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ABSTRACT 

 

M. Sc. Thesis 

 

ON SOME NEW DIOPHANTINE EQUATIONS 

 

Seyran IBRAHIMOV 

 

Karabük University 

Institute of Graduate Programs  

Department of Mathematics 

 

Thesis Advisor: 

Prof. Dr. Ayşe NALLI 

June 2023, 37 pages 

 

In this thesis, some new Diophantine equations are introduced. Then, the solutions of 

the equations in the set of positive integers are found. 

First, all solutions to a Pillai-type problem associated with Lucas numbers are 

determined.  

Secondly, the Brocard-Ramanujan equation is solved when the right-hand side is 

Mersenne numbers. 

Finally, it has been shown that some new Fermat-type equations associated with 

number sequences have no solutions other than trivial solutions. 

 

Key Words    : Fermat's last theorem, Diophantine equations, Recurrence number 

sequences, Pillai problem, Brocard-Ramanujan equation. 

Science Code :  20401 
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ÖZET 

 

Yüksek Lisans Tezi 

 

BAZI YENİ DIOFANT DENKLEMLERİ ÜZERİNE 

 

Seyran İBRAHİMOV 

 

Karabük Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 

 

Tez Danışmanı: 

Prof. Dr. Ayşe NALLI 

June 2023, 37 sayfa 

 

Bu tezde bazı yeni Diofant denklemler tanımlanmış ve bu denklemlerin pozitif tam 

sayılar kümesındeki çözümleri bulunmuşdur. 

İlk olarak, Lucas sayıları ile ilişkili Pillai tipi bir problemin tüm çözümleri 

bulunmuştur.  

Ayrıca, Brocard-Ramanujan denklemi, sağ tarafı Mersenne sayıları olduğu durumda 

çözülmüştür. 

Son olarak, Fermat tipi bazı yeni Diofant denklemlerin aşikâr çözümlerinden başka 

çözümlerinin olmadığı kanıtlanmıştır. 

 

Anahtar Kelimeler  : Fermat’ın son teoremi, Diofant denklemler, Rekürans sayı 

dizileri, Pillai problemi, Brocard-Ramanujan denklemi. 

Bilim Kodu :        20401 
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PART 1 

 

INTRODUCTION 

 

Diophantine equations are one of the oldest and most curious fields of number theory. 

If there are two or more unknowns in an equation, this equation is called Diophantine 

equation. The title of Diophantine is connected with the name of Diophantus, who 

lived in the 3rd century. Diophantus made the first studies on these field. Usually, it is 

necessary to find all the integer solutions of these equations. However, there is no 

general method with finite numerical calculations for solving these equations in the set 

of integers. This theorem is the 10th problem among Hilbert’s 23 famous problems 

that Matiyasevich proved in 1970. For this reason, different methods are developed by 

mathematicians to solve special classes of Diophantine equations. In this work, we will 

use Baker’s reduction technique, the factoring method, and appropriate inequalities to 

solve our problems. 

 

This thesis is organized as follows:  

In section 2, we provide some significant references to ensure the history of our topics. 

In addition, we deal with the recent works related to our subject. 

 

In section 3, we give the essential definitions, lemmas, and theorems for which it is to 

prove our results. 

 

In section 4, we give data about the structure of techniques that we used in the proof 

of our results. In addition, we solved some examples using these methods. 

 

In section 5, we describe our main results and their detailed proofs. 

 

In section 6, we just talk about the summary in detail, important references, and resume 

with some information. 
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PART 2 

 

LITERATURE REVIEW 

 

Diophantine equations are one of the absorbing topics of number theory. Some well-

known mathematicians such as P. Fermat, P. Erdös, J. L. Lagrange and S. Ramanujan 

have significant works in this field. 

 

D. Hilbert proposed in 1900, that there is no method for finding the solution to these 

equations by finite mathematical operations on the set of integers. Y. Matiyasevich 

proved this conjecture in 1970 [1]. Also, working on this topic leads to the 

development of new techniques in number theory. For instance, Fermat's last theorem 

has led to the development of different fields of number theory. 

 

Now we will summarize the studies that shed light on us in our thesis studies and what 

has been done in the studies. 

 

In section 5.1, we solved a Pillai -type problem related to Lucas numbers[2]. The Pillai 

problem was formulated in 1936 [3,4].  

 

Mihailescu solved this problem a special case of Pillai equation, called the Catalan 

conjecture [5]. Recently, Pillai-type problems involving recurrence number sequences 

have been investigated using elements of Baker's method [6,7,8,9,10,11]. 

 

In section 5.2, we solved the Brocard-Ramanujan equation associated with Mersenne 

numbers [12]. One of the famous Diophantine equations is the Brocard-Ramanujan 

equation. This problem is one of the still open problems of number theory. The only 

known solutions to are (𝑛, 𝑚)  ∈  {(4,5), (5,11), (7,71)}. This problem was proposed 

by Brocard and Ramanujan in 1876 and 1913 [13]. The solutions of this equation 

under some special conditions have been investigated by different mathematicians. 
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Gérardin put forward the idea that when 𝑚 >  71, m must be a number at least 20 

digits [14]. Lately, the Berndt and Galway proved that there are no other solutions up 

to 𝑛 =  109 [15]. Furthermore, Marques studied the form of the equation for 

Fibonacci numbers [16]. Faco and Marques studied the case where the right-hand side 

of the equation is Tribonacci numbers [17]. Dabrowski and Ulas investigated some 

varieties of the Brocard-Ramanujan equation [18]. 

 

In section 5.3, we introduced Fermat-type equations. Fermat published this problem in 

his Arithmetica book in 1637. But the solution to this problem is not provided in this 

book. Although mathematicians worked on this problem for many years, only the 

English mathematician Andrew Wiles succeeded in solving this problem after 300 

years [19]. After that, many authors worked on different Fermat-type equations [20,21, 

22]. 

 

Finally, we referenced some books that have been written about different types of 

Diophantine equations [23, 24]. 
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PART 3 

 

THEORETICAL BACKGROUND 

 

3.1. Some Necessary Tools for Section 5.1. 

 

First, we give a Baker-type lower bound for nonzero linear form in logarithms of 

algebraic numbers, which we will use three times to prove our result. 

 

Definition 3.1.1. If a real (or complex) number 𝑚 is the root of a polynomial, it is 

called an algebraic number. 

 

Definition 3. 1. 2. Let 𝑚 be an algebraic number. The logarithmic height of 𝑚 is 

defined as 

ℎ(𝑚) = 𝑑−1 (∑ log(𝑚𝑎𝑥{1, |𝑚𝑖|})

𝑑

𝑖=1

+ log 𝑚0) 

 

where 𝑑 is the degree of 𝑚 and  

  

𝑔(𝑋) = 𝑚0 ∏(𝑋 − 𝑚𝑖)

𝑑

𝑖=1

∈ ℤ[𝑋] 

 

is minimal primitive polynomial over the integers such that 𝑚 is a root of this 

polynomial, and the  leading coefficient 𝑚0 is positive. 

 

Theorem 3.1.3. [25] (Matveev) Let 𝕃 be a real algebraic number field of degree 𝐷 

and 𝑟1, 𝑟2, … , 𝑟𝑘 are positive real numbers of 𝕃 and 𝑢1, 𝑢2, … , 𝑢𝑘 are rational integers. 

Let's denote 
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 ∆= (∏ 𝑟𝑖
𝑢𝑖𝑘

𝑖=1 ) − 1                                     

and supposing that  ∆≠ 0, then 

 

|∆| > 𝑒𝑥𝑝(−1,4 × 30𝑘+3 × 𝑘4,5 × 𝐷2(1 + log 𝐷)(1 + log 𝐵)𝐴1 … 𝐴𝑘) 

 

where 

𝐵 ≥ 𝑚𝑎𝑥{|𝑢1|, |𝑢2|, … , |𝑢𝑘|  } 

and  

𝐴𝑖 ≥ 𝑚𝑎𝑥{𝐷ℎ(𝑟𝑖), |log 𝑟𝑖|, 0.16}, 𝑖 = 1,2, … , 𝑘. 

 

Besides, we give the following lemma of Dujella and Petho, which will be the main 

tool we will use to reduce the upper bounds on the variables of our equation. Let 𝑌 be 

a real number. We denote the distance from 𝑌 to the nearest integer as follows 

 

‖𝑌‖ = 𝑚𝑖𝑛{|𝑌 − 𝑛|, 𝑛 ∈ ℤ}. 

 

 

Lemma 3.1.4. [26] Let 𝑀 ∈ ℕ∗ and let  
𝑝

𝑞
  be a convergent of the continued fraction of 

the irrational 𝛾 such that 𝑞 > 6𝑀. Furthermore, suppose that 𝐶, 𝐾, 𝜇 are some real 

numbers with 𝐶 > 0, 𝐾 > 1 and let  𝜖 = ‖𝜇𝑞‖ − 𝑀‖𝛾𝑞‖. If 𝜖 > 0, then there is no 

solution to the following inequality 

 

0 < |𝑠𝛾 − 𝑡 + 𝜇| < 𝐶𝐾−𝑟 

 

with positive integers  𝑠, 𝑡 and 𝑟 with 

 

𝑠 ≤ 𝑀  and  𝑟 ≥
log

𝐶𝑞
𝜖

log 𝐾
 . 

 

Let (𝐿𝑘)𝑘≥1 be the Lucas sequence defined by the recurrence relation  

𝐿𝑘 = 𝐿𝑘−1 + 𝐿𝑘−2 for all 𝑘 ≥ 3, with initial conditions 𝐿1 = 1, 𝐿2 = 3.  

 

Next, we will give some important properties of Lucas numbers. 
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Theorem 3.1.5. [27] (Binet's formula) Let (𝐿𝑘)𝑘≥1  be the Lucas sequence, then 

 

𝐿𝑘 = 𝛼𝑘 + 𝛽𝑘    

                                        

where  

 

(𝛼, 𝛽) = (
1 + √5

2
,
1 − √5

2
) , 𝑎𝑛𝑑 𝑘 ≥ 1.  

 

 

Lemma 3.1.6. [27] Let 𝑘 ≥ 0. Then 

 

𝐿4𝑘 ≡ 2 (𝑚𝑜𝑑 5), 𝐿4𝑘+1 ≡ 1 (𝑚𝑜𝑑 5), 

and 

𝐿4𝑘+2 ≡ 3 (𝑚𝑜𝑑 5) , 𝐿4𝑘+3 ≡ 4 (𝑚𝑜𝑑 5). 

 

Lemma 3.1.7 Let 𝑡, 𝑢, 𝑙, 𝑘 be some positive integers, then 

 

1) 32𝑡−1 − 1 = 2𝐴𝑡                             5)  38𝑡−4 − 1 = 16𝐹𝑡          

2) 32𝑡−1 + 1 = 4𝐵𝑡                             6)  38𝑡−6 − 1 = 8𝑅𝑡 

3) 32𝑡 + 1 = 2𝐶𝑡                                 7)  38𝑡 − 1 = 32𝑆𝑡, for all 𝑡 = 2𝑘 − 1 

4) 38𝑡−2 − 1 = 8𝐷𝑡                             8)   38𝑡 − 1 = 2𝑙+4𝐾𝑡, for all 𝑡 = 𝑢 ∙ 2𝑙−1. 

Here, the odd numbers 𝐴𝑡, 𝐵𝑡, 𝐶𝑡, 𝐷𝑡, 𝐹𝑡, 𝑅𝑡, 𝑆𝑡, 𝐾𝑡 and the integer 𝑍𝑡 are positive 

integers that change according to the value of 𝑡.     

  

Proof. 

  

1)  𝟑𝟐𝒕−𝟏 − 𝟏 = (𝟑 − 𝟏)(𝟑𝟐𝒕−𝟐 + 𝟑𝟐𝒕−𝟑 + ⋯ + 𝟑 + 𝟏) = 𝟐𝑨𝒕 

 

3) 32𝑡 + 1 = 3 ∙ 32𝑡−1 + 1 = 3 ∙ (2𝐴𝑡 + 1) + 1 = 6𝐴𝑡 + 4 = 2(3𝐴𝑡 + 2) = 2𝐶𝑡 

 

 4)  38𝑡−4 − 1 = (  32𝑡−1 − 1)(32𝑡−1 + 1)(34𝑡−2 + 1) 

     = (  32𝑡−1 − 1)(32𝑡−1 + 1)((  32𝑡−1 − 1)(32𝑡−1 + 1) + 2) 
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                          = 8𝐴𝑡𝐵𝑡(8𝐴𝑡𝐵𝑡 + 2) = 16𝐹𝑡  

 

   8)  32𝑙+2
− 1 = (3 − 1)(3 + 1)(32 + 1) ∙ … ∙ (32𝑙+1

+ 1) 

 

If we use part 3), we get that  

 

 (3 − 1)(3 + 1)(32 + 1) ∙ … ∙ (32𝑙+1
+ 1) = 2 ∙ 4 ∙ 2𝑙+1𝐾𝑡 = 2𝑙+4𝐾𝑡. 

and  

 

3𝑢∙2𝑙+2
− 1 = (32𝑙+2

)
𝑢

− 1 = 2𝑙+4𝑍𝑡. 

 

We can prove the other parts of Lemma in the same way. From this Lemma we obtain 

following result: 

 

If  3𝑡 − 1 ≡ 0 (𝑚𝑜𝑑 2𝑙) and 𝑙 ≥ 3 then  𝑡𝑚𝑖𝑛 = 2𝑙−2 and 𝑡 = 𝑢 ∙ 2𝑙−2, 𝑢 ≥ 1. 

 

Using induction method, we can prove that the following lemma. 

 

Lemma 3.1.8.   If  𝑙 ≥ 4 and  𝑢 ≥ 1. Then:   

 

3𝑢∙2𝑙−2
− 1 ≡ 0 (𝑚𝑜𝑑 5)     

 

Lemma 3.1.9. [27] Let  (𝐿𝑘)𝑘≥1  be the Lucas sequence, then following inequality 

holds 

 

 𝛼𝑘−2 ≤ 𝐿𝑘 ≤ 2𝛼𝑘−1. 

 

3.2. Some Necessary Tools for Section 5.2. 

  

Definition 3.2.1. Mersenne numbers are defined by the recurrence relation and for all 
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𝑀𝑛 = 2𝑛 − 1, 𝑛 ≥ 1. 

 

Lemma 3.2.2. If 𝑎, 𝑏 > 0 and 𝑛 ∈ ℕ∗ then the below inequality is holds: 

 

2𝑛−1(𝑎𝑛 + 𝑏𝑛) ≥ (𝑎 + 𝑏)𝑛. 

 

 

Lemma 3.2.3. If 𝑛 ∈ ℕ∗ then: 

 

  
2

𝑛+1
≤ (𝑛!)

−1

𝑛 <
𝑒

𝑛+1
                     (3.2)

   

 

holds. 

 

Proof. Applying the Arithmetic-Geometric mean inequality [28] for the numbers 

1, 2, … , 𝑛, we obtain 

 

 

𝑛+1

2
≥ (𝑛!)

1

𝑛, 

or 

2

𝑛+1
≤ (𝑛!)

−1

𝑛  . 

Now we must prove 

(𝑛!)
−1
𝑛 <

𝑒

𝑛 + 1
 

 

We use the induction method for this. If 𝑛 =  1 then we get 1 <
𝑒

2
 . Suppose that 

inequality (3.2) is true for 𝑛 =  𝑘 and show that it holds for 𝑛 =  𝑘 + 1. We know 

that 

 

𝑒
1

𝑛+1 ≤ 1 +
1

𝑛
≤ 𝑒

1

𝑛 ,                                (3.3) 
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then by our assumption and inequality (3.3), we have 

 

1

(𝑘+1)!
< (

𝑒

𝑘+1
)

𝑘 1

𝑘+1
< (

𝑒

𝑘+2
)

𝑘+1

. 

 

Lemma 3.2.4. If 𝑛 ∈ ℕ∗ then:  

 

 (
𝑛+1

3
)

𝑛

> 22𝑛 − 2𝑛+1                     (3. 4) 

    

satisfies for all 𝑛 ≥ 11. 

 

Proof. We suppose that 𝑛 = 11. Then  

 

411 > 222 − 212, 

 

that is true. 

Besides, we assume that inequality (3.4) is satisfied for 𝑛 = 𝑘. Then we must illustrate 

for 𝑛 = 𝑘 + 1 

 

(
𝑘+2

3
)

𝑘+1

> 2 (
𝑘+1

3
)

𝑘+1

=
2(𝑘+1)

3
(

𝑘+1

3
)

𝑘

> 22𝑘+3 − 2𝑘+4 > 22𝑘+2 − 2𝑘+2. 

 

Finally, we give a way to prime factorization of 𝑛!. To acquire the prime factorization 

of 𝑛! we must find, for each of these primes 𝑝, the exponent 𝑔𝑝 of the greatest power 

of 𝑝 that divides 𝑛!. The method we will use is connected to the relation between 𝑛, 𝑝 

and 𝑔𝑝. Thanks to this method, the formula of 𝑔𝑝 depending on 𝑛 and 𝑝 was 

determined, which also allows to find 𝑔𝑝  for a given 𝑛 and p in practise. This method 

belongs to the illustrious French mathematician A. Legendre [29]. 

 

To explain proposed method, let's start by giving the base 𝑝 representation of the 

positive integer 𝑛. Assume this is given as  

 

𝑛 = ∑ 𝑟𝑖𝑝
𝑖𝑘

𝑖=0 , 
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where 𝑝𝑘+1 > 𝑛, 𝑝𝑘 ≤ 𝑛 and 0 ≤ 𝑟𝑖 ≤ 𝑝 − 1, for all 𝑖 = 1,2, … , 𝑘. Then, for 𝑙 (1 ≤

𝑙 ≤ 𝑘), 

 

𝑛

𝑝𝑙 =
∑ 𝑟𝑖𝑝𝑖𝑘

𝑖=𝑙

𝑝𝑙 +
∑ 𝑟𝑖𝑝𝑖𝑙−1

𝑖=0

𝑝𝑙  , 

 

thus 

 

∑ 𝑟𝑖𝑝
𝑖𝑙−1

𝑖=0 ≤ (𝑝 − 1) ∑ 𝑝𝑖𝑙−1
𝑖=0 = 𝑝𝑙 − 1 < 𝑝𝑙, 

 

then, we get 

 

[
𝑛

𝑝𝑙] = ∑ 𝑟𝑘−𝑖𝑝
𝑘−𝑙−𝑖𝑘−𝑙

𝑖=0  , for all 1 ≤ 𝑙 ≤ 𝑘.                    (3. 5)

  

 

In addition, we know that, given for any prime 𝑝 ≤ 𝑛, 

 

 𝑔𝑝 = ∑ [
𝑛

𝑝𝑘]𝑘
𝑖=1 ,                            (3. 6)   

                                                                     

where 𝑝𝑘+1 > 𝑛, 𝑝𝑘 ≤ 𝑛. 

 

For each 𝑙 (1 ≤ 𝑙 ≤ 𝑘) , we write the formula (3. 5) and add side-by-side and using 

the formula (3. 6) we obtain 

 

𝑔𝑝 = ∑ (𝑟𝑖 ∑ 𝑝𝑗−1𝑖−1
𝑗=1 )𝑘

𝑖=1 =
1

𝑝−1
∑ (𝑟𝑖(𝑝𝑖 − 1))𝑘

𝑖=1 =
𝑛−𝑑𝑝

𝑝−1
 ,           (3. 7)   

 

where 𝑑𝑝 = ∑ 𝑟𝑖
𝑘
𝑖=0 . 

 

3.3. Some Necessary Tools for Section 5.3. 

 

Now we give the Fermat-Wiles theorem: 

Theorem 3.3.1. [19] The below equation there is no solution in ℕ∗: 
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𝑥𝑛 = 𝑦𝑛 + 𝑧𝑛 

 

Definition 3.3.2. Fibonacci numbers are defined by the recurrence relation  

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 , and for all 𝑛 ≥ 3, with the initial conditions  𝐹1 = 𝐹2 = 1. 
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PART 4 

 

METHODOLOGY 

 

4.1. Factoring Method 

 

Now let's explain the meaning of the Factoring method [24]. Let's look at the given 

equation 

 

𝑔(𝑡1, 𝑡2, … , 𝑡𝑛) = 0.                    (4. 1)    

 

Now let's say that there are functions 𝑔1, 𝑔2, … 𝑔𝑘 ∈ 𝑍[𝑡1, 𝑡2, … , 𝑡𝑛], and the  𝑠 ∈ ℤ, 

so that equation (4. 1) can be written in the following equivalent form by means of 

these parameters: 

 

𝑔1(𝑡1, 𝑡2, … , 𝑡𝑛)𝑔2(𝑡1, 𝑡2, … , 𝑡𝑛) ∙∙∙ 𝑔𝑘(𝑡1, 𝑡2, … , 𝑡𝑛) = 𝑠. 

 

If the prime factorization of the number 𝑠 = 𝑠1𝑠2 ∙∙∙ 𝑠𝑘 is given, then we get the 

following system that gives all the solutions of equation (4.1). 

 

𝑔1 = 𝑠1

𝑔2 = 𝑠2

⋮
𝑔𝑘 = 𝑠𝑘 .

 

 

Example 4.1.1. The below inequality there is no solution in positive integers: 

 

𝑎 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 = 𝑏2 

 

Proof. It is obvious that the above equation can be written in the following form 
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𝑎(1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5) = 𝑏2, 

 

Since  

𝑔𝑐𝑑(𝑎, 1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5) = 1. 

 

Then, we obtain 

 

∃ 𝑥, 𝑦 ∈ 𝑁∗, 𝑔𝑐𝑑(𝑥, 𝑦) = 1 and 𝑏 = 𝑥𝑦 

 

𝑎 = 𝑥2

1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 = 𝑦2.
 

 

Therefore, we get that: 

 

𝑎(1 + 𝑎2 + 𝑎3 + 𝑎4) = 𝑦2 − 1. 

 

Also, we see that: 

 

𝑔𝑐𝑑(𝑎, 1 + 𝑎2 + 𝑎3 + 𝑎4) = 1. 

 

Hence, we should examine the following two cases: 

 

i) 𝑔𝑐𝑑(𝑦 − 1, 𝑦 + 1) = 1. 

 

In this case we obtain that: 

 

𝑎 = 𝑦 − 1

1 + 𝑎2 + 𝑎3 + 𝑎4 = 𝑦 + 1
  

 

Hence, we get that: 

 

𝑎2 + 𝑎3 + 𝑎4 = 𝑎 + 1. 
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However, this equation there is no solution in the positive integers. 

 

ii) 𝑔𝑐𝑑(𝑦 − 1, 𝑦 + 1) = 2 , 

 

then  

 

∃𝑟0, 𝑑0, 𝑔𝑐𝑑(𝑟0, 𝑑0) = 1, 

 

𝑦 − 1 = 2𝑟0, 𝑦 + 1 = 2𝑑0. 

 

Thus 

 

  𝑟0 + 1 = 𝑑0, 

 

hence  

 

𝑎(1 + 𝑎2 + 𝑎3 + 𝑎4) = 4𝑟0 𝑑0. 

 

Then to find the solution to this equation, we must examine the following cases: 

 

𝑎 = 4, 1 + 𝑎2 + 𝑎3 + 𝑎4 = 𝑟0 𝑑0 = 𝑟0(𝑟0 + 1), 

 

there is no solution to the last equation. Because the left-hand side is odd but the right-

hand side is an even number. 

 

𝑎 = 𝑟0, 1 + 𝑎2 + 𝑎3 + 𝑎4 = 4(𝑟0 + 1), 

 

then if we write 𝑟0 instead of 𝑎 in the second expression 

 

𝑟0
4 + 𝑟0

3 + 𝑟0
2 = 4𝑟0 + 3. 

 

We can show that there is no solution to the last equation follows: 

 Let us define the following function on the set of positive integers: 
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𝑓(𝑡) = 𝑡4 + 𝑡3 + 𝑡2 − 4𝑡 − 3, 

 

clearly, this function is an increasing function and 

 

𝑓(𝑡) ≥ 17, 𝑡 ≥ 2. 

 

Moreover, if 

 

𝑡 = 1, 𝑓(𝑡) = −4. 

 

We illustrated that there is no solution in this case. 

We now take 

 

𝑎 = 4𝑟0, 1 + 𝑎2 + 𝑎3 + 𝑎4 = 𝑟0 + 1. 

 

We clearly see that this is not possible. With this, it has been illustrated that the 

equation has no solutions in ℕ∗. 

 

4.2. Inequalities method 

 

The general purpose of this method is to solve the given Diophantine equation with an 

appropirate inequality [24]. The set of solutions of the given equation is narrowed by 

the inequality appropriate to the equation and the solutions are found. 

Example 4. 2. 1. Find all solutions of below equation in ℕ∗. 

 

1

𝑥
+

1

𝑦
+

1

𝑧
= 1 

 

Solution. Obviously, 𝑥, 𝑦, 𝑧 > 1. Without compromising the generality, we may 

assume that 𝑥 ≥  𝑦 ≥  𝑧. The implies 𝑧 ≤ 3. 

 

If 𝑧 = 2, then  
1

𝑥
+

1

𝑦
=

1

2
  with 𝑦 ≤ 4. Then we get the solutions {(6, 3, 2), (4, 4, 2)}. 
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If 𝑧 = 3, then 
1

𝑥
+

1

𝑦
=

2

3
 with 𝑦 ≤ 3 , and the solutions {(6, 2, 3), (3, 3, 3)}. 

 



17 

 

PART 5 

 

MAIN RESULT 

 

5.1. A Pillai-type Problem Associated with Lucas Numbers 

 

This part of our dissertation was published under the title A Pillai-type Problem 

Associated with Lucas Numbers in Pak-Turk conference 2023[2]. 

 

Theorem 5.1.1. The only positive integer solutions of the following equation are 

(𝑥, 𝑦, 𝑛) = {(1,1,1), (2,3,1), (2,1,3)} 

 

3𝑥 − 𝐿𝑛2𝑦 = 1                      (5.1) 

 

Proof. From Lemmas 3.1.6, 3.1.7, and 3.1.8 we get that there are no solutions to 

equation (5.1) when 𝑦 ≥ 4. Therefore we have to investigate the cases 𝑦 = 1, 𝑦 = 2, 

and 𝑦 = 3. 

 

𝑖) 𝑦 = 1.  

By Lemma 3.1.9, we get 

 

6𝛼𝑛−1 ≥ 1 + 2𝐿𝑛 = 3𝑥 

 

or 

 

𝑥 <
log 6

log 3
+ (𝑛 − 1)

log 𝛼

log 3
< 1,64 + 0,44(𝑛 − 1) . 

 

From last inequality, we conclude that, when 𝑛 ≥ 3, if the equation has a solution then 

𝑥 < 𝑛. When 𝑛 = 1,2,3 we obtain the trivial (𝑥, 𝑦, 𝑛) = {(1,1,1), (2,1,3)} solutions of 

(5.1). By Binet's formula 
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3𝑥 − 2𝐿𝑛 = 3𝑥 − 2(𝛼𝑛 + 𝛽𝑛) = 1, 

 

then 

 

 |3𝑥 − 2𝛼𝑛| = |1 + 2𝛽𝑛| ≤ 1 + 2|𝛽|𝑛 < 4 

                          

which implies     

 

 |3𝑥𝛼−𝑛2−1 − 1|  < 2

𝛼𝑛.                                 (5.2) 

 

We put 

 

∆1= 3𝑥𝛼−𝑛2−1 − 1, 

 

It is obvious that, ∆1≠ 0, because if ∆1= 0, then 𝛼𝑛 ∈ ℚ  which is false. To find the 

lower bound for ∆1 we use Matveev's theorem, we take 

  

𝑘 = 3, 𝑟1 = 3, 𝑟2 = 𝛼, 𝑟3 = 2, 𝑢1 = 𝑥, 𝑢2 = −𝑛, 𝑢3 = −1. 

 

𝑟1, 𝑟2, 𝑟3 are algebraic numbers of 𝐿 = ℚ(√5) which is degree 2. According to the 

definition of the logarithmic height of algebraic numbers, we get 

 

ℎ(𝑟1) = log 3, ℎ(𝑟2) =
1

2
log 𝛼 , ℎ(𝑟3) = log 2, 

 

then we can take 

 

𝐴1 = 2 log 3, 𝐴2 = log 𝛼 , 𝐴3 = 2 log 2. 

 

Finally, we know that 𝑥 < 𝑛 then we can take 𝐵 = 𝑛. Then, by Theorem 3.1.3, we 

have that 

 

 log|∆1| > −1,4 ∙ 306 ∙ 34,5 ∙ 4 ∙ (1 + log 2)(1 + log 𝑛)(2 log 3 )(log 𝛼)(2 log 2) 
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by comparing last inequality with  (5.2), we obtain 

 

𝑛 log 𝛼 − log2 < 1,4 ∙ 306 ∙ 34,5 ∙ 4(1 + log 2)(1 + log 𝑛)(2 log 3 )(log 𝛼)(2 log 2), 

 

Then 

𝑛 < 1,5 ∙ 306 ∙ 34,5 ∙ 4 ∙ (1 + log 2)(1 + log 𝑛)(2 log 3 )(2 log 2). 

 

Hence, we get 𝑛 < 1,06 ∙ 1014. 

 

Next, we apply the result of Dujella and Petho to reduce the above bound for 𝑛. From 

inequality (5.2), we conclude that |∆1| < 2

𝛼𝑛 < 1

2
  for all 𝑛 ≥ 3 and we know that 2|𝑧| >

|log(1 + 𝑧)| holds for all 𝑧 ∈ (−
1

2
,

1

2
). Hence, we get 

 

|𝑥 log 3 − 𝑛 log 𝛼 − log 2|

2
<

2

𝛼𝑛
 

 

Therefore, we obtain 

  

|𝑥
log 3

log 𝛼
−𝑛 −

log 2

log 𝛼
| <

9

𝛼𝑛
 

 

We now apply Lemma 3.1.4 with the following data 

  

𝛾 =
log 3

log 𝛼
, 𝑠 = 𝑥, 𝑡 = 𝑛, 𝜇 = −

log 2

log 𝛼
, 𝐶 = 9, 𝐾 = 𝛼, 𝑟 = 𝑛. 

 

In addition, since 𝑥 < 𝑛 < 1,06 ∙ 1014 we can take 𝑀 = 1,06 ∙ 1014. The 33𝑡ℎ 

convergent to 𝛾 

 

𝑝33

𝑞33
=

4509703705422533

1975330854159075
 

 

Then, 𝑞 = 𝑞33 = 1975330854159075 > 6𝑀. Hence, it gives 𝜖 > 0,202.  
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Then if the equation has solutions, then 

 

 𝑛 <
log (9∙1975330854159075) 0,202)⁄

log 𝛼
< 82. 

 

A ran using Mathematica showed that equation (5.1) has no solution under the 

conditions 𝑦 = 1, 𝑥 < 𝑛 < 82, 𝑛 > 3. 

 

ii) 𝑦 = 2.  

By Lemma 3.1.9, we get  

 

10𝛼𝑛−1 ≥ 1 + 4𝐿𝑛 = 3𝑥 

or 

 

𝑥 <
log 10

log 3
+ (𝑛 − 1)

log 𝛼

log 3
< 2,1 + 0,44(𝑛 − 1), 

 

Therefore, when 𝑛 ≥ 3, if the equation has a solution then 𝑥 < 𝑛. It is clear that when 

𝑛 = 1,2,3  there are no solutions to equation (5.1). By Binet's formula 

 

3𝑥 − 4𝐿𝑛 = 3𝑥 − 4(𝛼𝑛 + 𝛽𝑛) = 1, 

 

then 

 

|3𝑥 − 4𝛼𝑛| = |1 + 4𝛽𝑛| ≤ 1 + 4|𝛽|𝑛 < 6,    

                         

which implies 

 

|3𝑥𝛼−𝑛4−1 − 1|  < 2

𝛼𝑛.                        (5.3) 

 

We put 

 

∆2= 3𝑥𝛼−𝑛4−1 − 1, 
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obviously, ∆2≠ 0, because if ∆2= 0, then 𝛼𝑛 ∈ ℚ, which is contradiction. We now 

apply Matveev’s result to get a lower bound for |∆2|, we take 

  

𝑘 = 3, 𝑟1 = 3, 𝑟2 = 𝛼, 𝑟3 = 4, 𝑢1 = 𝑥, 𝑢2 = −𝑛, 𝑢3 = −1. 

 

𝑟1, 𝑟2, 𝑟3 are algebraic numbers of 𝐿 = ℚ(√5) which is degree 𝐷 = 2. By the 

definition of the logarithmic height of algebraic numbers, we get 

 

ℎ(𝑟1) = log 3, ℎ(𝑟2) =
1

2
log 𝛼 , ℎ(𝑟3) = log 4, 

 

then we can take 

 

𝐴1 = 2 log 3, 𝐴2 = log 𝛼 , 𝐴3 = 2 log 4. 

 

Additonally, we know that 𝑥 < 𝑛 then we can take 𝐵 = 𝑛. Then, by Theorem 3.1.3, 

we obatin 

 

log|∆1| > −1,4 ∙ 306 ∙ 34,5 ∙ 4 ∙ (1 + log 2)(1 + log 𝑛)(2 log 3 )(log 𝛼)(2 log 4), 

 

by comparing this with inequality (5.3), we acquire 

 

𝑛 log 𝛼 − log 2 < 1,4 ∙ 306 ∙ 34,5 ∙ 4(1 + log 2)(1 + log 𝑛)(2 log 3 )(log 𝛼)(2 log 4), 

 

thus 

 

𝑛 < 1,5 ∙ 306 ∙ 34,5 ∙ 4 ∙ (1 + log 2)(1 + log 𝑛)(2 log 3 )(2 log 4), 

hence, we get 𝑛 < 2.2 ∙ 1014. 

 

We again use the result of Dujella and Petho. By inequality (5.3) we have that |∆2| <

2

𝛼𝑛 < 1

2
  for all 𝑛 ≥ 3 and we know that 2|𝑧| > |log(1 + 𝑧)| satisfies for all 𝑧 ∈

(−
1

2
,

1

2
). Thus, we conclude that 
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|𝑥 log 3−𝑛 log 𝛼−log 4|

2
<

2

𝛼𝑛
, 

 

then, by dividing both sides of last inequality by log 𝛼, we obtain that 

 

|𝑥
log 3

log 𝛼
−𝑛 −

log 4

log 𝛼
| <

9

𝛼𝑛. 

 

We now apply Lemma 3.1.4 with the following data 

  

𝛾 =
log 3

log 𝛼
, 𝑠 = 𝑥, 𝑡 = 𝑛, 𝜇 = −

log 4

log 𝛼
, 𝐶 = 9, 𝐾 = 𝛼, 𝑟 = 𝑛. 

 

In addition, since 𝑥 < 𝑛 < 2,2 ∙ 1014 we can choose 𝑀 = 2,2 ∙ 1014. We know, the 

33𝑡ℎ convergent to 𝛾 

 

𝑝33

𝑞33
=

4509703705422533

1975330854159075
 

 

then, 𝑞 = 𝑞33 = 1975330854159075 > 6𝑀. According to these data, we get that 

𝜖 > 0,411. Then if the equation has solutions, then  

 

𝑛 <
log (9∙1975330854159075) 0,411)⁄

log 𝛼
< 80. 

 

A run with the Mathematica program showed there are no solutions to equation (5.1) 

in the range 𝑥 < 𝑛 < 80, 𝑛 > 3. We completed the analysis in the case 𝑦 = 2.   

 

 iii) 𝑦 = 3.  

From Lemma 3.1.9, we have that 

 

18𝛼𝑛−1 ≥ 1 + 8𝐿𝑛 = 3𝑥 

or 
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𝑥 <
log 18

log 3
+ (𝑛 − 1)

log 𝛼

log 3
< 2,64 + 0,44(𝑛 − 1) 

 

Thus, when 𝑛 ≥ 4, if the equation has a solution then 𝑥 < 𝑛. For cases 𝑛 = 1, 2, 3 we 

have the trivial (𝑥, 𝑦, 𝑛) = (2, 3, 1) solution of equation (5.1). Using Binet’s formula, 

we can write equation (5.1) as follows 

 

3𝑥 − 8𝐿𝑛 = 3𝑥 − 8(𝛼𝑛 + 𝛽𝑛) = 1, 

 

then 

 

|3𝑥 − 8𝛼𝑛| = |1 + 8𝛽𝑛| ≤ 1 + 8|𝛽|𝑛 < 10. 

                          

Hence, we obtain 

 

|3𝑥𝛼−𝑛8−1 − 1| < 5

4𝛼𝑛 .                            (5.4) 

 

We put, 

 

∆3= 3𝑥𝛼−𝑛8−1 − 1, 

 

if ∆3= 0, then 𝛼𝑛 ∈ ℚ, which is not true. This means that ∆3≠ 0. We apply Matveev's 

theorem one more time to find the lower bound for ∆3, we take 

  

𝑘 = 3, 𝑟1 = 3, 𝑟2 = 𝛼, 𝑟3 = 8, 𝑢1 = 𝑥, 𝑢2 = −𝑛, 𝑢3 = −1. 

 

Clearly, 𝑟1, 𝑟2, 𝑟3 ∈ 𝐿 = ℚ(√5). Then, we take 𝐷 = 2. From the definition of the 

logarithmic height of algebraic numbers, we obtain that  

 

ℎ(𝑟1) = log 3, ℎ(𝑟2) =
1

2
log 𝛼 , ℎ(𝑟3) = log 8 , 

 

then we can choose 
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𝐴1 = 2 log 3, 𝐴2 = log 𝛼 , 𝐴3 = 2 log 8. 

 

Finally, we know that 𝑥 < 𝑛 then we can take 𝐵 = 𝑛. Then, by Theorem 3.1.3, we 

conclude that 

 

log|∆3| > −1,4 ∙ 306 ∙ 34,5 ∙ 4 ∙ (1 + log 2)(1 + log 𝑛)(2 log 3 )(log 𝛼)(2 log 8), 

 

by comparing this with  inequality (5.4), we obtain that 

 

𝑛 log 𝛼 − log 2 < 1,4 ∙ 306 ∙ 34,5 ∙ 4(1 + log 2)(1 + log 𝑛)(2 log 3 )(log 𝛼)(2 log 8), 

 

then 

 

𝑛 < 1,5 ∙ 306 ∙ 34,5 ∙ 4 ∙ (1 + log 2)(1 + log 𝑛)(2 log 3 )(2 log 8). 

 

Hence, we obtain 𝑛 < 3,27 ∙ 1014. 

  

Next, We use the result of Dujella and Petho once again to reduce the upper bound of 

𝑛. We get from inequality (5. 4)   

 

|∆3| < 1,25

𝛼𝑛 < 1

2
  for all 𝑛 ≥ 3. 

 

We have 

 

2|𝑧| > |log(1 + 𝑧)| holds for all 𝑧 ∈ (−
1

2
,

1

2
).  

 

So, we get  

 

|𝑥 log 3 − 𝑛 log 𝛼 − log 8|

2
<

1.25

𝛼𝑛
 

 

then, we obtain  
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|𝑥
log 3

log 𝛼
−𝑛 −

log 8

log 𝛼
| <

6

𝛼𝑛, 

 

we again apply Lemma 3.1.4 with the following data  

 

𝛾 =
log 3

log 𝛼
, 𝑠 = 𝑥, 𝑡 = 𝑛, 𝜇 = −

log 8

log 𝛼
, 𝐶 = 6, 𝐾 = 𝛼, 𝑟 = 𝑛. 

 

Therefore, since 𝑥 < 𝑛 < 3,27 ∙ 1014 we can take 𝑀 = 3,27 ∙ 1014. The 33𝑡ℎ 

convergent to 𝛾 

 

𝑝33

𝑞33
=

4509703705422533

1975330854159075
 , 

 

obviously, 𝑞 = 𝑞33 = 1975330854159075 > 6𝑀. Hence, we get  𝜖 > 0,25. Then if 

the equation has solutions, then  

 

𝑛 <
log (9∙1975330854159075) 0,25⁄ )

log 𝛼
< 80. 

 

A search using Mathematica showed there are no solutions to equation (5.1) when 

𝑥 < 𝑛 < 80 and 𝑛 > 3. We have completed the proof Theorem 5.1.1. 

 

5.2. Mersenne Version of Brocard-Ramanujan Equation 

 

This part of our thesis was published under the title Mersenne version of Brocard-

Ramanujan equation in Journal of New Results in Science[12]. 

 

Theorem 5.2.1. The following eqaution there is no solution in ℕ∗: 

 

 𝑛! + 1 = 𝑀𝑘
2                   (5. 5) 

       

Proof. We investigate following cases: 
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i) We suppose that 𝑛 = 𝑘. Then we must demonstrate there is no solution to the 

following equation 

 

𝑛! = 22𝑛 − 2𝑛+1.                       (5. 6) 

 

We can demonstrate by simple numerical calculations that there is no solution of 

equation (5. 6)  for all 𝑛 ≤ 10. Now we consider 𝑛 ≥ 11. 

                                                            

 

From (3. 4) we have 

 

22𝑛 − 2𝑛+1   <  (
𝑛+1

3
)

𝑛

, 

 

on the other side from (3. 2) we have 

 

𝑛! > (
𝑛+1

3
)

𝑛

. 

 

 

From last two inequalities, we get that Equation (5. 6) has no solution in the case of 

 𝑛 ≥ 11.  

 

ii) We assume that 𝑛 > 𝑘. Then we must prove there is no solution to the following 

equation 

 

 𝑛! = 22𝑘 − 2𝑘+1,                          (5. 7) 

 

According to (3.4) we have following inequality 

 

𝑛! > 22𝑛 − 2𝑛+1   

satisfies for all 𝑛 ≥ 11. 

 

In addition, we know 𝑛 > 𝑘. Then we get 
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𝑛! > 22𝑛 − 2𝑛+1 > 22𝑘 − 2𝑘+1, 

 

for all (𝑘, 𝑛) pairs satisfying 11 ≤  𝑘 <  𝑛 or 𝑘 <  11 ≤  𝑛. Then, from last 

inequality we obtain there is no solution to the equation (5. 7) for both cases of 𝑛 and 

𝑘. Besides, for the remaining case 𝑘 <  𝑛 <  11, it can be shown by simple 

mathematical calculations that the equation has no solution.  

 

iii) Suppose that 𝑛 <  𝑘. We see that the right-hand side of the equation is divided by 

2𝑘+1 and from the formula (3. 7), we obtain that the left-hand side is divided by 2𝑛−𝑑2 .  

However, we see that 𝑛 − 𝑑2  <  𝑛 <  𝑘 <  𝑘 + 1. This means that, in this case, the 

equation has no solution. 

 

5.3. Some New Fermat Type Equation 

 

Theorem 5.3.1. If 𝑘, 𝑛 ∈ N∗, 𝑛 ≥ 3𝑘 and 𝑘|𝑛 then the following equation there is no 

solution in N∗: 

 

 𝑎𝑛 = (𝑏𝑐)𝑘(𝑏𝑛−2𝑘 + 𝑐𝑛−2𝑘).                                         (5.8) 

 

Proof. Assume that 𝑔𝑐𝑑(𝑏, 𝑐) = 𝑑 then ∃𝑝, 𝑞 ∈ N∗ such that 𝑏 = 𝑝𝑑 and 𝑐 = 𝑞𝑑, 

𝑔𝑐𝑑(𝑝, 𝑞) = 1. Then we get 

 

   𝑎𝑛 = (𝑝𝑞)𝑘𝑑𝑛(𝑝𝑛−2𝑘 + 𝑞𝑛−2𝑘), 

 

hence 𝑑𝑛|𝑎𝑛 then 𝑑|𝑎. Let 𝑚 =
𝑎

𝑑
∈ 𝑁∗ then we acquire 

 

𝑚𝑛 = (𝑝𝑞)𝑘(𝑝𝑛−2𝑘 + 𝑞𝑛−2𝑘). 

 

Since 𝑔𝑐𝑑(𝑝, 𝑞) = 1 we get 

 

 𝑔𝑐𝑑(𝑝, 𝑞) = 𝑔𝑐𝑑(𝑝𝑘,   𝑝𝑛−2𝑘 + 𝑞𝑛−2𝑘) = 𝑔𝑐𝑑(𝑞𝑘,   𝑝𝑛−2𝑘 + 𝑞𝑛−2𝑘) = 1, 

therefore ∃𝑟, 𝑠, 𝑧 ∈ N∗ such that: 
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𝑝𝑘 = 𝑟𝑛, 𝑞𝑘 = 𝑠𝑛, 𝑝𝑛−2𝑘 + 𝑞𝑛−2𝑘 = 𝑧𝑛, 

 

then we obtain 

𝑝𝑛−2𝑘 + 𝑞𝑛−2𝑘 = 𝑧𝑛 = (𝑟
𝑛−2𝑘

𝑘 )
𝑛

+ (𝑞
𝑛−2𝑘

𝑘 )
𝑛

. 

 

But according to Theorem 3.3.1, the last equation has no solution in the set of positive 

integers. So, we proved that the equation (5.8) there is no solution in positive integers. 

 

In the case of  𝑘 = 1 in Theorem 5.3.1, we obtain the following interesting result: 

 

Result 5.3.2. If  𝑛 ∈ N∗ and 𝑛 ≥ 3 the below equation there is no solution in 𝑁∗: 

 

 𝑎𝑛 = 𝑏𝑐(𝑏𝑛−2 + 𝑐𝑛−2).                                              (5. 9)   

                    

Besides, inspired by Theorem 3.3.1 and Result 5.3.2, we propose an interesting 

conjecture: 

 

Conjecture 5.3.3. If 𝑛 ∈ N∗ and 𝑛 ≥ 5  then the following equation there is no solution 

in positive integers: 

 

2𝑎𝑛 = (𝑏 + 𝑐)(𝑏𝑛−1 + 𝑐𝑛−1).  

 

Furthermore, prove that the conjecture holds in some special cases. 

 

Theorem 5.3.4. The below equation there is no solution in positive integers: 

 

2𝑎4 = (𝑏 + 𝑐)(𝑏3 + 𝑐3) 

 

Proof. It is obvious that 

 

2𝑎4 = (𝑏 + 𝑐)(𝑏3 + 𝑐3) = (𝑏 + 𝑐)2(𝑏2 − 𝑏𝑐 + 𝑐2), 
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we suppose that 𝑔𝑐𝑑(𝑏, 𝑐) = 𝑑. Then ∃𝑢, 𝑣 ∈ N∗ such that 𝑏 = 𝑢𝑑 and 𝑐 = 𝑣𝑑, 

𝑔𝑐𝑑(𝑢, 𝑣) = 1. Hence 

 

2𝑎4 = 𝑑4(𝑢 + 𝑣)2(𝑢2 − 𝑢𝑣 + 𝑣2), 

 

then ∃𝑚 ∈ N∗, 𝑚 =
𝑎

𝑑
. 

 

Hence 

 

2𝑚4 = (𝑢 + 𝑣)2(𝑢2 − 𝑢𝑣 + 𝑣2).                                            (5. 10)   

 

In addition, assuming that  

 

∃𝑡 ∈ N∗, 𝑔𝑐𝑑((𝑢 + 𝑣)2, 𝑢2 − 𝑢𝑣 + 𝑣2) = 𝑡, 

 

knows 𝑔𝑐𝑑(𝑢, 𝑣) = 1, 

 

𝑢2 − 𝑢𝑣 + 𝑣2 = (𝑢 + 𝑣)2 − 3𝑢𝑣. 

                                  

Then we obtain  𝑡|3 that means either 𝑡 = 1 or 𝑡 = 3. 

Then let's investigate the following cases: 

 

i) If we take, 𝑡 = 1 then we obtain ∃𝑝, 𝑞, 𝑟 ∈ N∗ 

 

 𝑢2 − 𝑢𝑣 + 𝑣2 = 24𝑟−3𝑝4, 𝑢 + 𝑣 = 𝑞2,                          

 

from (5. 10), we get 

 

(𝑞2 − 𝑣)2 − (𝑞2 − 𝑣)𝑣 + 𝑣2 = 24𝑟−3𝑝4 

 

or  
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𝑞4 − 3𝑞2𝑣 + 3𝑣2 = 24𝑟−3𝑝4. 

 

There is no solution of last equation because the right side of the equation is even 

number, but the left side is odd number. Therefore, equation (5. 10) has no solution 

for this case. 

 

ii) If we take, 𝑡 = 3 then we get ∃𝑥, 𝑦 ∈ N∗ with 𝑔𝑐𝑑(𝑥, 𝑦) = 1. 

 

 𝑢2 − 𝑢𝑣 + 𝑣2 = 3𝑦, 𝑢 + 𝑣 = 3𝑥,  3 ∤ 𝑦.                                      (5. 11) 

 

According to 𝑚4  is on the left-hand side of the equation (5. 10), it must be 

 

34𝑟|(𝑢 + 𝑣)2(𝑢2 − 𝑢𝑣 + 𝑣2), 𝑟 ∈ N∗, 

 

in addition, thanks to (5. 11) we obtain  

 

32𝑧+1|(𝑢 + 𝑣)2(𝑢2 − 𝑢𝑣 + 𝑣2), 𝑧 ∈ N∗. 

 

Hence, we have shown that equation (5.10) has no solution for this case. 

 

Theorem 5.3.5. If 𝑛 ≥ 5 then the following equation there is no solution in N∗: 

 

 2𝐹𝑚
𝑛 = 𝐹𝑙+2(𝐹𝑙+1

𝑛−1 + 𝐹𝑙
𝑛−1)                                  (5.12) 

 

Proof. We have 

(𝑎 + 𝑏)𝑛 > 𝑎𝑛 + 𝑏𝑛, 

 

is holds for ∀𝑎, 𝑏 > 0 and 𝑛 ∈ N∗. Then 

 

𝐹𝑙+2
𝑛−1 > 𝐹𝑙+1

𝑛−1 + 𝐹𝑙
𝑛−1, 

 

thus 
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2𝐹𝑚
𝑛 < 𝐹𝑙+2

𝑛  

 

or 

 

(
𝐹𝑙+2

𝐹𝑚
)

𝑛

> 2. 

 

Thanks to the last inequality we get 

 

 𝑚 < 𝑙 + 2.                      (5.13) 

 

We now apply Lemma 3.2.2. for the right-hand side of our equation 

 

2𝑛−2(𝐹𝑙
𝑛−1 + 𝐹𝑙+1

𝑛−1) ≥ 𝐹𝑙+2
𝑛−1, 

 

thus 

 

2𝑛−1𝐹𝑚
𝑛 ≥ 𝐹𝑙+2

𝑛 , 

 

then  

 

𝐹𝑙+2

𝐹𝑚
≤ 2

𝑛−1

𝑛 < 2, 

 

but  

 

   
𝐹𝑙+2

𝐹𝑙
> 2, ∀𝑙 ∈ N∗. 

 

Then we obtain  

 

 𝑚 ≥ 𝑙 + 1.                      (5.14)       

                                               

From equations (5.13) and (5.14) we get 𝑚 = 𝑙 + 1. 
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Then we have to investigate the solutions to the following equation 

 

2𝐹𝑙+1
𝑛 = 𝐹𝑙+2(𝐹𝑙+1

𝑛−1 + 𝐹𝑙
𝑛−1) 

 

or 

 

𝐹𝑙+1
𝑛−1𝐹𝑙−1 = 𝐹𝑙

𝑛−1𝐹𝑙+2 , 

 

based on the divisibility properties of Fibonacci numbers, we get 

 

𝑔𝑐𝑑(𝐹𝑙+1
𝑛−1, 𝐹𝑙+2 ) = 𝑔𝑐𝑑(𝐹𝑙

𝑛−1, 𝐹𝑙−1) = 1.   

 

Then we obtain that the last equation there is no solution. This means that, equation 

(5.12) has no solution. 
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PART 6 

 

SUMMARY 

 

In this study, we introduced some interesting exponential Diophantine equations. Then 

we studied integer solutions of these equations using different solving methods of 

Diophantine equations. 

 

Firstly, we solved a Pillai-type equation associated with Lucas numbers using elements 

of Baker's theory and properties of Lucas numbers. 

 

Secondly, we solved the Brocard-Ramanujan equation associated with Mersenne 

numbers using prime factorization of 𝑛! and inequalities. 

 

Finally, we introduced some new Fermat-type equations associated with Fibonacci 

numbers and investigated their integer solutions using inequalities and factoring 

method.
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