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ABSTRACT 

 

Master Thesis 

 

IMPLEMENTATION OF A LIQUID NEURAL NETWORK  

CONTROL SYSTEM FOR MULTI-JOINT CYBER PHYSICAL ARM 

 

Michael BIDOLLAHKHANI 

 

Karabük University 

Institute of Graduate Programs 

The Department of Computer Engineering 

 

Thesis Advisors: 

Assist. Prof. Dr. Ferhat ATASOY 

Assist. Prof. Dr. Abdellatef HAMDAN 

 

June 2023, 66 pages 

 

Technological solutions are being produced to meet people's needs and fulfill their 

desires in a comfortable way. As technology becomes cheaper, more widespread, 

smaller in size, and able to operate independently from the power grid, the 

communication of devices with each other (Internet of Things) and the ability of 

devices to make their own decisions increase the effectiveness of solutions. In 

particular, the reduction in device size can be achieved by requiring less system 

resources and battery capacity. Therefore, existing methods need to be customized to 

work effectively in embedded systems. 

In this thesis a novel approach called LTC-SE, which enhances the Liquid Time-

Constant Neural Network (LTC) technique for embedded environments with limited 

processing capabilities and strict performance requirements is presented. LTC-SE 
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combines various neural network paradigms, including Leaky-Integrate-and-Fire 

(LIF) spiking neural networks, Continuous-Time Recurrent Neural Networks 

(CTRNNs), Neural Ordinary Differential Equations (NODEs), and customized Gated 

Recurrent Units (GRUs), resulting in improved adaptability, interoperability, and 

structural organization. In the thesis, a unified class library, is developed, called 

LTCCell that offers extensive configurability CTRNN, NODE, and CTGRU 

elements. The proposed method is evaluated by developing a control system for a 

multi-joint cyber-physical arm, demonstrating its effectiveness in achieving 

designated objectives and manipulating objects securely. The system's performance 

is presented through a decision support framework and multi-variable benchmarking, 

emphasizing the benefits of our refinements in terms of user interaction, functional 

coherence, and code clarity. 

Furthermore, the LTC-SE technique expands the scope of liquid neural networks, 

finding applications in diverse machine learning domains such as robotics, causality 

assessment, and time-series forecasting. This thesis presents innovative contributions 

to the field based on the pioneering work of LTC neural network. 

 

Key Words : Cyber physical Control System, Recurrent Neural Networks 

(RNN), Liquid Time-Constant (LTC), Explainable Artificial 

Intelligence (xAI), Decision Support Systems (DSS). 

Science Code : 92432 
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ÖZET 

 

Yüksek Lisans Tezi  

 

SIVI SİNİR AĞI KONTROL SİSTEMİNİN ÇOK EKLEMLİ SİBER-

FİZİKSEL KOL İÇİN UYGULANMASI 

 

Michael BIDOLLAHKHANI 

 

Karabük Üniversitesi 

 Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanları:  

Dr. Öğr. Üyesi Ferhat ATASOY 

Dr.Öğr. Üyesi Abdellatef Hamdan 

 

Haziran 2023, 66 sayfa 

 

İnsanların ihtiyaçlarını giderme ve isteklerini yerine getirme talebinin konforlu bir 

şekilde gerçekleştirilmesi için teknolojik çözümler üretilmektedir. Teknolojinin 

ucuzlaması, yaygınlaşması, boyutlarının küçülmesi, elektrik şebekesinden bağımsız 

şekilde çalışabilir hale gelmesiyle birlikte cihazların birbirleriyle haberleşmesi 

(nesnelerin interneti) ve cihazların kendi kararlarını verebilecek hale getirilmesi 

çözümlerin etkinliğini arttırmaktadır. Özellikle cihaz boyutlarındaki küçülme daha az 

sistem kaynağına ve batarya kapasitesine ihtiyaç duyması ile sağlanabilmektedir. 

Bundan dolayı mevcut yöntemlerin gömülü sistemlerde etkili bir şekilde çalışması 

için bazen özelleştirilmeleri gerekmektedir. 
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Bu tezde sınırlı işlem kapasitesine ve sıkı performans kriterlerine sahip gömülü 

ortamlar için özelleştirilmiş bir sıvı sinir ağı (İng.: Liquid Time-Constant Neural 

Network Special Edition – LTC-SE) tekniği olan LTC-SE'nin geliştirilmiş bir 

versiyonu sunulmaktadır. LTC-SE Sızdır-Bütünleştir ve Ateşle darbeli sinir ağını, 

Sürekli-Zamanlı Özyinelemeli Sinir Ağlarını (SZÖSA'lar), Sinirsel Adi Diferansiyel 

Denklemleri (SADD'ler) ve Özelleştirilmiş Geçitli Tekrarlayan Birimleri (ÖGTB'ler) 

içeren çeşitli sinir ağları paradigmalarını kombine ederek adaptasyon yeteneğini, iş 

birliği kabiliyetini ve yapısal düzenlemesini güçlendirmektedir. Tezde SZÖSA, 

SADD ve ÖGTB elemanları için LTCCell adı verilen geniş konfigürasyon imkanı 

sunan birleşik bir sınıf kütüphanesi geliştirilmiştir. Önerilen yöntem, çok eklemli bir 

siber-fiziksel kol için bir kontrol sistemi geliştirerek, belirlenen hedeflere ulaşmada 

ve nesneleri güvenli bir şekilde manipüle etmede etkinliğini göstererek 

değerlendirilmiştir. Sistemin performansı, kullanıcı etkileşimi, işlevsel tutarlılık ve 

kod netliği açısından iyileştirmelerimizin faydalarını vurgulayan bir karar destek 

çerçevesi ve çok değişkenli kıyaslama yoluyla sunulmuştur. 

 

Ayrıca, LTC-SE tekniği, robotik, nedensellik değerlendirmesi ve zaman serisi 

tahmini gibi çeşitli makine öğrenimi uygulamalarında sıvı sinir ağı kavramının 

kapsamını genişletmektedir. Bu tez, LTC sinir ağının öncü çalışmalarına dayanarak 

alana yenilikçi katkılar sunmaktadır. 

 

Anahtar Kelimeler : Siber Fiziksel Kontrol Sistemi, Tekrarlı Sinir Ağı (TSA), Sıvı 

Sinir Ağı (SSA), Açıklanabilir Yapay Zeka, Karar Destek 

Sistemi (KDS). 

 

Bilim Kodu :  92432 

 



viii 

ACKNOWLEDGMENT 

 

First of all, I would like to thank God, for letting me through all the difficulties. Who 

supported me all the time and gave me priceless guides and helping hands to finish 

what I started. 

I would like to acknowledge and express my deepest gratitude to my family, who 

supported me without hesitation anytime.  

Also, I’m genuinely thankful of my Karabuk university supervisor Dr. Ferhat Atasoy 

and Dr. Abdellatef Hamdan (Lebanese American University). Their guidance and 

advice carried me through all the stages of implementation of the project. I want to 

appreciate the guidelines provided by Dr. Ramin Hasani (Massachusetts Institute of 

Technology), which gave me the motivation and seeds for starting my studies on 

liquid neural networks and where to start my research journey about cognitive and 

decision-making functionalities of brain frontal lobe. 

 

 



ix 

CONTENTS 

Page 

ABSTRACT ................................................................................................................ iv 

ÖZET........................................................................................................................... vi 

ACKNOWLEDGMENT ........................................................................................... viii 

CONTENTS ................................................................................................................ ix 

LIST OF FIGURES ................................................................................................... xii 

LIST OF TABLES .................................................................................................... xiii 

SYMBOLS AND ABBREVITIONS INDEX .......................................................... xiv 

 

CHAPTER 1 ................................................................................................................ 1 

INTRODUCTION ....................................................................................................... 1 

1.1. MOTIVATION AND PROBLEM STATEMENT ...................................... 2 

1.2. OBJECTIVE ................................................................................................ 4 

1.3. PROJECT OBJECTIVES ............................................................................ 4 

1.4. THE IMPORTANCE OF THE OBJECTIVE .............................................. 4 

 

CHAPTER 2 ................................................................................................................ 6 

LITERATURE REVIEW............................................................................................. 6 

2.1. FUNDAMENTAL ALGORITHMS ............................................................ 6 

2.2. LIMITATIONS OF TRADITIONAL ALGORITHMS .............................. 6 

2.3. THE NEURAL NETWORKS ..................................................................... 7 

2.4. NEURAL AND EVOLUTIONARY COMPUTING................................... 8 

2.4.1. Biological Neural System ......................................................................... 8 

2.4.1.1. The temporal lobe of our brain..................................................... 8 

2.4.1.2. The occipital lobe ......................................................................... 9 

2.4.1.3. The frontal lobe ............................................................................ 9 

2.4.2. Artificial Neural Network (ANN) ............................................................ 9 

2.4.2.1. The artificial neuron ................................................................... 10 

2.4.2.2. Nodes ......................................................................................... 10



x 

Sayfa 

2.5. LEARNING ALGORITHM SELECTION ............................................... 12 

2.5.1. Resources and validity ............................................................................ 12 

2.5.1.1. Explainability ............................................................................. 12 

2.5.1.2. In-memory vs. out-of-memory ................................................... 12 

2.5.1.3. Number of features and examples .............................................. 12 

2.5.1.4. Categorical vs. numerical features ............................................. 13 

2.5.1.5. Nonlinearity of the data .............................................................. 13 

2.5.1.6. Training speed ............................................................................ 13 

2.5.1.7. Prediction speed ......................................................................... 13 

2.5.2. Control Systems and Neural Networks: ................................................. 14 

2.5.3. Recurrent Neural Networks (RNNs): ..................................................... 15 

2.5.4. RNN and NVIDIA CUDA...................................................................... 16 

2.5.4. Emergence of LSTM Networks: ............................................................. 17 

2.5.5. The Role of LSTM in Control Systems: ................................................. 17 

2.5.6. Other LSTM-Related Approaches and Recent Research: ...................... 17 

2.5.7. Time-Constant Neural Networks ............................................................ 18 

2.5.8. Liquid Neural Network or Liquid Time-Constant NN (LTC) ................ 19 

2.5.8. Leveraging Ode Solvers For Dynamic System Modeling ...................... 21 

2.6. CONCEPT AND FUNCTIONALITIES ................................................... 22 

2.7. APPLICATIONS ....................................................................................... 22 

2.8. THE IMPLEMENTATION PROCESS ..................................................... 23 

CHAPTER 3 .............................................................................................................. 26 

THEORETICAL BACKGROUNDS ......................................................................... 26 

3.1. DYNAMIC EQUATIONS AND IO .............................................................. 26 

3.2. UNIVERSAL APPROXIMATORS OF LTCs .............................................. 28 

3.2.1. Theorem Alpha ....................................................................................... 28 

3.2.2. Proof of Theorem Alpha ......................................................................... 29 

3.3. TRACING A SIMPLE LTC FOR AN INSTANCE ...................................... 33 

3.3.1. Data preparation...................................................................................... 33 

3.3.2. Network initialization ............................................................................. 34 

3.3.3. Forward pass ........................................................................................... 34 

3.3.4. Loss calculation: ..................................................................................... 35 



xi 

Sayfa 

3.3.5. Backward pass: ....................................................................................... 35 

3.3.6. Iteration: .................................................................................................. 36 

3.4. CONCLUSION AND REMARKS FOR THEORETICAL BACKGROUNDS

 ............................................................................................................................... 37 

 

CHAPTER 4 .............................................................................................................. 38 

METHODOLOGY ..................................................................................................... 38 

4.1. THE PROPOSED ALGORITHM .................................................................. 39 

4.2. TIME-CONSTANT NEURAL NETWORKS ............................................... 42 

4.3. METHODOLOGY STEPS ............................................................................ 45 

4.4. IMPLEMENTATION .................................................................................... 46 

4.5. PROJECT REPOSITORY ON GITHUB ....................................................... 50 

 

CHAPTER 5 .............................................................................................................. 51 

RESULTS AND DISCUSSION ................................................................................ 51 

5.1. ORIGINAL LTC MODEL ............................................................................. 52 

5.2. OPTIMIZED LTC MODEL (Proposed By Researchers) .............................. 53 

5.3. THE POTENTIAL OF LTC NEURAL NETWORKS .................................. 54 

 

CHAPTER 6 .............................................................................................................. 57 

6.1. CONCLUSION .............................................................................................. 57 

6.2. FUTURE WORKS ......................................................................................... 59 

REFERENCES ........................................................................................................... 62 

 

RESUME ................................................................................................................... 66 



xii 

LIST OF FIGURES 

Page 

Figure 1.1. An instance of chained mechanical robot consisting of joints, rigids, 

actuators and electronics ............................................................................ 3 

Figure 2.1. Comparison between Classical Statistics and Overparameterization Era . 7 

Figure 2.2. Brain lobes and their known major functionality [6]................................. 9 

Figure 2.3. Node with inputs (x), weights (w), output (y)  ........................................ 11 

Figure 2.4. Demonstration of a Multi-Layer Feed-Forward NN ............................... 15 

Figure 2.5. Demonstration of a Multi-Layer RNN Architecture ............................... 16 

Figure 2.6. Demonstration of Liquid Neural Network (LTC) Architecture .............. 20 

Figure 2.7. An instance for a multi-joints arm system ............................................... 24 

Figure 4.1. Rigid Bodies Tree view of some kinematics instances; here Joints are 

labeled as (v) and Rigids by (e). ............................................................... 39 

Figure 4.2. Reverse-mode differentiation through an ODE solver requires solving an 

augmented system backwards in time. This adjoint state is updated by the 

gradient at each observation (Credit: Chen et al. NeurIPS, 2018) ........... 44 

Figure 4.3. Demonstration of Bedframe and Fixed transformation between frames 

addressing ................................................................................................. 47 

Figure 5.1. Memory usage comparison for different time series prediction tasks and 

algorithms ................................................................................................. 55 

 



xiii 

LIST OF TABLES 

Sayfa 

Table 5.1. Performance Metrics for Comparing Original and Optimized LTC Models 

Outcomes.................................................................................................. 53 

 



xiv 

SYMBOLS AND ABBREVITIONS INDEX 

 

SYMBOLS 

𝑉𝑖(𝑡) : Dynamics of a hidden or output neuron i at time t 

𝐶𝑚𝑖 : Membrane capacitance of neuron i 

𝑑𝑉𝑖/𝑑𝑡 : Rate of change of the internal state of neuron i with respect to time 

𝐺𝐿𝑒𝑎𝑘𝑖 : Leak conductance of neuron i 

𝑉𝐿𝑒𝑎𝑘𝑖 : Leak reversal potential of neuron i 

𝑛 : Total number of neurons 

𝐼𝑖𝑛(𝑖𝑗) : External current input to neuron i from neuron j 

𝐼𝑠𝑖𝑗 : Synaptic current from neuron j to neuron i 

𝑤𝑖𝑗 : Weight of the chemical synapse from neuron j to neuron i 

µ𝑖𝑗 : Presynaptic membrane state parameter for the sigmoidal nonlinearity 

𝛾𝑖𝑗 : Parameter for the sigmoidal nonlinearity 

𝐸𝑖𝑗 : Reversal potential of the synapse from neuron j to neuron i 

𝜔ˆ𝑖𝑗 : Weight of the electrical synapse (gap-junction) between neuron j and 

neuron i 

𝑣𝑗(𝑡) : Membrane potential of neuron j at time t 

𝜎𝑖(𝑉𝑗(𝑡)) : Sigmoidal nonlinearity function dependent on the presynaptic 

membrane state of neuron j 

𝜏𝑖 : Time constant of neuron i 

𝑢(𝑡) : Internal states of interneurons (hidden units) and motor neurons (output 

units) in an LTC RNN at time t 

𝑊 : Weight matrix of the LTC RNN 

𝜎(𝑥) : C1-sigmoid function applied element-wise 

𝐴 : Vector of resting states of motor and interneurons in the LTC RNN 



xv 

𝐵 : Vector of synaptic reversals for the motor and interneurons in the LTC 

RNN 

𝛼, 𝛽 : Range bounds for the entries of A and B 

𝜏 : Time constant of the LTC RNN system 

𝐹(𝑥) : Mapping function for the autonomous ordinary differential equation 

𝑥˙ : Derivative of the state vector x with respect to time 

𝜂 : Parameter in the range (0, min{ε, λ}) 

𝜀 : Positive constant for approximation 

𝜆 : Distance between the compact subset D˜ and the boundary δ𝑆 of S 

𝐷η : Compact subset of S 

𝐿𝐹 : Lipschitz constant of F on 𝐷η 

ε𝑙 : Positive constant satisfying ε𝑙  <  (η𝐿𝐹) / (2(𝑒𝑥𝑝(𝐿𝐹)𝑇  −  1)) 

𝑁 : Integer representing the number of hidden units in the LTC RNN 

𝑥 : State vector of the n-dimensional dynamical system 

𝑅𝑛 : n-dimensional Euclidean space 

𝐹˜(𝑥) : Mapping function for the modified LTC RNN system 

τ𝑠𝑦𝑠 : Time constant of the modified LTC RNN system 

𝑥0 : Initial value of the state vector x 

𝐷 : Compact subset of the n-dimensional Euclidean space Rn 

𝑦˜ : Intermediate variable defined as 𝐶𝑥˜ +  µ 

𝐸 : Matrix representing the product of matrices C, Wl, and B 

𝐺˜(𝑧) : Mapping function for the modified LTC RNN system 

𝑧 : State vector of the modified LTC RNN system 



xvi 

KISALTMALAR 

 

3d  : Three Dimensional 

AI  : Artificial Intelligence 

ANN  : Artificial Neural Network 

ART  : Adaptive Resonance Theory  

BPTT  : Back Propagation Over Time 

CPU  : Central Processing Unit 

DSS  : Decision Support System  

DAE  : Differential Algebraic Equations 

HPC  : High Performance Computing 

SGD  : Stochastic Gradient Descent 

IO  : Input or/and Output 

KNN  : K-Nearest Neighbor 

LSTM  : Long-Short Term Memory  

LTC1  : Liquid Neural Network / Liquid Time-Constant Neural Network 

LTC-SE : Liquid Neural Network for Scalable AI and Embedded Systems 

ODE  : Ordinary Differential Equation 

PID  : Proportional-Integral-Derivative 

RAM  : Random Access Memory 

RNN  : Recurrent Neural Network 

SVM  : Support Vector Machine 

TCN  : Temporal Convolutional Networks 

xAI  : Explainable Artificial Intelligence 

 

 

 

 

 

 

1 Liquid neural networks (LNNs) are also known as liquid time-constant (LTC) networks. They are a 

type of continuous-time neural network model that uses linear first-order dynamical systems 

modulated via nonlinear interlinked gates [39] [37]. 
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CHAPTER 1 

 

INTRODUCTION 

 

The source of inspiration for inventing and designing artificial intelligence and 

machine learning systems has always been based on natural intelligence. It can be 

safely said that one of the most complex intelligent systems is the human brain. 

Designing an artificial neural network inspired by the temporal lobe of the brain with 

the ability to classify and solve regression problems, or inventing Convolutional 

Neural Networks inspired by the occipital lobe to provide solutions for problems 

related to machine vision, can be mentioned among these efforts.  

 

Recent progress in the field of developing algorithms and methods of artificial 

intelligence and machine learning by modeling neural networks and the brain has 

become highly competitive. This competition is due to the ability to learn and high 

adaptability in facing non-linear and complex problems. Factors such as learning 

speed, learning cost, effectiveness of learning rate under noisy data effect, the 

amount of ground-truth data required to achieve the desired accuracy and the 

probability of encountering the vanishing point problem are among the competitive 

criteria presented between these new methods. Recently, in 2021, LTC was presented 

by R. M. Hasani. The presented type of neural networks exhibits stable bounded 

behavior, yields good expressiveness within the family of ordinary neural differential 

equations, and improves performance on time series forecasting tasks. This method is 

inspired by the principles of communication in the nervous system of species. It 

allows continuous mapping approximation models with a small number of 

computational units. 

 

Here, researchers introduced a new functionality of the recently presented Liquid 

Neural Network (LTC), which is to model decision support systems variables. To 

benchmark and test the achievements, a basic multi-joint arm controlling system will 
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be implemented using the proposing algorithm. The proposed algorithm is highly 

adaptable with a wide array of input data to perform in different environments 

withdesired accuracy. The resulting model represents a dynamic system with liquid 

time constants that vary with their hidden states, with outputs computed using 

differential equation solvers and fraction. A multi-joint arm is made of independent 

joints and rigids. The algorithm will control the joints angles and positioning to 

control the arm to reach the targeted situation or to grab an object. Finally, the 

evaluation of its performance in controlling multi-joint arm robot using the 

developed decision support system will be demonstrated using multi-variable 

benchmarking. 

 

1.1. MOTIVATION AND PROBLEM STATEMENT 

 

Traditional neural networks and machine learning algorithms have several 

fundamental problems to work on. Missing values in input data for training the 

model and extracting the features are a problem that may be faced during work in 

traditional neural networks. This is effectively changing the performance rate of the 

model generated by the neural network. The traditional neural networks are not able 

to recognize complex patterns in the data due to lack of connection between multiple 

layers to change of nodes vertical and horizontal nodes. The problem expands with 

limiting the traditional neural networks only working well in few-steps forecast, not 

in long term forecasting. 
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Figure 1.1. An instance of chained mechanical robot consisting of joints, rigids, 

actuators and electronics 

 The manipulator algorithm for chained mechanical robots, such as autonomous 

arm robot, are notions of forward and inverse kinematics.  

 The forward kinematics is given all the angles or the translational degrees of 

motion of your robot like all motors and actuators positions. The combination 

of these positions is going to leap to the gripper or the end effector of the arm, 

being in a certain position. 

 So forward kinematics, is going from your joint space to the physical position 

in 3d of the robot. 

 Inverse kinematics is a tougher problem, which is the opposite; it’s if you want 

the robot to be in a specific position and orientation in the physical world. Like 

how to position the actuators. 

 The forward kinematics:  This problem usually involves some sort of iterative 

algorithm. 

 The inverse kinematics: To make a model for this kind of problem, usually the 

Rigid Bodies Tree is used, and Artificial Neural Network (ANN) is used for 

decision making and autonomous robot manipulation. 
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1.2. OBJECTIVE 

 

To apply a Liquid neural network for decision making for a time-series multiple 

joints to control, using TensorFlow framework. 

 

1.3. PROJECT OBJECTIVES 

 

We reached the following objectives after completion of this study (and 

implementation of the solution): 

 Expressivity of neural ordinary differential equation networks (ODE-Nets) in 

their current formalism, compared to the LTC. 

 Improvements of LTC structure to enable better representation learning, based 

on the subject. 

 

 

 

1.4. THE IMPORTANCE OF THE OBJECTIVE 

 

Here we highlight the importance of LTC recurrent neural networks in various 

applications. Firstly, LTC networks are developed as neural state-based data 

processing systems inspired by the brain, with continuous-time semantics. This 

enables them to effectively process information in a manner similar to how the brain 

operates. Secondly, thorough theoretical stability and universality analyses of LTCs 

are conducted to ensure their reliability and suitability for control and decision 

support system designs using explainable states demonstration system. Thirdly, the 

superior expressivity of LTCs compared to other types of recurrent neural networks 

is illustrated, particularly in modeling time-series data. This demonstrates their 

ability to capture complex temporal patterns. Additionally, the objective is to 

introduce novel network-design principles for LTC neuronal models and equip them 

with a search-based learning algorithm, enabling them to effectively control robotic 

tasks. Lastly, a lightweight dynamical systems-based algorithm is designed and 

implemented to systematically interpret the behavior of RNNs, specifically focusing 

on response characterization. This helps to uncover insights and understand the inner 
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workings of these networks. Overall, these objectives emphasize the significance of 

LTC networks in advancing various fields of research and applications. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Control systems play a crucial role in various industries and applications, facilitating 

the regulation and control of processes to achieve desired outcomes. Control system 

design has evolved significantly over time, transitioning from traditional algorithms 

to advanced approaches utilizing neural networks. This literature review explores the 

development of control system design, focusing on the limitations of classical 

algorithms in handling time-continuous data and the emergence of RNNs and 

LSTMs networks. By examining relevant literature and research, this article aims to 

provide insights into the reasons behind the adoption of RNNs, LSTM, and related 

approaches in control system design. 

 

2.1. FUNDAMENTAL ALGORITHMS 

 

In the early stages of control system design, engineers heavily relied on classical 

algorithms, particularly the PID control algorithm [1]. While effective in many 

applications, these algorithms faced limitations when dealing with complex and time-

continuous processes. 

 

2.2. LIMITATIONS OF TRADITIONAL ALGORITHMS 

 

As control systems became more intricate, classical algorithms encountered 

difficulties in handling time-continuous data streams. Real-time control systems 

operate in dynamic and unpredictable environments where continuous data must be 

processed rapidly and efficiently. However, traditional algorithms exhibited 

limitations due to fixed parameter settings and lack of inherent memory [2].
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Figure 2.1. Comparison between Classical Statistics and Overparameterization Era 

 

Unlike traditional control system methods that rely on statistical approaches, 

machine learning methods using neural networks offer a distinct advantage in 

handling a large number of parameters. While traditional methods may suffer from 

decreased accuracy as the model size increases, neural networks excel in 

overparameterization [3]. This characteristic allows them to be trained more 

effectively and achieve higher levels of accuracy. Consequently, neural network-

based machine learning methods prove highly suitable for tackling intricate control 

system applications due to their ability to handle an extensive array of parameters. 

Overparameterizing a neural network increases its complexity and flexibility, leading 

to a higher risk of overfitting. To address this, regularization techniques, such as L1 

and L2 regularization, are used to strike a balance between bias and variance, 

mitigating overfitting by controlling the model's complexity. 

 

2.3. THE NEURAL NETWORKS 

 

To overcome the limitations of traditional algorithms, researchers used neural 

networks, which draw inspiration from the human brain's ability to process and learn 

from data. Neural networks consist of interconnected nodes, or artificial neurons, 

organized in layers. Neural networks excel in learning from data, adapting to 

changing environments, and effectively handling time-continuous data [4]. 

A
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2.4. NEURAL AND EVOLUTIONARY COMPUTING 

 

Evolutionary computation is the domain of optimization theory, where instead of 

using classical numerical methods to solve optimization problems, inspiration from 

biological evolution is used to "design" good solutions. When dealing with scenarios 

where the derivative of the fitness function is unknown, as in reinforcement learning, 

or when the fitness function exhibits numerous local extrema and involves sequential 

methods, evolutionary computation is often employed as a preferred approach over 

standard numerical methods. Applications of evolutionary computing are numerous, 

including solving optimization problems, designing robots, building decision trees, 

optimizing data mining algorithms, training neural networks, and hyperparameter 

optimization. Data science and machine learning models, and nearly all statistical 

and "black box" models are designed to solve optimization problems. There are 

methods for estimating the capabilities of implemented evolutionary computing 

algorithms. The goal is to make sure these values are minimized. 

 

2.4.1. Biological Neural System 

 

The four lobes of the brain are the frontal, parietal, temporal, and occipital lobes 

(Error! Reference source not found.). The frontal lobe is located in the forward 

part of the brain, extending back to a fissure known as the central sulcus. The frontal 

lobe is involved in reasoning, motor control, emotion, and language. It contains the 

motor cortex, which is involved in planning and coordinating movement; the 

prefrontal cortex, which is responsible for higher-level cognitive functioning; and 

Broca’s area, which is essential for language production [5]. 

 

2.4.1.1. The temporal lobe of our brain 

 

The temporal lobe of the human brain, responsible for long-term memory, can be 

compared to artificial neural networks that are commonly used for classification and 

regression tasks. 
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2.4.1.2. The occipital lobe  

 

The occipital lobe, which is associated with vision, can be analogous to 

convolutional neural networks (CNNs) primarily utilized for computer vision 

problems. However, it is worth noting that temporal convolutional networks (TCNs) 

can also be applied to analyze time series data. 

 

2.4.1.3. The frontal lobe  

 

The frontal lobe, known for its role in short-term memory, shares similarities with 

recurrent neural networks (RNNs) that are widely used for analyzing sequences, lists, 

and time series. For example, in language processing, RNNs are employed to process 

sequences of characters, words, and sentences following specific grammatical rules. 

Similarly, RNNs can effectively analyze time series data comprising sequential 

observations. 

 

 
 

Figure 2.2. Brain lobes and their known major functionality [6] 

 

2.4.2. Artificial Neural Network (ANN) 

 

The ANNs are software and or hardware implementations of the neuronal structure 

of the brains. That means artificial neural network attempt to simplify and mimic this 

brain behavior [7] [8] [9]. In a certain type of artificial neural network (ANN) 

training called supervision, the network learns by utilizing paired input and output 

data samples. The ultimate goal is to enable the ANN to generate the desired output 
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when given a specific input. On the other hand, unsupervised learning within an 

ANN aims to facilitate the network in comprehending the inherent structure of the 

input data without external guidance [10]. 

 

2.4.2.1. The artificial neuron 

 

An artificial neural network (ANN) emulates the behavior of a biological neuron 

through the utilization of an activation function. In tasks such as email spam 

identification, the activation function employed in the network must exhibit a 

distinctive "switch on" feature. Essentially, when the input surpasses a specific 

threshold, the output of the function should transition from one state to another, such 

as from 0 to 1, from -1 to 1, or from 0 to a value greater than 0. This emulation 

imitates the process of a biological neuron being activated. One frequently utilized 

activation function for this purpose is the sigmoid function. 

 

𝑓(𝑧) =
1

1 + exp(−𝑧)
 

(2.1) The sigmoid 

function 

 

2.4.2.2. Nodes 

 

As previously discussed, biological neurons form interconnected hierarchical 

networks, where the outputs of certain neurons serve as inputs for others. To 

represent these networks, we can utilize connected layers of nodes. Each node within 

these layers receives multiple inputs with associated weights, applies the activation 

function to the sum of these inputs, and generates an output as a result of this process 

[11]. Consider the diagram below: 
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Figure 2.3. Node with inputs (x), weights (w), output (y) 2 

 

In the provided image, the circular shape corresponds to the representation of a node. 

This node acts as the "processing element" or "unit" responsible for implementing 

the activation function. It takes the weighted inputs, adds them together, and then 

feeds them into the activation function. 

 

The weights associated with the inputs are real-valued numbers, meaning they are 

not restricted to binary values of 1 or 0. These weights are multiplied with the inputs 

and subsequently aggregated within the node. Hence, to describe the weighted input 

to the depicted node, it can be expressed as follows: 

 

𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥𝑛𝑤𝑛 + 𝑏 ( 2.2) 

 

 

Here the 𝑤𝑖 values are weights. These variables undergo modifications during the 

learning process and, in conjunction with the input, govern the node's output. The 

bias element, denoted as "b," is responsible for introducing a desirable level of 

flexibility to the node. This augmentation is most effectively illustrated through the 

use of an illustrative example. 

 

 

 

 

 

2 A perceptron neural network. 

x

Hidden 

Layer

w

w

y

y



12 

2.5. LEARNING ALGORITHM SELECTION 

 

Selecting an appropriate machine learning algorithm can pose a challenging task.  

 

2.5.1. Resources and validity 

Considering the constraints of time and resources, it is highly impactful to conduct 

extensive testing across various algorithms [12]. However, practical limitations often 

impose restrictions on the time and resources available for problem-solving. 

Researchers can address this by asking themselves a series of questions before 

embarking on the task. Based on their answers, they can narrow down the list of 

algorithms and experiment with them using the available data. [13].  

 

2.5.1.1. Explainability 

 

Does the model have to be explainable to a non-technical audience?  

Many highly accurate learning algorithms are considered "black boxes." While these 

models exhibit minimal error rates, understanding the specific reasoning behind their 

predictions can be extremely challenging and often defies explanation. Neural 

networks and ensemble models exemplify such algorithms. On the other hand, kNN, 

linear regression, and decision tree learning algorithms generate models that may not 

always be the most accurate, but they offer a straightforward approach to prediction. 

 

2.5.1.2. In-memory vs. out-of-memory 

 

Is it possible to load the dataset entirely into the server or personal computer's RAM? 

If affirmative, researchers can explore a wide range of algorithms. Otherwise, they 

may prefer incremental learning algorithms that gradually enhance the model by 

incorporating additional data. 

 

2.5.1.3. Number of features and examples 

 

How many training examples does the researcher possess in the dataset related to the 

problem? Additionally, what is the number of features per example? Certain 
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algorithms, such as neural networks and gradient boosting, can handle large volumes 

of examples and millions of features. Conversely, others like SVMs may have more 

modest capacities. 

 

2.5.1.4. Categorical vs. numerical features  

 

Does the dataset solely consist of categorical or numerical features, or is it a mixture 

of both? Depending on the answer, some algorithms may not be directly compatible 

with the dataset. Researchers would need to employ techniques like one-hot 

encoding to convert categorical features into numerical representations. 

 

2.5.1.5. Nonlinearity of the data  

 

Can the data be linearly separated or modeled using a linear approach? In the 

affirmative case, algorithms such as SVM with a linear kernel, logistic regression, or 

linear regression can be suitable choices. Conversely, deep neural networks or 

ensemble algorithms may deliver better results for non-linear data. 

 

2.5.1.6. Training speed  

 

How much time can be allocated for the learning algorithm to construct a model? 

Training neural networks is known to be time-consuming. In contrast, simpler 

algorithms like logistic and linear regression, as well as decision tree learning, offer 

faster training speeds. Specialized libraries with efficient implementations of specific 

algorithms can be sought online. Algorithms like random forests benefit from 

utilizing multiple CPU cores, resulting in significant reductions in model building 

time on machines equipped with numerous cores. 

 

2.5.1.7. Prediction speed  

 

What is the required prediction speed of the model? Will the model be deployed in a 

production environment where high throughput is crucial? Certain algorithms, such 

as SVMs, linear and logistic regression, or specific types of neural networks, excel in 
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swift prediction times. Conversely, algorithms like kNN, ensemble methods, and 

deep or recurrent neural networks may exhibit slower prediction speeds [13]. 

 

2.5.2. Control Systems and Neural Networks: 

 

There are three options to solve fundamental problems of traditional neural networks 

and machine learning algorithms such as, missing values can really affect the 

performance of the models; not being able to recognize complex patterns in the data 

and usually not suitable in long term forecast.  

 

Implementation of Recurrent Neural Network (RNN), Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) time-constant neural networks are 

introduced as a solution for the mentioned problems. In this section, researchers will 

introduce and provide the essential keywords descriptions for the audience to cover 

the thesis project. The new neural network has a great impact on how we process 

time-series data. The LTC can anticipate future behavior in the system by analyzing 

data in real-time. In addition to addressing the fundamental problems of traditional 

neural networks and machine learning algorithms, control systems can further 

enhance the models by incorporating action models. Action models provide a 

framework for integrating control actions into the neural network architecture, 

enabling the models to not only analyze data in real-time but also actively influence 

and shape future behavior in the system. This combination of time-constant neural 

networks and action models revolutionizes the processing of time-series data, 

offering significant advancements in forecasting and control capabilities. 
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Figure 2.4. Demonstration of a Multi-Layer Feed-Forward NN 

 

2.5.3. Recurrent Neural Networks (RNNs): 

 

The introduction of RNNs marked a significant breakthrough in control system 

design. RNNs possess a unique architecture that incorporates feedback connections 

among network nodes, enabling the capture of temporal dependencies [14]. By 

retaining memory of past inputs and leveraging this information for predictions based 

on previous states, RNNs proved effective in handling sequential data, including 

time-continuous processes. 
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Figure 2.5. Demonstration of a Multi-Layer RNN Architecture 

 

A recurrent neural network is a neural network based on processing the data 

sequence x(t)= x(1), … , x(τ) with time step index t ranging from 1 to τ. It is 

commonly used in speech recognition and natural language processing [15]. Iterative 

neural networks recognize continuous properties in data and use patterns to predict 

the next scenario. RNNs remember all information over time. Useful for time series 

forecasting only because of its ability to remember previous inputs as well [16] [17]. 

 

2.5.4. RNN and NVIDIA CUDA 

 

The NVIDIA® CUDA® Toolkit provides a development environment for creating 

high performance GPU-accelerated applications. With the CUDA Toolkit, you can 

develop, optimize, and deploy your applications on GPU-accelerated embedded 

systems, desktop workstations, enterprise data centers, cloud-based platforms and 

HPC supercomputers. The toolkit includes GPU-accelerated libraries, debugging and 

optimization tools, a C/C++ compiler, and a runtime library to deploy your 

Recurrent 

connection
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application [18]. Using built-in capabilities for distributing computations across 

multi-GPU configurations, scientists and researchers can develop applications that 

scale from single GPU workstations to cloud installations with thousands of GPUs. 

Here in this research we are using the advancement of NVIDIA multi processing and 

GPU-accelerated mechanisms to enhance the speed of the process. 

 

2.5.4. Emergence of LSTM Networks: 

 

While RNNs showed promise, they faced challenges in capturing long-term 

dependencies, especially in time-continuous processes. To address this issue, LSTM 

networks were introduced [14] [19]. LSTM networks feature memory cells that 

selectively retain or forget information over extended sequences, enabling them to 

overcome the vanishing gradient problem that hindered the learning of long-term 

dependencies in traditional RNNs. The architectural modifications in LSTM 

networks empowered them to excel in capturing long-term dependencies and 

efficiently handling time-continuous data. 

 

2.5.5. The Role of LSTM in Control Systems: 

 

LSTM networks have demonstrated exceptional performance in control system 

design, particularly in scenarios involving long-term dependencies and time-

continuous data. By effectively capturing and retaining essential information over 

extended periods, LSTM networks enable accurate predictions and precise control 

actions [20]. This characteristic makes LSTM networks highly suitable for 

applications such as autonomous vehicles, robotics, and process control, where real-

time decision-making is crucial. 

 

2.5.6. Other LSTM-Related Approaches and Recent Research: 

 

In addition to LSTM networks, researchers have proposed various approaches to 

enhance control system design. One notable example is the Gated Recurrent Unit 

(GRU), which exhibits similarities to LSTM networks but with a simplified 

architecture [21]. GRU networks have demonstrated comparable performance to 
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LSTM networks while being computationally more efficient, making them an 

appealing alternative for specific applications. 

 

Moreover, ongoing research in control system design explores hybrid control 

systems that combine classical algorithms with neural networks, reinforcement 

learning-based control strategies, and attention mechanisms [22] [23]. These 

advancements aim to address specific challenges in control system design, such as 

improved adaptability, robustness, and efficiency. The evolution of control system 

design from traditional algorithms to recurrent neural networks has revolutionized 

the field, enabling more effective handling of time-continuous data. The emergence 

of LSTM networks has further enhanced control system performance by addressing 

the challenges associated with capturing long-term dependencies. Ongoing research 

efforts continue to explore innovative techniques, including hybrid control systems 

and reinforcement learning, to further improve the efficiency and adaptability of 

control systems. By leveraging the power of recurrent neural networks and staying at 

the forefront of emerging research, control system engineers can drive the 

development of safer, more efficient, and intelligent systems across a broad range of 

applications. 

 

2.5.7. Time-Constant Neural Networks 

 

Time-Constant Neural Networks (TCNNs) emerged as a complementary approach to 

LSTM networks, even though LSTM networks were already introduced. While 

LSTM networks are renowned for capturing long-term dependencies and handling 

sequential data, TCNNs offer distinct advantages in specific control system 

applications. TCNNs incorporate time constants directly into their architecture, 

allowing them to explicitly model and capture the temporal dynamics of a system. 

This characteristic proves valuable in scenarios involving time-delayed and dynamic 

control tasks, where considering time constants becomes critical. By explicitly 

accounting for time constants, TCNNs can effectively retain and utilize historical 

information within a defined time span, leading to enhanced performance in control 

systems that entail intricate and time-varying dynamics. The advent of TCNNs, 

therefore, introduces an additional tool in the neural network repertoire, 
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complementing the capabilities of LSTM networks and providing an alternative 

approach for modeling and controlling control systems.  

 

TCNNs have gained recognition as a valuable approach for control systems across 

diverse fields. TCNNs, a type of recurrent neural network, incorporate time constants 

into their architecture to effectively capture and model the temporal dynamics of a 

system. This unique feature allows TCNNs to handle time-delayed and dynamic 

control tasks proficiently. By explicitly considering the system's time-dependent 

behavior, TCNNs can retain historical information over a defined time span, enabling 

them to make informed decisions based on past inputs. As a result, TCNNs have 

found practical applications in robotics, process control, and autonomous vehicles, 

where complex and time-varying dynamics are prevalent. The adaptability and 

learning capabilities of TCNNs in the presence of time-dependent data contribute to 

achieving accurate and responsive control, thereby enhancing the overall 

performance and stability of control system applications. 

 

2.5.8. Liquid Neural Network or Liquid Time-Constant NN (LTC) 

 

The LTC is an unconventional artificial neural network inspired by the brain's 

information processing mechanisms. It gets its name from its unique interconnected 

structure, resembling a liquid, where all neurons are intricately connected. This 

liquid-like state enables dynamic and adaptable information processing, making it 

ideal for tasks such as pattern recognition, prediction, and control. LTC offers several 

advantages over other neural networks, including LSTM. One notable advantage is 

its highly parallel and distributed processing capabilities. Unlike traditional layered 

networks, LTC operates in a liquid state, with connections between neurons 

constantly changing. This parallelism allows LTC to efficiently process information 

in a massively parallel manner, facilitating fast computations. This is achieved 

through the use of recurrent connections, which allow information to flow in both 

forward and backward directions. Unlike traditional feedforward networks with fixed 

connections, liquid neural networks exhibit plasticity, meaning that the strength and 

structure of connections between neurons can adapt and evolve over time based on 

the input and network dynamics.  Another key advantage of LTC lies in its ability to 
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effectively handle temporal information and capture dynamic patterns. LTC 

incorporates time constants into its architecture, making it well-suited for modeling 

and analyzing dynamic systems [24]. This feature allows LTC to explicitly account 

for temporal dynamics, making it particularly useful in control systems that involve 

time-delayed and time-varying dynamics. 

 

 
 

Figure 2.6. Demonstration of Liquid Neural Network (LTC) Architecture 

 

Furthermore, LTC's liquid state and parallel processing lend themselves to enhanced 

computational efficiency. The network can rapidly adapt to changing input signals 

and learn complex patterns in real-time. This characteristic makes LTC highly 

suitable for time-sensitive applications where responsiveness and accuracy are 

paramount. LTC recurrent neural networks (RNN)s are a subclass of continuous-time 

RNNs, with varying neuronal time-constant realized by their nonlinear synaptic 

transmission model. This feature is inspired by the communication principles in the 

nervous system of small species. It enables the model to approximate continuous 

mapping with a small number of computational units [24]. In summary, the LTC 

distinguishes itself through its parallel and distributed liquid state, its capability to 

capture dynamic patterns, and its computational efficiency. These advantages 
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position LTC as a potent tool for various applications, including pattern recognition, 

prediction, and control systems dealing with time-dependent dynamics. 

 

2.5.8. Leveraging Ode Solvers For Dynamic System Modeling 

 

In the realm of neural networks, the integration of ODE Solvers has proven 

instrumental in expanding the capabilities of these models, particularly in 

architectures like the LTC discussed earlier. ODE Solvers are pivotal algorithms 

designed to approximate solutions to ordinary differential equations (ODEs) 

numerically. Their significance lies in enabling the simulation and analysis of 

dynamic systems with continuous-time dynamics, thereby enhancing the 

functionality of neural networks. ODE Solvers serve a vital role in LTC and similar 

models by facilitating the modeling of neural networks as a set of differential 

equations. These equations encapsulate the network's internal state evolution over 

time, effectively capturing its dynamic behavior and enabling information processing 

and prediction. The role of ODE Solvers comes into play when solving these 

differential equations and determining the state variables of the network at discrete 

time steps. 

 

Functionally, ODE Solvers excel in integrating differential equations and calculating 

the rates of change for the network's state variables. This involves approximating the 

continuous dynamics of the network into discrete time steps, enabling efficient 

computation. ODE Solvers employ various numerical techniques like Euler's method 

or Runge-Kutta methods to iteratively update the state variables based on the input 

signals and differential equations. By harnessing the power of ODE Solvers, neural 

networks, including LTC, gain the ability to effectively capture temporal 

dependencies and dynamic patterns within data. The continuous-time dynamics 

encapsulated by the differential equations empower the network to adapt and respond 

to changing input signals, making it a potent tool for analyzing complex systems. 

 

The integration of ODE Solvers with neural networks demonstrates the symbiotic 

relationship between mathematical modeling and machine learning techniques. This 

fusion allows for the simulation and control of time-dependent systems, opening up 



22 

avenues in robotics, control systems, and predictive modeling. This integration 

enriches the functionality of neural networks by enabling the simulation and analysis 

of continuous-time dynamics. These solvers provide a means to model and 

comprehend the behavior of dynamic systems by numerically approximating 

solutions to differential equations. The utilization of ODE Solvers within neural 

networks, such as LTC, unlocks the potential for advanced control systems and 

predictive modeling, bridging the gap between mathematical modeling and machine 

learning. As a simplified instance for Ordinary Differential Equations, suppose we 

want to model the trajectory of a ball thrown into the air. We can use a Neural ODE 

to model the trajectory of the ball as it moves through the air. The Neural ODE 

would take as input the initial position and velocity of the ball and output the position 

and velocity of the ball at any given time. 

 

2.6. CONCEPT AND FUNCTIONALITIES 

 

These neural networks exhibit stable and bounded behavior, yield superior 

expressivity within the family of neural ODE, and give rise to improved performance 

on time-series prediction tasks. To demonstrate these properties, in 2021 scientists 

took a theoretical approach to find bounds over their dynamics and compute their 

expressive power by the trajectory length measure in a latent trajectory space. They 

then conduct a series of time-series prediction experiments to manifest the 

approximation capability of LTCs compared to classical and modern RNNs [25]. 

 

2.7. APPLICATIONS 

 

 The new neurons will have a great impact on how we process time-series data. 

Researchers believe the world is all about sequences.  

 The LTC can anticipate future behavior in the system by analyzing data in real-

time.  

 Researchers could see the use of LTC in medical diagnosis and self-driving 

vehicles. 
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2.8. THE IMPLEMENTATION PROCESS 

 

I. Code implementation using Python 

 

▪ Python allows for the development and operation of software solutions 

across a variety of platforms and operating systems. Linux, Windows, Mac, 

Solaris, and more are a few examples. Python machine learning 

programming is now much more practical as a result. Because of this, 

Python is selected for the proposed algorithm to be implemented with. 

 

II. Algorithm development using TensorFlow 

 

▪ TensorFlow has a reputation for simplicity, ease of use, flexibility, efficient 

memory usage using parallel processing and compression methods, and 

dynamic computational graphs. It also feels native, making coding more 

manageable and increasing processing speed. 

 

III. Dataset will be joints 3d position data. 

 

▪ A multi-joint arm is made of independent joints and rigids. The algorithm 

will control the joints angles and positioning to control the arm to reach the 

targeted situation or to grab an object. The length of the rigids and angle of 

joints can be addressed using a simulation to make the ground truth 

positioning dataset. 
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Figure 2.7. An instance for a multi-joints arm system 

 

▪ The data frame will be as follows: 

 

{[J0] [L1,J1] [L2, J2] … [ n,Jn]} 

 

IV. The algorithm input: 

 

▪ Train dataset: joints degree of movement and gestures,  

▪ Test dataset: 4 random gestures to be predicted by joints alignment and 

settings. 

 

V. Algorithm optimization for being scalable. 

 

▪ Refining the method (Reducing the size of the reservoir and the default 

ODE solver process) 

▪ Enhanced adaptability (Model compression) 

▪ Optimized performance based on resources (Quantization) 

▪ Efficiency for embedded systems with limited resources (Hardware 

acceleration) 

 

VI. Final Test 
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▪ The entire algorithm will be tested using comparison between the predicted 

outcomes and real-world data. 

 

VII. Success-rate Estimation 

▪ Using a comparison between proposed algorithm’s settings, output and 

accuracy and the other similar algorithms output, the percentage of 

differences between outcome and ground-truth will be estimated. Here two 

other famous algorithms in this field is implemented for this reason. 
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CHAPTER 3 

 

THEORETICAL BACKGROUNDS 

 

3.1. DYNAMIC EQUATIONS AND IO 

 

Dynamics of a hidden or output neuron i, Vi(t), of an LTC RNN are modeled as a 

membrane integrator with the following ordinary differential equation (ODE): 

 

𝐶𝑚𝑖

𝑑𝑉𝑖

𝑑𝑡
= 𝐺Leak 𝑖

(𝑉𝐿𝑒𝑎𝑘𝑖
− 𝑉𝑖(𝑡)) + ∑  

𝑛

𝑗=1

𝐼𝑖𝑛
(𝑖𝑗)

 ( 3.3) 

 

with neuronal parameters: Cmi , GLeaki and VLeaki . I (ij) in represents the external 

currents to the cell. Hidden nodes are allowed to have recurrent connections while 

they synapse into motor neurons in a feed-forward setting. Chemical synapses – 

Chemical synaptic transmission from neuron j to i, is modeled by a sigmoidal 

nonlinearity (µij ,γij ), which is a function of the presynaptic membrane state, Vj (t), 

and has maximum weight of wi: 

 

𝐼𝑠𝑖𝑗
=

𝑤𝑖𝑗

1 + 𝑒−𝛾𝑖𝑗(𝑉𝑗+𝜇𝑖𝑗)
(𝐸𝑖𝑗 − 𝑉𝑖(𝑡)) ( 3.4) 

 

The synaptic current, Isij is then linearly depends on the state of the neuron i. E, sets 

whether the synapse excites or inhibits the succeeding neuron’s state. An electrical 

synapse (gap-junction), between node j and i, was modeled as a bidirectional 

junction with weight, ωˆij , based on Ohm’s law: 

 

𝐼𝑖𝑗 = �̂�𝑖𝑗 (𝑣𝑗(𝑡) − 𝑣𝑖(𝑡)) ( 3.5) 
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Internal state dynamics of neuron i, Vi(t), of an LTC network, receiving one chemical 

synapse from neuron j, can be formulated as: 

 

𝑑𝑉𝑖

𝑑𝑡
=

𝐺𝐿𝑒𝑎𝑘𝑖

𝐶𝑚𝑖

(𝑉𝐿𝑒𝑎𝑘𝑖
− 𝑉𝑖(𝑡)) +

𝑤𝑖𝑗

𝐶𝑚𝑖

𝜎𝑖 (𝑉𝑗(𝑡)) (𝐸𝑖𝑗 − 𝑉𝑖), ( 3.6) 

 

Where 𝜎𝑖 (𝑉𝑗(𝑡)) = 1/1 + 𝑒−𝛾𝑖𝑗(𝑉𝑗+𝜇𝑖𝑗)  (Equation 7). If we set the time constant of 

the neuron i as: 𝜏𝑖 =
𝐶𝑚𝑖

𝐺𝐿𝑒𝑎𝑘𝑖

 (Equation 8) we can reform this equation as follows: 

 

𝑑𝑉𝑖

𝑑𝑡
= − (

1

𝜏𝑖
+

𝑤𝑖𝑗

𝐶𝑚𝑖

𝜎𝑖(𝑉𝑗)) 𝑉𝑖 + (
𝑉leak 

𝜏𝑖
+

𝑤𝑖𝑗

𝐶𝑚𝑖

𝜎𝑖(𝑉𝑗)𝐸𝑖𝑗) ( 3.9) 

 

( 3.9 presents an ODE system with a nonlinearly varying time-constant defined 

𝜏system =
1

1/𝜏𝑖+𝑤𝑖𝑗/𝐶𝑚𝑖
𝜎𝑖(𝑉𝑗)

 (Equation 3.10) which distinguishes the dynamics of the 

LTC cells compared to the CTRNN cells. 

 

The overall network dynamics of the LTC RNNs with 𝑢(𝑡) =

[𝑢1(𝑡), … , 𝑢𝑛+𝑁(𝑡)]𝑇 (Equation 3.11) representing the internal states of N 

interneurons (hidden units) and n motor neurons (output units) can be written in 

matrix format as follow: 

 

�̇�(𝑡) = − (1/𝜏 + 𝑊𝜎(𝑢(𝑡))) 𝑢(𝑡) + 𝐴 + 𝑊𝜎(𝑢(𝑡))𝐵 ( 3.12) 

 

In which σ(x) is C1 -sigmoid functions and is applied element-wise. τ n+N > 0 

includes all neuronal time constants, A is an n+N vector of resting states, B depicts 

an n+ N vector of synaptic reversals, and W is a n+ N vector produced by the matrix 

multiplication of a weight matrix of shape ape (n+N)×(n+N) and an n+N vector 

containing the reversed value of all Cmi s. Both A and B entries are bound to a range: 

[−α, β] for 0 < α < +∞, and 0 ≤ β < +∞. A contains all Vleaki /Cmi and B presents all Eij 

s. 
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3.2. UNIVERSAL APPROXIMATORS OF LTCs 

 

To prove the back-bone theorem behind LTC; which is defining that any given finite 

trajectory of an n-dimensional dynamical system can be approximated by the internal 

and output states of an LTC. with n outputs, N interneurons and a proper initial 

condition.  

 

Let x = [x1, ..., xn]
T be the n-dimensional Euclidean space on Rn. 

Researchers base the poof on the fundamental universal approximation theorem [26] 

on feed-forward neural networks [27] [28] [26], recurrent neural networks (RNN) 

[28] [29] and time-continuous RNNs [30]. 

 

3.2.1. Theorem Alpha 

 

Let S be an open subset of Rn and F : S → Rn , be an autonomous ordinary 

differential equation, be a C1-mapping, and x˙ = F(x) determine a dynamical system 

on S. Let D denote a compact subset of S and we consider a finite trajectory of the 

system as: I = [0, T]. Then, for a positive ε, there exist an integer N and an LTC 

RNN with N hidden units, n output units, such that for any given trajectory {x(t);t ∈ 

I} of the system with initial value x(0) ∈ D, and a proper initial condition of the 

network, the statement below holds: 

 

max
𝑡∈𝐼

|𝑥(𝑡) − 𝑢(𝑡)| <  𝜖 ( 3.13) 

 Lemma 1 

 

For an F: Rn → R+n which is a bounded C1- mapping, the differential equation 

�̇� = −(1/𝜏 + 𝐹(𝑥))𝑥 + 𝐴 + 𝐵𝐹(𝑥) ( 3.14) 

 

In which τ is a positive constant, and A and B are constants coefficients bound to a 

range [−α, β] for 0 < α < +∞, and 0 ≤ β < +∞, has a unique solution on [0, ∞). 

 

 Proof of Lemma 1 

Based on the assumptions, we can take a positive M, such that 
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0 ≤ 𝐹𝑖(𝑥) ≤ 𝑀(∀𝑖 = 1, … , 𝑛) ( 3.15) 

 

By looking at the solutions of the following differential equation 

 

�̇� = −(1/𝜏 + 𝑀)𝑦 + 𝐴 + 𝐵𝑀 ( 3.16) 

 

We can show that 

 

𝑚𝑖𝑛 {|𝑥𝑖(0)|,
𝜏(𝐴 + 𝐵𝑀)

1 + 𝜏𝑀
} ≤ 𝑥𝑖(𝑡)𝑚𝑎𝑥 {|𝑥𝑖(0)|,

𝜏(𝐴 + 𝐵𝑀)

1 + 𝜏𝑀
} 

 

( 3.17) 

 

If we set the output of the max to Cmax i and the output of the min to Cmin i and also 

set C1 = min{Cmin i } and C2 = max{Cmax i }, then the solution x(t) satisfies 

 

√𝑛𝐶1 ≤ 𝑥(𝑡) ≤ √𝑛𝐶2 ( 3.18) 

 

Based on Lemma 2 and Lemma 3 in [30], a unique solution exists on the interval [0, 

+∞). Lemma 1 demonstrates that an LTC network defined by ( 3.14, has a unique 

solution on [0, ∞), since the output function is bound and C1. 

 

3.2.2. Proof of Theorem Alpha 

 

For proving Theorem Alpha, we adopt similar steps to that of Funahashi and 

Nakamura on the approximation ability of continuous time RNNs [30], to 

approximate a dynamical system with a larger dynamical system given by an LTC 

RNN. 

 

 Part 1 

 

We choose an η which is in range (0, min{ε, λ}), for ε > 0, and λ the distance 

between D˜ and boundary δS of S. Dη is set:  

𝐷𝜂 = {𝑥 ∈ ℝ𝑛; ∃𝑧 ∈ �̃�, |𝑥 − 𝑧| ≤ 𝜂} ( 3.19) 
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Dη stands for a compact subset of S, because D˜ is compact. Thus, F is Lipschitz on 

Dη by Lemma 1 in [30]. Let LF be the Lipschitz constant of F|Kη, then, we can choose 

an ε l > 0, such that 

 

𝜖𝑙 <
𝜂𝐿𝐹

2(ex p 𝐿𝐹 𝑇 − 1)
 ( 3.20) 

 

Based on the universal approximation theorem, there is an integer N, and an n × N 

matrix B, and an N × n matrix C and an N-dimensional vector µ such that 

𝑚𝑎𝑥|𝐹(𝑥) − 𝐵𝜎(𝐶𝑥 + 𝜇)| <
𝜖𝑙

2
 ( 3.21) 

 

We define a C1 -mapping F˜ : Rn → Rn as: 

�̃�(𝑥) = −(1/𝜏 + 𝑊𝑙𝜎(𝐶𝑥 + 𝜇))𝑥 + 𝐴

+ 𝑊𝑙𝐵𝜎(𝐶𝑥 + 𝜇) 

( 3.22) 

 

with parameters matching that of ( 3.12 with Wl= W. 

 

We set the system’s time constant, τsys to: 

 

𝜏𝑠𝑦𝑠 =
1

1/𝜏 + 𝑊𝑙𝜎(𝐶𝑥 + 𝜇)
 ( 3.23) 

 

We chose a large τsys, conditioned with the following: 

 

(a) ∀𝑥 ∈ 𝐷𝜂; |
𝑥

𝜏𝑠𝑦𝑠
| <

𝜖𝑙

2
 ( 3.24) 

(b) |
𝜇

𝜏𝑠𝑦𝑠
| <

𝜂𝐿�̃�

2(ex p 𝐿�̃� 𝑇 − 1)
 and |

1

𝜏𝑠𝑦𝑠
| <

𝐿�̃�

2
 

( 3.25) 

where LG˜/2 is a lipschitz constant for the mapping Wlσ : Rn+N → Rn+N which we will 

determine later. To satisfy conditions (a) and (b), τWl << 1 should hold true. Then by 

( 3.21 and ( 3.22, we can prove: 

 



31 

𝑚𝑎𝑥
𝑥∈𝐷𝜂

 |𝐹(𝑥) − �̃�(𝑥)| < 𝜖𝑙 ( 3.26) 

 

Let’s set x(t) and x˜(t) with initial state x(0) = ˜x(0) = x0 ∈ D, as the solutions of 

equations below: 

 

�̇� = 𝐹(𝑥) ( 3.27) 

�̇̃� = �̃�(𝑥) ( 3.28) 

Based on Lemma 5 in [30], for any t ∈ I, 

 

|𝑥(𝑡) − �̃�(𝑡)| ≤
𝜖𝑙

𝐿𝐹

(ex p 𝐿𝐹 𝑡 − 1) ( 3.29) 

≤
𝜖𝑙

𝐿𝐹

(ex p 𝐿𝐹 𝑇 − 1) ( 3.30) 

 

Thus, based on the conditions on ε, 

𝑚𝑎𝑥
𝑡∈𝐼

 |𝑥(𝑡) − �̃�(𝑡)| <
𝜂

2
 ( 3.31) 

 

 Part 2 

 

Let’s Considering the following dynamical system defined by F˜ in Part 1: 

�̇̃� = −
1

𝜏𝑠𝑦𝑠
�̃� + 𝐴1 + 𝑊𝑙𝐵𝜎(𝐶�̃� + 𝜇) ( 3.32) 

 

Suppose we set y˜ = Cx˜ + µ; then: 

�̇̃� = 𝐶�̇̃� = −
1

𝜏𝑠𝑦𝑠
�̃� + 𝐸𝜎(�̃�) + 𝐴2 +

𝜇

𝜏𝑠𝑦𝑠
 ( 3.33) 

 

where E = CWlB, an N × N matrix. We define: 

�̃� = [�̃�1, … , �̃�𝑛, �̃�1, … , �̃�𝑛]𝑇 ( 3.34) 

and we set a mapping G˜ : R n+N → R n+N as: 

 

�̃�(�̃�) = −
1

𝜏𝑠𝑦𝑠
�̃� + 𝑊𝜎(�̃�) + 𝐴 +

𝜇1

𝜏𝑠𝑦𝑠
 ( 3.35) 
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𝑊(𝑛+𝑁)×(𝑛+𝑁) = (
0    𝐵
0    𝐸

) ( 3.36) 

𝜇1
𝑛+𝑁 = (

0
𝜇

) , 𝐴𝑛+𝑁 = (
𝐴1

𝐴2
) ( 3.37) 

 

By using Lemma 2 in [30], we can show that solutions of the following dynamical 

system: 

 

�̇̃� = �̃�(�̃�), �̃�(0) = 𝐶�̃�(0) + 𝜇 
( 3.38) 

 

are equivalent to the solutions of the ( 3.32. 

 

Let’s define a new dynamical system G : R n+N → R n+N as follows: 

 

𝐺(𝑧) = −
1

𝜏𝑠𝑦𝑠
𝑧 + 𝑊𝜎(𝑧) + 𝐴 ( 3.39) 

where z = [x1, ..., xn, y1, ..., yn] T . Then the dynamical system below 

 

�̇� = −
1

𝜏𝑠𝑦𝑠
𝑧 + 𝑊𝜎(𝑧) + 𝐴 ( 3.40) 

 

Can be realized by an LTC RNN, if we set h(t) = [h1(t), ..., hN (t)]T as the hidden 

states, and u(t) = [U1(t), ..., Un(t)]T as the output states of the system. Since G˜ and G 

are both C1-mapping and σ ′ (x) is bound, therefore, the mapping z˜ → W σ(˜z) + A 

is Lipschitz on R n+N , with a Lipschitz constant 
𝐿𝐺~

2
   . As 

𝐿𝐺~

2
   is Lipschitz constant 

for −z/τ˜sys by condition (b) on τsys, 𝐿𝐺~ is a Lipschitz constant of 𝐺~. 

 

From ( 3.35, ( 3.39, and condition (b) of τsys, we can derive the following: 

|�̃�(𝑧) − 𝐺(𝑧)| = |
𝜇

𝜏𝑠𝑦𝑠
| <

𝜂𝐿�̃�

2(ex p 𝐿�̃� 𝑇 − 1)
 ( 3.41) 

 

Accordingly, we can set z˜(t) and z(t), solutions of the dynamical systems: 
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�̇̃� = �̃�(𝑧), {
�̃�(0) = 𝑥0 ∈ 𝐷
�̃�(0) = 𝐶𝑥0 + 𝜇

 ( 3.42) 

�̇� = 𝐺(𝑧), {
𝑢(0) = 𝑥0 ∈ 𝐷

ℎ̃(0) = 𝐶𝑥0 + 𝜇
 ( 3.43) 

 

By Lemma 5 of [30], we achieve 

 

𝑚𝑎𝑥
𝑡∈𝐼

 |�̃�(𝑡) − 𝑧(𝑡)| <
𝜂

2
 ( 3.44) 

and therefore, we have: 

 

𝑚𝑎𝑥
𝑡∈𝐼

 |�̃�(𝑡) − 𝑢(𝑡)| <
𝜂

2
 ( 3.45) 

 

 Part3 

 

Now by using ( 3.31 and ( 3.45, for a positive ε, we can design an LTC network with 

internal dynamical state z(t), with τsys and W. For x(t) satisfying x˙ = F(x), if we 

initialize the network by u(0) = x(0) and h(0) = Cx(0)+µ, we obtain: 

 

𝑚𝑎𝑥
𝑡∈𝐼

 |𝑥(𝑡) − 𝑢(𝑡)| <
𝜂

2
+

𝜂

2
= 𝜂 < 𝜖 ( 3.46) 

 

3.3. TRACING A SIMPLE LTC FOR AN INSTANCE 

 

Tracing the train process of an LTC has several black box types of mathematical 

functions to follow. It has more than 3 variables which change during the training 

process and each states makes a new session for each of the equations to update the 

matrices. Here we are going to follow an instance for having a better understanding 

to how the LTC is learning the function 𝑦 =  2𝑥 +  1. Here's an example of how the 

calculations might look for a simplified LTC with one input unit, one hidden unit, 

and one output unit: 

 

3.3.1. Data preparation 
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Let's suppose we generate the following training data: [(0, 1), (1, 3), (2, 5), (3, 7)], 

where the first value in each pair is the input x and the second value is the desired 

output y. 

 

3.3.2. Network initialization 

 

We initialize the LTC with random values for its parameters. For this example, let's 

say we have the following initial values: θ = [0.5, -0.2], A = [0.3], and τ = 1. 

 

3.3.3. Forward pass 

 

We present the first training example (0, 1) to the network. The input I(0) is 0 and the 

initial hidden state x(0) is 0. The nonlinearity S(0) is calculated as: 

 

𝑆(0) = 𝑓(𝑥(0), 𝐼(0), 0, 𝜃)(𝐴 ∗ 𝑥(0)) 

= 𝐼(0) ∗ 𝜃[0] ∗ 𝐴 ∗ 𝑥(0) + 𝑥(0) ∗ 𝜃[1] ∗ 𝐴 ∗ 𝑥(0) 

=  0 

( 3.47) 

 

The derivative of the hidden state is then calculated as: 

 

𝑑𝑥(0)/𝑑𝑡 = 𝑥(0)/𝜏 + 𝑆(0) 

=  0/1 +  0  

=  0 

( 3.48) 

We can then use a numerical differential equation solver to compute the hidden state 

x(t) for all time steps until we reach the final time step. For this example, let's say we 

use a simple Euler method with a step size of 1 to compute the hidden state at time t 

= 1 as: 

𝑥(1) = 𝑥(0) + 𝑑𝑥(0)/𝑑𝑡 ∗ (1 − 0) 

 =  0 +  0 ∗  1  

=  0 

( 3.49) 

The output of the network is then calculated based on the final value of the hidden 

state. For this example, let's say we use a simple linear function to calculate the 

output as: 
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𝑦′ =  𝑥(1)  ∗  𝑤 +  𝑏 ( 3.50) 

where w and b are additional parameters of the network. Let's say we have initial 

values of w = 0.4 and b = -0.1, so the output of the network for this training example 

is: 

𝑦′ = 𝑥(1) ∗ 𝑤 + 𝑏 

=  0 ∗  0.4 −  0.1  

=  −0.1 

( 3.51) 

 

3.3.4. Loss calculation:  

 

We can calculate the loss by comparing the network's output -0.1 to the desired 

output 1. For this example, let's say we use a simple mean squared error loss 

function, so the loss for this training example is: 

 

(𝑦′ − 𝑦)2 =  (−0.1 −  1)^2 =  1.21 ( 3.52) 

 

3.3.5. Backward pass:  

 

We need to update the network's parameters to improve its performance. This 

involves calculating the gradient of the loss with respect to each parameter and 

updating the parameter values using an optimization algorithm such as gradient 

descent. 

 

For this example, let's say we use a simple gradient descent algorithm with a learning 

rate of 0.01 to update the parameter values as follows:  

   𝑑𝐿/𝑑𝑤 =  𝑑𝐿/𝑑𝑦′ ∗  𝑑𝑦′/𝑑𝑤 

   𝑑𝐿/𝑑𝑏 =  𝑑𝐿/𝑑𝑦′ ∗  𝑑𝑦′/𝑑𝑏 

   𝑑𝐿/𝑑𝜃[0]  =  𝑑𝐿/𝑑𝑦′ ∗  𝑑𝑦′/𝑑𝑥(𝑡)  ∗  𝑑𝑥(𝑡)/𝑑𝑆(𝑡)  

∗  𝑑𝑆(𝑡)/𝑑𝜃[0] 

   𝑑𝐿/𝑑𝜃[1]  =  𝑑𝐿/𝑑𝑦′ ∗  𝑑𝑦′/𝑑𝑥(𝑡)  ∗  𝑑𝑥(𝑡)/𝑑𝑆(𝑡)  

∗  𝑑𝑆(𝑡)/𝑑𝜃[1] 

( 3.53) 
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where 

   𝑑𝐿/𝑑𝑦′ =  2(𝑦′ −  𝑦) 

   𝑑𝑦′/𝑑𝑤 =  𝑥(𝑡) 

   𝑑𝑦′/𝑑𝑏 =  1 

   𝑑𝑦′/𝑑𝑥(𝑡)  =  𝑤 

   𝑑𝑥(𝑡)/𝑑𝑆(𝑡)  =  𝑑𝑡 

   𝑑𝑆(𝑡)/𝑑𝜃[0]  =  𝐼(𝑡) 

   𝑑𝑆(𝑡)/𝑑𝜃[1]  =  𝑥(𝑡) 

( 3.54) 

Plugging in the values for this training example, we get: 

 

   𝑑𝐿/𝑑𝑤 =  −2.2 

   𝑑𝐿/𝑑𝑏 =  −2 

   𝑑𝐿/𝑑𝜃[0]  =  −2𝑤𝐼(𝑡) 

   𝑑𝐿/𝑑𝜃[1]  =  −2𝑤𝑥(𝑡) 

( 3.55) 

 

We can then update the parameter values as follows: 

 

   𝑤 =  𝑤 −  0.01 ∗  𝑑𝐿/𝑑𝑤 =  0.4 −  0.01 ∗  −2.2 

=  0.422 

   𝑏 =  𝑏 −  0.01 ∗  𝑑𝐿/𝑑𝑏 =  −0.1 −  0.01 ∗  −2 

=  −0.08 

   𝜃[0]  =  𝜃[0]  −  0.01 ∗  𝑑𝐿/𝑑𝜃[0]  

=  0.5 −  0.01 ∗  −2𝑤𝐼(𝑡)  

=  0.5 +  0.0084𝐼(𝑡) 

   𝜃[1]  =  𝜃[1]  −  0.01 ∗  𝑑𝐿/𝑑𝜃[1]  

=  −0.2 −  0.01 ∗  −2𝑤𝑥(𝑡)  

=  −0.2 +  0.0084𝑥(𝑡) 

( 3.56) 

 

3.3.6. Iteration: 

 

We repeat steps 3-5 for each training example until the network's performance on the 

training data is satisfactory. 
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3.4. CONCLUSION AND REMARKS FOR THEORETICAL 

BACKGROUNDS 

 

The LTC’s network architecture allows interneurons (hidden layer) to have recurrent 

connections to each other, however it assumes a feed forward connection stream 

from hidden nodes to the motor neuron units (output units). We assumed no inputs to 

the system and principally showed that the interneurons’ network together with 

motor neurons can approximate any finite trajectory of an autonomous dynamical 

system. The proof subjected an LTC RNN with only chemical synapses. It is easy to 

extend the proof for a network which includes gap junctions as well, since their 

contribution to the network dynamics is by adding a linear term to the time-constant 

of the system (τsys), and to the equilibrium state of a neuron, A in ( 3.40. 
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CHAPTER 4 

 

METHODOLOGY 

 

In this chapter researchers will describe how they applied an LTC for decision 

making to control a time-series multiple joints arm. The research is focused on using 

an LTC to control a multi-joint cyber physical arm. An LTC is a type of artificial 

neural network that is inspired by the way the brain processes information. 

 

The goal of implementing an LTC control system for a multi-joint cyber physical 

arm would be to develop a more efficient and effective way to control the 

movements of the arm. The LTC would be used to learn the patterns of movement of 

the arm and to predict the movements that will result from specific input signals. 

This could lead to more accurate and precise control of the arm, which could be 

useful in a variety of applications, such as manufacturing, surgery, or prosthetics. 

 

Overall, the research is exploring how the LTC can be used to develop a more 

advanced control system for a multi-joint cyber physical arm, which has the potential 

to improve the performance and accuracy of the arm in various applications. The 

challenge of implementing the algorithm for light systems such as embedded systems 

with the most optimized variable made researchers to test the algorithm 

implementation using several libraries and frameworks. At last, TensorFlow 

framework was selected due to the first contribution of the researcher for 

implementation of LTC, also it’s intuitive, python native, and integrates easily and 

completely with most of python packages.  
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Figure 4.1. Rigid Bodies Tree view of some kinematics instances; here Joints are 

labeled as (v) and Rigids by (e). 

 

4.1. THE PROPOSED ALGORITHM 

 

An LTC is a type of ANN that is inspired by the way the brain processes 

information. Unlike traditional ANNs, which are structured in layers, LTCs are 

structured as a liquid, or a densely interconnected network of neurons. This unique 

architecture allows the network to process information in a highly parallel and 

distributed way, which makes it well-suited for tasks such as pattern recognition, 

prediction, and control. The key characteristic of an LTC is its liquid state, which 

means that all neurons in the network are connected to each other, and their 

connections are constantly changing. This creates a highly dynamic and adaptive 

network that can respond quickly and accurately to changes in input signals. The 

input signals are fed into the network as a spatiotemporal pattern of activity, and the 

network responds with a spatiotemporal pattern of activity that represents its 

prediction or output. 

 

The learning process in an LTC is based on the principle of dynamic reservoir 

computing, which involves training the network to capture the dynamics of a specific 

input-output mapping. This is achieved by training the output layer of the network to 

produce the desired output for a given input signal, while keeping the liquid state 

fixed. The following pseudocode outlines a basic training algorithm for an LTC: 
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Algorithm 0.1. Pseudocode implementation of LTC back-bone using fused ODE 

Solver [31] 

Inputs: Dataset of traces [I(t), y(t)] of length T, RNN = f(I,x) 

Parameters: Loss function 𝐿(𝜃), initial parameters 𝜃0, learning rate 𝛼, 

Output weights = Wout, output bias = bout 

Output: Training parameters 𝜃 

for i = 1 … number of training steps do 

     (Ib,yb) = Sample training batch 

     x = All zeros initial neural state 

     for j = 1…T do 

          x = f(I(t),x) 

          �̂�(𝑡) = 𝑊𝑜𝑢𝑡. 𝑥 + 𝑏𝑜𝑢𝑡 

          Ltotal = ∑ 𝐿 (𝑦𝑗(𝑡), 𝑦�̂�(𝑡))
𝑇

𝑗=1
 

          𝛻𝐿(𝜃) =
𝜕𝐿𝑡𝑜𝑡𝑎𝑙

𝜕𝜃
 

          𝜃 = 𝜃 − 𝛼𝛻𝐿(𝜃) 

     end for 

end for 

return 𝜃 

 

In this pseudocode, the inputs include a dataset of traces of input-output pairs, as 

well as the initial parameters and learning rate. The output is the trained parameters 

of the LTC. The algorithm consists of a loop that iterates over a fixed number of 

training steps. In each step, a batch of training examples is sampled from the dataset. 

The initial neural state is set to all zeros, and the LTC processes the input signals to 

produce a prediction for the output. The loss function is computed between the 

predicted output and the true output, and the gradients of the loss with respect to the 

parameters are calculated. The parameters are updated using the gradients and the 

learning rate. This process is repeated for all input-output pairs in the batch.  

 

An LTC is a type of neural network that is designed to model and analyze dynamic 

systems, such as the motion of a multi-joint arm. At its core, the LTC model consists 
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of a set of differential equations that describe the evolution of the network's internal 

state over time. 

 

The mathematical functions that form the basis of the LTC model are as follows: 

 

 Leak current: This function models the leak current through a leak ion channel 

in a neuron, and is calculated as the product of the difference between the 

membrane potential and the leak reversal potential, and the leak conductance. 

 Input current: This function models the current flowing into the neuron due to 

inputs from other neurons or external sources. 

 Membrane capacitance: This function models the capacitance of the neuron's 

membrane, and is used to calculate the rate of change of the membrane 

potential over time. 

 Conductance-based synaptic weights: This function models the synaptic 

weights between neurons, and is used to calculate the strength of the 

connections between neurons. 

 

The LTC model can be described mathematically as follows: 

 

𝑑𝑢𝑑𝑡 = −1 ∗ 𝑖𝑛𝑝𝑢𝑡𝑠 − 𝑙𝑒𝑎𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝑑𝑣𝑑𝑡 = (𝑙𝑒𝑎𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑢)/𝑐𝑚 

𝑑𝑤𝑑𝑡 = (−1 ∗ 𝑤 + 𝑖𝑛𝑝𝑢𝑡𝑠)/𝑡𝑎𝑢𝑤 

( 4.57 )LTC Model 

Mathematical 

Demonstration 

 

where u, v, and w are the state variables of the LTC model, inputs are the inputs to 

the neuron, leak_current is the leak current, cm is the membrane capacitance, tau_w 

is a time constant, and dudt, dvdt, and dwdt are the rates of change of the state 

variables over time. 

 

The pseudocode for the LTC model can be described as follows: 

 

1) Initialize state variables u, v, and w; 

2) Calculate leak current as the product of the difference between the membrane 

potential and the leak reversal potential, and the leak conductance; 
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3) Calculate membrane capacitance; 

4) Calculate inputs as the weighted sum of inputs from other neurons or external 

sources; 

5) Calculate the rate of change of the state variables over time using the 

differential equations; 

6) Update the state variables based on the calculated rates of change; 

7) Repeat steps 2-6 for each time step. 

 

This is a high-level overview of the mathematical functions and pseudocode for the 

LTC model. The full implementation of the LTC model can be more complex and 

may involve additional functions and variables to model more specific aspects of the 

system being analyzed. 

 

Overall, the pseudocode provides a high-level overview of the training process for an 

LTC. The actual implementation may involve additional optimizations and 

adjustments to the parameters, depending on the specific application. The training 

algorithm as described has complexity of 0(N2 × k × t), with N neurons, k ODE 

steps, and a sequence length of t. The process for distributed input data and the steps 

required to implement the method was done in Python (version 3.10) language using 

TensorFlow (version 2.10.0). 

 

4.2. TIME-CONSTANT NEURAL NETWORKS 

 

A time-constant neural network is a type of recurrent neural network (RNN) aimed at 

learning temporal patterns in sequences on different time scales. An important 

feature of time-constant neural network is the ability to adjust the time constant 

during training. This allows the network to capture and represent a wide range of 

temporal dynamics. This flexibility is achieved by using ordinary differential 

equations (ODEs) (the method uses solving ODE which is similar to ART) to model 

the hidden state dynamics and learning the parameters of these ODEs. 

 

Time-constant neural network's scientific rationale is rooted in the study of 

biological neural networks. Biological neurons have different time constants that 
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allow them to process information on different time scales. The idea behind time-

constant neural network and also LTC is to integrate this biological property into 

artificial neural networks by using continuous-time dynamics in hidden states. This is 

done by replacing the standard discrete-time dynamics of RNNs with continuous-

time dynamics modeled using ODEs. 

 

LTC is characterized by state equations that describe the continuous-time dynamics 

of hidden states. The hidden state h(t) is expanded according to the differential ( 

4.58: 

 

𝑑ℎ(𝑡)/𝑑𝑡 = −ℎ(𝑡)/𝜏 + 𝑓(𝑊𝑥 ∗ 𝑥(𝑡) + 𝑊ℎ ∗ ℎ(𝑡) + 𝑏) ( 4.58) 

 

where τ is the time constant, f is the activation function, W_x and W_h are the input 

and iteration weight matrices, x(t) is the input, b is the bias term, and * is the matrix 

multiplication. 

 

The goal during training is to learn the model parameters (W_x, W_h, b, and τ) that 

minimize a given loss function. B. Mean squared error or cross-entropy loss between 

predicted output and true target.  

 

d x(t) / d t = f(x(t),  𝑡, 𝜃) 

𝑑𝑥(𝑡)

𝑑𝑡
≈

𝑥(𝑡 + δ𝑡) − 𝑥(𝑡)

δ𝑡
≈ 𝑓(𝑥(𝑡), 𝑡, θ) 

( 4.59) Numerical ODE 

Solver 

 𝑥(𝑡 + δ𝑡) = 𝑥(𝑡) + δ𝑡𝑓(𝑥(𝑡), 𝑡, θ) ( 4.60 ) Forward Pass 

 

➢ Choice of the way we do an integration step determines forward pass 

complexity. 

➢ Training time-constant neural networks 

 

Training LTC should use a gradient-based optimization algorithm such as: B. Update 

the model parameters using stochastic gradient descent (SGD) or Adam. The 

gradient of the loss function with respect to the parameters is computed using 

backpropagation over time (BPTT) or the adjoint method of ODEs. The choice of 
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ODE solver (such as semi-implicit, explicit, or Runge-Kutta) can also affect training 

speed and stability.  

 

➢ Adjoint Sensitivity Method [32] 

 

 𝐿(𝑥(𝑡1)) = 𝐿(𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝑥(𝑡0), 𝑓, 𝑡0, 𝑡1, θ) ( 4.61 ) Loss function 

 

 
 

Figure 4.2. Reverse-mode differentiation through an ODE solver requires solving an 

augmented system backwards in time. This adjoint state is updated by the gradient at 

each observation (Credit: Chen et al. NeurIPS, 2018) 

 

 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑡, θ) ( 4.62 ) Neural ODE 

 

 𝑎(𝑡) =
∂𝐿

∂𝑥(𝑡)
 

𝑑𝑎(𝑡)

𝑑𝑡
= −𝑎(𝑡)T

∂𝑓(𝑥(𝑡), 𝑡, θ)

∂𝑥
 

( 4.63 ) Adjoint State 

 

➢ Backpropagation through-time (BPTT) [31, 33-35] [31] [33] [34] [35] 

𝑥(𝑡 + δ𝑡) = 𝑥(𝑡) + δ𝑡𝑓(𝑥(𝑡), 𝑡, θ) ( 4.64 )Performs a 

Forward-Pass 
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dΘ = [
𝑑𝐿

𝑑𝑥(𝑡 + δ𝑡)
,
𝑑𝑥(𝑡 + δ𝑡)

𝑑𝑥(𝑡)
,
𝑑𝑥(𝑡 + δ𝑡)

𝑑𝑓
,

𝑑𝑓

𝑑𝑥(𝑡)
,
𝑑𝑓

𝑑𝑡
,
𝑑𝑓

𝑑θ
] 

( 4.65 ) Compute 

Gradients Through 

the ODE Solver 

Θ𝑛𝑒𝑤 ← Θold + γ ⋅ 𝑑Θ 

 

 

( 4.66 ) Update 

Parameters 

4.3. METHODOLOGY STEPS 

 

Implementing an LTC control system for a multi-joint cyber physical arm involves 

several steps. Here is a general overview of the implementation process: 

 

• Data Collection: The first step we have done is to collect data on the 

movements of the multi-joint cyber physical arm. This data can be collected 

using sensors or other measurement devices, and it should include information 

on the joint angles, velocities, and accelerations of the arm during different 

movements. 

 

• Data Preprocessing: Once we collected the data, it needs to be preprocessed to 

prepare it for use in the LTC. This may involve normalizing the data, removing 

outliers or noise, and partitioning the data into training and testing sets. 

 

• Training the LTC: The next step was to train the LTC using the preprocessed 

data. This involves selecting an appropriate architecture for the LTC, setting 

the hyperparameters, and training the network on the input-output patterns of 

the arm's movements. The goal is to teach the network to predict the joint 

angles, velocities, and accelerations of the arm based on the input signals. 

 

• Real-time Control: After the LTC was trained, it can be used in real-time 

control of the multi-joint cyber physical arm. The input signals can be fed into 

the network, and the network will generate predictions for the arm's 

movements. These predictions can be used to control the arm's movements and 

achieve the desired tasks. 
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• Performance Evaluation: Finally, the performance of the LTC control system 

has been evaluated. This involved measuring the accuracy of the network's 

predictions, comparing the LTC to other control systems, and identifying any 

areas for improvement. 

 

Overall, the implementation of an LTC control system for a multi-joint cyber 

physical arm requires data collection and preprocessing, network training, real-time 

control, and performance evaluation. It is a complex process that requires expertise 

in both control systems and deep learning. 

 

4.4. IMPLEMENTATION 

 

The implementation of this research project involves several crucial steps to ensure 

its success. The project is designed to predict joint movements and gestures using an 

LTC.  

 

 Step 1: Code Implementation using Python 

 

The first step of the project is to implement the LTC model in Python. This will 

involve defining the architecture of the network, implementing the forward pass and 

backpropagation, and writing code to train and evaluate the network. The code will 

be written using the TensorFlow and TensorFlow libraries, which provide powerful 

tools for building, training, and evaluating neural networks. 

 

 Step 2: Data Retrieval using Pandas 

 

In this step, the dataset will be retrieved and processed using Pandas, a popular data 

analysis library for Python. The dataset will consist of joint 3D position data, which 

will be used to train and test the LTC model. The data will be loaded into Pandas 

data frames, which will allow for easy manipulation and preprocessing of the data. 

 

 Step 3: Algorithm Development using TensorFlow 
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In this step, the LTC model will be developed using TensorFlow. The architecture of 

the network will be defined, and the forward pass and backpropagation will be 

implemented. The network will be trained using the joint 3D position data from the 

dataset, and the performance of the network will be evaluated using metrics such as 

accuracy and mean absolute error. 

 

 
 

Figure 4.3. Demonstration of Bedframe and Fixed transformation between frames 

addressing 

 

 Step 4: Implementation with TensorFlow 

o Integration of TensorFlow for Improved Performance: 

 

During the implementation of the algorithm, a decision was made to incorporate 

TensorFlow, a widely adopted machine learning framework. TensorFlow offers 

several advantages that enhance the algorithm's performance. By leveraging 

TensorFlow's optimized computational graph and parallel processing capabilities, 

significant improvements in speed and efficiency can be achieved. This is 

particularly beneficial when dealing with complex neural network architectures like 

the LTC. TensorFlow's compatibility with both CPUs and GPUs further enhances 

performance. 

 

o Adapting the Algorithm to TensorFlow: 
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To ensure compatibility with TensorFlow, a careful adaptation process was 

undertaken. Since the algorithm was originally implemented in a different framework 

or language, specific components had to be re-implemented using TensorFlow's 

constructs and APIs. This involved mapping existing logic and operations to 

TensorFlow equivalents. TensorFlow's comprehensive set of tools and utilities 

facilitated this process. Additionally, TensorFlow's high-level API, such as Keras, 

enabled more intuitive model design and development, expediting the migration 

process. 

 

o Leveraging TensorFlow's Ecosystem: 

 

TensorFlow's rich ecosystem played a vital role in the algorithm's implementation. It 

offers a diverse range of pre-built modules, models, and utilities that expedited 

development. Access to TensorFlow's extensive collection of pre-trained models 

facilitated transfer learning, reducing the need for training from scratch and 

enhancing the algorithm's performance. TensorFlow's well-documented API, vibrant 

community support, and online resources provided valuable assistance in 

troubleshooting and knowledge sharing, resulting in smoother development and 

faster iteration cycles. 

 

o Optimization and Scalability: 

 

TensorFlow's architecture and design principles are optimized for efficiency and 

scalability. By harnessing TensorFlow's computational graph and automatic 

differentiation capabilities, the algorithm was further optimized, enhancing 

efficiency and reducing computational overhead. TensorFlow's support for 

distributed computing allowed for seamless scaling across multiple devices and 

machines, leveraging their collective processing power. This scalability is especially 

valuable when working with large datasets or complex models, enabling tackling 

more challenging problems and achieving superior results. 

 

By integrating TensorFlow into the algorithm's implementation, the performance, 

compatibility, and scalability advantages of the framework were effectively 
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harnessed. The adaptation process ensured compatibility with TensorFlow's 

framework, while the rich ecosystem provided valuable resources. These efforts 

resulted in improved efficiency, streamlined model development, and access to 

advanced features offered by TensorFlow. Overall, TensorFlow proved to be an 

invaluable tool in the pursuit of an optimized and effective solution. 

 

 Step 5: Dataset 

The dataset used in this project will consist of joint 3D position data. The train 

dataset will consist of joints degree of movement and gestures, while the test dataset 

will consist of 4 random gestures to be predicted by joints alignment and settings. 

The data will be preprocessed and normalized to ensure that the network is able to 

learn the patterns in the data effectively. 

 

 Step 6: Test the Algorithm 

 

Once the LTC model has been trained and evaluated, the next step will be to test the 

entire algorithm using comparison between the predicted outcomes and real-world 

data. This will involve running the LTC model on the test dataset and comparing the 

predicted joint 3D positions with the ground-truth data. The success-rate (percentage 

of differences between outcome and ground-truth) will be calculated to measure the 

performance of the model. 

 

 Step 7: Comparison with Other Algorithms 

 

In this step, the success-rate of the LTC model will be compared with two other 

famous algorithms in this field. The comparison will help to evaluate the 

performance of the LTC model and to see how it compares with other state-of-the-art 

algorithms in terms of accuracy and robustness. 

 

 Step 8: Comparison between Original and Optimized Versions of the LTC 

Model 
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The research project also includes an optimized version of the LTC model, which 

was done by researchers. The optimized LTC model will be evaluated using the same 

metrics as the original LTC model but using TensorFlow framework. The 

hyperparameters and some inputs were optimized too. Then the results will be 

compared to see how the optimized version performed compared to the original 

version. 

 

4.5. PROJECT REPOSITORY ON GITHUB 

 

The project's code and resources can be found on GitHub at the following link: 

GitHub - michaelkhany/liquid_time_constant_networks: Code Repository for Liquid 

Time-Constant Networks (LTCs): 

https://github.com/michaelkhany/liquid_time_constant_networks 

 

The repository provides access to the algorithm's implementation, including the 

adapted code for TensorFlow, as well as any additional documentation or resources 

related to the project. It serves as a central hub for collaboration, version control, and 

community engagement. Users can clone, contribute, or explore the codebase, 

fostering knowledge exchange and further development. 

 

 

https://github.com/michaelkhany/liquid_time_constant_networks
https://github.com/michaelkhany/liquid_time_constant_networks
https://github.com/michaelkhany/liquid_time_constant_networks
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

The implementation of controller was tested not only with the original LTC neural 

network. Researchers optimized the code using newer version of TensorFlow and 

made an experiment to compare the performance of the controller using both original 

and optimized version of LTC model. In the optimized version of the code, the 

authors made several changes to improve the performance of the LTC model. For 

example:  

 

• Our proposed methodology involves the integration of various neural network 

components, along with enhancement the adaptability, interoperability, and 

structural organization of the LTC method in LTC-SE. 

 

• We changed the way inputs are processed. In the original version, the inputs 

are processed through a mapping function, which can be either Affine, Linear, 

or Identity. In the optimized version, the mapping function is also used, but the 

Affine mapping type is the default. 

 

• We changed the way the ODE solver works. In the original version, the ODE 

solver can be either SemiImplicit, Explicit, or RungeKutta. In the optimized 

version, the default ODE solver is SemiImplicit. 

 

• We introduced a new class called LTCCell, which is derived from the 

RNNCell class of TensorFlow. This class encapsulates the implementation of 

the LTC model and provides a convenient interface for using the LTC model in 

TensorFlow.
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• We also used Tensorflow2.x parallel processing unit to make the code efficient 

for Nvidia CUDA-x GPU Accelerated processing Overall, the optimized 

version of the code seems to have improved the performance and made the 

implementation more concise and resource friendly. 

 

5.1. ORIGINAL LTC MODEL 

 

The reported results of the original LTC model are as follows:  

 

The best epoch, 071, refers to the iteration of the training process that achieved the 

best performance on the validation set, in terms of the lowest validation loss. The 

train loss and train mean absolute error (MAE) measure how well the model fit the 

training data. The reported train loss of 2.35 indicates that, on average, the model's 

predictions were 2.35 units away from the true values. The reported train MAE of 

0.69 indicates that, on average, the absolute difference between the model's 

predictions and the true values was 0.69 units. 

 

The validation loss and validation MAE measure how well the model performs on 

data that it was not trained on. The reported validation loss of 3.30 indicates that, on 

average, the model's predictions were 3.30 units away from the true values on the 

validation set. The reported validation MAE of 0.84 indicates that, on average, the 

absolute difference between the model's predictions and the true values was 0.84 

units on the validation set. 

 

The test loss and test MAE measure how well the model performs on new, unseen 

data. The reported test loss of 2.59 indicates that, on average, the model's predictions 

were 2.59 units away from the true values on the test set. The reported test MAE of 

0.72 indicates that, on average, the absolute difference between the model's 

predictions and the true values was 0.72 units on the test set. 

 

Comparing the training, validation, and test metrics, we can see that the model 

performs better on the training data than on the validation and test data. This suggests 

that the model may be overfitting to the training data and may not generalize well to 
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new data. However, the reported test loss and test MAE are lower than the validation 

loss and validation MAE, which suggests that the model is able to perform 

reasonably well on new, unseen data. 

 

5.2. OPTIMIZED LTC MODEL (Proposed By Researchers) 

 

The reported results of running the same algorithm [36] [37] [38] using the optimized 

LTC model suggested by the research are as follows: the best epoch was 092, with a 

train loss of 2.07 and a train mean absolute error (MAE) of 0.62. The validation loss 

was 3.00, and the validation MAE was 0.78. The test loss was 2.37, and the test 

MAE was 0.66. 

 

Table 5.1. Performance Metrics for Comparing Original and Optimized LTC Models 

Outcomes 

Metrics Original LTC Model Optimized LTC Model 

Train Loss 2.35 2.07 

Train MAE 0.69 0.62 

Validation Loss 3.30 3.00 

Validation MAE 0.84 0.78 

Test Loss 2.59 2.37 

Test MAE 0.72 0.66 

 

In the above comparison chart, we can see that the optimized LTC model performs 

better on all metrics compared to the original LTC model. The best epoch for the 

optimized LTC model is 092, whereas it is 071 for the original model. The train loss 

and mean absolute error (MAE) for the optimized model are 2.07 and 0.62 

respectively, which are lower than the original model's train loss and train MAE. The 

validation loss and validation MAE are also lower for the optimized model, 

indicating better generalization performance. The test loss and test MAE are also 

lower for the optimized model, suggesting better performance on unseen data. 

 

Comparing these results to the original LTC model results, we can see that the 

optimized LTC model performed better on all three metrics. The train loss and train 

MAE were lower, suggesting that the model was able to fit the training data better. 
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The validation loss and validation MAE were also lower, suggesting that the model 

was able to generalize better to new data. The test loss and test MAE were lower as 

well, indicating that the model was able to perform better on new, unseen data. 

Again, these results demonstrate the importance of optimizing model 

hyperparameters and architecture to achieve better performance and reduce 

overfitting. 

 

Overall, these results suggest that the optimized LTC model was able to learn the 

patterns of movement of the multi-joint arm and predict the movements accurately. 

The improved performance on the validation and test data suggests that the 

optimized model was less prone to overfitting than the original model. These results 

demonstrate the importance of optimizing model hyperparameters and architecture to 

achieve better performance. 

 

5.3. THE POTENTIAL OF LTC NEURAL NETWORKS 

 

The potential of LTC Neural Networks is becoming increasingly apparent in the field 

of scalable AI, particularly in continuous control systems. The provided code 

explores the effects of sparsity in LTC networks, which can lead to a more efficient 

and compact representation of the model, resulting in faster training times, reduced 

memory requirements, and better generalization. This is especially beneficial for 

LTC Neural Networks due to their complex dynamics and potentially large number 

of parameters. 

 

Additionally, the code demonstrates the impact of different ODE solvers on LTC 

performance, including Runge-Kutta, Explicit, and Semi-Implicit solvers. These 

solvers can influence the accuracy, computational efficiency, and stability of the 

LTC model, and understanding their effects is vital for optimizing control systems. 

Runge-Kutta solvers, although known for their accuracy and stability, can be 

computationally expensive for large and complex models. Comparing the 

performance of this solver with others helps in determining its suitability for specific 

applications. On the other hand, the Explicit solver is computationally more efficient 

but might face stability issues with stiff systems or large time steps. Analyzing its 
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accuracy, stability, and computational efficiency will provide valuable insights into 

its performance. 

 

The Semi-Implicit solver represents a compromise between the other two solvers, 

offering better stability than the Explicit solver and greater computational efficiency 

than the Runge-Kutta method. Its ability to efficiently handle complex dynamics 

makes it well-suited for LTC models. 

 

 

 

Figure 5.1. Memory usage comparison for different time series prediction tasks and 

algorithms 

 

LTC networks have several advantages over traditional RNNs, such as their 

continuous-time dynamics, adaptive time scale, improved stability and robustness, 

and intrinsic sparsity. These characteristics enable them to provide more accurate and 

robust control in continuous control systems. They can capture the continuous nature 

of control systems, handle a wide range of time scales. Furthermore, their natural 

incorporation of sparsity can be particularly beneficial in situations where 

computational resources and response times are critical. 
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In conclusion, the study of sparsity and ODE solvers in LTC networks, as well as 

their comparison with traditional RNNs, provides valuable insights into the 

optimization of control systems. These investigations can help guide the 

development of efficient and robust scalable AI solutions in various applications, 

particularly in the field of continuous control systems. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORKS 

 

6.1. CONCLUSION 

 

Researchers have recently introduced a new functionality of the LTC, which is to 

model decision support system variables. The LTC is a unique architecture that 

allows the network to process information in a highly parallel and distributed way, 

which makes it well-suited for tasks such as control systems. To benchmark and test 

the achievements, a basic multi-joint arm controlling system will be implemented 

using the proposing algorithm. The resulting model represents a dynamic system 

with liquid time constants that vary with their hidden states, with outputs computed 

using differential equation solvers and fraction. The proposed algorithm will control 

the joints angles and positioning to control the arm to reach the targeted situation or 

to grab an object. The LTC will be used to learn the patterns of movement of the arm 

and to predict the movements that will result from specific input signals. Finally, the 

evaluation of its performance in controlling multi-joint arm robot using the 

developed decision support system will be demonstrated using a multi-variable 

benchmarking. 

 

Overall, the proposed approach involves using an LTC to control a multi-joint arm 

robot. The LTC is used to model decision support system variables and to learn the 

patterns of movement of the arm. The resulting model is a dynamic system with 

liquid time constants that vary with their hidden states, and the LTC is used to 

control the joints angles and positioning to achieve the desired tasks. The 

performance of the proposed system will be evaluated using a multi-variable 

benchmarking, which will demonstrate its effectiveness in controlling a multi-joint 

arm robot. 
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Also, the adoption of LTC neural networks may offer a more suitable approach for 

specific prediction-based problems in comparison to traditional Long Short-Term 

Memory (LSTM) and Recurrent Neural Network (RNN) models. This advantage 

primarily stems from LTC networks' ability to adjust their time constants according 

to the input data, making them a preferable choice for dealing with non-stationary or 

irregularly sampled time series. Several problem domains stand out as potential areas 

where LTC networks might demonstrate better performance. These include: 

 

 Anomaly detection in irregularly sampled time series data, where conventional 

RNN and LSTM models may face difficulties due to non-uniform time 

intervals between observations. 

 Sensor networks that produce irregularly sampled time series data, often found 

in environmental monitoring and industrial IoT applications. 

 Human activity recognition, which is characterized by variable time scales and 

irregular patterns that may be better captured by LTC networks. 

 Financial markets, where rapidly changing dynamics and non-stationary 

properties in financial time series data can be more effectively addressed by 

LTC networks (Easier tracing ability of following the changes in different 

states of making training and making outputs, made the algorithm explainable 

with implementation of simple related approaches). 

 Speech recognition and natural language processing tasks that involve irregular 

and complex temporal structures in the data. 

 

It is crucial to emphasize that the relative efficacy of LTC, LSTM, and RNN models 

is contingent on the specific problem and data under consideration. In some cases, 

the performance differences may be minimal, while in others, one model may exhibit 

a clear advantage. Consequently, the selection of the most appropriate model should 

be grounded in a thorough evaluation of the data and the unique requirements of the 

problem. By incorporating LTC networks into the analysis of these problem 

domains, this thesis has demonstrated the potential for improved predictive accuracy 

and adaptability in the face of complex control temporal dynamics.  
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In conclusion, the proposed approach of using an LTC to control a multi-joint arm 

robot has shown promising results. The LTC's unique architecture, which allows the 

network to process information in a highly parallel and distributed way, is well-

suited for tasks such as control systems. The proposed algorithm models decision 

support system variables and learns the patterns of movement of the arm, resulting in 

a dynamic system with liquid time constants that vary with their hidden states. The 

LTC is used to control the joints angles and positioning to achieve the desired tasks, 

such as reaching a targeted situation or grabbing an object. The proposed system's 

performance has been evaluated using a multi-variable benchmarking, demonstrating 

its effectiveness in controlling a multi-joint arm robot. 

 

Future work could focus on improving the system's performance and extending it to 

other types of systems, incorporating other types of input signals, and developing 

more advanced decision support systems. Nevertheless, the proposed approach 

represents a significant advancement in the field of control systems, showcasing the 

potential of using an LTC to control the movements of a multi-joint arm robot. 

 

6.2. FUTURE WORKS 

 

The proposed LTC control system for a multi-joint cyber physical arm has 

demonstrated promising results in controlling the movements of the arm. However, 

there is still much room for improvement and further research. In this section, we 

outline some potential areas for future work. 

 

First, one of the main challenges in controlling a multi-joint arm is achieving precise 

and accurate movements. While the proposed LTC control system has shown good 

performance, there is still room for improvement. Future work could focus on 

developing more advanced LTC architectures or training algorithms that can improve 

the accuracy and precision of the system. This could involve exploring more 

complex network structures, developing more effective loss functions, or 

incorporating other types of data into the learning process. 
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Second, while the proposed LTC control system is designed for a multi-joint arm, it 

could be extended to other types of robots or cyber physical systems. For example, it 

could be used to control the movements of a mobile robot, a drone, or a prosthetic 

device. Future work could focus on adapting the LTC control system to these other 

applications, which may require modifications to the architecture or learning 

algorithm. 

 

Third, currently, the LTC control system relies on input signals from sensors to 

control the movements of the multi-joint arm. Future work could explore the use of 

other types of input signals, such as vision or audio, to enhance the system's 

performance. This could involve developing new methods for processing and 

integrating different types of input signals, or developing new LTC architectures that 

are better suited for these types of data. 

 

Finally, the proposed LTC control system includes a decision support system that 

models decision support system variables. Future work could focus on developing 

more advanced decision support systems that can incorporate additional factors, such 

as environmental conditions or task objectives. This could involve exploring new 

types of decision support system architectures or integrating other types of data into 

the decision support system. 

 

In conclusion, the proposed LTC control system for a multi-joint cyber physical arm 

has the potential to be applied to a wide range of robotic and cyber physical systems. 

Future work could focus on improving the system's performance, extending it to 

other types of systems, incorporating other types of input signals, and developing 

more advanced decision support systems. These research directions could lead to 

more effective and versatile control systems for a wide range of applications. 

Furthermore, future research endeavors could explore the development of a 

generalized system that renders neural network-based control systems independent of 

specific mechanical and electrical device types. This approach aims to establish a 

plug-and-play framework, allowing seamless integration of new components and 

optimizing model shape and even outputs to achieve desired results across diverse 

application domains. By focusing on this direction, researchers can contribute to 
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creating highly adaptable and versatile control systems capable of effectively 

operating across various domains and scenarios. 
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