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ABSTRACT 

 

M. Sc. Thesis 

 

SOME OPTIMALITY CONDITIONS FOR INTERVAL-VALUED 

OPTIMIZATION PROBLEMS USING SUBDIFFERENTIALS 

Fouad Qasim AHMED 

 

Karabük University 

Institute of Graduate Programs  

The Department of Mathematics 

 

Thesis Advisor: 

Assoc. Prof. Dr. Emrah KARAMAN 

March 2023, 49 pages 

 

In this thesis, interval-valued numbers, interval-valued functions, the importance of 

interval-valued optimization problems, some applications of interval-valued 

optimization and solutions of interval-valued optimization and their solutions with 

subdifferentials are discussed. In the second part, some features and definitions of 

intervals, notation used for intervals, algebraic operations defined on intervals, 

interval-valued functions, some properties of interval-valued functions, metric and 

norm definitions defined on intervals, limit, continuity, derivative and integral of 

interval-valued functions are recalled and examined on examples. Interval-valued 

optimization, which is the finding of the extreme points of the interval-valued function 

on a domain, and the types of solutions and how to find these solutions are given in 

the third chapter. In addition, how find these solutions is examined on the examples. 

Necessary or sufficient optimality conditions for optimization problems give some 

information about the solutions to the problem, or they give some conditions such that 

candidate points satisfy these to be solutions. In the last chapter, some optimality 

conditions for interval-valued optimization problems are obtained using 

subdifferentials. 
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ÖZET 

 

Yüksek Lisans Tezi 

 

ARALIK DEĞERLİ OPTİMİZASYON PROBLEMLERİ İÇİN 

SUBDİFERANSİYEL İLE BAZI OPTİMALLİK KOŞULLARI 

 

Fouad Qasim AHMED 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Matematik Bölümü 

 

Tez Danışmanı:  

Doç. Dr. Emrah KARAMAN 

Mart 2023, 49 sayfa 

 

Bu tezde, aralık değerli sayılar, aralık değerli fonksiyonlar, aralık değerli optimizasyon 

problemlerinin önemi, aralık değerli optimizasyonun bazı uygulamaları ve aralık 

değerli optimizasyonun çözümleri ve subdiferansiyeller ile çözümleri ele alınmıştır. 

İlk bölümde aralık değerli sayıların öneminden bahsedildi. İkinci bölümde, aralıkların 

bazı özellikleri ve tanımları, aralıklar için kullanılan notasyon, aralıklar üzerinde 

tanımlanan cebirsel işlemler, aralık değerli fonksiyonlar, aralık değerli fonksiyonların 

bazı özellikleri, aralıklar üzerinde tanımlanan metrik ve norm tanımları, limit, 

süreklilik, türev ve aralık değerli fonksiyonların integralleri hatırlanmakta ve örnekler 

üzerinde incelenmektedir.  Aralık değerli fonksiyonun bir tanım kümesi üzerindeki 

ekstremum noklarının bulunması olan aralık değerli optimizasyon, çözüm türleri ve bu 

çözümlerinin nasıl bulunacağı üçüncü bölümde verilmiştir. Ayrıca, bu çözümlerin 

nasıl bulunacağı örnekler üzerinde incelenmiştir.  
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Optimizasyon problemleri için gerekli veya yeterli optimallik koşulları, problemin 

çözümleri hakkında bazı bilgiler verir veya aday noktaların bunları çözüm olarak 

karşılaması için bazı koşullar verir. Son bölümde, aralık değerli optimizasyon 

problemleri için bazı optimallik koşulları subdiferansiyeller kullanılarak elde 

edilmiştir. 

Anahtar Kelimeler : Aralık değerli sayılar, aralık değerli fonksiyon, aralık değerli 

optimizasyon, çözüm yöntemleri, subdiferansiyel 

Bilim Kodu   :20406 
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SYMBOLS AND ABBREVIATIONS INDEX 

 

SYMBOLS 

 

ℝ        : real numbers 

ℕ        : natural numbers 

𝐼(ℝ)         : the set of all closed intervals on real numbers 

−          : the generalized Hukuhara difference 

𝐹         : an interval function 

𝐴          : the positive part of a closed interval 𝐴 

𝐴          : the negative part of a closed interval 𝐴 

𝐹 (𝑥 )      : GH-derivative of an interval function 𝐹 at 𝑥  

𝐹 (𝑥 )     : gH-derivative of an interval function 𝐹 at 𝑥  

𝐹 (𝑥 )     : gH-directional derivative of 𝐹 at 𝑥  in the direction ℎ 

𝜕 𝐹(𝑥 )   : the 𝑠-subdifferential of interval function 𝐹 at 𝑥  

𝜕 𝐹(𝑥 )   : the weak 𝑠-subdifferential of interval function 𝐹 at 

𝜕 𝐹(𝑥 ) : the 𝑚𝑟-subdifferential of interval function 𝐹 at 𝑥  

𝜕 𝐹(𝑥 ) : the weak 𝑚𝑟-subdifferential of interval function 𝐹 at 𝑥  

𝔹(𝑎, 𝑏)     : the closed ball with radius 𝑏 centered at 𝑎 

𝑖𝑛𝑡(𝑋)      : interior of set 𝑋 

 

 

 

ABBREVIATIONS INDEX 

 

(𝐼𝑉𝑃) : Interval-valued Optimization Problem 

Iff : If and only if 

Wrt : With respect to
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PART 1 

 

INTRODUCTION 

 

Optimization is a tool that can be used in a variety of businesses and functional domains. 

Optimization problems are important because they are used in a wide area of study 

domains. For example, we want to buy a phone. Then, we have a lot options. Which 

phone is suitable for us? Finding the best among the options is an optimization problem. 

So, we can see the optimization in statistic, economy, engineering, etc. Also, 

optimization is a powerful subject of mathematics. 

 

We have distinct types of problems depending on the coefficients of the objective 

function: Deterministic problems when they are integers, stochastic problems when they 

are random parameters with known distributions, set-valued optimization when they are 

sets, and interval problems when they are closed intervals. The last type of problem is 

just as important as the others. Because the intervals are special sets, we can say that 

interval optimizations are a special part of set optimization. Similarly, because the 

intervals are a generalization of integers, we can say that deterministic optimization is a 

special form of the interval optimization. Recently, solving problems that occur under 

certain uncertainties has received more attention. These uncertainties can be thought of 

as uncertain weather conditions, traffic. The function that we search the best points 

under uncertainty is an interval-valued function. The problem of finding the best points 

of interval-valued functions is called interval-valued optimization. Interval-valued 

optimization problems have many applications in daily life. For example, Abbasi Molai 

and Khorram (2007) characterized the amount of 2 types of feed that should be given to 

feed the chickens with the least cost in a farm with 1000 chickens, with interval value 

optimization. Karaman (2021b) examined the problem of an investor with 500 000 TL, 

who wants to store his money in foreign currencies (Dollar, Euro, Sterling) to protect 

the value of his money, with interval value optimization. This problem is one of the 

most common problems in daily life. Karaman (2021b) found the solution of this 
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problem by characterizing with interval-value optimization. Also, we can see a lot of 

applications of interval-valued optimization in the literature and there in references. 
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PART 2 

 

INTERVALS 

 

 Some fundamental definitions, notations and propositions will be given and explained 

with examples in this chapter. Therefore, the necessary information will be collected 

for interval-valued optimizations. 

 

2.1. INTERVALS AND ARICTHMETICS 

 

During this, a closed and bounded interval 𝐴 on real numbers (ℝ) is defined as: 

𝐴 =  [𝑎 , 𝑎 ] ∶=  {𝑥 ∈  ℝ | 𝑎  ≤  𝑥 ≤  𝑎 }  

 

where the end points of the interval 𝐴 is 𝑎  and 𝑎  (left and right) respectively. Also, 

interval A can write using closed ball as: 

𝐴 = [𝑎 , 𝑎 ] = 𝔹
𝑎 + 𝑎

2
,
𝑎 − 𝑎

2
= 𝑥 ∈ ℝ ∶ 𝑥 −

𝑎 + 𝑎

2
≤

𝑎 − 𝑎

2
 

where 𝔹 ,  is closed ball with radius  centered at . 

The interval as can be used to define each real integer as 𝑎 = [𝑎, 𝑎] for all 𝑎 ∈ ℝ. An 

interval can be characterized as parametrically: 

𝐴 = [𝑎 , 𝑎 ] = {𝑘 ∈ ℝ | 𝑘 = 𝑎 + 𝑡(𝑎 − 𝑎 ), 𝑡 ∈ [0,1]}. 

Now, let’s recall some set properties of intervals. Let intervals 𝐴 = [𝑎 , 𝑎 ] and 𝐵 =

[𝑏 , 𝑏 ] be given. 𝐴 equals to 𝐵, that is 𝐴 = 𝐵 if and only if (shortly, iff) 𝑎 = 𝑏  and 

𝑎 = 𝑏 .  
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If 𝑎 ≤ 0 ≤ 𝑎 , then the negative and the positive parts of 𝐴 are defined as: 𝐴 ∶=

[𝑎 , 0] and 𝐴 ∶=  [0, 𝑎 ], respectively. Then 𝐴 = 𝐴 ∪ 𝐴 . 

The following properties are satisfied [12]: 

 𝑎 > 𝑏  or 𝑏 > 𝑎 ⟺ 𝐴 ∩ 𝐵 = ∅ 

 𝐴 ∪ 𝐵 = [min{𝑎 , 𝑏 }, max{𝑎 , 𝑏 }] 

 𝐴 ⊆ 𝐵 ⟺ 𝑏 ≤ 𝑎  and 𝑎 ≤ 𝑏  

If 𝑎 =  𝑎  then the interval 𝐴, named degenerate, so it equals to a single point 𝑎  or 

𝑎 . If 𝑎  = −𝑎  for any interval 𝐴 = [𝑎 , 𝑎 ], then interval 𝐴 is called symmetric 

interval. For example, 𝐴 = [−3,3] is a symmetric interval. The set of all closed and 

bounded intervals in ℝ is indicated in this work by the character 𝐼(ℝ). Now, we recall 

some interval operations used in the interval analysis.  

Let 𝐴 = [𝑎 , 𝑎 ], 𝐵 = [𝑏 , 𝑏 ] ∈ 𝐼(ℝ) 𝑎𝑛𝑑 𝑘 ∈ ℝ .  

The sum or addition of intervals A and B is defined by: 

𝐴 +  𝐵 ∶ =  {𝑥 +  𝑦 ∈ ℝ | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵}  =  [𝑎 + 𝑏 , 𝑎 + 𝑏 ], 

the difference of two intervals A and B is given as: 

𝐴 − 𝐵 ∶=  {𝑥 − 𝑦 ∈ ℝ | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵}  =  [𝑎 − 𝑏 , 𝑎 − 𝑏 ], 

and the scalar multiplication is defined by: 

𝑘𝐴 ≔
[𝑘𝑎 , 𝑘𝑎 ] ;  𝑘 ≥ 0

[𝑘𝑎 , 𝑘𝑎 ];  𝑘 < 0
 

Multiplication of intervals A and B is also an interval, and defined as: 

𝐴𝐵 ≔ [min{𝑎 𝑏 , 𝑎 𝑏 , 𝑎 𝑏 , 𝑎 𝑏 } , max{𝑎 𝑏 , 𝑎 𝑏 , 𝑎 𝑏 , 𝑎 𝑏 }]. 

Let’s consider any interval 𝐴 = [𝑎 , 𝑎 ] ∈ 𝐼(ℝ). The absorbing element for 

multiplication in 𝐼(ℝ) is [0,0] because 𝐴 0 = [𝑎 , 𝑎 ][0,0] = [0,0] satisfies. Moreover, 

[0,0] is identity for addition in 𝐼(ℝ). Identity element for multiplication in 𝐼(ℝ) is [1,1]. 
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We need the inverse of multiplication for intervals to define the division of two 

intervals. Let us consider interval 𝐴. The reciprocal or multiplicative inverse is defined 

as: 

≔ ∶ 𝑎 ∈ 𝐴 . 

Because  is undefined, 0 is not belong to interval 𝐴. Then, we can only find reciprocal 

of intervals that do not contain 0. Then, we can obtain the following rules: For 𝐴 =

[𝑎 , 𝑎  ] ∈ 𝐼(ℝ), 

if 𝑎 > 0 or 𝑎 < 0, then = , . 

Division of intervals defined as: For 𝐴 = [𝑎 , 𝑎  ], 𝐵 = [𝑏 , 𝑏  ] ∈ 𝐼(ℝ) and 0 ∉ 𝐵 

𝐴

𝐵
= 𝐴

1

𝐵
= min 𝑎

1

𝑏
, 𝑎

1

𝑏
, 𝑎

1

𝑏
, 𝑎

1

𝑏
, max 𝑎

1

𝑏
, 𝑎

1

𝑏
, 𝑎

1

𝑏
, 𝑎

1

𝑏
. 

The intervals satisfy the cancellation law for interval addition, that is,  𝐴 + 𝐶 = 𝐵 + 𝐶 

implies 𝐴 = 𝐵 for all 𝐴, 𝐵, 𝐶 ∈ 𝐼(ℝ) [12]. But, the cancellation law for multiplication 

on intervals may not be satisfied. That is, 𝐴𝐶 = 𝐵𝐶 ⇏ 𝐴 = 𝐶 for some 𝐴, 𝐵, 𝐶 ∈ 𝐼(ℝ). 

Now, let us give a power of an interval as: For interval 𝐴 = [𝑎 , 𝑎  ] and 𝑡 ∈ ℝ [4]: 

 𝐴 = [1,1] 

 𝐴 = 𝐴 𝐴 if 𝑡 > 0 

 𝐴 = (𝐴 )  if 0 ∉ 𝐴 and 𝑡 ≥ 0 

Note that 𝐴 = {𝑎 ∶ 𝑎 ∈ 𝐴} may not be satisfied for all intervals 𝐴. For example,  

[−3,3] = [−3,3][−3,3] = [−9,9] ≠ {𝑎 ∶  𝑎 ∈ [−3,3]} = [0,9]. 

Proposition 2.1. Let 𝐴 be an interval and 𝑡 ∈ (0,1). Then, 𝑡𝐴 + (1 − 𝑡)𝐴 = 𝐴 

Proof: Let 𝐴 = [𝑎 , 𝑎 ]. Then, 𝑡𝐴 + (1 − 𝑡)𝐴 = 𝑡[𝑎 , 𝑎 ] + (1 − 𝑡)[𝑎 , 𝑎 ] = [𝑡𝑎 +

(1 − 𝑡)𝑎 , 𝑡𝑎 + (1 − 𝑡)𝑎 ] = [𝑎 , 𝑎 ] = 𝐴. 
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Now we give some notations used in the interval analysis.  

Let 𝐴 = [𝑎 , 𝑎 ] ∈ 𝐼(ℝ). Then, the radius, the midpoint or center and width of the 

interval 𝐴 are defined by 

𝑟(𝐴) : =
1

2
(𝑎 − 𝑎 ), 

𝑚(𝐴) ∶ =
1

2
(𝑎 + 𝑎 ) 

and  

𝑤(𝐴): = 𝑎 − 𝑎 , 

 respectively. Then, the radius and the midpoint of the interval A are show by 𝐴  and 

𝐴 , respectively. An interval can be expressed using these notations as: 

𝐴 =  [𝑎 , 𝑎 ] = 𝑚(𝐴) + 𝑟(𝐴)[−1, 1]                                      
                
 
 

=  {𝑥 ∈ ℝ ∶   |𝑥 − 𝑚(𝐴)| ≤ 𝑟(𝐴)}                   
 

 

Let 𝐴, 𝐵, 𝐶 ∈ 𝐼(ℝ). All intervals satisfy the following properties: 𝐴 + 𝐶 =  𝐶 + 𝐴, 

𝐴𝐵 = 𝐵𝐴, 𝐴 + (𝐵 + 𝐶) =  (𝐴 + 𝐵) + 𝐶,  (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) , 0 + 𝐴 = 𝐴 + 0 = 𝐴 

where 0 = [0, 0], 1𝐴 = 𝐴, 𝐴 + (−𝐴) = 𝐴 − 𝐴. 

Let 𝐴 = [𝑎 , 𝑎 ] ∈ 𝐼(ℝ) be given. Midpoints of symmetric intervals are 0. The one of 

the important problem of intervals that 𝐴 + (−𝐴) = 𝐴 − 𝐴 = 0  my not be satisfied 

for any interval. For example, let 𝐴 = [−1,2], then −𝐴 = [−2,1] and 𝐴 − 𝐴 = 𝐴 +

(−𝐴) = [−1,2] + [−2,1] = [−3,3] ≠ [0,0] = 0. So, there is not the additive inverse 

of any interval, (𝐼(ℝ), +,⋅) isn’t a linear vector space.  𝐴 − 𝐴 = 0 if and only if 𝑎  = 

𝑎 .  So, we can say that this property is satisfied only for degenerate intervals. To 

solve this problem with intervals, we need a new difference of two intervals. 
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Definition 2.1.  [14,15] Let us consider two members 𝐴 and 𝐵 of 𝐼(ℝ). Then, 

generalized Hukuhara difference (shorly, gH difference) of 𝐴 and 𝐵 is defined as: 

𝐴− 𝐵 = 𝐶 ⇔  
𝐴 = 𝐵 + 𝐶

𝐵 = 𝐴 + (−1)𝐶.
 𝑜𝑟  

 

gH difference have the following properties: Let 𝐴, 𝐵 ∈ 𝐼(ℝ), 

 𝐴− 𝐴 = 0 

 (𝐴 + 𝐵)− 𝐵 = 𝐴 

 𝐴− (𝐴 − 𝐵) = 𝐵 

 𝐴− (𝐴 + 𝐵) = −𝐵 

 𝐴− 𝐵 exists every time  

 𝐴− 𝐵 = [min{𝑎 − 𝑏 , 𝑎 − 𝑏 } , max{𝑎 − 𝑏 , 𝑎 − 𝑏 }] where 𝐴 = [𝑎 , 𝑎 ] 

and 𝐵 = [𝑏 , 𝑏 ] 

 𝑡 𝐴− 𝐵 = 𝑡𝐴− 𝑡𝐵 for all 𝑡 > 0 [14]. 

Because there is not a natural order relation on intervals as real number, we use the 

order relation to compare the intervals. 

Definition 2.2. [1,2,6-11,12,16] Let 𝐴, 𝐵 ∈ 𝐼(ℝ), 𝐴 = [𝑎 , 𝑎 ] and 𝐵 = [𝑏 , 𝑏 ]. Then,  

(i) 𝐴 ⪯ 𝐵 if and only if 𝑎 ≤ 𝑏  

(ii) 𝐴 ⪯ 𝐵 if and only if 𝑎 ≤ 𝑏  

(iii) 𝐴 ⪯ 𝐵 if and only if 𝑎 ≤ 𝑏  

(iv)  𝐴 ⪯ 𝐵 if and only if 𝑎 ≤ 𝑏  and 𝑎 ≤ 𝑏  

(v) 𝐴 ⪯ 𝐵 if and only if 𝐴 ≤ 𝐵  

(vi)  𝐴 ⪯ 𝐵 if and only if 𝐵 ≤ 𝐴  

(vii)  𝐴 ⪯ 𝐵 if and only if 𝐴 ≤ 𝐵  and 𝐵 ≤ 𝐴  

The radius of an interval is characterized with confidence interval. The values of the 

numbers of an interval give the magnitude of the interval. Therefore, it makes sense to 

choose the last order relation to find the largest among the intervals. Order relations 

are compatible with positive scalar multiplication. That is, 𝐴 ⪯∗ 𝐵 implies 𝑡𝐴 ⪯∗ 𝑡𝐵 

for all 𝑡 > 0 and for all 𝐴, 𝐵 ∈ 𝐼(ℝ) and ∗∈ {𝑙, 𝑟, 𝑙𝑟, 𝑚, 𝑟, 𝑚𝑟, 𝑠}. 
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Proposition 2.2. ⪯  is compatible with positive scalar multiplication. 

Proof: Assume that 𝐴 = [𝑎 , 𝑎 ] and 𝐵 = [𝑏 , 𝑏 ]  are two intervals, 𝑡 is a positive 

number and 𝐴 ⪯ 𝐵. We show that  𝑡𝐴 ⪯ 𝑡𝐵. Since 𝐴 ⪯ 𝐵, we have 𝐴 ≤ 𝐵  

and 𝐵 ≤ 𝐴 , that is, 

𝑎 + 𝑎

2
≤

𝑏 + 𝑏

2
 (1) 

and 

𝑏 − 𝑏

2
≤

𝑎 − 𝑎

2
. (2) 

When we multiplty (1) and (2) by positive 𝑡, we obtain that  ≤  and  

≤ . They imply that  (𝑡𝐴) ≤ (𝑡𝐵)  and (𝑡𝐵) ≤ (𝑡𝐴) . Therefore, 

𝑡𝐴 ⪯ 𝑡𝐵.  

Proposition 2.3. ⪯  is compatible with addition, that is, if 𝐴 ⪯ 𝐵 and 𝐶 ⪯ 𝐷, 

then 𝐴 + 𝐶 ⪯ 𝐵 + 𝐷 for all 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝐼(ℝ). 

Proof: Let 𝐴 ⪯ 𝐵 and 𝐶 ⪯ 𝐷 be satisfied for 𝐴 = [𝑎 , 𝑎 ], 𝐵 = [𝑏 , 𝑏 ], 𝐶 =

[𝑐 , 𝑐 ] and 𝐷 = [𝑑 , 𝑑 ]. Then, we have  

𝑎 + 𝑎

2
≤

𝑏 + 𝑏

2
, (3) 

𝑏 − 𝑏

2
≤

𝑎 − 𝑎

2
, 

(4) 

𝑐 + 𝑐

2
≤

𝑑 + 𝑑

2
, 

(5) 
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𝑑 − 𝑑

2
≤

𝑐 − 𝑐

2
. 

(6) 

From (3) and (5), (4) and (6) we get 

𝑎 + 𝑐 + 𝑎 + 𝑐

2
≤

𝑏 + 𝑑 + 𝑏 + 𝑑

2
 

and  

𝑏 + 𝑑 − 𝑏 − 𝑑

2
≤

𝑎 + 𝑐 − 𝑎 − 𝑐

2
. 

Therefore, 𝐴 + 𝐶 ⪯ 𝐵 + 𝐷 satisfies.  

The strictly version of this order relations are defined as: 

Definition 2.3.  Let 𝐴, 𝐵 ∈ 𝐼(ℝ) and ∗∈ {𝑙, 𝑟, 𝑙𝑟, 𝑠, 𝑚, 𝑟, 𝑚𝑟}. Then, 

𝐴 ≺∗ 𝐵 ⇔ 𝐴 ≼∗ 𝐵 and 𝐴 ≠ 𝐵. 

One can easily see that ≺∗ implies ≼∗ for ∗∈ {𝑙, 𝑟, 𝑙𝑟, 𝑚, 𝑟, 𝑚𝑟, 𝑠}. Then, if 𝐴 ≺∗ 𝐵, then 

𝐴 ≼∗ 𝐵 for some 𝐴, 𝐵 ∈ 𝐼(ℝ). Also, ≺∗ has some properties like ⪯∗. 

Proposition 2.4. ≺  is also compatible with positive scalar multiplication. 

Proof: It can be obtained in a similar way the proof of Proposition 2.2. 

Proposition 2.5. ≺  is compatible with addition, that is, if 𝐴 ≺ 𝐵 and 𝐶 ≺ 𝐷, 

then 𝐴 + 𝐶 ≺ 𝐵 + 𝐷 for all 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝐼(ℝ). 

Proof: It can be obtained in a similar way the proof of Proposition 2.3. 

Proposition 2.6. Let 𝐴 ⪯ 𝐵 be satisfied for some 𝐴, 𝐵 ∈ 𝐼(ℝ). Then,  𝐴− 𝐵 ⪯ 0. 

That is, if 𝐴 ⪯ 𝐵, then 𝐴− 𝐵 ⪯ 0 for 𝐴, 𝐵 ∈ 𝐼(ℝ). 

Proof: Assume that 𝐴 ⪯ 𝐵 for some 𝐴 = [𝑎 , 𝑎 ], 𝐵 = [𝑏 , 𝑏 ] ∈ 𝐼(ℝ). Then, we 

have 𝐴 ≤ 𝐵  and 𝐵 ≤ 𝐴 , that is, 
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𝑎 + 𝑎

2
≤

𝑏 + 𝑏

2
⇒ 𝑎 + 𝑎 ≤ 𝑏 + 𝑏  (7) 

and 

𝑏 − 𝑏

2
≤

𝑎 − 𝑎

2
⇒ 𝑏 − 𝑏 ≤ 𝑎 − 𝑎 . (8) 

From (8) we have 

𝑎 − 𝑏 ≤ 𝑎 − 𝑏 . (9) 

Then, 𝐴− 𝐵 = [min{𝑎 − 𝑏 , 𝑎 − 𝑏 }, max{𝑎 − 𝑏 , 𝑎 − 𝑏 }] = [𝑎 − 𝑏 , 𝑎 − 𝑏 ] 

from (9). Using (7) and (9) we get 𝑎 − 𝑏 + 𝑎 − 𝑏 ≤ 0 and 0 ≤ 𝑎 − 𝑏 − 𝑎 + 𝑏 , 

respectively. They imply that 𝐴− 𝐵 ≤ 0 and 0 ≤ 𝐴− 𝐵 . Therefore, 

𝐴− 𝐵 ⪯ 0. 

The following example illustrate Proposition 2.6. 

Example 2.1. Let 𝐴 = [2,4] and 𝐵 = [5,6]. Since 𝐴 = 3 ≤ 𝐵 =  and 𝐵 = ≤

𝐴 = 1, 𝐴 ≼ 𝐵. 𝐴− 𝐵 = [min{2 − 5,4 − 6}, max{2 − 5,4 − 6}] = [−3, −2]. Since 

𝐴− 𝐵 = − ≤ 0 and 0 ≤ 𝐴− 𝐵 = , 𝐴− 𝐵 ≼ 0.  

The converse implication of Proposition 2.6 may not be true. Then, we can find two 

intervals that although they satisfy 𝐴− 𝐵 ⪯ 0, 𝐴 ⋠ 𝐵. For example, let 𝐴 = [2,4] 

and 𝐵 = [2,5]. Then, 𝐴− 𝐵 = [min{2 − 2,4 − 5}, max{2 − 2,4 − 5}] = [−1,0]. Also, 

since 𝐴− 𝐵 = − ≤ 0 and 0 ≤ 𝐴− 𝐵 = , 𝐴− 𝐵 ⪯ 0. Moreover, since 

𝐴 = 3 ≤ 𝐵 =  and 𝐵 = ≰ 𝐴 = 1, 𝐴 ⋠ 𝐵.  
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Proposition 2.7. Let 𝐴 ≺ 𝐵 be satisfied for some 𝐴, 𝐵 ∈ 𝐼(ℝ). Then,  𝐴− 𝐵 ≺ 0. 

That is, if 𝐴 ≺ 𝐵, then 𝐴− 𝐵 ≺ 0 for 𝐴, 𝐵 ∈ 𝐼(ℝ). 

Proof: It can be obtained like the proof of Proposition 2.6. 

Because there are some order relations on 𝐼(ℝ), we can compare the intervals. 

Therefore, the following definition is used to find the efficient or extremum intervals of 

a family.  

Definition 2.4. Let ∗∈ {𝑙, 𝑟, 𝑙𝑟, 𝑠, 𝑚, 𝑟, 𝑚𝑟}, 𝐾 ⊆ 𝐼(ℝ) and 𝐴 ∈ 𝐾 be given. Then, 

interval 𝐴 is called  

(i) minimal interval of 𝐾 if there is no any interval 𝐵 ∈ 𝐾 such that different 

from 𝐴 and 𝐵 ≼∗ 𝐴, 

(ii) maximal interval of 𝐾 if there is no any interval 𝐵 ∈ 𝐾 such that different 

from 𝐴 and 𝐴 ≼∗ 𝐵, 

(iii) weak minimal interval of 𝐾 if there is no any interval 𝐵 ∈ 𝐾 such that 

𝐵 ≺∗ 𝐴, 

(iv) weak maximal interval of 𝐾 if there is no any interval 𝐵 ∈ 𝐾 such that 

𝐴 ≺∗ 𝐵, 

(v) strongly minimal interval of 𝐾 if 𝐴 ≼∗ 𝐵 for all 𝐵 ∈ 𝐾, 

(vi) strongly maximal interval of 𝐾 if 𝐵 ≼∗ 𝐴 for all 𝐵 ∈ 𝐾, 

(vii) strictly minimal interval of 𝐾 if 𝐴 ≺∗ 𝐵 for all 𝐵 ∈ 𝐾 ∕ {𝐴}, 

(viii) strictly maximal interval of 𝐾 if 𝐵 ≺∗ 𝐴 for all 𝐵 ∈ 𝐾 ∕ {𝐴}. 

 

If an interval is a strictly minimal (or strictly maximal) interval of a set, then it is also a 

strongly minimal (or strongly maximal) interval of same set. If an interval is a strongly 

minimal (or strongly maximal) interval of a set, then it is also a minimal (or maximal) 

interval of same set. Similarly, if an interval is a minimal (or maximal) interval of a 

set, then it is also a weak minimal (or weak maximal) interval of same set. 

 

It is not easy to find the extremum elements of a family using the above definition. In 

order to determine that an interval is extremum, it is necessary to know the relations of 
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this interval with all other intervals according to the given order relation. The 

following example is given to explain this better. 

 

Example 2.2. Let 𝐾 = {[−1,2], [0,4], [−4, −2], [−3,0]} and ⪯  be given. The 

extremum intervals of 𝐾 are found using the following: 

 For [−1,2] and [0,4]: 

−1 ≤ 0 and 2 ≤ 4 ⟹ [−1,2] ⪯ [0,4]  

0 ≰ −1 and 4≰ 2 ⟹ [0,4] ⋠ [−1,2]  

 For [−1,2] and [−4, −2]: 

−1 ≰ −4 and 2 ≰ −2 ⟹ [−1,2] ⋠ [−4, −2] 

−4 ≤ −1 and −2 ≤ 2 ⟹ [−4, −2] ⪯ [−1,2] 

 For [−1,2] and [−3,0]: 

−1 ≰ −3 and 2 ≰ 0 ⟹ [−1,2] ⋠ [3,0] 

−3 ≤ −1 and 0 ≤ 2 ⟹ [−3,0] ⪯ [−1,2] 

 For [0,4] and [−4, −2]: 

0 ≰ −4 and 4 ≰ −2 ⟹ [0,4] ⋠ [−4, −2] 

−4 ≤ 0 and −2 ≤ 4 ⟹ [−4, −2] ⪯ [0,4] 

 For [0,4] and [−3,0]: 

0 ≰ −3 and 4 ≰ 0 ⟹ [0,4] ⋠ [−3,0] 

−3 ≤ 0 and 0 ≤ 4 ⟹ [−3,0] ⪯ [0,4] 

 For [−4, −2] and [−3,0]: 

−4 ≤ −3 and −2 ≤ 0 ⟹ [−4, −2] ⪯ [−3,0] 

−3 ≰ −4 and 0 ≰ −2 ⟹ [−3,0] ⋠ [−4, −2] 

[−4, −2] is minimal interval or minimal element of 𝐾 because there is no an interval 

on 𝐾 such that less than [−4, −2]. [0,4] is maximal interval or maximal element of 𝐾 

because there is not an interval on 𝐾 such that greater than [0,4]. Similarly, weak 

minimal and weak maximal element(s) can be find using the similar way.  

 

An Hausdorff metric for intervals defined by Neumaier (1990) as: Let 𝐴 =

[𝑎 , 𝑎 ], 𝐵 = [𝑏 , 𝑏 ] ∈ 𝐼(ℝ) be given. Then, 𝑑 : 𝐼(ℝ) × 𝐼(ℝ) → ℝ is a metric on 

interval numbers defined as: 

𝑑 (𝐴, 𝐵) ≔ max{|𝑎 − 𝑏 |, |𝑎 − 𝑏 |}. 
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Then, 𝐼(ℝ) is a metric space with 𝑑  [11,12]. 

 

The function || ⋅ ||: 𝐼(ℝ) → ℝ defined as ‖𝐴‖ = 𝑚𝑎𝑥 {|𝑎 |, |𝑎 |}  for all 𝐴 = [𝑎 , 𝑎 ] ∈

𝐼(ℝ) is a norm on 𝐼(ℝ). Therefore, 

𝑑 (𝐴, 𝐵) = 𝐴− 𝐵 = max{|𝑎 − 𝑏 |, |𝑎 − 𝑏 |} for all 𝐴 = [𝑎 , 𝑎 ], 𝐵 = [𝑏 , 𝑏 ] ∈

𝐼(ℝ) [5,15]. 

 

Now, interval sequences and convergence of them are considered. Let (𝐴 ) ∈ℕ and 𝐴 

be intervals for all 𝑛 ∈ ℕ. When 𝑛 goes to infinity closed interval sequence 𝐴  

converges to interval 𝐴, and denoted by  

lim
→

𝐴 = 𝐴. 

That is, for ever 𝜀 > 0, there exists 𝑛 ∈ ℕ such that 𝑑 (𝐴, 𝐴 ) < 𝜀 for all 𝑛 > 𝑛  [16]. 

 

Proposition 2.8. Let 𝐴 ≔ [(𝑎 ) , (𝑎 ) ] and 𝐴 = [𝑎 , 𝑎 ] be closed intervals for all 

𝑛 ∈ ℕ. Then, lim
→

𝐴 = 𝐴 if and only if lim
→

(𝑎 ) = 𝑎  and lim
→

(𝑎 ) = 𝑎  [16]. 

 

2.2. INTERVAL FUNCTIONS 

 

Interval-valued functions and some properties are recalled in this part. 

Let 𝑋 ⊆ ℝ   be a nonempty set, then an interval-valued function or interval function 

𝐹: 𝑋 → 𝐼(ℝ) is defined as 𝐹(𝑥) = [𝑓 (𝑥), 𝑓 (𝑥)] for all 𝑥 ∈ 𝑋, where 𝑓 : 𝑋 → ℝ    and 

𝑓 : 𝑋 → ℝ are real-valued functions, and called left and right end functions, respectively. 

It is obvious that 𝑓 (𝑥) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 from the definition of intervals. It is clear 

that the interval functions are a generalization of scalar-valued functions. We will 

assume that 𝑋 ⊆ ℝ  in the rest of work. 

 

 Now, some definitions and calculus rules are examined for interval functions. 

 

Definition 2.5. Let 𝑋 be a convex set and 𝐹: 𝑋 → 𝐼(ℝ) be an interval function. Then, 𝐹 

is called 𝑚𝑟-convex at �̅� ∈ 𝑋 if  

𝐹(𝑡�̅� + (1 − 𝑡)𝑥) ≼ 𝑡𝐹(�̅�) + (1 − 𝑡)𝐹(𝑥) 
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for all 𝑡 ∈ (0,1) and each 𝑥 ∈ 𝑋. If 𝐹 is 𝑚𝑟-convex for all 𝑥 ∈ 𝑋, then 𝐹 is called 𝑚𝑟-

convex interval function. 

 

Definition 2.6. Let 𝑋 be a convex set and 𝐹: 𝑋 → 𝐼(ℝ) be an interval function. Then, 𝐹 

is called strictly 𝑚𝑟-convex at �̅� ∈ 𝑋 if  

 

𝐹(𝑡�̅� + (1 − 𝑡)𝑥) ≺ 𝑡𝐹(�̅�) + (1 − 𝑡)𝐹(𝑥) 

 

for all 𝑡 ∈ (0,1) and each 𝑥 ∈ 𝑋. If 𝐹 is strictly 𝑚𝑟-convex for all 𝑥 ∈ 𝑋, then 𝐹 is called 

strictly 𝑚𝑟-convex interval function. 

 

Proposition 2.9. Let 𝑋 be a nonempty convex set and and 𝐹: 𝑋 → 𝐼(ℝ), 𝐹(𝑥) =

[𝑓 (𝑥), 𝑓 (𝑥)] for all 𝑥 ∈ 𝑋, be an interval function.  

The following properties are satisfied: 

(i) If 𝐹 is strictly 𝑚𝑟-convex, then it is an 𝑚𝑟-convex 

(ii) 𝐹 is 𝑚𝑟-convex iff 𝐹  is a convex function and 𝐹  is a concave function. 

(iii) If 𝐹 is 𝑚𝑟-convex, then 𝑓  is a convex function. 

 

Proof:  

(i) It can be easily obtained using Definition 2.2, Definition 2.3, Definition 2.5 

and Definition 2.6. 

(ii) Let 𝐹 be an 𝑚𝑟-convex interval function. Then, we have, 

𝐹(𝑡𝑥 + (1 − 𝑡)𝑦) ≼ 𝑡𝐹(𝑥) + (1 − 𝑡)𝐹(𝑦) 

for all 𝑘 ∈ (0,1) and all 𝑥, 𝑦 ∈ 𝑋. Then, we get 

[𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦), 𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦)] ≼ 𝑡[𝑓 (𝑥), 𝑓 (𝑥)]

+ (1 − 𝑡)[𝑓 (𝑦), 𝑓 (𝑦)]

= [𝑡𝑓 (𝑥), 𝑡𝑓 (𝑥)] + [(1 − 𝑡)𝑓 (𝑦), (1 − 𝑡)𝑓 (𝑦)]

= [𝑡𝑓 (𝑥)+(1 − 𝑡)𝑓 (𝑦), 𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓 (𝑦)] 

From 𝑚𝑟-order relation, 

𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦) + 𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦)

2

≤
𝑡𝑓 (𝑥)+(1 − 𝑡)𝑓 (𝑦) + 𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓 (𝑦)

2
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and  

𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓 (𝑦) − 𝑡𝑓 (𝑥)−(1 − 𝑡)𝑓 (𝑦)

2

≤
𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦) − 𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦)

2
. 

So,  

𝐹 (𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝐹 (𝑥) + (1 − 𝑡)𝐹 (𝑦) 

and  

𝐹 (𝑡𝑥 + (1 − 𝑡)𝑦) ≥ 𝑡𝐹 (𝑥) + (1 − 𝑡)𝐹 (𝑦) 

 

Therefore, 𝐹  is a convex function on 𝑋 and 𝐹  is a concave function on 𝑋. 

(iii) Let 𝐹 be an 𝑚𝑟-convex interval function. Then, we have 

𝐹(𝑡𝑥 + (1 − 𝑡)𝑦) ≼ 𝑡𝐹(𝑥) + (1 − 𝑡)𝐹(𝑦) 

for all 𝑡 ∈ (0,1) and all 𝑥, 𝑦 ∈ 𝑋. Then, we get 

[𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦), 𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦)] ≼ 𝑡[𝑓 (𝑥), 𝑓 (𝑥)]

+ (1 − 𝑡)[𝑓 (𝑦), 𝑓 (𝑦)]

= [𝑡𝑓 (𝑥), 𝑡𝑓 (𝑥)] + [(1 − 𝑡)𝑓 (𝑦), (1 − 𝑡)𝑓 (𝑦)]

= [𝑡𝑓 (𝑥)+(1 − 𝑡)𝑓 (𝑦), 𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓 (𝑦)]. 

From 𝑚𝑟-order relation, 

𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦) + 𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦)

2

≤
𝑡𝑓 (𝑥)+(1 − 𝑡)𝑓 (𝑦) + 𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓 (𝑦)

2
 

 

  (10) 

and  

𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓 (𝑦) − 𝑡𝑓 (𝑥)−(1 − 𝑡)𝑓 (𝑦)

2

≤
𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦) − 𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦)

2
. 

 

(11) 

Addition (10) and (11) we obtain 

𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓 (𝑥) + (1 − 𝑡)𝑓 (𝑦) 

Therefore, 𝑓  is a convex function on 𝑋. 
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Definition: 2.7. Let 𝐹: 𝑋 → 𝐼(ℝ) be interval function defined as: 𝐹(𝑥) for all  𝑥 ∊ 𝑋 

near 𝑥 , except possibly at 𝑥  itself, if we can ensure that 𝐹(𝑥) is as closed as we want 

to interval 𝑀 by taking 𝑥 close enough to 𝑥 , but not equal to 𝑥 , then 𝑀 is called limit 

of 𝐹 as 𝑥 approaches 𝑥 , denoted by  𝑙𝑖𝑚
→   

𝐹(𝑥) = 𝑀. Then, for every 𝜀 > 0, there 

exists a 𝛿 > 0 such that 𝑑 (𝐹(𝑥), 𝑀) < 𝜀 for ‖𝑥 − 𝑥 ‖ < 𝛿.  

 

Proposition 2.10. Let 𝐹: 𝑋 → 𝐼(ℝ) be interval function defined as 𝐹(𝑥) =

[𝑓 (𝑥), 𝑓 (𝑥)] for all 𝑥 ∈ 𝑋 and 𝑀 = [𝑚 , 𝑚 ] be an interval. Then, 𝑙𝑖𝑚
→   

𝐹(𝑥) = 𝑀 

if and only if 𝑙𝑖𝑚
→   

𝑓  (𝑥) = 𝑚  and 𝑙𝑖𝑚
→   

𝑓  (𝑥) = 𝑚  [16]. 

  

Definition 2.8. Let 𝐹: 𝑋 → 𝐼(ℝ) be an interval function and 𝑥  ∈ X . If 

𝑙𝑖𝑚 
→

𝐹(𝑥) = 𝐹(𝑥 ) 

or equally, 𝑙𝑖𝑚
→

𝐹(𝑥)− 𝐹(𝑥 ) = 0. Then, 𝐹 is called gH–continuous at 𝑥  . 

 

Definition 2.9. Let 𝑋 ⊆ ℝ be nonempty set, 𝐹: 𝑋 → 𝐼(ℝ) be an interval function and 

𝑥 ∈ 𝑋 be given. The gH–continuinity of 𝐹 is defined at 𝑥  as: If for every 𝜀 > 0, 

there exists a 𝛿 > 0 such that |𝑥 − 𝑥 | < 𝛿 ⟹ 𝑑 𝐹(𝑥 + ℎ), 𝐹(𝑥 ) < 𝜖 [2]. 

 

Proposition 2.11. Let 𝑋 ⊆ ℝ be nonempty set, 𝐹: 𝑋 → 𝐼(ℝ) be an interval function, it 

is defined 𝐹(𝑥) ≔ [𝑓 (𝑥), 𝑓 (𝑥)] for all 𝑥 ∈ 𝑋 and 𝑥 ∈ 𝑋 be given. Then, 𝐹 is gH–

continuous at 𝑥  iff 𝑓  and 𝑓  are continuous at same point [16].  

Example 2.4. Let’s take into account the following interval function 𝐹: ℝ → 𝐼(ℝ) 

defined as 𝐹(𝑥)  =  [|𝑥|], 𝑥 + 2  for all 𝑥 ∈ ℝ , where [|⋅|]  is exact–value or the 

greatest integer function. Now, examine the limit and gH–continuity of 𝐹 at any point 

in the domain. 

For example, let’s check the point 2: 

 

lim
→

 ⟦𝑥⟧ = 2 𝑎𝑛𝑑  lim
→

 [|𝑥|] =  1, so there is no limit of [|𝑥|] at 2. 

Since lim
→

 𝑥 + 2 = lim
→

 𝑥 + 2 = 4,  lim
→

 𝑥 + 2 = 4.  

Then, there is no limit of 𝐹 at 2. Therefore, 𝐹 is not continuous at 2. 
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Definition 2.10. Let 𝐹: 𝑋 → 𝐼(ℝ) be an interval function and 𝑥 ∈ 𝑋. If 𝑥 + ℎ ∈ 𝑋 for 

all enough small ℎ ∈ ℝ  and the following limit 

 

lim
→

𝐹(𝑥 + ℎ) − 𝐹(𝑥 )

ℎ
 

exists at 𝑥 , then 𝐹 is called GH-differentiable at 𝑥 , and  

𝐹 (𝑥 ) ≔ lim
→

𝐹(𝑥 + ℎ) − 𝐹(𝑥 )

ℎ
 

is called the GH-derivative of 𝐹 at 𝑥 . 

 

Definition 2.11. [15] Let 𝐹: 𝑋 → 𝐼(ℝ) be an interval function and 𝑥 ∈ 𝑋. If 𝑥 + ℎ ∈

𝑋 for all enough small ℎ ∈ ℝ  and the following limit 

 

lim
→

𝐹(𝑥 + ℎ)− 𝐹(𝑥 )

ℎ
 

exists at 𝑥 , then 𝐹 is called gH-differentiable at 𝑥 , and 

𝐹 (𝑥 ) ≔ lim
→

𝐹(𝑥 + ℎ)− 𝐹(𝑥 )

ℎ
 

is called gH-derivative of 𝐹 at 𝑥 . 

 

Definition 2.12. [5] Let 𝐹: 𝑋 → 𝐼(ℝ) be an interval function, 𝑥 ∈ 𝑋 and ℎ ∈ ℝ . If the 

following limit 

lim
→

𝐹(𝑥 + 𝜆ℎ)− 𝐹(𝑥 )

𝜆
 

exists at 𝑥 , then 𝐹 is called gH-directional differentiable at 𝑥 , and 

𝐹 (𝑥 ) ≔ lim
→

𝐹(𝑥 + 𝜆ℎ)− 𝐹(𝑥 )

𝜆
 

is called gH-directional derivative of 𝐹 at 𝑥  in the direction ℎ. 

 

Now, we will find the derivatives of an interval function in the next example. We will 

show that the gH-derivative of 𝐹 may not be equal to GH-derivative of 𝐹 at any point 

𝑥 . This situation illustrated in the next example. 
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Example 2.3. Let 𝐹: [0,2𝜋] → 𝐼(ℝ) be defined as: 

𝐹(𝑥) =
[sin(𝑥) , cos(𝑥)] 0 ≤ 𝑥 ≤

𝜋

4
 𝑜𝑟 

5𝜋

4
< 𝑥 ≤ 2𝜋

[cos(𝑥) , sin(𝑥)]
𝜋

4
< 𝑥 ≤

5𝜋

4

 

Some image sets of interval function 𝐹 are given in Figure 2.1. 

 

 

 

Figure 2.1: Image sets of interval function 𝐹 defined in Example 2.2. 

 

Then, the gH-derivative of 𝐹 at 𝑥 =  is 

 

𝐹𝐻
′

𝜋

2
= lim

ℎ→0

𝐹
𝜋
2

+ ℎ −𝑔𝐹
𝜋
2

 

ℎ
                                                                                                          

 = lim
ℎ→0

cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ −𝑔 cos
𝜋
2

, sin
𝜋
2

ℎ
                                                   

 
= lim

ℎ→0

cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ −𝑔[0,1]

ℎ
                                                                               

= lim
ℎ→0

min cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ − 1 , max cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ − 1   

ℎ                                                                    
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If ℎ > 0, then 

lim
→

min cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ − 1 , max cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ − 1   

ℎ
 

 

= lim
→

min cos
𝜋

2
+ ℎ /ℎ, sin

𝜋

2
+ ℎ /ℎ − 1/ℎ , max cos

𝜋

2
+ ℎ /ℎ, sin

𝜋

2
+ ℎ /ℎ −

1/ℎ  

=[min{−1,0} , max {−1,0}] = [−1,0] 

 

If ℎ < 0, then 

lim
→

min cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ − 1 , max cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ − 1   

ℎ
 

= lim
→

− min − cos
𝜋

2
+ ℎ /ℎ, −

sin
𝜋

2
+ℎ

ℎ
+ 1/ℎ , max − cos

𝜋

2
+ ℎ /ℎ, −

sin
𝜋

2
+ℎ

ℎ
+

1/ℎ  

=−[min{1,0} , max{1,0}] = −[0,1] = [−1,0] 

Then, 𝐹 is gH-differentiable and 𝐹 = [−1,0]. 

 

Now, let’s calculate the GH-derivative of 𝐹 at 𝑥 = . 

𝐹
𝜋

2
= lim

→

𝐹
𝜋
2

+ ℎ − 𝐹
𝜋
2

ℎ
= lim

→

cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ − cos
𝜋
2

, sin
𝜋
2

ℎ

= lim
→

cos
𝜋
2

+ ℎ , sin
𝜋
2

+ ℎ − [0,1]

ℎ

= lim
→

cos
𝜋
2

+ ℎ − 1, sin
𝜋
2

+ ℎ  

ℎ
 

 

If ℎ > 0, then 

𝐹
𝜋

2
= lim

→

cos
𝜋
2

+ ℎ − 1, sin
𝜋
2

+ ℎ  

ℎ
= lim

→  
(cos

𝜋

2
+ ℎ − 1)/ℎ, sin

𝜋

2
+ ℎ /ℎ  

Because lim
→  

(cos + ℎ − 1)/ℎ = −∞, there is no GH-derivative of 𝐹 at 𝑥 = . 

Note that GH-derivative may be different from gH-derivative. If 𝐹 is gH-differentiable 

function, then we can see two cases for gH-differentiable at any point 𝑥 ∈ 𝑖𝑛𝑡(𝑋): 
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𝐹 (𝑥) = [𝑓 (𝑥), 𝑓 ′(𝑥)] 

or 

𝐹 (𝑥) = [𝑓 (𝑥), 𝑓 ′(𝑥)]. 

 

Theorem 2.1. Let gH-differentiable interval function 𝐹: 𝑋 → 𝐼(ℝ)  be defined as 

𝐹(𝑥) = [𝑓 (𝑥), 𝑓 (𝑥)] for all 𝑥 ∈ 𝑋, where 𝑓 , 𝑓 : [𝑎, 𝑏] → ℝ real functions. Then, 𝑓  

and 𝑓  are also differentiable and 

 

𝐹 (𝑥 ) = [min{𝑓 (𝑥 ), 𝑓 ′(𝑥 )} , max{𝑓 (𝑥 ), 𝑓 ′(𝑥 )}] 

 

satisfies for all 𝑥 ∈ (𝑎, 𝑏) [3,15]. 

 

Definition 2.13. [12,15] Let interval function 𝐹: [𝑎, 𝑏] → 𝐼(ℝ) be defined as 𝐹(𝑥) =

[𝑓 (𝑥), 𝑓 (𝑥)] for all 𝑥 ∈ [𝑎, 𝑏]. Integration of 𝐹 is defined as 

𝐹(𝑥)𝑑𝑥 = 𝑓 (𝑥)𝑑𝑥 , 𝑓 (𝑥)𝑑𝑥 . 

 

Example 2.6. Let’s calculate the integral of 𝐹 defined Example 2.3: 

𝐹(𝑥)𝑑𝑥 = [sin(𝑥) , cos(𝑥)]𝑑𝑥 + 

[cos(𝑥) , sin(𝑥)]𝑑𝑥 + [sin(𝑥) , cos(𝑥)]𝑑𝑥 

= ∫ sin(𝑥) 𝑑𝑥, ∫ cos (𝑥)𝑑𝑥 + ∫ cos (𝑥)𝑑𝑥, ∫ sin (𝑥)𝑑𝑥 +

∫ sin (𝑥)𝑑𝑥 , ∫ cos (𝑥)𝑑𝑥  

= − cos(𝑥) |
𝜋
4 , sin(𝑥) |

𝜋
4 + sin(𝑥) |𝜋

4

5𝜋
4 , − cos(𝑥) |𝜋

4

5𝜋
4 + −cos(𝑥) |5𝜋

4

2𝜋, sin(𝑥) |5𝜋
4

2𝜋  

= − cos
𝜋

4
+ cos 0, sin

𝜋

4
− sin 0 + 

sin
5𝜋

4
− sin

𝜋

4
, − cos

5𝜋

4
+ cos

𝜋

4
+ − cos 2𝜋 + cos

5𝜋

4
, sin 2𝜋 − sin

5𝜋

4
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= − cos
𝜋

4
+ cos 0 + sin

5𝜋

4
− sin

𝜋

4
− cos 2𝜋 + cos

5𝜋

4
, sin

𝜋

4
− sin 0

− cos
5𝜋

4
+ cos

𝜋

4
+ sin 2𝜋 − sin

5𝜋

4
 

= −2√2, 2√2 . 
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PART 3 

 

INTERVAL OPTIMIZATION AND SOLUTIONS 

 

 

Extremum points of interval function and solution of interval-valued optimization will 

present in this chapter.  

Standard interval-valued optimization or interval optimization (shortly, (𝐼𝑉𝑃)) is 

given by 

(𝐼𝑉𝑃)
min(𝑚𝑎𝑥) 𝐹(𝑥)

𝑥 ∈ 𝑋
 

where nonempty set 𝑋 is called constraint set and interval function 𝐹: 𝑋 → 𝐼(ℝ) is 

called objective function. The aim of (𝐼𝑉𝑃) is to find the best points that give the 

maximum and minimum values of 𝐹 on 𝑋. 

 

3.1. SOLUTIONS OF INTERVAL OPTIMIZATIONS 

 

Because there is no natural order relation on intervals, order relations are used to solve 

these problems. We will use the order relations in Definition 2.2 to solve the problems. 

Some of these order relations are partial order relation, we will use the following 

definition. 

 

Definition 3.1. Let 𝑋 ⊆ ℝ  be nonempty set, an interval function 𝐹: 𝑋 → 𝐼(ℝ) and ∗∈

{𝑙, 𝑟, 𝑙𝑟, 𝑠, 𝑚, 𝑟, 𝑚𝑟} be given. Then, 𝑥 ∈ 𝑋 is called a  

(i) minimal solution of (𝐼𝑉𝑃) if there is no any 𝑥 ∈ 𝑋 such that the value of 𝑥  

under 𝐹 is different from 𝐹(𝑥 ) and 𝐹(𝑥) ≼∗ 𝐹(𝑥 ), 

(ii) maximal solution of (𝐼𝑉𝑃) if there is no any 𝑥 ∈ 𝑋 such that the value of 

𝑥  under 𝐹 is different from 𝐹(𝑥 ) and 𝐹(𝑥 ) ≼∗ 𝐹(𝑥), 
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(iii) weak minimal solution of (𝐼𝑉𝑃) if there is no any 𝑥 ∈ 𝑋 such that 

𝐹(𝑥) ≺∗ 𝐹(𝑥 ), 

(iv) weak maximal solution of (𝐼𝑉𝑃) if there is no any 𝑥 ∈ 𝑋 such that 

𝐹(𝑥 ) ≺∗ 𝐹(𝑥), 

(v) strongly minimal solution of (𝐼𝑉𝑃) if 𝐹(𝑥 ) ≼∗ 𝐹(𝑥) for all 𝑥 ∈ 𝑋, 

(vi) strongly maximal solution of (𝐼𝑉𝑃) if 𝐹(𝑥) ≼∗ 𝐹(𝑥 ) for all 𝑥 ∈ 𝑋, 

(vii) strictly minimal solution of (𝐼𝑉𝑃) if 𝐹(𝑥 ) ≺∗ 𝐹(𝑥) for all 𝑥 ∈ 𝑋 ∕ {𝑥 }, 

(viii) strictly maximal solution of (𝐼𝑉𝑃) if 𝐹(𝑥) ≺∗ 𝐹(𝑥 ) for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. 

 

If a point is a strictly solution of the problem, then it is also a strongly solution of the 

problem. If a point is a strongly solution of the problem, then it is also a solution of the 

problem.  Moreover, if a point is a solution of the problem, then it is also a weak solution. 

Therefore, we obtain the following relation: 

 

 

 

Note that while a point is a solution of a problem with respect to (shorty, wrt) an order 

relation, same point may not be a solution of the problem wrt another order relation. 

 

Example 3.1. Let interval function 𝐹: [−1,1] → 𝐼(ℝ) be defined as 𝐹(𝑥) = [𝑥 , |𝑥|] for 

all 𝑥 ∈ [−1,1]. Let’s regard the following interval optimization 

 

min 𝐹(𝑥)

𝑥 ∈ [−1,1]
 

 

Image sets of 𝐹 given in Figure 3.1. 

Strongly  

Solution 
⟹ ⟹ 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑊𝑒𝑎𝑘  

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

Strictly  

Solution 
⟹ 
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Figure 3.1: Image sets of 𝐹(𝑥)  = [𝑥 , |𝑥|] for all 𝑥 ∈  [−1,1]. 

 

We will solve this problem using the following order relations: 

≼𝒍 order relation: 0 is minimal solution of the problem because there is no 𝑥 ∈

[−1,1] {0}⁄  that 𝐹(𝑥) ≼ 𝐹(0). Really, assume that there exists a 𝑥 ∈ [−1,1] {0}⁄  that   

𝐹(𝑥) ≼ 𝐹(0) ⟺ [𝑥 , |𝑥|] ≼ [0,0] ⟺ 𝑥 ≤ 0 

Then, there is no an 𝑥 ∈ [−1,1] {0}⁄  such that 𝑥 ≤ 0. So, 0 is a minimal solution. It is 

unique because of 𝐹(0) ≼ 𝐹(𝑥) for all 𝑥 ∈ [−1,1]. 0 is weak minimal solution of the 

problem because there is no 𝑥 ∈ [−1,1] such 𝐹(𝑥) ≺ 𝐹(0). Really, assume that there 

exists an 𝑥 ∈ [−1,1] that   

𝐹(𝑥) ≺ 𝐹(0) ⟺ [𝑥 , |𝑥|] ≺ [0,0] ⟺ 𝑥 ˂ 0 

We can not find an 𝑥 ∈ [−1,1] such that 𝑥 ˂ 0. Then, 0 is a weak minimum solution 

of the problem. 0 is strongly minimal solution of the problem because 𝐹(0) ≼𝒍 𝐹(𝑥) 

for all 𝑥 ∈ [−1,1]. Really,  

𝐹(0) ≼𝒍 𝐹(𝑥) ⟺ [0,0] ≼𝒍 [𝑥 , |𝑥|] ⟺ 0 ≤ 𝑥  

Also, 0 is strictly solution of the problem because 𝐹(0) ≺ 𝐹(𝑥) for all 𝑥 ∈ [−1,1] ∕

{0}. Moreover, the problem has no solution other than 0 with respect to order relation 

≼ . 
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≼𝒎𝒓 order relation: Let’s check the point 0: If 0 is a minimal solution of the problem, 

then we can not find a 𝑥 ∈ [−1,1] that 𝐹(𝑥) ≼ 𝐹(0) and 𝐹(𝑥) ≠ 𝐹(0). Assume the 

contrary that there is a 𝑥 ∈ [−1,1] such that 𝐹(𝑥) ≼ 𝐹(0) and 𝐹(𝑥) ≠ 𝐹(0). Then,  

𝐹(𝑥) ≼ 𝐹(0) ⟺ [𝑥 , |𝑥|] ≼ [0,0] 

⟺
𝑥 + |𝑥|

2
≤ 0 𝑎𝑛𝑑 0 ≤

|𝑥| − 𝑥

2
 

⟺ 𝑥 + |𝑥| ≤ 0 𝑎𝑛𝑑 0 ≤ |𝑥| − 𝑥  

These two inequalities are satisfied for only 0. Then, there is not a 𝑥 ∈ [−1,1] such 

that 𝐹(𝑥) ≠ 𝐹(0) and 𝐹(𝑥) ≼ 𝐹(0). So, 0 is a solution of the problem. 

 

Let’s check the point 0; If 0 is a weak minimal solution of the problem, then we cannot 

find an 𝑥 ∈ [−1,1] that 𝐹(𝑥) ≺ 𝐹(0). Assume the contrary that there is an 𝑥 ∈

[−1,1] that 𝐹(𝑥) ≺ 𝐹(0). Then,  

𝐹(𝑥) ≺ 𝐹(0) ⟺ [𝑥 , |𝑥|] ≺ [0,0] 

⟺
𝑥 + |𝑥|

2
≤  0, 0 ≤  

|𝑥| − 𝑥

2
 𝑎𝑛𝑑 𝐹(𝑥) ≠ 𝐹(0) 

⟺ 𝑥 + |𝑥| ≤ 0, |𝑥| − 𝑥  ≥ 0 𝑎𝑛𝑑 𝑎𝑛𝑑 𝐹(𝑥) ≠ 𝐹(0) 

There is no a solution of these two inequalities, then 0 is a weak solution of the 

problem.  

 

0 is strongly solution of the problem because 𝐹(0) ≼ 𝐹(𝑥) for all 𝑥 ∈ [−1,1]. 

Really, 

𝐹(0) ≼ 𝐹(𝑥) ⟺ [0,0] ≼ [𝑥 , |𝑥|] 

⟺ 0 ≤  
𝑥 + |𝑥|

2
  𝑎𝑛𝑑 

|𝑥| − 𝑥

2
≤ 0  

⟺ 𝑥 + |𝑥| ≥ 0 𝑎𝑛𝑑 |𝑥| − 𝑥  ≤ 0 

 

The solution of these two inequalities is only 0, that is 𝐹(0) ≼ 𝐹(𝑥) is satisfied for 

only 0. Since 𝐹(0) ⋠ 𝐹(𝑥)  all 𝑥 ∈ [−1,1], 0 is not strongly minimum solution of the 

problem. Similarly, we can show that 0 is not strictly solution of the problem. 
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Example 3.2. Let interval function 𝐹: [0,2𝜋] → 𝐼(ℝ) be defined as  

𝐹(𝑥) =
[sin(𝑥) , cos(𝑥)] ; 0 ≤ 𝑥 ≤

𝜋

4
 𝑜𝑟 

5𝜋

4
< 𝑥 ≤ 2𝜋

[cos(𝑥) , sin(𝑥)] ;
𝜋

4
< 𝑥 ≤

5𝜋

4
                              

 (12) 

 

Consider the following interval optimization 

max 𝐹(𝑥)

𝑥 ∈ [0,2𝜋]
 

Image of 𝐹 are given in Figure 3.2. 

 

Figure 3.2. Image sets of 𝐹 defined in Example 3.2. 

 

This problem will be solved using different order relations: 

≼𝒍𝒓 order relation: Let’s check the point 𝑥 = . If it is a maximal solution of (12), 

then there is not exist an 𝑥 ∈ [0,2𝜋] that 𝐹 ≠ 𝐹(𝑥) and 𝐹 ≼ 𝐹(𝑥). Assume 

the contrary that there exists an 𝑥 ∈ [0,2𝜋] that 𝐹 ≠ 𝐹(𝑥) and 𝐹 ≼ 𝐹(𝑥) is 

satisfied. Then, 

For 𝑥 ∈ 0, ∪ , 2𝜋 , 
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𝐹
𝜋

4
≼ 𝐹(𝑥) ⟺

√2

2
,
√2

2
≼ [sin 𝑥 , cos 𝑥]   

 ⟺
√2

2
≤ sin 𝑥  𝑎𝑛𝑑 

√2

2
≤ cos 𝑥

 ⟺ 𝑥 =
𝜋

4
                                         

 

For 𝑥 ∈ , , 

𝐹
𝜋

4
≼ 𝐹(𝑥) ⟺

√2

2
,
√2

2
≼ [cos 𝑥 , sin 𝑥]                               

 ⟺
√2

2
≤ cos 𝑥  𝑎𝑛𝑑 

√2

2
≤ sin 𝑥                             

 ⟺ 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛                                         

 

Because there is no an 𝑥 ∈ [0,2𝜋] that 𝐹 ≠ 𝐹(𝑥) and 𝐹 ≼ 𝐹(𝑥),  is a 

maximal solution of the problem wrt order relation ≼ . 

  is another solution the problem. Because we cannot find a 𝑥 ∈ [0,2𝜋] such that 

𝐹(𝑥) ≠ 𝐹  and 𝐹 ≼ 𝐹(𝑥). On the contrary to assumption, assume that there 

exists an 𝑥 ∈ [0,2𝜋] that 𝐹(𝑥) ≠ 𝐹  and 𝐹 ≼ 𝐹(𝑥). Then,  

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

𝐹
𝜋

2
≼ 𝐹(𝑥) ⟺ [0,1] ≼ [sin 𝑥 , cos 𝑥]                         

 ⟺ 0 ≤ sin 𝑥  𝑎𝑛𝑑 1 ≤ cos 𝑥                      
 ⟺ 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 2𝜋                                  

 

Because 𝐹(0) = 𝐹(2𝜋) = 𝐹 , we didn’t find an element such that 𝐹(𝑥) ≠ 𝐹  

and 𝐹 ≼ 𝐹(𝑥) on 0, ∪ , 2𝜋 . 

For 𝑥 ∈ , , 

𝐹
𝜋

2
≼ 𝐹(𝑥) ⟺ [0,1] ≼ [cos 𝑥 , sin 𝑥]   

 ⟺ 0 ≤ cos 𝑥  𝑎𝑛𝑑 1 ≤ sin 𝑥

 ⟺ 𝑥 =
𝜋

2
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There is no a solution different from 𝑥 = . So, we didn’t find an 𝑥 ∈ [0,2𝜋] that 

𝐹(𝑥) ≠ 𝐹  and 𝐹 ≼ 𝐹(𝑥) on , . Therefore,  is a solution of the problem 

wrt order relation ≼ . 

Assume that  is weak maximal solution of (12). Then, there is no 𝑥 ∈ [0,2𝜋] that 

𝐹 ≺ 𝐹(𝑥). Assume the contrary that there exists an 𝑥 ∈ [0,2𝜋] that  

𝐹 ≺ 𝐹(𝑥). 

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

𝐹
𝜋

2
≺ 𝐹(𝑥) ⟺ [0,1] ≺ [sin 𝑥 , cos 𝑥]                                       

                                        ⟺ 0 ≤ sin 𝑥 ,   1 ≤ cos 𝑥  𝑎𝑛𝑑 [sin 𝑥 , cos 𝑥] ≠ [0,1]  
                                 

 

There is no solution of this system.  

For 𝑥 ∈ , , 

𝐹
𝜋

2
≺ 𝐹(𝑥) ⟺ [0,1] ≺ [cos 𝑥 , sin 𝑥]                 

                                                               ⟺ 0 ≤ cos 𝑥 ,   1 ≤ sin 𝑥  𝑎𝑛𝑑 [cos 𝑥 , sin 𝑥] ≠ [0,1]  
 

 

There is no solution of this system. Then,  is a weak maximal solution of the 

problem.  

 

Suppose that  is strongly maximal solution of the problem. Then, 𝐹(𝑥) ≼ 𝐹  

must be satisfied for all 𝑥 ∈ [0,2𝜋]. So, 

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

𝐹(𝑥) ≼ 𝐹
𝜋

2
        ⟺   [sin 𝑥 , cos 𝑥] ≼  [0,1]

     ⟺ sin 𝑥 ≤ 0,   cos 𝑥 ≤ 1 

 ⟺ 𝑥 ∈
5𝜋

4
, 2𝜋 ∪ {0}

 

For 𝑥 ∈ , , 
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𝐹(𝑥) ≼ 𝐹
𝜋

2
           ⟺   [cos 𝑥 , sin 𝑥] ≼  [0,1]

         ⟺ cos 𝑥 ≤ 0,   sin 𝑥 ≤ 1  

 ⟺ 𝑥 ∈
𝜋

2
,
5𝜋

4
            

 

Then, 𝐹(𝑥) ≼ 𝐹  is satisfied for only 𝑥 ∈ , 2𝜋 ∪ , ∪ {0}. That is, 𝐹(𝑥) 

≼ 𝐹  is not satisfied for all 𝑥 ∈ [0,2𝜋]. For example, 𝐹(𝑥) ≼ 𝐹  is not 

satisfied for 𝑥 =  , Really,  

𝐹
𝜋

4
≼ 𝐹

𝜋

2
⟺   

√2

2
,
√2

2
≼  [0,1] 

                          ⟺
√

≤ 0 and √ ≤ 1 

The last two inequalities do not satisfy. So, 𝐹 ⋠ 𝐹  for all 𝑥 ∈ [0,2𝜋].  

Therefore,  is not strongly maximal solution. 

 

Suppose that  is strongly maximal solution of the problem. Then, 𝐹(𝑥) ≼ 𝐹  

must be satisfied for all 𝑥 ∈ [0,2𝜋]. So, 

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

𝐹(𝑥) ≼ 𝐹
𝜋

4
        ⟺   [sin 𝑥 , cos 𝑥] ≼  

√2

2
,
√2

2

     ⟺ sin 𝑥 ≤
√2

2
,   cos 𝑥 ≤

√2

2
   

 ⟺ 𝑥 ∈
5𝜋

4
,
7𝜋

4
∪

𝜋

4
         

 

For 𝑥 ∈ , , 

𝐹(𝑥) ≼ 𝐹
𝜋

4
⟺   [cos 𝑥 , sin 𝑥] ≼  

√2

2
,
√2

2

       ⟺ cos 𝑥 ≤
√2

2
,   sin 𝑥 ≤

√2

2
       

 ⟺ 𝑥 ∈
3𝜋

4
,
5𝜋

4
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Then, 𝐹(𝑥) ≼ 𝐹  is satisfied for only 𝑥 ∈ , ∪ , ∪ . That is, 𝐹(𝑥) 

≼ 𝐹  is not satisfied for all 𝑥 ∈ [0,2𝜋]. For example, 𝐹(𝑥) ≼ 𝐹  is not 

satisfied for 𝑥 = 0. Really,  

𝐹(0) ≼ 𝐹
𝜋

4
⟺   [0,1] ≼

√2

2
,
√2

2
  

                          ⟺ 0 ≤
√  and 1 ≤

√      

The last two inequalities do not satisfy. So, 𝐹(0) ⋠ 𝐹  for all 𝑥 ∈ [0,2𝜋].  

Therefore,  is not strongly maximal solution. 

 

≼𝒎𝒓 order relation: Let’s check the point 𝑥 = . If it is a solution of (12), there is 

not exist an 𝑥 ∈ [0,2𝜋] such that 𝐹 ≠ 𝐹(𝑥) and 𝐹 ≼ 𝐹(𝑥). Assume the 

contrary that there exists an 𝑥 ∈ [0,2𝜋] such that 𝐹 ≠ 𝐹(𝑥) and 𝐹 ≼ 𝐹(𝑥) 

are satisfied. Then, 

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

𝐹
𝜋

4
≼ 𝐹(𝑥) ⟺

√2

2
,
√2

2
≼ [sin 𝑥 , cos 𝑥]                           

 ⟺
√2

2
≤

sin 𝑥 + cos 𝑥

2
 𝑎𝑛𝑑 

cos 𝑥 − sin 𝑥

2
≤ 0

 ⟺ 𝑥 =
𝜋

4
                                                                    

 

 

 

For 𝑥 ∈ , , 

𝐹
𝜋

4
≼ 𝐹(𝑥) ⟺

√2

2
,
√2

2
≼ [cos 𝑥 , sin 𝑥]                                                            

 ⟺
√2

2
≤

cos 𝑥 + sin 𝑥

2
 𝑎𝑛𝑑 

sin 𝑥 − cos 𝑥

2
≤ 0                                 

 ⟺ 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛                                                                     
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Because there is no an 𝑥 ∈ [0,2𝜋] such that 𝐹 ≠ 𝐹(𝑥) and 𝐹 ≼ 𝐹(𝑥),  is a 

maximal solution of the problem wrt order relation ≼ . 

 is not a solution the problem. Because we can find an 𝑥 ∈ [0,2𝜋] such that 𝐹(𝑥) ≠

𝐹  and 𝐹 ≼ 𝐹(𝑥). Really, 

  

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

𝐹
𝜋

2
≼𝑚𝑟 𝐹(𝑥) ⟺ [0,1] ≼𝑚𝑟 [sin 𝑥 , cos 𝑥]                                  

 ⟺
1

2
≤

sin 𝑥 + cos 𝑥

2
 𝑎𝑛𝑑 

cos 𝑥 − sin 𝑥

2
≤

1

2

 ⟺ 𝑥 ∈ 0,
𝜋

4
                                                           

 

 

For 𝑥 ∈ , , 

 

𝐹
𝜋

2
≼ 𝐹(𝑥) ⟺ [0,1] ≼ [cos 𝑥 , sin 𝑥]                                

 ⟺
1

2
≤

cos 𝑥 + sin 𝑥

2
 𝑎𝑛𝑑 

sin 𝑥 − cos 𝑥

2
≤

1

2

 ⟺ 𝑥 ∈
𝜋

4
,
𝜋

2
                                                          

 

We can find an 𝑥 ∈ [0,2𝜋] such that 𝐹(𝑥) ≠ 𝐹  and 𝐹 ≼ 𝐹(𝑥). That is, 

𝐹 ≼ 𝐹(𝑥) is not satisfied for all 𝑥 ∈ [0,2𝜋]. Therefore,  is not a solution of the 

problem wrt order relation ≼ . 

 

 is not a weak maximal solution of (12) because we can find an 𝑥 ∈ [0,2𝜋] such that 

𝐹  ≺ 𝐹(𝑥). Really, for example, 𝐹 ≺ 𝐹(𝑥) is satisfied for all 𝑥 ∈ 0, .  
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Because of 

 

𝐹
𝜋

2
≺ 𝐹(𝑥) ⟺ cos

𝜋

2
, sin

𝜋

2
≺ 𝐹(𝑥)                    

                                ⟺ [0,1] ≺ [sin 𝑥 , cos 𝑥]                      

⟺
1

2
≤

sin 𝑥 + cos 𝑥

2
,
cos 𝑥 − sin 𝑥

2
≤

1

2
 𝑎𝑛𝑑 [0,1] ≠ [sin 𝑥 , cos 𝑥] 

⟺ 𝑥 ∈ 0,
𝜋

2
                                                                                                   

Now, we will check  for weak solution. We wait that it is a weak solution of (12) 

because a solution of a problem is also a weak solution.  

If it is a solution of (12), there is not exist an 𝑥 ∈ [0,2𝜋] such that 𝐹 ≺ 𝐹(𝑥). 

Assume the contrary that there exists an 𝑥 ∈ [0,2𝜋] that 𝐹 ≺ 𝐹(𝑥). Then, 

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

 

𝐹
𝜋

4
≺ 𝐹(𝑥) ⟺

√2

2
,
√2

2
≺ [sin 𝑥 , cos 𝑥]  

   ⟺
√2

2
≤

sin 𝑥 + cos 𝑥

2
,
cos 𝑥 − sin 𝑥

2
≤ 0 𝑎𝑛𝑑 

√2

2
,
√2

2
≠ [sin 𝑥 , cos 𝑥]  

                                       

Then, there is no a solution of this system.  

For 𝑥 ∈ , , 

𝐹
𝜋

4
≺ 𝐹(𝑥) ⟺

√2

2
,
√2

2
≺ [cos 𝑥 , sin 𝑥] 

                                 ⟺
√2

2
≤

cos 𝑥 + sin 𝑥

2
,
sin 𝑥 − cos 𝑥

2
≤ 0 𝑎𝑛𝑑  

                                       
√2

2
,
√2

2
 ≠ [cos 𝑥 , sin 𝑥] 

Then, there is no a solution of this system. Therefore,  is a weak maximal solution of 

(12).  
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Because  is not solution or weak solution of (12), we can say that it is not strongly or 

strictly solution of the problem. 

 

Now, let’s check the point   for strongly maximal solution. If it is a strongly maximal 

solution of the problem, then 𝐹(𝑥) ≼ 𝐹  must be satisfied for all 𝑥 ∈ [0,2𝜋].  

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

𝐹(𝑥) ≼ 𝐹
𝜋

4
⟺ [sin 𝑥 , cos 𝑥]   ≼

√2

2
,
√2

2
                            

 ⟺
sin 𝑥 + cos 𝑥

2
≤

√2

2
 𝑎𝑛𝑑  0 ≤

cos 𝑥 − sin 𝑥

2
  

                                                            

 

⟺ 𝑥 ∈ 0, ∪ , 2𝜋 , 

For 𝑥 ∈ , , 

𝐹(𝑥) ≼ 𝐹
𝜋

4
⟺ [cos 𝑥 , sin 𝑥]  ≼  

√2

2
,
√2

2
                           

 ⟺
cos 𝑥 + sin 𝑥

2
≤

√2

2
 𝑎𝑛𝑑  0 ≤

sin 𝑥 − cos 𝑥

2
  

                                                                    

 

⟺ 𝑥 ∈
𝜋

4
,
5𝜋

4
                        

Therefore, we have 𝐹(𝑥) ≼ 𝐹  for all 𝑥 ∈ [0,2𝜋], which implies that  is a 

strongly solution of (12). Similarly, we can show that 𝐹(𝑥) ≺ 𝐹  for all 𝑥 ∈

[0,2𝜋] ∕ , which implies that  is a strictly maximal solution of (12). 

 

≼𝒔 order relation: Let’s check the point 𝑥 = . If it is a solution of (12), there is not 

exist an 𝑥 ∈ [0,2𝜋] such that 𝐹 ≠ 𝐹(𝑥) and 𝐹 ≼ 𝐹(𝑥). Assume the contrary 

that there exists an 𝑥 ∈ [0,2𝜋] such that 𝐹 ≠ 𝐹(𝑥) and 𝐹 ≼ 𝐹(𝑥) is satisfied. 

Then, 

For 𝑥 ∈ 0, ∪ , 2𝜋 , 
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𝐹
𝜋

4
≼ 𝐹(𝑥) ⟺

√2

2
,
√2

2
≼ [sin 𝑥 , cos 𝑥]   

 ⟺
√2

2
≤ sin 𝑥                                 

 ⟺ 𝑥 =
𝜋

4
 .                                        

 

For 𝑥 ∈ , , 

𝐹
𝜋

4
≼ 𝐹(𝑥) ⟺

√2

2
,
√2

2
≼ [cos 𝑥 , sin 𝑥]   

 ⟺
√2

2
≤ cos 𝑥                               

                                        

 

There is no solution of the last inequalities. Then, because there is no an 𝑥 ∈ [0,2𝜋] 

such that 𝐹 ≠ 𝐹(𝑥) and 𝐹 ≼ 𝐹(𝑥),  is a maximal solution of the problem 

wrt order relation ≼ . 

  is another solution the problem. Because we cannot find an 𝑥 ∈ [0,2𝜋] such that 

𝐹(𝑥) ≠ 𝐹  and 𝐹 ≼ 𝐹(𝑥). On the contrary to assumption, assume that there 

exists an 𝑥 ∈ [0,2𝜋] such that 𝐹(𝑥) ≠ 𝐹  and 𝐹 ≼ 𝐹(𝑥). Then,  

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

𝐹
𝜋

2
≼ 𝐹(𝑥) ⟺ [0,1] ≼ [sin 𝑥 , cos 𝑥]                                    

 ⟺ 1 ≤ sin 𝑥                                                             
 ⟺ 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛                                   

 

 

 

For 𝑥 ∈ , , 

𝐹
𝜋

2
≼ 𝐹(𝑥) ⟺ [0,1] ≼ [cos 𝑥 , sin 𝑥]   

 ⟺ 1 ≤ cos 𝑥                          
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There is no a solution of the last inequality. So, we didn’t find a 𝑥 ∈ [0,2𝜋] that 

𝐹(𝑥) ≠ 𝐹  and 𝐹 ≼ 𝐹(𝑥). Therefore,  is a solution of the problem wrt order 

relation ≼ . 

Because  is a solution of (12), it is also a weak maximal solution of (12). Similarly,   

is a weak maximal solution of (12). 

 

Suppose that  is strongly maximal solution of the problem. Then, 𝐹(𝑥) ≼ 𝐹  

must be satisfied for all 𝑥 ∈ [0,2𝜋]. So, 

For 𝑥 ∈ 0, ∪ , 2𝜋 , 

𝐹(𝑥) ≼ 𝐹
𝜋

4
⟺   [sin 𝑥 , cos 𝑥] ≼  

√2

2
,
√2

2

 ⟺ cos 𝑥 ≤
√2

2
                                

 ⟺ 𝑥 ∈
𝜋

4
∪

5𝜋

4
,
7𝜋

4
             

 

For 𝑥 ∈ , , 

𝐹(𝑥) ≼ 𝐹
𝜋

4
⟺   [cos 𝑥 , sin 𝑥] ≼  

√2

2
,
√2

2
                   

 ⟺ sin 𝑥 ≤
√2

2
                                                    

  

 

⟺ 𝑥 ∈
3𝜋

4
,
5𝜋

4
     

Then, 𝐹(𝑥) ≼ 𝐹  is satisfied for only 𝑥 ∈ ∪ , . That is 𝐹(𝑥) ≼ 𝐹  is 

not satisfied for all 𝑥 ∈ [0,2𝜋]. Therefore,  is not a strongly maximal solution. 

 

Suppose that  is a strongly maximal solution of the problem. Then, 𝐹(𝑥) ≼ 𝐹  

must be satisfied for all 𝑥 ∈ [0,2𝜋]. So, 

For 𝑥 ∈ 0, ∪ , 2𝜋 , 
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𝐹(𝑥) ≼ 𝐹
𝜋

2
⟺   [sin 𝑥 , cos 𝑥] ≼  [0,1]

 ⟺ cos 𝑥 ≤ 0                           

 ⟺ 𝑥 ∈
5𝜋

4
,
3𝜋

2
                    

 

For 𝑥 ∈ , , 

𝐹(𝑥) ≼ 𝐹
𝜋

2
⟺   [cos 𝑥 , sin 𝑥] ≼  [0,1]

 ⟺ sin 𝑥 ≤ 0                           

 ⟺ 𝑥 ∈ 𝜋,
5𝜋

4
                        

 

Then, 𝐹(𝑥) ≼ 𝐹  is satisfied for only 𝑥 ∈ , ∪ 𝜋, . That is 𝐹(𝑥) 

≼ 𝐹  is not satisfied for all 𝑥 ∈ [0,2𝜋]. Therefore,  is not strongly maximal 

solution. 

Finally,  and  are not strictly maximal solutions of the problem because of they are 

not strongly maximal solutions of the problem.  
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PART 4 

 

SOME OPTIMALITY CRITERIA FOR INTERVAL OPTIMIZATION 

USING SUBDIFFERENTIALS  

 

 

The aim of this chapter obtains some optimality conditions or optimality criteria for 

interval optimization problems using subdifferentials. These conditions allow us to have 

some knowledge about the solution(s) of interval optimization problems. With the help 

of optimality conditions, we can find the solutions of the problems or obtain the 

condition(s), which must be satisfied by their solution(s). 

 

Subdifferential is a new subject for interval functions. The first subgradients and 

subdifferentials obtained by Karaman (2020) for interval-valued functions. Karaman 

(2020) obtained some optimality conditions for interval optimizations using 

subdifferentials. These conditions gave for only order relation ≼ . After that, Karaman 

(2021) defined the other subgradients and subdifferentials for interval functions and 

obtained some optimality criteria for interval optimization problems using order 

relations  ≼  and  ≼ . Also, Ghosh vd. (2022) defined a generalization of subdifferentials 

defined given by Karaman (2020) and obtained some optimality conditions for interval 

optimization problems. These optimality conditions examined in the first part using 

examples. 

 

4.1. 𝒔-SUBDIFFERENTIAL AND SOME OPTIMALITY CRITERIA FOR 

INTERVAL OPTIMIZATION USING 𝒔-SUBDIFFERENTIALS 

 

Definition 4.1. [8] Let 𝑋 be nonempty set and 𝐹: 𝑋 → 𝐼(ℝ) be an interval function. 

Then, linear operator 𝐿: ℝ → ℝ is called a 𝑠-subgradient of 𝐹 at 𝑥 ∈ 𝑋 if 

𝐹(𝑥) − 𝐹(𝑥 ) ≺ 𝐿(𝑥 − 𝑥 ) 

for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. The set of all 𝑠-subgradients of 𝐹 at 𝑥  is called the 𝑠-subdifferential 

of 𝐹 at 𝑥 , and denoted by 𝜕 𝐹(𝑥 ). 
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Then,  

𝜕 𝐹(𝑥 ) = {𝐿: ℝ → ℝ ∶  𝐹(𝑥) − 𝐹(𝑥 ) ≺ 𝐿(𝑥 − 𝑥 ), ∀𝑥 ∈ 𝑋 ∕ {𝑥 }}. 

 

Definition 4.2. [8] Let 𝐿: ℝ → ℝ be a linear operator and 𝐹: 𝑋 → 𝐼(ℝ) be an interval 

function. 𝐿 is called a weak 𝑠-subgradient of 𝐹 at 𝑥 ∈ 𝑋 if 

𝐹(𝑥) − 𝐹(𝑥 ) ≼ 𝐿(𝑥 − 𝑥 ) 

for all 𝑥 ∈ 𝑋. The set of all 𝑠-weak subgradients of 𝐹 at 𝑥  is called the weak 𝑠-

subdifferential of 𝐹 at 𝑥 , and denoted by 𝜕 𝐹(𝑥 ). 

Then, 

𝜕 𝐹(𝑥 ) = {𝐿: ℝ → ℝ ∶  𝐹(𝑥) − 𝐹(𝑥 ) ≼ 𝐿(𝑥 − 𝑥 ), ∀𝑥 ∈ 𝑋}. 

 

Let 𝐹: 𝑋 → 𝐼(ℝ) be an interval function. If the 𝑠-subdifferential of 𝐹 at 𝑥 ∈ 𝑋 is 

nonempty set, then 𝐹 is called 𝑠-subdifferentiable at 𝑥 . Similarly, if the weak 𝑠-

subdifferential of 𝐹 at 𝑥 ∈ 𝑋 is nonempty set, then 𝐹 is called weak 𝑠-subdifferentiable 

at 𝑥 . 

𝑠-subdifferential and weak 𝑠-subdifferential have the following properties [8]. 

Let 𝐹, 𝐺: 𝑋 → 𝐼(ℝ) be interval functions and  𝑥 ∈ 𝑋. Then, 

 𝜕 𝐹(𝑥 ) ⊆ 𝜕 𝐹(𝑥 ) 

 𝜕 𝐹(𝑥 ) and 𝜕 𝐹(𝑥 ) are convex 

 𝜕 (𝑘𝐹)(𝑥 ) = 𝑘𝜕 𝐹(𝑥 ) for all 𝑘 > 0 

 𝜕 𝐹(𝑥 ) is closed 

 𝜕 𝐺(𝑥 ) + 𝜕 𝐹(𝑥 ) ⊆ 𝜕 (𝐹 + 𝐺)(𝑥 ) 

 If there exists a constant 𝐾 such that 𝐾|𝑥 − 𝑥 | ⊊ 𝐹(𝑥) − 𝐹(𝑥 ) for all 𝑥 ∈ 𝑋 ∖

{𝑥 }, then 𝜕 𝐹(𝑥 ) ≠ ∅ 

 

Let’s take into account the following interval optimization wrt ≼ : 

(𝐼𝑉𝑃)
min(𝑚𝑎𝑥) 𝐹(𝑥)

𝑥 ∈ 𝑋
 

 

Theorem 4.1. [8] Let 𝑥 ∈ 𝑋 and (𝐼𝑉𝑃) be given wrt order relation ≼ . 

(i) If 0 ∈ 𝜕 𝐹(𝑥 ), then 𝑥   is a maximal solution of (𝐼𝑉𝑃) 

(ii)  If 0 ∈ 𝜕 𝐹(𝑥 ), then 𝑥   is a weak maximal solution of (𝐼𝑉𝑃) 

(iii) If 0 ∈ 𝜕 𝐹(𝑥 ), then 𝑥   is a maximal solution of (𝐼𝑉𝑃) 
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4.2. 𝒎𝒓-SUBDIFFERENTIAL AND SOME PROPERTIES 

 

A new subdifferential and weak subdifferential will be defined using order relation ≼  

to obtain new optimality criteria for interval optimization problem given by order 

relation ≼ . 

 

Definition 4.3. Let and 𝐹: 𝑋 → 𝐼(ℝ) be an interval function. Then, the linear operator 

𝐿: ℝ → ℝ is called a 𝑚𝑟-subgradient of 𝐹 at 𝑥 ∈ 𝑋 if 

 

𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝐿(𝑥 − 𝑥 ) 

 

for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. The set of all 𝑚𝑟-subgradients of 𝐹 at 𝑥  is called the 𝑚𝑟-

subdifferential of 𝐹 at 𝑥 , and denoted by 𝜕 𝐹(𝑥 ). 

Then, 

𝜕 𝐹(𝑥 ) = 𝐿: ℝ → ℝ ∶  𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝐿(𝑥 − 𝑥 ), ∀𝑥 ∈ 𝑋 ∕ {𝑥 } . 

 

 Definition 4.4. Let 𝐹: 𝑋 → 𝐼(ℝ) be an interval function. Then, the linear operator 

𝐿: ℝ → ℝ is called a weak 𝑚𝑟-subgradient of 𝐹 at 𝑥 ∈ 𝑋 if 

 

𝐹(𝑥)− 𝐹(𝑥 ) ≼ 𝐿(𝑥 − 𝑥 ) 

 

for all 𝑥 ∈ 𝑋. The set of all weak 𝑚𝑟-subgradients of 𝐹 at 𝑥  is called the weak 𝑚𝑟-

subdifferential of 𝐹 at 𝑥 , and denoted by 𝜕 𝐹(𝑥 ). 

Then, 

𝜕 𝐹(𝑥 ) = 𝐿: ℝ → ℝ ∶  𝐹(𝑥)− 𝐹(𝑥 ) ≼ 𝐿(𝑥 − 𝑥 ), ∀𝑥 ∈ 𝑋 . 

 

Let 𝐹: 𝑋 → 𝐼(ℝ) be an interval function and 𝑥 ∈ 𝑋. If the 𝑚𝑟-subdifferential of 𝐹 at 

𝑥  is nonempty set, that is 𝜕 𝐹(𝑥 ) ≠ ∅,  then 𝐹 is called 𝑚𝑟-subdifferentiable at 𝑥 . 

Similarly, If the weak 𝑚𝑟-subdifferential of 𝐹 at 𝑥  is nonempty set, that is 𝜕 𝐹(𝑥 ) ≠

∅, then 𝐹 is called weak 𝑚𝑟-subdifferentiable at 𝑥 . 
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𝑚𝑟-subdifferential and weak 𝑚𝑟-subdifferential have the following properties. 

 

Proposition 4.1. Let 𝐹: 𝑋 → 𝐼(ℝ) be 𝑚𝑟-subdifferentiable interval function at 𝑥 ∈ 𝑋. 

Then, 𝜕 𝐹(𝑥 ) ⊆ 𝜕 𝐹(𝑥 ). 

 

Proof: Assume that 𝐿 is a 𝑚𝑟-subgradient of 𝐹 at 𝑥 , that is 𝐿 ∈ 𝜕 𝐹(𝑥 ). Then, we 

have  

𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝐿(𝑥 − 𝑥 ) 

 

satisfies for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. Because ≺  implies ≼ , we get 

𝐹(𝑥)− 𝐹(𝑥 ) ≼ 𝐿(𝑥 − 𝑥 ) for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. Since 𝐹(𝑥)− 𝐹(𝑥 ) = 0, we obtain 

𝐹(𝑥)− 𝐹(𝑥 ) ≼ 𝐿(𝑥 − 𝑥 ) 

for all 𝑥 ∈ 𝑋. Then, 𝐿 is a weak 𝑚𝑟-subgradient of 𝐹 at 𝑥 , that is 𝐿 ∈ 𝜕 𝐹(𝑥 ). 

 

Proposition 4.2. Let 𝑋 be nonempty set and 𝐹: 𝑋 → 𝐼(ℝ) be an interval function.   

Then, 𝜕 𝐹(𝑥 ) and 𝜕 𝐹(𝑥 ) are convex sets. 

 

Proof: Let 𝐿 , 𝐿 ∈ 𝜕 𝐹(𝑥 ) and 𝜆 ∈ (0,1). Since 𝐿 , 𝐿 ∈ 𝜕 𝐹(𝑥 ), we have  

 

𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝐿 (𝑥 − 𝑥 ) 

and  

𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝐿 (𝑥 − 𝑥 ) 

for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. From Proposition 2.2, we have  

𝜆 𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝜆𝐿 (𝑥 − 𝑥 ) 

and  

(1 − 𝜆) 𝐹(𝑥)− 𝐹(𝑥 ) ≺ (1 − 𝜆)𝐿 (𝑥 − 𝑥 ) 

for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. By Proposition 2.3, we get 

𝜆 𝐹(𝑥)− 𝐹(𝑥 ) +(1 − 𝜆) 𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝜆𝐿 (𝑥 − 𝑥 ) + (1 − 𝜆)𝐿 (𝑥 − 𝑥 ) 

for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. 

Then,  

𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝜆𝐿 (𝑥 − 𝑥 ) + (1 − 𝜆)𝐿 (𝑥 − 𝑥 ), 
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for all 𝑥 ∈ 𝑋 ∕ {𝑥 } from Proposition 2.1. Then, 𝐹(𝑥)− 𝐹(𝑥 ) ≺ = (𝜆𝐿 +

(1 − 𝜆)𝐿 (𝑥 − 𝑥 ) for all 𝑥 ∈ 𝑋 ∕ {𝑥 }, implies that (𝜆𝐿 + (1 − 𝜆)𝐿 ∈ 𝜕 𝐹(𝑥 ). 

Therefore, 𝜕 𝐹(𝑥 ) is a convex set. Similarly, the convexity of 𝜕 𝐹(𝑥 ) can be 

proved. 

 

Proposition 4.3. Let 𝐹: 𝑋 → 𝐼(ℝ) be an 𝑚𝑟-subdifferentiable interval function at 𝑥 ∈

𝑋 and 𝑘 be positive number. Then, 𝜕 (𝑘𝐹)(𝑥 ) = 𝑘𝜕 𝐹(𝑥 ). 

 

Proof: Let 𝑘 > 0. Then, 

𝜕 (𝑘𝐹)(𝑥 ) = 𝐿: ℝ → ℝ ∶  𝑘𝐹(𝑥)− 𝑘𝐹(𝑥 ) ≺ 𝐿(𝑥 − 𝑥 ), ∀𝑥 ∈ 𝑋 ∕ {𝑥 }            

 = 𝐿: ℝ → ℝ ∶  𝑘 𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝐿(𝑥 − 𝑥 ), ∀𝑥 ∈ 𝑋 ∕ {𝑥 }         

  
 

= 𝐿: ℝ → ℝ ∶  𝐹(𝑥)− 𝐹(𝑥 ) ≺
𝐿

𝑘
(𝑥 − 𝑥 ), ∀𝑥 ∈ 𝑋 ∕ {𝑥 }

= 𝑘𝐿: ℝ → ℝ ∶  𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝐿(𝑥 − 𝑥 ), ∀𝑥 ∈ 𝑋 ∕ {𝑥 }

= 𝑘 𝐿: ℝ → ℝ ∶  𝐹(𝑥)− 𝐹(𝑥 ) ≺ 𝐿(𝑥 − 𝑥 ), ∀𝑥 ∈ 𝑋 ∕ {𝑥 }

= 𝑘𝜕 𝐹(𝑥 )                                                                                            

              

 

 

4.3. SOME OPTIMALITY CRITERIA FOR INTERVAL OPTIMIZATION 

USING 𝒎𝒓-SUBDIFFERENTIAL 

 

Let’s again take into account the following interval optimization problem: 

 

(𝐼𝑉𝑃)
max 𝐹(𝑥)

𝑥 ∈ 𝑋
 

where 𝐹: 𝑋 → 𝐼(ℝ) is interval function. We will obtain some optimality criteria for 

(𝐼𝑉𝑃) wrt ≼ . 

 

Theorem 4.2. Let 𝑥 ∈ 𝑋 and (𝐼𝑉𝑃) be given wrt order relation ≼ . If 𝑥  is a strongly 

solution of (𝐼𝑉𝑃), then 0 ∈ 𝜕 𝐹(𝑥 ). 

 

Proof: Let 𝑥  be a strongly solution of (𝐼𝑉𝑃). Then, we 𝐹(𝑥) ≼ 𝐹(𝑥 ) for all 𝑥 ∈ 𝑋. 

From Proposition 2.6, we get  

𝐹(𝑥)− 𝐹(𝑥 ) ≼ 0 

for all 𝑥 ∈ 𝑋. Therefore, 0 ∈ 𝜕 𝐹(𝑥 ). 
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Example 4.2. Let interval function 𝐹: [0,2𝜋] → 𝐼(ℝ) be defined as  

𝐹(𝑥) =
[sin(𝑥) , cos(𝑥)] ; 0 ≤ 𝑥 ≤

𝜋

4
 𝑜𝑟 

5𝜋

4
< 𝑥 ≤ 2𝜋

[cos(𝑥) , sin(𝑥)] ;
𝜋

4
< 𝑥 ≤

5𝜋

4
                              

 

Consider the following interval optimization 

max 𝐹(𝑥)

𝑥 ∈ [0,2𝜋].
 

 

We know that  is a strongly maximal solution of the problem. We should find that 0 ∈

𝜕 𝐹  from Theorem 4.2. Let’s calculate the weak subdifferential of 𝐹 at .  

 

𝜕 𝐹
𝜋

4
= 𝐿: ℝ → ℝ ∶ 𝐹(𝑥)− 𝐹

𝜋

4
≼ 𝐿 𝑥 −

𝜋

4
, 𝑥 ∈ [0,2𝜋]  

= 𝐿: ℝ → ℝ ∶ 𝐹(𝑥)− 𝐹
𝜋

4
≼ 𝐿 𝑥 −

𝜋

4
, 𝑥 ∈ 0,

𝜋

4
∪

5𝜋

4
, 2𝜋  

∩ 𝐿: ℝ → ℝ ∶ 𝐹(𝑥)− 𝐹
𝜋

4
≼ 𝐿 𝑥 −

𝜋

4
, 𝑥 ∈

𝜋

4
,
5𝜋

4
 

= 𝑡 ∈ ℝ ∶ [sin 𝑥, cos 𝑥]−
√2

2
,
√2

2
≼ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈ 0,

𝜋

4
∪

5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶  [cos 𝑥, sin 𝑥]−
√2

2
,
√2

2
≼ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈

𝜋

4
,
5𝜋

4
 

 

= 𝑡 ∈ ℝ ∶ sin 𝑥 −
√2

2
, cos 𝑥 −

√2

2
≼ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈ 0,

𝜋

4
∪

5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶ cos 𝑥 −
√2

2
, sin 𝑥 −

√2

2
≼ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈

𝜋

4
,
5𝜋

4
 

= 𝑡 ∈ ℝ ∶ sin 𝑥 −
√2

2
, cos 𝑥 −

√2

2
≼ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈ 0,

𝜋

4
 

∩ 𝑡 ∈ ℝ ∶ sin 𝑥 −
√2

2
, cos 𝑥 −

√2

2
≼ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈

5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶ cos 𝑥 −
√2

2
, sin 𝑥 −

√2

2
≼ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈

𝜋

4
,
5𝜋

4
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= 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2
≤ 𝑡 𝑥 −

𝜋

4
 𝑎𝑛𝑑 0 ≤

cos 𝑥 − sin 𝑥

2
, 𝑥 ∈ 0,

𝜋

4
 

∩ 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2
≤ 𝑡 𝑥 −

𝜋

4
 𝑎𝑛𝑑 0 ≤

cos 𝑥 − sin 𝑥

2
, 𝑥 ∈

5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2
≤ 𝑡 𝑥 −

𝜋

4
 𝑎𝑛𝑑 0 ≤

sin 𝑥 − cos 𝑥

2
, 𝑥 ∈

𝜋

4
,
5𝜋

4
 

 

= 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2 𝑥 −
𝜋
4

≥ 𝑡 , 𝑥 ∈ 0,
𝜋

4
 

∩ 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2 𝑥 −
𝜋
4

≤ 𝑡, 𝑥 ∈
5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2 𝑥 −
𝜋
4

≤ 𝑡, 𝑥 ∈
𝜋

4
,
5𝜋

4
 

 

= {𝑡 ∈ ℝ ∶ 𝑡 ≤ 0} ∩ 𝑡 ∈ ℝ ∶
2 − 2√2

7𝜋
≤ 𝑡 ∩ {𝑡 ∈ ℝ ∶ 0 ≤ 𝑡} = {0}. 

 

We can get the following result because all strictly maximal solution of (𝐼𝑉𝑃) is a 

strongly maximal solution of (𝐼𝑉𝑃). 

 

Conclusion 4.1. Let 𝑥 ∈ 𝑋 and (𝐼𝑉𝑃) be given wrt order relation ≼ . If 𝑥  is a strictly 

maximal solution of (𝐼𝑉𝑃), then 0 ∈ 𝜕 𝐹(𝑥 ). 

 

Theorem 4.3. Let 𝑥 ∈ 𝑋 and (𝐼𝑉𝑃) be given wrt order relation ≼ . If 𝑥  is a strictly 

maximal solution of (𝐼𝑉𝑃), then 0 ∈ 𝜕 𝐹(𝑥 ). 

 

Proof: Let 𝑥  be a strictly maximal solution of (𝐼𝑉𝑃). Then, we have 𝐹(𝑥) ≺ 𝐹(𝑥 ) 

for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. From Proposition 2.6, we get 

𝐹(𝑥)− 𝐹(𝑥 ) ≺ 0 

for all 𝑥 ∈ 𝑋 ∕ {𝑥 }. Therefore, 0 ∈ 𝜕 𝐹(𝑥 ). 
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Example 4.3. Let interval function 𝐹: [0,2𝜋] → 𝐼(ℝ) be defined as  

𝐹(𝑥) =
[sin(𝑥) , cos(𝑥)] ; 0 ≤ 𝑥 ≤

𝜋

4
 𝑜𝑟 

5𝜋

4
< 𝑥 ≤ 2𝜋

[cos(𝑥) , sin(𝑥)] ;
𝜋

4
< 𝑥 ≤

5𝜋

4
                              

 

Consider the following interval optimization 

max 𝐹(𝑥)

𝑥 ∈ [0,2𝜋].
 

 

We know that  is a strictly maximal solution of the problem. We must find that 0 ∈

𝜕 𝐹  from Theorem 4.3. Let’s calculate the subdifferential of 𝐹 at .  

 

𝜕 𝐹
𝜋

4
= 𝐿: ℝ → ℝ ∶ 𝐹(𝑥)− 𝐹

𝜋

4
≺ 𝐿 𝑥 −

𝜋

4
, 𝑥 ∈ [0,2𝜋] ∕

𝜋

4
 

= 𝐿: ℝ → ℝ ∶ 𝐹(𝑥)− 𝐹
𝜋

4
≺ 𝐿 𝑥 −

𝜋

4
, 𝑥 ∈ 0,

𝜋

4
∪

5𝜋

4
, 2𝜋  

∩ 𝐿: ℝ → ℝ ∶ 𝐹(𝑥)− 𝐹
𝜋

4
≺ 𝐿 𝑥 −

𝜋

4
, 𝑥 ∈

𝜋

4
,
5𝜋

4
 

= 𝑡 ∈ ℝ ∶ [sin 𝑥, cos 𝑥]−
√2

2
,
√2

2
≺ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈ 0,

𝜋

4
∪

5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶  [cos 𝑥, sin 𝑥]−
√2

2
,
√2

2
≺ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈

𝜋

4
,
5𝜋

4
 

 

= 𝑡 ∈ ℝ ∶ sin 𝑥 −
√2

2
, cos 𝑥 −

√2

2
≺ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈ 0,

𝜋

4
∪

5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶ cos 𝑥 −
√2

2
, sin 𝑥 −

√2

2
≺ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈

𝜋

4
,
5𝜋

4
 

= 𝑡 ∈ ℝ ∶ sin 𝑥 −
√2

2
, cos 𝑥 −

√2

2
≺ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈ 0,

𝜋

4
 

∩ 𝑡 ∈ ℝ ∶ sin 𝑥 −
√2

2
, cos 𝑥 −

√2

2
≺ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈

5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶ cos 𝑥 −
√2

2
, sin 𝑥 −

√2

2
≺ 𝑡 𝑥 −

𝜋

4
, 𝑥 ∈

𝜋

4
,
5𝜋

4
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= 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2
≤ 𝑡 𝑥 −

𝜋

4
 𝑎𝑛𝑑 0 ≤

cos 𝑥 − sin 𝑥

2
, 𝑥 ∈ 0,

𝜋

4
 

∩ 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2
≤ 𝑡 𝑥 −

𝜋

4
 𝑎𝑛𝑑 0 ≤

cos 𝑥 − sin 𝑥

2
, 𝑥 ∈

5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2
≤ 𝑡 𝑥 −

𝜋

4
 𝑎𝑛𝑑 0 ≤

sin 𝑥 − cos 𝑥

2
, 𝑥 ∈

𝜋

4
,
5𝜋

4
 

 

= 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2 𝑥 −
𝜋
4

≥ 𝑡 , 𝑥 ∈ 0,
𝜋

4
 

∩ 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2 𝑥 −
𝜋
4

≤ 𝑡, 𝑥 ∈
5𝜋

4
, 2𝜋  

∩ 𝑡 ∈ ℝ ∶
sin 𝑥 + cos 𝑥 − √2

2 𝑥 −
𝜋
4

≤ 𝑡, 𝑥 ∈
𝜋

4
,
5𝜋

4
 

 

= {𝑡 ∈ ℝ ∶ 𝑡 ≤ 0} ∩ 𝑡 ∈ ℝ ∶
2 − 2√2

7𝜋
≤ 𝑡 ∩ {𝑡 ∈ ℝ ∶ 0 ≤ 𝑡} = {0}. 

 

Theorem 4.4. Let 𝑥 ∈ 𝑋 and (𝐼𝑉𝑃) be given wrt order relation ≼ . Then, if 𝑥   is a 

minimal solution of (𝐼𝑉𝑃), then 0 ∉ 𝜕 𝐹(𝑥 ). 

 

Proof: Assume that 𝑥   is a minimal solution of (𝐼𝑉𝑃). Then, there is no an 𝑥 ∈ 𝑋 such 

that 𝐹(𝑥) ≼ 𝐹(𝑥 ) and 𝐹(𝑥) ≠ 𝐹(𝑥 ). From Proposition 2.6, we know that there is 

no an 𝑥 ∈ 𝑋 such that 𝐹(𝑥)− 𝐹(𝑥 ) ≼ 0 and 𝐹(𝑥) ≠ 𝐹(𝑥 ). Then, 0 ∉ 𝜕 𝐹(𝑥 ). 

 

Theorem 4.5. Let 𝑥 ∈ 𝑋 and (𝐼𝑉𝑃) be given wrt order relation ≼ . Then, if 𝑥   is a 

weak minimal solution of (𝐼𝑉𝑃), then 0 ∉ 𝜕 𝐹(𝑥 ). 

 

Proof: Assume that 𝑥   is a weak minimal solution of (𝐼𝑉𝑃). Then, there is no an 𝑥 ∈ 𝑋 

such that 𝐹(𝑥) ≺ 𝐹(𝑥 ). From Proposition 2.6, we know that there is no an 𝑥 ∈ 𝑋 

such that 𝐹(𝑥)− 𝐹(𝑥 ) ≺ 0. Then, 0 ∉ 𝜕 𝐹(𝑥 ). 
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PART 5 

 

CONCLUSION 

 

 

In this thesis, interval numbers, interval functions, interval optimization and solution of 

them are considered. The importance of intervals and some applications in literature are 

given in the first part. The construction of interval-valued numbers and interval 

functions are given in the second part. Some notations and definitions on intervals and 

interval functions are explained using examples. In the third part, we interval 

optimization problems and solutions are presented. Two interval optimizations was 

solved using different order relations. We show that the solutions of interval 

optimization can change depends to order relations. Some optimality conitions for 

interval optimization are recalled and obtained in the last part. Optimality conditions are 

important in the optimization theory because they give some conditions that solutions 

must be satisfied them. We defined a subdifferential and examined some properties of 

them. Later, we obtained some optimality conditions for interval optimization wrt order 

relation ≼  using this subdifferential. Obtained theoretical results were proved and 

them examined on examples. 
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