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ABSTRACT 

 

M. Sc. Thesis 

 

INVERSE SEMIGROUPS AND ITS RELATION WITH LEAVITT PATH 

ALGEBRA 

 

Mounzer Khlıf MLEHAN ALJADAAN 

 

Karabük University 

Institute of Graduate Programs 

The Department of Mathematics 

 

Thesis Advisor: 

Assist. Prof. Dr. Tülay YILDIRIM TURAN 

January 2023, 48 pages 

 

 In this thesis, we consider an inverse semigroup class constructed from Leavitt path 

algebras. In the beginning of the thesis, theoretical background on directed graphs 

and its properties are discussed. Then it continues with important theories and 

definitions of the Leavitt path algebras. Furthermore, all the theories are supported 

with good examples. In the following, we examined the role of inverse semigroups in 

algebra and investigated its structures, ideals and homomorphisms in details. In this 

thesis, we especially give our attention to analyze the class of inverse semigroups 

related to the Leavitt path algebras. We studied a presentation for the Leavitt inverse 

semigroups and defined the structure of the Leavitt inverse semigroups. 

 

Key Words : Semi Groups, Inverse Semi groups, Graph Theory, Leavitt Path 

Algebra, ideals.  

Science Code:  
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ÖZET  

 

Yüksek Lisans Tezi 

 

TERS YARI GRUPLAR VE LEAVITT YOL CEBIRLERI ILE ILIŞKILERI 

 

Mounzer Khlıf MLEHAN ALJADAAN 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Matematik Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi Tülay YILDIRIM TURAN 

Ocak 2023, 48 sayfa 

  

Bu tezde, Leavitt yol cebirlerinden oluşturulmuş bir ters yarıgrup sınıfını ele 

alıyoruz. Tezin başlangıcında yönlendirilmiş çizgeler ve özellikleri ile ilgili teorik 

bilgiler çalıştik, devamında Leavitt yol cebirleri hakkında önemli teorilere ve 

tanımlara yer verildik. Ayrıca tüm teorileri iyi örneklerle destekledik. Tezin 

devamında, ters yarı grupların cebirdeki rolünü inceledik ve bu cebirsel yapının 

ideallerini ve homomorfizmlerini ayrıntılı olarak inceledik. Bu tezi özellikle 

çalımamızda ki amac, Leavitt yol cebirleri ile ilgili ters yarıgruplar arası ıilişkiyi 

incelemektir. Bu sebeple, Leavitt ters yarıgruplarının tanımı üzerinde çalıştık ve 

Leavitt ters yarıgruplarının yapısını inceledik. 

 

Anahtar Kelimeler: Yarı Gruplar, Ters Yarı gruplar, Çizge Teorisi, Leavitt Yol 

Cebirleri, idealler. 

Bilim Kodu :  
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SYMBOLS AND ABBREVITIONS INDEX 

 

SYMBOLS 

 

E : A directed graph. 

r, s: E¹ →E0  : Functions. 

e : Edge. 

u, v : Vertices. 

E0 : A set of vertices. 

E¹ : A set of edges. 

s (e)  : Source of edge. 

r (e)  : Range of edge. 

P : A path. 

s (p)  : Source of p. 

r(p)  : Range of p. 

LK(E) : Leavitt path algebras,  

K  : Field.  

R : Ring. 

𝛪 (X) : The ideal of R.  

K : Field.  

IBN : Invariant Base Number. 

(m,n)  : Module. 

ℓ( 𝜇), ⎹ ⎹  : The length of path μ. 

E1 : Source set of edge. 

E2 : Range set of edge. 

CK1 : Source set of vertexs. 

CK2 : Sange set of vertexs. 

CSP(v) : Simple closed paths based on v. 

K [x, x -1] : Laurent polynomial is a K-algebra. 

ET  : Toeplitz graph. 
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�̅�  : The hereditary-saturated closure of X. 

S : Inverse semigroup. 

sˉ¹ : A inverse of S. 

Τ(v) : Tree of v. 

Domƒ  : Domain of ƒ. 

Imƒ : Image of f. 

0BA  : A unique empty partial function. 

1𝑋  :  The identty function on X ⊆A. 

1ᴀ  : The identty function 1ᴀ on A.  

Fg = fog : Composite a partial function. 

Sˡ : Inverse monoid. 

Sº :  Inverse zero. 

sa A : Ieft ideals. 

as  A : Right ideals. 

sS : the Basic right ideal. 

Ss : Basic right ideal. 

SsS : The basic two-sided ideal. 

(K, ≤) : A partially ordered set. 

E(S) : An order ideal of S. 

(E(S), ≤) : A meet semilattice. 

(NE) : No exits. 

𝜈, p, p∗ : Elements of Leavitt path algebra. 

LF (E) : Leavitt path algebra. 

BX(G) : Brandt semigroup. 

Δ : Connected graphs. 
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PART 1 

 

INTRODUCTION 

 

Leavitt path algebra is an algebraic structure and constructed from a directed graph. 

This algebra generalizes the Laavitt algebras and it has similary construction with the 

graph 𝐶∗-algebras. For a directed graph E and field K, 𝐿𝐾(𝐸) Leavitt path algebra is 

first defined in 2005 by G. Abrams and G. Aranda Pino as a generalization of Leavitt 

algebras and expanded to arbitrary graphs in 2008 [14-15]. In the following years, 

many researchers interested the infinitely simple properties, socle, finite dimensional 

structures, prime and maximal ideals of 𝐿𝐾(𝐸) [16], [17], [18]. In 2011, M. 

Tomforde examined the 𝐿𝑅(𝐸) Leavitt path algebras for a finite directed graph E and 

commutative ring R. He defined necessary an d sufficient conditions for 𝐿𝑅(𝐸) to be 

basically simple [19]. In 2015, H. Larki 𝐿𝑅(𝐸) extended Leavitt path algebras to 

countable graphs and studied the characterization of prime and primitive ideal 

structures with 𝐿𝑅(𝐸) being prime and primitive rings. [20].  

 

Algebraic structural information about Leavitt path algebras can be obtained from the 

theory of inverse semigroups. Recently, inverse semigroups became increasingly 

important in algebraic natures. In [8] authors studied on inverse semigroups which is 

obtained from the Leavitt inverse semigroups. They observed that inverse 

semigroups are related to the Leavitt path algebras. By the this study, they showed 

that the Leavitt inverse semigroups can be represent by a graph in terms of 

generators and relations. Considering this study, we firtsly give our attention to 

understand algebraic structure of the Leavitt path algebra and inverse semigroups and 

then observed a relation between them. Therefore, this thesis is organized as follows: 

In part 2, we considered history of Leavitt path algebra and inverse semigroups with 

some way and technical of the solving problems, with using some references to be 

sure about the history of our subjects.  
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In part 3, graph theory has an importance part in the applied and pure algebra, So, we 

explained graph theory with its important definitions, examples, and theories. One of 

the importance of this section is nature of the Leavitt path algebra. In this part we 

firstly studied basic properties of the Leavitt path algebras and supported them with 

good examples, then we examined the ideal of the Leavitt path algebras. Throughout 

the study of the Leavitt path algebras, the main book we followed was Leavitt path 

Algebras written by G. Abrams, P. Ara and M. Molina [1].   

 

In part 4, our first aim is to study inverse semigroups in detail to better understand 

the next section. Thus, we examined all the nature of the inverse semigroups. In the 

beginning of this section, we reminded the partial bijections and then give the 

definition of the inverse semigroups. In the following, we stated the importance of 

the ordered groupoids. Then inverse properties, ideals, natural partial orders, 

compatibility relations, meets and joins and also homomorphisms between inverse 

semigroups are studied in detail. Theories and definitions of all subjects are 

emphasized, and their importance is mentioned. Throughout the section, we follow 

[2]. 

 

In part 5, the main purpose of this thesis study was to examine the relationship 

between inverse semigroups and Leavitt path algebras. Therefore, in this section we 

gave our consideration to the paper [8]. Considering this study, we have learned 

about the relationship between these two algebraic structures, and we have outlined 

the important theories and results for this study in this part. 

 

In part 6, we concluded the thesis by stating the purpose and importance of the 

studies. 
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PART 2 

 

LITERATURE REVIEW 

 

 V. V. Wagner defined inverse semigroups for the first time in 1952 [3], by the 

meanwhile this study also introduced by Gordon Preston in 1954 [4], [9] and [10]. In 

the following years many researchers interested in inverse semigroups [5], [7] and 

[6], [11] [12]. In the 1940s and 1950s Charles Ehresmann considered this theory with 

a different mathematical perspective. Inverse semigroups were introduced as part of 

the legacy of the Klein's Erlanger Program and Lie's theory of infinite continuous 

groups.  

 

The Leavitt path algebra was initially introduced in 2007 by Ara, Moreno and Pardo 

[13], and almost simultaneously but independently by Abrams and Pino [14]. Nearly 

a decade later, this algebra has attracted considerable attention not only ring 

theorists, but also C∗ -algebras and group theorists. In 2005, G. Abrams and G. A. 

Pino defined the Leavitt path algebra, 𝐿𝐾(𝐸), of a finite graph 𝐸 with coefficients 

from a field  𝐾 as a generalization of the Leavitt path algebras and expanded it to the 

arbitrary graph in 2008. In 2015 G. Aranda Pino, K.M. Rangaswamy and M. Siles 

Molina obtained that the Leavitt path algebra is a right R-module on itself. Also, they 

observed that Endomorphism ring of the Leavitt path algebras are von Neumann 

regular. 

 

Structural knowledge of Leavitt path algebras can be obtained from the theory of 

inverse semigroups. Therefore, J. Meakin, David Milan and Zhengpan Wang studied 

a class of inverse semigroup which is obtained by the Leavitt path algebras in 2021 

[8]. They observed that these semigroups are also related to the graph inverse 

semigroups. 
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PART 3 

 

PRELIMINARIES 

 

In the first section, we give the necessary background of the graph theory. For the 

convenience of the reader, we also give the necessary examples of the graph. We 

refer reader to [15], [16], [18] for more details about the graph theory. In the 

following of this chapter, we also discuss the Leavitt path algebra. The main 

references for the second section are [1], [13] and [14]. 

 

3.1. PRELIMINARIES ON GRAPH THEORY 

 

Interest in graph theory and its applications has grown rapidly in the last two 

decades. The reason for this increase is that we can find solutions to many problems 

in our daily life with graph theory. Many situations we encounter can be described by 

a set of points and diagrams of lines connecting these points. Graph is also used in 

algebraic structures, constructing graph group and ring graphs, and explaining 

various algebraic properties. This chapter contains background information on the 

graph theory.  

 

3.1.1. Definition  

 

A graph E is an ordered pair E = (E0, E¹) comprising: 

 

• E0, a set of vertices 

• E¹, a set of edges which are unordered pairs of vertices 
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3.1.2. Definition 

 

A directed graph E = (E 0, E¹, r, s) consists of two sets E 0, E¹, and two functions r, s: 

E¹ →E0.  For any e ∊ E¹, s (e) is called the source of edge and r (e) is called the range 

of edge. Let e ∊ E¹ and v, w ∊ E0, then s (e) is called source of e and r (e) is called 

range of e. For any two edges e₁, e₂ ∊ E ¹, if r (e₁) = s (e₂), then e₁, e₂ are called 

adjacent edges. 

 

3.1.3. Definition  

 

For a vertex u, s - ¹( u ) is the set of edges with source u and r - ¹ (ư) is the set of edges 

with a range. The vertex u which s -1 (u) = Ø is called the sink, and r - ¹ (u) = Ø is 

called the source. A vertex which is both a source and a sink is called isolated. 

 

3.1.4. Example  

 

[1] In the following graph E, the vertices of u₁, u₂, v₂, and v3 are sink, and the vertex u 

is a source 

 

u1                                              v2 

 

e4                                    e2 

u              e1                v1 

 

e5                                     e3 

 

u2                                             v3 

Figure 3.1. Directed graph. 

 

Moreover, s(e1) = u, r (e₁) = v₁, r(e₁) = v₁ = s(e₂) = s(e3), s -1 (u) = }e1, e4, e5{, r -1 (u) = 

Ø, s -1 (v1) =  }e2, e3  {, r -1 (v1) =  }e1  {, r -1 (v3) =   }e3  {, s -1 (v3) = Ø = s -1 (v2), r -1 (v₂) =  }

e2 {, s -1 (u₁) = Ø, r -1 (u1) =  }e4 { ,s -1 (u2) = Ø, r -1 (u2) = }e5{ .    
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3.1.5. Definition  

 

A vertex u is called infinite emitter if⎹ (s -1 (u)⎹ = ∞. Moreover, if u is a sink or 

infinite emitter, then u is a singular vertex otherwise it is called a regular vertex.  

 

3.1.6. Example  

 

[1] Let E be a graph given in the following Figure 3.2, since v has infinite edges, it is 

infinitely emitter and therefore it is a singular vertex. Also u is a regular vertex 

because it spreads finite edges. So, the graph E is a finite and non-sequence graph.  

E: 

 

Figure 3.2. Sequence finite graph. 

 

3.1.7. Definition  

 

A path p in a graph E is a sequence of edges p = e1 e2 .... en such that for i =1, 2, 3, ..., 

n – 1. Also, s (p) = s (e1) is the source of p and r(p) = r (en) is the range of p. If the 

number of edges forming a path p is infinite, then the path p is called an infinite path. 

The set of all paths in a graph E is denoted by Path (E). 

 

3.1.8. Definition  

 

Let p = e1 e2 .... en be a path of length n, if s (p) = r (p) = u,, then p is called closed 

path.A closed simple path based at u is a closed path p = e1 e2 .... en, such that s (ei) ≠ 

u for every i > 1. The set of all closed simple paths based on vertex u is denoted by 

CSP(u). Every closed simple path is a closed path.       

             

  



7 

3.1.9. Definition  

 

For the path p = e1 e2 .... en, if s ( p ) = r ( p ) = u and s-1 ( ei ) ≠ s ( ej ) for each i ≠ j, 

base the vertex u on the path p is called loop. A graph that does not contain a loop is 

called an acyclic graph, or a noncyclic graph. For the path p = e1 e2 .... en, if there 

exists e ∊ E such that s(e) = s (ei) (1 ≤ i ≤ n ) and e ≠ ei , then e is called the output of 

the p path.  

 

3.1.10. Example  

 

[1] If the n -cornered finite line is generalized for the graph that is Mn graph seen in 

Figure 3.3: 

 

                  v1              e1         v2        e2            v3                  vn-1        e n-1      vn  

 

Figure 3.3. n -angular line finite graph. 

 

The vertex set of the graph M n
0 = {v1, …, vn }  , set of edges Mn

1 =   }e 1 , ..... , e n   {

and for each e i ( i =1,... n -1), s ( ei ) = v 1 , and r ( ei ) = vi +1 . 

 

3.1.11. Example  

 

[1] According to the rose graph with n leaves, which consists of a single v vertex and 

n loops represented by Rn as seen in (Figure 3.4), R n
0 ={  v1 , ....., vn  {, Rn

1 =  }e1, ...., 

en {, and for each ei (i =1, ..., n -1) s(ei) = vi = r(ei).  

 

 

Figure 3.4. n -leaf rose graphy   



8 

3.2. PRELIMIMARIES ON LEAVITT PATH ALGEBRA 

 

In the first part of this section, we introduced the Leavitt path algebras and 

emphasized that it is a ring with local units. In the following, we considered graphs 

frequently encountered in the literature and defined the properties of the Leavitt path 

algebras. In the third part, the subject of ideals in Leavitt path algebras briefly 

introduced and some important results considered. Proofs of some important 

theorems presented with their references. Throughout the section, the Leavitt path 

algebra is defined on any directional graph E, is denoted by LK(E) where K is any 

field. Moreover, all the notions are prepared by considering [1]. 

 

3.2.1. The Basic Features of Leavitt Path Algebra  

 

3.2.1.1. Definition  

 

Let R be a ring, if the isomorphic Rm and Rn free left R modules require m=n, then R 

is said to have the property of IBN (Invariant Base Number). 

 

3.2.1.2. Definition  

 

For a given ring R and natural numbers m<n, with Rm ≅ Rn and 1 < k < m, if Rm≇ Rk, 

then the R ring has (m,n) type IBN property and it is called a ring that does not satisfy 

the property. 

 

3.2.1.3. Theorem  

 

[1] For each positive integers (m,n) and field K, there is one K-algebra with LK(m,n) 

units. According to the K-algebra isomorphism: 

 

(i) The algebra LK(m,n) has module with type (m,n) 

(ii) For any K-algebra of the (m,n) module A, there is a 𝜙: LK(m,n) →A, K- 

algebra homomorphism. 
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3.2.1.4. Definition  

 

[1] Suppose K is any field and that n > 1. Then, (1, n) type Leavitt K-algebra is 

denoted by LK (1, n) and defined as K < X1, X2, ..., Xn, Y1, Y2, ..., Yn >/ < ∑ 𝑋𝑖𝑌𝑖 −𝑛
𝑖=1

1, XiYj −δi j1|1 ≤ i, j ≤ n > 

 

3.2.1.5. Theorem  

 

[1] For each field K, LK (1, n) is simple where n> 2.  

 

3.2.1.6. Definition  

 

A path 𝜇 = e1 e2 .... en is a finite sequence of edges in E  where   s (ei +1) = r (ei) for  

1≤ i ≤ n – 1. Also, s (𝜇) = s (e1) is a source of μ and r(𝜇) = r (en) is a range of 𝜇.  Also, 

the length of path μ is shown as n = ℓ( 𝜇) or n =⎹ 𝜇⎹.The vertices angles are treated 

as paths of zero length. For v 𝜖 E 0, it is defined as s (v) = r (v) = v. For a path 𝜇 = e1 

e2 .... en, the set of vertices of path 𝜇 is represented as 𝜇0= {s (ei), r (ei)⃓ 1≤ i ≤ 

n}.Moreover, Path(E) = ⋃ En≥0
n represents all paths set in graph E.  

 

3.2.1.7. Definition  

 

Suppose E is any directional graph and K a field. Also, (E1)* = {e* ⃓ e ϵ E1}. 

Accordingly, the Leavitt path algebra on E, the coefficients of which are the elements 

of K, is a free-joining K-algebra produced by E0 ∪E1∪ (E1)*, which provides the 

followings: 

 

(V) ∀ v, v' 𝜖 E0, v v' = δv v' v,  

(E1) ∀ e 𝜖 E1, s(e)e = er(e) = e,  

(E2) ∀ e 𝜖 E1, r(e)e∗ = e∗ s(e) = e∗,  

(CK1) ∀ e, e' ∈ E1, e∗ e' = δe,e'  r(e),   

(CK2) for all regular vertex v ∈ E0, v = ∑ 𝑒𝑒 ∗ e∈ s−1(v) . 

 

  



10 

3.2.1.8. Definition  

 

Let E be a graph and A a K-algebra, then, A consists the set {av|v ∈ E 0} and the sets 

{ae|e ∈ E1} and {be|e ∈ E1} consist of orthogonal idempotents satisfying the 

following conditions. 

 

i. For each e ∈ E1, as(e) ae = ae = ae ar(e) and also ar(e) be = beas(e) = be, 

ii. For each e, f ∈ E1, bf ae = δe,f  ar(e), 

iii. For each regular vertex v ∈ E0, av = ∑ 𝑎𝑒𝑏𝑒 .𝑒∈𝑠−1(𝑣)   

 

Thus, A is called an E-family, and in this case, there is a K-algebraic homomorphism 

of LK(E) → A such that it is v → av, e → ae and e* → be. This is also called the 

universal property of the Leavitt path algebras. 

 

3.2.1.9. Example [1] 

 

                     

 

 

 

 

             

 

Figure 3.5.  

 

Hence, some operations in LK(E) are given below: 

 

E1: v1 f = f and f= f v2.  

E2: v2 f∗ = f∗ and f∗ = f∗ v1.  

CK1: f∗ f = v2, f∗ h =0= f∗ e.  

CK2: v1= ee∗ + f f∗ + hh∗, v2= gg∗. 
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Since the vertex v4 is infinitely radiating and the vertices v3, v5 are sink, for these 

vertices (CK2) is not defined.  

 

3.2.1.10. Definition  

 

For an associative ring R, F ⊆R consisting of idempotent elements is defined as a set 

of local units if the following condition is satisfied. 

 

For every {r1, …., rn} finite subset of R, frif =ri, there are f ∊ F, 1≤ i ≤n. In other 

words, for any finite subset N of R, there exists a f ∊ F such that N⊆ f R f. For an 

orthogonal idempotent subsets E of R, if RR =⊕e∊E Re, then R is said to have 

sufficient idempotent. 

 

3.2.1.11. Lemma  

 

[1] Suppose E is a graph and K any field. If γ, λ, µ, ρ ∈ Path(E), then  

 

(i) (γλ∗) (µρ∗ ) ={
𝛾𝜅𝜌 ∗      𝑖𝑓 µ =  𝜆 𝜅,   𝜅 ∈  𝑃𝑎𝑡ℎ(𝐸)

γσ ∗ ρ ∗    𝑖𝑓  λ =  µ𝜎,   𝜎 ∈  Path(𝐸
0

) 

      In accurately, λ = µ if and only if ℓ(λ) = ℓ(µ) then λ∗µ ≠ 0. Thus, λ∗µ = r(λ). 

(ii) The K-effect on LK(E) is ordinary. It means that (kγλ∗) (k' µρ∗) = kk'(γλ∗µρ∗) 

for k, k' ∈K. 

(iii) LK(E) Leavitt path algebra as a K - vector space {γλ∗ |γ,λ ∈ Path(E),r(γ) = 

r(λ)} consists of mononomials of the form r (γ) = r (λ)}. So, every x ∈ LK(E) 

element, x = ∑ 𝑘𝑖𝛾𝑖𝜆𝑖
∗𝑛

𝑖=1 . For k i∈ 𝐾×, γi, λ i ∈ Path(E), r(γi) = r(λi) where 1≤ i 

≤ n. 

(iv) LK(E) is unitary if and only if E0 is finite. So, 1LK(E) =∑ 𝑣𝑣∈ 𝐸0 . 

(v) For every a∈ LK(E) there is a V(a) finite set such that faf =a, where f = 

∑ 𝑣𝑣∈𝑣(𝑎) .  

 

Moreover, LK(E) is a sufficient locally idempotent ring. 
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Proof.  

 

(i) By the (CK1), Either e∗ f ∈ LK(E) is equal to zero or is the vertex r(e) as 

desired. 

(ii) It is follows by the definition of LK(E). 

(iii) It is obtained from (i). 

(iv) If E0 is finite, the proof is clear. Otherwise, there is no unit element in 

LK(E).           

(v) It is easy to see that sum of the different vertices in LK(E) is idempotent.  

On the other hand, for any element α =∑ 𝐾𝑖𝑚
𝑖=1 𝛾𝑖 λi∗ ∈LK(E), V(α) 

represents the set of vertices on α. Thus, if f=∑v∈V(α)v is defined as α = fαf, 

then we done. 

 

3.2.1.12. Definition  

 

Let E be a graph. Let Ê =E1∪(E1)∗, u,v ∈ E0 and there is a η= h1h2,…,hm such that 

s(η) = u, r(η) = v and h1h2,…,hm ∈  Ê, then E is called depend. Dependent 

components of E are {Ei}i∈Λ graphs. Moreover, E =⊔i∈Λ can be defined as a discrete 

combination of connected graphs Ei. 

 

3.2.1.13. Proposition  

 

[1] For a E a graph and field K, the dependent expression of E in terms of its bound 

components is E =⊔i∈Λ Ei with LK(E) ≅ ⊕i∈ΛLK(Ei). 

 

In the following, we present some Leavitt path algebra examples: 

 

3.2.1.14. Example  

 

[1] Rn represent a graph with only one vertex and n edges. 
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Figure 3.6.  

 

3.2.1.15. Example  

 

[1] [Laurent polynomial ring] The following diagram R1 with one vertex and edge 

plays an important role in the theory. 

 

 

Figure 3.7.  

 

3.2.1.16. Example  

 

[1]. [Matrix algebra] The graph an consists n vertices and n-1 edges. 

 

                      v1       e1        v2      e2         v3                 vn-1      e n-1        vn  

                                

Figure 3.8.  

 

3.2.1.17. Proposition  

 

[1] If K is a field, and n ≥ 2 where n is any positive integer, then LK (1, n) ≌ LK(Rn).  
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3.2.1.18. Definition  

 

[1] Let K be a field, the Laurent polynomial is a K-algebra obtained by x and y that 

provides a relation xy = yx =1 and is denoted by K [x, x -1].  

 

3.2.1.19. Proposition  

 

[1] If K is a field, then we have LK(R1). ≅ K [x, x -1]. 

 

Proof. Through the (CK1), we have e*e = v = 1 in LK (R1). Also, since e is just edge 

of v, ee* =1. is obtained from (CK2) in LK (R1). 

 

3.2.1.20. Theorem  

 

[1] Mn(K)≌LK (An) where K is a field and n ≥ 1 is any positive integer. 

 

Proof. Suppose {fi,j :1 ≤ i, j ≤n} represents the matrix units in Mn(K).Accordingly, if 

the transform 𝜑:LK (An) → Mn(K) is defined as 𝜑(vi) = fi,i, 𝜑 (ei) = fi,i+1, it can be 

easily shown that 𝜑 is a K-algebraic isomorphism. 

 

3.2.1.21. Example  

 

[1] The graph below is called the Toeplitz graph and is denoted by ET. 

 

 

Figure 3.9. 
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3.2.2. Ideals of the Leavitt Path Algebras 

 

3.2.2.1. Definition  

 

Let R be a ring or algebra. The ideal of R obtained by X, with X ⊆ R, is denoted by 𝛪 

(X). 

 

3.2.2.2. Definition  

 

For a graph E = (E0, E1, r, s), we have the followings: 

 

• Let μ = e1e2...en ∈ Path(E) and ℓ(µ) ≥ 1, if s(µ) = v = r(µ), then µ is called a 

v-based closed path. 

• Let μ = e1e2...en be a closed path that depends on v. If s(ei )≠ v,i ≥ 2, it is called 

a v-dependent simple closed path based. A set of simple closed paths based 

on v in E is denoted by CSP(v). 

• Let μ = e1e2...en ∈ CSP(v). If s(ei) ≠ s(ej) for each i ≠j, then µ is called a v-

based loop. 

• A loop of length 1 is called curl. 

 

3.2.2.3. Definition  

 

Let E be a graph and v∈ E, if |CSP(v)| = 0 or |CSP(v)| ≥ 2, then E satisfy the K-

condition. 

 

3.2.2.4. Definition  

 

For a graph E = (E0, E1, r, s), the preorder, ≥, is defined on E0 as follows:  

 

P ≥ v if and only if there is a path μ ∈ Path(E) where s(u) = p, r(u) = v. 
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3.2.2.5. Definition  

 

Let E be a graph and v∈ E0. The set 𝛵(v) = {w|w ∈ E0, v ≥ w} is called tree of v. For a 

subset X ⊆ E0, it is defined as 𝛵(X) = ⋃ 𝛵(𝑣).𝑣∈x   

 

3.2.2.6. Definition  

 

Let E be a graph and 𝛨 ⊆E0. 

 

• If v∈ 𝛨 and w∈ E0 such that v ≥ w requires w∈ 𝛨, then 𝛨 is said to be 

inherited. 

• If r(s-1(v)) ⊆ 𝛨 with v∈ Reg(E) such that v∈ 𝛨 then 𝛨 is called saturated. 

 

3.2.2.7. Definition  

 

Let E be any graph and X⊆E0. The smallest heritable-saturated subset of E0 

containing the set X is called the hereditary-saturated closure of X and is denoted by 

�̅�. 

 

3.2.2.8. Lemma  

 

[1] For a graph E, the hereditary-saturated closure of 𝛸, with 𝛸 ⊆E0, is �̅� = 

⋃ 𝛬𝑛(𝑋)∞
𝑛=0  where 

 

• Λ0(X) = T(X) = {v ∈ E0 |x ≥ v, ∃x ∈ X} and 

• Λn(X) = T(X) = {y∈ E0: 0 < |s−1 (y)| < ∞,  r(s−1 (y)| ⊆ Λn -1 (X)} ∪ Λn -1 

(X), n ≥ 1. 

 

Proof. It is clear that any heritable-saturated subset of set E0 containing 𝛸 also 

contains the set ∑ 𝑋𝑛 𝑛≥0 . Also, since every 𝛸n set is inherited, the set ∑ 𝑋𝑛≥0 n is also 

inherited. Now we need to prove that ∑ 𝑋𝑛≥0 n is saturated. Let v∈ Reg(E) be a vertex 

so that r(s-1(v)) ⊆ ∑ 𝑋𝑛≥0 n. Since Xn ⊆ Xn+1 and r(s-1(v)) is finite, there is N ∈ ℕ, so 

r(s-1(v)) ⊆ 𝛸n. Therefore, v ⊆ Xn+1 as desired. 
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PART 4 

 

INVERSE SEMIGROUPS 

 

In this chapter, we focused on studying on inverse semigroups. This subject was 

firstly introduced by Wagner in 1952 [3] and independently by Preston in 1954 [4]. 

In the following years, numerous studies on this subject continued. For more details 

on inverse semigroups, we refer readers to see [5, 6, 7]. The aim of this chapter is to 

give properties of inverse semigroups and study on its ideals. The main reference for 

this chapter is [2].  

 

4.1. PARTIAL BIJECTIONS  

 

Let A and B be two sets, and ƒ a function from A to B. If f is defined from a subset 

of A to a subset of B, then ƒ is called partial function. The subset of A consisting of 

all elements a ∈ A is called as a domain of ƒ and denoted by domƒ.  imƒ = ƒ(domƒ) 

is a image of f which is also a subset of B.  

 

Let A and B be two sets. 0𝐵𝐴 is a unique empty partial function defined from A to B. 

Empty function refers to any partial function of this type. 

 

1𝑋 is an identity function on X ⊆A. It is also a partial function from A to A. These 

partial functions are called partial identites. d(ƒ) is the partial identity function on 

domƒ and r(ƒ). is the partial identity function on imƒ. The identity function 1ᴀ on A 

and the identity function 10 on the empty subset of A that is the empty function from 

A to itself. To shortly, we define these functions by 1 and 0 respectively. 
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4.1.1. Definition  

 

Let g be a partial function defined from A to B and ƒ a partial function defined from 

B to C, their composite is also a partial function from A to C and denoted by fog, 

where the domain of ƒog is dom(ƒog) = gˉ¹ (domƒ ∩ img) and if a ∈ dom (ƒ o g) 

then (ƒ o g) (a) = f(g(a)). The image of ƒog is denoted by ƒ (domƒ∩ img). If domƒ 

and img have empty intersection, then ƒog is the empty function. Also, may we 

generally write be fg as short for fog.  

 

4.1.2. Definition  

 

If ƒ is a partial bijection from A to B, the empty functions and all partial identities 

are partial bijections. Then the inverse of ƒ is the partial bijection from B to A, 

denoted by ƒ ˉ ¹. Thus, the domain of ƒ ˉ¹ is imƒ and be the image is domƒ. The 

formation of partial bijections is also a partial bijection. 

 

4.1.3. Proposition  

 

Let A, B and C be sets, and f: A → B a partial bijection. Then we have the 

followings: 

 

(i) ƒƒ ˉ¹=1domƒ is a partial identity on A, and ƒƒ ˉ¹=1imf  is a partial identity 

on B. 

(ii) Let g:B→A be a partial bijection, then one gets g=ƒ ˉ¹ if and only if 

ƒ=ƒgƒ and g=gƒg. 

(iii) (ƒ ˉ¹)ˉ¹ = ƒ. 

(iv) For all partial identities 1𝑌 and 1𝑋, we have 1𝑋1𝑌=1𝑋∩𝑌 = 1𝑌1𝑋 where 

X, Y ⊆ A. 

(v) For any partial bijection g: B→C, we have (gƒ)ˉ¹ =ƒˉ¹ gˉ¹. 
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Proof: 

 

(i) Since x ∈ domf, we have x ∈ dom(f ˉ¹f). So, one gets that domain of f is 

the same as ƒˉ¹ƒ. However, ƒˉ¹ƒ is the identity function on its domain. 

Thus, ƒˉ¹ƒ= 1domƒ. 

(ii) By the hypothesis we have g: B→A. Also let ƒ=ƒgƒ and g = gƒg, y 

domg and x = g(y). So,      x =(gƒg)(y) thus x = g(ƒ(x)). Since g is a 

partial bijection, g⊆ƒˉ¹. Let y ∈ dom(ƒ ˉ¹) and x=ƒ ˉ¹(y) so ƒ(x)=y and if 

we substitute in the equation (i),  we have (ƒgƒ)(x) = y this means that 

ƒ(g(ƒ(x))=y thus ƒ(g(y))=y. Now let x=g(y), thus ƒ(x)=y then ƒ is a partial 

bijection which gives that ƒ ˉ¹⊆g. So g⊆ƒˉ¹ = ƒ ˉ¹⊆g. Hence ƒ ˉ¹=g as 

desired. 

(iii)  We have ƒ =ƒgƒ and g=ƒˉ¹ so ƒ=ƒgƒ. Thus, ƒˉ¹=(ƒgƒ)ˉ¹= ƒ ˉ¹g ˉ¹ƒ ˉ¹=(ƒ 

ˉ¹g ˉ¹)ƒ ˉ¹ =(ƒ ˉ¹g ˉ¹)g. So one gets that (ƒ ˉ¹)ˉ¹=((ƒ ˉ¹g ˉ¹)g)ˉ¹= g ˉ¹gƒ =ƒ as 

desired. 

(iv) Since 1𝑥1𝑦=1x∩y=1y∩x,  𝑥 ∩ 𝑦 = 𝑦 ∩ 𝑥. Let a ∈ dom(1𝑥1𝑦) then 

(1x1y)(a)=1x(1y (a))=a. Hence 1𝑥1𝑦 and 1𝑦1𝑥 are a partial identities, 

therefore dom(1𝑥1𝑦)= 𝑥 ∩ 𝑦 and dom(1𝑦1𝑥)= 𝑦 ∩ 𝑥 this means that 1𝑥1𝑦  

=1x∩y = 1y∩x.  

(v) Since partial identities commute, we have  

gƒ(ƒˉ¹gˉ¹)gƒ=g(ƒƒˉ¹)(gˉ¹g)ƒ=g(gˉ¹g)(ƒƒˉ¹)ƒ=gƒ. 

Moreover, (ƒˉ¹gˉ¹)gƒ (ƒˉ¹gˉ¹) = ƒˉ¹gˉ¹ implies (gƒ)ˉ¹ =ƒˉ¹ gˉ¹. 

 

4.1.4. Note  

 

Each element in a semigroup equal to its square is called an idempotent. 

 

4.2. INVERSE SEMIGROUPS 

 

The inverse semigroup S is defined by Wagner and Preston by the followings: 
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i. S is regular i.e., for each element x  S there is another element y, called an 

inverse of x, such that x = xyx and y =yxy. 

ii. The idempotents elements of the S commute.  

 

4.2.1. Proposition  

 

A regular semigruop is inverse if and only if its idempotetns commute. 

 

Proof Let S be a regular semigroup and its idempotents commute and u and v inverse 

of x. Then we have u = uxu = u(xvx)u = (ux)(vx)u, v = vxv and u =uxu. Since ux and 

vx are idempotents and commute, one gets u = (vx)(ux)u =v(xux)u= vxu = (vxv)xu = 

v(xv)(xu). Since ux and vx are idempotents commute, we have that u = v(xu)(xv) = 

v(xux)v = vxv = v.This means  u = v. For the converse, it is easy to see that the result 

multiplication of two idempotents ƒ, e has an idempotent inverse in a regular 

semigroup. Because, let x = (eƒ)ʹ is inverse for eƒ. Thus, the element ƒxe is an 

idempotent inverse of eƒ.   

 

First, suppose that S is a semigroup, and each element has a single inverse. Secondly, 

we must prove that any two idempotents elements have a fixed inverse. Such as eƒ = 

ƒe. From the above we have ƒ(eƒ)ʹe is a fixed inverse of eƒ. Through the uniqueness 

of inverses, we find (eƒ)ʹ = ƒ(eƒ)ʹe is idempotent element, all idempotent elements 

are self-inverse. We also find that the inverse of eƒ is (eƒ)ʹ. Through, the uniqueness 

of inverses, we find eƒ = (eƒ)ʹ. This means that eƒ is idempotent. Since the 

multiplication operation commutative, eƒ(ƒe)eƒ = (eƒ)(eƒ) = eƒ, and ƒe(eƒ)ƒe = ƒe. It 

results that ƒe idempotent. This means that ƒe and eƒ, they are inverses for eƒ. Thus 

eƒ = ƒe. 

 

In an inverse semigroups, if any element s S,then there is another single element 

sˉ¹ S, where sˉ¹ = sˉ¹s sˉ¹ and s =s sˉ¹s is called the a inverse of S and defined by sˉ¹. 
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4.3. ORDERED GROUPOIDS  

 

Let g be a partial function from A to B and f a partial function from B to C. We say 

that ƒ. g is bound product of ƒ, g, if and only if dom ƒ= im g and is denoted by ƒ· g 

=ƒ g. The bound product ƒ. g is fully defined if d (ƒ) = r (g). 

 

If ƒ and g are partial functions defined from A to B, then domƒ ⊆domg and f(x) = 

g(x) for every x ∈ dom ƒ, then is ƒ ⊆g thus ƒ is a restriction of g. 

 

4.3.1. Proposition  

 

Let A, B and C be sets and ƒ, g: A→B partial bijections, then 

 

(i) If ƒ ⊆g then ƒ ˉ¹⊆gˉ¹. 

(ii) Let p, q: B→C be partial bijections.  If ƒ ⊆g and p ⊆q, then pƒ ⊆qg. 

(iii) ƒ ⊆g precisely if there exists a partial identity lN  I(A) such that ƒ = g lN. 

 

Proof: 

 

(i)  Let ƒ, g: A→B, and ƒ ⊆g i.e., dom ƒ ⊆dom g also im(ƒˉ¹) = dom(ƒ) and 

dom(ƒˉ¹) = imƒ. So ƒ ⊆g, dom ƒ≤ domg, im(ƒˉ¹) = domƒ≤ domg=im(gˉ¹). 

This means that im(ƒˉ¹) = im(gˉ¹). Hence ƒ ˉ¹⊆gˉ¹.         

(ii)  Let p, q: B→C. and pƒ ⊆qg i.e., dom pƒ ⊆dom qg also im(pˉ¹ƒˉ¹) =dom(pƒ) 

and dom(pˉ¹ƒˉ¹) =im pƒ. So pƒ ⊆qg, dom pƒ≤ dom qg, im(pˉ¹ƒˉ¹) =dom pƒ ≤ 

dom qg =im(qˉ¹gˉ¹). This means that im(pˉ¹ƒˉ¹) = im(qˉ¹gˉ¹). Hence pˉ¹ƒ 

ˉ¹⊆qˉ¹gˉ¹. 

(iii) Let ƒ ⊆ g and Let lN = ƒ ˉ¹ƒ where ℕ = dom ƒ thus ƒ ⊆g lN, ƒ ⊆dom(g lN). Let 

x dom(g lN). Then lN (x) is defined as x domƒ. Thus domƒ = dom(g lN). 

Hence ƒ=g lN. 

 

Conversely, assume that ƒ =g lN for a partial identity lN. Let x∈dom(ƒ), then ƒ(x) and 

so (g lN)(x) are defined. Moreover x dom(ƒ ). Thus domƒ ⊆dom g. But we have 

that (g lN)(x)= g(x). Thus ƒ ⊆g.  
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If ƒ is a partial function from A to B and X ⊆ dom ƒ. We say that (ƒ | X) is a new 

partial function the restriction of ƒ to X, there is also the partial function, from A to B 

be dom (ƒ | X) = X such as (ƒ | X) (x) = ƒ(x)for each x X. If Y is a subset of imƒ. 

We say that (Y | ƒ), the corestriction of ƒ to Y, to be the partial function from A to Y 

with dom (Y | ƒ) = ƒˉ¹(Y) such as (Y | ƒ) (x) = f(x)for each x  dom (Y | ƒ).     

 

4.3.2. Proposition  

 

Let ƒ,g  I(X) and B=domƒ∩ img. Then ƒg= (ƒ | B) · (B | g).   

 

Proof.   

 

By the definition, dom ((ƒ | B) · (B | g)) = dom ((B | g)), and dom ((B | g)) = g ˉ¹ (B) 

= g ˉ¹ (dom ƒ∩ im g). Hence dom ((ƒ | B) · (B | g)) = dom(ƒg). 

 

4.4. INVERSES PROPERTIES  

 

4.4.1. Proposition  

 

Let S be an inverse semigroup, then we have the followings: 

 

(i)  For every s  S, both ssˉ¹ and s ˉ¹s are idempotents and (ssˉ¹) s = s and s(sˉ¹s) 

= s.  

(ii) (s ˉ¹ )ˉ¹ = s for every s  S. 

(iii) For every idempotent e in S and any s  S, s ˉ¹e s is idempotent. 

(iv) For every eˉ¹= e. If and only if e be idempotent in S. 

(v) (s₁ … sn )ˉ¹ =snˉ¹ …s₁ˉ¹ for each s₁, …,sn  S if n ≥ 2. 

 

Proof.  

 

(i)  Let s = s sˉ¹s, sˉ¹ = sˉ¹s sˉ¹. Then we have (sˉ¹s)² = sˉ¹(s sˉ¹ s) = sˉ¹s and (s sˉ¹)² 

= s (sˉ¹s sˉ¹ ) = s sˉ¹. Hence s ˉ¹s and ssˉ¹ are idempotents.  
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(ii)  We have that sˉ¹ = sˉ¹x sˉ¹ and x = x sˉ¹x, let e =s sˉ¹, then by the uniqueness 

of inverses result follows. 

(iii)  Let (sˉ¹e s)² = s ˉ¹e s sˉ¹e s. Since e and s are idempotents commute, so we 

have s ˉ¹e s sˉ¹e s = (sˉ¹s sˉ ¹) e (e s) = sˉ¹ e s, as desired. 

(iv)  Let eˉ¹ be an idempotent, so (eˉ¹)² = eˉ¹ eˉ¹ = e , this means that eˉ¹ = e.  

(v)  When n = 2, we find (s₁ s₂)ˉ¹ =s₂ˉ¹s₁ˉ¹ ; s₁ ,s₂  S. when n ˃ 2 This case is a 

generalization of the two cases (i) - (ii) and prove holds by the induction 

method. We'll write d (s) = sˉ¹s, r (s) = ssˉ¹. 

 

By the above, we find deduce the characteristics: 

 

(i) (sˉ¹)ˉ¹ = s for all sS.   

(ii) (s t)ˉ¹ = t ˉ¹ s ˉ¹ for all s, t  S.  

 

4.4.2. Proposition  

 

Let S be an inverse semigroup. Then we have 

 

(i) For any idempotent e and s, there is an idempotent ƒ such as, es = sƒ. 

(ii) For any idempotent e and s, there is an idempotent ƒ such as, se = ƒs. 

 

 Proof.  

 

(i) Let ƒ= sˉ¹ es be an idempotent, then sƒ= s(sˉ¹es) = (ssˉ¹) es = e(ssˉ¹) s = es. 

(ii) Let ƒ= sˉ¹ es be an idempotent, then ƒs= (sˉ¹es) s = (sˉ¹s) es = (s sˉ¹ s) e =se. 

 

4.4.3. Proposition  

 

Let A be a non-empty subset of S, the product of the intersection of all the inverse 

subsets of S that contain A is called an inverse subset of S. It consists carefully of all 

products of elements drawn from the set A ∪Aˉ¹. 
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4.4.4. Proposition  

 

Groups are exactly the inverse semigroups with precisely one idempotent. 

 

Proof.  

 

Let S be an inverse semigroup with precisely one idempotent, say e. Then sˉ¹s = e = s 

sˉ¹ for each s  S. But es = (s sˉ¹) s = s = s (s ˉ¹s) = se, and so e is the identity of S. 

Hence S is a group.  

 

Suppose S is an inverse semigroup and has an identity we say that S is an inverse 

monoid for example an element; e and symbolize it S¹. If S has a zero element, then 

S is an inverse semigroup with zero and denoted by Sº. Each inverse semigroup can 

be converted to an inverse monoid or inverse semigroup with zero through aligning 

zero or adjoining an identity by the following way. 

 

4.4.5. Example  

 

Let S is a semigroup. We define a monoid S1 in the following. If S is inverse, then Sˡ 

is an inverse monoid Sˡ. If S is a monoid, then Sˡ = S. If S isn't a monoid, then Sˡ= S 

∪ {1} also with the multiplication in S extended to Sˡ by defining 1s = s1= s for each 

s ∈ S and 1.1 = 1. Then Sˡ is a monoid.     

             

4.4.6. Example  

 

Let S is a semigroup. We define a zero monoid Sº in the following. if S is inverse 

then Sº is an inverse zero Sº. If S is a zero monoid, then Sº= S. If S isn't a zero, then 

Sº= S ∪ {1} also with the multiplication in S extended to Sº by defining 0s = s0= s 

for each s ∈ S and 0.0 = 0. Then Sº is a zero. 
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4.5. IDEALS  

 

Suppose X and Y are two subgroups of a semigroup S. Where X ={x} and Y = {y}, 

their product XY is a subset of the product of X elements with Y elements, denoted 

by xY instead of {x}Y and the same for the other set Xy by X {y}. 

 

Suppose S is a semigroup, a subset A of S, If sa A where a A and s  S are called 

left ideals, and if as  A are called right ideals, where a A and s  S. Each of the 

subsets representing left and right ideals is called ideals, then is considered the result 

of the intersection of any empty set of right ideals is a right ideal and similarly for the 

left ideals (left ideal). We say about the left ideal that contains s the basic left ideal, if 

there is a smaller left ideal that contains s where s  S. And the same for the right 

ideal. 

 

Suppose S is arbitrary group. We say about the basic left ideal that contains s is a 

generator of this ideal, and defined by the S¹s.Likewise, we say about the basic right 

ideal that contains s is a generator of this ideal and defined by the s S¹. 

 

Suppose S is a semigroup, if s = (ssˉ¹)s = s(sˉ¹s), where s sS and s Ss. then We 

say about the right ideal that contains s  is called the basic right ideal and symbolizes 

by sS. We say about the left ideal that contains s is called the basic left ideal and 

symbolizes by Ss. And we say both basic right ideal and basic left ideal is called the 

basic two-sided ideal and symbolizes by SsS. 

 

Suppose A is a group, for every a A, then aA = Aa = A. We note that ideals have 

no influence in group theory, on the contrary, in inverse semigroup theory they have 

a very important role. 

 

4.5.1. Proposition  

 

Let S is an inverse semigroup. Then 
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 (i)  if aS = aaˉ¹S for each aS, there exists aaˉ¹ is the only idempotent generator 

for aS. 

(ii)  if Sa = Saˉ¹a for each aS, there exists aˉ¹a is the only idempotent generator 

for Sa. 

(iii) for e and ƒ are idempotents, so eS ∩ƒS = eƒS.   

(iv) for e and ƒ are idempotents, so Se ∩ Sƒ = Seƒ. 

 

Proof.  

 

(i)  We have that aS = aaˉ¹aS= (aaˉ¹) aS ⊆ (aaˉ¹) S ⊆ aS, so aS =aa ˉ¹S. Now let e 

any idempotent like that aS =eS, this means that aS = aaˉ¹S=es, so aaˉ¹=es and 

e = aaˉ¹t for s, t ∈ S. Since aaˉ¹ and e idempotents commute, eaaˉ¹= aaˉ¹ and 

aaˉ¹e =e. Hence aaˉ¹ =e, so aS = aaˉ¹S. 

(ii)  We have that Sa = Saaˉ¹a= Sa(aˉ¹a) ⊆S(aˉ¹a) ⊆ Sa, so Sa =Sa ˉ¹a. Now let e 

be any idempotent such that Sa =Se, this means Sa = Saˉ¹a=se. Thus aˉ¹a=se 

and e = aˉ¹a t for s,t S. Since aˉ¹a and e idempotents commute, eaˉ¹a= aˉ¹a 

and aˉ¹ae =e. Hence aˉ¹a=e, so Sa = Saˉ¹a.  

(iii) Suppose that aeS ∩ƒ S, then ea = a and ƒa = a. Thus (eƒ)a = e(ƒa) =ea = a, 

and so aeƒS. To prove the Converse, if aeƒS then ea = a and ƒa = a since 

and ƒ are idempotents commute. So, aeS ∩ƒS, Thus, eS ∩ƒS = eƒS.   

(iv) Let aSe ∩Sƒ, then ae = a and aƒ = a. Thus a(eƒ) = (aƒ)e =ae = a, and so 

aSeƒ. Conversely, if aSeƒ then ae = a and aƒ = a since e and ƒ are 

idempotents commute. So, aSe ∩Sƒ, Thus, Se ∩ Sƒ = Seƒ. 

 

4.6. THE NATURAL PARTIAL ORDER  

 

The symmetric inverse monoid is ordered by the restriction order. One can define a 

relation ≤ for some idempotent e for all inverse semigroup S, in the following way:  

 

s ≤ t ↔ s = te. 
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4.6.1. Proposition  

 

Suppose S is an inverse semigroup. Then the followings hold: 

 

(i)  s ≤ t. 

(ii)  s = ƒt for some idempotent ƒ. 

(iii) sˉ¹ ≤t ˉ¹. 

(iv) s = ss ˉ¹t. 

(v)  s = ts ˉ¹ s.   

 

Proof.  

 

(i) Suppose s = te, then s = ƒt. Let ƒ = tˉ¹et be an idempotent, then S=(tˉ¹e t)t=(t 

tˉ¹)(te) =(t tˉ¹t)e= te. Thus s= te and s= ƒe and so s ≤ t. 

(ii) Suppose s =ƒt for idempotent ƒ. Thus, sˉ¹=tˉ¹ ƒ ˉ¹, by definition 3.6. We find 

that sˉ¹≤tˉ¹. 

(iii) Suppose sˉ¹ ≤ tˉ¹ for some idempotent e. Then sˉ¹ = tˉ¹e. But s = et, es = s and 

so e s sˉ¹ = s sˉ ¹. Thus s = ssˉ¹t.  

(iv) Suppose sˉ¹ =ssˉ¹ t for some idempotent e. Then s=te . But se= s and 

sˉ¹se=sˉ¹s. Thus s = ssˉ¹t.  

(v) It holds by (iv).  

 

Suppose (K, ≤) is a partiallly ordered set. So, we have a subset H of K be an order 

ideal if d ≤ z  H denotes that d  H. The principal order ideal of K containing d is 

the set [d] = {z  K: z ≤ d} Moreover, if M is any subset of K then [M] = {z  K: z 

≤ a for some a  M}. The order ideal is generated by M.    

 

4.6.2. Proposition  

 

Let S be an inverse semigroup. Then 

 

(i) The relation ≤ is a partial order on S. 

(ii) For idempotents e, ƒ  S we have e ≤ƒ iƒ and only iƒ e = e ƒ = ƒ e. 
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(iii) If s ≤ t and x ≤ y, then sx ≤ ty. 

 (iv) If s ≤ t, then ssˉ¹ ≤ ttˉ¹ and sˉ¹s ≤ tˉ¹t. 

(v) E(S) is an order ideal of S. 

 

Proof.  

 

(i)  We have that s = s(sˉ¹s), this means that the relationship is reflexive. Also 

suppose that s ≤ t and t ≤ s. Thus s = tsˉ¹s and t = stˉ¹t. It means that s = tsˉ¹s = 

st ˉ¹ts ˉ¹s = st ˉ¹t = t, so that a relation is antisymmetric. Let s ≤ t and t ≤ v, so s 

= te and t = vƒ for some idempotetns e, ƒ. Thus s = te =(vƒ)e = v(ƒe). This 

means that s ≤ v. 

(ii)  Let e ≤ƒ. So, e =ƒi. For idempotent i, ƒe = e and thus the e = ƒe = eƒ. To 

prove the opposite, suppose S be an inverse semigrup and e, ƒS, then e ≤ ƒ 

ana thus that e, ƒ idempotents.    

(iii) Assume that s ≤ t and x ≤ oy. For some idempotents e, ƒ. Like that s = te and 

x = yƒ. Thus sx = teyƒ. By the Proposition 3.4.2, we have ey = yi for some 

idempotent i. Hence sx = ty(iƒ), and so sx ≤ ty. 

(iv) By Proposition 3.6.1. Let s ≤ t, then sˉ¹=tˉ¹ƒ. If sˉ¹≤tˉ¹, then sˉ¹s=tˉ¹tƒ. If sˉ¹s ≤ 

tˉ¹t. We also have ssˉ¹ =ƒ t tˉ¹ for idempotent ƒ. So ssˉ¹=ttˉ¹ƒ. Thus, by the 

definition ssˉ¹ ≤ ttˉ¹. Hence sˉ¹s ≤ tˉ¹t and ssˉ¹ ≤ ttˉ¹. 

(v) E(S) is closed under multiplication. By the definition of the natural partial 

order, E(S) is called the natural partial order on S.   

 

Suppose S is a semigroup and ≤ partial order defined in S. If for each x, y, z and d S. 

So, we have x ≤ y and z ≤ d which means that xz ≤ yd. We say S be compatible with 

multiplication and partially ordered by ≤. Note that if G is an inverse subset of S, the 

natural partial order is defined on G agrees with the restriction on G for the natural 

partial order on S. 

 

suppose (K, ≤) be positive. We say 𝜅 be the lower bound of a and b if 𝜅 ≤ 𝜐,𝜇.We 

say κ be the greatest lower bound if 𝜅 is the largest lower bound and denoted by 𝜐 ˄ 

𝜇. In a poset, if every pair of elements has a greatest lower bound, then it is called 

meet semilattice.   
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4.6.3. Proposition  

 

Let S be any semigroup. A relation ≤ on E(S) defined by 

e ≤ ƒ ↔e = eƒ = ƒe. 

Thus, ≤ is a partial order on E(S). Moreover, if S is an inverse semigroup, then (E(S), 

≤) is a meet semilattice. 

 

Proof.  

 

(i) Reflexivity: suppose eE(S), thus e ≤ e since e is idempotent.  

(ii) Antisymmetric: Let e ≤ ƒ and ƒ ≤ e. Then e = eƒ = ƒe and ƒ = ƒe = eƒ. Thus e 

= ƒ.  

(iii) Transitivity: Let e ≤ ƒ and ƒ ≤ g. Then e = eƒ = ƒe and ƒ = ƒg = gƒ. This leads 

e = eƒ = ƒe, e = eƒ = e(ƒg) = (eƒ)g = eg.  Also, ƒ = ƒg = gƒ, e = ƒe = (ƒg)e = 

ge. It is produced from both e =ge =eg. Thus e ≤ g.  Now let S is an inverse 

semigroup. Let e, ƒ E(S). Then (eƒ)e = (ƒe)e = ƒe. This leads to eƒ ≤ e. Also 

(eƒ)ƒ = (ƒe)ƒ =eƒ = ƒ(eƒ)= ƒe. This leads to Thus eƒ ≤ƒ. Also, suppose i ≤ e, 

ƒ. Then i(eƒ) = (ie)ƒ = iƒ as i ≤ e, and iƒ = i as i ≤ ƒ. So, i ≤ eƒ. this results in 

e ˄ ƒ = eƒ. This means that (E(S), ≤) is a meet semilattice. 

 

4.6.4. Proposition  

 

All meet semilattices are inverse semigroups, and also an inverse in which every 

element is an idempotent is a meet semilattice. 

 

Proof.  

 

Suppose (G, ≤) be a meet semilattice. So, one gets e = e ˄ e for all element e G. 

This means that (G, ˄) be an inverse semigroup where any element is idempotent. To 

prove the converse clear by Proposition 3.6.3. Suppose S is semigroup and define a 

relation ≤ on G by   

 

                                                        e ≤ ƒ ↔e = eƒ = ƒe. 
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Now suppose i ≤ e, ƒ. Thus, i(eƒ) = (ie)ƒ = iƒ as i ≤ e, and iƒ = i as i ≤ ƒ. So, i ≤ eƒ. 

this results in e ˄ ƒ = eƒ. This means that (G, ≤) is a meet semilattice. 

 

4.6.5. Proposition  

 

An inverse semigroup is a group if and only if natural partial order is the equality 

relation. 

 

Proof.  

 

Let the natural partial order is the equality relation. And the natural partial order has 

two idempotents e, f then eƒ ≤ e, ƒ. So, e = ƒ. We know S has single only 

idempotent. This means S an inverse semigroup. The converse is immediate by 

Proposition 3.4.4. Let S be an inverse semigroup, and it S has completely one 

idempotent, so sˉ¹s =e =ssˉ¹ for sS but es = (ssˉ¹) s =ssˉ¹s = s= s(sˉ¹s) =se. Thus, e is 

the identiity of S. Hence S is group. 

  

4.7. THE COMPATIBILITY RELATIONS  

 

If ƒ, g  I(X), then ƒ ∪ g is a partial function accurately, then ƒ gˉ¹ is an idempotent 

and if ƒ ∪ g is a partial bijection accurately, then ƒ gˉ¹ and ƒ ˉ¹g are idempotents. For 

s, t  S, the left compatibility relation is 

 

s ~ı  t ↔ s tˉ¹  E(S), 

 

the right compatibility relation is 

 

s ~ᵣ t ↔ sˉ¹ t  E(S), 

 

and intersection of these two relations is  

 

s ~t ↔ s tˉ¹, sˉ¹ t  E(S). 
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All previous relations are symmetric, reflexive and but that any of them have don't to 

be transitive. 

 

4.7.1. Proposition  

 

Let S be an inverse semigroup and s, t  S. Then 

 

(i) s~𝚤 t if and only if the greatest lower bound s ˄ t of s, t exists and (s ˄ t)ˉ¹(s ˄ 

t)=sˉ¹stˉ¹t. 

(ii) s ~ᵣ t if and only if the greatest lower bound s ˄ t of s, t exists and (s ˄ 

t)(s˄t)ˉ¹=ssˉ¹ttˉ¹.  

(iii) s ~ t if and only if the greatest lower bound s ˄ t of s, t exists and  

(s ˄ t) (s ˄ t)ˉ¹ =ss ˉ¹tt ˉ¹ and (s ˄ t)ˉ¹(s ˄ t) =s ˉ¹st ˉ¹t. 

 

 

Proof.  

 

(i)  Let s~𝚤 t and say x = st ˉ¹t, then x ≤ s and x ≤ t since st ˉ¹ is idempotent. Now 

let y ≤s, t, then y ≤ s and y ≤ t, so we have y ˉ¹y ≤t ˉ¹t which implies that y ≤ 

stˉ¹t = x. Thus, x = s ˄ t. Also xˉ¹x = (stˉ¹t)ˉ¹( stˉ¹t) = (tˉ¹tsˉ¹)( stˉ¹t) = sˉ¹stˉ¹t.  

Conversely, suppose that s ˄ t exists and (s ˄ t)ˉ¹(s ˄ t) =s ˉ¹st ˉ¹t. Put x =s ˄ t. 

Then x = sxˉ¹x and x = txˉ¹x. Thus, sxˉ¹x = txˉ¹x, and so stˉ¹t = tsˉ¹s. Thus, stˉ¹ 

= tsˉ¹stˉ¹ which is idempotent.  This means that, s~ı t. 

(ii)  Let s~ᵣ t and say a = ssˉ¹t, then a ≤ s and a ≤ t since sˉ¹t is idempotent. Now let 

b ≤s, t, then b ≤ s and b ≤ t so that bb ˉ¹ ≤ tt ˉ¹ and this implies that b ≤ ssˉ¹t = 

a. Hence a = s ˄ t. Also aaˉ¹ = (ssˉ¹t)( ssˉ¹t )ˉ¹ = (ssˉ¹t)( tˉ¹ssˉ¹) = ssˉ¹ttˉ¹. 

On the other hand, suppose that s ˄ t exists and (s ˄ t) (s ˄ t)ˉ¹ =s ˉ¹st ˉ¹t. Put a 

=s ˄ t. Then a = saaˉ¹ and a = taaˉ¹. Thus saaˉ¹ = taaˉ¹ , and so sttˉ¹ = tssˉ¹. 

Hence stˉ¹ = tssˉ¹tˉ¹ = ssˉ¹ttˉ¹ it is idempotent. Then s~ᵣ t. 

(iii) It follows by (i) and (ii). 
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4.7.2. Proposition  

 

Let S be an inverse semigroup. Then 

 

(i) If s~𝚤 t, then we have s ˄ t = stˉ¹t = tsˉ¹t = tsˉ¹s = stˉ¹s. 

(ii) If s ~ᵣ t, then we have s ˄ t = ssˉ¹t = stˉ¹s = ttˉ¹s = tsˉ¹t.  

(iii) If s~ t, then we have s ˄ t = stˉ¹t = tsˉ¹t = tsˉ¹s = stˉ¹s = ssˉ¹t = ttˉ¹s. 

 

Proof.  

 

(i)  Let x = st ˉ¹t, then x ≤ s and x ≤ t since st ˉ¹ is idempotent. Now let y ≤s, t, 

then y ≤ s and y ≤ t, so we have y ˉ¹y ≤t ˉ¹t and this implies that y ≤ stˉ¹t = x. 

Hence s ˄ t = x =s t ˉ¹t and one gets st ˉ¹ = (st ˉ¹)ˉ¹ = tsˉ¹. Hence, st ˉ¹ t= tsˉ¹t. 

Through the symmetry also, we have s ˄ t = tsˉ¹ s and s ˄ t = st ˉ¹s. 

(ii)  Let a = ssˉ¹t, then a ≤ s and a ≤ t since sˉ¹t is idempotent. Now let b ≤s, t, then 

b ≤ s and b ≤ t. Then bb ˉ¹ ≤ t t ˉ¹ and so b ≤ ssˉ¹t = a. Hence s ˄ t = a = ssˉ¹t 

and we have sˉ¹t = (sˉ¹t)ˉ¹ = s tˉ¹. Thus, ssˉ¹t = ttˉ¹s. By the symmetry we also 

have s ˄ t = s tˉ¹s and s ˄ t = tsˉ¹t. 

(iii) It follows by (i) and (ii). 

 

4.7.3.  Proposition  

 

Suppose k be one either of the three cases ~ı, ~ᵣ, and ~. Then the following two 

properties are preserved: 

 

(i) s k t and x k y imply that sx k ty. 

(ii) s ≤ t, x ≤ y and t k y imply that s k x. 

 

Proof.  

 

We shall prove the results for k = ~ 𝚤. 
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(i)  Let s ~𝚤 t and x ~𝚤  y. Then stˉ¹, xyˉ¹ E(S). Since xyˉ¹ is idempotent, sx(ty)ˉ¹ 

= s(xyˉ¹) tˉ¹ ≤ stˉ¹. Hence sx(ty)ˉ¹ is idempotent and so s x ~𝚤 ty. Let s ~ᵣ t and 

x ~ᵣ y, then sˉ¹t, xˉ¹y  E(S). But (sx)ˉ¹ ty = s ˉ¹(xˉ¹y) t ≤ sˉ¹t since xˉ¹y is 

idempotent. Hence (sx)ˉ¹ty is an idempotent, and so sx ~ᵣ ty. By the two 

previous relations, we find sx ~ ty.  

(ii) Let s ≤ t and x ≤ y and t ~𝚤 y, then sxˉ¹ ≤ tyˉ¹ E(S).  Thus, s ~𝚤 y. Let s ≤ t 

and x ≤ y and t ~ᵣ y and so sˉ¹x ≤ tˉ¹y E(S). Hence s ~ᵣ y. By the two 

previous relations, we have s ~ y.  

 

4.7.4. Definition  

 

Let S an inverse semigroup and X subset of S, we say X is compatible if any pair of 

elements in X are compatible. 

 

4.7.5. Proposition  

 

Let S be an inverse semigroup and s, t  S. Then 

 

(i) If s ~ı t and sˉ¹s ≤ tˉ¹t then s ≤ t. 

(ii) If s ~ᵣ t and ssˉ¹ ≤ ttˉ¹then s ≤ t. 

(iii) [s] is a compatible subset of S. 

 

Proof.  

 

(i) Since sˉ¹s ≤ tˉ¹t, s ≤ stˉ¹t. Where stˉ¹ is an idempotent and thus (stˉ¹) t ≤ t. Then 

s ≤ t. 

(ii) We have ssˉ¹ ≤ ttˉ¹ this means that s ≤ ttˉ¹s and so s ≤ stˉ¹t. Where stˉ¹ is 

idempotent and thus (stˉ¹) t ≤ t. Then s ≤ t. 

(iii) We say [s] is compatible if any pair of elements in [s] are compatible. 

Suppose s ≤ t and u ≤ v and s ~ı t. And therefore, suˉ¹ ≤ tvˉ¹ E(S). This 

means that [s] is compatible. 
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4.7.6. Definition  

 

Let S an inverse semigroup. If sˉ¹t = 0 = stˉ¹, we say s, t S are orthogonal and 

denoted by s ⊥ t. 

 

4.8. MEETS AND JOINS  

 

4.8.1. Proposition  

 

Let S be an inverse semigroup and X a non-empty set of idempotents. Then 

 

(i) If  ∧  X found, this means idempotent.  

(ii) If  ∨ X found, this means idempotent. 

 

Proof.  

 

(i) Since idempotents form an order ideal, prove holds. 

(ii) Let x = ∨ X, then e ≤ x for each eX. Thus e ≤ xˉ¹x for each eX.  

 

Hence x ≤ x ˉ¹x, so that x is idempotent.  

 

4.8.2. Note  

 

Let S be an inverse semigroup, for any non-empty subset of S it is possible have a 

meet, otherwise of joins. 

 

4.8.3. Proposition  

 

Let S be an inverse semigroup and let X be a non-empty subset of S such that ∨ X 

exists. So, any two elements of X are compatible. 
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Proof.  

 

Let x, y  X. By the definition, we have x,y ≤ ∨ X. Thus x ~ y by Proposition 3.7.4.   

 

4.8.4. Definition  

 

An inverse semigroup is complete if every non-empty compatible subset has a join.  

 

4.8.5. Proposition  

 

Let S be an inverse semigroup and let X = {xi: i I} be any non-empty subset of S.  

 

Then 

 

(i) If ∨ xi exists, then ∨ xi
-1xi   exists and (∨ xi)

 -1 (∨ xi)   = ∨ xi
-1xi  

(ii) If ∨ xi exists, then ∨ xi xi
-1 exists and (∨ xi) (∨ xi) 

-1   = ∨ xi xi 
-1 

 

Proof.  

 

(i)  Let x = ∨ xi . Then xi ≤ x implies xᵢˉ¹xᵢ ≤ x ˉ¹x. Thus, the set {xᵢˉ¹xi: i  I} is 

bounded above by xˉ¹x. Now let that xᵢˉ¹xᵢ ≤ y for some y S and for each i  

I. So, xi ≤ xi y ≤ xy for all i  I. Thus x = ∨ xi ≤ xy. But then x = (xxˉ¹) xy = 

xy, so that xˉ¹x = xˉ¹xy. Hence xˉ¹x ≤ y. It follows that ∨ xᵢˉ¹xi = xˉ¹x. 

(ii)  Let x = ∨ xi, then xi ≤ x implies xᵢ xᵢˉ¹ ≤ x xˉ¹. Thus, the set {xi xiˉ¹: i  I} is 

bounded above by x xˉ¹. Now let that xᵢ xᵢˉ¹≤ y for some y S and for each i 

 I. So, xi ≤ xi y ≤ xy for all i  I. Thus x = ∨ xi ≤ xy. But then x = (xˉ¹x)xy = 

xy, so that x xˉ¹ = x xˉ¹y. Hence x xˉ¹ ≤ y. It follows that ∨ xᵢ xiˉ¹ = x xˉ¹.  

 

4.8.6. Proposition  

 

Let S be an inverse semigroup and let X = {xi: i  I} a non-empty subset of S and s 

 S.  
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Then 

 

(i) If x = ∨ xi and xi xiˉ¹ ≤ sˉ¹s for each i I then ∨ sxi exists and sx = ∨ sxi. 

(ii) If x = ∨ xi and xiˉ¹xi ≤ ssˉ¹ for each i I then ∨ xis exists and xs = ∨ xis.  

 

Proof.  

 

(i)  Since xi ≤ x for each i I, we have sxi ≤ sx for each i I. Thus the set {sxi:i 

I} is bounded above by sx. Now let that sxi ≤ y for some y  S and for each i 

I. Then sˉ¹sxi ≤ sˉ¹y and so xi ≤ sˉ¹y since xixiˉ¹ ≤ sˉ¹s. Thus x ≤ sˉ¹ y and so 

sx ≤ ssˉ¹y ≤ y. It follows that ∨ sxi = sx.  

(ii)  Since xi ≤ x for each i I, we have xis ≤ xs for each i I. Thus, the set {xis: 

i I} is bounded above by xs. Now let that xisˉ¹ ≤ y for some y  S and for 

each i I. Then sxisˉ¹ ≤ sy and so xi ≤ sy since xiˉ¹xi ≤ ssˉ¹. Thus x ≤ sy and so 

sˉ¹x ≤ ssˉ¹y ≤sˉ¹ y. It follows that ∨ xis = xs. 

 

4.8.7. Proposition  

 

Let S be an inverse semigroup and let X = {xi: i  I} a non-empty subset of S and s 

 S.  

 

Then 

 

(i) If x = ˄ xi exists, then ˄ sxi exists and ˄ sxi = sx.  

(ii) If x = ˄ xi exists, then ˄ xis exists and ˄ xis = xs. 

 

Proof. 

 

(i)  By the definition, x ≤ xi for each i I, and thus sx ≤ sxi for each i  I. So the 

set {sxi: i I}, it is bounded from below by sx. Also, suppose that y ≤ sxi for 

some y  S and for each i  I. Then sˉ¹y ≤ sˉ¹ sxi ≤ xi, thus that sˉ¹y ≤ x. 
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Hence ssˉ¹y ≤ sx. Now y ≤ sxi and so yyˉ¹ ≤ (sxi)(sxi)ˉ¹ = sxixiˉ¹sˉ¹ ≤ ssˉ¹. 

Thus, ssˉ¹y = y, and so y ≤ sx. It follows that ˄ sxi = sx. 

(ii)  By the definition, x ≤ xi for each i I, and thus xs ≤ xis for each i  I. So, the 

set {xis: i I}, it is bounded from below by xs. Also, suppose that y ≤ xis for 

some y S and for each i  I. Then ysˉ¹ ≤ xissˉ¹ ≤ xi, thus that ysˉ¹ ≤ x. Hence 

ysˉ¹s ≤ xs. Now y ≤ xis and so yˉ¹y ≤ (sxi)ˉ¹(sxi) = sˉ¹xiˉ¹xis ≤ sˉ¹s. Thus, sˉ¹sy 

= y, and so y ≤ xs. It follows that ˄ xis = xs. 

 

4.8.8. Definition  

 

Let S be an inverse semigroup and A is a non-empty subset of S. If A has ∨ A, then ∨ 

sA is present s(∨A) = ∨ sA for every element s  S, then S is called be left infinitely 

distributive. The infinitely distributed left and right a semigroup are called infinitely 

distributed.  

 

4.9. HOMOMORPHISMS  

 

Homomorphisms between inverse semigroups are just semigroup homomorphisms. 

If (A, ≤) and (A', ≤) are possets, then a function θ: A → A' is called order-preserving 

if x ≤ y so that θ(x) ≤ θ(y). 

 

4.9.1. Proposition  

 

Let θ: S → T be a homomorphism between two inverse semigroups S and T.  

 

Then 

 

(i) θ(sˉ¹) = θ(s)ˉ¹ for all s  S. 

(ii) If e is an idempotent element, then θ(e) is idempotent. 

(iii) If θ(s) is an idempotent element, then there exists an idempotent e in S such 

that θ(s)= θ(e). 

(iv) Imθ is an inverse subsemigroup of T.  
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(v) If U is an inverse subsemigroup of T, then θˉ¹(U) is an inverse subsemigroup 

of S. 

(vi) The function θ is order- preserving.  

(vii) Let x, y  S such that θ(x) ≤ θ(y). Then there exists an element x'  S such 

that x' ≤ y and θ(x') = θ(x).  

 

Proof.  

 

(i) We have θ(s)θ(s ˉ¹)θ(s) = θ(s) and θ(s ˉ¹)θ(s)θ(s ˉ¹) = θ(s ˉ¹). Thus by 

uniqueness of inverses we have that θ(s ˉ¹) = θ(s) ˉ¹. 

(ii) θ(e)2 = θ (e)θ(e) = θ(e).  

(iii) If θ(s)2 = θ(s), then θ(s ˉ¹s) = θ(s ˉ¹)θ(s) = θ(s) ˉ¹θ(s) = θ(s)2 = θ(s). 

(iv) Since θ is a semigroup homomorphism, imθ is a subsemigroup of T. By (i), 

imθ is closed under inverses. 

(v) It is clear, immediately.  

(vi) Suppose that x ≤ y. Then x = ye for some idempotent e. Then θ(x) = θ(y)θ(e) 

and θ(e) is idempotent. Hence θ(x) ≤ θ(y). 

(vii) let x' = yxˉ¹x. Then x' ≤ y, and θ(x') = θ(y)θ(xˉ¹x) = θ(x).   

 

Let θ: S → A be covering homomorphism; we call that S is a covering of A. 

 

Let θ: B → A be a perfect homomorphism, and B is an inverse subset of S, we call 

that A divides S. For there to be a monoid homomorphism, a homomorphism 

between monoids is necessary to preserve identities. Same a way, if zero semigroups 

are to have homomorphism, a homomorphism between zero semigroups is required 

to preserve the zeros. The similarity from an inverse semigroup S to a symmetric 

inverse monoid is called the representation of S by partial bisection. And if A 

homomorphism is injective, then the representation is called safe. 

 

The homomorphism ϕ: S → T between inverse semigroups means that for each 

subset A ⊆ S in which ⋁ A exists, ⋁ ϕ(A) in T and ϕ (⋁ A) = ⋁(ϕ(A)) cases it is said 

to preserve the concatenation. For each subset A ⊆ S such as ∧ A exists, 

homomorphism is said to be conserving if T has ∧ ϕ(A) and ϕ (∧ A) = ∧(ϕ(A)). 
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PART 5 

 

THE RELATIONSHIP BETWEEN INVERSEMIGROUPS AND THE 

LEAVITT PATH ALGEBRA 

 

In this proposal we study formal presentation of inverse semigroups built from 

directed graphs. Thus, this study is referred as Leavitt inverse semigroups. In this 

chapter, we explain the structure of the Leavitt inverse semigroup, these semigroups 

are strongly related with the graph inverse semigroups and Leavitt path algebras. We 

also introduce a class for the Leavitt inverse semigroup of a graph. We refer to LΙ(E) 

as a multiplicative subsemigroup of LF(E) produced by E0∪ 𝐸1∪(E1)∗. The main 

reference for this chapter is [8]. 

 

5.1. THEOREM  

 

If p is a directed path in E and 𝜈 ∈ E0, then the following elements are basis for 

Leavitt path algebra LF (E):          

 

(i) 𝜈,  p, p∗,                                                                                                                               

(ii) pq∗ where p =e1...en, q=f1...fm, ei, fj ∈E1, r(en) = r(fm), and either en ≠ fm or en=fm 

but this edge   en=fm is not special.  

 

5.2. THEOREM  

 

Let E graph, LI(E)is an inverse semi-group. If LI(E) ≅L(E), then.  

 

(i) pq∗ where p =e1...en, q=f1...fm are (maybe empty) directed paths with r(en) = 

r(fm) and en≠fm. 

(ii) pq∗ = p'ee∗q'∗ where p'and q' are (maybe empty) directed paths with r(p') =r(q') 

and the vertex s(e) =r(p') =r(q') has out-degree ≥ 2. 
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5.3. DEFINITION  

 

Let p =e1e2...en be a directed path in a graph E. If at least one of the s(ei) has out-

degree greater than 1, then p exits. Particularly, an edge e ∈ E1exits if and only if s(e) 

has out-degree greater than 1. Also, the directed path p =e1e2...en has no exits (NE) if 

every vertex s(ei), i =1, ..., n has out-degree 1. Moreover, the empty path is defined at 

any vertex 𝜈 to be an NE path. 

 

5.4. THEOREM  

 

For any graph E, the elements of the non-zero idempotents of LI(E) are defined by 

pp∗. Moreover pp∗ = qq∗ in LI(E) if and only if either q = pp1 for NE path p1 or p = 

qq1 for NE path q1. Especially, pp∗= 𝜈 in LI(E)for some 𝜈 ∈ E0 if and only if 𝜈 = s(p) 

and p is an NE path. 

 

5.5. THEOREM  

 

Let E graph, the congruence ↔is the nucleus of the natural homomorphism that is 

LI(E) ≅ I(E)/↔. 

 

Proof.  

 

We have that the nucleus of the natural homomorphism from I(E) to LI(E)is the 

congruence 𝜌 defined a relation by {(ee∗, s(e)):s(e)has out-degree 1in E0}.Let e be an 

edge of E, s(e) has out-degree1.Then s(e) ρ ee∗. Let 0<x≤s(e) in I(E). Then x =pp∗ for 

some directed path p with s(p) =s(e). As for p =s(e)or p =eq for directed path q with 

s(q) =r(e). It is clear that s(e)↓∩(ee∗)↓≠{0}.Also, if p =eq, we have 

(pp∗)↓={eqtt∗q∗e∗:s(t) =r(q)},so (pp∗)↓∩(ee∗)↓ ={0}.Thus s(e) →ee∗. Also, since 

ee∗≤s(e), ee∗→s(e). Thus, s(e) ↔ee∗ and so ρ ⊆↔. p1q1
∗, p2q2

∗, are non-zero elements 

of I(E) so p1q1
∗↔ p2q2

∗. Then (p1q1
∗)↓∩( p2q2

∗)↓≠{0}, so there exists paths t1,t2 such 

that p1t1t1
∗q1

∗= p2t2t2∗q2
∗. As for p1 is a pseudo of p2 or p2 is a pseudo of p1. Let d is an 

NE path, p2=p1d for some path d=e1e…en. If not, then 1 ≤i ≤n such that s(ei)has out-

degree ≥ 2, and so there is some edge f with f ≠ei and s(f) =s(ei). Let d1=e1...ei-1and 
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d2=e1...en. Then (p1d1ff∗d1q1
∗)↓∩(p2q2

∗)↓≠{0}.Hence there exist pathst3,t4suchthat 

p1d1ft3t∗
3f∗d1q1

∗=p2t4t4
∗q2

∗= p1d1d2t4t4∗q2
∗.This implies that d2t4=f t3. However, this is 

not possible because the first edge of d2 is ei ≠f. Therefore, d is an NE path. One gets 

p1t1t4
∗q1

∗= p2t2t2∗q2
∗= p1dt2t2∗q2

∗, so t1=dt2 and hence p2t2= p1t1= q1dt2.This means that 

q2= q1d. So p2= p1d and q2= q1d for some NE path d. Thus, (p1q1
∗) 𝜌 (p2q2

∗). Hence 

↔⊆𝜌. So, the ↔ and 𝜌 coincide.  

 

5.6. NOTE  

 

A graph E receives a directed immersion into a circle R1if and only if all the vertices 

have out-degree ≤ 1.  

 

5.7. DEFINITION  

 

Let X be a set and G a group, then the Brandt semigroup, denoted BX(G), is a 

semigroup and defined as  

 

BX(G) = {(𝑥1, g, 𝑦1): 𝑥1, 𝑦1 ∈ X, g ∈ G} ∪ {0} 

with multiplication (𝑥1, g, 𝑦1) (𝑥2, h, 𝑦2) = (𝑥1, gh, 𝑦2) if 𝑦1 = 𝑥2 and 0 otherwise. 

 

5.8. THEOREM  

 

Let E be a connected graph which immerse into a circle, then the followings are 

hold: 

 

(i) If E is a tree, then LI(E) ≅  𝐵𝐸0 (1), the combinatrorial |E0|×| E0| is a Brandt 

semigroup. 

(ii) If E is not a tree, then LI(E) ≅  𝐵𝐸0 (ℤ), the |E0|×| E0| is a Brandt semigroup 

with maximal subgroups isomorphic to ℤ. 
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5.9. THEOREM  

 

Let E and Δ be two connected graphs which immerse into a circle and F a field. Then 

the followings are equivalent.      

         

(i) LI(E) is isomorphic to LI(Δ); 

(ii) LF(E) is isomorphic to LF(Δ);         

(iii) |E0| =|Δ0|and either E and Δ are both trees or π1(E) ≅π1(Δ) ≅Z. 

 

In the following example, it is shown that if LF(E) is isomorphic to LF(Δ), then LI(E) 

may not be isomorphic to LI(Δ):   

                                                                                                                                                                                                                                                                            

5.10. EXAMPLE  

 

Let E1 and E2 be two graphs as follows:          

                                                                                                                              

                                           

E1:                                                                             E2: 

                             

It is easy to see that LF(E1) ≅ LF(E2), and we see from [2, Theorem 6.12] the 

corresponding Leavitt inverse semigroups are not isomorphic.  

 

5.11. THEOREM  

 

Let E any graph, then the followings hold:  

                               

(i) E0 is the set of maximal idempotents in LI(E).             

(ii) {pee∗ p∗: p is an NE path, e ∈ E1 and the out degree of s(e) ≥2} is the set of 

maximal idempotents of LI(E)∖ E0. 
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5.12. THEOREM  

 

Let E and Δ be two graphs and 𝜃 an isomorphism between the Leavitt inverse 

semigroups LI(E) and LI(Δ), then we have the followings: 

                                                                                                                                         

(i) 𝜃 (𝜈) ∈ △0 for all 𝜈 ∈ E0  

(ii) for each nonzero pq∗ ∈ LI(E), if 𝜃 (pq∗) = p1q1
∗ and q is an NE path, then q1 

is an NE path, 𝜃 (s(p)) = s(p1), 𝜃 (pp∗) = p1 p1
 ∗ and  𝜃 (s(q)) = q1q1

∗ = s(q1).       

(iii) for every nonzero pq∗ ∈LI(E), if 𝜃 (pq∗) = p1q1
∗ and p, q are NE paths, then 

p1, q1are NE paths, 𝜃 (s(p)) = p1 p1
 ∗ = s(p1) and 𝜃 (s(q)) = q1q1

∗ = s(q1).   

(iv) for any e ∈ E1, if s(e) has out-degree ≥ 2, then there is NE paths p1, p2, p3 

and an edge ě for which s(ě) has out-degree ≥ 2 thus 𝜃 (e) = p1ěp2p3
∗ and 

there is NE paths q1, q2 , q3 such that 𝜃 −1(ě) = q1eq2 q3
∗.      

(v) for any 𝜈 ∈ E0, if s−1(𝜈) = {e1, …, en} with n ≥ 2, there is NE paths p, pi, qi 

and distinct edges ěi, i = 1,…., n thus 𝜃 (ei) = pěipiqi
∗ , i = 1,…., n and 

s−1(r(p)) = {ě1, …, ěn}.       

                                                                                                                             

5.13. THEOREM  

 

Let E and Δ be two connected graphs and F a field. If LI(E) is isomorphic to LI(Δ), 

then LF(E)) is isomorphic to LF(Δ). 

 

Proof. 

 

We have LF(E)is isomorphic to the quotient of the contracted semigroup algebra 

F0LI(E)of LI(E) by the ideal I1 defined by elements ∑ 𝑒𝑒 ∗ − 𝜈 𝑒∈𝑠−1(𝜈) for 𝜈 ∈E0 

with the out-degree of 𝜈 ≥ 2. LF (Δ)is isomorphic to the contracted semigroup algebra 

F0LI(Δ)of LI(Δ)by the ideal I2 defined by elements of the form ∑ 𝑑𝑑 ∗𝑑∈𝑠−1(𝑢)

 − 𝑢 for u ∈ E0with the out-degree of u ≥ 2. 

 

Let 𝜃 be an isomorphism from LI(Γ) to LI(Δ). So, 𝜃 is an algebra isomorphism, say 

η, from F0LI(E) to F0LI(Δ). For 𝜈 ∈E0 with the out-degree ≥ 1and any ei∈s−1(𝜈), by 
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Theorem 4.12., there is an NE paths p, pi, qi and edges ě i∈s−1(r(p)) such that 𝜃 (ei) 

=pěipiqi
∗, 𝜃(𝜈) =s(p) and |s−1(𝜈)| =|s−1(r(p)|. Distinct ei correspond to distinct ěi. So,    

 

                                 η(∑ 𝑒𝑒 ∗  − 𝜈) 𝑒∈𝑠−1(𝜈) =∑ 𝜃𝑒∈𝑠−1(𝜈) (ei)(𝜃(ei))
 * −𝑠(𝑝)                                                               

                                                                      = ∑ 𝑝ěěi∈𝑠−1(𝑢) iěi
*𝑝* −𝑝𝑝∗    

                                                                      = 𝑝(∑ ěěi∈𝑠−1(𝑢) iěi
* −𝑢) 𝑝∗ ∈ 𝛪2    

 

Hence η(I1) ⊆I2.Likewise η−1(I2) ⊆I1. So, one gets η(I1) =I2 and η−1(I2) =I1. Hence 

LF(E)) is isomorphic to LF(Δ).                       
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PART 6 

 

CONCLUSION 

 

In this thesis, we studied a class of inverse semigroups built from the Leavitt path 

algebras. In the beginning of the study, we gave our consideration to the Leavitt path 

algebras. To understand this nature, we firstly discussed on directed graphs and its 

properties. In the following, we examined the role of inverse semigroups in algebra. 

Thus, we investigated its structures, ideals and homomorphisms in details. In the last 

chapter, we analyzed the class of inverse semigroups related to the Leavitt path 

algebras. We studied a presentation for the Leavitt inverse semigroups and defined 

the structure of the Leavitt inverse semigroups.   
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