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Thesis Advisor:  

Assoc. Prof. Dr. Zafer Albayrak  
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In today's era of ever-increasing online dangers, the identification of phishing URLs 

has become a critical task to ensure user safety and protect sensitive information. With 

the rise in sophisticated cyberattacks, hackers have become adept at creating deceptive 

websites that mimic legitimate ones, making it challenging for users to distinguish 

between genuine and fraudulent URLs. This has led to an urgent need for robust and 

advanced techniques to detect and mitigate the risks associated with phishing attacks. 

By employing advanced algorithms and machine learning models, cybersecurity 

experts are continuously working towards enhancing the accuracy and efficiency of 

phishing URL detection systems, empowering users to make informed decisions while 

navigating the vast digital landscape. 

 

The study in this thesis consists of three stages. In the first stage, we propose a new 

classification algorithm called the Core Classification Algorithm (CCA), which is 
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derived from the K-nearest neighbor algorithm (KNN) and hybridized with the 

unsupervised algorithm K-means. The primary objective is to find similarities while 

overcoming the challenge of excluding non-representative cores from the clusters. The 

hybridization process aims to leverage the synergies created by combining two 

different algorithms, iteratively modifying outcomes to achieve optimal solutions. This 

strategy improves the efficiency and accuracy of classifying data into two or more 

clusters based on their labels. 

 

In the second stage, we introduce the Improved Core Classification Algorithm (ICCA), 

an adaptation of the algorithm used in the previous section. Instead of relying on a 

single core point, we employ active sets. Compared to the utilization of various other 

available algorithms, this approach yields more accurate results. 

 

Finally, we analyzed phishing URLs using a comprehensive dataset consisting of 

549,346 entries. Among these entries, 392,897 URLs were identified as phishing 

attempts, while 114,299 URLs were classified as legitimate. We conducted several 

preprocessing steps, including data cleaning, feature engineering, and feature 

selection, to enhance the overall quality of our analysis. These processes provided us 

with in-depth insights into the data and allowed us to extract critical features. 

Subsequently, we evaluated our algorithms, and the findings demonstrated 

encouraging prediction accuracy. 

 

Keywords : Classification; Phishing attacks; K-means; Hybridization; Core point; 

Active set; Clustering. 

Science Code : 92403 
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ÖZET 

 

Doktora Tezi 

 

KİMLİK AVI URL TESPİT İÇİN YENİ BİR MAKİNE ÖĞRENİMİ 

SINIFLANDIRMA ALGORİTMASI TASARIMI 

 

Abdalraouf Almahdi Mohammed ALARBI 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Doç. Dr. Zafer ALBAYRAK  

Haziran 2023, 96 sayfa 

 

Günümüzde çevrimiçi tehlikelerin sürekli artmasıyla, kimlik avı URL'lerini 

belirlemek, kullanıcıların güvenliğini sağlamak ve hassas bilgileri korumak  gittikçe 

daha önemli bir görev haline gelmektedir. Bu tezde bu problemlere çözüm olarak, 

Çekirdek Sınıflandırma Algoritması (CCA) adını verdiğimiz yeni bir sınıflandırma 

algoritması önerilmiştir. Bu algoritma, K-means algoritması ile hibritlenerek  

türetilmiştir.  Hibritleştirme sürecinin amacı, mümkün olan en iyi çözümlere ulaşmak 

için sonuçları yinelemeli olarak değiştirerek iki farklı algoritma birleştirilmiştir. Bu 

strateji, verilerin bu kümelere sınıflandırılma doğruluğunu artırmanın yanı sıra, 

etiketleri temel alarak iki veya daha fazla kümeye ayırarak sınıflandırma verimliliğinin 

arttırılması sağlanmıştır. 

 

Tezin sonraki bölümünde, bir önceki bölümde kullanılan algoritmanın bir uyarlaması 

olan Enhanced Core Classification Algorithm (ICCA) sunulmuştur. Bu yinelemede tek 
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bir çekirdek noktaya güvenmek yerine, bunun yerine Aktif kümeler kullanılmıştır. 

Literatürdeki diğer çeşitli algoritmalar ile karşılaştırıldığında, bu yöntemin 

sonuçlarının literatürdeki diğer algoritmalardan  daha  iyi sonuçlar verdiği 

görülmüştür.  

 

Tezin son bölümünde, içinde 549.346 giriş bulunan kapsamlı bir veri kümesini 

kullanarak kimlik avı URL'leri hakkında bir analiz yapmıştık. Bu girişler arasında 

phishing girişimi olduğu tespit edilen 392.897 URL ve yasal kabul edilen 114.299 

URL vardı. Analizimizin genel kalitesini iyileştirebilmek için veri temizleme, özellik 

mühendisliği ve keşif veri analizi (EDA olarak da bilinir) gibi bir dizi ön işleme adımı 

gerçekleştirdik. Bu süreçler sayesinde, verilere ilişkin daha derinlemesine içgörüler 

elde edebildik ve kritik öneme sahip özellikleri ayıklayabildik. Ardından 

algoritmalarımızın analizini yaptık ve elde ettiğimiz bulgular tahminlerinin doğruluğu 

açısından cesaret vericiydi. 

 

Anahtar Sözcükler : Sınıflandırma; Kimlik avı saldırıları; K-anlamı; Hibridizasyon; 

Çekirdek nokta; Aktif küme; Kümeleme. 

Bilim Kodu  : 92403 
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PART 1 

 

INTRODUCTION 

 

During the era of increased Internet usage and a rise in Phishing URLs worldwide, 

researchers have long been employing machine learning (ML) techniques to protect 

individuals. Numerous studies have shown promising results, although attackers have 

become more sophisticated in detecting and rectifying errors. The emergence of the 

Internet as a primary medium for business and personal communication has led to the 

emergence of crucial research areas concerning online credibility and illicit activities 

[1]. 

 

Classification is the process of dividing a dataset based on its labels. All classification 

methods follow a two-step approach: firstly, a model is trained to categorize the dataset 

into two or more groups; secondly, the model, usually represented by a mathematical 

formula, is evaluated on an unseen dataset to determine its performance, which 

determines its acceptance or rejection. Support Vector Machines (SVM), Naive Bayes 

(NB), Decision Trees (DTs), and various other algorithms are widely used for 

classification [2]. 

 

Machine learning (ML) and classification find applications in various sectors such as 

manufacturing, retail, healthcare, and life sciences, among others. Machine learning 

plays a pivotal role in bolstering cybersecurity by offering advanced and dynamic 

defense mechanisms against evolving threats. By analyzing vast amounts of data, 

machine learning algorithms can detect patterns, anomalies, and potential 

vulnerabilities that may go unnoticed by traditional security systems. Through 

continuous learning and adaptation, these algorithms improve the accuracy and 

efficiency of intrusion detection, malware identification, and user behavior analysis. 

Furthermore, machine learning empowers cybersecurity experts to automate 

processes, optimize resource allocation, and respond swiftly to potential breaches, 
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mitigating the risks and potential damage associated with cyberattacks. Ultimately, 

integrating machine learning into cybersecurity enables organizations to fortify their 

defenses, enhance proactive threat detection, and safeguard critical digital assets in an 

increasingly complex and interconnected digital landscape [2, 3]. Phishing attacks 

pose a significant threat to individuals and businesses alike, making it crucial for 

programmers to focus on detecting and preventing these attacks. The aim is to 

minimize opportunities for hackers to steal sensitive information such as personal and 

bank account passwords, telecommunications records, and business data [4]. Phishing 

victims are deceived into providing private information by being directed to websites 

that closely resemble the ones they typically use. The prevalence of phishing scams is 

rapidly increasing on an international scale [5]. One major issue is the proliferation of 

social engineering techniques that mimic URLs and websites to extract various types 

of user data, including personal information, bank account details, and passwords. The 

development of effective methods to detect phishing URLs is a critical aspect of 

addressing this problem, especially considering the potential risks to enterprises and 

their sensitive data [6]. This discussion would also cover different approaches to 

classification algorithms in machine learning (ML), emphasizing their applications in 

medical research, predictions, and healthcare data processing. Classification 

algorithms have found extensive use in healthcare, phishing attack detection, business, 

finance, and other domains. Accurate predictions and unambiguous categorization are 

crucial in ML, and data scientists employ various algorithms and models to extract 

patterns that generate actionable insights [7]. The process of studying data aids in 

training the classifier to better understand the dataset. Classification proves most 

beneficial when predicting certain attributes based on training, such as determining a 

person's gender or identifying high blood sugar levels. However, in fields where 

erroneous forecasts are heavily discouraged, the topic of predictions can be sensitive. 

Several classification algorithms, including Support Vector Machines (SVM), Naive 

Bayes, Decision Trees, and Neural Networks, have shown superior performance in 

diagnosing diseases, leveraging data mining and ML techniques to handle large 

volumes of data from diverse sources. Evaluating the accuracy of these algorithms 

against each other is essential [8]. Each algorithm has its own mechanism or strategy 

for constructing suitable models, ranging from probabilistic approaches to neural 

networks and linear equations for weight updates. K-nearest neighbors (KNN) relies 



 

3 

on the nearest neighbor strategy, while SVM employs linear algebra. Through 

extensive research on various classification algorithms documented in published 

literature, it was found that artificial neural network (ANN) algorithms generally apply 

to all data domains, including audio, images, video, text, and standard datasets. Despite 

this, the availability of numerous algorithms remains advantageous as each algorithm 

possesses unique characteristics to tackle different dataset challenges. Some 

algorithms excel in certain cases while being deficient in others, and vice versa.  

 

 However, due to several reasons, primarily the extensive nature of medical processes, 

it will take a considerable amount of time before AI replaces human professionals. 

While the potential of ML offers the means to automate certain aspects of therapy, 

there are significant challenges impeding its rapid adoption in healthcare. This stands 

as one of the key obstacles in the field. Deep learning, also known as neural network 

models with multiple layers of features or variables, can provide accurate predictions 

for complex datasets such as X-rays, cloud architecture, graphs, and images, which 

may contain numerous hidden features requiring analysis. Since the 1970s, when 

MYCIN was developed to treat blood-borne and bacterial infections, ML has primarily 

focused on diagnosing and treating various disorders. However, these systems were 

unable to integrate with clinicians' workflows or medical record systems, and they 

could not replace human diagnosticians [9].  

 

This thesis introduces a novel classification algorithm called the Core Classifier 

Algorithm (CCA), which is based on cores representing the distinctive attributes and 

traits of each category. These cores are employed to classify new data points based on 

their resemblance to the cores. Each class is characterized by its unique features. The 

CCA incorporates the K-means clustering method to emulate the learning mechanism 

of neural networks and mitigate the negative effects of anomalies in data distribution, 

such as outliers and overlaps. While the results of the K-means algorithm are not 

deterministic and depend on specific implementations, the main motivation for its use 

in the CCA is to generate centroids and improve model accuracy. The CCA 

methodology involves multiple iterations of K-values to effectively capture diverse 

distributions, converging towards the most optimal representation and achieving high 

levels of accuracy, even when the data exhibits significant variability. This is 
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analogous to neural networks, which undergo multiple iterations of weight adjustment 

and error rate computation for each feature until they reach optimal outcomes. The use 

of multiple iterations of K-values in the CCA enhances the representation of diverse 

distributions. 

 

In the second stage of this study, the ICCA algorithm is presented as a derivative of 

the CCA algorithm. The ICCA algorithm enhances accuracy through the utilization of 

Active Set techniques, which play a crucial role in its effectiveness. Experimental 

results demonstrate the algorithm's efficacy across various domains, placing it on par 

with other established algorithms. 

 

Finally, in this thesis, we apply preprocessing techniques to extract features from 

URLs and employ feature engineering and selection to train our model and detect 

phishing URLs using our algorithms. We compare the performance of our algorithm 

with other well-known algorithms such as SVM, Decision Trees, and Random Forest 

by measuring results using the confusion matrix. Our algorithm demonstrates high 

accuracy and good performance in this evaluation. 

 

The thesis is organized as follows: Part 2, Literature review of machine learning, 

phishing attacks, and hybrid algorithms. Part 3, Theoretical background of machine 

learning, discussion of some algorithms used in the thesis, and an overview of the 

Phishing URLs domain. Part 4, Methodology employed in the thesis. Part 5, 

Presentation and discussion of the results. Part 6, Conclusion. 
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PART 2 

 

LITERATURE REVIEW 

 

2.1. MACHINE LEARNING AND PHISHING ATTACKS 

 

In this study, the authors focused on a content-based three-stage series attack as a 

mechanism for phishing attacks. The model incorporated three variables: URLs, web 

traffic, and web content, aiming to identify factors contributing to phishing attack 

success or failure. To implement the proposed phishing attack method, a dataset of 

recent phishing attacks was compiled. Real phishing cases demonstrated higher 

accuracy in detecting both zero-day phishing attacks and common phishing attempts. 

The accuracy of phishing detection was assessed using three classifiers: Neural 

Network (NN), Support Vector Machine (SVM), and Random Forest (RF). The NN 

classifier achieved 95.18% accuracy, SVM achieved 85.45% accuracy, and RF 

achieved 78.89% accuracy. These findings highlight the effectiveness of employing 

machine learning in identifying phishing attack [10]. 

 

The authors aimed to enhance phishing detection accuracy by examining the utilization 

of email body language in their literature review. They found that email body text 

contains concealed information, justifying their endeavor. Accordingly, they propose 

a novel classifier leveraging natural language processing (NLP), deep learning 

techniques, and a Graph Convolutional Network (GCN) to identify phishing emails. 

This classifier analyzes the email content, utilizing NLP and deep learning algorithms 

to identify phishing characteristics. Its performance is evaluated using accuracy, 

precision, and recall metrics, and compared to state-of-the-art models. The proposed 

classifier demonstrates excellent performance when applied to a well-balanced and 

labeled dataset [11]. 
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Given the increasing prevalence of cybercrime victimization, there is an urgent need 

for an intelligent defense mechanism to protect users. The inadequate adoption of 

security technologies is identified as the primary factor driving this surge. Deep 

learning has emerged as a significant advancement, surpassing traditional signature-

based and classical machine learning approaches, due to its exceptional performance 

and comprehensive problem-solving capabilities. The rapid progress in deep learning 

techniques has facilitated this advancement. In this paper, authors introduce the LSTM, 

CNN, and LSTM-CNN algorithms as effective approaches for distinguishing and 

categorizing website URLs as genuine or phishing. The evaluation of this proposed 

solution demonstrates highly favorable outcomes in identifying phishing websites. 

However, these recommended deep learning algorithms exhibited considerable 

variability in performance when applied to the same dataset [12]. 

 

The objective of this study is to propose a framework utilizing the stacking model for 

the detection of phishing websites [13]. Phishing is a scam where criminals steal user 

credentials to make money. Cybercrime impacts e-commerce, internet business, 

banking, and digital marketing. Phishers use spam emails and fake websites that seem 

real. Targeted websites steal consumers' personal data. Information gain, gain ratio, 

Relief-F, and recursive feature elimination (RFE) are used to evaluate phishing 

datasets. Two qualities are created from the strongest and weakest. RF, NN, bagging, 

support vector machine, Naive Bayes, and k-nearest neighbor are used for principal 

component analysis on the chosen and remaining features. Next, two stacking models, 

Stacking1 (RF NN Bagging) and Stacking2 (KNN RF Bagging), combine the best 

classifiers to improve the proposed features and all classifiers. RFE successfully 

removes the dataset's least significant features. Stacking1 (RF NN Bagging) detects 

and classifies phishing websites better than other classifiers. 

 

Website vulnerabilities to malicious attacks are examined in this article. Machine 

learning improves predictions. Phishing assaults and botnets have increased in recent 

years. The authors threats exploit deceptive URLs to fool visitors. Decision tree and 

logistic regression methods are used to handle real-time difficulties and predict end 

user concerns. The information comprises 420,000 legitimate and affected websites. 
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Testing datasets assess prediction time and accuracy. Logistic regression improves 

efficiency and accuracy [14]. 

 

This study introduces hybrid deep learning models designed to detect phishing uniform 

resource locators (URLs). These models leverage long short-term memory and deep 

neural network methods. The evaluation of these models is conducted using datasets 

specific to phishing. The proposed hybrid deep learning models incorporate character 

embedding and natural language processing (NLP) features. By incorporating these 

features, the models are able to effectively utilize both the deep connections between 

characters and the high-level connections based on NLP. The experimental results 

demonstrate that the suggested models outperform other existing phishing detection 

models in terms of accuracy [15]. 

 

2.2. HYPER ALGORITHMS   

 

Numerous articles have been published describing one of the two primary approaches 

to solving this problem. When training data are available, supervised methodologies 

utilize machine learning algorithms. When linguistic resources are available, an 

unsupervised method based on a semantic orientation is utilized. Few studies, 

however, integrate the two approaches. The authors of this paper propose using meta-

classifiers that combine supervised and unsupervised learning to construct a polarity 

classification system. Researchers have utilized a Spanish corpus of film evaluations 

alongside its parallel corpus in English. Initially, two distinct models are generated 

using these two corpora and machine learning algorithms. By integrating 

SentiWordNet into the English corpus, a new unsupervised model is generated. The 

three systems are combined using a meta-classifier that permits the application of 

multiple combination algorithms, such as the voting system or layering. When authors 

work with parallel corpora, the results obtained are superior to those obtained using 

the systems individually, indicating that this approach may be a viable strategy for 

polarity classification [16]. 

 

Semi-automatic and automatic MS plaque identification, segmentation, and 

classification technologies have increased in recent years. This research presents an 
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automatic mixed method using a typical unsupervised machine learning algorithm and 

a deep-learning attention-gate 3D U-net network. The deeplearning network is trained 

to segment infratentorial and juxtacortical plaques in clinical MRIs, which the standard 

technique struggles with. It was trained and validated using a multi-center multi-

scanner dataset of 159 cases with T1 weighted (T1w) and FLAIR images and hand MS 

plaque delineations segmented and validated by a panel of raters. Lesion-wise Dice 

score measured detection. Combining the two pipelines' output segmentations requires 

a simple label fusion. This integrated strategy detects infratentorial and juxtacortical 

lesions 14% and 31% better than the unsupervised machine learning pipeline utilized 

as a performance assessment baseline [17]. 

 

This study presents a brief comparison of the proposed model with commonly used 

machine learning models including AdaBoost, XGBoost, Random Forest, Gaussian 

Naive Bayes, and LGB. The purpose of this comparison is to illustrate the strengths 

and weaknesses of the suggested model. In the context of network intrusion traffic 

detection, the experimental results demonstrate that the accuracy level of their 

developed model is approximately 11% higher than that of previous models [18]. 

 

The proposed method combines diverse agents to improve the accuracy of predictions. 

In particular, supervised learning, which offers a direct The authors propose applying 

unsupervised exploratory methods to the data set to obtain a better understanding of 

the data's quality. This enhances the selection and categorization of data for creating 

training sets prior to machine learning application. Researchers demonstrate this using 

a genome-wide small interfering RNA screen with a high content. They conduct an 

unsupervised exploratory data analysis to facilitate the identification of four robust 

phenotypes, which they then use as a training set to construct a high-quality random 

forest machine learning model capable of differentiating four phenotypes with a 91.1% 

accuracy and a kappa of 0.85. In comparison to the use of unsupervised methods alone, 

their approach improved their ability to extract new information from the display [19]. 

 

This research presents a novel hybrid strategy that uses Bayesian optimization (BO) 

and a modified GA-PARSIMONY algorithm to generate parsimonious models. This 

method reduces computational complexity, which limits GA-PARSIMONY. Bayesian 
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optimization, often known as Bayes' theorem, is used to find good model parameters 

to overcome this restriction. After that, a limited iteration of the Genetic Algorithm-

PARSIMONY produces correct parsimony models. For accuracy, the approach uses 

feature reduction, data transformation, and parsimonious model selection. The hybrid 

technique is tested on 10 UCI datasets using extreme gradient boosting machines 

(XGBoost). The hybrid method yields models equivalent to GA-PARSIMONY. The 

hybrid technique decreases processing time for eight of the 10 datasets, demonstrating 

its efficiency. This study introduces a hybrid technique for creating parsimonious 

models and shows the possibilities of merging Bayesian optimization with GA-

PARSIMONY. The study solves computational complexity and creates accurate 

models in less time by integrating these two techniques. Experiments on varied 

datasets show the hybrid technique's efficacy and potential. This method can improve 

model derivation in many disciplines. This hybrid strategy may be used to more model 

optimization and complexity reduction problems in future study [20]. 

 

The proposed approach brings together different kinds of agents in order to improve 

the accuracy of predictions. Specifically, supervised learning, which provides a direct 

mapping between the data domain and the solution domain while simultaneously 

introducing bias to generalize the mapping, is combined with unsupervised learning, 

which does not depend on similar generalization bias or training data but also does not 

provide a direct mapping between the data and solution domains. This results in a more 

accurate mapping between the data domain and the solution domain than would be 

possible using supervised learning alone. The combination is achieved by the 

utilization of the joint probability density function (PDF) of the supervised 

classification. This function is put to use in order to direct the identification of clusters 

that have been demarcated by unsupervised learning. This multi-agent strategy can 

limit the amount of bias that is introduced during training, and it also offers a 

foundation for the generation of a probability distribution for each sample rather than 

a discrete classification. In turn, the distribution can be utilized to more properly 

describe the continuous character of well log signals, which reflects continuity in 

lithological regimes. This, in turn, allows for greater precision [21]. 
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The authors of this work explore the creation of a hybrid algorithm that incorporates 

two supervised algorithms, Naive Bayes and C4.5 as it shows in the Figure 2.1, to 

enhance the training process of network intrusion detection models, specifically 

focusing on SDN. By integrating the label field of each data sample during learning 

and training, the algorithm achieves improved training results with enhanced 

performance. Furthermore, the hybrid algorithm efficiently reduces the computational 

burden by consolidating the calculation of gain values into a single process, thereby 

minimizing unnecessary time expenditure. This reduction in time is particularly 

significant since the calculation of gain values necessitates referencing the entire 

training dataset. The findings from experimental evaluations underscore the practical 

advantages of the proposed algorithm, as it not only reduces the required training time 

but also enhances the overall performance of intrusion detection, surpassing other 

existing hybrid algorithms [22]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.The architecture of our proposed hybrid algorithm [22]. 

 

Further research can expand on this work by exploring the optimization of the hybrid 

algorithm's parameters and evaluating its applicability to different types of intrusion 

detection datasets. Additionally, investigations into the interpretability and robustness 

of the hybrid model could provide valuable insights into its practical implementation. 

Ultimately, this novel hybrid machine learning approach holds promise for enhancing 
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the effectiveness and efficiency of network intrusion detection systems, contributing 

to the advancement of cybersecurity [22]. 

 

In any distributed system, one of the most challenging tasks is to ensure network 

protection by identifying various attack scenarios. Intrusion detection systems have 

gained popularity for examining and identifying network attacks to enhance the 

security of data transmission. This paper focuses on developing a hybrid anomaly-

based intrusion detection model that combines two machine learning algorithms, each 

compensating for the limitations of the other, resulting in strong performance and a 

high detection rate. Specifically, the paper explores how each algorithm addresses the 

weaknesses of the other. The Random Forest algorithm is employed for feature 

selection, while the Classification and Regression Trees algorithm is utilized for 

classification. Both algorithms are utilized in this study [23]. 

 

Moreover, the methodology employed in this study has the potential to be generalized 

beyond OSA, as it can be adapted to identify high-risk patient groups in other complex 

and diverse disorders. By leveraging similar multimetric approaches, healthcare 

professionals can enhance their understanding of various diseases and tailor 

interventions to specific patient populations. Future research directions could involve 

validating the multimetric phenotyping framework using larger and more diverse 

datasets to establish its robustness and generalizability. Additionally, exploring the 

application of the framework in clinical settings and assessing its impact on patient 

outcomes would provide further evidence of its utility and effectiveness. Nevertheless, 

the integration of supervised and unsupervised machine learning techniques in the 

multimetric phenotyping framework offers a comprehensive approach to classify OSA 

patients. This approach reduces subjectivity, improves reliability, and reveals novel 

subgroups with distinct risks of developing associated disorders. The potential 

application of the framework extends beyond OSA, making it a valuable tool for 

identifying high-risk patient groups in various complex diseases [24]. 

 

The authors present a paradigm for semi-supervised learning that integrates clustering 

and classification into a single concept. Clustering analysis is a potent knowledge-

discovery method, and it has the potential to uncover the underlying data space 
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structure from unlabeled data as shown in Figure 2.2. This is what motivates the 

researchers to do the study. To assist in the development of a more accurate classifier, 

our system incorporates semi-supervised clustering into the self-training classification 

process. Clustering is done with a semi-supervised fuzzy c-means technique, while 

classification is done with support vector machines. Both of these algorithms are 

employed, respectively. The benefits of the suggested framework have been 

demonstrated through experiments conducted on both simulated and actual datasets 

[25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Flow chart of the framework (L and U represent labeled and unlabeled 

data, respectively) [25]. 

 

The primary aim of this study is to examine the existing data mining methods utilized 

for clustering and explore novel approaches to enhance clustering accuracy. The 

specific objective of this research is to develop an advanced clustering algorithm that 

builds upon an existing method. This study presents a distinctive approach that 

combines spectral clustering, k-means, and NFPH. The conventional initialization 

technique for cluster centroids in traditional k-means algorithms is substituted with the 

proposed system, as depicted in. This method targets the initial centroid to overcome 

k-means algorithm restrictions. The most relevant centroid for the situation is chosen 

rather than randomly. The suggested approach is trained utilizing publicly available 
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medical test datasets for study. WEKA, an open-source data mining software, 

evaluates it. The method is evaluated on ten University of California, Irvine datasets. 

Clustering error decreased by 2% and processing time increased from 4 to 5 seconds. 

The new k-means initialization strategy caused this processing delay. The system also 

reduces spectral clustering error. This technology improves accuracy but takes 4 

seconds to process as it can be seen in the Figure 2.3 [26]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. stat of art work flow [26]. 

 

In this study, the authors introduce a novel classification framework that incorporates 

a distinct ensemble classification step after the ensemble clustering stage. The 

objective of this framework is to specifically identify patients who have not been 

clustered, as depicted in Figure 2.4 [27].  

 

 

 

 

Figure 2.4. Abstract flowchart of the steps in the proposed pipeline [27]. 

 

Hence, a systematic procedure is developed that establishes a connection between 

ensemble clustering and ensemble classification, aiming to identify core groups, 

analyze data distribution within those groups, and enhance the final classification 
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applied to a newly acquired real-world breast cancer dataset, followed by an 

assessment of its robustness and stability using standard datasets. The results 

demonstrate that adopting the described structure enables the generation of more 

accurate categorizations. Additionally, the findings are validated through the 

application of statistical tests, visualization techniques, evaluations of cluster quality, 

and insights from clinical experts [27]. 

 

The article proposes a clustering technique that combines PAM (Partitioning Around 

Medoids) and FCM (Fuzzy C-Means) to accurately classify faulty data. The approach 

first employs PAM to establish cluster prototypes, reducing the initial randomness of 

FCM. Subsequently, FCM is used to obtain the final clustering results. These measures 

are expected to enhance the algorithm's accuracy and require fewer iterations. To test 

and validate the effectiveness and efficiency of the proposed method, experiments are 

conducted using datasets related to faults in electrical equipment. The study's findings 

demonstrate that the combination of approaches employed in this work outperforms 

traditional methods of data analysis, such as the hierarchical clustering algorithm, in 

terms of both accuracy and computational efficiency [28]. 

 

This research study proposes an accurate and practical method for identifying printed 

ancient books. To reduce the error rate, a combination of sub-word clustering and an 

LSTM (Long Short-Term Memory) neural network is utilized as a character 

recognizer. Since limited information is available about the various font faces, 

researchers manually annotate certain sections of the books. The methodology 

involves clustering each sub-word in the book, followed by training an LSTM neural 

network using the manually labeled cluster centers. Finally, the clustering and 

classification results are combined to enhance the recognition rate [29]. 

 

In this study, the authors classified EEG signals using a classification model based on 

MLPNN (Multilayer Perceptron Neural Network). Using DWT (Discrete Wavelet 

Transform), the EEG signals were broken down into subbands. Instead of relying on 

fundamental statistical measures across the wavelet coefficients, the authors clustered 

the wavelet coefficients within each sub-band using the K-means algorithm. This 

method allowed for a more efficient analysis of the data. As depicted in Figure 2.5, the 
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probability distributions derived from the distribution of wavelet coefficients to the 

clusters were then used as inputs to the MLPNN model. Classification of data was 

accomplished with the MLPNN model. Five separate experiments were conducted to 

evaluate the performance of the proposed model in classifying distinct segments. 

These investigations included healthy and epileptic seizure-free segments, epileptic 

seizure segments, healthy segments, and epileptic seizure-free and epileptic seizure 

segments. The results demonstrated that the proposed model was effective in 

classifying the various tasks accurately. Therefore, the study's authors believe that the 

proposed model has the potential to be used as a diagnostic decision support 

mechanism in the management of epilepsy patients. [30].  

 

 

 

 

Figure 2.5. Schematic illustration of the proposed method [30]. 

 

The authors of this paper showcased the effectiveness of empirical risk minimization 

(ERM) as a method for selecting the next instance to label. However, ERM requires 

significant computational time. In the case of graphical data, researchers can employ 

graph topological analysis to swiftly identify instances that are likely to be suitable for 

labeling, enabling faster progression through the data. In this study, a novel approach 

is presented for identifying the best adjacent instance to a label, utilizing a metric based 

on clustering coefficients. Experimental results conducted on a dataset comprising 20 

newsgroups and three binary classification tasks demonstrate that the utilization of 

clustering coefficient technique achieves comparable performance to ERM while 

significantly reducing computational time [31]. 

 

This work introduces a novel technique called EC3, which integrates clustering and 

classification for binary and multi-class classification tasks. EC3 utilizes an 

optimization function and combines multiple classification and clustering algorithms 

in a systematic manner. The authors theoretically establish the convexity and 

optimality of the problem, and solve it using the block coordinate descent technique. 

Furthermore, a variant of EC3 called iEC3 is proposed to handle imbalanced datasets. 
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Extensive experimental analysis is conducted, comparing EC3 and iEC3 with 14 

baseline methods, including standalone classifiers, homogeneous ensemble classifiers, 

and heterogeneous ensemble classifiers that combine classification and clustering. The 

evaluation is performed on 13 standard benchmark datasets. The results demonstrate 

that both EC3 and iEC3 outperform the alternative baselines across all datasets, 

achieving at least a 10% higher AUC. Additionally, the suggested approaches exhibit 

faster execution compared to the best heterogeneous baseline method (1.21 times 

faster), increased robustness to noise and class imbalance, and improved accuracy 

compared to the best baseline method [32]. 

 

The authors have proposed a method for automatically identifying the learning style 

based on the extant behaviors of learners and using web usage mining techniques and 

machine learning algorithms. Utilizing web utilization mining techniques, the log file 

extracted from the E-learning environment was preprocessed and the sequences of the 

learners were captured. Based on the Felder and Silverman learning style model, the 

captured sequences of learners were input into the K-modes clustering algorithm to 

classify them into 16 learning style combinations. The naive Bayes classifier was then 

used to predict a student's learning approach in real time. The authors of the study used 

an actual dataset extracted from the log file of an e-learning system and the confusion 

matrix method to evaluate the performance of the employed classifier. The obtained 

results demonstrate that our strategy produces outstanding outcomes [33]. 

 

This paper proposes an unsupervised supervised machine learning approach, 

hierarchical clustering, and artificial neural network (ANN) by adopting a combined 

unsupervised-supervised method, unsupervised cluster analysis, and various 

supervised machine learning algorithms, such as Boostings, Support Vector Machine 

(SVM), and RReliefF. Researchers provide evidence that each cluster has its own 

foundation variables to predict, and Boosting and ANN estimation provide a more 

efficient framework for reducing the reserve error of insurers. Also, the different value 

and order of RReliefF between Boosting and OLS indicate an under- or over-estimated 

predictor, and the consistency of each year's influential variables over time indicates 

that the firm's loss reserve model from the previous year can predict the future loss 

reserve error. This article contributes to the existing literature by proposing a more 
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robust, consistent, and efficient prediction method (i.e., the unsupervised-supervised 

combination method) to enhance the loss reserve error prediction of insurers [34]. 

 

As indicated in the literature study, various algorithms have been employed for 

classification, yielding different results. However, many studies have utilized a 

combination of supervised and unsupervised algorithms, which has proven to be 

effective in improving classification outcomes. The use of machine learning in 

detecting phishing URLs has been extensively explored, but the results have shown 

significant variability. Consequently, enhancing existing algorithms to achieve better 

results has become a major focus for researchers, given the increasing sophistication 

of frauds. 

 

The contributions of this thesis are as follows: 

 

• Simulating the K-nearest neighbors (KNN) algorithm and identifying one core 

for each class, bearing its unique characteristics, instead of altering the 

classification outcome based on the K-value in KNN. 

• Utilizing a clustering algorithm to address dataset distribution issues such as 

nonlinear classification, overlapping, or noise. These problems can be 

simulated through hidden layers in neural networks (NNs). 

• Considering the instability of results in K-means, multiple iterations are 

required to construct different numbers of clusters, resulting in newer cores. 

This approach aligns with the methodology employed in NNs. 

• Incorporating an updated version of the CCA algorithm called ICCA, which 

relies on an active set (A_S) to provide a more accurate representation of the 

class. The algorithm classifies data points based on their similarity, measured 

using Euclidean distance. 

• Applying Feature Engineering techniques to extract data from URLs in order 

to implement the proposed algorithm for phishing URL detection 
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PART 3 

 

THEORETICAL BACKGROUND 

 

3.1. MACHINE LEARNING  

 

Machine learning, situated within the field of artificial intelligence (AI) and computer 

science, is a discipline dedicated to leveraging data and algorithms to simulate human 

learning processes, aiming to progressively enhance accuracy. Figure 3.1 provides a 

visual representation of this concept [35].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Malti Domain View [35]. 

 

Emulating human learning processes, such as those shown in Figure 3.2, is the means 
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iterations. This allows the algorithms to autonomously update themselves with new 

insights using information gained from the analysis of data [36].  

 

 

 

 

 

 

 

 

 

 

Figure 3.2. general schema for machine learning methods [35]. 

 

The iterative learning approach that is used in machine learning is distinguished by its 

one-of-a-kind nature and high value due to the fact that it enables algorithms to 

discover dormant insights without being given any explicit direction. This process of 

automatic learning distinguishes it from others because it makes the acquisition of new 

information easier. Applications of machine learning algorithms can be found in many 

different fields, including cybersecurity, medicine, email filtering, voice recognition, 

agriculture, and computer vision, all of which are areas in which the development of 

traditional algorithms to carry out these tasks would be difficult or even impossible 

[37, 38]. 

 

The rapid development of machine learning can be attributed to the increased 

accessibility of large data sets as well as the advancements in computing power that 

have been made in recent years. As a direct consequence of this, machine learning has 

emerged as an essential tool for addressing complex problems and improving decision-

making processes across a wide variety of domains. 

 

3.2. TYPES OF MACHINE LEARNING  

 

The degree of human intervention in the raw data has an effect on the various types of 

machine learning models, and this influence can take the form of a variety of factors, 
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such as rewards, detailed feedback, or labels. There are many different approaches to 

machine learning, but one of the ones that is used the most frequently is: 

 

3.2.1. Supervised Learning  

 

Supervised learning is a category of machine learning that involves training a model 

on labeled data and subsequently utilizing this training to make predictions on new, 

unlabeled data. The primary objective of supervised learning is to forecast the target 

label for unseen data by leveraging the discovered patterns and relationships during 

the training phase [39]. Supervised learning encompasses a broad range of tasks, 

including image classification, speech recognition, and natural language processing. 

The algorithm takes a set of features as inputs and produces a set of labels as outputs. 

The objective is to discern the underlying relationship between the inputs and outputs. 

In addition to classification algorithms, supervised learning includes two other types: 

regression algorithms and classification algorithms. Regression algorithms are 

employed to predict continuous values, such as stock prices or tomorrow's weather, 

while classification algorithms are utilized to predict categorical values, such as animal 

types in an image or the sentiment of a text [40]. Supervised algorithms operate by 

identifying patterns in the relationship between the inputs (features) and outputs 

(labels) of the training data. The algorithm initially makes an initial estimation, which 

is iteratively refined and enhanced as it receives additional training data [41]. 

The overall process can be divided into the following steps: 

 

• Acquisition and preparation of training data: This involves selecting 

appropriate features and labels and preprocessing the data to eliminate any 

noise or outliers. 

• Selection and training of a suitable model: A well-suited model is chosen and 

trained using the prepared training data, taking into consideration the problem 

type, feature type, and data characteristics. 

• Model evaluation: The trained model is assessed against a separate set of test 

data to evaluate its accuracy and identify areas for improvement, if necessary. 

• Prediction on new data: Once the model has been trained and tested, it can be 

utilized to make predictions on unseen data. 
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The accuracy of the model, influenced by the quality of the training data and the chosen 

model, determines the quality of the predictions. Supervised algorithms aim to 

minimize prediction errors on the training data while avoiding overfitting, where the 

model becomes overly complex and fits the training data too closely, hindering its 

generalization to new data [42]. 

 

3.2.2. Unsupervised Learning  

 

Unsupervised learning encompasses a machine learning approach in which models are 

trained on unlabeled data to uncover inherent patterns and relationships without a 

predefined prediction task. The main objective of unsupervised learning is to reveal 

underlying structures and detect latent patterns that may not be readily apparent 

through visual inspection alone [43]. Unsupervised learning algorithms operate 

without the need for labeled data and are employed for various tasks such as clustering, 

dimensionality reduction, and outlier detection. Clustering algorithms group similar 

data points based on defined similarity measures, such as grouping customers with 

similar spending behaviors [44]. Dimensionality reduction techniques aim to retain 

crucial information while reducing the number of data features, facilitating data 

visualization or further analysis by other machine learning algorithms. Anomaly 

detection algorithms identify data points that significantly deviate from the rest of the 

dataset, allowing the identification of outliers or anomalies, such as detecting 

fraudulent transactions [45, 46]. Unsupervised learning is particularly valuable when 

labeled data are scarce, costly to obtain, or when the objective is to uncover patterns 

without a specific prediction task in mind. Unsupervised algorithms autonomously 

discover patterns and structures within the data without prior knowledge of these 

patterns. By processing and analyzing the data, these algorithms establish connections 

between data points to uncover hidden patterns and structures. The specific method 

employed depends on the task and the algorithm used [47]. 

 

The unsupervised learning process can be summarized in the following steps: 

 

• Data acquisition and preprocessing to remove noise and outliers. 
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• Selection of a suitable unsupervised learning algorithm based on the task and 

data characteristics. 

• Training the chosen algorithm to identify patterns and relationships in the 

prepared data. 

• Evaluation of the trained model's performance and potential adjustments. 

• Interpretation of the model's results to extract meaningful information from 

the data. 

 

The quality of the results obtained in unsupervised learning relies on the quality of the 

data and the chosen algorithm. Unsupervised algorithms strive to unveil the underlying 

data structure and discover meaningful patterns. However, evaluating the results of 

unsupervised learning algorithms can be challenging due to the absence of labeled data 

for comparison. 

 

3.2.3. Semi-Supervised Learning 

 

Semi-supervised learning is a form of machine learning that combines aspects of both 

supervised and unsupervised learning. In this approach, the model is trained on a 

combination of labeled and unlabeled data with the objective of leveraging the 

unlabeled data to enhance the model's performance on the labeled data [48-50]. 

 

Semi-supervised learning proves beneficial when obtaining labeled data is challenging 

or expensive, while a significant amount of unlabeled data is available. The idea is to 

utilize the unlabeled data to improve the model's understanding of the underlying data 

structure, thereby enhancing its performance on the labeled data [51]. Semi-supervised 

learning algorithms capitalize on the trade-off between the demand for a large labeled 

dataset in supervised learning and the abundance of unlabeled data. These algorithms 

employ the unlabeled data to make informed estimations about the labels and then 

refine these estimations using the labeled data [52]. In the process of semi-supervised 

learning, the steps resemble those of supervised learning, with the inclusion of 

incorporating the unlabeled data during the training phase. The quality of the results 

depends on the data quality and the choice of algorithm. Evaluation metrics such as 
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accuracy, precision, and recall are commonly employed to assess the performance of 

semi-supervised algorithms. 

 

3.3. ALGORITHM 

 

In the domain of machine learning, an algorithm refers to a set of instructions that 

guides a computer program in performing specific tasks, such as identifying patterns 

in data, generating predictions, or making decisions. Essentially, algorithms serve as 

the fundamental components of machine learning [53-55]. They represent a systematic 

approach for problem-solving or achieving specific objectives. In machine learning, 

algorithms are employed to construct models based on past data, enabling predictions 

to be made on new, unseen data. 

 

The field of machine learning encompasses a diverse range of algorithms, including 

supervised learning algorithms, unsupervised learning algorithms, semi-supervised 

learning algorithms, among others. Each algorithm follows a distinct approach to the 

learning process, rendering them suitable for specific categories of challenges and 

data. The selection of an appropriate algorithm should be guided by the nature of the 

problem at hand and the characteristics of the data being utilized [55-58]. 

 

3.3.1. K-Nearest Neighbors Algorithm 

 

The K-Nearest Neighbors (KNN) method is a supervised machine learning approach 

applicable to both classification and regression tasks [59, 60]. With the KNN 

algorithm, the objective is to predict the category or value of a given data point by 

identifying the neighboring points in the feature space that are closest to it [61, 62] 

Figure 3.3. illustrates the process visually. 
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Figure 3.3. KNN Algorithm Diagram  [62]. 

 

The K-Nearest Neighbors (KNN) method operates by storing all available data points 

and, for each new data point, identifying the K closest neighbors based on a distance 

metric such as Euclidean distance [63]. This process is repeated for all available data 

points. Subsequently, the category or value of the new data point is determined by 

majority voting among its K closest neighbors [64]. In classification, the category of a 

new data point is determined by the majority category among its K closest neighbors. 

For regression, the value of a new data point is computed by averaging the values of 

its K closest neighbors. KNN is relatively straightforward to implement and 

computationally efficient for small datasets. However, its computational complexity 

increases for large datasets. Hence, it may not be suitable for large-scale data analysis. 

Moreover, the choice of K is a crucial parameter that affects the precision of the 

method. Selecting a smaller K can make the algorithm more sensitive to outliers, 

leading to inaccurate predictions, while a larger K may result in difficulty 

distinguishing between distinct classes or values. 

 

However, KNN is a versatile and robust algorithm applicable to various problem 

domains. However, its performance is contingent on the choice of distance metric and 

the value of K. Therefore, it is essential to carefully evaluate the algorithm's 

performance for the specific dataset and problem at hand [65]. 

 

  

Y-Axis 

Class A 

Class B 

Y-Axis 

New example 

to classify 

Y-Axis 

Class A 

Class B 

Y-Axis 

Y-Axis 

Class A 

Class B 

Y-Axis 



 

25 

3.3.1.1. Compute KNN 

 

The implementation of the K-Nearest Neighbors (KNN) algorithm involves several 

steps: 

• Data collection and preparation are performed, where data is gathered and 

preprocessed to eliminate noise and outliers. The dataset is then divided into 

training and testing sets, with the former used for model training and the latter 

for performance evaluation [66]. 

• The suitable distance metric is selected for the KNN algorithm, such as 

Euclidean distance, Manhattan distance, or Cosine similarity. The choice of 

distance metric depends on the specific task and dataset. Additionally, the 

value of K, representing the number of closest neighbors to consider, is 

determined. Typically, an odd value of K is chosen to avoid ties in majority 

voting. 

• To evaluate the performance of the KNN model, its predictions on the testing 

set are compared to the actual class or value of the data points. Common 

evaluation metrics include accuracy, precision, recall, and F1 score [68]. If the 

model's performance is not satisfactory, adjustments can be made to the value 

of K, the distance metric, or the representation of data features to enhance its 

performance. 

 

In summary, the computation of the KNN algorithm encompasses selecting a distance 

metric, determining the value of K, training the model on the training set, making 

predictions on new data points, and evaluating the model's performance. 

 

3.3.2. Distance Matrix 

 

A distance matrix refers to a square matrix that represents the pairwise distances 

between a collection of objects [67-69]. This matrix is commonly known as a distance 

matrix and serves as a two-dimensional table where each row and column correspond 

to a distinct item. Each element within the matrix indicates the distance separating the 

respective objects [70]. 

 



 

26 

For example, in a distance matrix for a set of points in a two-dimensional space, each 

row and column represent a point, and the matrix elements signify the Euclidean 

distance between the points. In this case, the distance matrix is employed to measure 

the distances between the points [71]. The number of rows and columns in a distance 

matrix corresponds to the number of points within the dataset. 

 

Distance matrices find extensive application in computer science and mathematics, 

particularly in domains such as machine learning, computer vision, and image 

processing. They are particularly useful in clustering algorithms, which aim to group 

comparable items based on their distances from one another. In such methods, the 

distance matrix is utilized to calculate the distances between items, which are 

subsequently used to estimate the similarity between objects. In other words, the 

distances between objects serve as a basis for determining their similarity [72, 73]. 

 

Various types of distance matrices are employed across different fields, including: 

 

• Euclidean Distance Matrix: This commonly used distance matrix calculates the 

straight-line distance between two points in a multi-dimensional space using 

the Euclidean distance formula. It is represented by the formula: 

ⅆ(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑙̇)2

𝑛

𝑖=1

                                                                                                 (3.1) 

• Manhattan Distance Matrix: Also known as taxicab distance, this matrix 

measures the sum of absolute differences between the coordinates of two points 

in a multi-dimensional space. It is represented by the formula: 

ⅆ(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|

𝑚

𝑖=1

)                                                                                                (3.2) 

• Minkowski Distance Matrix: A generalization of Euclidean and Manhattan 

distance matrices, the Minkowski distance matrix utilizes the Minkowski 

metric to calculate distances. It is represented by the formula: 

𝛼(𝑥, 𝑦) = (∑|𝑥𝑖1
− 𝑦𝑖|

𝑛

𝑙=1

)

1
𝑝

                                                                                              (3.3) 
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• Hamming Distance Matrix: This matrix determines the dissimilarity between 

two strings of the same length by counting the number of positions where their 

elements differ. It finds applications in error-correcting codes and encryption. 

It is represented by the formula: 

𝐷𝐻 = (∑|𝑥𝑖 − 𝑦𝑗|

𝑘

𝑖=1

)                                                                                                       (3.4) 

 

Each distance matrix has its own strengths and weaknesses, catering to different data 

types and problem domains. The selection of a distance matrix depends on the specific 

characteristics of the data and the objectives of the analysis. 

 

In the context of the k-nearest neighbors (KNN) algorithm, a distance matrix is 

employed to store the distances between a set of test points and a set of training points. 

The objective of the KNN algorithm is to classify new points based on the classes of 

their k nearest neighbors in the training set. 

 

To assign a new point to a category, the KNN algorithm calculates its distances from 

all points in the training set, which are stored in a distance matrix. Subsequently, the 

algorithm selects the k closest neighbors based on their distances from the center point. 

Finally, the new point is assigned to the class that shares the most similarities with its 

k nearest neighbors. 

 

The choice of distance metric in the KNN algorithm significantly impacts its 

outcomes. For instance, the Euclidean distance is typically suitable for Euclidean data, 

while the Jaccard distance may be preferable for binary data. The selection of the 

distance metric should align with the data structure and the analysis goals. 

 

In spaces with more than two dimensions, the Euclidean distance represents the 

straight-line distance between two points. It is named after the Greek mathematician 

Euclid and is computed as the square root of the sum of the squared differences 

between the coordinates of the two points. The Euclidean distance proves useful in 

various applications such as machine learning, data analysis, and computer vision. It 

particularly shines when the data is continuous and evenly distributed, providing an 
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effective measure of the distance between two points. Nevertheless, it is important to 

note that in certain scenarios, the Manhattan distance or cosine distance may serve as 

better measures of distance. The selection of the appropriate distance metric depends 

on the characteristics of the data and the specific insights sought in the analysis. 

 

3.3.2. K-Mean Algorithm  

 

K-Means is a widely recognized unsupervised machine learning method that clusters 

individual data points into distinct groups called clusters. The first algorithm of K-

Means was invented by Stuart Lloys in 1957 [74, 75]. The primary objective of K-

Means is to partition a dataset into K clusters, with each data point assigned to the 

cluster that has the closest mean. This is achieved by iteratively moving the cluster 

centroids closer to the mean of the data points assigned to each cluster until 

convergence is reached[76-79]. 

 

The K-Means method can be divided into the following steps: 

 

• Initialize the centroids of the K clusters. This can be done randomly or using a 

heuristic technique. 

• Assign each data point to the cluster centroid that is nearest to it. This involves 

calculating the Euclidean distance between each data point and the K centroids. 

• Recalculate the mean of the data points assigned to each cluster and update the 

centroids accordingly. 

• Repeat steps 2 and 3 until the centroids stop moving or the maximum number 

of iterations is reached. 

• The final outcome is a clustering of the data points into K groups, with each 

data point placed in the cluster that is closest to it. 

 

K-Means is commonly used for exploratory data analysis and is also employed as a 

preprocessing step for other machine learning algorithms. Despite being a fast and 

straightforward algorithm, K-Means is sensitive to the initial conditions and can 

become trapped in local minima. To address these limitations, alternative iterations of 
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the K-Means algorithm, such as K-Medoids and Fuzzy K-Means, have been 

developed[80, 81]. 

 

3.3.3. Enhancing Machine Learning Algorithms  

 

The enhancement of machine learning algorithms is an ongoing process that can be 

achieved through various methods[82-86], including the following approaches: 

 

• Feature Engineering: This process involves creating new features by 

combining or transforming existing features to improve the model's 

performance. By doing so, the model can learn more accurate correlations 

between the input and output variables. 

• Hyperparameter Tuning: Machine learning algorithms have several 

hyperparameters that need to be configured before training. Fine-tuning these 

hyperparameters can significantly improve the overall performance of the 

model. 

• Ensemble Methods: Utilizing an ensemble of multiple models, as opposed to 

a single model, can often lead to superior performance. Ensembles combine 

different models to capture various patterns in the data, resulting in more 

robust predictions. 

• Transfer Learning: Reusing pre-trained models on similar tasks can be an 

effective approach to enhance performance. Pre-trained models have already 

learned relevant features from the data they were trained on, and this 

knowledge can be transferred to new tasks. 

• Regularization: Incorporating regularization terms into the loss function can 

help reduce overfitting and improve the model's generalization ability. 

• Data Augmentation: Generating additional samples from existing data can 

expand the dataset and assist the model in becoming more generalizable. 

• Algorithm Selection: Choosing the appropriate algorithm for a specific task 

can significantly impact its performance. It is crucial to have a comprehensive 

understanding of the advantages and limitations of each algorithm to select the 

most suitable one for addressing the problem at hand. 
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These are just a few examples of the numerous approaches available for improving 

machine learning algorithms. Given the continuous discoveries in this field, it is crucial 

to continually explore different strategies and develop innovative techniques. 

In machine learning, it is common to combine supervised and unsupervised learning 

algorithms to enhance the performance of the final model[21, 87, 88]. This is because 

each type of algorithm has its own strengths, which can be leveraged to improve 

overall performance. Supervised learning algorithms are trained on labeled data and 

make predictions based on the relationship between inputs and outputs. They are 

commonly used for classification and prediction tasks.  

 

In contrast, unsupervised learning algorithms are trained on unlabeled data. They seek 

patterns and structures in the data without prior knowledge of the desired output. 

Unsupervised learning is often applied in clustering, dimensionality reduction, and 

outlier detection. By combining supervised and unsupervised algorithms, it is possible 

to take advantage of their respective strengths and improve performance. For instance, 

unsupervised algorithms can preprocess and extract features from the data, which can 

then serve as inputs for supervised learning algorithms. This enables the supervised 

algorithm to learn from a more abstract representation of the data, leading to better 

results. 

Another approach involves leveraging a supervised learning algorithm to label the data 

generated by an unsupervised algorithm. This additional information can enhance the 

understanding of the data structure by the unsupervised algorithm. Combining 

supervised and unsupervised algorithms is also beneficial in semi-supervised learning 

scenarios, where only a limited amount of labeled data is available. Unsupervised 

algorithms can generate synthetic data that can be labeled and used to train a 

supervised algorithm [89, 90]. 

 

3.4. DOMAIN (PHISHING URLS)  

 

Phishing refers to the deceptive practice of attempting to acquire sensitive information, 

such as usernames, passwords, and credit card numbers, by masquerading as a 

trustworthy entity through bulk emails. It aims to bypass spam filters and is also known 

as spear phishing and email phishing. Commonly, phishing involves sending 
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fraudulent emails to unsuspecting individuals, pretending to be well-known social 

networking sites, banks, auction platforms, or IT administrators. This type of social 

engineering relies on dishonesty to commit criminal activities [91]. The term 

"phishing" was first used by a renowned hacker and spammer in 1996 within the 

hacking program called AOHel [1]. 

 

The magnitude of phishing attacks has reached significant milestones, with APWG 

recording 1,097,811 total phishing incidents in the second quarter of 2022. The third 

quarter of the same year marked the highest recorded number of phishing attacks ever 

documented by APWG, reaching a total of 1,270,883 incidents. The peak month for 

attacks was August 2022, with 430,141 recorded incidents. The number of attacks has 

surged more than fivefold since the first quarter of 2020, when APWG reported 

230,554 phishing incidents [92, 93]. 

 

The increase in attacks during Q3 2022 can be attributed to the targeting of specific 

entities, as persistent phishers made numerous attempts to compromise these targets 

[1]. Research conducted by OpSec Security, a founding member of APWG, revealed 

that phishing attacks in the financial sector (FS) continued to dominate, accounting for 

23.2% of all phishing incidents in Q3 2022, down from 27.6% in Q2. The percentage 

of attacks on webmail and SAAS providers remained stable, while assaults on 

retail/ecommerce sites decreased to 4.1% from 14.6% in the first quarter. Phishing 

attempts targeting social media companies experienced a decline after ranging from 

8.5% in 4Q2021 to 15.5% in 2Q2022. With the volatility of the crypto market and 

declining prices, phishing attempts against cryptocurrency targets, including 

cryptocurrency exchanges and wallet providers, decreased from 4.5% in Q2 to 2.0% 

in Q3. 

 

Matthew Harris, Senior Product Manager, Fraud at OpSec Security, noted a significant 

increase in fraud volume within the Logistics and Shipping sector, particularly due to 

a surge in phishing attacks targeting the U.S. Postal Service. The detection levels of 

vishing (voice phishing) nearly tripled compared to Q2, continuing the trend observed 

in the second quarter [1]. 
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3.4.1. Type of Phishing Attacks  

 

Phishing attacks encompass a wide variety of deceptive techniques that are utilized by 

cybercriminals to trick individuals into divulging sensitive information or performing 

malicious actions. Phishing attacks come in a variety of forms, one of which is known 

as "credential phishing." Users are led to believe that they are interacting with a 

legitimate platform, such as a bank or a social media network, when in reality, the 

attacker is attempting to trick them into divulging their login information by sending 

them fraudulent emails or designing fraudulent websites. Another common form is 

known as "spear phishing," and it refers to attacks that are both personalized and 

targeted so that they are directed at particular people or businesses. These attacks 

frequently make use of information about the target that is already in the public domain 

in order to craft convincing messages or to impersonate trusted contacts. In addition, 

there is a technique known as "smishing," which is a form of phishing that is carried 

out through SMS text messages, and "vishing," which is a method of deceiving victims 

that uses voice communication channels, such as phone calls. In general, it is essential 

for individuals and organizations to have a solid understanding of the various types of 

phishing attacks in order to strengthen their cybersecurity posture and better protect 

themselves from these kinds of malicious endeavors [94, 95].  
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PART 4 

 

METHODOLOGY 

 

This study introduces a novel algorithm that draws inspiration from the K-Nearest 

Neighbors (KNN) approach, specifically designed for the identification of phishing 

URLs. The algorithm's primary objective is to enhance the current state-of-the-art in 

terms of efficiency, accuracy, and scalability. Its methodology involves determining 

the similarity between each point in a class and a unique point known as the core. The 

results obtained from rigorous testing demonstrate significant success, positioning the 

algorithm as a fitting solution for addressing the problem at hand. Comprised of several 

key steps, including Hyper algorithms, Hyperparameters, and iteration, these 

components work collaboratively to offer an efficient and effective solution to the 

problem. Extensive testing has been conducted on various test cases, substantiating its 

superiority over alternative approaches. 

 

In the second stage of this study, an enhanced version of the algorithm called the 

Improve Core Classification Algorithm (ICCA) is introduced. ICCA accurately 

represents the class and arranges the points based on similarity votes. To leverage its 

potential, the study incorporates an active set (A_S) that calculates point distances 

using the Euclidean method. While it should be noted that the output of K-means 

algorithms may vary across implementations, this characteristic was exploited during 

the training model phase to improve overall accuracy. 

 

This research thesis focuses specifically on Phishing URLs, which pertain to 

fraudulent websites aiming to deceive visitors into revealing personal information or 

credit card details. These URLs employ deceptive tactics to mislead users into 

believing they are engaging with a trustworthy source, while in reality, they are 

redirected to malicious content. The comprehensive analysis and detection of phishing 

URLs necessitate extensive preprocessing. Through these methods, raw URL 
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information undergoes transformation into a format suitable for utilization by machine 

learning algorithms and other analytical techniques. 

 

4.1. DATA COLLECTION   

 

Datasets have been sourced from various platforms, including Mendeley and Kaggle. 

Mendeley and Kaggle hold significant importance in the academic research and data 

science communities, respectively. Mendeley serves as a platform where researchers 

can share datasets with each other, primarily focusing on academic research. On the 

other hand, Kaggle is a platform that emphasizes data science competitions and 

facilitates access to diverse datasets, fostering collaboration among data scientists. 

 

 

Figure 4.1. Phishing Websites Features [96]. 

 

The first dataset utilized in this study addresses the existing scarcity of high-quality 

training datasets. The researchers aim to fill this gap by identifying relevant features 

and expanding upon them. Their objective is to develop more comprehensive datasets 

that accurately capture the intricate nature of phishing sites. This endeavor will equip 

experts in the field with better tools to test hypotheses, refine algorithms, and enhance 

the accuracy of predicting phishing scams on websites. The first dataset consists of 
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11,056 instances and 31 features [96]. It encompasses both legitimate and phishing 

URLs, with 6,157 instances classified as phishing URLs and 4,898 instances classified 

as legitimate URLs (Figure 4.1). This dataset provides up-to-date and comprehensive 

information about phishing and legitimate websites, incorporating their distinctive 

features. 

 

Hence, Moving on to the second dataset [97] It comprises 549,346 instances and is 

categorized into two groups, as illustrated in Figure 11. The first category is labeled as 

"Good," which signifies URLs that do not contain malicious content and are not 

classified as phishing sites. The second category is labeled as "Bad," representing 

URLs that contain malicious content and are classified as phishing sites. 

 

 

Figure 4.2. Phishing Site URLs [97]. 

 

In this thesis, a novel classification algorithm has been introduced. To provide a more 

comprehensive evaluation of its effectiveness and generalizability, the algorithm has 

been tested in a different domain. This approach aims to assess whether the algorithm's 

performance extends beyond its original domain of development. 
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However, by subjecting the algorithm to a different domain, we can examine its 

capacity to accurately classify suggestions and observe if its performance remains 

consistent across diverse types of data. Moreover, conducting tests in a different 

domain helps in identifying any inherent limitations or biases that the algorithm may 

possess. It enables us to investigate whether the algorithm is overfitting to the original 

domain or exhibiting domain-specific patterns that may not be applicable elsewhere. 

By evaluating the algorithm's performance in a new domain, we can determine its 

robustness and identify any necessary adjustments or adaptations required to enhance 

its accuracy and generalizability. One of the domains considered in this study is the 

Heart Disease dataset [98], comprising 3,656 instances and 15 features. Another 

domain is the Indian Liver Patient Record [99], which consists of 2,000 instances and 

11 features. Lastly, the Cardiovascular Disease Dataset [100] includes 3,656 instances 

and 15 features. These datasets have been selected to assess the algorithm's 

performance and explore its applicability in different contexts. 

  

4.2. CONFUSION MATRIX  

 

A confusion matrix is a widely employed table for evaluating the performance of 

machine learning algorithms in classification tasks. It allows a comparison between 

the algorithm's predicted and actual classifications, revealing the number of instances 

that were correctly or incorrectly classified [101, 102]. Typically, a confusion matrix 

consists of four cells arranged in a 2x2 table. The rows represent the actual classes, 

while the columns represent the predicted classes. Each cell in the matrix represents 

the count of observations corresponding to a particular combination of predicted and 

actual classes. 

 

The four cells of the confusion matrix are defined as follows: 

 

True positive (TP): The number of instances correctly classified as positive by the 

algorithm. 

False positive (FP): The number of instances incorrectly classified as positive by the 

algorithm. 
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True negative (TN): The number of instances correctly classified as negative by the 

algorithm. 

False negative (FN): The number of instances incorrectly classified as negative by the 

algorithm. 

 

Hence, by utilizing the confusion matrix, various performance metrics can be 

calculated, including accuracy, precision, recall, and F1 score. These metrics offer 

insights into the strengths and weaknesses of the machine learning algorithm. 

Analyzing the confusion matrix enables machine learning practitioners to gain a better 

understanding of the algorithm's error patterns and take necessary steps to enhance its 

performance. 

 

4.2.1. Accuracy 

 

Common performance metric that can be calculated from a confusion matrix in 

classification tasks. It measures the proportion of instances that were correctly 

classified by the machine learning algorithm, out of all the instances that were 

classified [102, 103]. 

The accuracy can be calculated using the following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                                                              (4.1) 

 

where TP represents the number of true positives, TN represents the number of true 

negatives, FP represents the number of false positives, and FN represents the number 

of false negatives. 

 

In other words, accuracy measures the overall correctness of the algorithm's 

classifications, regardless of the specific class. It provides a general idea of how well 

the algorithm is performing, but it may not be a suitable metric for imbalanced datasets 

where the distribution of classes is uneven. For example, if a machine learning 
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algorithm correctly classifies 90 out of 100 instances, its accuracy would be 90%. 

However, if the dataset has a class distribution of 90% positive and 10% negative, the 

algorithm may be classifying all instances as positive, resulting in high accuracy but 

poor performance on the negative class. In such cases, precision, recall, or F1 score 

may be more appropriate metrics to evaluate the algorithm's performance. 

 

4.2. PRECISION 

 

Precision is an essential performance metric derived from a confusion matrix in 

classification tasks. It quantifies the proportion of true positive classifications made by 

a machine learning algorithm out of all positive classifications made by the same 

algorithm [104]. 

 

The calculation of precision involves the use of the following formula: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                                                                                         (4.2) 

 

Here, TP represents the count of true positives, and FP represents the count of false 

positives. 

 

Essentially, precision evaluates the accuracy of positive predictions generated by the 

algorithm. It becomes particularly valuable when the cost associated with false 

positives is high, such as in medical diagnosis or fraud detection scenarios. 

 

4.3. RECALL 

 

The concept of recall, also known as sensitivity or true positive rate, holds great 

significance in the domains of machine learning and data analysis. It refers to the 

ability of a classification model to correctly identify all positive instances within a 

given dataset. Recall serves as a measure of a model's capacity in this regard. 
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In the context of binary classification problems, recall is defined as the ratio of true 

positives to the total number of actual positives. It quantifies the model's ability to 

capture all relevant positive occurrences. 

 

In situations where the consequences of false negatives are significant, such as in 

medical diagnosis or security screening, recall becomes a crucial metric to consider. It 

is also valuable in general as it indicates the model's effectiveness in minimizing the 

occurrence of false negatives and, consequently, reducing the risk of overlooking 

important events [105]. 

 

The calculation of recall can be performed using the following formula: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                            (4.3) 

 

Here, TP represents the count of true positives, and FN represents the count of false 

negatives. 

 

4.4. F1 SCORE  

 

The F1 score, commonly employed in the fields of machine learning and data analysis, 

serves as a performance measure that combines the metrics of accuracy and recall into 

a single value. It represents the harmonic mean of accuracy and recall, thereby 

assigning equal importance to both measures. The F1 score is computed by taking the 

weighted average of precision and recall scores, with 1.0 indicating the best possible 

score and 0.0 representing the worst [105]. The F1 score is particularly valuable in 

binary classification problems where there is an imbalance between positive and 

negative cases. In such cases, a classifier that consistently predicts negative examples 

may achieve high accuracy but would demonstrate poor precision and recall. The F1 

score offers a means to evaluate the overall performance of the classifier by 

considering both its accuracy and recall. 

 

The formula for calculating the F1 score is as follows: 
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𝐹1𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                                                                   (4.4) 

 

In this formula, precision and recall represent the respective performance metrics. The 

F1 score provides a comprehensive assessment of the classifier's effectiveness in 

handling imbalanced classification scenarios, accounting for both accuracy and recall. 

 

4.3. PREPROCESSING  

  

The preprocessing of phishing URLs serves as a foundation for developing robust 

cybersecurity systems. By analyzing and extracting relevant features from URLs, 

security professionals can proactively identify potential phishing attempts, effectively 

protecting individuals and organizations from falling victim to fraudulent schemes. 

The application of advanced analysis techniques, such as feature extraction and 

selection, allows for the identification of suspicious patterns and anomalies in URLs 

that may indicate malicious intent. Additionally, the integration of machine learning 

algorithms enables the development of sophisticated models that consider contextual 

information, semantic structures [106, 107] and behavioral patterns, significantly 

improving the accuracy and effectiveness of phishing detection systems. However, the 

preprocessing of phishing URLs is a fundamental step in enhancing cybersecurity 

measures, enabling early detection and prevention of phishing attacks in today's 

evolving threat landscape [108]. 

 

In this thesis, we implement the preprocessing for the "Phishing site URLs" dataset, 

which is the official name[97]. The dataset currently contains 549,346 entries in two 

columns. The prediction column consists of two types of labels: 

 

A. Good: This indicates that the site is not a phishing site, and the URLs do not contain 

malicious content. 

 

B. Bad: This indicates that the site is a phishing site, and its URLs contain malicious 

content. 
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Using Jupyter Notebook and the Python language, we performed the preprocessing 

steps on the URLs as follows:  

 

In our thesis, we have selected a specific definition for the parts of the URL, 

acknowledging the existence of various definitions in the literature. However, for the 

purpose of our research, we have adopted the following definition: 

 

URL: https://www.example.com/Path/to/resource?param1=value1¶m2=value2#section1 

• Domain: www.example.com 

• Path: /path/to/resource 

• Query: param1=value1¶m2=value2 

• Fragment: section 

In our work, we conducted an extensive analysis of URLs, focusing on various 

components such as the domain, path, query, and fragment. Additionally, we explored 

the significance of specific characters within URLs, including (- = ! + $ . @ ~ * % ? 

& , # space), during the extraction process. Let's delve into the various components of 

a URL and gain a better understanding of their differences. By examining each part 

individually, we can grasp their distinct purposes and functions: 

 

1- In our research, we focused on studying URLs and extracting important 

characters from them. We aimed to gain insights by analyzing various 

characteristics, including the length of the URL (url_length) and the quantities 

of specific characters present. Firstly, we examined the occurrence of periods (.) 

in the URL (qty_dot_url).     These dots are significant as they often separate 

domain and subdomain names within the URL. Additionally, we analyzed the 

quantity of hyphens (-) in the URL (qty_hyphen_url). Hyphens can serve 

different purposes, such as improving readability or distinguishing between 

words in the domain. Furthermore, we investigated the presence of forward 

slashes (/) in the URL (qty_slash_url). These slashes indicate directory structures 

or parameters within the URL. Moreover, we counted the occurrence of question 

marks (?) in the URL (qty_questionmark_url). Question marks typically signify 

the start of query strings in URLs. Furthermore, we examined the quantity of 

equal signs (=) in the URL (qty_equal_url). Equal signs are commonly used in 
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URL parameters to assign values to specific variables. Additionally, we analyzed 

the presence of at symbols (@) in the URL (qty_at_url). While at symbols are 

not commonly found in domain names, they may have specific implications 

depending on their position within the URL. Furthermore, we looked for 

ampersands (&) in the URL (qty_and_url). Ampersands are often used as 

separators between different parameters in URL query strings. In addition, we 

investigated the occurrence of exclamation marks (!) in the URL 

(qty_exclamation_url). Exclamation marks can occasionally be used for 

emphasis or to indicate specific actions within URLs. Moreover, we examined 

the presence of spaces ( ) in the URL (qty_space_url). Although spaces are not 

valid characters in URLs, they may be encoded as %20 or replaced with other 

characters. Furthermore, we analyzed the quantity of tildes (~) in the URL 

(qty_tilde_url). Tildes can be used for various purposes, such as indicating user 

directories or serving as placeholders in URL patterns. Additionally, we looked 

for commas (,) in the URL (qty_comma_url). While commas are rarely used in 

URLs, they may hold specific meanings in certain contexts. Moreover, we 

investigated the occurrence of plus signs (+) in the URL (qty_plus_url). Plus, 

signs can sometimes replace spaces in URLs or indicate concatenation 

operations. Furthermore, we examined the presence of asterisks (*) in the URL 

(qty_asterisk_url). Asterisks may have special significance in wildcard patterns 

or act as placeholders in URL patterns. Additionally, we analyzed the quantity 

of hashtags (#) in the URL (qty_hashtag_url). Hashtags are typically associated 

with anchor links within a webpage and may not appear frequently in domain 

names. Moreover, we looked for dollar signs ($) in the URL (qty_dollar_url). 

While dollar signs are not commonly found in domain names, they may be used 

in specific URL contexts, such as indicating dynamic content. Lastly, we 

analyzed the quantity of percent signs (%) in the URL (qty_percent_url). Percent 

signs are often used in URL encoding to represent special characters or spaces. 

By considering these various characteristics and their quantities, we aimed to 

gain a deeper understanding of the structure and composition of URLs. This 

analysis provides valuable insights into the URL's components, which can have 

implications for security, SEO optimization, and overall website usability. 
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As we can see in Figure 4.3, the results of the hyphen distribution of the URL 

indicate a variance in distribution, with a higher occurrence in legitimate URLs 

compared to phishing URLs. 

 

 

 

 

 

 

 

 

 

 

 Figure 4.3. The DEA resut for hyphen distribution of the url. 

 

As we can see in Figure 4.4, the results of the dot distribution of the URL indicate a 

variance in distribution, with a higher occurrence in phishing URLs compared to 

legitimate URLs. 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 4.4. The DEA resut for dot distribution of the url. 
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As we can see in Figure 4.5, the results of the slash distribution of the URL indicate a 

variance in distribution, with a higher occurrence in phishing URLs compared to 

legitimate URLs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. The DEA resut for slash distribution of the url. 

 

 

By comparing the DEA results, we can conclude the importance of studying the 

characteristics of the URL. 

 

2- Domain: The domain in a URL refers to the registered name that uniquely 

identifies a website on the internet. It is a fundamental part of the URL structure 

and is typically found after the protocol (e.g., "http://" or "https://") and before 

any additional path, query, or fragment components. The domain provides a 

human-readable and memorable name that serves as an entry point for accessing 

web resources. In simple terms, the domain represents the website's address or 

location on the internet. It consists of two main parts: the domain name and the 

top-level domain (TLD). The domain name is the specific identifier chosen by 

the website owner, which can be a combination of alphanumeric characters and 

hyphens. The TLD, on the other hand, is the extension that follows the domain 

name and indicates the purpose or type of organization associated with the 

website (e.g., ".com," ".org," ".edu," etc.). For example, in the URL 

"https://www.example.com/home," the domain is "www.example.com." Here, 

"example" is the domain name, and ".com" is the TLD. The domain plays a 
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crucial role in verifying the legitimacy and authenticity of a website. It serves as 

a recognizable label for users and helps establish trust when accessing online 

resources. Additionally, the domain can be analyzed and compared against 

known lists of malicious or phishing domains to identify potential threats or 

fraudulent activities. Understanding the domain within a URL is vital in various 

aspects of web security, such as phishing detection, website reputation analysis, 

and ensuring secure communication between users and websites. By examining 

the domain, security professionals can assess the credibility of a website and 

make informed decisions regarding its trustworthiness and potential risks 

associated with accessing its content. 

 

In our research, we focused on studying domains and extracting specific characters 

from them. By analyzing these characters, we gained insights into various important 

characteristics of the domain. Here is an extended and proofread version of the text: 

 

In our study, we conducted an in-depth analysis of domains and examined key 

characters within them. By scrutinizing these characters, we obtained valuable 

information about the domain's composition and structure. The following are some of 

the important characters we considered: 

 

• Firstly, we evaluated the length of the domain (domain_length), which 

provided insights into the overall complexity and potential manipulation of the 

domain. 

• Additionally, we counted the occurrences of periods (.) in the domain 

(qty_dot_domain). Periods play a crucial role in separating domain and 

subdomain names. 

• Furthermore, we analyzed the quantity of hyphens (-) in the domain 

(qty_hyphen_domain). Hyphens are often utilized to enhance readability or 

differentiate words within the domain. 

• Moreover, we investigated the presence of forward slashes (/) in the domain 

(qty_slash_domain). These slashes can indicate directory structures or 

subdirectories within the domain. 
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• We also examined the occurrence of question marks (?) in the domain 

(qty_questionmark_domain). Question marks commonly denote query strings 

within the domain. 

• Additionally, we counted the quantity of equal signs (=) in the domain 

(qty_equal_domain). Equal signs are frequently used to assign values to 

variables within URL parameters. 

• Furthermore, we analyzed the presence of at symbols (@) in the domain 

(qty_at_domain). While at symbols are not typically found in domain names, 

they may have specific implications depending on their usage. 

• Moreover, we looked for ampersands (&) in the domain (qty_and_domain). 

Ampersands often serve as separators between different parameters within the 

domain. 

• In addition, we investigated the occurrence of exclamation marks (!) in the 

domain (qty_exclamation_domain). Exclamation marks can be used for 

emphasis or to indicate specific actions within the domain. 

• Furthermore, we examined the presence of spaces ( ) in the domain 

(qty_space_domain). While spaces are not valid characters in domain names, 

they may be encoded or substituted with other characters. 

• Additionally, we analyzed the quantity of tildes (~) in the domain 

(qty_tilde_domain). Tildes can serve various purposes, such as indicating user 

directories or acting as placeholders in URL patterns. 

• Moreover, we looked for commas (,) in the domain (qty_comma_domain). 

Although commas are not commonly used in domain names, they may hold 

specific meanings in certain contexts. 

• Furthermore, we investigated the occurrence of plus signs (+) in the domain 

(qty_plus_domain). Plus, signs can replace spaces in some cases or indicate 

concatenation operations within the domain. 

• Additionally, we examined the presence of asterisks (*) in the domain 

(qty_asterisk_domain). Asterisks may have special significance in wildcard 

patterns or act as placeholders within the domain. 

• Furthermore, we analyzed the quantity of hashtags (#) in the domain 

(qty_hashtag_domain). Hashtags are typically associated with anchor links 

within webpages and may appear infrequently in domain names 
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• Moreover, we looked for dollar signs ($) in the domain (qty_dollar_domain). 

While dollar signs are not commonly found in domain names, they may be 

used in specific contexts, such as indicating dynamic content. 

• Lastly, we analyzed the quantity of percent signs (%) in the domain 

(qty_percent_domain). Percent signs are often used in URL encoding to 

represent special characters or spaces. 

 

By examining these various characters and their quantities, we gained a comprehensive 

understanding of the domain's composition and structure. This analysis provided 

valuable insights into the domain's characteristics, which can have implications for 

security, SEO optimization, and overall website usability. 

 

As we can see in Figure 4.6, the results of the length distribution of the domain indicate 

a variance in distribution, with a higher occurrence in phishing URLs compared to 

legitimate URLs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. The DEA resut for length distribution of the domain. 

 

As shown in Figure 4.7, the results of the domain's dot distribution imply a variance 

in distribution, with phishing URLs having a higher occurrence than legitimate 

URLs. 
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Figure 4.7. The DEA resut for dot distribution of the domain. 

 

3- The path in a URL refers to the specific location or resource within a website's 

hierarchy. It follows the domain component and is separated by slashes ("/"). The 

path provides a way to navigate to a particular webpage or access a specific file 

or directory within a website. The path component of a URL often represents the 

organization and structure of a website's content. It can include directories, 

subdirectories, and file names. Each segment of the path is separated by slashes, 

indicating the hierarchical relationship between the elements. 

 

For example, in the URL "https://www.example.com/path/to/resource", the path 

component is "/path/to/resource". Here, "path/to/resource" represents the specific 

location within the website's structure where the desired resource or webpage can be 

found. The path component of a URL is essential for resolving the correct webpage or 

resource on the server. It helps in organizing and categorizing content within a website, 

allowing users and applications to access specific information efficiently. 

Understanding the path component in a URL is important for analyzing website 

structures, identifying specific pages or resources, and resolving relative links within 

a website. It is a valuable element in web development, content management, and 

cybersecurity analysis. 

 

In our work, we studied the path and extracted these characters from the path. We 

counted some of the important characters, such as the length of the path (path_length), 
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the quantity of dots in the path (qty_dot_path), the quantity of hyphens in the path 

(qty_hyphen_path), the quantity of slashes in the path (qty_slash_path), the quantity 

of question marks in the path (qty_questionmark_path), the quantity of equal signs in 

the path (qty_equal_path), the quantity of at symbols in the path (qty_at_path), the 

quantity of ampersands in the path (qty_and_path), the quantity of exclamation marks 

in the path (qty_exclamation_path), the quantity of spaces in the path 

(qty_space_path), the quantity of tildes in the path (qty_tilde_path), the quantity of 

commas in the path (qty_comma_path), the quantity of plus signs in the path 

(qty_plus_path), the quantity of asterisks in the path (qty_asterisk_path), the quantity 

of hashtags in the path (qty_hashtag_path), the quantity of dollar signs in the path 

(qty_dollar_path), and the quantity of percent signs in the path (qty_percent_path). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. The DEA resut for length distribution of the path. 

 

The findings of the length distribution of the path reveal a variance in distribution, as 

shown in Figure 4.8, with a higher occurrence in phishing URLs compared to genuine 

URLs. This difference can be attributed to the fact that phishing URLs are more likely 

to contain malicious content.  
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Figure 4.9. The DEA resut for percent distribution of the path. 

 

As can be seen in Figure 4.9, the results of the percent distribution of the path 

suggest that there is a variance in distribution, with a higher occurrence in valid 

URLs compared to phishing URLs. This is because authentic URLs are more likely 

to contain the path than phishing URLs. 

 

The findings depicted in Figure 4.9 illustrate that the slash distribution of the path 

exhibits a distribution variance, with a greater frequency of occurrence in authentic 

URLs in contrast to phishing URLs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 10. The DEA resut for slash distribution of the path. 
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4- The query component in a URL is used to pass additional parameters or data to 

the server. It follows the path component and is preceded by a question mark 

("?"). The query component consists of key-value pairs separated by ampersands 

("&"), where each pair represents a specific parameter and its corresponding 

value. The query component is often employed in dynamic web pages or 

applications to transmit data from the client to the server. It allows for 

customization and interaction with web resources based on specific parameters. 

The data passed through the query component can be used for various purposes, 

such as filtering search results, specifying user preferences, or submitting form 

data. For example, in the URL 

"https://www.example.com/search?q=keyword&page=1", the query component 

is "?q=keyword&page=1". Here, "q" and "page" are the parameters, and 

"keyword" and "1" are the respective values associated with those parameters. 

The query component is flexible and can contain multiple parameters, each 

providing additional information to the server. The order of the parameters 

within the query component is generally arbitrary and does not affect the 

functionality of the URL.  

 

In our work, we studied the query and extracted these characters from it. We counted 

some of the important characters, such as the length of the query (query_length), the 

quantity of dots in the query (qty_dot_query), the quantity of hyphens in the query 

(qty_hyphen_query), the quantity of slashes in the query (qty_slash_query), the 

quantity of at symbols in the query (qty_at_query), the quantity of ampersands in the 

query (qty_and_query), the quantity of exclamation marks in the query 

(qty_exclamation_query), the quantity of spaces in the query (qty_space_query), the 

quantity of tildes in the query (qty_tilde_query), the quantity of commas in the query 

(qty_comma_query), the quantity of plus signs in the query (qty_plus_query), the 

quantity of asterisks in the query (qty_asterisk_query), the quantity of hashtags in the 

query (qty_hashtag_query), the quantity of dollar signs in the query 

(qty_dollar_query), and the quantity of percent signs in the query (qty_percent_query). 

 

Figure 4.11 displays the query length distribution results, which show a non-normal 

distribution with more phishing URLs having longer lengths than legitimate URLs. 
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Figure 4.11. The DEA resut for lenght distribution of the query. 

 

 

The results of the percent distribution of the query suggest that there is a variance in 

distribution, with a higher prevalence in phishing URLs compared to legal URLs. 

This can be seen in Figure 4.12, which presents these findings.  

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4.12. The DEA resut for percent distribution of the query. 

 

The results of the hyphen distribution of the query suggest that there is a variance in 

distribution, with a higher prevalence in legal URLs compared to phishing URLs. 

This can be seen in Figure 4.13, which presents these findings.  
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Figure 4. 13. The DEA resut for hyphen distribution of the query. 

 

5- The fragment in a URL, also known as the URL fragment identifier or anchor, 

refers to a specific section or location within a webpage. It is denoted by a hash 

symbol ("#") followed by a fragment identifier. The fragment component is 

primarily used to navigate to a specific section of a webpage, allowing users to 

jump directly to a particular portion of the content. Web designers often use 

fragments to divide webpages into meaningful sections and provide quick access 

to specific information or sections of interest. 

 

For example, in the URL "https://www.example.com/page#section1", the fragment 

component is "#section1". Here, "section1" refers to a designated section within the 

webpage that the URL points to. The fragment component is typically processed on 

the client-side, as it does not get transmitted to the server. Web browsers interpret the 

fragment and scroll the webpage to the corresponding section or anchor point 

identified by the fragment identifier. 

 

The fragment component is commonly used in conjunction with HTML elements such 

as headings, paragraphs, or named anchors, where these elements are assigned specific 

IDs to serve as the targets for the fragment identifier. While the fragment component 

primarily affects the user's browsing experience, it can also be utilized for various 

purposes, such as bookmarking specific sections of a webpage or sharing a direct link 

to specific content within a page. 
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In our work, we extensively studied the fragment and meticulously extracted various 

characters from it. We conducted a comprehensive analysis, taking into account a 

range of important characters such as the length of the fragment (fragment_length), 

the quantity of periods (.) in the fragment (qty_dot_fragment), the quantity of hyphens 

(-) in the fragment (qty_hyphen_fragment), the quantity of slashes (/) in the fragment 

(qty_slash_fragment), the quantity of question marks (?) in the fragment 

(qty_questionmark_fragment), the quantity of equal signs (=) in the fragment 

(qty_equal_fragment), the quantity of at symbols (@) in the fragment 

(qty_at_fragment), the quantity of ampersands (&) in the fragment 

(qty_and_fragment), the quantity of exclamation marks (!) in the fragment 

(qty_exclamation_fragment), the quantity of spaces ( ) in the fragment 

(qty_space_fragment), the quantity of tildes (~) in the fragment (qty_tilde_fragment), 

the quantity of commas (,) in the fragment (qty_comma_fragment), the quantity of 

plus signs (+) in the fragment (qty_plus_fragment), the quantity of asterisks (*) in the 

fragment (qty_asterisk_fragment), the quantity of hashtags (#) in the fragment 

(qty_hashtag_fragment), the quantity of dollar signs ($) in the fragment 

(qty_dollar_fragment), and the quantity of percent signs (%) in the fragment 

(qty_percent_fragment). 

 

By meticulously analyzing these characters, we gain valuable insights into the 

properties and composition of the fragment. This analysis allows us to make informed 

decisions and draw meaningful conclusions based on the specific characteristics of the 

fragment's content. 

 

Phishing attacks threaten individuals and organizations, making detection and 

prevention crucial. Identifying key differences between legitimate and malicious 

URLs is essential to solving this problem. Traditional feature extraction methods use 

manual selection or heuristics, which are subjective and ineffective. Data Envelopment 

Analysis (DEA) overcomes these limitations with a systematic, data-driven approach. 

DEA can extract many features from phishing URLs. DEA can measure decision-

making unit efficiency based on inputs and outputs. Phishing URLs are decision-

making units, while their inputs and outputs are their attributes and characteristics. 

DEA identifies the most important and discriminating features that classify URLs as 
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legitimate or malicious. DEA's quantitative feature importance assessment is a major 

benefit of feature extraction. This method helps identify phishing URLs. DEA can 

handle high-dimensional datasets and noise and outliers in phishing detection. Its 

robustness makes the selected features reliable and effective at identifying phishing 

URLs. 

 

DEA is used to optimize phishing URL feature extraction. DEA maximizes URL 

efficiency by considering its attributes, identifying the most efficient feature 

combination, and highlighting the most important classification factors. We can 

improve phishing URL classifiers by using DEA's strengths. The extracted features 

can improve anti-phishing systems. 

 

 DEA-based feature extraction can also help develop phishing attack mitigation 

strategies. Figures 4.3-4.7 show the results of our DEA-based dataset feature extraction 

of Domain, Path, Query, and Fragment. These figures illuminate how these features 

affect URL classification. DEA and feature extraction can significantly improve 

phishing URL detection. This research improves security systems, protecting users 

from phishing attacks. Our findings also encourage feature extraction research to 

address cybersecurity issues. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. The DEA resut for length distribution of the fragment. 
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The findings of the length distribution of the fragment suggest a variance in 

distribution, with a slightly larger incidence in valid URLs compared to phishing 

URLs, as can be seen in Figure 4.14. This difference in occurrence is due to the fact 

that legitimate URLs are more likely to contain the fragment. 

 

  

 

  

 

  

 

 

 

  

 

 

 

Figure 4.15. The DEA resut for and distribution of the fragment. 

 

As can be seen in Figure 4.15, the results of the and distribution of the fragment suggest 

a variance in distribution, with a little larger occurrence in phishing URLs compared 

to valid URLs. This is because phishing URLs are more likely to contain the fragment 

than legitimate URLs. 
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Figure 4.16. Heatmap result. 

 

Heatmap-based feature selection is a powerful technique used to identify the most 

informative and relevant features in a dataset. By visualizing the correlation matrix 

between features, a heatmap provides a clear and intuitive representation of the 

relationships between variables. The color-coded heatmap allows for quick 
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dentification of strong correlations, both positive and negative, enabling efficient 

feature selection. Features that exhibit high correlation with the target variable or with  

other important features can be prioritized for further analysis, while irrelevant or 

redundant features can be disregarded. Heatmap-based feature selection aids 

introducing dimensionality, improving model interpretabilities. Figure 4.17 shows the 

result of heatmap in the data we have extracted. 

 

We have applied feature selection in our work using one of the popular techniques. In 

the ever-evolving landscape of cybersecurity, the detection and prevention of phishing 

attacks are of paramount importance. Phishing URLs pose a significant threat to 

individuals and organizations alike, as they are often disguised as legitimate websites 

to deceive unsuspecting users. To combat this, feature selection techniques play a 

crucial role in identifying the most relevant indicators of phishing activity. One such 

technique is SelectKBest, which provides a powerful approach to selecting the most 

informative features for domain-based phishing URL analysis. 

 

Understanding SelectKBest: 

 

SelectKBest is a feature selection algorithm widely used in machine learning and data 

mining tasks. Its primary objective is to rank and select the most relevant features from 

a given dataset based on their statistical significance. This approach helps reduce the 

dimensionality of the data, removing irrelevant or redundant features and enhancing 

the performance of subsequent classification algorithms. 

 

Applying SelectKBest to Phishing URL Domain Analysis: 

 

When it comes to phishing URL analysis, the domain plays a crucial role in identifying 

potential threats. SelectKBest can be leveraged to select the most discriminative 

features from a dataset containing various domain-related attributes, such as domain 

length, the presence of hyphens or digits, and the presence of suspicious keywords. By 

quantifying the statistical relevance of these features, SelectKBest enables the 
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identification of the most influential factors in differentiating between legitimate and 

phishing URLs. 

 

Feature Selection Process with SelectKBest: 

 

Dataset Preparation: The first step involves gathering a labeled dataset comprising 

both legitimate and phishing URLs. Each URL should be represented by various 

domain-related attributes that capture the distinguishing characteristics. 

 

Feature Extraction: Next, relevant features are extracted from the URLs. These 

features may include domain length, the number of subdomains, the presence of 

specific keywords or patterns, and other domain-centric attributes that could 

potentially differentiate between legitimate and phishing URLs. 

 

Feature Scoring: In this step, SelectKBest applies a scoring function, such as chi-

squared or mutual information, to assign a score to each feature. The score indicates 

the statistical significance of the feature in relation to the target variable (legitimate or 

phishing). 

 

Feature Ranking: Once the features are scored, SelectKBest ranks them based on their 

scores. The top-k features with the highest scores are selected as the most informative 

and discriminatory features for subsequent analysis. 

 

Model Training and Evaluation: The selected features are then used to train a 

classification model, such as a decision tree, random forest, or support vector machine 

(SVM). The model's performance is evaluated using appropriate evaluation metrics, 

such as accuracy, precision, recall, or F1-score, to assess its effectiveness in 

distinguishing between legitimate and phishing URLs. 

 

Benefits and Limitations of SelectKBest: 

 

SelectKBest offers several advantages in the context of phishing URL domain 

analysis. It reduces the dimensionality of the feature space, mitigates the curse of 
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dimensionality, and enhances the performance and interpretability of the subsequent 

classification models. Additionally, by selecting the most relevant features, 

SelectKBest can improve computational efficiency and reduce overfitting. 

 

However, it is important to note that SelectKBest operates solely on the available 

features and does not consider potential interactions or dependencies among them. 

Therefore, it may not capture complex relationships between features, which could 

lead to the omission of important information. Additionally, SelectKBest relies on the 

assumption that the selected features are statistically significant, which may not always 

hold true in every dataset. 

 

We set K equal to 10 and obtained important features that demonstrate a significant 

impact on the URL results. These features are highly correlated with the results. 

Therefore, the field with the highest score is as follows: url_length, qty_dot_url, 

qty_hyphen_url, qty_and_url, qty_dot_path, query_length, qty_dot_query, and 

qty_slash_query, as shown in Figure 4.18. 

 

 

Figure 4.17. Results of the feature importance. 
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4.4. THE PROPOSED ALGORITHMS  

 

In the next section, we will provide an in-depth explanation of the Core Classification 

Algorithm (CCA) as well as its improved form, the Improved Core Classification 

Algorithm (ICCA), which was introduced in the previous section [109].  

 

4.4.1. Core Classification Algorithm (CCA) 

 

Our proposed technique is derived from the KNN algorithm since it is based on 

comparing all of the points to a single point inside each class that is also known as the 

core. This comparison is done to determine how similar each point is to the core. When 

compared to all of the other points, this one singular point stands out. Because it 

possesses all of the characteristics that are associated with the class, or at least the vast 

majority of them, that particular point is considered to be an accurate reflection of the 

group as a whole. Therefore, the approach that was suggested is able to circumvent the 

challenges presented by the possibility of altering the results by adjusting the K 

parameter in the KNN algorithm. This is done in an attempt to find a suitable value 

that will offer a categorization that is as accurate as is feasible in the given 

circumstances.  

 

 

 

 

 

 

 

 

 

Figure 4.18. CCA algorithm classification [109]. 

 

In the case of liner categorization, which is shown in Figure 4.18, the test point has 

only been examined in conjunction with the Cores in both classes. Because of this, it 

will be placed in the category that is most closely associated with its fundamental 

Class 1 Class 2 

Test point  
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characteristics. The objective of the research was to hybridize the algorithm that was 

derived from KNN with one of the partition unsupervised learning algorithms (K-

means). This is because the hybridization process gives the derived algorithm strength 

and enables it to work efficiently while dealing with a large number of domains and 

cases. Any algorithm used in machine learning has both strengths and flaws inside its 

underlying mechanism; as a result, it is only useful in some contexts while being of no 

use in others. 

 

The concept of hybridizing two algorithms is required in many situations in order to 

improve performance or to increase efficiency, and what's more important is that it can 

be used effectively to overcome some of the flaws and challenges that are present in 

one of the two algorithms that were used to create the hybridization. Historically, 

hybrid algorithms have been developed according to the notion of maximizing the 

benefits of one algorithm while simultaneously improving the functionality and 

effectiveness of another algorithm. Yet, the results of our research indicate that it is of 

a greater significance when a fault in one algorithm is utilized to improve the 

performance of another algorithm. The core mechanism of the suggested algorithm 

(CCA) is based on the following three principles: 

 

1. Modeling the KNN technique and locating a single Core that embodies all of 

the attributes unique to each class as an alternative to adjusting the 

classification result depending on the K-value generated by the KNN 

algorithm. 

2. The clustering technique should be used to overcome the dataset distribution 

difficulties such as nonlinear classification, overlapping, or noise. All of these 

problems imitate the hidden layers in NNs; thus, the clustering approach should 

be used to solve them. 

3. A number of rounds are necessary to create varying numbers of clusters 

reaching newer cores, similar to the strategy that NNs use, and this number 

varies depending on the outcomes of the K-means algorithm, which are 

notoriously unreliable. 
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Figure 4.19. Linear and Non-linear classification [109]. 

 

Figure 4.19.a. the linear classification of the data distribution is shown on the left, 

where information is sorted into one of two categories according to how it was labeled. 

In circumstances when the core does not faithfully reflect all the points in the data class 

specified by the core, as seen in figure 4.19.b, it is necessary to combine the technique 

with clustering. It is hard to appropriately identify the data (particularly class 1) 

without introducing clustering which correctly aligns the distributions with the classes, 

as shown in the image, where classes are represented by C (C1 and C2) and clusters 

by K (K1 and K2). 

 

4.4.1.1. Mathematical Formula  

 

This part shows the basic math formula for the CCA algorithm without any 

hybridization of clustering to make it easier to understand and explain. The following 

formulas back up the mechanism of the proposed algorithm and show that it works. 

The first step of the algorithm is to make the distance matrix (D_M) for each class. 

Each row in D_M shows how far a point is from the other points in the same class. A 

new column is used to store the sum for each row. The row with the smallest sum 

shows the most similarities. This is also known as the Core point, which is a summary 

of most or all of a class's traits. Any test point will be put into a class based on how 

much it looks like the Cores of the classes. The scenario of three classes is shown 

symbolically as 𝑐1, 𝑐2, 𝑐3 from the original dataset (DS) and can be shown in sub-

datasets as dsc1, dsc2, dsc3, with each class made up of a number of points (i, j, k), as 

follows: 
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ⅆ𝑠𝑐1={𝑐1(𝑝1), 𝑐1(𝑝2), 𝑐1(𝑝3), … , 𝑐1(𝑝𝑖) }  …………………………………..……    4.1 

 

ⅆ𝑠𝑐2={𝑐2(𝑝1), 𝑐2(𝑝2), 𝑐2(𝑝3), … , 𝑐2(𝑝𝑗)}  ………………………………………..    4.2 

 

ⅆ𝑠𝑐3={𝑐3(𝑝1), 𝑐3(𝑝2), 𝑐3(𝑝3), … , 𝑐3(𝑝𝑘)}  …………………………………….….    4.3 

 

The distance matrices for the three classes are each represented by the following 

notation: (DM)𝑐1 , (DM)𝑐2 , (DM)𝑐3, with the following sizes: I * I j * j, and k * k. In 

the case of the (DM)𝑐1, each row of the table comprises I cells, and these cells reflect 

the distances that separate every point (𝑝𝑛)  in class 1 from the other points. In order 

to produce (DM)𝑐2 and (DM)𝑐3, the same method is used, as shown by the equations 

that follow: 

 

(DM)𝑐1 = ∏ ⅆ𝑖𝑠(𝑐1(𝑝𝑛), ⅆ𝑠𝑐1)𝑖
𝑛=1     ………………………………………..        4.4 

 

(DM)𝑐2 = ∏ ⅆ𝑖𝑠(𝑐2(𝑝𝑛), ⅆ𝑠𝑐2)
𝑗
𝑛=1     ………………………………………..        4.5 

 

(DM)𝑐3 = ∏  ⅆ𝑖𝑠(𝑐3(𝑝𝑛), ⅆ𝑠𝑐3)𝑘
𝑛=1    ...............................................................        4.6 

 

The core vectors Core_v with sizes (i * 1), (j * 1), and (k * 1) are constructed by 

computing the sum of each row in DM reflecting the farthest extent that the point (row) 

may represent the features of its class. This results in the core vectors with sizes (i * 

1), (j * 1), and (k * 1). 

 

(Co𝑟_𝑣)𝑐1 = ∏ ∑ (DM)𝑐1
𝑖
𝑐𝑜𝑙=1

𝑖
𝑛=1                  ……………………………….        4.7   

 

(Co𝑟_𝑣)𝑐2 = ∏ ∑ (DM)𝑐2
𝑗
𝑐𝑜𝑙=1

𝑗
𝑛=1                  ……………………………....        4.8   

 

(Co𝑟_𝑣)𝑐3 = ∏ ∑ (DM)𝑐3
𝑘
𝑐𝑜𝑙=1

𝑘
𝑛=1                  …………………………....….        4.9 

   

The core of each class may be determined by picking the least value in Core_v, this 

core is distinguished by having the most in common with the other points that make 
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up the class. As a result, three cores denoted by the notations (Co𝑟)𝑐1, (Co𝑟)𝑐2, and 

(Co𝑟)𝑐3 are obtained for each class denoted by the notations c1 c2 c3  respectively. As 

a result, test points can be assigned to the appropriate classes by achieving the highest 

level of similarity with their respective cores. 

 

4.4.1.2. The Pseudo Code for CCA Algorithm 

 

We will demonstrate this using a scenario in which a dataset is trained, and the results 

are divided into three categories. The similarity between a given point and the other 

points in its class is represented by the sum of its rows in the distance matrix, which is 

created as (DM)ci. For each class (ci), the best possible representation is found at the 

place with the greatest similarity-ty or the smallest sum. Instead of utilizing K closest 

neighbors like in the KNN method, the test points will be categorized based on their 

degree of similarity to these cores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm: Algorithm for CCA 

1: Input: in 

2: Output: out 

3: Initialization: 

4: loop process 

5: for i=1 to length of test_ds do 

6:     find the dis between test_ds[i] and (Cor)cx 

7:       if dis(1)  is minimum 

8:             Classify test_ds[i] to class(1) 

9:       else if  dis(2)  is minimum. 

10:           Classify test_ds[i] to class(2) 

11:     else 

12:           Classify test_ds[i] to class(3) 

13: end loop 

14: return Class(x) 
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Think of S as a dataset with n points (S: =p1, p2..., pn) that are separated into three 

categories and represented as pi= (xi, ci) where xi is the point's feature vector and ci 

is the category to which it belongs. 

 

Let's pretend x is a point that has to be placed in the right CCA class. 

 

1. The first step is to determine the distance matrices between the three groups 

(DM)c1, DM)c2, and DM)c3. 

2. Determine the center of the first, second, and third classes 

3. Determine three values for x based on the calculated distance to all cores: 

Disadvantages 1, 2, and 3 

4. Based on the minimal distance within each class, X will be placed in class 

(dis1, dis2, dis3) 

 

The following pseudocode and table 1 notation illustrate these actions: 

 

4.4.1.3. Hyperdization CCA Algorithm With K-means Algorithm 

 

The utilization of real data in classification problems presents several challenges, 

including but not limited to nonlinear classification, overlap among classes, and the 

presence of outliers. To address these challenges, one may employ a clustering 

algorithm to enhance the flexibility of the CCA algorithm. This denotes a benefit of 

utilizing an algorithm within another algorithm to enhance its efficacy or address a 

specific problem. Employing clustering with CCA can be likened to incorporating 

hidden layers in Neural Networks (NN). Conversely, when partition clustering is 

applied to the same input dataset in a different NN simulation, it yields disparate 

outcomes. The K-means algorithm involves applying iteration to obtain distinct 

clusters at a predetermined number. The selection of initial centers is random and 

impacts the resulting clusters in each iteration. Consequently, the model shall undergo 

training in order to achieve greater levels of accuracy. Both methodologies are 

employed in addressing non-linear classification and other related predicaments. 
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According to the study's scenario, the training dataset separation structure comprises 

80% of all datasets and is characterized by three classes that are each composed of two 

clusters. For example, Cor_c1 (k1) denotes the Core of cluster 1 within class 1, while 

Cor_c1 (k2) represents the Core of cluster 2 within class 1. 

 

The general concept of the Core Classify Algorithm (CCA) is presented in Figure 4.20, 

which depicts a flowchart outlining three class scenarios divided into two clusters 

within each class. The testing dataset is represented by the variable "n," while "j" 

serves as a counter. The model is trained within each iteration process, with "I" serving 

as a counter for the number of iterations (ite). The accuracy and Cores are stored during 

this process. Ultimately, the cores of clusters exhibiting high accuracy shall be selected 

as suitable cores for an ideal model. The efficacy and scope of a classification 

algorithm are not contingent upon its precision in optimal scenarios, such as linear or 

discriminative classification. Rather, its effectiveness is determined by its ability to 

adjust to non-ideal classification scenarios. The proposed algorithm achieved higher 

classification accuracy by incorporating one of the most prevalent unsupervised 

learning algorithms. Furthermore, due to a characteristic of the K-means algorithm, 

varying outcomes that are not consistent are produced with each implementation. The 

simulation of training in neural networks involved the concept of updating the Cores 

within clusters, which distinguishes it from the weight updating process in neural 

networks. This difference lies in the varying strength of representation of clusters. 
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Figure 4.20. flowchart of CCA algorithm [109]. 
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4.4.2. Improved Core Classification Algorithm (ICCA) 

 

In this stage, we present a novel algorithm called the Improved Core Classification 

Algorithm (ICCA), which is an enhancement of the previous algorithm known as 

CCA. The goal of ICCA is to improve the accuracy and efficiency of core 

classification tasks. 

 

The ICCA algorithm introduces a significant improvement by incorporating an active 

set (A_S) concept. The active set provides a more refined representation of the class, 

enabling better classification of data points. By leveraging similarity voting, ICCA 

measures the distance between data points using the well-known Euclidean distance 

metric. This distance-based approach allows ICCA to capture the similarity between 

points and make informed decisions about their classification. 

 

One interesting aspect to consider is the variability in the output of K-means 

algorithms across different implementations. While this variability can sometimes 

pose a challenge, we turn it into an advantage. During the training model phase, we 

carefully utilize this property to enhance the overall accuracy of our algorithm. By 

leveraging the variations in the output of K-means algorithms, we fine-tune our model 

to adapt to different implementations, ensuring robustness and improved performance.  

To validate the effectiveness and applicability of ICCA, we will conduct experiments 

in two specific domains: phishing URLs and healthcare domains. Phishing URLs 

represent a significant challenge in modern cybersecurity, and accurately classifying 

them is crucial for protecting users from malicious activities. By testing ICCA on this 

domain, we aim to demonstrate its capability to effectively identify and classify 

phishing URLs, enhancing security measures. 

 

Furthermore, we also plan to evaluate ICCA's performance in healthcare domains. 

Healthcare data often presents unique challenges due to its sensitive nature and 

complex characteristics. By applying ICCA to healthcare domains, we aim to 

demonstrate its ability to handle diverse data types, such as patient records, medical 

images, and diagnostic information. Achieving accurate and efficient classification in 
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healthcare settings can have far-reaching implications, including improved patient 

care, disease detection, and medical decision-making. 

 

however, the introduction of the Improved Core Classification Algorithm (ICCA) 

builds upon the previous work in CCA and presents a novel approach to enhance core 

classification tasks. By incorporating the active set concept, leveraging similarity 

voting, and utilizing the variations in K-means algorithms, ICCA aims to achieve 

better accuracy and efficiency. Through rigorous testing and validation in the domains 

of phishing URLs and healthcare, we aim to demonstrate ICCA's effectiveness and its 

potential impact in various real-world applications Figure 4.21. 

 

 

 

 

 

 

 

 

. 

 

 

Figure 4.21. ICCA Classification Algorithm. 

 

Hybridization, which involves combining two different algorithms into a single one, 

is essential for enhancing the functionality of both algorithms across various contexts. 

This approach proves to be useful in overcoming deficiencies and challenges that 

either of the algorithms may encounter. Historically, hybrid algorithms have been 

developed to leverage the strengths of one algorithm while improving the functionality 

and productivity of another. However, our study findings suggest that it is equally 

important, if not more so, to utilize the weaknesses of one algorithm to enhance the 

effectiveness of another algorithm. 

 

 Active set 

 Active set 

Class 1   

Class 2   
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The recommended algorithm, ICCA (Improved Core Classification Algorithm), is 

built upon the following key ideas that form its core mechanism: 

 

1- The current work involves simulating the Canonical Correlation Analysis 

(CCA) technique to identify an active set (A_S) for each class. This active set 

is defined by the unique characteristics specific to that particular class. The 

technique aims to address the challenge of high data dispersion, providing a 

solution for this issue. 

2- Clustering algorithms serve as powerful tools for efficiently solving problems 

associated with dataset distribution. These algorithms can effectively handle 

various challenges such as nonlinear classification, overlapping data points, 

and noise. 

 

By combining these ideas, ICCA aims to create a hybrid algorithm that leverages the 

benefits of both the CCA technique and clustering algorithms. The integration of CCA 

allows ICCA to capture class-specific characteristics, while the clustering algorithms 

provide efficient solutions for dealing with complex dataset distributions. 

 

Overall, hybridization plays a crucial role in improving the functionality and 

effectiveness of algorithms. By capitalizing on the strengths and weaknesses of 

different algorithms, ICCA represents an innovative approach to address various 

challenges in data analysis and classification tasks. 

 

4.4.2.1. The Pseudo Code of The Proposed Algorithm  

 

The approach for training a dataset and then later dividing the results into two unique 

groups will be shown. The building of the distance matrix, denoted by the symbol 

DMci, is carried out for each class. The summation of each row of the matrix reveals 

the degree of similarity that exists between a particular point (row) and the other points 

that belong to the same class. The distance matrix denotes the distance between the 

points. The active set A_S is a collection of entities that demonstrate the highest degree 

of interconnection. This collection may be found inside the current class and has been 

given its own name. This A_S is stored in the Active Set Matrix, and the Beta value is 
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established as a variable amount that indicates the number of points included inside 

the A_S. Both of these processes take place after the Active Set Matrix has been 

initialized. As a result, one may make the case that it offers the most realistic portrayal 

of the category that was indicated before. The data from the exam will be sorted into 

categories according to how closely they resemble the A_S. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Compute a matrix that represents the distance between the two classes. 

2. Make the value of Beta the cardinality of the A_S, which is the number of 

objects included inside it, and set it to that value. 

3. You may acquire the A_S matrix for each class by measuring the distance 

matrix. This is how you do it. 

4. Determine the distance that separates each active object set from the variable 

x by computing the distance between the two. 

5. In order to fulfill the requirements of the minimal distance criteria, the value 

of x has to be designated for the category that displays the shortest distance. 

 

The following processes are shown in pseudocode format as they are provided below, 

and the accompanying symbols are illustrated as follows: 

 

Clustering algorithms are a powerful tool that may be used to efficiently solve 

problems that are associated with the distribution of datasets. Some of these problems 

include, but are not limited to, nonlinear classification, overlapping, and noise. 

Algorithm: Algorithm for ICCA 

1: Input: training dataset  

2: Output: classify the test point into its class 

3: Initialization: 

4: Find the  A_S for each class 

5: loop process 

6: for i=1 to length of test_ds do 

7:     find the dis between test_ds[i] and  A_S objects 

8:       if dis(1)  is minimum 

9:             Classify test_ds[i] to class(1) 

10:     else 

11:           Classify test_ds[i] to class(2) 

12: end loop 

13: return Class(x) 
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Figure 4.22 is a flowchart that depicts the Improved Core Classify Algorithm (ICCA), 

which is designed to improve the classification process. The ICCA intends to improve 

the accuracy of classifications. This particular implementation of the method is 

intended to handle a situation in which there are two classes, each of which is separated 

into two clusters. "n" is the variable that stands in for the testing dataset, and "j" is the 

counter that is being used here. When training the model, the letter "I" serves as a 

counter for the total number of iterations. The accuracy and A_S are both tracked 

during each iteration of the process. The A_S values of clusters that have been 

determined to have a high level of accuracy are chosen to be the right values for the 

ideal model. 
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Figure 4.22. flowchart of ICCA algorithm. 
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PART 5 

 

RESULTS AND DISCUSSIONS  

 

5.1. EXPERIMENT AND RESULTS FOR CCA ALGORITHM: 

 

The effectiveness and productivity of the CCA algorithm are evaluated by making use 

of five different real datasets coming from two distinct industries, namely Phisher URL 

and Healthcare, in addition to one linear classification synthetic dataset. These datasets 

are described in Table 5.1, and the evaluation of the CCA algorithm follows. The 

findings are going to be analyzed and spoken about, and then they're going to be 

compared to several different categorization systems. Many articles have presented 

various techniques for Web Phishing Attacks, such as Feature Selection, data 

preparation, and other topics associated with these attacks. As a result, phishing and 

healthcare datasets were acquired from their respective sources for this investigation 

[98-100]. 

 

Table 5.1. The data set description of the experiment [109]. 

Experiment. No. Observations Features Domain 

1 1000 3 synthetic 

2 11055 30 Phisher URL 

3 583 8 Healthcare 

4 2000 11 Healthcare 

5 3656 15 Healthcare 

 

In Table, 5.2 The terms "Experiment 1-5" denote the five separate data sets that have 

been examined. CCA was performed on each dataset with a total of four iterations and 

four cluster indices (K-values). The findings of CCA show that the accuracy is at its 

highest for dataset 1, which represents a linear classification scenario, and that 

clustering is not required because the core of each class is adequately represented. This 

finding demonstrates that linear classification yields the highest level of accuracy. 

Studies 2 through 5, which could not be separated linearly, all shown greater accuracy 

when using the CCA, with some clusters doing much better than the others. 
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 Table 5.2. Results of CCA with different numbers of (cluster, iteration) [109]. 

 

In table 5.3. We determined the efficacy of the CCA by doing the following analyses: 

calculating the F1-score; determining the level of accuracy and recall; and analyzing 

the data using the confusion matrix. We examined four datasets (numbered 1–4), and 

discovered that CCA has yielded inconsistent results depending on the kind of data. 

All of the experiments were run with a maximum of two iterations each. 

 

Table 5.3. Results of F1-Score, Precision, and Recall for CCA [109]. 

Dataset Performance 

Matrix 

CCA with 0 

Cluster 

CCA with 2 

Cluster 

CCA with 3 

Cluster 

CCA with 0 

Cluster 

1 precision 76.24 75.73 80.22 76.35 

1 Recall 77.01 76.94 80.17 77.20 

1 F1 Score 76.62 75.33 80.17 76.77 

2 Precision 95.22 50.54 53.85 62.87 

2 Recall 62.05 50.70 55.00 56.63 

2 F1 Score 60.60 50.62 54.42 64.22 

3 Precision 55.59 58.18 62.00 59.07 

3 Recall 55.68 58.24 62.08 59.08 

3 F1 Score 55.64 58.21 62.04 59.07 

4 Precision 54.19 59.94 59.76 52.89 

4 Recall 52.28 56.34 55.93 51.52 

4 F1 Score 53.20 58.08 57.78 52.20 

 

Experiment. No. Iteration K=1  K=2 K=3 K=6 

1 50 100% 100% 100% 100% 

 100 ----- 100% 100% 100% 

 300 ----- 100% 100% 100% 

 500 ----- 100% 100% 100% 

2 50 77.7% 85.4% 81.0% 82.7 

 100 ----- 80.7% 84.0% 83.6% 

 200 ----- 81.7% 84.0% 83.3% 

 300 ----- 80.4% 84.0% 83.7% 

3 50 66.7% 59.2% 59.8% 58.6% 

 100 ----- 59.2% 61.3% 60.3% 

 200 ----- 59.2% 61.5% 62.7% 

 300 ----- 59.2% 63.2% 62.3% 

4 50 59.9% 60.0% 60.7% 60.8 

 100 ----- 60.0% 61.0% 61.5 

 200 ----- 60.0% 61.0% 61.8 

 300 ----- 60.0% 61.0% 61.2 

5 50 61.9% 67.3 76.9% 69.8% 

 100 ----- 68.7 76.9% 71.9% 

 200 ----- 75.1 76.9% 71.1% 

 300 ----- 75.1 77.2% 75.9% 
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5.1.1. Comparison CCA Algorithm and Other Well Know Algorithms 

 

The purpose of this part is to show the characteristics of the proposed algorithm as 

well as its areas of strength and weakness by comparing the performance of the 

proposed algorithm to that of other comparable and well-known machine learning 

methods. The accuracy of the model generated by the suggested method is evaluated 

and contrasted with that of Random Forest, SVM, and Decision Trees. Table 5.4 

displays the results of the experiments that were conducted using the three different 

classification methods, including CCA. As compared to experiment 1, in which all 

algorithms functioned perfectly when subjected to linear classification, it would seem 

that the accuracy of the model is worse in all non-linear classification tests, such as 

those seen in experiments 2-5. In terms of accuracy, the RF method was the least 

precise, followed by the SVM method, then the DT method, and lastly the CCA 

method. The results also demonstrate that the recommended algorithm suffers from 

the same problems with data distribution as the other three methodologies that were 

investigated. Experiment 1 exhibits the highest level of accuracy that can be achieved 

with the model, whilst experiment 4 demonstrates the lowest level.  

  

Table 5.4. Results of compare CCA and other algorithms [109]. 

 

5.2. EXPERIMENT AND RESULTS OF ICCA ALGORITHM 

 

In this study, we put the ICCA technique to the test by applying it to four datasets that 

originate from two distinct application domains: phishing URL and healthcare. These 

datasets come from the Phisher URL and Healthcare application domains, 

respectively. The purpose of this research is to evaluate how effective and practical the 

approach is. According to what is shown in Table 5.5, the results are going to be 

NO RF SVM DT CCA High 

Accuracy 

1 100% 100% 100% 100% All 

2 97.3% 93.1% 96.5% 84.0% RF 

3 73.6% 71.3% 69.5% 63.2% RF 

4 71.3% 64.3% 64.7% 61.8% RF 

5 84.2% 84.7% 75.5% 77.2% SVM 

Avg 85.4% 82.7% 81.2% 77.2%  
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studied and discussed, and after that, they are going to be compared to a number of 

other classification schemes. Several publications have been published that offer 

various techniques for Web Phishing assaults. These techniques include Feature 

Selection, the preparation of data, and other issues that are linked with these assaults. 

As a direct consequence of this, datasets related to phishing and healthcare were 

obtained from their respective sources in order to conduct this analysis[96, 98-100]. 

 

Table 5.5. Data sets description of experiments. 

 

 

 

 

 

 

The following tables provide the findings obtained from doing an analysis on four 

distinct datasets; these datasets are denoted by the numbers "1-4." In any case, the 

following experiments have shown that the results of the ICCA have experienced a 

substantial improvement. This is especially obvious when the number of cores 

employed in each class is doubled. 

 

In this study, the ICCA was examined by using the confusion matrix; moreover, the 

F1-score, precision, and recall were all calculated. We examined datasets 1 through 

4, and ICCA supplied us with a variety of results, depending on whatever dataset we 

were analyzing. In each experiment, we carried out 20 iterations, 50 iterations, and 

100 iterations accordingly. 

 

The ICCA was evaluated without making use of clustering, as shown in Table 5.6, 

and the Beta was found to be equal to 5. 

  

Experiment. No. Observations Features Domain 

    

1 11055 30 Phisher URL 

2 583_2 8 Healthcare 

3 2000_4 11 Healthcare 

4 3656_9 15 Healthcare 
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Table 5.6. Results of ICCA where β = 5, Number of Cluster =0. 

Data set Accuracy Precision recall F1 

score 

1 77.12 77.31 76.08 76.08 

2 68.96 67.44 66.83 65.56 

3 60.83 60.91 60.90 60.10 

4 62.81 54.52 52.42 61.21 

 

By using the Cluster, setting the Beta to Table 5.7, and iterating until we reach a total 

of 20, 50, and 100, respectively. When the number of iterations was increased, the data 

indicated an increase, and the results were much better when clustering was utilized as 

opposed to when it was not employed. 

 

 

Table 5.7. Results of ICCA where β = 5, Number of Cluster = 2, iteration = 20,50,100. 

Data 

set 

iteration Accuracy Precision recall F1 

score 

1 20 

50 

100 

78.47 

80.95 

79.53 

70.42 

71.37 

67.88 

71.77 

72.68 

71.15 

71.09 

72.02 

69.47 

2 20 

50 

100 

61.49 

65.52 

67.24 

56.94 

62.98 

62.66 

55.60 

61.25 

60.65 

56.26 

62.10 

61.64 

3 20 

50 

100 

62.33 

60.17 

61.67 

51.75 

56.21 

60.60 

54.35 

56.21 

61.50 

53.02 

56.21 

61.05 

4 20 

50 

100 

80.49 

81.22 

80.22 

60.91 

61.99 

60.95 

56.55 

57.10 

56.95 

58.65 

59.45 

58.88 

 

In addition, in table 5.8 the findings have been much better once the cluster size was 

raised to three. This has resulted in a more evenly distributed dataset, which in turn 

has led to superior outcomes.  
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Table 5.8. Results of ICCA where β = 5, Number of Cluster = 3, iteration = 20,50,100. 

Data set iteration Accuracy Precision recall F1 score 

1 20 

50 

100 

83.36 

85.35 

88.15 

80.45 

74.39 

75.84 

80.03 

75.44 

76.72 

80.24 

74.91 

76.28 

2 20 

50 

100 

72.41 

75.86 

68.97 

55.06 

64.20 

61.24 

67.13 

65.38 

60.33 

60.50 

64.79 

60.78 

3 20 

50 

100 

67.00 

61.50 

64.50 

44.07 

57.07 

62.91 

44.50 

57.10 

63.50 

44.64 

57.09 

63.21 

4 20 

50 

100 

72.23 

80.71 

80.75 

51.87 

47.35 

57.33 

57.22 

48.71 

54.16 

51.54 

48.02 

55.70 

 

In Table 5.9. The Beta value is now 9 and the clustering was not provided, and the 

results for this table indicate improved results that are more in line with the method 

that was provided in comparison to when the lambda value was equal to 5. 

 

Table 5.9. Results of ICCA where β = 9, Number of Cluster = 0. 

Data set Accuracy Precision recall F1 score 

1 78.66 77.36 77.29 76.31 

2 70.69 68.62 66.67 67.63 

3 61.83 61.87 61.98 61.92 

4 63.45 58.80 55.01 56.84 

 

In table 5.10. We may conclude that using the cluster and raising the value of Beta 

yields more accurate results. 

 

Table 5.10. Results of ICCA where β = 9, Number of Cluster = 2, iteration = 20,50,100. 

Data set iteration Accuracy Precision recall F1 score 

1 20 

50 

100 

80.52 

88.79 

89.32 

71.62 

71.38 

70.43 

72.84 

72.56 

71.59 

72.22 

71.97 

71.00 

2 20 

50 

100 

63.79 

68.39 

71.26 

64.38 

67.18 

62.51 

62.43 

65.25 

59.88 

63.39 

66.20 

61.17 

3 20 

50 

100 

60.83 

63.33 

63.33 

60.81 

58.76 

55.11 

60.80 

58.87 

55.29 

60.81 

58.81 

55.20 

4 20 

50 

100 

79.58 

68.28 

79.76 

60.11 

61.66 

64.19 

56.05 

57.58 

58.82 

58.01 

59.55 

61.39 
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Finally, in table 5.11, the greatest values of Beta and clustering have been used, as well 

as the best outcomes in practically all datasets. 

  

Table 5.11. Results of ICCA where β = 9, Number of Cluster = 3, iteration = 20,50,100. 

Data 

set 

iteration Accuracy Precision recall F1 

score 

1 20 

50 

100 

83.93 

80.42 

90.32 

76.87 

80.66 

86.41 

81.00 

80.13 

89.17 

78.89 

80.40 

87.77 

2 20 

50 

100 

70.69 

71.55 

73.28 

59.04 

62.29 

57.64 

66.34 

63.93 

61.71 

62.47 

63.10 

59.60 

3 20 

50 

100 

67.75 

66.25 

68.00 

62.60 

56.79 

66.54 

62.64 

58.33 

66.62 

62.62 

57.55 

66.58 

4 20 

50 

100 

81.81 

81.53 

81.67 

57.04 

57.11 

61.51 

53.72 

53.48 

57.11 

55.33 

55.23 

59.23 

 

5.2.1. Comparison With Other Classification Algorithms 

 

In this section, we conduct a performance comparison of our proposed algorithm with 

other well-known and comparable machine learning algorithms. The objective is to 

highlight the distinctive features of our algorithm and identify any inherent limitations. 

We evaluate the model accuracy of our proposed approach in comparison to the Core 

Classification algorithm, Support Vector Machines (SVM), and Decision Trees. 

 

The experimental results, including those obtained from ICCA and the other 

classification methods, are presented in Table 5.12. These results serve as evidence of 

the power and performance of our algorithm, demonstrating its superiority over both 

its predecessor, the Core Classification algorithm, as well as the SVM and DT 

algorithms as it shown in figure 5.1. 

 

By comparing the model accuracy achieved by each algorithm, we can clearly observe 

the advantages of our proposed approach. It outperforms the Core Classification 

algorithm, SVM, and Decision Trees, indicating its ability to effectively handle the 

given classification task. 
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These findings emphasize the significance of our proposed algorithm and its potential 

applications in various domains. Furthermore, they shed light on its ability to 

overcome the limitations of existing algorithms and provide superior performance in 

terms of accuracy. 

 

Table 5.12. the comparison between ICCA and other classification algorithms. 

NO CCA SVM DT ICCA High 

accuracy 

1 84.0% 93.1% 96.5% 90.32% DT 

2 63.2% 71.3% 69.5% 75.86% ICCA 

3 61.8% 64.3% 64.7% 68.0% ICCA 

4 77.2% 84.7% 75.5% 81.81% SVM 

Avg 77.2% 82.7% 81.2% 78.99%  

 

 

 

Figure 5.1. Comparison of CCA and other algorithms. 

 

In Figure 5.2, the experimental results of applying the ICCA and CCA algorithms 

using four different datasets are presented. The purpose of this experiment is to assess 

the performance of these algorithms and determine their effectiveness. Upon analyzing 

the results, it becomes evident that the ICCA algorithm outperforms its predecessor 

significantly. 

 

The experiment involved the utilization of four diverse datasets, providing a 

comprehensive evaluation of the algorithms' capabilities. By examining the outcomes, 
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we can gain valuable insights into the comparative strengths and weaknesses of the 

ICCA and CCA algorithms. 

 

Moreover, it is worth noting that the ICCA algorithm demonstrates superior 

performance when compared to its predecessor. The significant advancements offered 

by the ICCA algorithm make it a promising choice for various applications. This 

observation suggests that further research and development in this area can lead to 

substantial improvements in the field. 

 

By extending the analysis and considering additional factors such as computational 

efficiency, scalability, and robustness, we can gain a more comprehensive 

understanding of the ICCA algorithm's capabilities. This information will be crucial 

for researchers and practitioners seeking to leverage its potential benefits. 

 

 

Figure 5.2. Comparing the Accuracy Performance of CCA and ICCA Algorithms. 

 

The proposed model was applied in this study to detect phishing URLs. The approach 

involved feature engineering to extract relevant features from the URL and feature 

selection to identify the most important features that are highly correlated with the 

results. The SelectKBest method was employed, with a value of K set to 10. 

Subsequently, various machine learning algorithms, including our proposed algorithm, 

were applied, and the results obtained were compared to those of well-known 
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algorithms. Our proposed algorithm demonstrated favorable performance in 

comparison. 

 

In Table 5.13, we have utilized a dataset comprising our extracted features. This 

dataset consists of 10 distinct features, each representing a specific characteristic of 

the URLs under consideration. To ensure a comprehensive analysis, we collected a 

substantial sample size, consisting of 549346 instances. This large-scale dataset 

allowed us to obtain statistically significant results and draw robust conclusions 

regarding the performance of our proposed model.  

 

Table 5.13. The final results of the model. 

Algorithm Accuracy 

CCA 70.12 

SVM 75.5 

DT 74.11 

ICCA 75.7 

 

 

However, as shown in Figure 5.3, our model has achieved superior results compared 

to the other examined algorithms. 

  

 

Figure 5.3. The final results of the model accuracy comparing with some other 

classfifcation algorithm.. 
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PART 6 

 

CONCLUSION  

 

Our work comprises three main parts. In the first part of this study, we introduced a 

novel classification algorithm that incorporates clustering to address data distribution 

challenges in classification. Our proposed CCA algorithm achieved higher accuracy 

by leveraging the unique characteristics of the K-means algorithm, which dynamically 

adjusts the data distribution with each iteration. This approach holds the potential to 

pave the way for improved and more efficient computational methods in dealing with 

datasets containing mixed distributions. 

 

This advancement serves as a stepping stone towards enhancing the accuracy and 

effectiveness of computational approaches for datasets with mixed distributions. To 

evaluate our proposed algorithm, we conducted four tests on two datasets from 

different domains: Phishing URL and Healthcare. Additionally, we performed one 

experiment on a synthetic dataset. 

 

The findings from our experiments demonstrate that the incorporation of clustering 

techniques enhances the accuracy of the classification model. This improvement can 

be attributed to the fact that each data point is associated with an appropriate number 

of clusters, resulting in better overall performance. Furthermore, increasing the 

number of iterations for the K-means algorithm may further enhance the accuracy. 

 

While the initial experiment using linear classification yielded excellent results for all 

methods, the accuracy of the algorithms varied when applied to the remaining four 

trials involving datasets with mixed distributions. This variability was mitigated by the 

elimination of the k parameter's changing values. Additionally, addressing the issue of 

missing values in the dataset is crucial. Various methods, such as data mining 

techniques and statistical measures like One-Way ANOVA, can be employed to handle 
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this problem. Using alternative similarity measures, such as One-Way ANOVA, 

instead of relying solely on Euclidean distance to express similarity between test points 

and the core of each cluster, can lead to improved results. 

 

In the second part of our study, we proposed an enhanced Core Classification 

Algorithm (ICCA) that utilizes the most informative features to improve data 

representation. By leveraging the active set approach and refining the K-means 

clustering algorithm, we achieved substantial improvements in classification accuracy. 

In comparison, our previous algorithm, CCA, demonstrated only moderate success. 

 

Our experimental results clearly indicate that ICCA outperforms CCA, particularly 

when working with high-dimensional datasets. In certain cases, ICCA even 

outperforms well-established algorithms like Random Forest (RF) and Decision Trees 

(DT). However, it is important to acknowledge that ICCA still has some limitations, 

with its time-consuming nature being the most prominent one. This can pose 

challenges when dealing with large-scale datasets. Addressing this limitation should 

be a priority for future work in this area. 

 

In general, the ICCA method we proposed holds great potential for enhancing 

classification accuracy. It can be a valuable tool in various real-world applications, 

including fraud detection, medical diagnosis, and spam filtering. 

 

Finally, we focused on studying the features of URLs to extract important 

characteristics for phishing detection. However, as phishers have become more 

sophisticated, we employed feature engineering techniques to extract relevant features 

and implemented the model on a real dataset consisting of 507,195 instances. Through 

the application of machine learning algorithms, our proposed approach demonstrated 

strong and accurate performance  
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