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ABSTRACT 

 

Master Thesis 

 

MONOTONICITY RESULTS FOR DISCRETE CAPUTO-FABRIZIO 

FRACTIONAL OPERATORS 

 

Waad Shaban MAHW 

 

Karabük University 

Institute of Graduate Programs 

The Department of Mathematics 

 

Thesis Advisor: 

Prof. Dr. Şerif AMİROV 

March 2023, 22 Pages 

 

Nearly every theory in mathematics has a discrete equivalent that simplifies it 

theoretically and practically so that it may be used in modeling real-world issues. 

With discrete calculus, for instance, it is possible to find the "difference" of any 

function from the first order up to the n-th order. On the other hand, it is also feasible 

to expand this theory using discrete fractional calculus and make n any real number 

such that the 1⁄2-order difference is properly defined. This thesis is divided into five 

chapters, each of which develops the most straightforward discrete fractional 

variational theory while illustrating some fundamental concepts and features of 

discrete fractional calculus. It is also investigated how the idea may be applied to the 

development of tumors. 

 

The first chapter provides a succinct introduction to discrete fractional calculus and 

several key mathematical concepts that are utilized often in the subject. We 
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demonstrate in Chapter 2 that if the Caputo-Fabrizio nabla fractional difference 

operator (𝑎−1
𝐶𝐹𝑅∇𝛼𝑦)(𝑡)  of order 0 < 𝛼 ≤ 1  and commencing at 𝑎 − 1  is positive for 

𝑡 = 𝑎, 𝑎 + 1, …,  then 𝑦(𝑡) is 𝛼-increasing.  

 

On the other hand, if 𝑦(𝑡)  is rising and 𝑦(𝑎) ≥ 0, then (𝑎−1
𝐶𝐹𝑅∇𝛼𝑦)(𝑡) ≥ 0. 

 

Additionally, a result of monotonicity for the Caputo-type fractional difference 

operator is established. We show a fractional difference version of the mean-value 

theorem as an application and contrast it to the traditional discrete fractional 

instance. 

 

Keywords : Discrete fractional calculus, discrete exponential kernel, Caputo 

fractional difference, Riemann fractional difference, discrete 

fractional mean value theorem. 

Science Code : 20406 
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ÖZET 

 

Yüksek Lisans Tezi 

 

AYRIK CAPUTO-FABRIZIO KESİRLİ OPERATÖRLER İÇİN 

MONOTONLUK SONUÇLARI 

 

Waad Shaban MAHW 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Matematik Anabilim Dalı 

 

Tez Danışmanı: 

Prof. Dr. Şerif AMİROV 

Mart 2023, 22 Sayfa 

 

Matematikteki neredeyse her teorem, teorik ve pratik olarak basitleştiren ayrık bir 

eşdeğere sahiptir, böylece gerçek dünya sorunlarının modellenmesinde kullanılabilir. 

Örneğin, ayrık hesapla (Kalkulus), herhangi bir fonksiyonun birinci mertebeden 

n'inci mertebeye kadar olan "farkını" bulmak mümkündür. 

 

Diğer yandan, ayrık kesirli hesap kullanarak bu teoriyi genişletmek ve 1/2 

mertebeden fark uygun şekilde tanımlanacak şekilde herhangi bir gerçel sayı ya da 

reel sayı yapmak da mümkündür. 

 

Bu tez beş bölüme ayrılmıştır, her bölüm ayrık kesirli hesabın bazı temel 

kavramlarını ve özelliklerini gösterirken en basit ayrık kesirli varyasyon teorisini 

geliştirir. Ayrıca, fikrin tümörlerin gelişimine nasıl uygulanabileceği de 

araştırılmıştır. 
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İlk bölüm ayrık kesirli hesabı ve bu konuda sıklıkla kullanılan birkaç temel 

matematiksel kavramı tanıtmaktadır. Bölüm 2'de, 0<α≤1 mertebesindeki ve a-1'de  

başlayan Caputo-Fabrizio nabla kesirli fark operatörü (〖_(a-1)^CFR〗∇^α y)(t),  t 

= a, a + 1, ... için pozitifse, o zaman y(t) α -artar. 

 

Diğer yandan, y(t) yükseliyorsa ve y(a)≥0 ise, (〖_(a-1)^CFR〗∇^α y)(t)≥0. 

 

Ayrıca, Caputo tipi kesirli fark operatörü için monotonluğun bir sonucu elde 

edilmiştir. Bir uygulama olarak ortalama değer teoreminin kesirli bir fark versiyonu 

gösterilmiştir ve onu geleneksel ayrık kesirli örnekle karşılaştırılmıştır. 

 

Anahtar Sözcükler : Ayrık kesirli hesap, ayrık üstel çekirdek, Caputo kesirli fark, 

Riemann kesirli fark, ayrık kesirli ortalama değer teoremi. 

Bilim Kodu : 20406 
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PART 1 

 

INTRODUCTION 

 

In numerous fields of engineering and research over the past ten years, the fractional 

calculus has been successfully applied [1],[2]. Discrete fractional calculus (DFC) 

was successfully developed using the fundamental ideas of this type of nonlocal 

calculus [3],[4]. This new direction, which was started more than 10 years ago, is in 

a state of steady evolution, and it has just recently started to be recognized as a 

potent instrument for uncovering hitherto unknown dynamics of intricate discrete 

dynamical systems. The discrete diffusion equation included in the discrete Riesz 

derivative was one of the most recent discoveries. The discrete diffusion equation 

included inside the discrete Riesz derivative [5], [6]. Therefore, the discrete 

fractional calculus may be a natural development of the conventional discrete ones. 

And Fabrizio, Caputo[7] On the basis of a nonsingular kernel, a different fractional 

derivative was presented. This operator's discrete variant was described in [8]. We 

think that the appearance of various forms of memory kernels improves the 

likelihood that various kinds of models will be appropriately developed when various 

types of memory emerge. Recent research has looked into discrete functions' discrete 

fractional operators to examine the monotonicity properties of such functions. While 

others looked into fractional difference operators of order 𝛼 > 1 [9],[10], some 

writers addressed the monotonicity analysis of fractional difference operators of 

orders 0 < 𝛼 <  1, such as delta- or nabla-types [11]. These novel findings motivate 

us to compare the monotonicity results for this discrete fractional operator with 

discrete exponential kernel to the discrete classical ones and discuss them in this 

thesis. We think that the fractional differences considered in this thesis result in 

novel kernels with new memories, which might be of diverse importance for 

applications. These kernels differ from the standard nabla fractional differences with 

kernels relying on the increasing factorial powers. 

 



 

 

2 

1.1. PRELIMINARIES  

 

Discrete fractional calculus's fundamental concepts and results are provided in the 

next chapter. The fractional sum and the fractional difference of a function 𝑓(𝑥)  to a 

random order 𝛼, starting from 𝑎, will be denoted by ∇𝑎
−𝛼 𝑓(𝑥) and ∇𝑎

−𝛼 𝑓(𝑥) 

respectively. Where 𝛼 is a real number that is positive, and for a real number 𝑎, we 

demoted ℕ𝑎 = {𝑎, 𝑎 + 1, 𝑎 + 2, … }. Our recommendation for our readers is the 

reference [28] for further information on discrete fractional calculus concepts. 

 

The nabla discrete exponential kernel may be expressed using the time scale notation 

as (1 − 𝛼)𝑡−𝜌(𝑠) where 𝜌(𝑠) = 𝑠 − 1 [29].  

 

1.1.1. Caputo Fractional Difference  

 

The Caputo-Fabrizio in the Caputo sense nabla difference of 𝑓 may be defined as 

follows for 0 < 𝛼 < 1 and 𝑓 defined on ℕ𝑎: 

 

(𝐶𝐹𝐶∇𝑎
𝛼𝑓)(𝑡) =

𝐵(𝛼)

1 − 𝛼
∑ (∇𝑠𝑓)(𝑠)(1 − 𝛼)𝑡−𝜌(𝑠)

𝑡

𝑠=𝑎+1

 

                                                        = 𝐵(𝛼) ∑ (∇𝑠𝑓)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

                (1.1) 

 

where 𝐵(𝛼) is a normalizing positive constant which depends on α and sustaining 

𝐵(0) = 𝐵(1)  = 1[8]. 

 

1.1.2. Riemann Fractional Difference  

 

For 0 < 𝛼 < 1 and 𝑓 defined on ℕ𝑎, the Caputo-Fabrizio in the Riemann sense nabla 

difference of  𝑓 can be defined by: 
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(𝐶𝐹𝑅∇𝑎
𝛼𝑓)(𝑡) =

𝐵(𝛼)

1 − 𝛼
∇𝑡 ∑ 𝑓(𝑠)(1 − 𝛼)𝑡−𝜌(𝑠)

𝑡

𝑠=𝑎+1

 

= 𝐵(𝛼)∇𝑡 ∑ 𝑓(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

                                                         (1.2) 

 

wherever 𝐵(𝛼) is a normalizing positive constant depending on α and satisfying 

𝐵(0) = 𝐵(1)  = 1[8]. 

 

1.1.3. Fractional Sum 

 

For 0 < 𝛼 < 1 and 𝑓 defined on ℕ𝑎, the fractional sum of 𝑓 can be defined by: 

 

 (𝐶𝐹∇𝑎
−𝛼𝑓)(𝑡) =

1 − 𝛼

𝐵(𝛼)
𝑓(𝑡) +

𝛼

𝐵(𝛼)
∑ 𝑓(𝑠)𝑑𝑠

𝑡

𝑠=𝑎+1

                                                     (1.3) 

 

In [8], it was shown that (𝐶𝐹∇𝑎
−𝛼 𝐶𝐹∇𝑎

𝛼𝑓)(𝑡). Also, it was shown that 

(𝐶𝐹∇𝑎
𝛼 𝐶𝐹∇𝑎

−𝛼𝑓)(𝑡). 

 

The following statement and lemma include several elements that are crucial to 

moving forward. 

 

1.1.4. Proposition  

 

The association between Riemann and Caputo kind fractional difference given by 

[12]. 

 

(𝐶𝐹𝐶∇𝑎
𝛼𝑓)(𝑡) = (𝐶𝐹𝑅∇𝑎

𝛼𝑓)(𝑡) −
𝐵(𝛼)

1−𝛼
𝑓(𝑎)(1 − 𝛼)𝑡−𝑎. 

 

1.1.5. Lemma 

 

For 𝛼 ∈ (0,1) and 𝑔 defined on ℕ𝑎, there are 
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(i)  (𝐶𝐹∇𝑎
−𝛼(1 − 𝛼)𝑡)(𝑡) =

(1−𝛼)𝑎+1

𝐵(𝛼)
                                                                          (1.4) 

(ii) ∇𝑠(1 − 𝛼)𝑡−𝑠 = 𝛼(1 − 𝛼)𝑡−𝑠 

(iii) (𝐶𝐹∇𝑎
−𝛼∇𝑔)(𝑡) = (∇𝐶𝐹∇𝑎

−𝛼𝑔)(𝑡) −
𝛼

𝐵(𝛼)
𝑔(𝑎) 

(iv) ∇(1 − 𝛼)𝑡 = −𝛼(1 − 𝛼)𝑡−1 

(v) (𝐶𝐹𝑅∇𝑎
𝛼(1 − 𝛼)𝑡)(𝑡) = 𝐵(𝛼)(1 − 𝛼)𝑡−1[1 − 𝛼(𝑡 − 𝑎)] 

 

Proof 

 

Strat with the proof of (i) 

 

(𝐶𝐹∇𝑎
−𝛼(1 − 𝛼)𝑡)(𝑡) =

1 − 𝛼

𝐵(𝛼)
(1 − 𝛼)𝑡 +

𝛼

𝐵(𝛼)
∑ (1 − 𝛼)𝑠𝑑𝑠

𝑡

𝑠=𝑎+1

 

 

Since α ∈ (0,1)  we can apply geometric series, and we get 

 

=
1 − 𝛼

𝐵(𝛼)
(1 − 𝛼)𝑡 +

𝛼

𝐵(𝛼)
(1 − 𝛼)𝑎+1

1 − (1 − 𝛼)𝑡+1−(𝑎+1)

1 − (1 − 𝛼)
 

=
1 − 𝛼

𝐵(𝛼)
(1 − 𝛼)𝑡 +

𝛼

𝐵(𝛼)
(1 − 𝛼)𝑎+1

1 − (1 − 𝛼)𝑡−𝑎

𝛼
 

=
1

𝐵(𝛼)
[(1 − 𝛼)𝑡+1 + (1 − 𝛼)𝑎+1 − (1 − 𝛼)𝑡+1] 

=
(1 − 𝛼)𝑎+1

𝐵(𝛼)
                                                                                                                          (1.5) 

 

The proof of (ii) 

 

∇𝑠(1 − 𝛼)𝑡−𝑠 = (1 − 𝛼)𝑡−𝑠 − (1 − 𝛼)𝑡−(𝑠−1) 

= (1 − 𝛼)𝑡−𝑠 − (1 − 𝛼)𝑡−𝑠+1 

= (1 − 𝛼)𝑡−𝑠+1[
1

(1 − 𝛼)
− 1] 

= (1 − 𝛼)𝑡−𝑠+1[
1 − 1 + 𝛼

(1 − 𝛼)
] 

= 𝛼(1 − 𝛼)𝑡−𝑠. 
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The proof of (iii) 

 

(𝐶𝐹∇𝑎
−𝛼∇𝑔)(𝑡) =

1 − 𝛼

𝐵(𝛼)
∇𝑔(𝑡) +

𝛼

𝐵(𝛼)
∑ ∇𝑔(𝑠)𝑑𝑠

𝑡

𝑠=𝑎+1

. 

 

But note that ∑ ∇𝑔(𝑠)𝑑𝑠𝑡
𝑠=𝑎+1 = 𝑔(𝑡) − 𝑔(𝑎), so we can write 

 

=
1 − 𝛼

𝐵(𝛼)
∇𝑔(𝑡) +

𝛼

𝐵(𝛼)
[𝑔(𝑡) − 𝑔(𝑎)]. 

 

And from ∇ ∑ 𝑔(𝑠)𝑑𝑠𝑡
𝑠=𝑎+1 = 𝑔(𝑡), we get 

 

= [
1 − 𝛼

𝐵(𝛼)
∇𝑔(𝑡) +

𝛼

𝐵(𝛼)
∇ ∑ 𝑔(𝑠)𝑑𝑠

𝑡

𝑠=𝑎+1

] −
𝛼

𝐵(𝛼)
𝑔(𝑎) 

= ∇[
1 − 𝛼

𝐵(𝛼)
𝑔(𝑡) +

𝛼

𝐵(𝛼)
∑ 𝑔(𝑠)𝑑𝑠

𝑡

𝑠=𝑎+1

] −
𝛼

𝐵(𝛼)
𝑔(𝑎) 

= (∇𝐶𝐹∇𝑎
−𝛼𝑔)(𝑡) −

𝛼

𝐵(𝛼)
𝑔(𝑎).  

 

The prove of (iv) 

 

∇(1 − 𝛼)𝑡 = (1 − 𝛼)𝑡 − (1 − 𝛼)𝑡−1 

= (1 − 𝛼)𝑡−1[(1 − 𝛼) − 1] 

= (1 − 𝛼)𝑡−1[(1 − 𝛼) − 1] 

= −𝛼(1 − 𝛼)𝑡−1. 

 

The prove of (v) 

 

(𝐶𝐹𝑅∇𝑎
𝛼(1 − 𝛼)𝑡)(𝑡) = 𝐵(𝛼)∇𝑡 ∑ (1 − 𝛼)𝑠(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

  

= 𝐵(𝛼)∇𝑡(1 − 𝛼)𝑡 ∑ 1

𝑡

𝑠=𝑎+1
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= 𝐵(𝛼)∇𝑡[(1 − 𝛼)𝑡(𝑡 − 𝑎)] 

= 𝐵(𝛼)[(1 − 𝛼)𝑡(𝑡 − 𝑎) − (1 − 𝛼)𝑡−1(𝑡 − 1 − 𝑎)] 

= 𝐵(𝛼)(1 − 𝛼)𝑡−1[(1 − 𝛼)(𝑡 − 𝑎) − (𝑡 − 1 − 𝑎)] 

= 𝐵(𝛼)(1 − 𝛼)𝑡−1[𝑡 − 𝑎 − 𝑡𝛼 + 𝑎𝛼 − 𝑡 + 𝑎 + 1] 

= 𝐵(𝛼)(1 − 𝛼)𝑡−1[1 − 𝑡𝛼 + 𝑎𝛼] 

= 𝐵(𝛼)(1 − 𝛼)𝑡−1[1 − 𝛼(𝑡 − 𝑎)].                                                                                  (1.6) 
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PART 2 

 

THE MONOTONICITY RESULT 

 

2.1.  𝜶-INCREASE 

 

Let 𝑦 be a function defined on ℕ𝒂 so that satisfying 𝑦(𝑎) ≥ 0. Then 𝑦 is named an 

𝛼-increasing function on ℕ𝒂 if [13] 

 

𝑦(𝑡 + 1) ≥ 𝛼𝑦(𝑡)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝒂. 

 

2.1.1. Theorem 

 

Let 𝑦 be a function defined on ℕ𝒂−𝟏, if  

 

𝛼 ∈ (0,1), and 

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) ≥ 0, 𝑡 ∈ ℕ𝒂−𝟏 

 

Then 𝑦(𝑡) is 𝛼-increasing. 

 

Proof. 

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) = 𝐵(𝛼)∇𝑡 ∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎

 

= 𝐵(𝛼)[∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎

− ∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−1

𝑠=𝑎

] 

= 𝐵(𝛼)[∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

+ 𝑦(𝑡) − ∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−1

𝑠=𝑎

] 
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= 𝐵(𝛼)[𝑦(𝑡) + ∑ 𝑦(𝑠)((1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

− (1 − 𝛼)𝑡−𝑠−1)] 

= 𝐵(𝛼)[𝑦(𝑡) + ∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−1

𝑠=𝑎

(1 − 𝛼 − 1)] 

= 𝐵(𝛼)[𝑦(𝑡) −
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

]                                                             (2.1) 

 

But given that (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) ≥ 0 , we have 

 

𝐵(𝛼) [𝑦(𝑡) −
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

] ≥ 0. 

 

And since (𝛼) ≥ 0 , we get 

 

𝑦(𝑡) −
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

≥ 0. 

 

It follows 

 

𝑦(𝑡) ≥
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

.                                                                                  (2.2) 

 

Putting 𝑡 = 𝑎 for (8) we get (𝑎) ≥ 0 , put 𝑡 = 𝑎 + 1 for into (8) , we get  

 

𝑦(𝑎 + 1) ≥
𝛼

1 − 𝛼
𝑦(𝑎)(1 − 𝛼). 

 

It follows  

 

𝑦(𝑎 + 1) ≥ 𝛼𝑦(𝑎). 
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And hence 𝑦(𝑎 + 1) ≥ 𝛼𝑦(𝑎) ≥ 0, we will proceed by induction, we get 𝑦(𝑎 +

𝑘) ≥ 0, for all 𝑘 ∈ ℕ𝟎 which is the same with 𝑦(𝑡) ≥ 0 for all 𝑡 ∈ ℕ𝒂. 

 

Now replacing 𝑡 with 𝑡 + 1 in (8) we get 

 

𝑦(𝑡 + 1) ≥
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠+1

𝑡

𝑠=𝑎

. 

 

Also, we have  

 

𝑦(𝑡 + 1) ≥ 𝛼𝑦(𝑡) +
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠+1

𝑡−1

𝑠=𝑎

. 

 

And since 𝛼 ∈ (0,1) and 𝑦(𝑡) ≥ 0 for all ∈ ℕ𝒂 , we can write  

 

𝑦(𝑡 + 1) ≥ 𝛼𝑦(𝑡) +
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠+1

𝑡−1

𝑠=𝑎

≥ 𝛼𝑦(𝑡) 

𝑦(𝑡 + 1) ≥ 𝛼𝑦(𝑡) 

 

which completes the proof. 

 

2.1.2. Theorem  

 

Let 𝑦 be a function defined on ℕ𝒂−𝟏, if  

 

𝛼 ∈ (0,1), and 

 

(𝐶𝐹𝐶∇𝑎−1
𝛼 𝑦)(𝑡) ≥ −

𝐵(𝛼)

1 − 𝛼
𝑦(𝑎 − 1)(1 − 𝛼)𝑡−𝑎+1, 𝑡 ∈ ℕ𝒂−𝟏. 

 

Then y(t) is α-increasing. 
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Proof.  By assumption, we have  

 

(𝐶𝐹𝐶∇𝑎−1
𝛼 𝑦)(𝑡) +

𝐵(𝛼)

1 − 𝛼
𝑦(𝑎 − 1)(1 − 𝛼)𝑡−𝑎+1 ≥ 0 

 

and from proposition 1.1.1. we get  

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) ≥ 0, 𝑡 ∈ ℕ𝒂−𝟏 

 

and from theorem 2.1.1. we get  

 

𝑦(𝑡) is 𝛼-increasing, hence the proof complete. 

 

2.1.3. Theorem 

 

Let 𝑦 be a function defined on ℕ𝒂−𝟏 satisfying 𝑦(𝑎) ≥ 0 and increasing on ℕ𝒂. 

Then, for 𝛼 ∈ (0,1) 

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) ≥ 0, 𝑡 ∈ ℕ𝒂−𝟏. 

 

Proof.   From (7), we have  

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) = 𝐵(𝛼)[𝑦(𝑡) −

𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

]             

 

and since 𝐵(𝛼) ≥ 0 so to show that (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) ≥ 0  we need to prove that   

 

𝑦(𝑡) −
𝛼

1−𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠𝑡−1

𝑠=𝑎 ≥ 0  

𝑦(𝑡) −
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

 

= 𝑦(𝑡) − 𝛼𝑦(𝑡 − 1) −
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎
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= 𝑦(𝑡) − 𝛼𝑦(𝑡 − 1) 

−
𝛼

1 − 𝛼
∑[𝑦(𝑠) − 𝑦(𝑡 − 1) + 𝑦(𝑡 − 1)](1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎

 

= 𝑦(𝑡) − 𝛼𝑦(𝑡 − 1) 

−
𝛼

1 − 𝛼
[∑(𝑦(𝑠) − 𝑦(𝑡 − 1))(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎

+ ∑ 𝑦(𝑡 − 1)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎

],              (2.3) 

 

Since 𝑦 is increasing, it indicates that  𝑦(𝑡) ≥ 𝑦(𝑡 − 1) ≥ 

 

𝑦(𝑡 − 2) ≥ ⋯ ≥ 𝑦(𝑎) ≥ 0, so we get  

 

≥ 𝑦(𝑡) − 𝛼𝑦(𝑡 − 1) −
𝛼

1 − 𝛼
∑ 𝑦(𝑡 − 1)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎

 

= 𝑦(𝑡) −
𝛼

1 − 𝛼
∑ 𝑦(𝑡 − 1)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

 

= 𝑦(𝑡) − 𝑦(𝑡 − 1) + 𝑦(𝑡 − 1) −
𝛼

1 − 𝛼
𝑦(𝑡 − 1) ∑(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

 

≥ 𝑦(𝑡 − 1) −
𝛼

1 − 𝛼
𝑦(𝑡 − 1) ∑(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

 

= 𝑦(𝑡 − 1) [1 −
𝛼

1 − 𝛼
∑(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

] 

= 𝑦(𝑡 − 1) [1 −
𝛼

1 − 𝛼
∑ (1 − 𝛼)𝑡−(𝑠+𝑎)

𝑡−1−𝑎

𝑠=0

] 

= 𝑦(𝑡 − 1) [1 −
𝛼

1 − 𝛼
∑ (1 − 𝛼)𝑡−𝑎−𝑠

(𝑡−𝑎)−1

𝑠=0

] 

= 𝑦(𝑡 − 1) [1 −
𝛼

1 − 𝛼
(1 − 𝛼)𝑡−𝑎 ∑ (

1

1 − 𝛼
)

𝑠
(𝑡−𝑎)−1

𝑠=0

]. 

 

By using geometric series, we have  
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= 𝑦(𝑡 − 1) [1 −
𝛼

1 − 𝛼
(1 − 𝛼)𝑡−𝑎(

1 − (
1

1 − 𝛼)𝑡−𝑎

1 −
1

1 − 𝛼

)] 

= 𝑦(𝑡 − 1) [1 −
𝛼

1 − 𝛼
(1 − 𝛼)𝑡−𝑎(

1 − (1 − 𝛼)𝑎−𝑡

−𝛼
1 − 𝛼

)] 

= 𝑦(𝑡 − 1)[1 − (1 − 𝛼)𝑡−𝑎((1 − 𝛼)𝑎−𝑡 − 1)] 

= 𝑦(𝑡 − 1)[1 − (1 − (1 − 𝛼)𝑡−𝑎)] 

= 𝑦(𝑡 − 1)(1 − 𝛼)𝑡−𝑎 ≥ 0,                                                                                            (2.4) 

 

which completes the proof. 

 

2.1.4. Theorem 

 

Let 𝑦 be a function defined on ℕ𝒂−𝟏 satisfy 𝑦(𝑎) ≥ 0 and be strictly increasing on 

ℕ𝒂. Then, for 𝛼 ∈ (0,1) 

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) > 0, 𝑡 ∈ ℕ𝒂−𝟏 

 

Proof.  Similar to the previous theorem, this one can be proven. 

 

2.2  𝜶-DECREASE 

 

Let 𝑦 be a function defined on ℕ𝒂,so that satisfying 𝑦(𝑎) ≥ 0. Then 𝑦 is named an 

𝛼-decreasing function on ℕ𝒂 if [13] 

 

𝑦(𝑡 + 1) ≤ 𝛼𝑦(𝑡)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝒂. 

 

2.2.1. Theorem 

 

Let 𝑦 be a function defined on ℕ𝒂−𝟏, if  

 

𝛼 ∈ (0,1), and 
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(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) ≤ 0, 𝑡 ∈ ℕ𝒂−𝟏. 

 

Then 𝑦(𝑡) is 𝛼-decreasing. 

 

Proof.   From (7) we have  

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡)   = 𝐵(𝛼) [𝑦(𝑡) −

𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

].           

 

But given that (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) ≤ 0 , so we have 

 

𝐵(𝛼) [𝑦(𝑡) −
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

] ≤ 0. 

 

Since (𝛼) ≥ 0 , we get 

 

𝑦(𝑡) −
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

≤ 0. 

 

It follows 

 

𝑦(𝑡) ≤
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

.                                                                             (2.5) 

 

Putting 𝑡 = 𝑎 for (11) we get (𝑎) ≤ 0 , put 𝑡 = 𝑎 + 1 for into (11) , we get  

 

𝑦(𝑎 + 1) ≤
𝛼

1 − 𝛼
𝑦(𝑎)(1 − 𝛼). 

 

It follows  

𝑦(𝑎 + 1) ≤ 𝛼𝑦(𝑎) 
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and hence 𝑦(𝑎 + 1) ≤ 𝛼𝑦(𝑎) ≤ 0,we will proceed by induction.We get 𝑦(𝑎 + 𝑘) ≤

0, for all 𝑘 ∈ ℕ𝟎 which is the same with 𝑦(𝑡) ≤ 0 for all 𝑡 ∈ ℕ𝒂. 

 

Now replacing 𝑡 with 𝑡 + 1 in (11) we get 

 

𝑦(𝑡 + 1) ≤
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠+1

𝑡

𝑠=𝑎

. 

 

Also, we have  

 

𝑦(𝑡 + 1) ≤ 𝛼𝑦(𝑡) +
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠+1

𝑡−1

𝑠=𝑎

. 

 

And since 𝛼 ∈ (0,1) and 𝑦(𝑡) ≤ 0 for all 𝑡 ∈ ℕ𝒂 so we can write  

 

𝑦(𝑡 + 1) ≤ 𝛼𝑦(𝑡) +
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠+1

𝑡−1

𝑠=𝑎

≤ 𝛼𝑦(𝑡) 

 

𝑦(𝑡 + 1) ≤ 𝛼𝑦(𝑡). 

 

Which completes the prove. 

 

2.2.2. Theorem 

 

Let 𝑦 be a function defined on ℕ𝒂−𝟏 satisfy 𝑦(𝑎) ≥ 0 and be decreasing on ℕ𝒂. 

Then, for 𝛼 ∈ (0,1) 

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) ≤ 0, 𝑡 ∈ ℕ𝒂−𝟏. 

 

Proof.   From (7) we have  
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(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) = 𝐵(𝛼)[𝑦(𝑡) −

𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

]             

 

and since 𝐵(𝛼) ≥ 0 so to show that (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑦)(𝑡) ≤ 0  we need to prove that  

𝑦(𝑡) −
𝛼

1−𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠𝑡−1

𝑠=𝑎 ≤ 0 , now from (9) we have 

 

𝑦(𝑡) −
𝛼

1 − 𝛼
∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎

 

= 𝑦(𝑡) − 𝛼𝑦(𝑡 − 1) 

−
𝛼

1 − 𝛼
[∑(𝑦(𝑠) − 𝑦(𝑡 − 1))(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎

+ ∑ 𝑦(𝑡 − 1)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎

]. 

 

Since 𝑦 is increasing, it indicates that    𝑦(𝑡) ≤ 𝑦(𝑡 − 1) ≤ 

 

𝑦(𝑡 − 2) ≤ ⋯ ≤ 𝑦(𝑎) ≤ 0, so we get  

 

≤ 𝑦(𝑡) − 𝛼𝑦(𝑡 − 1) −
𝛼

1 − 𝛼
∑ 𝑦(𝑡 − 1)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎

. 

 

From (10) we have 

 

= 𝑦(𝑡 − 1)(1 − 𝛼)𝑡−𝑎 ≤ 0. 

 

which completes the proof. 

 

2.3. APPLICATION 

 

We know that (𝐶𝐹∇𝑎
−𝛼 𝐶𝐹𝑅∇𝑎

𝛼𝑦)(𝑡) = 𝑦(𝑡). Nevertheless, the following result, 

delivers an initial condition y(a), will be a instrument to prove our fractional 

difference mean value theorem. 
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2.3.1. Theorem  

 

For ∈ (0,1) , we have  

 

(𝐶𝐹∇𝑎
−𝛼 𝐶𝐹𝑅∇𝑎−1

𝛼 𝑦)(𝑡) = 𝑦(𝑡) − 𝛼𝑦(𝑎).                                                                   (2.6) 

 

Proof.  From definition, we have  

 

(𝐶𝐹∇𝑎
−𝛼 𝐶𝐹𝑅∇𝑎−1

𝛼 𝑦)(𝑡) = 𝐶𝐹∇𝑎
−𝛼 [𝐵(𝛼)∇𝑡 ∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎

] 

= 𝐵(𝛼)𝐶𝐹∇𝑎
−𝛼∇𝑡 [𝑦(𝑎)(1 − 𝛼)𝑡−𝑎 + ∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

] 

= [𝐵(𝛼)𝐶𝐹∇𝑎
−𝛼∇𝑡𝑦(𝑎)(1 − 𝛼)𝑡−𝑎 + 𝐶𝐹∇𝑎

−𝛼𝐵(𝛼)∇𝑡 ∑ 𝑦(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

] 

= 𝐵(𝛼)𝐶𝐹∇𝑎
−𝛼∇𝑡𝑦(𝑎)(1 − 𝛼)𝑡−𝑎 + 𝐶𝐹∇𝑎

−𝛼 𝐶𝐹𝑅∇𝑎
𝛼𝑦)(𝑡) 

= 𝐵(𝛼)𝑦(𝑎)(1 − 𝛼)−𝑎𝐶𝐹
∇𝑎

−𝛼∇𝑡(1 − 𝛼)𝑡 + 𝑦(𝑡). 

 

From lemma (iv) we have  

 

= −𝛼𝐵(𝛼)𝑦(𝑎)(1 − 𝛼)−𝑎𝐶𝐹
∇𝑎

−𝛼(1 − 𝛼)𝑡−1 + 𝑦(𝑡). 

 

and from Lemma (i) also we get 

 

= −𝛼𝐵(𝛼)𝑦(𝑎)(1 − 𝛼)−𝑎
(1 − 𝛼)𝑎

𝐵(𝛼)
+ 𝑦(𝑡) 

= 𝑦(𝑡) − 𝛼𝑦(𝑎). 

 

The proofs complete. 
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2.3.2. Theorem 

 

Let 𝑓 and 𝑔 be functions defined on ℕ𝒂,𝒃 = {𝑎, 𝑎 + 1, … , 𝑏 − 1, 𝑏} where 𝑎 < 𝑏 with 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 1). Suppose that 𝑔 is strictly increasing and 𝛼 ∈ (0,1). Then, ∃ 𝑠1𝑠2 ∈

ℕ𝒂,𝒃 such that  

 

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓)(𝑠1)

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔)(𝑠1)

≤
𝑓(𝑏) − 𝛼𝑓(𝑎)

𝑔(𝑏) − 𝛼𝑔(𝑎)
≤

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓)(𝑠2)

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔)(𝑠2)

.                                         (2.7) 

 

Proof.   We employ contradiction, letting (13) be untrue either then 

 

𝑓(𝑏) − 𝛼𝑓(𝑎)

𝑔(𝑏) − 𝛼𝑔(𝑎)
>

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓)(𝑡)

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔)(𝑡)

 , 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ ℕ𝒂,𝒃,                                              (2.8) 

 

Or 

 

𝑓(𝑏) − 𝛼𝑓(𝑎)

𝑔(𝑏) − 𝛼𝑔(𝑎)
<

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓)(𝑡)

(𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔)(𝑡)

, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ ℕ𝒂,𝒃.                                                (2.9) 

 

Given that 𝑔 is strictly increasing, so by Theorem 2.1.4 we have (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔)(𝑡) > 0, 

hence from (14) we get  

 

𝑓(𝑏) − 𝛼𝑓(𝑎)

𝑔(𝑏) − 𝛼𝑔(𝑎)
(𝐶𝐹𝑅∇𝑎−1

𝛼 𝑔)(𝑡) > (𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓)(𝑡). 

 

Now take the fractional sum for both sides it becomes  

 

𝑓(𝑏) − 𝛼𝑓(𝑎)

𝑔(𝑏) − 𝛼𝑔(𝑎)
(𝐶𝐹∇𝑎

−𝛼 𝐶𝐹𝑅∇𝑎−1
𝛼 𝑔)(𝑡) > (𝐶𝐹∇𝑎

−𝛼 𝐶𝐹𝑅∇𝑎−1
𝛼 𝑓)(𝑡). 

 

And from (12) we have 

 

𝑓(𝑏) − 𝛼𝑓(𝑎)

𝑔(𝑏) − 𝛼𝑔(𝑎)
𝑔(𝑡) − 𝛼𝑔(𝑎) > 𝑓(𝑡) − 𝛼𝑓(𝑎). 
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By t=b substitution 

 

𝑓(𝑏) − 𝛼𝑓(𝑎) > 𝑓(𝑏) − 𝛼𝑓(𝑎) 

 

which is in contradiction, and we can show that (15) can also result in contradiction. 

The proof is complete. 
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PART 3 

 

CONCLUSION 

 

This thesis presents some new alpha-monotonicity analysis results for discrete 

Caputo-Fabrizio fractional differences in the sense of Riemann-Liouville and Caputo 

operators. The monotonicity of the function (increasing or decreasing) has been 

obtained from the positivity or negativity of the discrete Caputo-Fabrizio fractional 

operator. As a result, we provide the connection between the Riemann-Liouville and 

Caputo senses of the operators so that we may get the relevant conclusions using 

Caputo operators. In addition, a discrete mean value theorem is given to show the 

established results. 
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