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For discrete fractional operators with exponential kernels, positivity, monotonicity, 

and convexity findings were taken into consideration in this thesis. Our findings cover 

both sequential and non-sequential scenarios and show how fractional differences with 

other kinds of kernels and the exponential kernel example are comparable and 

different. This demonstrates that the qualitative information gathered in the 

exponential kernel case does not match other situations perfectly 
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Bu tezde üstel çekirdekli ayrık kesirli operatörler için pozitiflik, monotonluk ve 

konvekslik bulguları incelendi. Bulgularımız hem sıralı hem de sıralı olmayan 

durumlari kapsar ve diğer çekirdek türleri ve üstel çekirdek örneği ile kesirli 

farklılıkların nasıl karşılaştırılabildiğini ve farklı olduğunu gösterir. Bu, üstel çekirdek 

durumunda toplanan nitel bilgilerin diğer durumlarla tam olarak eşleşmediğini 
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PART 1 

 

INTRODUCTION 

 

Numerous scholars from various disciplines, including mathematics, biology, physics, 

chemistry, engineering, even economics and social sciences, have been concentrating 

on the discrete fractional calculus field in recent years [1], [2], [3], [4]. A crucial effort 

has been made, particularly in the field of viscoelasticity, to use fractional 

mathematical models to better accurately describe the behavior of materials. 

 

In mathematics, the idea of monotonicity is crucial. Unfortunately, there are no 

monotonicity findings for fractional operators in the theory or applications of 

fractional calculus. The discrete fractional operators underwent a monotonicity study 

that was started by Dahal and Goodrich in [5] and Goodrich in [6]. For fractional orders 

between 0 and 1, however, monotonicity concerns were not taken into consideration. 

Since non-integer orders were the main focus of the first section of this thesis, we were 

able to announce new definitions of monotonicity perceptions. Indicators of the 

mechanical properties of biomaterials are frequently linear differential equations 

created from physical spring and dashpot models. However, it has been shown that 

biological tissues exhibit more complicated performance, such as hysteresis, fatigue, 

and memory, which cannot be explained by combining perfect spring and dashpot 

combinations [2]. Since the tissues in the human body are naturally viscoelastic, it is 

important to incorporate correct viscoelastic when studying the mechanics of 

deformation [7]. The mechanical properties of living soft tissues create a unique 

combination of testing and modeling problems. To construct stress-strain correlations 

for viscoelastic materials, fractional calculus is employed. 

 

It is acknowledged that the description of the characteristics of viscoelastic materials 

has long relied heavily on rheological constitutive equations with fractional derivatives 

[4]. First-order derivatives in the rheological constitutive equations must be replaced 

by fractional order derivatives. They are ideal for describing things with memory, such 
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polymers or tissues, as the fractional derivative of a function depends on its whole 

history rather than on its instantaneous behavior [8]. We created discrete fractional 

rheological models for the reasons listed above. A material is described by a finite 

number of springs and dashpots in discrete models. 

 

Although, there are now many different approaches to show a fractional sum and 

difference, they all have the important trait of being non-local. For instance, Riemann-

Liouville definition, one of the most prominent fractional differences, states that the 

following approach is presented in the case of a backward or nabla difference: 

 

(∇𝑎
𝑣 𝑓)(𝑡) = ∑ 𝐻−𝑣−1

𝑡

𝑠=𝑎+1

(𝑡, 𝜌(𝑠))𝑓(𝑠)                                                                        (1.1) 

 

for each 𝑡 ∈ ℕ𝑎+𝑁 where  

 

𝐻𝜇(𝑡, 𝑎) =
Γ(𝑡 − 𝑎 + 𝜇)

Γ(t − a)Γ(μ + 1)
   𝑎𝑛𝑑  𝜌(𝑠) = 𝑠 − 1. 

 

The properties that we consider in this thesis is happen in two management. Non-

sequential which is single fractional difference operation for instance: 

 

(∇𝑎
𝑣 𝑓)(𝑡) ≥ 0. 

 

And sequential which is composition of fractional deference operators such as: 

 

(∇𝑎+1
𝑣 ∇𝑎

𝜇
𝑓)(𝑡), 

 

The following thesis, it has been broadening this research to discrete fractional 

operators with exponential kernels. 

 

We do not need to impose these kinds of limitations on the parameters' locations based 

on the findings of this thesis. Our qualitative findings, in particular, do not significantly 

differ from one regime to the next. Instead, they are valid over the complete range of 
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allowed (μ,ν) parameters. This shows that, somewhat surprisingly, the results we may 

get for a discrete fractional operator with an exponential kernel are different from those 

for a discrete fractional operator with a Riemann-Liouville kernel. 

 

We discuss the general structure of the remaining theses before we finish. First, we 

quickly go through the prerequisites for the remaining theses. The link between the 

sign of a suitable Caputo-Fabrizio fractional difference in the Caputo sense and, 

respectively, the positivity, monotonicity, and convexity of the function on which the 

difference works, is then discussed. 

 

1.1. PRELIMINARIES  

 

It will be most important to our conclusions in the next sections to start by recalling a 

few basic results from the difference calculus. It is noted that in every part of this thesis 

standard convention was followed for instance that ∑ 𝑎𝑘
𝑛
𝑘=𝑚 = 0  whenever 𝑛 < 𝑚 

[9]. Moreover, represent by ℕ𝑎 = {𝑎, 𝑎 + 1, 𝑎 + 2, … } for each ∈ ℝ . The readers are 

advised to consult the sources [9],[10] for further details on both the discrete fractional 

calculus and the nabla difference calculus. 

 

1.1.1. Backward Difference 

 

Let 𝑢: ℕ𝑎 → ℝ, the first order backward (nabla) difference of u is defined as follows 

[9]: 

 

(∇𝑢)(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1), 𝑡 ∈ ℕ𝑎+1, 

 

and by using the following notation, we defined the 𝑁𝑡ℎ-order nabla difference of u: 

 

(∇𝑁𝑦)(𝑡) = (∇(∇𝑁−1𝑢))(𝑡), 𝑡 ∈ ℕ𝑎+𝑁 ,  

 

where 𝑁 ∈ ℕ1. 
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1.1.2. Caputo Fractional Difference 

 

For the function 𝑢 define on  ℕ𝑎 and 𝛼 be between 0 and 1, the 𝛼𝑡ℎ-order Caputo-

Fabrizio in the Caputo sense nabla difference of u is introduced by [11]:  

 

(𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) = 𝐵(𝛼) ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠𝑡

𝑠=𝑎+1 , 𝑡 ∈ ℕ𝑎+1, 

 

and the function 𝛼 → 𝐵(𝛼) is a normalization constant with  𝐵(0) = 𝐵(1) = 1 and 

𝐵(𝛼) > 0. 

 

1.1.3. Higher Order Fractional Difference 

 

Let  𝑛 ≤ 𝛼 ≤ 𝑛 + 1 and 𝑢 define on  ℕ𝑎−𝑛 . The 𝛼-order Caputo-Fabrizio in the 

Caputo sense of 𝑢 is given by [12]: 

 

(𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) = (𝐶𝐹𝐶∇𝑎

𝛼−𝑛∇𝑛𝑢)(𝑡), 𝑡 ∈ ℕ𝑎+1. 
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CHAPTER TWO 

 

MONOTONICITY AND CONVEXITY 

 

2.1. 𝜶-MONOTONICITY  

 

In this section several results have been proved, which establish a linking between the 

sign of suitable Caputo-Fabrizio operator in the Caputo sense fractional nabla 

difference and the function's positivity on which it performances. Moreover, it is also 

deduced some results regarding what it is termed, a perception which was given in an 

article that Goodrich and Lizama recently published [13]. It starts out by defining  𝛼-

monotone increasing. 

 

2.1.1. 𝜶-Monotone Increasing 

 

Let 𝛼 be between 0 and 1 the function 𝑢 define on  ℕ𝑎, is called 𝛼-monotone increasing 

if 

 

𝑢(𝑡) ≥ 𝛼𝑢(𝑡 − 1), 𝑡 ∈ ℕ𝑎+1. 

 

Note that in the above definition if 𝛼 = 1, then it is obtained  𝑢(𝑡) ≥ 𝑢(𝑡 − 1) for 𝑡 ∈

ℕ𝑎+1, which is 1-monotone increasing and represents monotonicity in the usual sense. 

And if 𝛼 = 0, then it is acquired 𝑢(𝑡) ≥ 0, for 𝑡 ∈ ℕ𝑎+1. So, it’s shows that for us 0-

monotone increasing merely indicate that 𝑢 is nonnegative on ℕ𝑎. 

 

2.1.1. Lemma 

 

Let the function u is defined on  ℕ𝑎 and 𝛼 ∈ (0,1). If 

 

(𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1, 
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and 𝑢(𝑎) ≥ 0, then u is positive and α-monotone increasing on ℕ𝑎. 

 

Proof. 

 

(𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) 

= 𝐵(𝛼) ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

 

= 𝐵(𝛼) [ ∑ [𝑢(𝑠) − 𝑢(𝑠 − 1)](1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

] 

= 𝐵(𝛼) [ ∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠 − ∑ 𝑢(𝑠 − 1)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

𝑡

𝑠=𝑎+1

] 

= 𝐵(𝛼) [ ∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠 − ∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−1

𝑠=𝑎

𝑡

𝑠=𝑎+1

] 

= 𝐵(𝛼) [ ∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠 + 𝑢(𝑡)(1 − 𝛼)𝑡−𝑡 − ∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−1

𝑠=𝑎+1

𝑡−1

𝑠=𝑎+1

− 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1] 

= 𝐵(𝛼) [ ∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠 + 𝑢(𝑡)(1 − 𝛼)0 − ∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−1

𝑠=𝑎+1

𝑡−1

𝑠=𝑎+1

− 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1] 

= 𝐵(𝛼) [𝑢(𝑡) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1 + ∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+1

− ∑
𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

(1 − 𝛼)

𝑡−1

𝑠=𝑎+1

] 

= 𝐵(𝛼) [𝑢(𝑡) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1 + ∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+1

    (1 −
1

1 − 𝛼
)] 
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= 𝐵(𝛼) [𝑢(𝑡) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1

−
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+1

]                                                         (2.1) 

 

But (𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1 , so we can write: 

 

𝐵(𝛼) [𝑢(𝑡) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1 −
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+1

]   ≥ 0  , 

 

𝑡 ∈ ℕ𝑎+1 

 

It’s show that: 

 

𝑢(𝑡) ≥ 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1 +
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠  ,

𝑡−1

𝑠=𝑎+1

  

 

𝑡 ∈ ℕ𝑎+1                                                                                       (2.2) 

 

Now, to show that u is positive, it’s enough to show that  𝑢(𝑎 + 𝑘) ≥ 0   for any 𝑘 ∈

ℕ0 , so we can use induction on k. 

 

Taking k = 1,  which is t = a + 1  in  (2.2), and by setting 𝑢(𝑎) ≥ 0,  we get: 

 

𝑢(𝑎 + 1) ≥ 𝑢(𝑎) ≥ 0 

 

Taking 𝑘 = 2, which is 𝑡 = 𝑎 + 2 in (3.2) , we have: 

 

𝑢(𝑎 + 2) ≥ 𝑢(𝑎)(1 − 𝛼)𝑎+2−𝑎−1 +
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑎+2−𝑠 .

𝑎+2−1

𝑠=𝑎+1

  

 

If we make it simpler: 
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𝑢(𝑎 + 2) ≥ 𝑢(𝑎)(1 − 𝛼) +
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑎+2−𝑠  ,

𝑎+1

𝑠=𝑎+1

 

 

and by setting 𝑢(𝑎) ≥ 0, 𝑢(𝑎 + 1) ≥ 0 and 0 < 𝛼 < 1,  we get 

 

𝑢(𝑎 + 2) ≥ 𝑢(𝑎)(1 − 𝛼) + 𝛼𝑢(𝑎 + 1) ≥ 0. 

 

From induction it is acquired 𝑢(𝑡) ≥ 0, ∀ 𝑡 ∈ ℕ𝑎. 

 

Now to demonstrate that 𝑢 is 𝛼-monotone increasing on ℕ𝑎. Arrange differently the 

terms in (2.2), we will get 

 

𝑢(𝑡) ≥ 𝛼𝑢(𝑡 − 1) + 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1 +
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠,

𝑡−2

𝑠=𝑎+1

  

 

𝑡 ∈ ℕ𝑎+1.                                                                                                                           (2.3) 

 

since 𝑢(𝑡) ≥ 0, for all 𝑡 ∈ ℕ𝑎+1, this comes from (2.3) that  

 

𝑢(𝑡) ≥ 𝛼𝑢(𝑡 − 1), 𝑡 ∈ ℕ𝑎+1, 

 

By getting that 𝑢 is 𝛼 -monotone increasing on ℕ𝑎. The proof is complete. 

 

2.1.2. Theorem 

 

Let the function u is defined on  ℕ𝑎 and 𝛼 , 𝛽 ∈ (0,1), such that  0 < 𝛼 + 𝛽 ≤ 1  If 

 

(𝐶𝐹𝐶∇𝑎+1
𝛽 𝐶𝐹𝐶∇𝑎

𝛼𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2, 

 

and 𝑢(𝑎 + 1) ≥ 𝑢(𝑎) ≥ 0, then u is positive and 𝛼 + 𝛽-monotone increasing on ℕ𝑎 . 

 

Proof.      Let  
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(𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) = 𝑓(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

So we can write  

 

(𝐶𝐹𝐶∇𝑎+1
𝛽 𝐶𝐹𝐶∇𝑎

𝛼𝑢)(𝑡) = (𝐶𝐹𝐶∇𝑎+1
𝛽

𝑓)(𝑡). 

 

Distinctly, by assumption, (𝐶𝐹𝐶∇𝑎+1
𝛽

𝑓)(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2. By definition of 

Caputo fractional difference we possess: 

 

𝑓(𝑎 + 1) = (𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑎 + 1) = 𝐵(𝛼) ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑎+1−𝑠

𝑎+1

𝑠=𝑎+1

= 𝐵(𝛼)(∇𝑢)(𝑎 + 1)(1 − 𝛼)𝑎+1−(𝑎+1) = 𝐵(𝛼)(∇𝑢)(𝑎 + 1) ≥ 0 

 

According to Lemma 2.1.1, 𝑓 is positive and 𝛽-monotone increasing on ℕ𝑎+1.  

 

So 

 

𝑓(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1, 

 

𝑓(𝑡) ≥ 𝛽𝑓(𝑡 − 1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2,                                                                     (2.4) 

 

since  

 

𝑓(𝑡) = (𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

and 𝑢(𝑎) ≥ 0, again from lemma 2.1.1, 𝑢 is positive and α-monotone increasing on 

ℕa. that is, 

 

𝑢(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎. 

 

And  
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𝑢(𝑡) ≥ 𝛼𝑢(𝑡 − 1), 𝑡 ∈ ℕ𝑎+1,                                                                                    (2.5) 

 

Now, from (2.4) it has  

 

𝑓(𝑡) ≥ 𝛽𝑓(𝑡 − 1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2. 

 

It is shown that  

 

0 ≤ 𝑓(𝑡) − 𝛽𝑓(𝑡 − 1) = (𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) − 𝛽(𝐶𝐹𝐶∇𝑎

𝛼𝑢)(𝑡 − 1) 

 

and by applying (2.1) we get: 

 

= 𝐵(𝛼) [𝑢(𝑡) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1 −
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+1

]

− 𝐵(𝛼)𝛽 [𝑢(𝑡 − 1) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−2

−
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−2

𝑠=𝑎+1

] 

= 𝐵(𝛼) [𝑢(𝑡) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1 −
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎+1

− 𝛼𝑢(𝑡 − 1)

− 𝛽𝑢(𝑡 − 1) + 𝛽𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−2

+ 𝛽
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−2

𝑠=𝑎+1

] 

= 𝐵(𝛼) [𝑢(𝑡) − 𝛽𝑢(𝑡 − 1) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−1 + 𝛽𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−2

−
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎+1

− 𝛼𝑢(𝑡 − 1)

+ 𝛽
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−2

𝑠=𝑎+1

] 
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= 𝐵(𝛼) [𝑢(𝑡) − 𝛽𝑢(𝑡 − 1) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−2(1 − 𝛼 − 𝛽)

−
𝛼

1 − 𝛼
∑ 𝑢(𝑠)[(1 − 𝛼)𝑡−𝑠 − 𝛽(1 − 𝛼)𝑡−𝑠−1]

𝑡−2

𝑠=𝑎+1

− 𝛼𝑢(𝑡 − 1)] 

= 𝐵(𝛼) [𝑢(𝑡) − 𝛽𝑢(𝑡 − 1) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−2(1 − 𝛼 − 𝛽)

−
𝛼

1 − 𝛼
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠−1(1 − 𝛼 − 𝛽)

𝑡−2

𝑠=𝑎+1

− 𝛼𝑢(𝑡 − 1)] 

= 𝐵(𝛼) [𝑢(𝑡) − 𝛽𝑢(𝑡 − 1) − 𝛼𝑢(𝑡 − 1) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−2 (1 − 𝛼 − 𝛽)

−
𝛼(1 − 𝛼 − 𝛽)

(1 − 𝛼)2
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎+1

],        (2.6) 

 

Since 𝐵(𝛼) > 0, from (2.6) it is gained: 

 

𝑢(𝑡) − 𝛽𝑢(𝑡 − 1) − 𝛼𝑢(𝑡 − 1) − 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−2 (1 − 𝛼 − 𝛽)

−
𝛼(1 − 𝛼 − 𝛽)

(1 − 𝛼)2
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎+1

≥ 0,    𝑡 ∈ ℕ𝑎+2. 

 

The following is also considered   

 

𝑢(𝑡) − 𝛽𝑢(𝑡 − 1) − 𝛼𝑢(𝑡 − 1)

≥ 𝑢(𝑎)(1 − 𝛼)𝑡−𝑎−2 (1 − 𝛼 − 𝛽)

+
𝛼(1 − 𝛼 − 𝛽)

(1 − 𝛼)2
∑ 𝑢(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎+1

,

𝑡 ∈ ℕ𝑎+2.                                                                                                 (2.7) 

 

Since  0 < 𝛼 ≤ 1, 0 < 𝛼 + 𝛽 ≤ 1, and (𝑡) ≥ 0 , from (2.7) we can write: 

𝑢(𝑡) − 𝛽𝑢(𝑡 − 1) − 𝛼𝑢(𝑡 − 1) ≥ 0, 𝑡 ∈ ℕ𝑎+2. 

 

Also we get: 
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𝑢(𝑡) ≥ (𝛽 + 𝛼)𝑢(𝑡 − 1), 𝑡 ∈ ℕ𝑎+2. 

 

Hence the prove is complete. 

 

2.1.3. THEOREM  

 

Let the function u is defined on  ℕ𝑎 and 𝛼 , 𝛽 ∈ (0,1), such that  0 < 𝛼 + 𝛽 ≤ 1.  If 

 

(𝐶𝐹𝐶∇𝑎+1
𝛽 𝐶𝐹𝐶∇𝑎

𝛼𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2. 

 

and 𝑢(𝑎 + 1) ≥ 𝑢(𝑎) ≥ 0, then u is positive and α-monotone increasing on ℕ𝑎. 

 

Proof. It is demonstrated by the theorem mentioned above. 

 

2.2. MONOTONICITY 𝜶-CONVEXITY 

 

Once more, it was during a conference of monotonicity-type results. For both non-

sequential and sequential Caputo-Fabrizio, fractional differences are found in the 

Caputo sense. It begins with two fundamental lemmas. 

 

2.2.1. Lemma  

 

Let the function u is defined on  ℕ𝑎 and 𝛼 ∈ (0,1). If 

 

∇(𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2, 

 

and (∇𝑢)(𝑎 + 1) ≥ 0, then  

 

(∇𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

Proof.  First, by definition of Caputo fractional difference, for all 𝑡 ∈ ℕ𝑎+2 we have 
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∇(𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) = ∇ [𝐵(𝛼) ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

] 

= 𝐵(𝛼) [ ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+1

− ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−1−𝑠

𝑡−1

𝑠=𝑎+1

] 

= 𝐵(𝛼) [ ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠 + (∇𝑢)(𝑡)

𝑡−1

𝑠=𝑎+1

− ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−1−𝑠

𝑡−1

𝑠=𝑎+1

] 

= 𝐵(𝛼) [(∇𝑢)(𝑡) + ∑ (∇𝑢)(𝑠)((1 − 𝛼)𝑡−𝑠 − (1 − 𝛼)𝑡−1−𝑠)

𝑡−1

𝑠=𝑎+1

] 

= 𝐵(𝛼) [(∇𝑢)(𝑡) −
𝛼

𝛼 − 1
∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+1

],                                             (2.8) 

 

Since ∇(𝐶𝐹𝐶∇𝑎
𝛼𝑢)(𝑡) ≥ 0, we have: 

 

𝐵(𝛼) [(∇𝑢)(𝑡) −
𝛼

𝛼 − 1
∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+1

] ≥ 0 

 

and since 𝐵(𝛼) ≥ 0, so it is written: 

 

(∇𝑢)(𝑡) −
𝛼

𝛼 − 1
∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+1

≥ 0. 

 

Also it has the  same meaning with this: 

 

(∇𝑢)(𝑡) ≥
𝛼

𝛼 − 1
∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+1

.                                                             (2.9) 

 

Now to show that (∇𝑢)(𝑡) ≥ 0 for all 𝑡 ∈ ℕ𝑎+1, its enough to show that (∇𝑢)(𝑎 +

𝑘) ≥ 0, ∀ 𝑘 ∈ ℕ1.  

 

The usage of induction on 𝑘. (∇𝑢)(𝑎 + 1) ≥ 0 is given. Taking  
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𝑡 = 𝑎 + 2 in (2.9) , we have: 

(∇𝑢)(𝑎 + 2) ≥
𝛼

𝛼 − 1
∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑎+2−𝑠

𝑎+1

𝑠=𝑎+1

 

 

By simplifying it we get: 

 

(∇𝑢)(𝑎 + 2) ≥ 𝛼(∇𝑢)(𝑎 + 1) ≥ 0. 

 

Taking  𝑡 = 𝑎 + 3 in (2.9), it becomes  

 

(∇𝑢)(𝑎 + 3) ≥ 𝛼(∇𝑢)(𝑎 + 2) + (∇𝑢)(𝑎 + 1)(1 − 𝛼) ≥ 0. 

 

Following the same procedure, it is obtained  (∇𝑢)(𝑡) ≥ 0, for all 𝑡 ∈ ℕ𝑎+1. Hence 

The proof has been established. 

 

2.2.2. Lemma 

 

Let the function u is defined on  ℕ𝑎 and 𝛼 ∈ (0,1). If 

 

(𝐶𝐹𝐶∇𝑎+1
𝛼 ∇𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2, 

 

and (∇𝑢)(𝑎 + 1) ≥ 0, then  

 

(∇𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

Proof.  By definition of Caputo fractional difference, for all 𝑡 ∈ ℕ𝑎+2, we have 

 

(𝐶𝐹𝐶∇𝑎+1
𝛼 ∇𝑢)(𝑡) = 𝐵(𝛼) ∑ (∇2𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+2

 

= 𝐵(𝛼) [ ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+2

− ∑ (∇𝑢)(𝑠 − 1)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+2

] 
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= 𝐵(𝛼) [ ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡

𝑠=𝑎+2

− ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−1

𝑠=𝑎+1

] 

= 𝐵(𝛼) [ ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+2

+ (∇𝑢)(𝑡) − ∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠−1

𝑡−1

𝑠=𝑎+2

− (∇𝑢)(𝑎 + 1)(1 − 𝛼)𝑡−𝑎−2] 

= 𝐵(𝛼) [(∇𝑢)(𝑡) + ∑ (∇𝑢)(𝑠)[(1 − 𝛼)𝑡−𝑠 − (1 − 𝛼)𝑡−𝑠−1]

𝑡−1

𝑠=𝑎+2

− (∇𝑢)(𝑎 + 1)(1 − 𝛼)𝑡−𝑎−2] 

= 𝐵(𝛼) [(∇𝑢)(𝑡) −
𝛼

1 − 𝛼
∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+2

− (∇𝑢)(𝑎 + 1)(1 − 𝛼)𝑡−𝑎−2],                                                          (2.10) 

 

nevertheless, because 𝐵(𝛼) ≥ 0, and (𝐶𝐹𝐶∇𝑎+1
𝛼 ∇𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2, so 

from (2.10), we get 

 

(∇𝑢)(𝑡) ≥
𝛼

1 − 𝛼
∑ (∇𝑢)(𝑠)(1 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+2

+ (∇𝑢)(𝑎 + 1)(1 − 𝛼)𝑡−𝑎−2.                                                            (2.11) 

 

Now to show that (∇𝑢)(𝑡) ≥ 0 for all 𝑡 ∈ ℕ𝑎+1, its enough to show that (∇𝑢)(𝑎 +

𝑘) ≥ 0, for each 𝑘 ∈ ℕ1.  

 

By applying induction to 𝑘. Given that (∇𝑢)(𝑎 + 1) ≥ 0 . Using  

 

𝑡 = 𝑎 + 2 in (2.11) , it has got: 

 

(∇𝑢)(𝑎 + 2) ≥ (∇𝑢)(𝑎 + 1) ≥ 0 
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Taking  𝑡 = 𝑎 + 3 in (2.9), there is 

 

(∇𝑢)(𝑎 + 3) ≥ 𝛼(∇𝑢)(𝑎 + 2) + (∇𝑢)(𝑎 + 1)(1 − 𝛼) ≥ 0. 

 

Continuing in this way, it has reached (∇𝑢)(𝑡) ≥ 0, for all 𝑡 ∈ ℕ𝑎+1.  

 

The proof is complete  

 

2.2.3. Lemma 

 

Let the function u is defined on  ℕ𝑎 , 𝜇 ∈ (0,1) and 𝜈𝜖(1,2). If 

 

(𝐶𝐹𝐶∇𝑎+2
𝜈 𝐶𝐹𝐶∇𝑎

𝜇
𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+3, 

 

and (∇𝑢)(𝑎 + 2) ≥ (∇𝑢)(𝑎 + 1) ≥ 0, then  

 

(∇𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

Proof. Let 

 

(𝐶𝐹𝐶∇𝑎
𝜇

𝑢)(𝑡) = 𝑣(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

Consider 

 

(𝐶𝐹𝐶∇𝑎+2
𝜈 𝑣)(𝑡) = (𝐶𝐹𝐶∇𝑎+2

𝜈−1∇𝑣)(𝑡) 

 

and given that (𝐶𝐹𝐶∇𝑎+2
𝜈−1∇𝑣)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+3 , from (2.8) we have: 

 

∇𝑣(𝑎 + 2) = (∇𝐶𝐹𝐶∇𝑎
𝜇

𝑢)(𝑎 + 2) = 𝐵(𝜇)[(∇𝑢)(𝑎 + 2) 

−
𝜇

1 − 𝜇
∑ (∇𝑢)(𝑠)(1 − 𝜇)𝑎+2−𝑠

𝑎+1

𝑠=𝑎+1

]         

= 𝐵(𝜇)[(∇𝑢)(𝑎 + 2) − 𝜇(∇𝑢)(𝑎 + 1)]     
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> 𝐵(𝜇)[(∇𝑢)(𝑎 + 2) − (∇𝑢)(𝑎 + 1)]  ≥ 0 

 

Then, from lemma 2.2.2, we have: 

 

∇(𝑣)(𝑡) = (∇𝐶𝐹𝐶∇𝑎+1
𝜇

𝑢)(𝑡) ≥ 0,                                                                                (2.12) 

 

And since (∇𝑢)(𝑎 + 1) ≥ 0 ,from lemma 2.2.1, we get  

 

∇(𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

so the proof is finished. 

 

2.2.4. Lemma 

 

Let the function u is defined on  ℕ𝑎 , 𝜇 ∈ (1,2) and 𝜈𝜖(0,1). If 

 

(𝐶𝐹𝐶∇𝑎+2
𝜈 𝐶𝐹𝐶∇𝑎+1

𝜇
𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+3, 

 

and (∇𝑢)(𝑎 + 2) ≥ (∇𝑢)(𝑎 + 1) ≥ 0, then  

 

(∇𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

Proof. Let 

 

(𝐶𝐹𝐶∇𝑎+1
𝜇

𝑢)(𝑡) = 𝑣(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

Consider 

 

(𝐶𝐹𝐶∇𝑎+2
𝜈 𝑣)(𝑡) = (𝐶𝐹𝐶∇𝑎+2

𝜈−1𝑣)(𝑡) 

 

and given that (𝐶𝐹𝐶∇𝑎+2
𝜈 𝑣)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+3 , from (2.10) we have: 
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𝑣(𝑎 + 2) = (𝐶𝐹𝐶∇𝑎+1
𝜇

𝑢)(𝑎 + 2) = (𝐶𝐹𝐶∇𝑎+1
𝜇−1

∇𝑢)(𝑎 + 2) = 𝐵(𝜇 − 1)[(∇𝑢)(𝑎 + 2) 

−
𝜇 − 1

2 − 𝜇
∑ (∇𝑢)(𝑠)(2 − 𝜇)𝑎+2−𝑠

𝑎+1

𝑠=𝑎+1

 − (∇𝑢)(𝑎 + 1)(2 − 𝜇)𝑎+2−𝑎−2]         

= 𝐵(𝜇 − 1)[(∇𝑢)(𝑎 + 2) − 𝜇(∇𝑢)(𝑎 + 1)]     

> 𝐵(𝜇 − 1)[(∇𝑢)(𝑎 + 2) − (∇𝑢)(𝑎 + 1)]  ≥ 0. 

 

Then, from lemma (2.1.1) we have  

 

𝑣(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2, 

 

which is the same with  

 

(𝐶𝐹𝐶∇𝑎+1
𝜇

𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2,                                                               (2.13) 

 

Thus, we obtain 

 

0 ≤ (𝐶𝐹𝐶∇𝑎+1
𝜇

𝑢)(𝑡) = (𝐶𝐹𝐶∇𝑎+1
𝜇−1

∇𝑢)(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2, 

 

and since (∇𝑢)(𝑎 + 1) ≥ 0 ,from lemma 2.2.2, we get  

 

∇(𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 

 

so the proof is complete. 

 

2.2.1. 𝜶- Convex 

 

Let 𝛼 ∈ (1,2) it is mentioned that a function u is defineed on  ℕ𝑎 is called 𝛼-convex 

if  

 

𝑢(𝑡) − 𝛼𝑢(𝑡 − 1) + (𝛼 − 1)𝑢(𝑡 − 2) ≥ 0,     𝑡 ∈ ℕ𝑎+2 
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2.2.5. Lemma 

 

Let the function u is defined on  ℕ𝑎 and 𝛼 ∈ (1,2). If 

 

(𝐶𝐹𝐶∇𝑎+1
𝛼 𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2, 

 

and  

 

𝑢(𝑎 + 1) ≥ 𝑢(𝑎) ≥ 0. 

 

Then  u  is monotone increasing and positive on  ℕa. Furthermore, u  is α-convex on  

ℕa. 

 

Proof.  From the properties we can say  

 

0 ≤ (𝐶𝐹𝐶∇𝑎+1
𝛼 𝑢)(𝑡) = (𝐶𝐹𝐶∇𝑎+1

𝛼−1∇𝑢)(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2. 

And since ∇𝑢(𝑎 + 1) = 𝑢(𝑎 + 1) − 𝑢(𝑎) ≥ 0 , from lemma (2.2.2)  it follows that  

(∇𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1, 

 

which means that u is monotone increasing and positive on ℕ𝑎. 

 

The next demonstration is that u is 𝛼-convex. From  (2.11) 

 

(∇𝑢)(𝑡) ≥
𝛼 − 1

2 − 𝛼
∑ (∇𝑢)(𝑠)(2 − 𝛼)𝑡−𝑠

𝑡−1

𝑠=𝑎+2

+ (∇𝑢)(𝑎 + 1)(2 − 𝛼)𝑡−𝑎−2 

= (𝛼 − 1)(∇𝑢)(𝑡 − 1) +
𝛼 − 1

2 − 𝛼
∑ (∇𝑢)(𝑠)(2 − 𝛼)𝑡−𝑠

𝑡−2

𝑠=𝑎+2

+ (∇𝑢)(𝑎 + 1)(2 − 𝛼)𝑡−𝑎−2,                                                             (2.14) 

 

Since 𝛼 ∈ (1,2) and (∇𝑢)(𝑡) ≥ 0,  for all 𝑡 ∈ ℕ𝑎+1. from (2.14) it was written 

 

(∇𝑢)(𝑡) ≥ (𝛼 − 1)(∇𝑢)(𝑡 − 1). 
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If it was simplified it will result the following  

 

𝑢(𝑡) − 𝑢(𝑡 − 1) ≥ (𝛼 − 1)[𝑢(𝑡 − 1) − 𝑢(𝑡 − 2)]. 

 

Also it results in: 

 

𝑢(𝑡) − 𝛼𝑢(𝑡 − 1) + (𝛼 − 1)𝑢(𝑡 − 2) ≥ 0. 

 

It is indicated that 𝑢 has 𝛼-convex, hence the proof is completed.  

 

2.3. CONVEXITY 

 

Some convexity-type results were reported in this section. The conclusion is that there 

is a link between the sign of the non-sequential difference (𝐶𝐹𝐶∇𝑎+2
𝛼 𝑢)(𝑡) ≥ 0, and the 

following lemma, and the convexity of 𝑢. This is basically the type of result assumed 

in Goodrich [6] as well as Jia, Erbe, and Peterson [14]. 

 

2.3.1. LEMMA Let 𝛼 ∈ (2,3) and the function u is defined on  ℕa . 

 

If 

 

(𝐶𝐹𝐶∇𝑎+2
𝛼 𝑢)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+3. 

 

and  

 

(∇2𝑢)(𝑎 + 2) ≥ 0 

 

Then  u  is convex on  ℕ𝑎+2.  

 

Proof.  We start with the following substitution 

 

(∇𝑢)(𝑡) = 𝑣(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+1. 
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Consider 

 

(𝐶𝐹𝐶∇𝑎+2
𝛼 𝑢)(𝑡) = (𝐶𝐹𝐶∇𝑎+2

𝛼−2∇2𝑢)(𝑡) = (𝐶𝐹𝐶∇𝑎+2
𝛼 ∇𝑣)(𝑡) 

 

Given that (𝐶𝐹𝐶∇𝑎+2
𝛼 ∇𝑣)(𝑡) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+3. Since  

 

(∇𝑣)(𝑎 + 2) = (∇2𝑢)(𝑎 + 2) ≥ 0. 

 

from lemma 2.2.2, it follows that  

 

(∇𝑣)(𝑡) = (∇2𝑢)(𝑡) ≥ 0. 

 

which is  

 

∇[𝑢(𝑡) − 𝑢(𝑡 − 1)] ≥ 0. 

 

Also there is 

 

[𝑢(𝑡) − 𝑢(𝑡 − 1)] − [𝑢(𝑡 − 1) − 𝑢(𝑡 − 2)] ≥ 0. 

 

Now we get 

 

𝑢(𝑡) − 2𝑢(𝑡 − 1) + 𝑢(𝑡 − 2) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℕ𝑎+2. 

 

The proof is completed. 
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PART 3 

 

CONCLUSION 

 

In this thesis, it is investigated some positivity, monotonicity, and convexity results for 

discrete Caputo-Fabrizio fractional operators in the context of discrete fractional 

calculus. Also, it is considered the connections of these results to the nonnegativity of 

both non-sequential and sequential Caputo-Fabrizio fractional differences of Caputo 

type. Finally, it is found that there are some significant dissimilarities between this 

type of fractional difference and, for instance, the more well-known Riemann-

Liouville type. 
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