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Diabetic retinopathy is one of the eye diseases that is a complication of diabetics and 

can affect vision and even lead to blindness. This disease affects the blood vessels in 

the retina, which is one of the main marks that help to detect this disease. Diabetic 

retinopathy detection is a challenging process requiring specialists and too much time 

to process each image. However, computer science algorithms, including machine 

learning and deep learning, can help physicians and specialists detect diabetic 

retinopathy effectively. In this study, a novel diabetic retinopathy approach is 

introduced. The approach is based on a well-known Kaggle image dataset containing 

images of four stages (mild, severe, moderate, and proliferate) besides the normal 

condition.The images are preprocessed (resizing, normalization) and over-sampled 

(balanced) to get all categories with similar percentages. The balancing is essential so 

the trained model will treat all categories with similar weights. After that, the data 

augmentation process is applied to increase the number of training images and supply 
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the training process with different conditions of the same images. The dataset is split 

into training and testing subsets. The training process includes two different scenarios; 

the first is based on the unbalanced version of the dataset, while the second is done 

using the balanced dataset. In the first and second scenarios, many deep learning  

models are used as base models for the entire deep model. The classification part of 

the entire deep models consists of flatten, dropout, and dense layers. The outputs layer 

uses the softmax function, and the training process is applied using the categorical 

cross-entropy loss function. All scenarios use the Adam optimizer and 50 epochs with 

an early stop condition. The DL models used include VGG-16, VGG-19, Inception, 

Xception, EfficientNet, and NasNetLarge. The main contribution of the current study 

is using the ensemble learning. The study suggests building an ensemble of the trained 

models in order to minimize the categories classification errors and improves the 

performance. Besides those scenarios and for comparative aims, another training 

scenario is proposed. The stages of diabetic retinopathy are grouped into one category 

named DR, so the categories became DR and NO_DR. As a result, an ensemble of the 

VGG, EfficientNet, and Xception is built. All models are evaluated using the 

performance evaluation metrics (accuracy, precision, recall, and F1-score). Results 

indicate that the ensemble model achieves the best performance against all individual 

models with 92% accuracy for the balanced multi-class scenario. The accuracy is 

enhanced to 99.46% in the case of using the binary class classification scenario (DR 

and NO_DR). A detailed comparison between the current study and related ones is 

performed. The comparison proved that the current study either outperformed the 

previous studies' performance or used more challenging options.  

 

Key Words : Diabetic Retinopathy, Blood Vessels, Machine Learning, Deep 

Learning, Transfer Learning and Image Classification. 

Science Code :  92432 
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Diyabetik retinopati, şeker hastalarının komplikasyonu olan ve görmeyi etkileyip 

körlüğe yol açabilen bir göz hastalığıdır. Bu hastalık, bu hastalığın tespit edilmesine 

yardımcı olan ana işaretlerden biri olan retinadaki kan damarlarını etkiler. Diyabetik 

retinopati tespiti, her bir görüntü üzerinde çalışmak için bu işin uzmanlarına, çok fazla 

zaman ve uzman gerektiren zorlu bir süreçtir. Ancak, makine öğrenimi ve derin 

öğrenme gibi bilgisayar bilimi algoritmaları, doktorların ve uzmanların diyabetik 

retinopatiyi etkili bir şekilde tespit etmelerine yardımcı olabilir. Bu çalışmada, yeni bir 

diyabetik retinopati yaklaşımı tanıtılmaktadır. Bu yaklaşım, normal durumun yanı sıra 

dört evreyi (hafif, şiddetli, orta ve proliferatif) görüntüleri içeren bilinen bir Kaggle 

görüntü veri kümesine dayanmaktadır. Görüntüler, ön işleme (yeniden boyutlandırma, 

normalleştirme) ve örnekleme (dengeleme) ile tüm kategorilerin benzer 
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yüzdeleri ele alınır. Dengeleme, eğitimli modelin tüm kategorilerini benzer ağırlıklarla 

ele alması için önemlidir. Daha sonra eğitim görüntülerinin sayısını artırmak ve aynı 

görüntülerin farklı durumlarıyla eğitim sürecini sağlamak için veri artırma işlemi 

uygulanır. Veri kümesi eğitim ve test alt kümelerine ayrılmıştır.Eğitim süreci iki farklı 

senaryoyu içermektedir; ilki veri setinin dengesiz versiyonuna dayanırken, ikincisi 

dengeli veri seti kullanılarak gerçekleştirilir. İlk ve ikinci senaryolarda, birçok derin 

öğrenme modeli  tüm derin model için temel modeller olarak kullanılır. Tüm derin 

modellerin sınıflandırma kısmı, düzleştirme, bırakma ve yoğun katmanlardan oluşur. 

Çıktı katmanı, softmax işlevini kullanmaktadır ve eğitim süreci, kategorik çapraz 

entropi kayıp işlevini kullanarak uygulanır. Tüm senaryolar, Adam optimizasyon 

algoritmasını ve erken durdurma koşulu ile 50 dönem kullanır. Kullanılan DL 

modelleri arasında VGG-16, VGG-19, Inception, Xception, EfficientNet ve 

NasNetLarge bulunmaktadır. Mevcut çalışmanın ana katkısı, topluluk öğrenmenin 

kullanılmasıdır. Bu Çalışma, kategorilerin sınıflandırma hatalarını en aza indirgemek 

ve performansı korumak için eğitilmiş modellerin topluluğunu oluşturmayı 

önermektedir. Bu senaryoların yanı sıra ve karşılaştırmalı amaçlar için, başka bir 

eğitim senaryosu önerilmiştir. Diyabetik retinopatinin aşamaları, DR olarak 

adlandırılan tek bir kategoriye gruplandırılmıştır. böylece kategoriler DR ve NO_DR 

olarak değişmiştir. Sonuç olarak, VGG, EfficientNet ve Xception'ın bir topluluğu 

oluşturulmuştur. Tüm modeller, performans değerlendirme metrikleri (doğruluk, 

hassasiyet, hatırlama ve F1 skoru) kullanılarak değerlendirilmiştir. Sonuçlar, toplu 

modelin, dengelenmiş çok sınıflı senaryo için %92 doğruluk ile tüm bireysel modellere 

karşı en iyi performansı gösterdiğini göstermektedir. Doğruluk, ikili sınıf 

sınıflandırma senaryosu (DR ve NO_DR) kullanıldığında %99.46'ya yükselmiştir. 

Mevcut çalışma ile ilgili karşılaştırmalar arasında ayrıntılı bir karşılaştırma 

yapılmıştır. Karşılaştırma, mevcut çalışmanın ya bir önceki çalışmaların performansını 

aştığını ya da daha zorlu seçenekler kullandığını kanıtlamıştır. 

 

Anahtar Kelimeler : Anahtar Kelimeler: Diyabetik Retinopati, Kan Damarları, 

Makine Öğrenmesi, Derin Öğrenme, Transfer Öğrenme ve 

Görüntü Sınıflandırma. 
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PART 1 

 

INTRODUCTION 

 

1.1. OVERVIEW 

 

Diabetic retinopathy, a widespread condition impacting millions globally, is a 

complication stemming from diabetes and can impair vision. Medical eye 

examinations enable doctors to identify this disease. However, numerous images must 

be analyzed to reach a conclusion. Fortunately, computer-assisted decision support 

systems can assist physicians in making accurate determinations with minimal effort 

and time. This study presents a review of existing diabetic retinopathy computer-

assisted studies. Diabetes impacts not only the retina but also various other tissues, 

such as the heart and kidneys [1] [2] [3]. The International Diabetes Federation [4] 

reports that over 537 million individuals worldwide are affected by diabetes, with 90 

million of these patients experiencing diabetic retinopathy. Diabetic retinopathy (DR), 

a diabetes-related complication, damages the retina through blood vessel swelling and 

fluid leakage within the eye. This complication impairs vision and can lead to 

blindness, with approximately 2.6% of blindness cases resulting from retinopathy [5] 

[6]. 

 

Diabetic retinopathy is a condition where diabetes adversely affects the retina, leading 

to vision issues and potentially blindness [7]. Early detection of this disease helps 

patients regain their retina's normal function and prevents blindness [8]. Traditional 

manual methods for identifying diabetic retinopathy, however, are time-consuming 

due to the vast amount of data involved and often result in misclassifications [9]. In 

contrast, computer-assisted decision support tools can accurately detect diabetic 

retinopathy [10]. Around 75% of diabetic retinopathy cases are found in 

underprivileged countries [11] that lack adequate equipment and detection resources. 

Consequently, decision-support systems for detecting diabetic retinopathy play a 

crucial role in early diagnosis. The presence of lesions in retinal images is used to 
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identify diabetic retinopathy, with lesions including hemorrhages (HM), micro-

aneurysms (MA), and soft and hard exudates (EX) [12]. 

 

Micro-aneurysm lesions, the earliest indication of diabetic retinopathy, appear as red 

circular points resulting from weakened blood vessel walls. These points have a size 

of less than 125 μm and sharp borders. Arrigo et al. [13] identify six primary types of 

micro-aneurysms: saccular, focal bulge, fusiform, mixed, pedunculated, and irregular, 

as depicted in Figure 1.1 [14]. 

 

 

Focal Bulge 

 

Saccular 

 

Fusiform 

 

Mixed 

 

Pedunculated Irregular 

 

Figure 1.1. Different types of MA diabetic retinopathy. 

 

The second form of diabetic retinopathy, Hemorrhages (HM), manifests as large spots 

on the retinal tissue, exceeding 125 μm in size and exhibiting irregular edges, as 

depicted in Figure 1.2 [15]. 

 



 

3 

  

Figure 1.2. Diabetic retinopathy with Hemorrhages (HM) 

 

Hard exudates present as bright-yellow spots with distinct borders on the retinal tissue, 

resulting from plasma leakage. This diabetic retinopathy variety typically occurs in the 

retina's outer layers. On the other hand, soft exudates are white spots that arise from 

nerve fiber swelling. This kind of diabetic retinopathy usually has an oval shape. 

Figure 1.3 displays Hard and Soft exudates in diabetic retinopathy [16] [17]. 

 

 

 

 

Figure 1.3. Diabetic retinopathy with Soft and Hard exudates 

The four primary categories of diabetic retinopathy are demonstrated in Figure 1.4, 

using an example from the IDRiD dataset [18]. 
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Figure 1.4. Principal classifications of diabetic retinopathy. 

 

1.2. PROBLEM STATEMENT 

 

Detecting diabetic retinopathy is a complex and time-consuming process that requires 

the expertise of specialists. Although machine learning and deep learning algorithms 

have demonstrated their effectiveness in detecting diabetic retinopathy, This issue is 

an important problem in the medical domain since processing a large number of retinal 

images to make an accurate decision requires time and effort. The current state-of-the-

art needs to improve its accuracy and efficiency. Existing approaches deal with 

diabetic retinopathy as one level of disease, which is not applicable in the medical 

domain since this disease contains many levels. Therefore, current research problem 

is to develop a more accurate and efficient system for detecting diabetic retinopathy 

that can handle the multi-class classification problem and improve the performance of 

existing deep learning models. 

 

In this study, a novel system for detecting diabetic retinopathy that addresses the 

limitations of existing approaches is proposed. Our approach uses transfer learning 

techniques to improve the performance of deep learning models. Moreover, it explores 

the potential benefits of combining multiple deep learning models into an ensemble 

system to achieve higher accuracy and robustness in the classification task.  
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The main contribution of our study is the use of ensemble learning, where we build an 

ensemble of the trained models to minimize the categories classification errors and 

improve the performance. 

 

1.3. GOAL AND OBJECTIVES 

 

The main goal of the current study is to create a diabetic retinopathy detection system 

based on retinal images and deep learning. Thus, the research objectives are: 

 

• To explore the issue of detecting diabetic retinopathy, including identifying the 

best retinal images and deep learning methods to be used and selecting the most 

suitable one. 

• To enhance diabetic retinopathy detection using the most effective deep models 

in accuracy and time. 

• To improve the performance of retinopathy detection by using the ensemble 

transfer learning of the best deep-trained models. 

 

1.4. MOTIVATION 

 

Deep learning systems have great potential for detecting and diagnosing DR from 

retinal images. Here are five important reasons why DR-based deep learning systems 

are crucial: 

 

• Early detection: Deep learning systems can detect DR before symptoms 

become apparent. This allows for timely intervention and treatment, which can 

help prevent blindness and other serious complications. 

• Accurate diagnosis: Deep learning systems can provide a more accurate 

diagnosis of DR than human experts. This is because they can analyze large 

amounts of data and identify subtle changes in the retinal images that may be 

missed by the human eye. 

• Reduced workload for healthcare professionals: By automating the detection 

and diagnosis of DR, deep learning systems can reduce the workload of 

healthcare professionals, allowing them to focus on other essential tasks.  
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• Cost-effective: Deep learning systems can be cost-effective compared to 

traditional methods of DR screening. This is particularly important in 

developing countries where resources are limited. 

• Improved patient outcomes: By detecting and treating DR early, deep learning 

systems can improve patient outcomes and quality of life. This is particularly 

important for people with diabetes at high risk of developing DR. 

 

1.5. CONTRIBUTION 

 

The contribution of the current state of the art in the field of diabetic retinopathy 

diagnosis comes from developing and evaluating an ensemble transfer deep learning 

approach on a multi-class dataset. Specifically, we demonstrate the effectiveness of 

using an ensemble of pre-trained deep learning models, combined with transfer 

learning techniques, to achieve high accuracy in classifying retinal images into 

multiple stages of diabetic retinopathy. Our findings highlight the potential of 

ensemble transfer deep learning as a powerful tool for improving the accuracy and 

efficiency of diabetic retinopathy diagnosis, and it can be used to develop more 

effective screening and treatment strategies for this debilitating condition. 

 

1.6. ORGANIZATION OF THESIS 

 

The rest of the thesis will be organized as follows:  

 

Chapter two will contain the related work and previous studies comparison. Chapter 

three will introduce the proposed methodologies. Besides that, the used materials, 

including dataset and software will also be listed. The implementation and 

experimental results along with the discussion will be included in chapter four. The 

conclusion and future work will be organized in the final chapter (chapter five). 
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PART 2 

 

RELATED WORK 

 

2.1. INTRODUCTION 

 

In this chapter, the literature review will be introduced. A retailed comparative study 

of the most recent studies in the field of diabetic retinopathy will be introduced. The 

studies will be analyzed and compared in terms of used methodologies, datasets, 

results and limitations.  

 

2.2. ML AND DL-BASED MODELS  

 

Numerous machine learning methodologies have been proposed for the detection of 

diabetic retinopathy. Various ML and DL models have been trained and assessed using 

retinal datasets. However, the primary issue with the ML systems is the limited 

accuracy resulting from the resemblance between diabetic retinopathy ailments and 

the shape of the retina image, which exhibits brightness at the center and darkness at 

the borders. Additionally, the systems are affected by factors such as illumination 

variations, low contrast, small lesions [19], and insignificant parts within the retinal 

images that are not actual lesions. The ML-based diabetic retinopathy system's key 

steps are depicted in Figure 2.1.
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Figure 2.1. ML-based diabetic retinopathy detection system. 

 

While Figure 2.2 shows the general architecture of   DL-based diabetic retinopathy 

systems. 

 

 

Figure 2.2. DL-based diabetic retinopathy detection system. 

 

The main difference between ML and DL models is that DL models can accept image 

as input but the ML models need an extra operation (feature extraction) in order to 
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transform 2D image into 1D feature vector. There are other differences like the data 

augmentation process that allow models to generate new samples of the same dataset 

samples but with different shape (resized, cropped, flipped, enhanced, versions of the 

same sample) allowing network to recognize different shape of the same image. 

 

2.3. RELATED WORK 

 

In this section, the most recent ML and DL diabetic retinopathy systems will be listed 

and concluded in order to make a good literature review about the most recent systems. 

 

2.3.1. ML Related Work 

 

Various ML methods have been employed in developing diabetic retinopathy systems, 

such as support vector machines (SVM) [20] [21] [22], Decision Trees (DT), Naïve 

Bayes (NB), Neural Networks (NN), logistic regression (LR), XGBoost model, K-

nearest neighbor (K-NN), and more. 

 

2.3.1.1. SVM-Based DR Models 

 

Bhargavi et al. [20] designed an SVM-based diabetic retinopathy system. They 

initially segmented retinal images to obtain blood vessels using Bilateral filtering and 

Hessian matrix transform, followed by extracting foreground bright lesions. Statistical 

and geometrical features were obtained from the segmented images (20 features in 

total), and the SVM classifier was trained using these features. The proposed method 

was applied to the DIARETDB1 dataset (89 images) and MESSIDOR (1200 images), 

achieving 96.66% accuracy. They only used one type of DR disease in their study. 

Enrique et al. [21] constructed an SVM-based diabetic retinopathy detection system 

using their dataset of 400 retinal images. They first isolated blood vessels, hard 

exudates, and microaneurysms, then extracted features from the original, red, and 

green components of the segmented images. The SVM classifier was utilized for 

classification, resulting in 92.4% accuracy. The study detected diabetic retinopathy 

without classifying main types and used a small dataset. Chetoui et al. [19] developed 

a diabetic retinopathy detection system utilizing textual features and an SVM model. 

They extracted Local Ternary Pattern (LTP) and Local Energy-based Shape Histogram 
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(LESH) from segmented retinal images, which were used to train an SVM classifier. 

The study found that LESH features were the best, achieving 90.4% accuracy and 0.93 

Area Under Curve (AUC). They used 1200 MESSIDOR dataset images and only 

differentiated between normal and abnormal conditions, without further retinopathy 

categorization. Hardes et al. [22] presented an SVM-based retinal fundus detection 

system. They employed the Gaussian mixture model, K-means algorithm, Principle 

Component Analysis (PCA), Grey-level co-occurrence matrix (GLCM), and SVM, 

achieving 77.3% accuracy on the DIARETDB1 dataset. Their approach did not modify 

the proposed ML models, resulting in low accuracy. 

 

2.3.1.2. Decision Trees  

 

Aziza et al. [23] recommended a decision tree classifier for diabetic retinopathy 

detection, using color fundus DRIVE and Messidor datasets. They first segmented 

retinal images to obtain blood vessels, then extracted geometric features. Hessian 

matrix and active contouring algorithms were used for blood vessel segmentation. 

They classified images into DR or No-DR categories, achieving 93% classification 

accuracy. Yao et al. [24] proposed detecting early-stage diabetic retinopathy using 

decision tree models, including two patient categories totaling 241 patients. The model 

was evaluated using the area under the curve (AUC), sensitivity, and specificity, 

yielding results of 0.62, 66%, and 76%, respectively. Random Forests Casanova et al. 

[25] introduced a Random Forests (RF)-based diabetic retinopathy detection system, 

using 3443 eye-study images. Their approach achieved 90% accuracy without using 

segmentation or feature extraction methods. 

 

Alzami et al. [26] employed fractal analysis and random forests classifier for diabetic 

retinopathy detection and classification, using the MESSIDOR dataset. They 

segmented the green component of retinal images and used morphological 

Skeltonization to obtain vessels. Connected components and closing morphological 

operations were also used for the final fundus image. In the feature extraction step, 

fractal characteristics were utilized. The classification step was performed using the 

RF algorithm, resulting in an accuracy of 80.37%. Their approach differentiated 

between healthy individuals and diabetic retinopathy patients but failed to classify the 

severity of diabetic retinopathy. Zaaboub and Douik [27] proposed a hard exudate 
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diabetic retinopathy detection system using a dataset of color fundus retinal images. 

They removed the optic disk and extracted specific parameters from the binary mask 

of the exudate region. These features were then introduced to the RF classifier, which 

was trained and evaluated, achieving 94.38% accuracy. Naïve Bayes Kang et al. [28] 

suggested a Naïve Bayes classifier in their study, using statistical feature extraction 

such as gray-level co-occurrence matrix, gray-level run-length texture analysis, and 

statistical texture features. These features were used to train the Naïve Bayes classifier, 

which classified fundus images of diabetic retinopathy from the China diabetic dataset 

(568 images) with an accuracy of 93.44%. 

 

Hadistio et al. [29] introduced a diabetic retinopathy detection system using the UCI 

machine learning diabetic retinopathy dataset (1151 data records and 19 attributes). 

Stochastic Gradient Descent (SGD) and Naïve Bayes algorithms were employed to 

classify normal and diabetic retinopathy samples, obtaining an accuracy of 56.74%. 

 

2.3.1.3. Mixed Models and Ensemble Models 

 

In some studies, researchers used multiple ML models and compared their 

performance. 

 

Roychowdhury et al. [30] presented a computer-aided system for detecting diabetic 

retinopathy using ML algorithms, including Gaussian mixture model (GMM), 

AdaBoost, K-NN, and SVM. Their study minimized features using AdaBoost feature 

ranking to only 30 features. They proposed a two-step hierarchical classification 

method, where the first step rejected non-lesion parts of retinal images, and the second 

step classified lesions into four main types: hard exudates, cotton spots, hemorrhages, 

and micro-aneurysms. The experiments were applied to 1200 MESSIDOR dataset 

images, achieving 100% sensitivity, 53.16% specificity, and 0.9 AUC. The main issue 

with their research was the high false positives. 

 

Reddy et al. [31] proposed an ensemble model for diabetic retinopathy detection, 

combining RF, DT, AdaBoost, K-NN, and Logistic Regression (LR). They first 

applied normalization to the dataset and then trained the ensemble model. The best 

model achieved 78% precision, recall, and F1-score, and 77% accuracy. The study 
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claimed the ensemble model increased performance by nearly 80%. Their research 

applied to a textual dataset and achieved low accuracy due to a lack of preprocessing 

operations. The study also employed binary classification (DR or Not DR classes). 

 

Sidker et al. [32] suggested a new ensemble model for diabetic retinopathy based on 

gray-level intensity, texture feature extraction, and decision trees, using the Asia 

Pacific Tele-Ophthalmology Society 2019 dataset. Their proposed approach included 

preprocessing, textual feature extraction, feature selection, and ensemble learner 

training. The results showed 94.2% accuracy and an F-measure of 93.51%.Another 

ensemble learning-based diabetic retinopathy detection system was introduced by 

[33], focusing on microaneurysms eye disease. The ensemble included four classifiers: 

SVM, K-NN, DT, and Naïve Bayes. First, images were pre-processed, and shape and 

intensity features were extracted from the pre-processed images. Experiments were 

applied to the E- ophtha and DIARETDB1 datasets, obtaining AUC scores of 0.928 

and 0.873 for the respective datasets. 

 

In summary, various machine learning approaches have been employed to create 

diabetic retinopathy detection systems. These approaches include support vector 

machines, decision trees, naïve bayes, neural networks, logistic regression, XGBoost, 

K-nearest neighbor, and ensemble models. These studies demonstrate the potential of 

machine learning models for effective diabetic retinopathy detection and 

classification, with some achieving high accuracy rates. However, certain challenges 

still need to be addressed, such as reducing false positives and improving the 

classification of diabetic retinopathy severity. Continued research and development in 

this area will undoubtedly contribute to the improvement of diabetic retinopathy 

detection systems, providing better support for clinicians and enhancing patient 

outcomes. 

 

Table 2.1 includes a detailed comparison of the previous ML-based diabetic 

retinopathy studies. 
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Table 2.1. ML-based diabetic retinopathy related work. 

Researcher Year Methodology Dataset Main 

Results 

Limitations 

Bhargavi et 

al. [20] 

2016 SVM DIARETDB1, 

MESSIDOR 

96.66% 

Accuracy 

Only one type of 

DR disease 

Enrique et 

al. [21] 

2017 SVM 400 retinal 

images 

92.4% 

Accuracy 

Small dataset, 

no DR type 

classification 

Chetoui et 

al. [19] 

 

2018 

SVM (Textual 

features) 

MESSIDOR 90.4% 

Accuracy, 

0.93 AUC 

No classification 

of other 

retinopathy 

types 

Hardes et al. 

[22] 

2022 SVM DIARETDB1 77.3% 

Accuracy 

No ML model 

modifications, 

low accuracy 

Aziza et al. 

[23] 

2019 Decision Trees DRIVE, 

Messidor 

93% 

Accuracy 

Binary 

classification 

(DR or Not DR) 

Yao et al. 

[24] 

2022 Decision Trees 241 patients 0.62 AUC, 

66% 

Sensitivity, 

76% 

Specificity 

Low dataset size 

Casanova et 

al. [25] 

2014 Random 

Forests 

3443 eye-

study images 

90% 

Accuracy 

No 

segmentation or 

feature 

extraction 

Alzami et al. 

[26] 

2019 

 

Random 

Forests 

(Fractal 

analysis) 

MESSIDOR 80.37% 

Accuracy 

No severity 

classification of 

DR patients 

Zaaboub 

and Douik 

[27] 

2020 Random 

Forests 

Color fundus 

retinal images 

94.38% 

Accuracy 

Detected only 

one type of 

diabetic 

retinopathy 

Kang et al. 

[28] 

2020 Naïve Bayes China diabetic 

dataset (568) 

93.44% 

Accuracy 

Low accuracy, 

They used three 

categories for 

classification 

Hadistio et 

al. [29] 

2022 Naïve Bayes, 

SGD 

UCI ML 

diabetic 

retinopathy 

56.74% 

Accuracy 

Low accuracy 

Roychowdh

ury et al. 

[30] 

2014 GMM, 

AdaBoost, K-

NN, SVM 

MESSIDOR 100% 

Sensitivity, 

53.16% 

Specificity, 

0.9 AUC 

High false 

positives 

Reddy et al. 

[31] 

2020 Ensemble (RF, 

DT, AdaBoost, 

K-NN, LR) 

Textual dataset 78% 

Precision, 

Recall, F1-

score, 77% 

Accuracy 

Low accuracy, 

no 

preprocessing, 

binary 

classification 

Sidker et al. 

[32] 

2021 Ensemble 

(Gray-level 

Asia Pacific 

Tele-

94.2% 

Accuracy, 
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intensity, 

texture, DT) 

Ophthalmolog

y Society 2019 

93.51% F-

measure 

Pendekal et 

al. [33] 

2022 Ensemble 

(SVM, K-NN, 

DT, Naïve 

Bayes) 

E-ophtha, 

DIARETDB1 

0.928 and 

0.873 AUC 

The study 

detected only 

one type of 

diseases 

(Microaneurysm

s) 

Sopharak et 

al. [34] 

2008 SVM, K-NN DIARETDB1 89.2% 

Sensitivity, 

75.0% 

Specificity 

Small dataset, 

binary 

classification 

(DR or No-DR) 

Ganesan et 

al. [35] 

2014 SVM, Random 

Forests, 

Decision 

Trees, Naïve 

Bayes 

IDRiD 94.0% 

Accuracy 

Limited DR 

severity 

classification 

Antal et al. 

[36] 

2014 Ensemble of 

Decision Trees 

Messidor, 

DIARETDB0, 

DIARETDB1 

95.6% 

Accuracy, 

0.93 AUC 

Lacks 

preprocessing 

optimization, 

limited dataset 

variety 

 

2.3.2. DL related Work 

 

Deep learning (DL) is a subfield of machine learning that utilizes deep neural 

networks. The process for detecting diabetic retinopathy using DL is similar to 

machine learning, with minor differences. Figure 6 illustrates the DL process for a 

diabetic retinopathy detection system. 

 

Pratt et al. [37] employed a Convolutional Neural Network (CNN) to extract retinal 

image features from the Kaggle diabetic retinopathy dataset (80,000 images). They 

applied color normalization, data augmentation, and L2-regularization during 

preprocessing. Stochastic Gradient Descent optimization was used in the training step 

with CNN, resulting in 95% specificity, 75% accuracy, and 30% sensitivity. The 

results showed a high number of false negatives. Soniya et al. [38] developed single-

based and heterogeneous-based CNN systems for diabetic retinopathy detection. They 

utilized gradient descent and backpropagation algorithms for training. The study 

classified four primary lesion types: microaneurysms (MAs), hemorrhages (HEs), hard 

exudates (EXs), and soft EXs. They used 130 images from the DIARETDB0 dataset 

and achieved varying accuracies depending on the CNN architecture (95%, 65%, 

42.5%, 67.5%, and 92.5%). Gargeya and Leng [39] presented an automated diabetic 
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retinopathy identification system using deep learning models. Their study used 

MESSIDOR2 and E-Ophtha datasets, and the designed system achieved 0.94 and 0.95 

AUC for MESSIDOR2 and E-Ophtha databases, respectively. The sensitivity and 

specificity values were 93% and 87% for the MESSIDOR2 dataset, while they were 

90% and 94% for the E-Ophtha dataset. 

 

Lam et al. [40] proposed an automated diabetic retinopathy detection system using the 

Kaggle EyePACS dataset, which contained 243 retinal images. They employed several 

CNN architectures with resized retinal images (128x128x3), including GoogleLeNet-

v1, AlexNet, VGG-16, ResNet, and Inception-V3. The InceptionV3 model achieved 

the highest accuracy of 98%. Khalifa et al. [41] suggested using various DL models, 

such as AlexNet, ResNet18, SqueezeNet, GoogleNet, VGG16, and VGG19, with the 

Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 dataset. The best accuracy 

was obtained by the AlexNet model with 97.9%, and the total average accuracy was 

96.3%. They did not use ensemble or fusion approaches. 

 

Nguyen et al. [42] applied transfer learning of VGG16 and VGG19 models for diabetic 

retinopathy detection, using the Kaggle competition dataset 2015, which included 

severe, mild, moderate, proliferative DR, and normal cases. The study employed data 

augmentation and achieved accuracies of 71% and 73% for VGG16 and VGG19, 

respectively. After modifying with sequential dense layers, the performance improved 

to 83%. Tymchenko et al. [43] utilized a three-head CNN model to detect diabetic 

retinopathy stages in retinal images. They proposed a multi-stage approach based on 

transfer deep learning, enabling the use of similar datasets with different labels. The 

retinal images were resized, and data augmentation was applied. They achieved a 

sensitivity of 99% on the APTOS 2019 Blindness Detection Dataset. 

 

Pour et al. [44] proposed the EfficientNet B5 deep model for diabetic retinopathy 

detection, using three datasets: MESSIDOR, MESSIDOR-2, and IDRiD. Retinal 

images were enhanced with Contrast Limited Adaptive Histogram Equalization 

(CLAHE). The efficient model was then trained using these images, achieving an AUC 

of 0.94 and 0.93 for MESSIDOR and IDRiD, respectively. Thota and Reddy [45] 

employed the VGG-16 model for diabetic retinopathy detection. They used transfer 

learning of the VGG-16 pre-trained model to achieve optimal performance. Working 
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with the Kaggle EyePACS dataset, they attained 74% accuracy, 80% sensitivity, and 

65% specificity. 

 

 Mushtaq and Siddiqui [46] introduced the Densely CNN (DenseNet-169) model for 

diabetic retinopathy detection. They classified retinal images into DR, Not-DR, mild, 

moderate, and proliferative categories. The researchers used two datasets (Diabetic 

Retinopathy Detection 2015 and Aptos 2019 Blindness datasets) and applied 

preprocessing steps like cleaning, resizing, and augmentation. The deep learning 

model was then trained with the processed data, achieving a 90% accuracy rate. 

 

The authors of [47] used an ensemble of five models from the EfficientNet family for 

DR grading, pre-training on ImageNet. They also tested these models independently 

for the same task. EfficientNet-B3 performed better than the ensemble model and the 

other four models. Parthasharathi et al. [48] developed an early diabetic detection 

system based on convolutional neural networks (CNN). They used a Kaggle dataset of 

1000 images (300 diabetics and 700 normal). Images were first converted to HSV 

format, and yellow exudate extraction was performed from the color components. 

Median filtering and feature extraction were then applied, and the training process used 

the "Adam" optimization algorithm. The results showed an accuracy of 91.5%. Shaik 

and Cherukuri [49] introduced a model called "Hinge Attention Network (HA-Net)," 

using multiple attention modules for diabetic retinopathy severity grading. They 

employed the VGG-16 model to extract initial spatial representations and tested their 

experiments on the IDRid dataset, achieving an accuracy of 66.4%.Oulhadj et al. [50] 

used four CNN models, including DenseNet-121, Xception, InceptionV3, and ResNet-

50. They registered retinal images from the Kaggle APTOS dataset and graded diabetic 

retinopathy using the CNN models. The results revealed that the highest accuracy 

achieved was 85.28%. 

 

Lahmar and Idri [51] employed various DL models for feature extraction (VGG16, 

VGG19, Inception_V3, DenseNet201, MobileNet_V2, Inception_ResNet_V2, and 

ResNet50). Four different classifiers (SVM, MLP, DT, and KNN) were trained using 

the extracted features. The performance was evaluated using accuracy, sensitivity, 

precision, and F1-score. They used three different datasets (APTOS, Kaggle DR, and 

Messidor-2), achieving accuracies of 88.80%, 84.01%, and 84.05% for the three 
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datasets, respectively. 

 

Table 2.2. Detailed comparison of the previous DL-based diabetic retinopathy studies. 

Researcher Year Methodology Dataset Main Results Limitations 
Pratt et al. [37]  

2016 

CNN Diabetic 

retinopathy 

Kaggle 

(80,000) 

Specificity: 95%, 

Accuracy: 75%, 

Sensitivity: 30% 

High false 

negatives 

Soniya et al. 

[38] 

 

 

2016 

CNN single-based 

and CNN 

heterogeneous-

based 

DIARETDB

0 (130) 

Accuracies 

ranging from 

42.5% to 95% 

Limited 

dataset size 

Gargeya and 

Leng [39] 

 

 

2017 

Deep learning 

models 

MESSIDOR

2, E-Ophtha 

AUC: 0.94 

(MESSIDOR2), 

0.95 (E-Ophtha), 

Sensitivity: 

93%/90%, 

Specificity: 

87%/94% 

No accuracy 

measure was 

computed. 

Lam et al. [40]  

 

2018 

GoogleLeNet-v1, 

AlexNet, VGG-

16, ResNet, 

Inception-V3 

Kaggle 

EyePACS 

(243) 

Best accuracy: 

98% 

(InceptionV3) 

Binary 

classification 

(DR or Not 

DR) 

Nguyen et al. 

[42] 

 

 

2020 

Transfer learning 

of VGG16 and 

VGG19 

Kaggle 

competition 

dataset 2015 

Accuracies: 71% 

(VGG16), 73% 

(VGG19), 

Improved to 

83% after 

modification 

No ensemble 

or fusion were 

used 

Tymchenko et 

al. [43] 

 

2020 

 

Three-head CNN APTOS 

2019 

Blindness 

Detection 

Dataset 

Sensitivity: 99% Compute only 

one 

performance 

metrics 

Pour et al. [44]  

2020 

EfficientNet B5 MESSIDOR

, 

MESSIDOR

-2, IDRiD 

AUC: 0.94 

(MESSIDOR), 

0.93 (IDRiD) 

Binary 

classification 

(DR or Not 

DR) 

Thota and 

Reddy [45] 

 

2020 

VGG-16 Kaggle 

EyePACS 

Accuracy: 74%, 

Sensitivity: 80%, 

Specificity: 65% 

Low accuracy 

Mushtaq and 

Siddiqui [46] 

 

 

2021 

DenseNet-169 Diabetic 

Retinopathy 

Detection 

2015, Aptos 

2019 

Blindness 

Accuracy: 90% Moderate 

accuracy 

Karki and 

Kulkarni [47] 

 

2021 

Ensemble of 

EfficientNet 

models 

Kaggle 

APTOS 

EfficientNet-B3 

performed better 

than the 

ensemble and 

other models 

No well-

known 

evaluation 

metrics 

Parthasharath

i et al. [48] 

 

2022 

 

CNN Kaggle 

(1,000) 

Accuracy: 91.5% Binary 

classification 

(DR or Not 

DR) 
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Shaik and 

Cherukuri 

[49] 

 

2022 

Hinge Attention 

Network (HA-

Net) 

IDRid Accuracy: 66.4% Low accuracy 

Oulhadj et al. 

[50] 

 

2022 

DenseNet-121, 

Xception, 

InceptionV3, 

ResNet-50 

Kaggle 

APTOS 

Best accuracy: 

85.28% 

Moderate 

accuracy 

Gulshan et al. 

[52] 

 

 

2016 

Deep Learning 

(Inception-v3) 

EyePACS, 

MESSIDOR

-2 

97.5% 

Sensitivity, 

93.4% 

Specificity 

Retrospective 

design, results 

may not 

generalize to 

all populations 

Ting et al. [53]  

 

2019 

 

Deep Learning 

(Deep Retinal 

Image 

Understanding) 

Singapore 

National 

Eye Center 

90.5% 

Sensitivity, 

91.6% 

Specificity 

Validation on 

multi-ethnic 

Asian dataset 

only; limited 

DR severity 

classification 

Abramoff et 

al. [54] 

 

2016 

Deep Learning 

Built-in system 

(IDx-DR) 

MESSIDOR

-2, Iowa 

Detection 

Program 

96.8% 

Sensitivity, 

87.0% 

Specificity 

No direct 

comparison 

with human 

experts 

Gulshan et al. 

[55] 

 

2018 

Inception-v3 EyePACS 

and 

MESSIDOR

-2 

AUC: 0.99 

(EyePACS), 0.99 

(MESSIDOR-2) 

Lack of 

external 

validation on 

diverse 

populations 

Raju et al. [56]  

2018 

Modified U-Net IDRiD Sensitivity: 

95.6%, 

Specificity: 

98.6% 

Limited 

dataset size 

Ramachandra

n et al. [57] 

 

2018 

Transfer learning 

of ResNet-50 

Kaggle 

EyePACS 

Accuracy: 92.3% Moderate 

accuracy 

Chudzik et al. 

[58] 

 

 

2018 

VGG-16, VGG-

19, Inception-v3, 

Inception-ResNet-

v2, and Xception 

EyePACS 

(243 

images) 

Best accuracy: 

96.8% 

(Inception-

ResNet-v2) 

Low dataset 

size/ Binary 

classification 

 

2.4. RELATED WORK CONCLUSION 

 

In conclusion, previous work on diabetic retinopathy (DR) detection has employed 

various machine learning (ML) and deep learning (DL) techniques. ML-based 

methods, as seen in Table 2.1, have primarily used Support Vector Machines (SVM), 

Decision Trees, Random Forests, Naïve Bayes, and ensemble models. These models 

achieved varying degrees of success in terms of accuracy, sensitivity, and specificity. 

However, common limitations include small dataset sizes, lack of DR type or severity 

classification, and binary classification (DR or not DR). 

 

On the other hand, DL-based methods, as seen in Table 2.2, have primarily utilized 

convolutional neural networks (CNNs), including well-known architectures such as 
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Inception, VGG, ResNet, DenseNet, and EfficientNet. These DL models demonstrated 

improvements in accuracy, sensitivity, and specificity compared to ML-based models. 

Limitations of these studies include high false negatives or positives, limited dataset 

size or diversity, binary classification (DR or not DR), lack of ensemble or fusion 

techniques, and moderate accuracy. 

 

2.5. STUDY CONTRIBUTION 

 

To address these limitations and improve DR detection, this proposal suggests using 

ensemble transfer learning models in a multi-stage dataset. Ensemble transfer learning 

leverages the strengths of multiple pre-trained models and combines them to enhance 

performance. This approach is expected to address the limitations of previous studies 

by incorporating diverse DR types and severity levels, reducing false negatives and 

false positives, applying data balancing approaches and improving overall accuracy, 

sensitivity, and specificity. 



 

20 

 

 

PART 3 

 

MATERIALS AND METHODS 

 

3.1. THE PROPOSED METHODS 

 

In this chapter, the proposed methodologies used in the current study will be 

introduced and discussed. Besides, the utilized materials (datasets and software) will 

also be listed. 

 

3.2. MATERIALS 

 

3.2.1. Dataset 

 

The used dataset is the APTOS 2019 Blindness Detection dataset, which is available 

for free at Kaggle [59]. This dataset consists of images of retinal scans that have 

undergone Gaussian filtering for detecting diabetic retinopathy. The original dataset is 

the APTOS 2019 Blindness Detection. The images of this dataset have been resized to 

224x224 pixels to enable their use with various pre-trained deep learning models 

(using transfer learning).  

 

The images are categorized into five categories, based on the severity of diabetic 

retinopathy, as specified in the train.csv file provided:  

 

• No DR  

• Mild  

• Moderate  

• Severe  

• Proliferate_DR.  
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Additionally, the dataset contains an export.pkl file that includes a ResNet34 model 

trained using the FastAI library for 20 epochs on the dataset. 

 

Figure 3.1 shows example of the five classes of this dataset.
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Severe 

 
 Severe 

 
No DR 

 
No DR 

Figure 3.1. Examples of the used dataset samples 

 

3.3. SOFTWARE 

 

In this study, the Python programming language is suggested since it provides with a 

perfect machine learning and deep learning libraries. For implementing the proposed 

methodologies, the google Colab is used as a good environment for writing, editing 

and executing Python language codes. 

 

The following libraries and dependencies are used: 

 

• TensorFlow: TensorFlow is an open-source machine learning framework that 

is used to build and train deep learning models. It provides a comprehensive 

set of tools and libraries for building and deploying machine learning 

applications. TensorFlow is widely used in the fields of image recognition, 
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natural language processing, and many other applications. For our 

implementation, the library will be used for deep learning models creation and 

training. 

• Keras: Keras is a high-level API for building and training deep learning 

models. Keras is built on top of TensorFlow allowing users to easily build and 

train neural networks with a few lines of code. This library provides a simple 

interface for building and training deep learning models. 

• NumPy: NumPy is a Python library that provides support for large, multi-

dimensional arrays and matrices, along with a large collection of mathematical 

functions to operate on these arrays. It is widely used in scientific computing, 

data analysis, and machine learning applications. 

• Pandas: Pandas is a Python library that provides high-performance data 

manipulation and analysis tools. It is built on top of NumPy and provides 

support for working with tabular data, including data reading and writing, data 

filtering, aggregation, and merging. 

• Random: The random library is a built-in Python library that provides tools for 

generating random numbers, sequences, and selections. It is commonly used in 

simulations, games, cryptography, and other applications that require 

randomness. 

• OS: The os library is a built-in Python library that provides a way to interact 

with the operating system, including creating, deleting, and renaming files and 

directories, manipulating paths, and running system commands. 

• CV2: The cv2 library (OpenCV) is an open-source computer vision library that 

provides tools for image and video processing, including image filtering, 

feature detection, object detection, and tracking. 

• Shutil: The shutil library is a built-in Python library that provides a way to work 

with high-level file operations, including copying, moving, and deleting files 

and directories. 

• Matplotlib: Matplotlib is a Python library that provides support for creating 

static, animated, and interactive visualizations in Python. It provides a variety 

of plot types, including line plots, scatter plots, bar plots, and more. It is widely 

used in scientific computing, data analysis, and machine learning applications. 
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3.3. DEEP LEARNING (DL) 

 

For a long time, traditional machine learning methods struggled to address complex 

problems despite attempts to enhance them. However, deep learning methods have 

achieved remarkable performance in a variety of applications, including image 

recognition, big data analysis, natural language processing, and speech recognition. 

The backpropagation algorithm is the primary training method for deep neural 

networks, with training taking place in two stages: a forward step to compute errors 

and a backward step to adjust weights and learn. Convolutional neural networks 

(CNNs) are the most widely used deep learning networks for image recognition. With 

the use of CNNs, it is possible to improve the accuracy of many applications, 

particularly in the field of medical image recognition. Moreover, with the help of 

transfer learning techniques, pre-trained models can be utilized to reduce the 

computation required to train deep learning networks [60]. 

 

3.3.1. Convolutional Neural Network (CNN) 

 

The ConvNet is a popular deep learning network that comprises two main layers: 

convolution and pooling. These layers consist of feature maps that store the results of 

convolutions applied to the input image, and many filters or kernels are applied to the 

input image in each layer. The Relu non-linear function is then applied to add non-

linearity to the output, which is called the activation map. The next layer is the max-

pooling layer, which reduces the dimensions of the convolution to save computational 

time. The output of this combination is then passed to the next combination of layers. 

The filter values represent the weights of the network that are adjusted during training 

to achieve the best values for the model. After the convolution-pooling combination, 

a fully connected layer is added to reshape the feature map into a single vector for 

output. Sometimes, a dropout layer is used to drop a percentage of neurons in the fully 

connected layer to avoid overfitting.  

 

Finally, the softmax activation function is applied to produce output as probabilities of 

all classes, and the class with the highest probability is chosen. The architecture of the 

ConvNet is depicted in Figure (3-2) [61]. Usually, the convolution and pooling layers 
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represent the feature extraction part, while the fully-connected layer and the output 

(softmax) layer is considered the classification layers. 

 

 
Figure 3.2. CNN Architecture [62]. 

 

3.3.2. Some Deep Learning Keywords 

 

To apply the filter kernel on the image inside the convolution layer, two important 

principles must be defined - padding and stride.  

 

Padding is essential to process the pixels on the border of the image since they don't 

entirely match the kernel size, and the image must be padded to avoid losing 

information [63]. If we choose not to pad the image, the resulting activation map of 

the convolution will be smaller than the original image. To pad the image, we can use 

zeros, and the value of padding will be as Equation (3.1) illustrates. 

 

P = Floor((F-1)/2)            (3.1) 

 

Where, 

 

F is the kernel size. This will ensure that the size of the input and output in case of 

padding will be the same, as shown in Figure (3-3). Proper padding ensures that the 

Input 

Convolution 

Pooling 

Fully connected 

Output 
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input and output sizes remain consistent throughout the convolutional layers. 

Moreover, stride refers to the number of pixels the kernel is shifted each time it passes 

over the input image. By adjusting the stride, we can control the size of the output 

feature maps. 

 

 

Figure 3.3. Convolution with padding and stride [64] 

 

Stride, is the sliding parameter by which the window of the kernel is moving 

horizontally and vertically from pixel to the next one. The size of the convolution is 

defined as equation (3-2) shows. 

 

(W – F + 2P) / S + 1            (3.2) 

 

Where,  

 

W is the image size, F is the kernel size, P is the padding and S is the stride.  

If the used convolutional mask is of size 7x7, padding of 3 and stride of 3, then the 

convolution result will be of size: (150 – 7 + (2)(3)) / 3 + 1 = 50*50. The activation 

records after the pooling layer of size 2*2 will be of size 25*25. 

 

3.4. PROPOSED METHODS 

 

The proposed methodology of the current study is illustrated in Figure 3.4. 
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Figure 3.4. Proposed methodology. 

 

3.4.1. Preprocessing 

 

The preprocessing steps are essential to process the image datasets before going to the 

next steps. For the proposed diabetic retinopathy dataset, many preprocessing steps are 

suggested. First, the images are resized into a fixed size 150x150 in order to minimize 

the training time and other next processes. 

Preprocessing 
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3.4.2. Balancing (Over sampling) 

 

After preprocessing operations, the balancing technique is applied to make balance to 

the dataset.  This operation is essential since the number of samples of each category 

in this dataset is very different.  Category "No DR" has the highest number of samples 

which is 1805, while proliferate category has only 295 samples. Severe category 

contains only 193 samples, while "Moderate" category includes 999 samples. The 

"Mild" category contains 370 samples. 

 

This difference in the size of each category will affect the training operation by biasing 

the learning to the dominant category so the models will learn to classify samples to 

the most frequent class.To avoid this problem, the Synthetic Minority Over-Sampling 

Technique (SMOTE) algorithm [65] is used to increase the number of minor classes 

samples and make some balance in the dataset. This operation will balance the learning 

process and give classes similar weights. The new number of samples of each category 

will be as follows: No_DR': 1805, 'Mild': 600, 'Moderate':1200, 'Severe':400, 

'Proliferate_DR':400.Figure 3.5 shows the dataset label distribution before and after 

SMOTE. The extreme oversampling (making all categories with the same number of 

samples) is not suggested here since it can cause fake training and increase the 

computational training time. 
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Before SMOTE 

 

After SMOTE 

Figure 3.5. Dataset balancing using SMOTE 

 

3.4.3. Label Encoding 

 

The labels (Targets) of the dataset are sometimes written in textual formula, so they 

need to be encoded before the training process. Label Encoding is an essential step in 

preprocessing data for machine learning algorithms, especially when dealing with 

categorical variables that are represented as text. Label Encoding refers to converting 

categorical data, which is in the form of text or labels, into numerical shape. This is 

necessary because most machine learning algorithms can only work with numerical 

data. 
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The sklearn.preprocessing module includes a LabelEncoder class that can be used to 

perform Label Encoding. It class takes a categorical variable (textual form) and 

encodes its values into numbers (numerical form). Each unique value in the categorical 

variable is assigned a unique number. For example, if a categorical variable has four 

unique values "hard", "medium", "easy" and "None", the LabelEncoder class would 

convert "hard" to 0, "medium" to 1, "easy" to 2 and "None" to 3. The aim of label 

encoding is that it enables the algorithms to process the data accurately and efficiently. 

Without applying the label encoding, the algorithm may deal with the categorical 

variables as ordinal variables. It may try to apply mathematical operations to them, 

leading to inappropriate results. 

 

Label encoding is also helpful with large datasets that include many categorical 

variables, as it can significantly reduce the memory required to store the data.Overall, 

Label Encoding is an essential process to preprocess data for machine learning and 

deep algorithms and the LabelEncoder class from the sklearn.preprocessing module 

makes it easy to perform this task efficiently and accurately.For the diabetic 

retinopathy dataset, the Label encoder will produce the following: 0 for "Mild", 1 for 

"Moderate", 2 for "No DR", 3 for "Proliferate", and 4 for "Severe". 

 

3.4.4. Dataset Split 

 

This step aims to split the dataset into two different parts: the training dataset that will 

be used for training the DL models, and the test dataset for evaluation process. In the 

current study, the dataset is split into 75% for training and 25% for test. 

 

3.4.5. Data Augmentation 

 

Data augmentation is a process used to increase the size of an image dataset by 

generating new samples with specific operations on the input images. This process is 

done by creating new images from the existing ones, usually through the application 

of various geometrical operations and transformations. These augmented images can 

be used to train machine learning and deep learning models more effectively, 

especially in cases where the original dataset has small size or is insufficient.  
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The proposed data augmentation techniques used for the current diabetic retinopathy 

datasets include rescaling, zooming, and flipping. Rescaling involves dividing the 

image values by 255 in order to normalize all gray levels to be in the range [0-1], while 

zooming involves selecting a specific region of the image and increasing its size. 

Flipping, on the other hand, involves flipping the image horizontally or vertically. 

These techniques can be used alone or in combination to create a large number of new 

images, which can help improve the accuracy and robustness of machine learning 

models trained on image datasets. 

 

These operations are done randomly in each epoch of the training process. 

 

 

Original 

 

Zoom in 

 

Flip Horizontally 

 

Flip Vertically 

Figure 3.6. Examples of data augmentation operations on a sample of the diabetic 

retinopathy dataset 

 

3.4.6. VGG Models 

 

VGG16 and VGG19: The Visual Geometry Group (VGG) at the University of Oxford 

proposed VGG16 and VGG19 in their 2014 publication [66]. Both networks use a 

thick stack of convolutional layers and small 3x3 convolutional filters. 

 

In contrast to VGG19, which contains 19 weight layers and 16 convolutional layers, 

VGG16 consists of 16 weight layers, comprising 13 convolutional levels and 3 fully 

linked layers. Whereas VGG19 has over 144 million parameters, VGG16 has about 

138 million [66]. 

 

Figure 3.7 shows the difference between VGG16 and VGG19 models [66] [67]. 
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Figure 3.7. VGG16 VS. VGG19 models. 

 

3.4.7. Xception Model 

 

In the 2016 [68], François Chollet, the developer of the Keras library, developed the 

deep learning model known as Xception (short for "Extreme Inception"). Depthwise 

separable convolutions, which are more performant than conventional convolutions 

and are an extension of the Inception architecture, are used in this model. The 36 levels 
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of the Xception model include an entering flow, middle flow, and exit flow. Compared 

to VGG16 and VGG19, it has much fewer parameters (22.9 million) while performing 

better [68]. Figure 3.8 shows the architecture of Xception model. 

 

 

Figure 3.8. Xception model. 

 

3.4.8. EfficientNetB3 model 

 

EfficientNet is a family of deep networks that was invented by Tan and Le [69]. These 

models use a compound coefficient that is designed to scale breadth, depth, and 

resolution all at once, increasing accuracy and efficiency. Many versions of this model 

were created. For the current study, the EfficientNetB3 model is utilized. It comprises 

154 layers with about 12 million parameters total, including layers for squeeze-and-

excitation, batch normalization, and convolution [69]. The main benefit of 

EfficientNetB3's is its capacity to retain high accuracy while maintaining a more 

compact model size comparing to other previous architectures. Figure 3.9. shows the 

architecture of compound scaling approach used in EfficientNet model [69]. 
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Figure 3.9. Compound Scaling. 

 

3.4.9. Ensemble Learning 

 

The ensemble learning is a well-known approach that construct a unified model of 

many individual ones. The main benefit of this technique is to get the efficiency and 

powerful of each individual model. There are many methods to generate the ensemble, 

including the bagging and boosting ways. 

 

There are three main ensemble learning approaches [70]: 

 

• Boosting: The main problem of some trained models is the low accuracy which 

can be enhanced by using an ensemble of weak classifiers. Each subsequent 
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model works to minimize the errors made by the previous models. The final 

classification/prediction result is a weighted fusion of the predictions from all 

the base models, where the weights depend on the accuracy of each individual 

model. 

• Bagging (Bootstrap Aggregating): Bagging includes creating multiple copies 

of the original training dataset. This approach is done through random sampling 

with replacement. Each of these datasets is used to train a separate base model. 

The final prediction decision is calculated by averaging the predictions of all 

base models (for regression) or by taking a majority vote (for classification). 

• Stacking (Stacked Generalization): Stacking trains many base models on the 

original dataset. After that, the stacked model uses the predictions as input 

features to train a second-level model called the meta-model. The meta-model 

learns to fuse the predictions of the base models to produce the final prediction. 

 

Ensemble learning techniques are widely used in various machine learning tasks such 

as classification, regression, and even unsupervised learning tasks. They have shown 

to be highly effective in reducing model bias and variance, thus leading to improved 

generalization and better performance on unseen data. 

 

Figure 3.10 shows the architecture of the proposed ensemble model which uses the 

stacking approach. 
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Figure 3.10. The proposed ensemble learning method. 
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Figure 3.11 shows the ensemble model, including training and evaluation steps. 

 

 

Figure 3.11 Proposed Ensemble model. 

 

First, the trained models will be used as input for the ensemble model. Then, model's 

weights will be loaded, and the stack members will be created and added to the stack. 

The next step is to train the ensemble model. The final step is the evaluation of the 
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ensemble model using the test set. The metrics that are computed are the accuracy, 

precision, recall and F1-score. 

 

3.4.10. Performance Evaluation 

 

To evaluate our segmentation and recognition methodologies, we suggest using the 

following metrics [71] [72]: 

 

• Training/validation/test Accuracy, which expresses the accuracy of diabetic 

retinopathy system. The accuracy will be computed for both training and test 

sets. 

• Precision: TP/(TP + FP) 

• Recall: TP/ (TP+FN) 

• F1-score: 2*Precision*Recall / (Precision + Recall) 

 

These calculations need the following information: 

 

True Positive (TP): Represents the number of correctly classified samples against all 

samples in the dataset. 

 

False Positive (TN): the number of correctly rejected samples against all samples in 

the dataset. 

 

Figure 3.12 shows these calculations. 
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Figure 3.12. TP, TN, FP and FN calculations 

 

3.4.11. Binary Classification VS. Multi-Class Classification 

 

In the current study, the multi-class classification process is applied to detect all stages 

of diabetic retinopathy, including (mild, severe, moderate and proliferate) besides the 

normal condition. 

 

In the binary classification, the diabetic categories are merged in one class (disease 

class). Besides this class, the normal class is left. Due to this modification, two 

categories are obtained (0: Normal condition, 1: for diabetic retinopathy disease). 

 

The idea of using this scenario is that most previous studies applied the binary 

classification so in order to compare the current study to the previous state-of-art, the 

binary classification scenario is applied. The Table 3.1 shows the categories 

distribution over the dataset in the binary classification scenario. 
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Table 3.1. Class distribution of the binary classification scenario. 

Class Number of 

samples 

Percentage Fused categories of 

the original dataset 

Normal 1805 49.29% Normal 

Disease 1857 50.71% Mild, severe, 

moderate and 

proliferate 
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PART 4 

 

RESULTS 

 

4.1. INTRODUCTION 

 

In this chapter, the training and evaluation experiments, including all applied 

scenarios, will be listed, compared, and discussed in a detailed way. The results will 

also be compared with the previous related studies in the same field of diabetic 

retinopathy detection. 

 

4.2. THE PROPOSED TRAINING SCENARIOS 

 

In this study, two main training scenarios are proposed. The first one is the training 

without balancing the dataset, while the second one is the balancing scenario in which 

the dataset is balanced, and then the training is performed. 

 

Under those two different scenarios, many training scenarios are also performed.  

 

In these sub-scenarios, many DL architectures were proposed and the ensemble 

learning approach is also applied to improve the performance of those selected DL 

models. 

 

Another third scenario is proposed to compare the performance of multi-class diabetic 

retinopathy with the binary-class classification case. In the third scenario, the dataset 

labels are grouped into only DR and NO_DR. The same DL models and the ensemble 

model are also used and evaluated. 
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4.3. UNBALANCED TRAINING RESULTS 

 

First, the dataset is used in its original state. Figure 4.1 shows the distribution over the 

original dataset. The dominant class is the 'NO DR' class, while the least frequent class 

is the 'Severe' class. 

 

 

Figure 4.1. Original dataset distribution. 

 

The dataset is split using 80% for training and 20% for validation and test. The 

following transformations are applied: 

 

• Convert all images into RGB 

• Resize all images into 224*224 in order to reduce the training time. 

• Convert the targets to categorical form in order to compute probabilities for 

each one in the training step (the class with the highest probability will be the 

predicted class). 

• Shuffle training images in order to prevent the training process from 

memorizing the order of the training samples. 

 

4.3.1. Training Parameters (Training Options) 

 

In order to accomplish the training process, the following training options are used: 
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• The batch size is 64. Batch size is used to send images to the training processes 

as patches which reduces the training time since the training step will include 

64 images at the same time instead of using only one image. This option 

requires using the GPU instead of CPU in order to apply this parallel 

computing. 

•  Output size: the output size is the number of classes which is 5. 

• The hidden layers' activation function: Relu is the common activation function 

and is used in the current study. 

•  Output layer activation function: SoftMax. 

•  Optimizer: Adam algorithm. 

• Loss function: categorical cross entropy (since our problem is a multi-class 

classification problem). 

• The training metrics: accuracy.  

• Learning rate: 0.001. 

• Dropout rate= 25% (This rate represents the proportion of neurons that are 

dropped from the preceding layer before the dropout layer is applied). 

• Early Stop condition: The early stop condition is set based on the validation 

loss with a patience factor of 10 so if the training process caused no 

enhancement in the validation loss for 10 epochs, the training will be stopped 

even though the maximum epochs haven't reached). 

• Reduce learning rate option: this option is used to reduce the learning rate at a 

specific condition. In the current study, the learning rate will be decreased by 

a factor of 0.3 if the validation loss is not enhanced for two epochs. 

 

4.3.2. Training Scenarios 

 

In all training scenarios, the used model consists of two main parts; the feature 

extraction part and the classification part. 

 

In the feature extraction part, many DL models are suggested, while the classification 

part is fixed for all models. 

Many training scenarios are proposed including the following: 
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• Training the VGG-16-based model using the unbalanced version of the dataset. 

• Training the NasNetLS2-based model using the unbalanced version of the 

dataset. 

• Training the Xception-based model using the unbalanced version of the 

dataset. 

• Training the InceptionV3-based model using the unbalanced version of the 

dataset. 

• Make an ensemble of the models of the scenarios (1-4) using the unbalanced 

version of the dataset. 

 

4.3.3. Results of Training VGG-16 As A Base Model Using the Unbalanced 

Version of the Dataset 

 

In this scenario, the VGG16 model is used as the base model in order to extract image 

features. The output of VGG16 model is a feature vector of size 512. Figure 4.2 shows 

the architecture, the output size and number of trainable parameters of the VGG16-

based model. 

 

 

Figure 4.2. VGG16-based DL model for diabetic retinopathy detection 
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The VGG base model weights are frozen so that the number of trainable parameters is 

computed for the classification part only (35077 parameters). For the first model, three 

different optimizers will be used and compared in order to define the best optimizer 

and continue the other scenarios with the best optimizer. The first optimizer is Adam, 

the second one is Stochastic Gradient Descent (SGD), while the third one is Root Mean 

Square Propagation (RMSprop)). Figure 4.3 shows the training and validation 

accuracy and loss using three different optimizers (Adam, SGD (Stochastic 

Gradient Descent) and RMSprop). 

 

 

Adam - Accuracy 

 

        Adam - Loss 

 

SGD - Accuracy 
 

       SGD – Loss 
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RMSprop - Accuracy 

 

  RMSprop - Loss 

Figure 4.3. Training and validation accuracy and loss curves of the VGG16 based DL 

model of diabetic retinopathy detection using three different optimizers 

(Adam, SGD, RMS) 

 

Results of this scenario observed by Figure 4.3 show that the validation accuracy is 

almost 71% and the validation loss is 0.804 using the Adam optimizer. While the 

training accuracy is 70.69% and the training loss is 0.8425. The average training time 

is 49s/step. For SGD optimizer, the validation accuracy is 67% and the training 

accuracy is 66.76%. For RMSprop, the training and validation accuracy are 69.5% and 

69%, respectively. The training time for SGD and RMS are 50 s/step and 54s 5s/step, 

respectively. The best optimizer is the Adam optimizer so the next scenarios will be 

continued with Adam optimizer. 

 

The detailed results, including the precision, recall and F1-score for all optimizers are 

illustrated in Table 4.1. 
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Table 4.1. Precision, Recall, and F1-score of the VGG based DL model of diabetic 

retinopathy detection. 

VGG16 Precision % Recall % F1-score % Num. of test 

samples 

Adam 

No_DR 90 94 92 361 

Mild 0 0 0 74 

Moderate 50 88 64 199 

Severe 0 0 0 38 

Proliferate_DR 0 0 0 59 

Macro avg 28 37 31 731 

Weighted avg 58 71 63 731 

SGD 

No_DR 92 86 89 361 

Mild 0 0 0 74 

Moderate 45 88 60 199 

Severe 0 0 0 38 

Proliferate_DR 0 0 0 59 

Macro avg 27 35 30 731 

Weighted avg 58 67 60 731 

RMSprop 

No_DR 88 94 91 361 

Mild 0 0 0 74 

Moderate 49 85 62 199 

Severe 0 0 0 38 

Proliferate_DR 0 0 0 59 

Macro avg 27 36 31 731 

Weighted avg 57 69 62 731 

 

Table 4.1 shows that the classes with small number of samples have 0% result for all 

calculations which is due to the unbalance issue between classes. The same result of 

the best optimizer is shown again in Table 4.1, where the best optimizer is Adam. 

 

4.3.4. Results of training NasNetLS2 as a Base Model Using the Unbalanced 

Version of the Dataset 

 

The NasNetLarge model is a large model with more number of trainable parameters. 

NasNetLarge is used as a base model to extract image features. The output of 

NasNetLarge model is a feature vector of 4032 samples. Figure 4.4 shows the 
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architecture, the output size and number of trainable parameters of the NasNetLarge-

based model. 

 

 

Figure 4.4. NasNetLarge-based DL model for diabetic retinopathy detection. 

 

The NasNetLarge base model weights are frozen so that the number of trainable 

parameters is computed for the classification part only (260357 parameters). The 

number of trainable parameters is increased here (although the architecture of the 

classification part is the same as in previous scenario) due to the fact that the output of 

the base model is bigger (4032 instead of 512) which is exactly the output size of the 

flatten layer of the classification model. 

 

Figure 4.5 shows the training and validation accuracy and loss. 
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Figure 4.5. Training and validation accuracy and loss curves of the NasNetLarge based 

DL model of diabetic retinopathy detection 

 

Results of Figure 4.5 show that the validation accuracy is almost 77% and the 

validation loss is 0.643. While the training accuracy is 75.88% and the training loss is 

0.662. The average training time is 66s/step (the NasNetLarge model requires a higher 

computational time comparing to the VGG16 model). The detailed results, including 

the precision, recall, and F1-score, are illustrated in Table 4.2. 
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Table 4.2. Precision, Recall, and F1-score of the NasNetLarge-based DL model of di 

diabetic retinopathy detection. 

NasNetLarge Precision % Recall % F1-score % Num. of test 

samples 

No_DR 95 98 97 361 

Mild 68 35 46 74 

Moderate 58 93 72 199 

Severe 33 3 5 38 

Proliferate_DR 0 0 0 59 

Macro avg 51 46 44 731 

Weighted avg 72 77 72 731 

 

Table 4.2 shows that some minor classes' performance enhanced slightly compared to 

the NasNetLarge model. However, some other classes' performance is still 0% 

(Proliferate) due to the unbalance issue between classes. 

 

4.3.5. Results of training Xception as a Base Model Using the Unbalanced Version 

of the Dataset 

 

The Xception model is a moderate-size model with a number of trainable parameters 

which is bigger than VGG16 but less than NasNetLarge. In this scenario, Xception is 

used as a base model to extract image features. The output of the Xception model is a 

feature vector of 2048 samples. Figure 4.6 shows the architecture, the output size, and 

the number of trainable parameters of the Xception-based model. 
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Figure 4.6. Xception-based DL model for diabetic retinopathy detection. 

 

The Xception base model weights are frozen, so the number of trainable parameters is 

computed for the classification part only (133381 parameters).  

 

Figure 4.7 shows the training and validation accuracy and loss. 
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Figure 4.7. Training and validation accuracy and loss curves of the Xception based DL 

model of diabetic retinopathy detection 

 

Results of Figure 4.7 shows that the validation accuracy is almost 76.88% and the 

validation loss is 0.6356. While the training accuracy is 74% and the training loss is 

0.6952. The average training time is 49s/step (The Xception model requires a similar 

computational time comparing to the VGG16 model). 

 

The detailed results, including the precision, recall, and F1-score, are illustrated in 

Table 4.3. 

 

Table 4.3. Precision, Recall, and F1-score of the Xception-based DL model of diabetic 

retinopathy detection. 

Xception Precision % Recall % F1-score % Num. of test 

samples 

No_DR 94 98 96 361 

Mild 56 39 46 74 

Moderate 56 84 68 199 

Severe 0 0 0 38 

Proliferate_DR 60 5 9 59 

Macro avg 53 45 44 731 

Weighted avg 72 76 71 731 
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Table 4.3 conclude the same observation of VGG and NasNetLarge models. 

 

4.3.6. Results of training InceptionV3 as a Base Model Using the Unbalanced 

Version of the Dataset 

 

The InceptionV3 model is a moderate-size model with a number of trainable 

parameters which is bigger than VGG16, less than NasNetLarge and similar to 

Xception model. In this scenario, InceptionV3 is used as a base model to extract image 

features. The output of InceptionV3 model is a feature vector of 2048 samples. Figure 

4.8 shows the architecture, the output size and number of trainable parameters of the 

InceptionV3-based model. 

 

 

Figure 4.8. InceptionV3-based DL model for diabetic retinopathy detection 

 

The InceptionV3 base model weights are frozen so that the number of trainable 

parameters is computed for the classification part only (133381 parameters) which is 

the same as for the Xception model.  

 

Figure 4.9 shows the training and validation accuracy and loss. 
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Figure 4.9. Training and validation accuracy and loss curves of the InceptionV3 based 

DL model of diabetic retinopathy detection. 

 

Results of Figure 4.9 show that the validation accuracy is almost 74% and the 

validation loss is 0.78. While the training accuracy is 70% and the training loss is 0.89. 

The average training time is 48s/step (InceptionV3 model requires a similar 

computational time comparing to VGG16 model). 

 

The detailed results, including the precision, recall and F1-score are illustrated in Table 

4.4. 
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Table 4.4. Precision, Recall, and F1-score of the InceptionV3 based DL model of 

diabetic retinopathy detection. 

InceptionV3 Precision % Recall % F1-score % Num. of test 

samples 

No_DR 95 97 96 361 

Mild 45 41 43 74 

Moderate 60 72 65 199 

Severe 21 13 16 38 

Proliferate_DR 40 20 27 59 

Macro avg 52 49 49 731 

Weighted avg 72 74 72 731 

 

Table 4.4 conclude the same observation of VGG, Xception and NasNetLarge models. 

However, the result of this model is the worst. 

 

4.3.7. Results of Training an Ensemble of Deep Models Using the Unbalanced 

Version of the Dataset 

 

To improve the performance of diabetic retinopathy system, the ensemble learning 

model is proposed. Table 4.5 includes the detailed results of training an ensemble 

learning model including the previous trained models (VGG16, NasNetLarge, 

Xception and InceptionV3). 

 

Table 4.5. Precision, Recall, and F1-score of the ensemble DL model of diabetic 

retinopathy detection. 

Model Accuracy % Precision % Recall % F1-score % 

Ensemble 89.93 90.64 90.65 90.65 

Best Individual 

model 

(NasNetLarge) 

77 72 77 72 

 

Table 4.5 proved that the ensemble model achieved the best performance. Comparing 

to the best results, the ensemble model enhanced the accuracy, the precision, the recall, 

and the F1-score by 12.93%, 18.64%, 13.65% and 18.65%, respectively.  
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As a result, we can conclude that the ensemble model reduced the minor classes errors 

and improved the performance. However, the performance can also be enhanced using 

the balancing technology by which the minor classes samples will be oversampled and 

the balanced will be partially retrieved. 

 

4.4. BALANCED TRAINING RESULTS 

 

Figure 4.10 illustrates the distribution over the balanced dataset. The original dominant 

class (which is the 'NO DR' class) has a lower percentage comparing to the original 

distribution. Besides, the minor classes samples are oversampled. 

 

 

Figure 4.10. Balanced dataset distribution 

 

The dataset is split using 75% for training and 25% for validation and test. In this 

scenario, the dataset split is different since the number of images are increased in terms 

of balancing. The following transformations are applied: 

 

• Convert all images into RGB 

• Resize all images into 150*150 in order to reduce the training time. The images 

are resized into a smaller size 150*150 instead of 224*224 since the balancing 
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operation will increase the number of images and this will increase the training 

time. 

• Convert the targets to categorical form in order to compute probabilities for 

each one in the training step (the class with the highest probability will be the 

predicted class). 

• Shuffle training images in order to prevent the training process from 

memorizing the order of the training samples. 

 

4.4.1. Training Parameters (Training Options) 

 

For this scenario, the same training options of the unbalanced scenario is used.  

 

4.4.2. Training Scenarios 

 

In all training scenarios, the used model consists of two main parts; the feature 

extraction part and the classification part. 

 

In the feature extraction part, many DL models are suggested, while the classification 

part is fixed for all models. 

 

Many training scenarios are proposed including the following: 

 

• Training the VGG-16-based model using the balanced version of the dataset. 

• Training the VGG-19-based model using the balanced version of the dataset. 

• Training the Xception-based model using the balanced version of the dataset. 

• Training the EfficientNet-based model using the balanced version of the 

dataset. 

• Make an ensemble of the models (1-4) using the balanced version of the 

dataset. 

 

For these scenarios, we added another enhancement rather than the balancing process. 

The base models are re-trained using our training dataset to get a better performance 

(In previous scenario of unbalanced dataset, the base models weights are frozen). 
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4.4.3. Results of Training VGG-16 as a Base Model Using the Unbalanced Version 

of the Dataset 

 

In this scenario, the VGG16 model is used as the base model in order to extract image 

features. The output of VGG16 model is a feature vector of size 512. Figure 4.11 shows 

the architecture, the output size and number of trainable parameters of the VGG16-

based model. 

 

 

Figure 4.11. VGG16-based DL model for diabetic retinopathy detection. 

 

The VGG base model weights are not frozen so that the number of trainable parameters 

is computed for both the base and the classification parts (14749765 parameters). 
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Figure 4.12 shows the training and validation accuracy and loss. 

 

 

 

Figure 4.12. Training and validation accuracy and loss curves of the VGG16 based DL 

model of diabetic retinopathy detection (balanced version) 

 

Results of this scenario observed by Figure 4.12 show that the validation accuracy is 

76.41% and the validation loss is 0.7757. While the training accuracy is 83.17% and 

the training loss is 0.4452. The average training time is 22s/step. 

 

The detailed results, including the precision, recall and F1-score are illustrated in Table 

4.6. 
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Table 4.6. Precision, Recall, and F1-score of the VGG based DL model of diabetic 

retinopathy detection. 

VGG16 Precision % Recall % F1-score % Num. of test 

samples 

No_DR 93 95 94 443 

Mild 66 79 72 311 

Moderate 63 74 68 152 

Severe 74 49 59 100 

Proliferate_DR 45 16 23 96 

Macro avg 68 62 63 1102 

Weighted avg 75 76 75 1102 

 

Table 4.6 shows that there is no 0% result since the classes are balanced. However, the 

accuracy is not good and needs improvement. 

 

4.4.4. Results of Training VGG-19 as a Base Model Using the Unbalanced Version 

of the Dataset 

 

In this scenario, the VGG19 model is used as the base model in order to extract image 

features. The output of VGG19 model is a feature vector of size 512. The VGG19 

model is deeper than VGG16 so the number of trainable parameters is higher (since 

VGG19 has three more Conv layers than VGG16). Figure 4.13 shows the architecture, 

the output size and number of trainable parameters of the VGG19-based model. 
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Figure 4.13. VGG19-based DL model for diabetic retinopathy detection. 

 

The VGG19 base model weights are not frozen so that the number of trainable 

parameters is computed for both the base and the classification parts (20059461 

parameters). 

 

Figure 4.14 shows the training and validation accuracy and loss. 
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Figure 4.14. Training and validation accuracy and loss curves of the VGG16 based DL 

model of diabetic retinopathy detection (balanced version). 

 

Results of this scenario observed by Figure 4.14 show that the validation accuracy is 

75.32% and the validation loss is 1.08. While the training accuracy is 86.65% and the 

training loss is 0.352. The average training time is 25.5s/step. 

 

The detailed results, including the precision, recall and F1-score are illustrated in Table 

4.7. 

 

Table 4.7. Precision, Recall, and F1-score of the VGG19 based DL model of diabetic 

retinopathy detection. 

VGG19 Precision % Recall % F1-score % Num. of test 

samples 

No_DR 92 95 94 443 

Mild 69 69 69 311 

Moderate 59 69 63 152 

Severe 72 58 64 100 

Proliferate_DR 43 33 37 96 

Macro avg 67 65 66 1102 

Weighted avg 75 75 75 1102 
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Table 4.7 shows that there is no 0% result since the classes are balanced. However, the 

accuracy is not good and needs improvement. VGG19 model demonstrates a similar 

performance to the VGG16 model. However, VGG16 results are better than VGG19. 

 

4.4.5. Results of Training Xception as a Base Model Using the Unbalanced 

Version of the Dataset 

 

In this scenario, the Xception model is used as the base model in order to extract image 

features. The output of Xception model is a feature vector of size 2048 which is higher 

than VGG and VGG19 output size. The Xception model is deeper than VGG so the 

number of trainable parameters is higher (since Xception has 71 layers deep). Figure 

4.15 shows the architecture, the output size and number of trainable parameters of the 

Xception-based model. 

 

 

Figure 4.15. Xception-based DL model for diabetic retinopathy detection. 
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The Xception base model weights are not frozen so that the number of trainable 

parameters is computed for both the base and the classification parts (20994861 

parameters). This number of parameters is higher than VGG16 and VGG19 

parameters. Figure 4.16 shows the training and validation accuracy and loss of 

Xception model on the balanced dataset. 

 

 

 
Figure 4.16. Training and validation accuracy and loss curves of the Xception based 

DL model of diabetic retinopathy detection (balanced version). 

 

Figure 4.16 illustrates that the validation accuracy is 82.49% and the validation loss is 

1.03 which is better than all other previous models. Similarly, the training accuracy is 

97.97% and the training loss is 0.069. The average training time is 24s/step. 
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The detailed results, including the precision, recall and F1-score are illustrated in Table 

4.8. 

 

Table 4.8. Precision, Recall, and F1-score of the Xception based DL model of diabetic 

retinopathy detection. 

Xception Precision % Recall % F1-score % Num. of test 

samples 

No_DR 96 97 97 443 

Mild 67 91 77 311 

Moderate 86 66 75 152 

Severe 81 65 72 100 

Proliferate_DR 83 31 45 96 

Macro avg 83 70 73 1102 

Weighted avg 84 82 81 1102 

 

Table 4.8 shows that the performance of this model is better than all previous models 

since the validation accuracy is 82%, the precision 84%, the recall 82% and F1-score 

is 81% which are all better than results of previous models. However, some classes 

like "Proliferate_DR" need enhancement. 

 

4.4.6. Results of Training EfficientNetB3 as a Base Model Using the Unbalanced 

Version of the Dataset 

 

In this scenario, the EfficientNet model is used as the base model in order to extract 

image features. The output of EfficientNet model is a feature vector of size 1536 which 

is higher than VGG and VGG19 output size but less than Xception output size. The 

EfficientNet model is deeper than VGG but less than Xception.  

 

Figure 4.17 shows the architecture, the output size and number of trainable parameters 

of the EfficientNet-based model. 
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Figure 4.17. Xception-based DL model for diabetic retinopathy detection 

 

The EfficientNet base model weights are not frozen so that the number of trainable 

parameters is computed for both the base and the classification parts (10796845 

parameters). This number of parameters is less than all previous models and this is 

why this model called an efficient model. 

 

Figure 4.18 shows the training and validation accuracy and loss of EfficientNet model 

on the balanced dataset. 
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Figure 4.18. Training and validation accuracy and loss curves of the EfficientNet based 

DL model of diabetic retinopathy detection (balanced version) 

 

Figure 4.18 shows that the validation accuracy is 83.48% and the validation loss is 

1.18 which is better than all other previous models. Similarly, the training accuracy is 

98.49% and the training loss is 0.056 . The average training time is 26s/step. The 

detailed results, including the precision, recall and F1-score are illustrated in  

Table 4.9. 
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Table 4.9. Precision, Recall, and F1-score of the EfficientNet based DL model of 

diabetic retinopathy detection. 

EfficientNet Precision % Recall % F1-score % Num. of test 

samples 

No_DR 97 97 97 443 

Mild 72 87 79 311 

Moderate 74 82 78 152 

Severe 82 61 70 100 

Proliferate_DR 78 38 51 96 

Macro avg 81 73 75 1102 

Weighted avg 84 83 83 1102 

 

Table 4.8 shows that the performance of this model is better than all previous models 

since the validation accuracy is 82%, the precision 84%, the recall 83% and F1-score 

is 83% which are all better than results of previous models. However, some classes 

like " Proliferate_DR " need enhancement. 

 

4.4.7 Results of the Ensemble Model (Balanced Version of the Dataset) 

 

An ensemble of all previous models is created and the weighted average method is 

used to get the final score of the ensemble. Table 4.10 includes the detailed 

performance calculations of the proposed ensemble model. The validation accuracy is 

92% which is better than the validation accuracy of all previous models. 

 

Table 4.10. Precision, Recall, and F1-score of the ensemble-based DL model of 

diabetic retinopathy detection. 

Model Accuracy % Precision % Recall % F1-Score % 

Ensemble 92 92 92 91 

Best Model 82 84 83 83 

 

Ensemble model has the best performance against all previous individual models. 

Comparing to the best model (EfficientNet), the accuracy is increased by 10%, the 

precision is increased by 8%, the recall is increased by 9% and F1-score is increased 

by 8%, respectively. 
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The performance of the worst class "Proliferate DR" is also improved comparing to all 

previous individual models. 

 

4.5. BINARY-CLASS DIABETIC RETINOPATHY DETECTION SCENARIO 

 

In this scenario, the labels are grouped into only two categories (DR or NO_DR). 

Based on this modification, the VGG-16, Xception, and EfficientNet models are re-

trained in terms of this modification. Figure 4.19 includes the training and validation 

curves of the trained models. Besides, the ensemble model is built again, and the 

results are concluded in Table 4.12. 

 

 
A. 

 
B. 
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C. 

 

D. 
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Figure 4.19. Training and validation accuracy of the trained models (A,B: VGG-16, 

C,D: Xception, E,F: EfficientNet) for the binary-class classification 

problem. 

 

Table 4.11. Precision, Recall, and F1-score of the best individual and ensemble-based 

DL models of diabetic retinopathy detection system based on both 

balanced and unbalanced version of the dataset. 

Model Accuracy % Precision % Recall % F1-score % 

VGG-16 98.46 98.46 98.46 98.4 

Xception  97.01 97 97 97 

EfficientNet  99.27 99.28 99.27 99.27 

Ensemble  99.46 99.46 99.46 99.46 

 

 

Results of Table 4.11 shows that the best accuracy corresponds to the ensemble model 

with 99.46%. The accuracy is enhanced by 0.19% compared to the best model 

(EfficientNet). 

 

4.6. TEST SOME SAMPLES 

 

In order to show the output of evaluating the ensemble model after using some test 

samples, Figure 4.20 shows some evaluation results of multi-class case while Figure 

4.21 includes examples of testing the binary class classification ensemble model. 
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The Actual Class is No_DR 

and the ensemble model 

predicted it as No_DR  

 

The Actual Class is moderate 

and the ensemble model 

predicted it as moderate. 

Figure 4.20. Some evaluation results of multi-class scenario. 
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The Actual Class is DR, and the 

ensemble model predicted it as DR 

 

The Actual Class is No_DR and the 

ensemble model predicted it as 

No_DR 

 

The Actual Class is DR and the 

ensemble model predicted it as DR. 

 

Figure 4.21. Some evaluation results of binary-class scenario. 
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4.7. DISCUSSION OF THE RESULTS 

 

An analysis and detailed comparison of the results of the used deep learning models 

of diabetic retinopathy detection will be discussed in this section. The proposed 

scenarios of using both unbalanced and balanced versions of the dataset will also be 

compared.  

 

The results of the ensemble DL model on the unbalanced dataset show an accuracy of 

89.93% and F1-score of 90.65%. These performance metrics are higher than the best 

individual model (NasNetLarge with accuracy: 77%, F1-score: 72%). Tables 4.8, 4.9, 

and 4.10 include the results of the proposed DL models trained on the balanced version 

of the dataset. The main observation here is that the ensemble model consistently 

achieves the best performance exceeding the performance of the Xception and 

EfficientNet individual models in terms of accuracy, precision, recall, and F1-score. 

 

The ensemble model achieves 98% precision, recall, and F1-score in the case of the 

category "No-DR."  The results of class "Proliferate_DR" are the worst ones in all 

scenarios. However, the results of the individual models of this category is completely 

less than the corresponding results of the ensemble model (since the ensemble model 

achieves a precision of 98%, a recall of 62%, and an F1-socre of 76% for this class). 

Compared to the Xception-based model, the "Proliferate" class has lower performance 

metrics (precision: 83%, recall: 31%, and F1-score: 45%). Similarly, the EfficientNet-

based model achieves a precision of 78%, a recall of 38% and an F1-score of 38% % 

for the "Proliferate" class. 

 

The rest of classes, including "Mild", "Moderate", and "Severe", achieve better 

performance in case of using ensemble model. A significant improvement in 

performance is observed. For the case of "Mild" class, the ensemble model achieves 

an F1-score of 88%, compared to 77% in the Xception model and 79% in the 

EfficientNet model. While for the case of "Moderate" class, the ensemble model scores 

an F1-score of 88%, compared to 75% in the Xception model and 78% in the 

EfficientNet model. 
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An F1-score of 91% of the "Severe" class is registered compared to only 72% and 70% 

of the same class in the Xception and EfficientNet models, respectively.To conclude, 

the ensemble-based deep model of diabetic retinopathy system achieves the best 

performance exceeding all other individual models.This result is observed in case of 

all classes and in term of all performance metrics. For the case of the best and worst 

classes (No_DR and Proliferate_DR), the ensemble model also outperformed all 

individual models. The final observed result is that the balanced dataset improves the 

performance of the diabetic retinopathy system. The concluded results are illustrated 

in Table 4.11. 

 

Table 4.11. Precision, Recall, and F1-score of the best individual and ensemble-based 

DL models of diabetic retinopathy detection system based on both 

balanced and unbalanced version of the dataset. 

Model Precision % Recall % F1-score % Num. of test 

samples 

NasNetLarge 72 77 72 731 

Xception (Balanced) 84 82 81 1102 

EfficientNet 

(Balanced) 

97 97 97 443 

Ensemble 

(Unbalanced) 

77 72 77 731 

Ensemble 

(Balanced) 

92 92 91 1102 

 

A comparison between the current study and previous ones in the field of diabetic 

retinopathy is illustrated in Table 5.1. 
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Table 4.12. Comparison between the current study and related works. 

Researcher Methodology Dataset Main Results Limitations 

Soniya et al. 

[38] 

CNN single-based 

and CNN 

heterogeneous-

based 

DIARETD

B0 (130) 

Accuracies ranging from 

42.5% to 95% 

Limited 

dataset size 

Lam et al. 

[40] 

GoogleLeNet-v1, 

AlexNet, VGG-16, 

ResNet, Inception-

V3 

Kaggle 

EyePACS 

(243 

images) 

Best accuracy: 98% 

(InceptionV3) 

Binary 

classification 

(DR or Not 

DR) 

Pour et al. 

[44] 

EfficientNet B5 MESSIDO

R, 

MESSIDO

R-2, IDRiD 

AUC: 0.94 

(MESSIDOR), 0.93 

(IDRiD) 

Binary 

classification 

(DR or Not 

DR) 

Thota and 

Reddy [45] 

VGG-16 Kaggle 

EyePACS 

Accuracy: 74%, 

Sensitivity: 80%, 

Specificity: 65% 

Low 

accuracy 

Parthashara

thi et al. [48] 

CNN Kaggle 

(1,000) 

Accuracy: 91.5% Binary 

classification 

(DR or Not 

DR) 

Raju et al. 

[56] 

Modified U-Net IDRiD Sensitivity: 95.6%, 

Specificity: 98.6% 

Limited 

dataset size 

Chudzik et 

al. [58] 

VGG-16, VGG-19, 

Inception-v3, 

Inception-ResNet-

v2, and Xception 

EyePACS 

(243 

images) 

Best accuracy: 96.8% 

(Inception-ResNet-v2) 

Low dataset 

size/ Binary 

classification 

Current 

Study 

VGG-16 

VGG-19 

NasNetLarge, 

Inception, 

Xception, 

EfficientNet, 

Ensemble learning 

Kaggle 

Dataset 

Multi-

class 

Best accuracy 

92%, Preiciosn 

92%, recall 

92%, and F1-

score 91% 

Limited 

dataset size 

Binary

-Class 

Accuracy, 

precision, 

recall, and F1-

score: 99.46% 

 

To conclude, the current study applied ensemble learning with the balancing (over-

sampling) approach to achieving the best performance. The current study 

outperformed all previous studies. However, some studies have good accuracy, like 

Chudzik et al. [58], Raju et al. [56], and Lam et al. [40], but all of these studies didn't 

take into account the different stages of diabetic retinopathy disease (they used binary 

classification). Some studies used lower data sizes [56] ,[58], [38]. Although Pratt et 

al. [37] study demonstrated a high specificity but the sensitivity and accuracy were 

low. In terms of binary classification, the current study outperformed all similar 

studies. 
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PART 5 

 

CONCLUSION, FUTURE WORK 

 

5.1. CONCLUSION 

 

In the current study, a new diabetic retinopathy detection system is introduced. The 

study consisted of many steps. In the first one, an image dataset was acquired. The 

images included different cases of the disease (severe, mild, moderate, and proliferate) 

besides the benign (normal) cases. The main problem of this dataset is that the normal 

case contains most of the dataset images. To solve this problem, an over-sampling 

technique (SMOTE algorithm) was used. By using the over-sampling approach, the 

dataset became balanced, and the minor class's samples were increased. Besides the 

balancing step, the data preprocessing was used to resize images to a lower size in 

order to minimize the training time. Data augmentation was also used to increase the 

number of images and generate different images with specific variations (rescaling and 

flipping). The images values are also normalized by dividing the pixels' values by 255.  

For the training step, two main scenarios were proposed. The first is based on the 

unbalanced version of the dataset, while the second is the balanced scenario. 

 

In the first scenario, the VGG-16, NasNet, Xception, and Inception models were 

selected as base models for the proposed detection systems. Besides, a classification 

part (flatten, dropout, and dense layers) was used. All models were trained using a 

training split of 75% of the dataset and evaluated using a validation split of 25% of the 

dataset. For the second scenario, VGG-16, VGG-19, EfficientNet, and Xception were 

used as base models, and the same previous classification part was also used. The 

experiments were obtained from all those scenarios. The results showed that the 

balanced version of the dataset achieved a better performance in all scenarios. 
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The ensemble model of the DL models of the balanced and unbalanced scenarios were 

also used. The results illustrated that the best individual model was the EfficientNet, 

while the best model was the ensemble (balanced) model with an accuracy of 92%. 

 

Moreover, the binary-class prediction showed a better performance of 99.46% of the 

ensemble model 5.2. LIMITATIONS 

 

Since the current study dealt with most of previous studies limitations (like lower 

dataset size, low accuracy, dealing with only two condition of disease), the limitations 

of this study is the use of only one specific dataset which will include specific 

categorizations and conditions. 

 

5.3. FUTURE WORK 

 

Based on the previous limitations, the future work and recommendation can be 

concluded as follows: 

 

• Increase the number of dataset samples. 

• Try other deep learning models. 

• Apply some other different fusion techniques like data fusion or feature-level 

fusion in which many base models can be fused to produce a fusion feature 

vector then apply the classification part. 

• Try other different classifiers in the classification part like using an SVM/k-

NN classifier after the based model. 
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