so we have y "'y <t 't which implies that y <
st't=x. Thus, x =s A t. Also x7'x = (st™'t)"'( st™'t) = (t'ts™!)( st™'t) = s7'st7't.
Conversely, suppose that s A t exists and (s A t)'(s A t) =s "'st 't. Put x =s A t.
Then x =sx'x and x = tx"'x. Thus, sx™'x = tx'x, and so st™'t = ts"'s. Thus, st™!
= ts 'st™! which is idempotent. This means that, s~1 t.

Let s~ tand say a = ss™'t, then a < s and a < t since s™'t is idempotent. Now let
b <s, t, then b <s and b <t so that bb ™! <tt ! and this implies that b < ss™'t =
a. Hencea=s At Alsoaa™ = (ss7't)(ss't ) =(ss't)( t7'ss!) =ss 't

On the other hand, suppose that s A t exists and (s A t) (s A t)™' =s st "'t. Put a
=s A t. Then a = saa™ and a = taa™. Thus saa™ = taa™' , and so stt™ = tss™.

Hence st™ = tss™!'t™! = ss”!tt™! it is idempotent. Then s~ t.

(iii) 1t follows by (i) and (ii).
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4.7.2. Proposition

Let S be an inverse semigroup. Then

(i) If s~t t, then we have s At=st 't =ts 't =ts 's =st’'s.
(i) If s~ t, then we have s A t=ss 't =st 's=tt 's =ts't.

(iii) If s~ t, then we have s At=st 't =ts 't =ts 's =st 's=ss 't =tt''s.

Proof.

(i) Let x=st ™t then x <sand x <t since st ! is idempotent. Now let y <s, t,
then y <s and y <t, so we have y "'y <t "'t and this implies that y < st™'t = x.
Hence s At=x =st 't and one gets st ' = (st )™! = ts”". Hence, st ™! t= ts™'t.
Through the symmetry also, we have s At=ts"'sand s At=st's.

(if) Leta=ss"'t, then a<sand a <t since s't is idempotent. Now let b <s, t, then
b<sandb<t Thenbb ' <tt"andsob<ss't=a. Hences At=a=ss"'t
and we have s™'t = (s7't)"' = s t"'. Thus, ss™'t = tt™'s. By the symmetry we also
haves At=st'sand s At=ts't.

(iii) 1t follows by (i) and (ii).

4.7.3. Proposition

Suppose k be one cither of the three cases ~1, ~, and ~. Then the following two

properties are preserved:

(i) sktand x ky imply that sx k ty.
(1) s<t,x<yandtkyimply that s k x.

Proof.

We shall prove the results for k = ~ 1.
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(i) Lets~ittand x ~t y. Thenst™, xy'e E(S). Since xy™ is idempotent, sx(ty)™
=s(xy ")t <st . Hence sx(ty)™ is idempotent and so S X ~t ty. Lets ~. t and
X ~ Y, then s7't, x'y € E(S). But (sx)™' ty = s (X'y) t < s7't since x'y is
idempotent. Hence (sx)7'ty is an idempotent, and so sx ~; ty. By the two
previous relations, we find sx ~ ty.

(i) Lets<tand x <y and t ~ty, then sx' <ty 'e E(S). Thus,s~1y.Lets<t
and x <y and t ~ y and so s'x < t''y €E(S). Hence s ~, y. By the two

previous relations, we have s ~ .

4.7.4. Definition

Let S an inverse semigroup and X subset of S, we say X is compatible if any pair of

elements in X are compatible.

4.7.5. Proposition

Let S be an inverse semigroup and s, t € S. Then

(i) Ifs~1tand s's <t'tthen s <t.
(if) If s~ tand ss™! <tt"'then s <t.

(iii) [s] is a compatible subset of S.

Proof.

(1) Since s7's < t''t, s < st”'t. Where st™! is an idempotent and thus (st™') t <t. Then
s<t.

(1)) We have ss™' < tt! this means that s < tt''s and so s < st™'t. Where st is
idempotent and thus (st™') t<t. Then s <t.

(ili) We say [s] is compatible if any pair of elements in [s] are compatible.
Suppose s <t and u < v and s ~1 t. And therefore, su™ < tv''e E(S). This

means that [s] is compatible.
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4.7.6. Definition

Let S an inverse semigroup. If s™'t = 0 = st™!, we say s, t €S are orthogonal and

denoted by s L t.

4.8. MEETS AND JOINS

4.8.1. Proposition

Let S be an inverse semigroup and X a non-empty set of idempotents. Then

(i) If A X found, this means idempotent.

(i) If v X found, this means idempotent.

Proof.

(i) Since idempotents form an order ideal, prove holds.

(i) Let x = v X, then e < x for each e X. Thus e < x"'x for each eeX.

Hence x < x 7'x, so that x is idempotent.

4.8.2. Note

Let S be an inverse semigroup, for any non-empty subset of S it is possible have a

meet, otherwise of joins.

4.8.3. Proposition

Let S be an inverse semigroup and let X be a non-empty subset of S such that v X

exists. So, any two elements of X are compatible.
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Proof.

Let x, y € X. By the definition, we have x,y <V X. Thus x ~y by Proposition 3.7.4.

4.8.4. Definition

An inverse semigroup is complete if every non-empty compatible subset has a join.

4.8.5. Proposition

Let S be an inverse semigroup and let X = {x;: ie I} be any non-empty subset of S.

Then

(i) If v xi exists, then v xi"Ixi exists and (V xi) 2 (V i) =V xix;

(i) If v x; exists, then v xi xit exists and (V xi) (V xi) 7 =vxixi !

Proof.

(i) Letx =V x;.Thenx; <x implies xi 'xi < x ~'x. Thus, the set {xi"'xi: i € I} is
bounded above by x 'x. Now let that x;'x; <y for some ye S and for each i
I. So, xi <xjy <xy foralli e I. Thus x = V xi < xy. But then x = (xx™") xy =
Xy, so that x'x = x 'xy. Hence x'x <. It follows that V X; 'xi = x"'x.

(if) Let x =V x;, then x; < x implies x; Xi ' < x x'. Thus, the set {xj Xi ':i € I} is
bounded above by x x™. Now let that x; X;"'< y for some ye S and for each i
e |.So, Xi <xjy <xy forall i € I. Thus X = V X; < xy. But then x = (X"'X)xy =

Xy, so that x x ' =x x'y. Hence x x™' <y. It follows that V X Xi ' =x x"".

4.8.6. Proposition

Let S be an inverse semigroup and let X = {x;: i € I} a non-empty subset of S and s

e S.
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Then

(i) If x =Vv xjand xi Xi"! <s's for each ie | then Vv sx; exists and sx = V sX;.

(i) If x = v xj and xi 'xi < ss™! for each i€ | then V X;s exists and xs = V X;s.

Proof.

(i) Since xi <x for each ie I, we have sx; < sx for each ie I. Thus the set {sxi:ie
I} is bounded above by sx. Now let that sxi <y for some y € S and for each i
el. Then s7'sxj < s'y and so Xj < s 'y since xiXi ' <s's. Thus x <s™' y and so
sx <ss 'y <y. It follows that V sx; = sX.

(if) Since x; < x for each ie |, we have Xis < xs for each ie |. Thus, the set {X;s:
ie I} is bounded above by xs. Now let that xis™ <y for some y € S and for
each i €l. Then sxis™ < sy and so xj < sy since xi 'xi < ss"'. Thus x < sy and so

s 'x <ss'y <s'y. It follows that V Xis = Xs.

4.8.7. Proposition

Let S be an inverse semigroup and let X = {x;: i € 1} a non-empty subset of S and s
e S.

Then

(i) If x = A x; exists, then A sx; exists and A sx; = SX.

(11) If x = A xj exists, then A Xis exists and A XjS = XS.

Proof.

(i) By the definition, x <x;j for each i l, and thus sx < sx; for each i e I. So the
set {sxi: ie I}, it is bounded from below by sx. Also, suppose that y < sx; for

some y € S and for each i € I. Then sy < s™' sxj < X;, thus that sy < x.

36



Hence ss™'y < sx. Now y < sxj and S0 yy™! < (SXi)(sXi)™' = sxiXi 's™' < ss™..
Thus, ss™'y =y, and so y < sx. It follows that A SX; = SX.

(if) By the definition, x < x; for each i 1, and thus xs < x;s for each i € I. So, the
set {xis: ie 1}, it is bounded from below by xs. Also, suppose that y < xis for
somey €S and for each i € I. Then ys™ < xiss™' < X, thus that ys™ < x. Hence
ys's <xs. Now y < xis and so y 'y < (sxi)'(sxi) = s"'xi 'xis < s”'s. Thus, s™'sy

=y, and so y < xs. It follows that A X;s = Xs.

4.8.8. Definition

Let S be an inverse semigroup and A is a non-empty subset of S. If A has v A, then v
sA is present s(VA) = v sA for every element s € S, then S is called be left infinitely
distributive. The infinitely distributed left and right a semigroup are called infinitely
distributed.

4.9. HOMOMORPHISMS
Homomorphisms between inverse semigroups are just semigroup homomorphisms.
If (A, <) and (A', <) are possets, then a function 6: A — A' is called order-preserving
if x <y so that 6(x) < 6(y).
4.9.1. Proposition
Let 0: S — T be a homomorphism between two inverse semigroups S and T.
Then
(1) 0(s™")=06(s) " forall s € S.
(i1) If e is an idempotent element, then 0(e) is idempotent.
(111) If B(s) 1s an idempotent element, then there exists an idempotent e in S such

that 6(s)= 0(e).

(iv) Im0 is an inverse subsemigroup of T.
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(v) If U is an inverse subsemigroup of T, then 67(U) is an inverse subsemigroup
of S.

(vi) The function 0 is order- preserving.

(vii) Let X, y € S such that 0(x) < 6(y). Then there exists an element x' € S such
that x' <y and 6(x") = 0(x).

Proof.

(i) We have 0(s)0(s )0(s) = 0(s) and 0(s )B(s)0(s ') = 6(s 7'). Thus by
uniqueness of inverses we have that 6(s ') = 6(s) ™.

(i) 0(e)? = 0 (e)0(e) = O(e).

(iii) If 0(s)? = 0(s), then O(s ~'s) = (s 7)0(s) = 0(s) ~'0(s) = 0(s)? = O(s).

(iv) Since 6 is a semigroup homomorphism, im0 is a subsemigroup of T. By (i),
im0 is closed under inverses.

(v) Itis clear, immediately.

(vi) Suppose that x <y. Then x = ye for some idempotent e. Then 6(x) = 6(y)0(e)
and 0(e) is idempotent. Hence 0(x) < 6(y).

(vii) let x" = yx™'x. Then x' <y, and 6(x") = 0(y)0(x"'x) = 0(x).

Let 8: S — A be covering homomorphism; we call that S is a covering of A.

Let 0: B — A be a perfect homomorphism, and B is an inverse subset of S, we call
that A divides S. For there to be a monoid homomorphism, a homomorphism
between monoids is necessary to preserve identities. Same a way, if zero semigroups
are to have homomorphism, a homomorphism between zero semigroups is required
to preserve the zeros. The similarity from an inverse semigroup S to a symmetric
inverse monoid is called the representation of S by partial bisection. And if A

homomorphism is injective, then the representation is called safe.

The homomorphism ¢: S — T between inverse semigroups means that for each
subset A € S in which V A exists, V ¢(A) in T and ¢ (V A) = V(¢(A)) cases it is said
to preserve the concatenation. For each subset A © S such as A A exists,

homomorphism is said to be conserving if T has A ¢(A) and ¢ (A A) = A(G6(A)).
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PART 5

THE RELATIONSHIP BETWEEN INVERSEMIGROUPS AND THE
LEAVITT PATH ALGEBRA

In this proposal we study formal presentation of inverse semigroups built from
directed graphs. Thus, this study is referred as Leavitt inverse semigroups. In this
chapter, we explain the structure of the Leavitt inverse semigroup, these semigroups
are strongly related with the graph inverse semigroups and Leavitt path algebras. We
also introduce a class for the Leavitt inverse semigroup of a graph. We refer to LI(E)
as a multiplicative subsemigroup of Lg(E) produced by E°U E'U(EY)*. The main

reference for this chapter is [8].

5.1. THEOREM

If p is a directed path in E and v € E°, then the following elements are basis for
Leavitt path algebra L (E):

v, p.p,
(ii) pg* where p =e1...en, q=f1...fm, &i, fj EEL, r(en) = r(fm), and either e, # fm or en=fm

but this edge en=fm is not special.
5.2. THEOREM
Let E graph, LI(E)is an inverse semi-group. If LI(E) =L(E), then.
(i) pg* where p =e1...en, g=f1...fm are (maybe empty) directed paths with r(en) =
r(fm) and en#fm.

(ii) pg* = p'ee*q™ where p'and g’ are (maybe empty) directed paths with r(p") =r(q’)

and the vertex s(e) =r(p') =r(q’) has out-degree > 2.
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5.3. DEFINITION

Let p =eie2...en be a directed path in a graph E. If at least one of the s(ei) has out-
degree greater than 1, then p exits. Particularly, an edge e € Elexits if and only if s(e)
has out-degree greater than 1. Also, the directed path p =esex...en has no exits (NE) if
every vertex s(ei), 1 =1, ..., n has out-degree 1. Moreover, the empty path is defined at

any vertex v to be an NE path.

5.4. THEOREM

For any graph E, the elements of the non-zero idempotents of LI(E) are defined by
pp*. Moreover pp* = qqg* in LI(E) if and only if either g = pp1 for NE path p1 or p =
qo: for NE path g:. Especially, pp*= v in LI(E)for some v € E° if and only if v = s(p)
and p is an NE path.

5.5. THEOREM

Let E graph, the congruence «is the nucleus of the natural homomorphism that is
LI(E) = I(E)/«.

Proof.

We have that the nucleus of the natural homomorphism from I(E) to LI(E)is the
congruence p defined a relation by {(ee*, s(e)):s(e)has out-degree 1in E°}.Let e be an
edge of E, s(e) has out-degreel.Then s(e) p ee*. Let 0<x<s(e) in I(E). Then x =pp* for
some directed path p with s(p) =s(e). As for p =s(e)or p =eq for directed path q with
s(@) =r(e). It is clear that s(e)!N(eer)'#{0}.Also, if p =eq, we have
(pp*)'={eqttrgre*:s(t) =r(g)}.so (pp*)*N(ee*)!={0}.Thus s(e) —ee*. Also, since
ee*<s(e), ee*—s(e). Thus, s(e) «»ee*and so p S«. p1g1*, P202*, are non-zero elements
of I(E) so pigi*<> p202*. Then (p1a1*)*N( p2027)'#{0}, so there exists paths t1,t2 such
that paititi*gi*= patato*ge*. As for ps is a pseudo of p2 or p2 is a pseudo of p:. Let d is an
NE path, po=p1d for some path d=eze...en. If not, then 1 <i <n such that s(ej)has out-

degree > 2, and so there is some edge f with f'#ej and s(f) =s(ei). Let di=e;...ei1and
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d2=ei...en. Then (pidiffrdigi*)*N(p2027)'#{0}.Hence there exist pathsts,tasuchthat
p1diftst sf+diqi*=potata*qo*= p1didotata*q2*. This implies that dota=f t3. However, this is
not possible because the first edge of ds is ej #f. Therefore, d is an NE path. One gets
pititsa*qur= potota*go*= p1rdizta*g2*, so ti=dt> and hence poto= piti= gidtz. This means that
g2= g1d. So p2= p1d and g2= g1d for some NE path d. Thus, (p101*) p (p202*). Hence

—Cp. So, the «> and p coincide.

5.6. NOTE

A graph E receives a directed immersion into a circle R1if and only if all the vertices

have out-degree < 1.

5.7. DEFINITION

Let X be a set and G a group, then the Brandt semigroup, denoted Bx(G), is a

semigroup and defined as

BX(G) = {(xll gl yl): X1, Y1 € Xv g € G} U {0}
with multiplication (x4, g, v1) (x2, h, y5) = (x4, gh, y,) if y; = x, and 0 otherwise.

5.8. THEOREM

Let E be a connected graph which immerse into a circle, then the followings are
hold:

(i) IfEisatree, then LI(E) = Byo (1), the combinatrorial |E°|x| E?| is a Brandt
semigroup.
(i) If E is not a tree, then LI(E) = Byo (Z), the |E°|x| E°| is a Brandt semigroup

with maximal subgroups isomorphic to Z.
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5.9. THEOREM

Let E and A be two connected graphs which immerse into a circle and F a field. Then

the followings are equivalent.
(1) LI(E) is isomorphic to LI(A);
(i) Lr(E) is isomorphic to Lr(A);

(iii)  |E°| =|A%and either E and A are both trees or m1(E) =m1(A) =Z.

In the following example, it is shown that if Lr(E) is isomorphic to Lr(A), then LI(E)

may not be isomorphic to LI(A):

5.10. EXAMPLE

Let E1 and E2 be two graphs as follows:

/\ /_\

C e e D e ®
\_/ v
= E2:

It is easy to see that Lr(E1) = Lr(E2), and we see from [2, Theorem 6.12] the

corresponding Leavitt inverse semigroups are not isomorphic.
5.11. THEOREM
Let E any graph, then the followings hold:

(i) ECis the set of maximal idempotents in LI(E).

(ii) {pee* p* p is an NE path, e € E! and the out degree of s(e) >2} is the set of

maximal idempotents of LI(E)\ E°.
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5.12. THEOREM

Let E and A be two graphs and 6 an isomorphism between the Leavitt inverse

semigroups LI(E) and LI(A), then we have the followings:

(i) 6(w)eA’forallveE®

(if) for each nonzero pg* € LI(E), if 8 (pg*) = p1g:* and q is an NE path, then qx
is an NE path, 8 (s(p)) = s(p1), € (pp*) = p1 pr*and 6 (s(q)) = q101* = S(qu).

(iii) for every nonzero pg* €LI(E), if 8 (pg*) = p1q:* and p, g are NE paths, then
p1, qiare NE paths, 8 (s(p)) = p1 p1* = s(p1) and € (s(q)) = gu01* = s(qa).

(iv) for any e € EY, if s(e) has out-degree > 2, then there is NE paths p1, p2, ps
and an edge ¢ for which s(¢) has out-degree > 2 thus 6 (e) = piép2ps* and
there is NE paths gz, g2, gs such that 8 ~!(¢&) = gieq2 gs*.

(v) foranyv € EY, if s'(v) = {es, ..., en} with n > 2, there is NE paths p, pi, Qi
and distinct edges ¢, i = 1,...., n thus 8 (ei) = péipigi* , i = 1,...., n and
s(r(p)) ={éu, ..., én}-.

5.13. THEOREM

Let E and A be two connected graphs and F a field. If LI(E) is isomorphic to LI(A),
then Lr(E)) is isomorphic to Lr(A).

Proof.

We have Lr(E)is isomorphic to the quotient of the contracted semigroup algebra
FoLI(E)of LI(E) by the ideal 1. defined by elements ¥.ccs_1yee * —v for v =

with the out-degree of v > 2. Lr (A)is isomorphic to the contracted semigroup algebra
FoLI(A)of LI(A)by the ideal I> defined by elements of the form Y ;es_1¢pdd *

— u for u € E%with the out-degree of u > 2.

Let 8 be an isomorphism from LI(I") to LI(A). So, 6 is an algebra isomorphism, say
n, from FoLI(E) to FoLI(A). For v €E° with the out-degree > land any ei€s }(v), by
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Theorem 4.12., there is an NE paths p, pi, gi and edges ¢ i€s™(r(p)) such that 8 (ei)
=peéipigi*, B(v) =s(p) and |s1(v)| =|s"2(r(p)|. Distinct ei correspond to distinct ¢i. So,

n(Zees—l(v) eex —v) :Zees—l(v) 0(ei) (6 (ei)) . —s(p)
= Ysies—1(w) péiéi p” —pp*

= p(Lsies—1qu) &iéi —u) p* € I2

Hence n(I1) Slz.Likewise n 1(I2) Sli. So, one gets n(I1) =l2 and n(I2) =l1. Hence
Le(E)) is isomorphic to Le(A).
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PART 6

CONCLUSION

In this thesis, we studied a class of inverse semigroups built from the Leavitt path
algebras. In the beginning of the study, we gave our consideration to the Leavitt path
algebras. To understand this nature, we firstly discussed on directed graphs and its
properties. In the following, we examined the role of inverse semigroups in algebra.
Thus, we investigated its structures, ideals and homomorphisms in details. In the last
chapter, we analyzed the class of inverse semigroups related to the Leavitt path
algebras. We studied a presentation for the Leavitt inverse semigroups and defined

the structure of the Leavitt inverse semigroups.
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