

IMPLEMENTATION OF A LIQUID NEURAL
NETWORK CONTROL SYSTEM FOR MULTI-

JOINT CYBER PHYSICAL ARM

2023
MASTER THESIS

COMPUTER ENGINEERING

Michael BIDOLLAHKHANI

Thesis Advisor
Assist. Prof. Dr. Ferhat ATASOY

Assist. Prof. Dr. Abdellatef HAMDAN

IMPLEMENTATION OF A LIQUID NEURAL NETWORK

 CONTROL SYSTEM FOR MULTI-JOINT CYBER PHYSICAL ARM

Michael BIDOLLAHKHANI

Thesis Advisors

Assist. Prof. Dr. Ferhat ATASOY

Assist. Prof. Dr. Abdellatef HAMDAN

T.C.

Karabuk University

Institute of Graduate Programs

Department of Computer Engineering

Prepared as

Master Thesis

KARABÜK

June 2023

ii

I certify that in my opinion the thesis submitted by Michael Bidollahkhani titled

“IMPLEMENTATION OF A LIQUID NEURAL NETWORK (LTC) CONTROL

SYSTEM FOR MULTI-JOINT CYBER PHYSICAL ARM” is fully adequate in

scope and in quality as a thesis for the degree of Master of Science.

KABUL

Assist. Prof. Dr. Ferhat ATASOY

Thesis Advisor, Department of Computer Engineering

Assist. Prof. Dr. Abdellatef HAMDAN

Thesis Advisor, Department of Computer Engineering

This thesis is accepted by the examining committee with a unanimous vote in the

Department of Computer Engineering as a Master of Science thesis. June 2023

Examining Committee Members (Institutions) Signature

Chairman : Assoc. Prof. Dr. Caner ÖZCAN (KBÜ)

Member : Assoc. Prof. Dr. Fatih NAR (AYBÜ)

Member : Assist. Prof. Dr. FERHAT ATASOY (KBÜ)

The degree of, Master of Science by the thesis submitted is approved by the

Administrative Board of the Institute of Graduate Programs, Karabuk University.

Prof. Dr. Müslüm KUZU

Director of the Institute of Graduate Programs

iii

“I declare that all the information within this thesis has been gathered and presented

in accordance with academic regulations and ethical principles and I have

according to the requirements of these regulations and principles cited all those

which do not originate in this work as well.”

Michael BIDOLLAHKHANI

iv

ABSTRACT

Master Thesis

IMPLEMENTATION OF A LIQUID NEURAL NETWORK

CONTROL SYSTEM FOR MULTI-JOINT CYBER PHYSICAL ARM

Michael BIDOLLAHKHANI

Karabük University

Institute of Graduate Programs

The Department of Computer Engineering

Thesis Advisors:

Assist. Prof. Dr. Ferhat ATASOY

Assist. Prof. Dr. Abdellatef HAMDAN

June 2023, 66 pages

Technological solutions are being produced to meet people's needs and fulfill their

desires in a comfortable way. As technology becomes cheaper, more widespread,

smaller in size, and able to operate independently from the power grid, the

communication of devices with each other (Internet of Things) and the ability of

devices to make their own decisions increase the effectiveness of solutions. In

particular, the reduction in device size can be achieved by requiring less system

resources and battery capacity. Therefore, existing methods need to be customized to

work effectively in embedded systems.

In this thesis a novel approach called LTC-SE, which enhances the Liquid Time-

Constant Neural Network (LTC) technique for embedded environments with limited

processing capabilities and strict performance requirements is presented. LTC-SE

v

combines various neural network paradigms, including Leaky-Integrate-and-Fire

(LIF) spiking neural networks, Continuous-Time Recurrent Neural Networks

(CTRNNs), Neural Ordinary Differential Equations (NODEs), and customized Gated

Recurrent Units (GRUs), resulting in improved adaptability, interoperability, and

structural organization. In the thesis, a unified class library, is developed, called

LTCCell that offers extensive configurability CTRNN, NODE, and CTGRU

elements. The proposed method is evaluated by developing a control system for a

multi-joint cyber-physical arm, demonstrating its effectiveness in achieving

designated objectives and manipulating objects securely. The system's performance

is presented through a decision support framework and multi-variable benchmarking,

emphasizing the benefits of our refinements in terms of user interaction, functional

coherence, and code clarity.

Furthermore, the LTC-SE technique expands the scope of liquid neural networks,

finding applications in diverse machine learning domains such as robotics, causality

assessment, and time-series forecasting. This thesis presents innovative contributions

to the field based on the pioneering work of LTC neural network.

Key Words : Cyber physical Control System, Recurrent Neural Networks

(RNN), Liquid Time-Constant (LTC), Explainable Artificial

Intelligence (xAI), Decision Support Systems (DSS).

Science Code : 92432

vi

ÖZET

Yüksek Lisans Tezi

SIVI SİNİR AĞI KONTROL SİSTEMİNİN ÇOK EKLEMLİ SİBER-

FİZİKSEL KOL İÇİN UYGULANMASI

Michael BIDOLLAHKHANI

Karabük Üniversitesi

 Lisansüstü Eğitim Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Tez Danışmanları:

Dr. Öğr. Üyesi Ferhat ATASOY

Dr.Öğr. Üyesi Abdellatef Hamdan

Haziran 2023, 66 sayfa

İnsanların ihtiyaçlarını giderme ve isteklerini yerine getirme talebinin konforlu bir

şekilde gerçekleştirilmesi için teknolojik çözümler üretilmektedir. Teknolojinin

ucuzlaması, yaygınlaşması, boyutlarının küçülmesi, elektrik şebekesinden bağımsız

şekilde çalışabilir hale gelmesiyle birlikte cihazların birbirleriyle haberleşmesi

(nesnelerin interneti) ve cihazların kendi kararlarını verebilecek hale getirilmesi

çözümlerin etkinliğini arttırmaktadır. Özellikle cihaz boyutlarındaki küçülme daha az

sistem kaynağına ve batarya kapasitesine ihtiyaç duyması ile sağlanabilmektedir.

Bundan dolayı mevcut yöntemlerin gömülü sistemlerde etkili bir şekilde çalışması

için bazen özelleştirilmeleri gerekmektedir.

vii

Bu tezde sınırlı işlem kapasitesine ve sıkı performans kriterlerine sahip gömülü

ortamlar için özelleştirilmiş bir sıvı sinir ağı (İng.: Liquid Time-Constant Neural

Network Special Edition – LTC-SE) tekniği olan LTC-SE'nin geliştirilmiş bir

versiyonu sunulmaktadır. LTC-SE Sızdır-Bütünleştir ve Ateşle darbeli sinir ağını,

Sürekli-Zamanlı Özyinelemeli Sinir Ağlarını (SZÖSA'lar), Sinirsel Adi Diferansiyel

Denklemleri (SADD'ler) ve Özelleştirilmiş Geçitli Tekrarlayan Birimleri (ÖGTB'ler)

içeren çeşitli sinir ağları paradigmalarını kombine ederek adaptasyon yeteneğini, iş

birliği kabiliyetini ve yapısal düzenlemesini güçlendirmektedir. Tezde SZÖSA,

SADD ve ÖGTB elemanları için LTCCell adı verilen geniş konfigürasyon imkanı

sunan birleşik bir sınıf kütüphanesi geliştirilmiştir. Önerilen yöntem, çok eklemli bir

siber-fiziksel kol için bir kontrol sistemi geliştirerek, belirlenen hedeflere ulaşmada

ve nesneleri güvenli bir şekilde manipüle etmede etkinliğini göstererek

değerlendirilmiştir. Sistemin performansı, kullanıcı etkileşimi, işlevsel tutarlılık ve

kod netliği açısından iyileştirmelerimizin faydalarını vurgulayan bir karar destek

çerçevesi ve çok değişkenli kıyaslama yoluyla sunulmuştur.

Ayrıca, LTC-SE tekniği, robotik, nedensellik değerlendirmesi ve zaman serisi

tahmini gibi çeşitli makine öğrenimi uygulamalarında sıvı sinir ağı kavramının

kapsamını genişletmektedir. Bu tez, LTC sinir ağının öncü çalışmalarına dayanarak

alana yenilikçi katkılar sunmaktadır.

Anahtar Kelimeler : Siber Fiziksel Kontrol Sistemi, Tekrarlı Sinir Ağı (TSA), Sıvı

Sinir Ağı (SSA), Açıklanabilir Yapay Zeka, Karar Destek

Sistemi (KDS).

Bilim Kodu : 92432

viii

ACKNOWLEDGMENT

First of all, I would like to thank God, for letting me through all the difficulties. Who

supported me all the time and gave me priceless guides and helping hands to finish

what I started.

I would like to acknowledge and express my deepest gratitude to my family, who

supported me without hesitation anytime.

Also, I’m genuinely thankful of my Karabuk university supervisor Dr. Ferhat Atasoy

and Dr. Abdellatef Hamdan (Lebanese American University). Their guidance and

advice carried me through all the stages of implementation of the project. I want to

appreciate the guidelines provided by Dr. Ramin Hasani (Massachusetts Institute of

Technology), which gave me the motivation and seeds for starting my studies on

liquid neural networks and where to start my research journey about cognitive and

decision-making functionalities of brain frontal lobe.

ix

CONTENTS

Page

ABSTRACT .. iv

ÖZET... vi

ACKNOWLEDGMENT ... viii

CONTENTS .. ix

LIST OF FIGURES ... xii

LIST OF TABLES .. xiii

SYMBOLS AND ABBREVITIONS INDEX .. xiv

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1. MOTIVATION AND PROBLEM STATEMENT 2

1.2. OBJECTIVE .. 4

1.3. PROJECT OBJECTIVES .. 4

1.4. THE IMPORTANCE OF THE OBJECTIVE .. 4

CHAPTER 2 .. 6

LITERATURE REVIEW... 6

2.1. FUNDAMENTAL ALGORITHMS .. 6

2.2. LIMITATIONS OF TRADITIONAL ALGORITHMS 6

2.3. THE NEURAL NETWORKS ... 7

2.4. NEURAL AND EVOLUTIONARY COMPUTING................................... 8

2.4.1. Biological Neural System ... 8

2.4.1.1. The temporal lobe of our brain... 8

2.4.1.2. The occipital lobe ... 9

2.4.1.3. The frontal lobe .. 9

2.4.2. Artificial Neural Network (ANN) .. 9

2.4.2.1. The artificial neuron ... 10

2.4.2.2. Nodes ... 10

x

Sayfa

2.5. LEARNING ALGORITHM SELECTION ... 12

2.5.1. Resources and validity .. 12

2.5.1.1. Explainability ... 12

2.5.1.2. In-memory vs. out-of-memory ... 12

2.5.1.3. Number of features and examples .. 12

2.5.1.4. Categorical vs. numerical features ... 13

2.5.1.5. Nonlinearity of the data .. 13

2.5.1.6. Training speed .. 13

2.5.1.7. Prediction speed ... 13

2.5.2. Control Systems and Neural Networks: ... 14

2.5.3. Recurrent Neural Networks (RNNs): ... 15

2.5.4. RNN and NVIDIA CUDA.. 16

2.5.4. Emergence of LSTM Networks: ... 17

2.5.5. The Role of LSTM in Control Systems: ... 17

2.5.6. Other LSTM-Related Approaches and Recent Research: 17

2.5.7. Time-Constant Neural Networks .. 18

2.5.8. Liquid Neural Network or Liquid Time-Constant NN (LTC) 19

2.5.8. Leveraging Ode Solvers For Dynamic System Modeling 21

2.6. CONCEPT AND FUNCTIONALITIES ... 22

2.7. APPLICATIONS ... 22

2.8. THE IMPLEMENTATION PROCESS ... 23

CHAPTER 3 .. 26

THEORETICAL BACKGROUNDS ... 26

3.1. DYNAMIC EQUATIONS AND IO .. 26

3.2. UNIVERSAL APPROXIMATORS OF LTCs .. 28

3.2.1. Theorem Alpha ... 28

3.2.2. Proof of Theorem Alpha ... 29

3.3. TRACING A SIMPLE LTC FOR AN INSTANCE 33

3.3.1. Data preparation.. 33

3.3.2. Network initialization ... 34

3.3.3. Forward pass ... 34

3.3.4. Loss calculation: ... 35

xi

Sayfa

3.3.5. Backward pass: ... 35

3.3.6. Iteration: .. 36

3.4. CONCLUSION AND REMARKS FOR THEORETICAL BACKGROUNDS

 ... 37

CHAPTER 4 .. 38

METHODOLOGY ... 38

4.1. THE PROPOSED ALGORITHM .. 39

4.2. TIME-CONSTANT NEURAL NETWORKS ... 42

4.3. METHODOLOGY STEPS .. 45

4.4. IMPLEMENTATION .. 46

4.5. PROJECT REPOSITORY ON GITHUB ... 50

CHAPTER 5 .. 51

RESULTS AND DISCUSSION .. 51

5.1. ORIGINAL LTC MODEL ... 52

5.2. OPTIMIZED LTC MODEL (Proposed By Researchers) 53

5.3. THE POTENTIAL OF LTC NEURAL NETWORKS 54

CHAPTER 6 .. 57

6.1. CONCLUSION .. 57

6.2. FUTURE WORKS ... 59

REFERENCES ... 62

RESUME ... 66

xii

LIST OF FIGURES

Page

Figure 1.1. An instance of chained mechanical robot consisting of joints, rigids,

actuators and electronics .. 3

Figure 2.1. Comparison between Classical Statistics and Overparameterization Era . 7

Figure 2.2. Brain lobes and their known major functionality [6]................................. 9

Figure 2.3. Node with inputs (x), weights (w), output (y) .. 11

Figure 2.4. Demonstration of a Multi-Layer Feed-Forward NN 15

Figure 2.5. Demonstration of a Multi-Layer RNN Architecture 16

Figure 2.6. Demonstration of Liquid Neural Network (LTC) Architecture 20

Figure 2.7. An instance for a multi-joints arm system ... 24

Figure 4.1. Rigid Bodies Tree view of some kinematics instances; here Joints are

labeled as (v) and Rigids by (e). ... 39

Figure 4.2. Reverse-mode differentiation through an ODE solver requires solving an

augmented system backwards in time. This adjoint state is updated by the

gradient at each observation (Credit: Chen et al. NeurIPS, 2018) 44

Figure 4.3. Demonstration of Bedframe and Fixed transformation between frames

addressing ... 47

Figure 5.1. Memory usage comparison for different time series prediction tasks and

algorithms ... 55

xiii

LIST OF TABLES

Sayfa

Table 5.1. Performance Metrics for Comparing Original and Optimized LTC Models

Outcomes.. 53

xiv

SYMBOLS AND ABBREVITIONS INDEX

SYMBOLS

𝑉𝑖(𝑡) : Dynamics of a hidden or output neuron i at time t

𝐶𝑚𝑖 : Membrane capacitance of neuron i

𝑑𝑉𝑖/𝑑𝑡 : Rate of change of the internal state of neuron i with respect to time

𝐺𝐿𝑒𝑎𝑘𝑖 : Leak conductance of neuron i

𝑉𝐿𝑒𝑎𝑘𝑖 : Leak reversal potential of neuron i

𝑛 : Total number of neurons

𝐼𝑖𝑛(𝑖𝑗) : External current input to neuron i from neuron j

𝐼𝑠𝑖𝑗 : Synaptic current from neuron j to neuron i

𝑤𝑖𝑗 : Weight of the chemical synapse from neuron j to neuron i

µ𝑖𝑗 : Presynaptic membrane state parameter for the sigmoidal nonlinearity

𝛾𝑖𝑗 : Parameter for the sigmoidal nonlinearity

𝐸𝑖𝑗 : Reversal potential of the synapse from neuron j to neuron i

𝜔ˆ𝑖𝑗 : Weight of the electrical synapse (gap-junction) between neuron j and

neuron i

𝑣𝑗(𝑡) : Membrane potential of neuron j at time t

𝜎𝑖(𝑉𝑗(𝑡)) : Sigmoidal nonlinearity function dependent on the presynaptic

membrane state of neuron j

𝜏𝑖 : Time constant of neuron i

𝑢(𝑡) : Internal states of interneurons (hidden units) and motor neurons (output

units) in an LTC RNN at time t

𝑊 : Weight matrix of the LTC RNN

𝜎(𝑥) : C1-sigmoid function applied element-wise

𝐴 : Vector of resting states of motor and interneurons in the LTC RNN

xv

𝐵 : Vector of synaptic reversals for the motor and interneurons in the LTC

RNN

𝛼, 𝛽 : Range bounds for the entries of A and B

𝜏 : Time constant of the LTC RNN system

𝐹(𝑥) : Mapping function for the autonomous ordinary differential equation

𝑥˙ : Derivative of the state vector x with respect to time

𝜂 : Parameter in the range (0, min{ε, λ})

𝜀 : Positive constant for approximation

𝜆 : Distance between the compact subset D˜ and the boundary δ𝑆 of S

𝐷η : Compact subset of S

𝐿𝐹 : Lipschitz constant of F on 𝐷η

ε𝑙 : Positive constant satisfying ε𝑙  <  (η𝐿𝐹) / (2(𝑒𝑥𝑝(𝐿𝐹)𝑇  −  1))

𝑁 : Integer representing the number of hidden units in the LTC RNN

𝑥 : State vector of the n-dimensional dynamical system

𝑅𝑛 : n-dimensional Euclidean space

𝐹˜(𝑥) : Mapping function for the modified LTC RNN system

τ𝑠𝑦𝑠 : Time constant of the modified LTC RNN system

𝑥0 : Initial value of the state vector x

𝐷 : Compact subset of the n-dimensional Euclidean space Rn

𝑦˜ : Intermediate variable defined as 𝐶𝑥˜ + µ

𝐸 : Matrix representing the product of matrices C, Wl, and B

𝐺˜(𝑧) : Mapping function for the modified LTC RNN system

𝑧 : State vector of the modified LTC RNN system

xvi

KISALTMALAR

3d : Three Dimensional

AI : Artificial Intelligence

ANN : Artificial Neural Network

ART : Adaptive Resonance Theory

BPTT : Back Propagation Over Time

CPU : Central Processing Unit

DSS : Decision Support System

DAE : Differential Algebraic Equations

HPC : High Performance Computing

SGD : Stochastic Gradient Descent

IO : Input or/and Output

KNN : K-Nearest Neighbor

LSTM : Long-Short Term Memory

LTC1 : Liquid Neural Network / Liquid Time-Constant Neural Network

LTC-SE : Liquid Neural Network for Scalable AI and Embedded Systems

ODE : Ordinary Differential Equation

PID : Proportional-Integral-Derivative

RAM : Random Access Memory

RNN : Recurrent Neural Network

SVM : Support Vector Machine

TCN : Temporal Convolutional Networks

xAI : Explainable Artificial Intelligence

1 Liquid neural networks (LNNs) are also known as liquid time-constant (LTC) networks. They are a

type of continuous-time neural network model that uses linear first-order dynamical systems

modulated via nonlinear interlinked gates [39] [37].

1

CHAPTER 1

INTRODUCTION

The source of inspiration for inventing and designing artificial intelligence and

machine learning systems has always been based on natural intelligence. It can be

safely said that one of the most complex intelligent systems is the human brain.

Designing an artificial neural network inspired by the temporal lobe of the brain with

the ability to classify and solve regression problems, or inventing Convolutional

Neural Networks inspired by the occipital lobe to provide solutions for problems

related to machine vision, can be mentioned among these efforts.

Recent progress in the field of developing algorithms and methods of artificial

intelligence and machine learning by modeling neural networks and the brain has

become highly competitive. This competition is due to the ability to learn and high

adaptability in facing non-linear and complex problems. Factors such as learning

speed, learning cost, effectiveness of learning rate under noisy data effect, the

amount of ground-truth data required to achieve the desired accuracy and the

probability of encountering the vanishing point problem are among the competitive

criteria presented between these new methods. Recently, in 2021, LTC was presented

by R. M. Hasani. The presented type of neural networks exhibits stable bounded

behavior, yields good expressiveness within the family of ordinary neural differential

equations, and improves performance on time series forecasting tasks. This method is

inspired by the principles of communication in the nervous system of species. It

allows continuous mapping approximation models with a small number of

computational units.

Here, researchers introduced a new functionality of the recently presented Liquid

Neural Network (LTC), which is to model decision support systems variables. To

benchmark and test the achievements, a basic multi-joint arm controlling system will

2

be implemented using the proposing algorithm. The proposed algorithm is highly

adaptable with a wide array of input data to perform in different environments

withdesired accuracy. The resulting model represents a dynamic system with liquid

time constants that vary with their hidden states, with outputs computed using

differential equation solvers and fraction. A multi-joint arm is made of independent

joints and rigids. The algorithm will control the joints angles and positioning to

control the arm to reach the targeted situation or to grab an object. Finally, the

evaluation of its performance in controlling multi-joint arm robot using the

developed decision support system will be demonstrated using multi-variable

benchmarking.

1.1. MOTIVATION AND PROBLEM STATEMENT

Traditional neural networks and machine learning algorithms have several

fundamental problems to work on. Missing values in input data for training the

model and extracting the features are a problem that may be faced during work in

traditional neural networks. This is effectively changing the performance rate of the

model generated by the neural network. The traditional neural networks are not able

to recognize complex patterns in the data due to lack of connection between multiple

layers to change of nodes vertical and horizontal nodes. The problem expands with

limiting the traditional neural networks only working well in few-steps forecast, not

in long term forecasting.

3

Figure 1.1. An instance of chained mechanical robot consisting of joints, rigids,

actuators and electronics

 The manipulator algorithm for chained mechanical robots, such as autonomous

arm robot, are notions of forward and inverse kinematics.

 The forward kinematics is given all the angles or the translational degrees of

motion of your robot like all motors and actuators positions. The combination

of these positions is going to leap to the gripper or the end effector of the arm,

being in a certain position.

 So forward kinematics, is going from your joint space to the physical position

in 3d of the robot.

 Inverse kinematics is a tougher problem, which is the opposite; it’s if you want

the robot to be in a specific position and orientation in the physical world. Like

how to position the actuators.

 The forward kinematics: This problem usually involves some sort of iterative

algorithm.

 The inverse kinematics: To make a model for this kind of problem, usually the

Rigid Bodies Tree is used, and Artificial Neural Network (ANN) is used for

decision making and autonomous robot manipulation.

4

1.2. OBJECTIVE

To apply a Liquid neural network for decision making for a time-series multiple

joints to control, using TensorFlow framework.

1.3. PROJECT OBJECTIVES

We reached the following objectives after completion of this study (and

implementation of the solution):

 Expressivity of neural ordinary differential equation networks (ODE-Nets) in

their current formalism, compared to the LTC.

 Improvements of LTC structure to enable better representation learning, based

on the subject.

1.4. THE IMPORTANCE OF THE OBJECTIVE

Here we highlight the importance of LTC recurrent neural networks in various

applications. Firstly, LTC networks are developed as neural state-based data

processing systems inspired by the brain, with continuous-time semantics. This

enables them to effectively process information in a manner similar to how the brain

operates. Secondly, thorough theoretical stability and universality analyses of LTCs

are conducted to ensure their reliability and suitability for control and decision

support system designs using explainable states demonstration system. Thirdly, the

superior expressivity of LTCs compared to other types of recurrent neural networks

is illustrated, particularly in modeling time-series data. This demonstrates their

ability to capture complex temporal patterns. Additionally, the objective is to

introduce novel network-design principles for LTC neuronal models and equip them

with a search-based learning algorithm, enabling them to effectively control robotic

tasks. Lastly, a lightweight dynamical systems-based algorithm is designed and

implemented to systematically interpret the behavior of RNNs, specifically focusing

on response characterization. This helps to uncover insights and understand the inner

5

workings of these networks. Overall, these objectives emphasize the significance of

LTC networks in advancing various fields of research and applications.

6

CHAPTER 2

LITERATURE REVIEW

Control systems play a crucial role in various industries and applications, facilitating

the regulation and control of processes to achieve desired outcomes. Control system

design has evolved significantly over time, transitioning from traditional algorithms

to advanced approaches utilizing neural networks. This literature review explores the

development of control system design, focusing on the limitations of classical

algorithms in handling time-continuous data and the emergence of RNNs and

LSTMs networks. By examining relevant literature and research, this article aims to

provide insights into the reasons behind the adoption of RNNs, LSTM, and related

approaches in control system design.

2.1. FUNDAMENTAL ALGORITHMS

In the early stages of control system design, engineers heavily relied on classical

algorithms, particularly the PID control algorithm [1]. While effective in many

applications, these algorithms faced limitations when dealing with complex and time-

continuous processes.

2.2. LIMITATIONS OF TRADITIONAL ALGORITHMS

As control systems became more intricate, classical algorithms encountered

difficulties in handling time-continuous data streams. Real-time control systems

operate in dynamic and unpredictable environments where continuous data must be

processed rapidly and efficiently. However, traditional algorithms exhibited

limitations due to fixed parameter settings and lack of inherent memory [2].

7

Figure 2.1. Comparison between Classical Statistics and Overparameterization Era

Unlike traditional control system methods that rely on statistical approaches,

machine learning methods using neural networks offer a distinct advantage in

handling a large number of parameters. While traditional methods may suffer from

decreased accuracy as the model size increases, neural networks excel in

overparameterization [3]. This characteristic allows them to be trained more

effectively and achieve higher levels of accuracy. Consequently, neural network-

based machine learning methods prove highly suitable for tackling intricate control

system applications due to their ability to handle an extensive array of parameters.

Overparameterizing a neural network increases its complexity and flexibility, leading

to a higher risk of overfitting. To address this, regularization techniques, such as L1

and L2 regularization, are used to strike a balance between bias and variance,

mitigating overfitting by controlling the model's complexity.

2.3. THE NEURAL NETWORKS

To overcome the limitations of traditional algorithms, researchers used neural

networks, which draw inspiration from the human brain's ability to process and learn

from data. Neural networks consist of interconnected nodes, or artificial neurons,

organized in layers. Neural networks excel in learning from data, adapting to

changing environments, and effectively handling time-continuous data [4].

A

ra

 y

M del Si e

Overparameterization Era
Classical statistics

8

2.4. NEURAL AND EVOLUTIONARY COMPUTING

Evolutionary computation is the domain of optimization theory, where instead of

using classical numerical methods to solve optimization problems, inspiration from

biological evolution is used to "design" good solutions. When dealing with scenarios

where the derivative of the fitness function is unknown, as in reinforcement learning,

or when the fitness function exhibits numerous local extrema and involves sequential

methods, evolutionary computation is often employed as a preferred approach over

standard numerical methods. Applications of evolutionary computing are numerous,

including solving optimization problems, designing robots, building decision trees,

optimizing data mining algorithms, training neural networks, and hyperparameter

optimization. Data science and machine learning models, and nearly all statistical

and "black box" models are designed to solve optimization problems. There are

methods for estimating the capabilities of implemented evolutionary computing

algorithms. The goal is to make sure these values are minimized.

2.4.1. Biological Neural System

The four lobes of the brain are the frontal, parietal, temporal, and occipital lobes

(Error! Reference source not found.). The frontal lobe is located in the forward

part of the brain, extending back to a fissure known as the central sulcus. The frontal

lobe is involved in reasoning, motor control, emotion, and language. It contains the

motor cortex, which is involved in planning and coordinating movement; the

prefrontal cortex, which is responsible for higher-level cognitive functioning; and

Broca’s area, which is essential for language production [5].

2.4.1.1. The temporal lobe of our brain

The temporal lobe of the human brain, responsible for long-term memory, can be

compared to artificial neural networks that are commonly used for classification and

regression tasks.

9

2.4.1.2. The occipital lobe

The occipital lobe, which is associated with vision, can be analogous to

convolutional neural networks (CNNs) primarily utilized for computer vision

problems. However, it is worth noting that temporal convolutional networks (TCNs)

can also be applied to analyze time series data.

2.4.1.3. The frontal lobe

The frontal lobe, known for its role in short-term memory, shares similarities with

recurrent neural networks (RNNs) that are widely used for analyzing sequences, lists,

and time series. For example, in language processing, RNNs are employed to process

sequences of characters, words, and sentences following specific grammatical rules.

Similarly, RNNs can effectively analyze time series data comprising sequential

observations.

Figure 2.2. Brain lobes and their known major functionality [6]

2.4.2. Artificial Neural Network (ANN)

The ANNs are software and or hardware implementations of the neuronal structure

of the brains. That means artificial neural network attempt to simplify and mimic this

brain behavior [7] [8] [9]. In a certain type of artificial neural network (ANN)

training called supervision, the network learns by utilizing paired input and output

data samples. The ultimate goal is to enable the ANN to generate the desired output

10

when given a specific input. On the other hand, unsupervised learning within an

ANN aims to facilitate the network in comprehending the inherent structure of the

input data without external guidance [10].

2.4.2.1. The artificial neuron

An artificial neural network (ANN) emulates the behavior of a biological neuron

through the utilization of an activation function. In tasks such as email spam

identification, the activation function employed in the network must exhibit a

distinctive "switch on" feature. Essentially, when the input surpasses a specific

threshold, the output of the function should transition from one state to another, such

as from 0 to 1, from -1 to 1, or from 0 to a value greater than 0. This emulation

imitates the process of a biological neuron being activated. One frequently utilized

activation function for this purpose is the sigmoid function.

𝑓(𝑧) =
1

1 + exp(−𝑧)

(2.1) The sigmoid

function

2.4.2.2. Nodes

As previously discussed, biological neurons form interconnected hierarchical

networks, where the outputs of certain neurons serve as inputs for others. To

represent these networks, we can utilize connected layers of nodes. Each node within

these layers receives multiple inputs with associated weights, applies the activation

function to the sum of these inputs, and generates an output as a result of this process

[11]. Consider the diagram below:

11

Figure 2.3. Node with inputs (x), weights (w), output (y) 2

In the provided image, the circular shape corresponds to the representation of a node.

This node acts as the "processing element" or "unit" responsible for implementing

the activation function. It takes the weighted inputs, adds them together, and then

feeds them into the activation function.

The weights associated with the inputs are real-valued numbers, meaning they are

not restricted to binary values of 1 or 0. These weights are multiplied with the inputs

and subsequently aggregated within the node. Hence, to describe the weighted input

to the depicted node, it can be expressed as follows:

𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥𝑛𝑤𝑛 + 𝑏 (2.2)

Here the 𝑤𝑖 values are weights. These variables undergo modifications during the

learning process and, in conjunction with the input, govern the node's output. The

bias element, denoted as "b," is responsible for introducing a desirable level of

flexibility to the node. This augmentation is most effectively illustrated through the

use of an illustrative example.

2 A perceptron neural network.

x

Hidden

Layer

w

w

y

y

12

2.5. LEARNING ALGORITHM SELECTION

Selecting an appropriate machine learning algorithm can pose a challenging task.

2.5.1. Resources and validity

Considering the constraints of time and resources, it is highly impactful to conduct

extensive testing across various algorithms [12]. However, practical limitations often

impose restrictions on the time and resources available for problem-solving.

Researchers can address this by asking themselves a series of questions before

embarking on the task. Based on their answers, they can narrow down the list of

algorithms and experiment with them using the available data. [13].

2.5.1.1. Explainability

Does the model have to be explainable to a non-technical audience?

Many highly accurate learning algorithms are considered "black boxes." While these

models exhibit minimal error rates, understanding the specific reasoning behind their

predictions can be extremely challenging and often defies explanation. Neural

networks and ensemble models exemplify such algorithms. On the other hand, kNN,

linear regression, and decision tree learning algorithms generate models that may not

always be the most accurate, but they offer a straightforward approach to prediction.

2.5.1.2. In-memory vs. out-of-memory

Is it possible to load the dataset entirely into the server or personal computer's RAM?

If affirmative, researchers can explore a wide range of algorithms. Otherwise, they

may prefer incremental learning algorithms that gradually enhance the model by

incorporating additional data.

2.5.1.3. Number of features and examples

How many training examples does the researcher possess in the dataset related to the

problem? Additionally, what is the number of features per example? Certain

13

algorithms, such as neural networks and gradient boosting, can handle large volumes

of examples and millions of features. Conversely, others like SVMs may have more

modest capacities.

2.5.1.4. Categorical vs. numerical features

Does the dataset solely consist of categorical or numerical features, or is it a mixture

of both? Depending on the answer, some algorithms may not be directly compatible

with the dataset. Researchers would need to employ techniques like one-hot

encoding to convert categorical features into numerical representations.

2.5.1.5. Nonlinearity of the data

Can the data be linearly separated or modeled using a linear approach? In the

affirmative case, algorithms such as SVM with a linear kernel, logistic regression, or

linear regression can be suitable choices. Conversely, deep neural networks or

ensemble algorithms may deliver better results for non-linear data.

2.5.1.6. Training speed

How much time can be allocated for the learning algorithm to construct a model?

Training neural networks is known to be time-consuming. In contrast, simpler

algorithms like logistic and linear regression, as well as decision tree learning, offer

faster training speeds. Specialized libraries with efficient implementations of specific

algorithms can be sought online. Algorithms like random forests benefit from

utilizing multiple CPU cores, resulting in significant reductions in model building

time on machines equipped with numerous cores.

2.5.1.7. Prediction speed

What is the required prediction speed of the model? Will the model be deployed in a

production environment where high throughput is crucial? Certain algorithms, such

as SVMs, linear and logistic regression, or specific types of neural networks, excel in

14

swift prediction times. Conversely, algorithms like kNN, ensemble methods, and

deep or recurrent neural networks may exhibit slower prediction speeds [13].

2.5.2. Control Systems and Neural Networks:

There are three options to solve fundamental problems of traditional neural networks

and machine learning algorithms such as, missing values can really affect the

performance of the models; not being able to recognize complex patterns in the data

and usually not suitable in long term forecast.

Implementation of Recurrent Neural Network (RNN), Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU) time-constant neural networks are

introduced as a solution for the mentioned problems. In this section, researchers will

introduce and provide the essential keywords descriptions for the audience to cover

the thesis project. The new neural network has a great impact on how we process

time-series data. The LTC can anticipate future behavior in the system by analyzing

data in real-time. In addition to addressing the fundamental problems of traditional

neural networks and machine learning algorithms, control systems can further

enhance the models by incorporating action models. Action models provide a

framework for integrating control actions into the neural network architecture,

enabling the models to not only analyze data in real-time but also actively influence

and shape future behavior in the system. This combination of time-constant neural

networks and action models revolutionizes the processing of time-series data,

offering significant advancements in forecasting and control capabilities.

15

Figure 2.4. Demonstration of a Multi-Layer Feed-Forward NN

2.5.3. Recurrent Neural Networks (RNNs):

The introduction of RNNs marked a significant breakthrough in control system

design. RNNs possess a unique architecture that incorporates feedback connections

among network nodes, enabling the capture of temporal dependencies [14]. By

retaining memory of past inputs and leveraging this information for predictions based

on previous states, RNNs proved effective in handling sequential data, including

time-continuous processes.

16

Figure 2.5. Demonstration of a Multi-Layer RNN Architecture

A recurrent neural network is a neural network based on processing the data

sequence x(t)= x(1), … , x(τ) with time step index t ranging from 1 to τ. It is

commonly used in speech recognition and natural language processing [15]. Iterative

neural networks recognize continuous properties in data and use patterns to predict

the next scenario. RNNs remember all information over time. Useful for time series

forecasting only because of its ability to remember previous inputs as well [16] [17].

2.5.4. RNN and NVIDIA CUDA

The NVIDIA® CUDA® Toolkit provides a development environment for creating

high performance GPU-accelerated applications. With the CUDA Toolkit, you can

develop, optimize, and deploy your applications on GPU-accelerated embedded

systems, desktop workstations, enterprise data centers, cloud-based platforms and

HPC supercomputers. The toolkit includes GPU-accelerated libraries, debugging and

optimization tools, a C/C++ compiler, and a runtime library to deploy your

Recurrent

connection

17

application [18]. Using built-in capabilities for distributing computations across

multi-GPU configurations, scientists and researchers can develop applications that

scale from single GPU workstations to cloud installations with thousands of GPUs.

Here in this research we are using the advancement of NVIDIA multi processing and

GPU-accelerated mechanisms to enhance the speed of the process.

2.5.4. Emergence of LSTM Networks:

While RNNs showed promise, they faced challenges in capturing long-term

dependencies, especially in time-continuous processes. To address this issue, LSTM

networks were introduced [14] [19]. LSTM networks feature memory cells that

selectively retain or forget information over extended sequences, enabling them to

overcome the vanishing gradient problem that hindered the learning of long-term

dependencies in traditional RNNs. The architectural modifications in LSTM

networks empowered them to excel in capturing long-term dependencies and

efficiently handling time-continuous data.

2.5.5. The Role of LSTM in Control Systems:

LSTM networks have demonstrated exceptional performance in control system

design, particularly in scenarios involving long-term dependencies and time-

continuous data. By effectively capturing and retaining essential information over

extended periods, LSTM networks enable accurate predictions and precise control

actions [20]. This characteristic makes LSTM networks highly suitable for

applications such as autonomous vehicles, robotics, and process control, where real-

time decision-making is crucial.

2.5.6. Other LSTM-Related Approaches and Recent Research:

In addition to LSTM networks, researchers have proposed various approaches to

enhance control system design. One notable example is the Gated Recurrent Unit

(GRU), which exhibits similarities to LSTM networks but with a simplified

architecture [21]. GRU networks have demonstrated comparable performance to

18

LSTM networks while being computationally more efficient, making them an

appealing alternative for specific applications.

Moreover, ongoing research in control system design explores hybrid control

systems that combine classical algorithms with neural networks, reinforcement

learning-based control strategies, and attention mechanisms [22] [23]. These

advancements aim to address specific challenges in control system design, such as

improved adaptability, robustness, and efficiency. The evolution of control system

design from traditional algorithms to recurrent neural networks has revolutionized

the field, enabling more effective handling of time-continuous data. The emergence

of LSTM networks has further enhanced control system performance by addressing

the challenges associated with capturing long-term dependencies. Ongoing research

efforts continue to explore innovative techniques, including hybrid control systems

and reinforcement learning, to further improve the efficiency and adaptability of

control systems. By leveraging the power of recurrent neural networks and staying at

the forefront of emerging research, control system engineers can drive the

development of safer, more efficient, and intelligent systems across a broad range of

applications.

2.5.7. Time-Constant Neural Networks

Time-Constant Neural Networks (TCNNs) emerged as a complementary approach to

LSTM networks, even though LSTM networks were already introduced. While

LSTM networks are renowned for capturing long-term dependencies and handling

sequential data, TCNNs offer distinct advantages in specific control system

applications. TCNNs incorporate time constants directly into their architecture,

allowing them to explicitly model and capture the temporal dynamics of a system.

This characteristic proves valuable in scenarios involving time-delayed and dynamic

control tasks, where considering time constants becomes critical. By explicitly

accounting for time constants, TCNNs can effectively retain and utilize historical

information within a defined time span, leading to enhanced performance in control

systems that entail intricate and time-varying dynamics. The advent of TCNNs,

therefore, introduces an additional tool in the neural network repertoire,

19

complementing the capabilities of LSTM networks and providing an alternative

approach for modeling and controlling control systems.

TCNNs have gained recognition as a valuable approach for control systems across

diverse fields. TCNNs, a type of recurrent neural network, incorporate time constants

into their architecture to effectively capture and model the temporal dynamics of a

system. This unique feature allows TCNNs to handle time-delayed and dynamic

control tasks proficiently. By explicitly considering the system's time-dependent

behavior, TCNNs can retain historical information over a defined time span, enabling

them to make informed decisions based on past inputs. As a result, TCNNs have

found practical applications in robotics, process control, and autonomous vehicles,

where complex and time-varying dynamics are prevalent. The adaptability and

learning capabilities of TCNNs in the presence of time-dependent data contribute to

achieving accurate and responsive control, thereby enhancing the overall

performance and stability of control system applications.

2.5.8. Liquid Neural Network or Liquid Time-Constant NN (LTC)

The LTC is an unconventional artificial neural network inspired by the brain's

information processing mechanisms. It gets its name from its unique interconnected

structure, resembling a liquid, where all neurons are intricately connected. This

liquid-like state enables dynamic and adaptable information processing, making it

ideal for tasks such as pattern recognition, prediction, and control. LTC offers several

advantages over other neural networks, including LSTM. One notable advantage is

its highly parallel and distributed processing capabilities. Unlike traditional layered

networks, LTC operates in a liquid state, with connections between neurons

constantly changing. This parallelism allows LTC to efficiently process information

in a massively parallel manner, facilitating fast computations. This is achieved

through the use of recurrent connections, which allow information to flow in both

forward and backward directions. Unlike traditional feedforward networks with fixed

connections, liquid neural networks exhibit plasticity, meaning that the strength and

structure of connections between neurons can adapt and evolve over time based on

the input and network dynamics. Another key advantage of LTC lies in its ability to

20

effectively handle temporal information and capture dynamic patterns. LTC

incorporates time constants into its architecture, making it well-suited for modeling

and analyzing dynamic systems [24]. This feature allows LTC to explicitly account

for temporal dynamics, making it particularly useful in control systems that involve

time-delayed and time-varying dynamics.

Figure 2.6. Demonstration of Liquid Neural Network (LTC) Architecture

Furthermore, LTC's liquid state and parallel processing lend themselves to enhanced

computational efficiency. The network can rapidly adapt to changing input signals

and learn complex patterns in real-time. This characteristic makes LTC highly

suitable for time-sensitive applications where responsiveness and accuracy are

paramount. LTC recurrent neural networks (RNN)s are a subclass of continuous-time

RNNs, with varying neuronal time-constant realized by their nonlinear synaptic

transmission model. This feature is inspired by the communication principles in the

nervous system of small species. It enables the model to approximate continuous

mapping with a small number of computational units [24]. In summary, the LTC

distinguishes itself through its parallel and distributed liquid state, its capability to

capture dynamic patterns, and its computational efficiency. These advantages

21

position LTC as a potent tool for various applications, including pattern recognition,

prediction, and control systems dealing with time-dependent dynamics.

2.5.8. Leveraging Ode Solvers For Dynamic System Modeling

In the realm of neural networks, the integration of ODE Solvers has proven

instrumental in expanding the capabilities of these models, particularly in

architectures like the LTC discussed earlier. ODE Solvers are pivotal algorithms

designed to approximate solutions to ordinary differential equations (ODEs)

numerically. Their significance lies in enabling the simulation and analysis of

dynamic systems with continuous-time dynamics, thereby enhancing the

functionality of neural networks. ODE Solvers serve a vital role in LTC and similar

models by facilitating the modeling of neural networks as a set of differential

equations. These equations encapsulate the network's internal state evolution over

time, effectively capturing its dynamic behavior and enabling information processing

and prediction. The role of ODE Solvers comes into play when solving these

differential equations and determining the state variables of the network at discrete

time steps.

Functionally, ODE Solvers excel in integrating differential equations and calculating

the rates of change for the network's state variables. This involves approximating the

continuous dynamics of the network into discrete time steps, enabling efficient

computation. ODE Solvers employ various numerical techniques like Euler's method

or Runge-Kutta methods to iteratively update the state variables based on the input

signals and differential equations. By harnessing the power of ODE Solvers, neural

networks, including LTC, gain the ability to effectively capture temporal

dependencies and dynamic patterns within data. The continuous-time dynamics

encapsulated by the differential equations empower the network to adapt and respond

to changing input signals, making it a potent tool for analyzing complex systems.

The integration of ODE Solvers with neural networks demonstrates the symbiotic

relationship between mathematical modeling and machine learning techniques. This

fusion allows for the simulation and control of time-dependent systems, opening up

22

avenues in robotics, control systems, and predictive modeling. This integration

enriches the functionality of neural networks by enabling the simulation and analysis

of continuous-time dynamics. These solvers provide a means to model and

comprehend the behavior of dynamic systems by numerically approximating

solutions to differential equations. The utilization of ODE Solvers within neural

networks, such as LTC, unlocks the potential for advanced control systems and

predictive modeling, bridging the gap between mathematical modeling and machine

learning. As a simplified instance for Ordinary Differential Equations, suppose we

want to model the trajectory of a ball thrown into the air. We can use a Neural ODE

to model the trajectory of the ball as it moves through the air. The Neural ODE

would take as input the initial position and velocity of the ball and output the position

and velocity of the ball at any given time.

2.6. CONCEPT AND FUNCTIONALITIES

These neural networks exhibit stable and bounded behavior, yield superior

expressivity within the family of neural ODE, and give rise to improved performance

on time-series prediction tasks. To demonstrate these properties, in 2021 scientists

took a theoretical approach to find bounds over their dynamics and compute their

expressive power by the trajectory length measure in a latent trajectory space. They

then conduct a series of time-series prediction experiments to manifest the

approximation capability of LTCs compared to classical and modern RNNs [25].

2.7. APPLICATIONS

 The new neurons will have a great impact on how we process time-series data.

Researchers believe the world is all about sequences.

 The LTC can anticipate future behavior in the system by analyzing data in real-

time.

 Researchers could see the use of LTC in medical diagnosis and self-driving

vehicles.

23

2.8. THE IMPLEMENTATION PROCESS

I. Code implementation using Python

▪ Python allows for the development and operation of software solutions

across a variety of platforms and operating systems. Linux, Windows, Mac,

Solaris, and more are a few examples. Python machine learning

programming is now much more practical as a result. Because of this,

Python is selected for the proposed algorithm to be implemented with.

II. Algorithm development using TensorFlow

▪ TensorFlow has a reputation for simplicity, ease of use, flexibility, efficient

memory usage using parallel processing and compression methods, and

dynamic computational graphs. It also feels native, making coding more

manageable and increasing processing speed.

III. Dataset will be joints 3d position data.

▪ A multi-joint arm is made of independent joints and rigids. The algorithm

will control the joints angles and positioning to control the arm to reach the

targeted situation or to grab an object. The length of the rigids and angle of

joints can be addressed using a simulation to make the ground truth

positioning dataset.

24

Figure 2.7. An instance for a multi-joints arm system

▪ The data frame will be as follows:

{[J0] [L1,J1] [L2, J2] … [n,Jn]}

IV. The algorithm input:

▪ Train dataset: joints degree of movement and gestures,

▪ Test dataset: 4 random gestures to be predicted by joints alignment and

settings.

V. Algorithm optimization for being scalable.

▪ Refining the method (Reducing the size of the reservoir and the default

ODE solver process)

▪ Enhanced adaptability (Model compression)

▪ Optimized performance based on resources (Quantization)

▪ Efficiency for embedded systems with limited resources (Hardware

acceleration)

VI. Final Test

25

▪ The entire algorithm will be tested using comparison between the predicted

outcomes and real-world data.

VII. Success-rate Estimation

▪ Using a comparison between proposed algorithm’s settings, output and

accuracy and the other similar algorithms output, the percentage of

differences between outcome and ground-truth will be estimated. Here two

other famous algorithms in this field is implemented for this reason.

26

CHAPTER 3

THEORETICAL BACKGROUNDS

3.1. DYNAMIC EQUATIONS AND IO

Dynamics of a hidden or output neuron i, Vi(t), of an LTC RNN are modeled as a

membrane integrator with the following ordinary differential equation (ODE):

𝐶𝑚𝑖

𝑑𝑉𝑖

𝑑𝑡
= 𝐺Leak 𝑖

(𝑉𝐿𝑒𝑎𝑘𝑖
− 𝑉𝑖(𝑡)) + ∑  

𝑛

𝑗=1

𝐼𝑖𝑛
(𝑖𝑗)

 (3.3)

with neuronal parameters: Cmi , GLeaki and VLeaki . I (ij) in represents the external

currents to the cell. Hidden nodes are allowed to have recurrent connections while

they synapse into motor neurons in a feed-forward setting. Chemical synapses –

Chemical synaptic transmission from neuron j to i, is modeled by a sigmoidal

nonlinearity (µij ,γij), which is a function of the presynaptic membrane state, Vj (t),

and has maximum weight of wi:

𝐼𝑠𝑖𝑗
=

𝑤𝑖𝑗

1 + 𝑒−𝛾𝑖𝑗(𝑉𝑗+𝜇𝑖𝑗)
(𝐸𝑖𝑗 − 𝑉𝑖(𝑡)) (3.4)

The synaptic current, Isij is then linearly depends on the state of the neuron i. E, sets

whether the synapse excites or inhibits the succeeding neuron’s state. An electrical

synapse (gap-junction), between node j and i, was modeled as a bidirectional

junction with weight, ωˆij , based on Ohm’s law:

𝐼𝑖𝑗 = �̂�𝑖𝑗 (𝑣𝑗(𝑡) − 𝑣𝑖(𝑡)) (3.5)

27

Internal state dynamics of neuron i, Vi(t), of an LTC network, receiving one chemical

synapse from neuron j, can be formulated as:

𝑑𝑉𝑖

𝑑𝑡
=

𝐺𝐿𝑒𝑎𝑘𝑖

𝐶𝑚𝑖

(𝑉𝐿𝑒𝑎𝑘𝑖
− 𝑉𝑖(𝑡)) +

𝑤𝑖𝑗

𝐶𝑚𝑖

𝜎𝑖 (𝑉𝑗(𝑡)) (𝐸𝑖𝑗 − 𝑉𝑖), (3.6)

Where 𝜎𝑖 (𝑉𝑗(𝑡)) = 1/1 + 𝑒−𝛾𝑖𝑗(𝑉𝑗+𝜇𝑖𝑗) (Equation 7). If we set the time constant of

the neuron i as: 𝜏𝑖 =
𝐶𝑚𝑖

𝐺𝐿𝑒𝑎𝑘𝑖

 (Equation 8) we can reform this equation as follows:

𝑑𝑉𝑖

𝑑𝑡
= − (

1

𝜏𝑖
+

𝑤𝑖𝑗

𝐶𝑚𝑖

𝜎𝑖(𝑉𝑗)) 𝑉𝑖 + (
𝑉leak

𝜏𝑖
+

𝑤𝑖𝑗

𝐶𝑚𝑖

𝜎𝑖(𝑉𝑗)𝐸𝑖𝑗) (3.9)

(3.9 presents an ODE system with a nonlinearly varying time-constant defined

𝜏system =
1

1/𝜏𝑖+𝑤𝑖𝑗/𝐶𝑚𝑖
𝜎𝑖(𝑉𝑗)

 (Equation 3.10) which distinguishes the dynamics of the

LTC cells compared to the CTRNN cells.

The overall network dynamics of the LTC RNNs with 𝑢(𝑡) =

[𝑢1(𝑡), … , 𝑢𝑛+𝑁(𝑡)]𝑇 (Equation 3.11) representing the internal states of N

interneurons (hidden units) and n motor neurons (output units) can be written in

matrix format as follow:

�̇�(𝑡) = − (1/𝜏 + 𝑊𝜎(𝑢(𝑡))) 𝑢(𝑡) + 𝐴 + 𝑊𝜎(𝑢(𝑡))𝐵 (3.12)

In which σ(x) is C1 -sigmoid functions and is applied element-wise. τ n+N > 0

includes all neuronal time constants, A is an n+N vector of resting states, B depicts

an n+ N vector of synaptic reversals, and W is a n+ N vector produced by the matrix

multiplication of a weight matrix of shape ape (n+N)×(n+N) and an n+N vector

containing the reversed value of all Cmi s. Both A and B entries are bound to a range:

[−α, β] for 0 < α < +∞, and 0 ≤ β < +∞. A contains all Vleaki /Cmi and B presents all Eij

s.

28

3.2. UNIVERSAL APPROXIMATORS OF LTCs

To prove the back-bone theorem behind LTC; which is defining that any given finite

trajectory of an n-dimensional dynamical system can be approximated by the internal

and output states of an LTC. with n outputs, N interneurons and a proper initial

condition.

Let x = [x1, ..., xn]
T be the n-dimensional Euclidean space on Rn.

Researchers base the poof on the fundamental universal approximation theorem [26]

on feed-forward neural networks [27] [28] [26], recurrent neural networks (RNN)

[28] [29] and time-continuous RNNs [30].

3.2.1. Theorem Alpha

Let S be an open subset of Rn and F : S → Rn , be an autonomous ordinary

differential equation, be a C1-mapping, and x˙ = F(x) determine a dynamical system

on S. Let D denote a compact subset of S and we consider a finite trajectory of the

system as: I = [0, T]. Then, for a positive ε, there exist an integer N and an LTC

RNN with N hidden units, n output units, such that for any given trajectory {x(t);t ∈

I} of the system with initial value x(0) ∈ D, and a proper initial condition of the

network, the statement below holds:

max
𝑡∈𝐼

|𝑥(𝑡) − 𝑢(𝑡)| < 𝜖 (3.13)

 Lemma 1

For an F: Rn → R+n which is a bounded C1- mapping, the differential equation

�̇� = −(1/𝜏 + 𝐹(𝑥))𝑥 + 𝐴 + 𝐵𝐹(𝑥) (3.14)

In which τ is a positive constant, and A and B are constants coefficients bound to a

range [−α, β] for 0 < α < +∞, and 0 ≤ β < +∞, has a unique solution on [0, ∞).

 Proof of Lemma 1

Based on the assumptions, we can take a positive M, such that

29

0 ≤ 𝐹𝑖(𝑥) ≤ 𝑀(∀𝑖 = 1, … , 𝑛) (3.15)

By looking at the solutions of the following differential equation

�̇� = −(1/𝜏 + 𝑀)𝑦 + 𝐴 + 𝐵𝑀 (3.16)

We can show that

𝑚𝑖𝑛 {|𝑥𝑖(0)|,
𝜏(𝐴 + 𝐵𝑀)

1 + 𝜏𝑀
} ≤ 𝑥𝑖(𝑡)𝑚𝑎𝑥 {|𝑥𝑖(0)|,

𝜏(𝐴 + 𝐵𝑀)

1 + 𝜏𝑀
}

(3.17)

If we set the output of the max to Cmax i and the output of the min to Cmin i and also

set C1 = min{Cmin i } and C2 = max{Cmax i }, then the solution x(t) satisfies

√𝑛𝐶1 ≤ 𝑥(𝑡) ≤ √𝑛𝐶2 (3.18)

Based on Lemma 2 and Lemma 3 in [30], a unique solution exists on the interval [0,

+∞). Lemma 1 demonstrates that an LTC network defined by (3.14, has a unique

solution on [0, ∞), since the output function is bound and C1.

3.2.2. Proof of Theorem Alpha

For proving Theorem Alpha, we adopt similar steps to that of Funahashi and

Nakamura on the approximation ability of continuous time RNNs [30], to

approximate a dynamical system with a larger dynamical system given by an LTC

RNN.

 Part 1

We choose an η which is in range (0, min{ε, λ}), for ε > 0, and λ the distance

between D˜ and boundary δS of S. Dη is set:

𝐷𝜂 = {𝑥 ∈ ℝ𝑛; ∃𝑧 ∈ �̃�, |𝑥 − 𝑧| ≤ 𝜂} (3.19)

30

Dη stands for a compact subset of S, because D˜ is compact. Thus, F is Lipschitz on

Dη by Lemma 1 in [30]. Let LF be the Lipschitz constant of F|Kη, then, we can choose

an ε l > 0, such that

𝜖𝑙 <
𝜂𝐿𝐹

2(ex p 𝐿𝐹 𝑇 − 1)
 (3.20)

Based on the universal approximation theorem, there is an integer N, and an n × N

matrix B, and an N × n matrix C and an N-dimensional vector µ such that

𝑚𝑎𝑥|𝐹(𝑥) − 𝐵𝜎(𝐶𝑥 + 𝜇)| <
𝜖𝑙

2
 (3.21)

We define a C1 -mapping F˜ : Rn → Rn as:

�̃�(𝑥) = −(1/𝜏 + 𝑊𝑙𝜎(𝐶𝑥 + 𝜇))𝑥 + 𝐴

+ 𝑊𝑙𝐵𝜎(𝐶𝑥 + 𝜇)

(3.22)

with parameters matching that of (3.12 with Wl= W.

We set the system’s time constant, τsys to:

𝜏𝑠𝑦𝑠 =
1

1/𝜏 + 𝑊𝑙𝜎(𝐶𝑥 + 𝜇)
 (3.23)

We chose a large τsys, conditioned with the following:

(a) ∀𝑥 ∈ 𝐷𝜂; |
𝑥

𝜏𝑠𝑦𝑠
| <

𝜖𝑙

2
 (3.24)

(b) |
𝜇

𝜏𝑠𝑦𝑠
| <

𝜂𝐿�̃�

2(ex p 𝐿�̃� 𝑇 − 1)
 and |

1

𝜏𝑠𝑦𝑠
| <

𝐿�̃�

2

(3.25)

where LG˜/2 is a lipschitz constant for the mapping Wlσ : Rn+N → Rn+N which we will

determine later. To satisfy conditions (a) and (b), τWl << 1 should hold true. Then by

(3.21 and (3.22, we can prove:

31

𝑚𝑎𝑥
𝑥∈𝐷𝜂

 |𝐹(𝑥) − �̃�(𝑥)| < 𝜖𝑙 (3.26)

Let’s set x(t) and x˜(t) with initial state x(0) = ˜x(0) = x0 ∈ D, as the solutions of

equations below:

�̇� = 𝐹(𝑥) (3.27)

�̇̃� = �̃�(𝑥) (3.28)

Based on Lemma 5 in [30], for any t ∈ I,

|𝑥(𝑡) − �̃�(𝑡)| ≤
𝜖𝑙

𝐿𝐹

(ex p 𝐿𝐹 𝑡 − 1) (3.29)

≤
𝜖𝑙

𝐿𝐹

(ex p 𝐿𝐹 𝑇 − 1) (3.30)

Thus, based on the conditions on ε,

𝑚𝑎𝑥
𝑡∈𝐼

 |𝑥(𝑡) − �̃�(𝑡)| <
𝜂

2
 (3.31)

 Part 2

Let’s Considering the following dynamical system defined by F˜ in Part 1:

�̇̃� = −
1

𝜏𝑠𝑦𝑠
�̃� + 𝐴1 + 𝑊𝑙𝐵𝜎(𝐶�̃� + 𝜇) (3.32)

Suppose we set y˜ = Cx˜ + µ; then:

�̇̃� = 𝐶�̇̃� = −
1

𝜏𝑠𝑦𝑠
�̃� + 𝐸𝜎(�̃�) + 𝐴2 +

𝜇

𝜏𝑠𝑦𝑠
 (3.33)

where E = CWlB, an N × N matrix. We define:

�̃� = [�̃�1, … , �̃�𝑛, �̃�1, … , �̃�𝑛]𝑇 (3.34)

and we set a mapping G˜ : R n+N → R n+N as:

�̃�(�̃�) = −
1

𝜏𝑠𝑦𝑠
�̃� + 𝑊𝜎(�̃�) + 𝐴 +

𝜇1

𝜏𝑠𝑦𝑠
 (3.35)

32

𝑊(𝑛+𝑁)×(𝑛+𝑁) = (
0 𝐵
0 𝐸

) (3.36)

𝜇1
𝑛+𝑁 = (

0
𝜇

) , 𝐴𝑛+𝑁 = (
𝐴1

𝐴2
) (3.37)

By using Lemma 2 in [30], we can show that solutions of the following dynamical

system:

�̇̃� = �̃�(�̃�), �̃�(0) = 𝐶�̃�(0) + 𝜇
(3.38)

are equivalent to the solutions of the (3.32.

Let’s define a new dynamical system G : R n+N → R n+N as follows:

𝐺(𝑧) = −
1

𝜏𝑠𝑦𝑠
𝑧 + 𝑊𝜎(𝑧) + 𝐴 (3.39)

where z = [x1, ..., xn, y1, ..., yn] T . Then the dynamical system below

�̇� = −
1

𝜏𝑠𝑦𝑠
𝑧 + 𝑊𝜎(𝑧) + 𝐴 (3.40)

Can be realized by an LTC RNN, if we set h(t) = [h1(t), ..., hN (t)]T as the hidden

states, and u(t) = [U1(t), ..., Un(t)]T as the output states of the system. Since G˜ and G

are both C1-mapping and σ ′ (x) is bound, therefore, the mapping z˜ → W σ(˜z) + A

is Lipschitz on R n+N , with a Lipschitz constant
𝐿𝐺~

2
 . As

𝐿𝐺~

2
 is Lipschitz constant

for −z/τ˜sys by condition (b) on τsys, 𝐿𝐺~ is a Lipschitz constant of 𝐺~.

From (3.35, (3.39, and condition (b) of τsys, we can derive the following:

|�̃�(𝑧) − 𝐺(𝑧)| = |
𝜇

𝜏𝑠𝑦𝑠
| <

𝜂𝐿�̃�

2(ex p 𝐿�̃� 𝑇 − 1)
 (3.41)

Accordingly, we can set z˜(t) and z(t), solutions of the dynamical systems:

33

�̇̃� = �̃�(𝑧), {
�̃�(0) = 𝑥0 ∈ 𝐷
�̃�(0) = 𝐶𝑥0 + 𝜇

 (3.42)

�̇� = 𝐺(𝑧), {
𝑢(0) = 𝑥0 ∈ 𝐷

ℎ̃(0) = 𝐶𝑥0 + 𝜇
 (3.43)

By Lemma 5 of [30], we achieve

𝑚𝑎𝑥
𝑡∈𝐼

 |�̃�(𝑡) − 𝑧(𝑡)| <
𝜂

2
 (3.44)

and therefore, we have:

𝑚𝑎𝑥
𝑡∈𝐼

 |�̃�(𝑡) − 𝑢(𝑡)| <
𝜂

2
 (3.45)

 Part3

Now by using (3.31 and (3.45, for a positive ε, we can design an LTC network with

internal dynamical state z(t), with τsys and W. For x(t) satisfying x˙ = F(x), if we

initialize the network by u(0) = x(0) and h(0) = Cx(0)+µ, we obtain:

𝑚𝑎𝑥
𝑡∈𝐼

 |𝑥(𝑡) − 𝑢(𝑡)| <
𝜂

2
+

𝜂

2
= 𝜂 < 𝜖 (3.46)

3.3. TRACING A SIMPLE LTC FOR AN INSTANCE

Tracing the train process of an LTC has several black box types of mathematical

functions to follow. It has more than 3 variables which change during the training

process and each states makes a new session for each of the equations to update the

matrices. Here we are going to follow an instance for having a better understanding

to how the LTC is learning the function 𝑦 = 2𝑥 + 1. Here's an example of how the

calculations might look for a simplified LTC with one input unit, one hidden unit,

and one output unit:

3.3.1. Data preparation

34

Let's suppose we generate the following training data: [(0, 1), (1, 3), (2, 5), (3, 7)],

where the first value in each pair is the input x and the second value is the desired

output y.

3.3.2. Network initialization

We initialize the LTC with random values for its parameters. For this example, let's

say we have the following initial values: θ = [0.5, -0.2], A = [0.3], and τ = 1.

3.3.3. Forward pass

We present the first training example (0, 1) to the network. The input I(0) is 0 and the

initial hidden state x(0) is 0. The nonlinearity S(0) is calculated as:

𝑆(0) = 𝑓(𝑥(0), 𝐼(0), 0, 𝜃)(𝐴 ∗ 𝑥(0))

= 𝐼(0) ∗ 𝜃[0] ∗ 𝐴 ∗ 𝑥(0) + 𝑥(0) ∗ 𝜃[1] ∗ 𝐴 ∗ 𝑥(0)

= 0

(3.47)

The derivative of the hidden state is then calculated as:

𝑑𝑥(0)/𝑑𝑡 = 𝑥(0)/𝜏 + 𝑆(0)

= 0/1 + 0

= 0

(3.48)

We can then use a numerical differential equation solver to compute the hidden state

x(t) for all time steps until we reach the final time step. For this example, let's say we

use a simple Euler method with a step size of 1 to compute the hidden state at time t

= 1 as:

𝑥(1) = 𝑥(0) + 𝑑𝑥(0)/𝑑𝑡 ∗ (1 − 0)

 = 0 + 0 ∗ 1

= 0

(3.49)

The output of the network is then calculated based on the final value of the hidden

state. For this example, let's say we use a simple linear function to calculate the

output as:

35

𝑦′ = 𝑥(1) ∗ 𝑤 + 𝑏 (3.50)

where w and b are additional parameters of the network. Let's say we have initial

values of w = 0.4 and b = -0.1, so the output of the network for this training example

is:

𝑦′ = 𝑥(1) ∗ 𝑤 + 𝑏

= 0 ∗ 0.4 − 0.1

= −0.1

(3.51)

3.3.4. Loss calculation:

We can calculate the loss by comparing the network's output -0.1 to the desired

output 1. For this example, let's say we use a simple mean squared error loss

function, so the loss for this training example is:

(𝑦′ − 𝑦)2 = (−0.1 − 1)^2 = 1.21 (3.52)

3.3.5. Backward pass:

We need to update the network's parameters to improve its performance. This

involves calculating the gradient of the loss with respect to each parameter and

updating the parameter values using an optimization algorithm such as gradient

descent.

For this example, let's say we use a simple gradient descent algorithm with a learning

rate of 0.01 to update the parameter values as follows:

 𝑑𝐿/𝑑𝑤 = 𝑑𝐿/𝑑𝑦′ ∗ 𝑑𝑦′/𝑑𝑤

 𝑑𝐿/𝑑𝑏 = 𝑑𝐿/𝑑𝑦′ ∗ 𝑑𝑦′/𝑑𝑏

 𝑑𝐿/𝑑𝜃[0] = 𝑑𝐿/𝑑𝑦′ ∗ 𝑑𝑦′/𝑑𝑥(𝑡) ∗ 𝑑𝑥(𝑡)/𝑑𝑆(𝑡)

∗ 𝑑𝑆(𝑡)/𝑑𝜃[0]

 𝑑𝐿/𝑑𝜃[1] = 𝑑𝐿/𝑑𝑦′ ∗ 𝑑𝑦′/𝑑𝑥(𝑡) ∗ 𝑑𝑥(𝑡)/𝑑𝑆(𝑡)

∗ 𝑑𝑆(𝑡)/𝑑𝜃[1]

(3.53)

36

where

 𝑑𝐿/𝑑𝑦′ = 2(𝑦′ − 𝑦)

 𝑑𝑦′/𝑑𝑤 = 𝑥(𝑡)

 𝑑𝑦′/𝑑𝑏 = 1

 𝑑𝑦′/𝑑𝑥(𝑡) = 𝑤

 𝑑𝑥(𝑡)/𝑑𝑆(𝑡) = 𝑑𝑡

 𝑑𝑆(𝑡)/𝑑𝜃[0] = 𝐼(𝑡)

 𝑑𝑆(𝑡)/𝑑𝜃[1] = 𝑥(𝑡)

(3.54)

Plugging in the values for this training example, we get:

 𝑑𝐿/𝑑𝑤 = −2.2

 𝑑𝐿/𝑑𝑏 = −2

 𝑑𝐿/𝑑𝜃[0] = −2𝑤𝐼(𝑡)

 𝑑𝐿/𝑑𝜃[1] = −2𝑤𝑥(𝑡)

(3.55)

We can then update the parameter values as follows:

 𝑤 = 𝑤 − 0.01 ∗ 𝑑𝐿/𝑑𝑤 = 0.4 − 0.01 ∗ −2.2

= 0.422

 𝑏 = 𝑏 − 0.01 ∗ 𝑑𝐿/𝑑𝑏 = −0.1 − 0.01 ∗ −2

= −0.08

 𝜃[0] = 𝜃[0] − 0.01 ∗ 𝑑𝐿/𝑑𝜃[0]

= 0.5 − 0.01 ∗ −2𝑤𝐼(𝑡)

= 0.5 + 0.0084𝐼(𝑡)

 𝜃[1] = 𝜃[1] − 0.01 ∗ 𝑑𝐿/𝑑𝜃[1]

= −0.2 − 0.01 ∗ −2𝑤𝑥(𝑡)

= −0.2 + 0.0084𝑥(𝑡)

(3.56)

3.3.6. Iteration:

We repeat steps 3-5 for each training example until the network's performance on the

training data is satisfactory.

37

3.4. CONCLUSION AND REMARKS FOR THEORETICAL

BACKGROUNDS

The LTC’s network architecture allows interneurons (hidden layer) to have recurrent

connections to each other, however it assumes a feed forward connection stream

from hidden nodes to the motor neuron units (output units). We assumed no inputs to

the system and principally showed that the interneurons’ network together with

motor neurons can approximate any finite trajectory of an autonomous dynamical

system. The proof subjected an LTC RNN with only chemical synapses. It is easy to

extend the proof for a network which includes gap junctions as well, since their

contribution to the network dynamics is by adding a linear term to the time-constant

of the system (τsys), and to the equilibrium state of a neuron, A in (3.40.

38

CHAPTER 4

METHODOLOGY

In this chapter researchers will describe how they applied an LTC for decision

making to control a time-series multiple joints arm. The research is focused on using

an LTC to control a multi-joint cyber physical arm. An LTC is a type of artificial

neural network that is inspired by the way the brain processes information.

The goal of implementing an LTC control system for a multi-joint cyber physical

arm would be to develop a more efficient and effective way to control the

movements of the arm. The LTC would be used to learn the patterns of movement of

the arm and to predict the movements that will result from specific input signals.

This could lead to more accurate and precise control of the arm, which could be

useful in a variety of applications, such as manufacturing, surgery, or prosthetics.

Overall, the research is exploring how the LTC can be used to develop a more

advanced control system for a multi-joint cyber physical arm, which has the potential

to improve the performance and accuracy of the arm in various applications. The

challenge of implementing the algorithm for light systems such as embedded systems

with the most optimized variable made researchers to test the algorithm

implementation using several libraries and frameworks. At last, TensorFlow

framework was selected due to the first contribution of the researcher for

implementation of LTC, also it’s intuitive, python native, and integrates easily and

completely with most of python packages.

39

Figure 4.1. Rigid Bodies Tree view of some kinematics instances; here Joints are

labeled as (v) and Rigids by (e).

4.1. THE PROPOSED ALGORITHM

An LTC is a type of ANN that is inspired by the way the brain processes

information. Unlike traditional ANNs, which are structured in layers, LTCs are

structured as a liquid, or a densely interconnected network of neurons. This unique

architecture allows the network to process information in a highly parallel and

distributed way, which makes it well-suited for tasks such as pattern recognition,

prediction, and control. The key characteristic of an LTC is its liquid state, which

means that all neurons in the network are connected to each other, and their

connections are constantly changing. This creates a highly dynamic and adaptive

network that can respond quickly and accurately to changes in input signals. The

input signals are fed into the network as a spatiotemporal pattern of activity, and the

network responds with a spatiotemporal pattern of activity that represents its

prediction or output.

The learning process in an LTC is based on the principle of dynamic reservoir

computing, which involves training the network to capture the dynamics of a specific

input-output mapping. This is achieved by training the output layer of the network to

produce the desired output for a given input signal, while keeping the liquid state

fixed. The following pseudocode outlines a basic training algorithm for an LTC:

40

Algorithm 0.1. Pseudocode implementation of LTC back-bone using fused ODE

Solver [31]

Inputs: Dataset of traces [I(t), y(t)] of length T, RNN = f(I,x)

Parameters: Loss function 𝐿(𝜃), initial parameters 𝜃0, learning rate 𝛼,

Output weights = Wout, output bias = bout

Output: Training parameters 𝜃

for i = 1 … number of training steps do

 (Ib,yb) = Sample training batch

 x = All zeros initial neural state

 for j = 1…T do

 x = f(I(t),x)

 �̂�(𝑡) = 𝑊𝑜𝑢𝑡. 𝑥 + 𝑏𝑜𝑢𝑡

 Ltotal = ∑ 𝐿 (𝑦𝑗(𝑡), 𝑦�̂�(𝑡))
𝑇

𝑗=1

 𝛻𝐿(𝜃) =
𝜕𝐿𝑡𝑜𝑡𝑎𝑙

𝜕𝜃

 𝜃 = 𝜃 − 𝛼𝛻𝐿(𝜃)

 end for

end for

return 𝜃

In this pseudocode, the inputs include a dataset of traces of input-output pairs, as

well as the initial parameters and learning rate. The output is the trained parameters

of the LTC. The algorithm consists of a loop that iterates over a fixed number of

training steps. In each step, a batch of training examples is sampled from the dataset.

The initial neural state is set to all zeros, and the LTC processes the input signals to

produce a prediction for the output. The loss function is computed between the

predicted output and the true output, and the gradients of the loss with respect to the

parameters are calculated. The parameters are updated using the gradients and the

learning rate. This process is repeated for all input-output pairs in the batch.

An LTC is a type of neural network that is designed to model and analyze dynamic

systems, such as the motion of a multi-joint arm. At its core, the LTC model consists

41

of a set of differential equations that describe the evolution of the network's internal

state over time.

The mathematical functions that form the basis of the LTC model are as follows:

 Leak current: This function models the leak current through a leak ion channel

in a neuron, and is calculated as the product of the difference between the

membrane potential and the leak reversal potential, and the leak conductance.

 Input current: This function models the current flowing into the neuron due to

inputs from other neurons or external sources.

 Membrane capacitance: This function models the capacitance of the neuron's

membrane, and is used to calculate the rate of change of the membrane

potential over time.

 Conductance-based synaptic weights: This function models the synaptic

weights between neurons, and is used to calculate the strength of the

connections between neurons.

The LTC model can be described mathematically as follows:

𝑑𝑢𝑑𝑡 = −1 ∗ 𝑖𝑛𝑝𝑢𝑡𝑠 − 𝑙𝑒𝑎𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑑𝑣𝑑𝑡 = (𝑙𝑒𝑎𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑢)/𝑐𝑚

𝑑𝑤𝑑𝑡 = (−1 ∗ 𝑤 + 𝑖𝑛𝑝𝑢𝑡𝑠)/𝑡𝑎𝑢𝑤

(4.57)LTC Model

Mathematical

Demonstration

where u, v, and w are the state variables of the LTC model, inputs are the inputs to

the neuron, leak_current is the leak current, cm is the membrane capacitance, tau_w

is a time constant, and dudt, dvdt, and dwdt are the rates of change of the state

variables over time.

The pseudocode for the LTC model can be described as follows:

1) Initialize state variables u, v, and w;

2) Calculate leak current as the product of the difference between the membrane

potential and the leak reversal potential, and the leak conductance;

42

3) Calculate membrane capacitance;

4) Calculate inputs as the weighted sum of inputs from other neurons or external

sources;

5) Calculate the rate of change of the state variables over time using the

differential equations;

6) Update the state variables based on the calculated rates of change;

7) Repeat steps 2-6 for each time step.

This is a high-level overview of the mathematical functions and pseudocode for the

LTC model. The full implementation of the LTC model can be more complex and

may involve additional functions and variables to model more specific aspects of the

system being analyzed.

Overall, the pseudocode provides a high-level overview of the training process for an

LTC. The actual implementation may involve additional optimizations and

adjustments to the parameters, depending on the specific application. The training

algorithm as described has complexity of 0(N2 × k × t), with N neurons, k ODE

steps, and a sequence length of t. The process for distributed input data and the steps

required to implement the method was done in Python (version 3.10) language using

TensorFlow (version 2.10.0).

4.2. TIME-CONSTANT NEURAL NETWORKS

A time-constant neural network is a type of recurrent neural network (RNN) aimed at

learning temporal patterns in sequences on different time scales. An important

feature of time-constant neural network is the ability to adjust the time constant

during training. This allows the network to capture and represent a wide range of

temporal dynamics. This flexibility is achieved by using ordinary differential

equations (ODEs) (the method uses solving ODE which is similar to ART) to model

the hidden state dynamics and learning the parameters of these ODEs.

Time-constant neural network's scientific rationale is rooted in the study of

biological neural networks. Biological neurons have different time constants that

43

allow them to process information on different time scales. The idea behind time-

constant neural network and also LTC is to integrate this biological property into

artificial neural networks by using continuous-time dynamics in hidden states. This is

done by replacing the standard discrete-time dynamics of RNNs with continuous-

time dynamics modeled using ODEs.

LTC is characterized by state equations that describe the continuous-time dynamics

of hidden states. The hidden state h(t) is expanded according to the differential (

4.58:

𝑑ℎ(𝑡)/𝑑𝑡 = −ℎ(𝑡)/𝜏 + 𝑓(𝑊𝑥 ∗ 𝑥(𝑡) + 𝑊ℎ ∗ ℎ(𝑡) + 𝑏) (4.58)

where τ is the time constant, f is the activation function, W_x and W_h are the input

and iteration weight matrices, x(t) is the input, b is the bias term, and * is the matrix

multiplication.

The goal during training is to learn the model parameters (W_x, W_h, b, and τ) that

minimize a given loss function. B. Mean squared error or cross-entropy loss between

predicted output and true target.

d x(t) / d t = f(x(t),  𝑡, 𝜃)

𝑑𝑥(𝑡)

𝑑𝑡
≈

𝑥(𝑡 + δ𝑡) − 𝑥(𝑡)

δ𝑡
≈ 𝑓(𝑥(𝑡), 𝑡, θ)

(4.59) Numerical ODE

Solver

 𝑥(𝑡 + δ𝑡) = 𝑥(𝑡) + δ𝑡𝑓(𝑥(𝑡), 𝑡, θ) (4.60) Forward Pass

➢ Choice of the way we do an integration step determines forward pass

complexity.

➢ Training time-constant neural networks

Training LTC should use a gradient-based optimization algorithm such as: B. Update

the model parameters using stochastic gradient descent (SGD) or Adam. The

gradient of the loss function with respect to the parameters is computed using

backpropagation over time (BPTT) or the adjoint method of ODEs. The choice of

44

ODE solver (such as semi-implicit, explicit, or Runge-Kutta) can also affect training

speed and stability.

➢ Adjoint Sensitivity Method [32]

 𝐿(𝑥(𝑡1)) = 𝐿(𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝑥(𝑡0), 𝑓, 𝑡0, 𝑡1, θ) (4.61) Loss function

Figure 4.2. Reverse-mode differentiation through an ODE solver requires solving an

augmented system backwards in time. This adjoint state is updated by the gradient at

each observation (Credit: Chen et al. NeurIPS, 2018)

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑡, θ) (4.62) Neural ODE

 𝑎(𝑡) =
∂𝐿

∂𝑥(𝑡)

𝑑𝑎(𝑡)

𝑑𝑡
= −𝑎(𝑡)T

∂𝑓(𝑥(𝑡), 𝑡, θ)

∂𝑥

(4.63) Adjoint State

➢ Backpropagation through-time (BPTT) [31, 33-35] [31] [33] [34] [35]

𝑥(𝑡 + δ𝑡) = 𝑥(𝑡) + δ𝑡𝑓(𝑥(𝑡), 𝑡, θ) (4.64)Performs a

Forward-Pass

45

dΘ = [
𝑑𝐿

𝑑𝑥(𝑡 + δ𝑡)
,
𝑑𝑥(𝑡 + δ𝑡)

𝑑𝑥(𝑡)
,
𝑑𝑥(𝑡 + δ𝑡)

𝑑𝑓
,

𝑑𝑓

𝑑𝑥(𝑡)
,
𝑑𝑓

𝑑𝑡
,
𝑑𝑓

𝑑θ
]

(4.65) Compute

Gradients Through

the ODE Solver

Θ𝑛𝑒𝑤 ← Θold + γ ⋅ 𝑑Θ

(4.66) Update

Parameters

4.3. METHODOLOGY STEPS

Implementing an LTC control system for a multi-joint cyber physical arm involves

several steps. Here is a general overview of the implementation process:

• Data Collection: The first step we have done is to collect data on the

movements of the multi-joint cyber physical arm. This data can be collected

using sensors or other measurement devices, and it should include information

on the joint angles, velocities, and accelerations of the arm during different

movements.

• Data Preprocessing: Once we collected the data, it needs to be preprocessed to

prepare it for use in the LTC. This may involve normalizing the data, removing

outliers or noise, and partitioning the data into training and testing sets.

• Training the LTC: The next step was to train the LTC using the preprocessed

data. This involves selecting an appropriate architecture for the LTC, setting

the hyperparameters, and training the network on the input-output patterns of

the arm's movements. The goal is to teach the network to predict the joint

angles, velocities, and accelerations of the arm based on the input signals.

• Real-time Control: After the LTC was trained, it can be used in real-time

control of the multi-joint cyber physical arm. The input signals can be fed into

the network, and the network will generate predictions for the arm's

movements. These predictions can be used to control the arm's movements and

achieve the desired tasks.

46

• Performance Evaluation: Finally, the performance of the LTC control system

has been evaluated. This involved measuring the accuracy of the network's

predictions, comparing the LTC to other control systems, and identifying any

areas for improvement.

Overall, the implementation of an LTC control system for a multi-joint cyber

physical arm requires data collection and preprocessing, network training, real-time

control, and performance evaluation. It is a complex process that requires expertise

in both control systems and deep learning.

4.4. IMPLEMENTATION

The implementation of this research project involves several crucial steps to ensure

its success. The project is designed to predict joint movements and gestures using an

LTC.

 Step 1: Code Implementation using Python

The first step of the project is to implement the LTC model in Python. This will

involve defining the architecture of the network, implementing the forward pass and

backpropagation, and writing code to train and evaluate the network. The code will

be written using the TensorFlow and TensorFlow libraries, which provide powerful

tools for building, training, and evaluating neural networks.

 Step 2: Data Retrieval using Pandas

In this step, the dataset will be retrieved and processed using Pandas, a popular data

analysis library for Python. The dataset will consist of joint 3D position data, which

will be used to train and test the LTC model. The data will be loaded into Pandas

data frames, which will allow for easy manipulation and preprocessing of the data.

 Step 3: Algorithm Development using TensorFlow

47

In this step, the LTC model will be developed using TensorFlow. The architecture of

the network will be defined, and the forward pass and backpropagation will be

implemented. The network will be trained using the joint 3D position data from the

dataset, and the performance of the network will be evaluated using metrics such as

accuracy and mean absolute error.

Figure 4.3. Demonstration of Bedframe and Fixed transformation between frames

addressing

 Step 4: Implementation with TensorFlow

o Integration of TensorFlow for Improved Performance:

During the implementation of the algorithm, a decision was made to incorporate

TensorFlow, a widely adopted machine learning framework. TensorFlow offers

several advantages that enhance the algorithm's performance. By leveraging

TensorFlow's optimized computational graph and parallel processing capabilities,

significant improvements in speed and efficiency can be achieved. This is

particularly beneficial when dealing with complex neural network architectures like

the LTC. TensorFlow's compatibility with both CPUs and GPUs further enhances

performance.

o Adapting the Algorithm to TensorFlow:

48

To ensure compatibility with TensorFlow, a careful adaptation process was

undertaken. Since the algorithm was originally implemented in a different framework

or language, specific components had to be re-implemented using TensorFlow's

constructs and APIs. This involved mapping existing logic and operations to

TensorFlow equivalents. TensorFlow's comprehensive set of tools and utilities

facilitated this process. Additionally, TensorFlow's high-level API, such as Keras,

enabled more intuitive model design and development, expediting the migration

process.

o Leveraging TensorFlow's Ecosystem:

TensorFlow's rich ecosystem played a vital role in the algorithm's implementation. It

offers a diverse range of pre-built modules, models, and utilities that expedited

development. Access to TensorFlow's extensive collection of pre-trained models

facilitated transfer learning, reducing the need for training from scratch and

enhancing the algorithm's performance. TensorFlow's well-documented API, vibrant

community support, and online resources provided valuable assistance in

troubleshooting and knowledge sharing, resulting in smoother development and

faster iteration cycles.

o Optimization and Scalability:

TensorFlow's architecture and design principles are optimized for efficiency and

scalability. By harnessing TensorFlow's computational graph and automatic

differentiation capabilities, the algorithm was further optimized, enhancing

efficiency and reducing computational overhead. TensorFlow's support for

distributed computing allowed for seamless scaling across multiple devices and

machines, leveraging their collective processing power. This scalability is especially

valuable when working with large datasets or complex models, enabling tackling

more challenging problems and achieving superior results.

By integrating TensorFlow into the algorithm's implementation, the performance,

compatibility, and scalability advantages of the framework were effectively

49

harnessed. The adaptation process ensured compatibility with TensorFlow's

framework, while the rich ecosystem provided valuable resources. These efforts

resulted in improved efficiency, streamlined model development, and access to

advanced features offered by TensorFlow. Overall, TensorFlow proved to be an

invaluable tool in the pursuit of an optimized and effective solution.

 Step 5: Dataset

The dataset used in this project will consist of joint 3D position data. The train

dataset will consist of joints degree of movement and gestures, while the test dataset

will consist of 4 random gestures to be predicted by joints alignment and settings.

The data will be preprocessed and normalized to ensure that the network is able to

learn the patterns in the data effectively.

 Step 6: Test the Algorithm

Once the LTC model has been trained and evaluated, the next step will be to test the

entire algorithm using comparison between the predicted outcomes and real-world

data. This will involve running the LTC model on the test dataset and comparing the

predicted joint 3D positions with the ground-truth data. The success-rate (percentage

of differences between outcome and ground-truth) will be calculated to measure the

performance of the model.

 Step 7: Comparison with Other Algorithms

In this step, the success-rate of the LTC model will be compared with two other

famous algorithms in this field. The comparison will help to evaluate the

performance of the LTC model and to see how it compares with other state-of-the-art

algorithms in terms of accuracy and robustness.

 Step 8: Comparison between Original and Optimized Versions of the LTC

Model

50

The research project also includes an optimized version of the LTC model, which

was done by researchers. The optimized LTC model will be evaluated using the same

metrics as the original LTC model but using TensorFlow framework. The

hyperparameters and some inputs were optimized too. Then the results will be

compared to see how the optimized version performed compared to the original

version.

4.5. PROJECT REPOSITORY ON GITHUB

The project's code and resources can be found on GitHub at the following link:

GitHub - michaelkhany/liquid_time_constant_networks: Code Repository for Liquid

Time-Constant Networks (LTCs):

https://github.com/michaelkhany/liquid_time_constant_networks

The repository provides access to the algorithm's implementation, including the

adapted code for TensorFlow, as well as any additional documentation or resources

related to the project. It serves as a central hub for collaboration, version control, and

community engagement. Users can clone, contribute, or explore the codebase,

fostering knowledge exchange and further development.

https://github.com/michaelkhany/liquid_time_constant_networks
https://github.com/michaelkhany/liquid_time_constant_networks
https://github.com/michaelkhany/liquid_time_constant_networks

51

CHAPTER 5

RESULTS AND DISCUSSION

The implementation of controller was tested not only with the original LTC neural

network. Researchers optimized the code using newer version of TensorFlow and

made an experiment to compare the performance of the controller using both original

and optimized version of LTC model. In the optimized version of the code, the

authors made several changes to improve the performance of the LTC model. For

example:

• Our proposed methodology involves the integration of various neural network

components, along with enhancement the adaptability, interoperability, and

structural organization of the LTC method in LTC-SE.

• We changed the way inputs are processed. In the original version, the inputs

are processed through a mapping function, which can be either Affine, Linear,

or Identity. In the optimized version, the mapping function is also used, but the

Affine mapping type is the default.

• We changed the way the ODE solver works. In the original version, the ODE

solver can be either SemiImplicit, Explicit, or RungeKutta. In the optimized

version, the default ODE solver is SemiImplicit.

• We introduced a new class called LTCCell, which is derived from the

RNNCell class of TensorFlow. This class encapsulates the implementation of

the LTC model and provides a convenient interface for using the LTC model in

TensorFlow.

52

• We also used Tensorflow2.x parallel processing unit to make the code efficient

for Nvidia CUDA-x GPU Accelerated processing Overall, the optimized

version of the code seems to have improved the performance and made the

implementation more concise and resource friendly.

5.1. ORIGINAL LTC MODEL

The reported results of the original LTC model are as follows:

The best epoch, 071, refers to the iteration of the training process that achieved the

best performance on the validation set, in terms of the lowest validation loss. The

train loss and train mean absolute error (MAE) measure how well the model fit the

training data. The reported train loss of 2.35 indicates that, on average, the model's

predictions were 2.35 units away from the true values. The reported train MAE of

0.69 indicates that, on average, the absolute difference between the model's

predictions and the true values was 0.69 units.

The validation loss and validation MAE measure how well the model performs on

data that it was not trained on. The reported validation loss of 3.30 indicates that, on

average, the model's predictions were 3.30 units away from the true values on the

validation set. The reported validation MAE of 0.84 indicates that, on average, the

absolute difference between the model's predictions and the true values was 0.84

units on the validation set.

The test loss and test MAE measure how well the model performs on new, unseen

data. The reported test loss of 2.59 indicates that, on average, the model's predictions

were 2.59 units away from the true values on the test set. The reported test MAE of

0.72 indicates that, on average, the absolute difference between the model's

predictions and the true values was 0.72 units on the test set.

Comparing the training, validation, and test metrics, we can see that the model

performs better on the training data than on the validation and test data. This suggests

that the model may be overfitting to the training data and may not generalize well to

53

new data. However, the reported test loss and test MAE are lower than the validation

loss and validation MAE, which suggests that the model is able to perform

reasonably well on new, unseen data.

5.2. OPTIMIZED LTC MODEL (Proposed By Researchers)

The reported results of running the same algorithm [36] [37] [38] using the optimized

LTC model suggested by the research are as follows: the best epoch was 092, with a

train loss of 2.07 and a train mean absolute error (MAE) of 0.62. The validation loss

was 3.00, and the validation MAE was 0.78. The test loss was 2.37, and the test

MAE was 0.66.

Table 5.1. Performance Metrics for Comparing Original and Optimized LTC Models

Outcomes

Metrics Original LTC Model Optimized LTC Model

Train Loss 2.35 2.07

Train MAE 0.69 0.62

Validation Loss 3.30 3.00

Validation MAE 0.84 0.78

Test Loss 2.59 2.37

Test MAE 0.72 0.66

In the above comparison chart, we can see that the optimized LTC model performs

better on all metrics compared to the original LTC model. The best epoch for the

optimized LTC model is 092, whereas it is 071 for the original model. The train loss

and mean absolute error (MAE) for the optimized model are 2.07 and 0.62

respectively, which are lower than the original model's train loss and train MAE. The

validation loss and validation MAE are also lower for the optimized model,

indicating better generalization performance. The test loss and test MAE are also

lower for the optimized model, suggesting better performance on unseen data.

Comparing these results to the original LTC model results, we can see that the

optimized LTC model performed better on all three metrics. The train loss and train

MAE were lower, suggesting that the model was able to fit the training data better.

54

The validation loss and validation MAE were also lower, suggesting that the model

was able to generalize better to new data. The test loss and test MAE were lower as

well, indicating that the model was able to perform better on new, unseen data.

Again, these results demonstrate the importance of optimizing model

hyperparameters and architecture to achieve better performance and reduce

overfitting.

Overall, these results suggest that the optimized LTC model was able to learn the

patterns of movement of the multi-joint arm and predict the movements accurately.

The improved performance on the validation and test data suggests that the

optimized model was less prone to overfitting than the original model. These results

demonstrate the importance of optimizing model hyperparameters and architecture to

achieve better performance.

5.3. THE POTENTIAL OF LTC NEURAL NETWORKS

The potential of LTC Neural Networks is becoming increasingly apparent in the field

of scalable AI, particularly in continuous control systems. The provided code

explores the effects of sparsity in LTC networks, which can lead to a more efficient

and compact representation of the model, resulting in faster training times, reduced

memory requirements, and better generalization. This is especially beneficial for

LTC Neural Networks due to their complex dynamics and potentially large number

of parameters.

Additionally, the code demonstrates the impact of different ODE solvers on LTC

performance, including Runge-Kutta, Explicit, and Semi-Implicit solvers. These

solvers can influence the accuracy, computational efficiency, and stability of the

LTC model, and understanding their effects is vital for optimizing control systems.

Runge-Kutta solvers, although known for their accuracy and stability, can be

computationally expensive for large and complex models. Comparing the

performance of this solver with others helps in determining its suitability for specific

applications. On the other hand, the Explicit solver is computationally more efficient

but might face stability issues with stiff systems or large time steps. Analyzing its

55

accuracy, stability, and computational efficiency will provide valuable insights into

its performance.

The Semi-Implicit solver represents a compromise between the other two solvers,

offering better stability than the Explicit solver and greater computational efficiency

than the Runge-Kutta method. Its ability to efficiently handle complex dynamics

makes it well-suited for LTC models.

Figure 5.1. Memory usage comparison for different time series prediction tasks and

algorithms

LTC networks have several advantages over traditional RNNs, such as their

continuous-time dynamics, adaptive time scale, improved stability and robustness,

and intrinsic sparsity. These characteristics enable them to provide more accurate and

robust control in continuous control systems. They can capture the continuous nature

of control systems, handle a wide range of time scales. Furthermore, their natural

incorporation of sparsity can be particularly beneficial in situations where

computational resources and response times are critical.

56

In conclusion, the study of sparsity and ODE solvers in LTC networks, as well as

their comparison with traditional RNNs, provides valuable insights into the

optimization of control systems. These investigations can help guide the

development of efficient and robust scalable AI solutions in various applications,

particularly in the field of continuous control systems.

57

CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1. CONCLUSION

Researchers have recently introduced a new functionality of the LTC, which is to

model decision support system variables. The LTC is a unique architecture that

allows the network to process information in a highly parallel and distributed way,

which makes it well-suited for tasks such as control systems. To benchmark and test

the achievements, a basic multi-joint arm controlling system will be implemented

using the proposing algorithm. The resulting model represents a dynamic system

with liquid time constants that vary with their hidden states, with outputs computed

using differential equation solvers and fraction. The proposed algorithm will control

the joints angles and positioning to control the arm to reach the targeted situation or

to grab an object. The LTC will be used to learn the patterns of movement of the arm

and to predict the movements that will result from specific input signals. Finally, the

evaluation of its performance in controlling multi-joint arm robot using the

developed decision support system will be demonstrated using a multi-variable

benchmarking.

Overall, the proposed approach involves using an LTC to control a multi-joint arm

robot. The LTC is used to model decision support system variables and to learn the

patterns of movement of the arm. The resulting model is a dynamic system with

liquid time constants that vary with their hidden states, and the LTC is used to

control the joints angles and positioning to achieve the desired tasks. The

performance of the proposed system will be evaluated using a multi-variable

benchmarking, which will demonstrate its effectiveness in controlling a multi-joint

arm robot.

58

Also, the adoption of LTC neural networks may offer a more suitable approach for

specific prediction-based problems in comparison to traditional Long Short-Term

Memory (LSTM) and Recurrent Neural Network (RNN) models. This advantage

primarily stems from LTC networks' ability to adjust their time constants according

to the input data, making them a preferable choice for dealing with non-stationary or

irregularly sampled time series. Several problem domains stand out as potential areas

where LTC networks might demonstrate better performance. These include:

 Anomaly detection in irregularly sampled time series data, where conventional

RNN and LSTM models may face difficulties due to non-uniform time

intervals between observations.

 Sensor networks that produce irregularly sampled time series data, often found

in environmental monitoring and industrial IoT applications.

 Human activity recognition, which is characterized by variable time scales and

irregular patterns that may be better captured by LTC networks.

 Financial markets, where rapidly changing dynamics and non-stationary

properties in financial time series data can be more effectively addressed by

LTC networks (Easier tracing ability of following the changes in different

states of making training and making outputs, made the algorithm explainable

with implementation of simple related approaches).

 Speech recognition and natural language processing tasks that involve irregular

and complex temporal structures in the data.

It is crucial to emphasize that the relative efficacy of LTC, LSTM, and RNN models

is contingent on the specific problem and data under consideration. In some cases,

the performance differences may be minimal, while in others, one model may exhibit

a clear advantage. Consequently, the selection of the most appropriate model should

be grounded in a thorough evaluation of the data and the unique requirements of the

problem. By incorporating LTC networks into the analysis of these problem

domains, this thesis has demonstrated the potential for improved predictive accuracy

and adaptability in the face of complex control temporal dynamics.

59

In conclusion, the proposed approach of using an LTC to control a multi-joint arm

robot has shown promising results. The LTC's unique architecture, which allows the

network to process information in a highly parallel and distributed way, is well-

suited for tasks such as control systems. The proposed algorithm models decision

support system variables and learns the patterns of movement of the arm, resulting in

a dynamic system with liquid time constants that vary with their hidden states. The

LTC is used to control the joints angles and positioning to achieve the desired tasks,

such as reaching a targeted situation or grabbing an object. The proposed system's

performance has been evaluated using a multi-variable benchmarking, demonstrating

its effectiveness in controlling a multi-joint arm robot.

Future work could focus on improving the system's performance and extending it to

other types of systems, incorporating other types of input signals, and developing

more advanced decision support systems. Nevertheless, the proposed approach

represents a significant advancement in the field of control systems, showcasing the

potential of using an LTC to control the movements of a multi-joint arm robot.

6.2. FUTURE WORKS

The proposed LTC control system for a multi-joint cyber physical arm has

demonstrated promising results in controlling the movements of the arm. However,

there is still much room for improvement and further research. In this section, we

outline some potential areas for future work.

First, one of the main challenges in controlling a multi-joint arm is achieving precise

and accurate movements. While the proposed LTC control system has shown good

performance, there is still room for improvement. Future work could focus on

developing more advanced LTC architectures or training algorithms that can improve

the accuracy and precision of the system. This could involve exploring more

complex network structures, developing more effective loss functions, or

incorporating other types of data into the learning process.

60

Second, while the proposed LTC control system is designed for a multi-joint arm, it

could be extended to other types of robots or cyber physical systems. For example, it

could be used to control the movements of a mobile robot, a drone, or a prosthetic

device. Future work could focus on adapting the LTC control system to these other

applications, which may require modifications to the architecture or learning

algorithm.

Third, currently, the LTC control system relies on input signals from sensors to

control the movements of the multi-joint arm. Future work could explore the use of

other types of input signals, such as vision or audio, to enhance the system's

performance. This could involve developing new methods for processing and

integrating different types of input signals, or developing new LTC architectures that

are better suited for these types of data.

Finally, the proposed LTC control system includes a decision support system that

models decision support system variables. Future work could focus on developing

more advanced decision support systems that can incorporate additional factors, such

as environmental conditions or task objectives. This could involve exploring new

types of decision support system architectures or integrating other types of data into

the decision support system.

In conclusion, the proposed LTC control system for a multi-joint cyber physical arm

has the potential to be applied to a wide range of robotic and cyber physical systems.

Future work could focus on improving the system's performance, extending it to

other types of systems, incorporating other types of input signals, and developing

more advanced decision support systems. These research directions could lead to

more effective and versatile control systems for a wide range of applications.

Furthermore, future research endeavors could explore the development of a

generalized system that renders neural network-based control systems independent of

specific mechanical and electrical device types. This approach aims to establish a

plug-and-play framework, allowing seamless integration of new components and

optimizing model shape and even outputs to achieve desired results across diverse

application domains. By focusing on this direction, researchers can contribute to

61

creating highly adaptable and versatile control systems capable of effectively

operating across various domains and scenarios.

62

REFERENCES

[1] K. Ogata, "Modern Control Engineering: Control systems analysis in state

space," Pearson Education, Inc.., pp. 648-721, 2010 .

[2] Dorf, R. C., & Bishop, R. H. , "Modern Control Systems," vol. 12th. sl., 2010.

[3] Omidvar, O., & Elliott, D. L. , "Neural systems for control," Elsevier, 1997.

[4] Goodfellow, I., Bengio, Y., & Courville, A. , "Deep learning," MIT press, 2016.

[5] K. Malavanti, "Biopsychology: LOBES OF THE BRAIN," in Psychological

Science: Understanding Human Behavior., PressBooks UCF, 2022.

[6] Ahmed, S. A. A., & Abbas, M. M., "LDA-POWER SPECTRAL DENSITY

BASED EEG CLASSIFICATION APPLIED FOR FACIAL

RECOGNITION SYSTEM.," Electrical and Electronics Engineering

Department of The Bahrain University, 2021.

[7] J.-C. C. Meng-Shen Cai, "TW200923803A". Taiwan Patent TW200923803A,

2007.

[8] R. L. D. M. N. B. R. R. D. T. Bruce G. Elmegreen.United States Patent

US8275727B2, 2009.

[9] C. M. Bishop, " Neural networks and their applications," Review of scientific

instruments, vol. 6, no. 65, pp. 1803-1832, 1994.

[10] M. H. Hassoun, Fundamentals of artificial neural networks, MIT press., 1995.

63

[11] Montesinos López, O. A., Montesinos López, A., & Crossa, J., Fundamentals of

Artificial Neural Networks and Deep Learning. In Multivariate Statistical

Machine Learning Methods for Genomic Prediction, (pp. 379-425). Springer,

Cham., 2022.

[12] S. Raschka, " Model evaluation, model selection, and algorithm selection in

machine learning," arXiv preprint , p. arXiv:1811.12808, 2018.

[13] A. Burkov, The hundred-page machine learning book (Vol. 1, p. 32), Quebec

City, QC, Canada: Andriy Burkov, 2019.

[14] Hochreiter, S., & Schmidhuber, J. , "Long short-term memory," Neural

Computation, vol. 8, no. 9, pp. 1735-1780, 1997.

[15] P. Kłosowski, "Deep learning for natural language processing and language

modelling. In 2018 Signal Processing: Algorithms, Architectures,

Arrangements, and Applications (SPA)," IEEE, pp. pp. 223-228, 2018,

September.

[16] Wang, J., Li, X., Li, J., Sun, Q., & Wang, H. , "Ngcu: A New Rnn Model for

Time-Series Data Prediction," Big Data Research, pp. 27, 100296, 2022.

[17] Zhang, J., & Man, K. F., "Time series prediction using RNN in multi-dimension

embedding phase space.," in IEEE International Conference on Systems,

Man, and Cybernetics (Cat. No. 98CH36218), 1998, October.

[18] Chan, D. M., Rao, R., Huang, F., & Canny, J. F. , "30th International

Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD)," in pp. 330-338, 2018, September.

[19] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. ,

"LSTM: A search space odyssey," IEEE Transactions on Neural Networks

and Learning Systems , vol. 10, no. 28, pp. 2222-2232, 2017.

[20] Li, S., Zhang, L., & Xu, C. , " An intelligent control system for autonomous

vehicles based on LSTM network," In 2019 IEEE International Conference

on Mechatronics and Automation (ICMA) , pp. 1390-1395, 2019.

[21] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., & Bengio, Y., "Learning phrase representations using RNN

encoder-decoder for statistical machine translation," In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pp. 1724-1734, (2014)..

[22] Ko, H., Yu, J., Kang, D., Lee, K. Y., & Choi, C. , "Deep learning in control: A

review," IEEE Transactions on Industrial Electronics, vol. 2, no. 68, pp.

1243-1255, 2021.

[23] Pan, Z., Lu, Z., & Liu, Y. , "Attention mechanism-based reinforcement learning

for non-linear control systems," IEEE Transactions on Neural Networks and

Learning Systems, vol. 3, no. 33, pp. 914-925, 2022.

[24] Hasani, R. M., Lechner, M., Amini, A., Rus, D., & Grosu, R. , "Liquid time-

constant recurrent neural networks as universal approximators," arXiv

preprint, p. 1811.00321, 2018.

[25] Hasani, R., Lechner, M., Amini, A., Rus, D., & Grosu, R. , "Liquid time-

constant networks," in Proceedings of the AAAI Conference on Artificial

64

Intelligence, Vol. 35, No. 9, 2021, May.

[26] Hornik, K., Stinchcombe, M., & White, H. , "Multilayer feedforward networks

are universal approximators," Neural networks, vol. 5, no. 2, pp. 359-366,

1989.

[27] K. Hornik, "Approximation capabilities of multilayer feedforward networks,"

Neural networks, vol. 2 , no. 4, pp. 251-257, 1991.

[28] P. Koiran, "On the complexity of approximating mappings using feedforward

networks," Neural networks, vol. 5, no. 6, pp. 649-653, 1993.

[29] Schäfer, A. M., & Zimmermann, H. G. , "Recurrent neural networks are

universal approximators," Springer Berlin Heidelberg and Artificial Neural

Networks–ICANN 2006: 16th International Conference, Athens, Greece,

September 10-14, 2006. Proceedings, Part I , vol. 16, pp. 632-640, 2006.

[30] Funahashi, K. I., & Nakamura, Y. , "Approximation of dynamical systems by

continuous time recurrent neural networks," Neural networks, vol. 6, no. 6,

pp. 801-806, 1993.

[31] Hasani, R., Lechner, M., Amini, A., Rus, D., & Grosu, R., "Liquid time-constant

networks. In Proceedings of the AAAI Conference on Artificial Intelligence,"

vol. 35, no. 9, pp. 7657-7666, 2021, May.

[32] Kolmogorov, A. N., Mishchenko, Y. F., & Pontryagin, L. S. , "A probability

problem of optimal control," JOINT PUBLICATIONS RESEARCH SERVICE

ARLINGTON VA, 1962.

[33] P. J. Werbos, "Backpropagation through time: what it does and how to do it,"

Proceedings of the IEEE, vol. 10, no. 78, pp. 1550-1560, 1990.

[34] Bonakdari, H., Gholami, A., & Gharabaghi, B. , "Modelling Stable Alluvial

River Profiles Using Back Propagation-Based Multilayer Neural Networks,"

In Intelligent Computing: Proceedings of the 2019 Computing Conference,

Springer, vol. 1, pp. 607-624, 2019.

[35] M. Lechner, "Learning representations for binary-classification without

backpropagation," In 8th International Conference on Learning

Representations, 2020.

[36] Bidollahkhani, M., Atasoy, F., Abedini, E., Davar, A., Hamza, O., Sefaoğlu, F.,

... & Abdellatef, H. , "GENIE-NF-AI: Identifying Neurofibromatosis Tumors

using Liquid Neural Network (LTC) trained on AACR GENIE Datasets,"

Cornell Univerisity's arXiv preprint , p. arXiv:2304.1342, 2023.

[37] Bidollahkhani, M., Atasoy, F., & Abdellatef, H. , "LTC-SE: Expanding the

Potential of Liquid Time-Constant Neural Networks for Scalable AI and

Embedded Systems," Cornell University's arXiv preprint , p.

arXiv:2304.08691, 2023.

[38] Bidollahkhani, M., Atasoy, F., & Abdellatef, H. , "LTC-SE: Liquid Time-

Constant Neural Networks Special Edition for Scalable AI and Embedded

Systems," The Institute of Engineering and Technology (IET) Eurogress

conference of Aachen, Germany, 2023.

[39] Chahine, M., Hasani, R., Kao, P., Ray, A., Shubert, R., Lechner, M., ... & Rus,

D. , "Robust flight navigation out of distribution with liquid neural

networks," Science Robotics, vol. 77, no. 8, p. eadc8892, 2023.

65

66

RESUME

MICHAEL BIDOLLAHKHANI received his B.S. degree in computer engineering

from the Ahrar Institute of Technology and Higher Education, Guilan, Iran, in 2017,

and then persued a year of research on artificial intelligence field in the K. N. Toosi

University of Technology, Tehran, Iran. He took his M.Sc. degree with honor from

the Department of Computer Engineering, Karabük University, Türkiye. He works

and researches as a freelance machine intelligence specialist and engineer with more

than six years of experience in software engineering and education systems. His

research interests include scalable AI systems, cyber physical systems, and

information theory developing high-performance computing systems. He was cited

as Iranian chosen Young Scientist by the YSF (under the supervision of the

Presidential Scientific and Research Deputy of I.R. Iran), in 2017 and 2023.

He has been a member of the National Elites Foundation, since 2015, under the

supervision of the presidency of I.R. of IRAN and the International Association for

Computing Machinery (ACM), since 2019.

