

A NEW PROPOSED STACKING
GENERALIZATION MODEL FOR

DETECTING DDOS ATTACKS IN SDN
ENVIRONMENT

2023
MASTER THESIS

COMPUTER ENGINEERING

Tasnim Kamal ALASALI

Thesis Advisor
Assist. Prof. Dr. Omar DAKKAK

A NEW PROPOSED STACKING GENERALIZATION MODEL FOR

DETECTING DDOS ATTACKS IN SDN ENVIRONMENT

Tasnim Kamal ALASALI

Thesis Advisor

Assist. Prof. Dr. Omar DAKKAK

T.C.

Karabuk University

Institute of Graduate Programs

Department of Computer Engineering

Prepared as

Master Thesis

KARABUK

June 2023

ii

I certify that in my opinion the thesis submitted by Tasnim Kamal ALASALI titled

“A NEW PROPOSED STACKING GENERALIZATION MODEL FOR

DETECTING DDOS ATTACKS IN SDN ENVIRONMENT ” is fully adequate in

scope and in quality as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Omar DAKKAK

Thesis Advisor, Department of Computer Engineering

APPROVAL

This thesis is accepted by the examining committee with a unanimous vote in the

Department of Computer Engineering as a Master of Science thesis. June 9, 2023

Examining Committee Members (Institutions) Signature

Chairman : Assoc. Prof. Dr. Adib HABBAL (KBU)

Member : Assist. Prof. Dr. Omar DAKKAK (KBU)

Member : Assist. Prof. Dr. Yusuf Yargı BAYDİLLİ (HU)

The degree of Master of Science by the thesis submitted is approved by the

Administrative Board of the Institute of Graduate Programs, Karabuk University.

Prof. Dr. Müslüm KUZU

Director of the Institute of Graduate Programs

iii

“I declare that all the information within this thesis has been gathered and presented

in accordance with academic regulations and ethical principles and I have according

to the requirements of these regulations and principles cited all those which do not

originate in this work as well.”

Tasnim Kamal ALASALI

iv

ABSTRACT

M. Sc. Thesis

A NEW PROPOSED STACKING GENERALIZATION MODEL FOR

DETECTING DDOS ATTACKS IN SDN ENVIRONMENT

Tasnim Kamal ALASALI

Karabük University

Institute of Graduate Programs

The Department of Computer Engineering

Thesis Advisor:

Assist. Prof. Dr. Omar DAKKAK

June 2023, 97 pages

The emergence of Software-Defined Networking (SDN) has revolutionized network

infrastructure by providing greater control and operation over the network. The SDN

controller, which serves as the operating system for SDN-based networks, executes

various network applications and maintains network services and functionalities.

However, the central control that SDN offers makes it vulnerable to Distributed Denial

of Service (DDoS) attacks, which are the most common and critical attacks targeting

both traditional and new-generation networks, including the Internet of Things (IoT),

cloud computing, and fifth generation (5G) communication networks. Despite the

plethora of traditional detection solutions available, DDoS attacks continue to increase

in frequency, volume, and severity. To address this, machine learning is now widely

used for rapid attack detection. This research proposes a predictive model for DDoS

prediction in an SDN environment. The model is based on stacking various classifiers

in two levels, namely the Base level and the Meta level, which combine diverse

v

heterogeneous learners to produce robust model outcomes. Multiple metrics were used

to evaluate the model's performance, including accuracy, precision, recall, F1-scores,

and Area Under the ROC Curve (AUC) values. The predictive model achieved a 99%

accuracy rate in prediction, with a precision score, sensitivity, and specificity all at

99%.

Key Words : Software-Defined Network (SDN), Security, DDoS Attacks, Machine

Learning (ML), Stacking Classifier, RYU.

Science Code : 92430

vi

ÖZET

Yüksek Lisans Tezi

SDN ORTAMINDA DDOS SALDIRILARINI TESPİT ETMEK İÇİN YENİ

BİR İSTİFLEME GENELLEŞTİRME MODELİ

Tasnim Kamal ALASALI

Karabük Üniversitesi

Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Tez Danışmanı:

Yrd. Doç. Dr. Omar DAKKAK

Haziran 2023, 97 sayfa

Yazılım Tanımlı Ağ Oluşturmanın (SDN) ortaya çıkışı, ağ üzerinde daha fazla kontrol

ve operasyon sağlayarak ağ altyapısında devrim yarattı. SDN tabanlı ağlar için işletim

sistemi olarak hizmet veren SDN denetleyicisi, çeşitli ağ uygulamalarını yürütür ve ağ

hizmetlerini ve işlevlerini sürdürür. Bununla birlikte, SDN'nin sunduğu merkezi

kontrol, onu Nesnelerin İnterneti (IoT), bulut bilgi işlem dahil olmak üzere hem

geleneksel hem de yeni nesil ağları hedefleyen en yaygın ve kritik saldırılar olan

Dağıtılmış Hizmet Reddi (DDoS) saldırılarına karşı savunmasız hale getirir ve beşinci

nesil (5G) iletişim ağları. Mevcut geleneksel algılama çözümlerinin bolluğuna rağmen,

DDoS saldırılarının sıklığı, hacmi ve şiddeti artmaya devam ediyor. Bunu ele almak

için, makine öğrenimi artık hızlı saldırı tespiti için yaygın olarak kullanılmaktadır. Bu

araştırma, bir SDN ortamında DDoS tahmini için tahmine dayalı bir model

önermektedir. Model, sağlam model sonuçları üretmek için çeşitli heterojen

öğrenicileri birleştiren Temel düzey ve Meta düzey olmak üzere iki düzeyde çeşitli

vii

sınıflandırıcıların istiflenmesine dayanmaktadır. Modelin performansını

değerlendirmek için doğruluk, kesinlik, geri çağırma, F1 puanları ve ROC Eğrisi

Altındaki Alan (AUC) değerleri dahil olmak üzere birden fazla metrik kullanıldı.

Tahmine dayalı model, tamamı %99'da kesinlik puanı, duyarlılık ve özgüllük ile

tahminde %99'luk bir doğruluk oranı elde etti.

Anahtar Kelimeler : Yazılım Tanımlı Ağ (SDN), Güvenlik, DDoS Saldırıları,

Makine Öğrenimi (ML), İstifleme Sınıflandırıcı, RYU.

Bilim Kodu : 92430

viii

ACKNOWLEDGMENT

I want to express my sincere gratitude to my thesis advisor, Dr. Omar DAKKAK, for

his unwavering support, guidance, and encouragement throughout my research. Dr.

Omar's expertise in my field has been invaluable, and I am deeply grateful for the time

and effort he has invested in my work.

 I would also like to thank my thesis committee members for their insightful feedback

and helpful suggestions. Their expertise and constructive criticism have been

instrumental in shaping my research.

I want to thank my family, particularly my parents, for their unwavering love and

support. Their encouragement and belief in me have been a constant source of strength

and inspiration.

Finally, I thank my husband, Dr. Akram ALHAMAD, for his unwavering support,

encouragement, and love throughout my graduate studies. His patience, understanding,

and belief in me have been a constant source of strength and inspiration. Without his

support, I would not have been able to complete this thesis.

I would also like to thank my baby, Sanm, for bringing joy, laughter, and inspiration

to my life. Her smiles, hugs, and giggles have been a bright spot in my days, and her

presence has motivated me to keep going even when the going got tough. To my

husband and baby, thank you for being my rock and being there for me through every

step of this journey. Your unwavering love and support mean the world to me, and I

am grateful for every moment we have spent together.

ix

CONTENTS

Page

APPROVAL ... ii

ABSTRACT .. iv

ÖZET... vi

ACKNOWLEDGMENT ... viii

CONTENTS .. ix

LIST OF FIGURES ... xii

LIST OF TABLES .. xiv

ABBREVIATIONS INDEX .. xv

PART 1 .. 1

INTRODUCTION ... 1

1.1. MOTIVATION .. 3

1.2. PROBLEM STATEMENT .. 5

1.3. RESEARCH QUESTIONS .. 6

1.4. RESEARCH OBJECTIVES ... 6

1.5. SCOPE OF THE RESEARCH ... 7

1.6. ORGANIZATION OF THE THESIS .. 7

PART 2 .. 9

THEORETICAL BACKGROUND ... 9

2.1. SOFTWARE DEFINED NETWORK (SDN) .. 9

2.2. SDN ARCHITECTURE ... 13

2.3. OPEN FLOW ... 15

2.3.1. Open Flow Events... 15

2.3.2. Open Flow Messages .. 16

2.3.3. Open Flow Switch .. 17

2.4. DISTRIBUTED DENIAL OF SERVICE ATTACK 19

2.4.1. DDOS Attack Types ... 21

2.4.1.1. Volume Based Attacks (Volumetric attacks) 22

x

Page

2.4.1.2. Amplification attacks .. 23

2.4.1.3. Protocol Exploit Attack... 24

2.4.1.4. Application Layer Attack .. 25

2.5. DDOS ATTACKS IN SDN AND THEIR EFFECT ON CONTROLLER ... 26

2.6. CONCLUDING REMARKS ... 27

PART 3 .. 29

LITERATURE REVIEW... 29

3.1. DDOS DEFENSE TECHNIQUES BASED ON SDN 29

3.2. DETECTING DDOS ATTACKS WITH MACHINE LEARNING 31

3.3. CONCLUDING REMARKS ... 34

PART 4 .. 36

RESEARCH METHODOLOGY ... 36

4.1. PROPOSED SOLUTION ... 37

4.2. ENVIRONMENT REQUIREMENTS ... 40

4.2.1. Controller .. 40

4.2.2. Network Emulator .. 40

4.2.3. Packet Generation ... 41

4.2.4. System Architecture and Setup ... 42

4.3. DATA COLLECTION AND DATASET .. 43

4.4. FEATURE SELECTION ... 48

4.5. CLASSIFICATION METHODOLOGY ... 51

4.5.1. Random Forest (RF) ... 51

4.5.2. K Nearest Neighbor .. 53

4.5.3. Decision Tree .. 54

4.5.4. Logistic Regression .. 56

4.5.5. Multi-Layer Perceptron (MLP)... 57

4.5.6. Stacking Classifier .. 58

4.6. HYPERPARAMETER TUNING .. 60

4.7. CONCLUDING REMARKS ... 61

xi

Page

PART 5 .. 63

EXPERIMENTAL EVALUATION .. 63

5.1. CONFUSION MATRIX (CM) .. 63

5.2. CLASSIFIER MODELS RESULT .. 66

5.2.1. Random Forest .. 66

5.2.2. K Nearest Neighbor .. 67

5.2.3. Decision Tree .. 69

5.2.4. Logistic Regression .. 70

5.2.5. Multi-Layer Perceptron (MLP)... 72

5.2.6. Stacking Classifier .. 73

5.3. THE VALIDATION AND EVALUATION OF MACHINE LEARNING

MODELS ... 74

5.4. RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE 79

5.5. CONCLUDING REMARKS ... 80

PART 6 .. 81

CONCLUSION AND FUTURE WORK .. 81

6.1. RESEARCH SUMMARY ... 81

6.2. RESEARCH CONTRIBUTIONS .. 82

6.3. RESEARCH LIMITATIONS .. 84

6.4. FUTURE WORK ... 84

6.4.1. Self-healing ... 84

6.4.2. Load Balancing ... 85

6.4.3. Integration to Cloud .. 85

6.4.4. Database Optimization ... 85

6.4.5. Exploring the Impacts of DDoS Attacks Launched Through External

Networks .. 85

6.4.6. Enhancing Performance of Security Models Through Human-in-the-

Loop (HITL) and Continuous Learning ... 86

6.4.7. Secure Network Control ... 86

6.4.8. Identity and Access Management ... 86

REFERENCES ... 87

RESUME ... 97

xii

LIST OF FIGURES

Page

Figure 1.1. Diffusion of innovation ... 4

Figure 2.1. SDN vs. traditional networks. ... 10

Figure 2.2. SDN features. .. 11

Figure 2.3. SDN structure ... 13

Figure 2.4. Flow entry process .. 19

Figure 2.5. Text text. ... 21

Figure 2.6. Amplification attack. .. 23

Figure 2.7. Text text. ... 27

Figure 3.1. Architecture for Event-Based IDS .. 30

Figure 4.1. Network security with AI-Powered SDN architecture. 38

Figure 4.2. Workflow of the model. .. 39

Figure 4.3. Mininet Features. .. 41

Figure 4.4. Network experiment using six switches and 18 hosts. 42

Figure 4.5. Procedures for collecting and cleaning data. .. 45

Figure 4.6. Proportional distribution of network traffic by protocol. 46

Figure 4.7. Volume of network traffic by type in a six-category dataset. 46

Figure 4.8. Importance of the features. ... 49

Figure 4.9. Feature importance visualization plot using RandomForestClassifier. 50

Figure 4.10. An example random forest tree for a network intrusion detection task.53

Figure 4.11. Text text. ... 55

Figure 4.12. Stacking concept diagram. .. 58

Figure 4.13. Text text. ... 59

Figure 5.1. The random forest classifier model results. .. 67

Figure 5.2. The Kneighbors classifier model results. .. 68

Figure 5.3. The decision tree classifier model results. .. 70

Figure 5.4. The logistic regression classifier model results. 71

Figure 5.5. The MLP classifier model result. .. 72

Figure 5.6. The stacking classifier model result. ... 73

xiii

Page

Figure 5.7. k-fold cross-validation for the generation of metadata, zb , k = 5. 74

Figure 5.8. Comparison of ml models based on multiple evaluation metrics. 78

Figure 5.9. The receiver operating characteristic (ROC) curve for various

classification models. .. 79

Figure 6.1. Interrelation between research questions and chapters. 83

xiv

LIST OF TABLES

Page

Table 2.1. Comparisons of SDN and traditional networks. 12

Table 2.2. Packet header match fields. ... 18

Table 3.1. Comparative Analysis of DDoS Attack Detection Methods Using

Different Classifiers. .. 34

Table 4.1. Experiment Setup. ... 43

Table 4.2. Parameters specified for various classifiers. ... 61

Table 5.1. Performance comparison of machine learning models for a binary

classification task. .. 75

xv

 ABBREVIATIONS INDEX

ABBREVIATIONS

API : Application Programming Interface.

AUC : Area Under the ROC Curve

AWS : Amazon Web Services

CLI : Command Line Interface

CM : Confusion Matrix

CNN : Convolutional Neural Network

DDoS : Distributed Denial of Service Attack

FN : False Negatives

FP : False Positives

FPR : False Positive Rate

GRU : Gated Recurrent Unit

HITL : Human-In-The-Loop

ICMP : Internet Control Message Protocol

IDS : Intrusion Detection Systems

IOT : Internet of Things

KNN : K-Nearest Neighbors

LR : Logistic Regression

LSTM : Long Short-Term Memory

ONOS : Open Network Operating System

ML : Machine Learning

MLP : Multilayer Perception

NB : Naïve Bayes

NBI : Northbound Interface

NFV : Network Function Virtualization

ONF : Open Networking Foundation

OVS : Open Virtual Switch

xvi

RF : Random Forest

RFC : Request for Comments

RFE : Recursive Feature Elimination

ROC : Receiver Operating Characteristic

RPS : Requests Per Second

SBI : Southbound Interface

SDN : Software-Defined Networking

SOM : Self-Organizing Maps

SVM : Support Vector Machine

TCP : Transmission Control Protocol

TLS : Transport Layer Security

TN : True Negatives

TP : True Positives

TPR : True Positive Rate

UDP : User Datagram Protocol

VLAN : Virtual Local Area Networks

1

PART 1

INTRODUCTION

The ubiquitous presence of computer networks has made them an integral part of our

daily routines, ranging from government and commercial enterprises to individuals

[1]. These networks, composed of numerous routers, switches, and middleboxes, run

on complex protocols, making operating, and maintaining a secure and seamless

infrastructure quite daunting. As the demand for ubiquitous connectivity from end

users continues to rise, keeping up with network administration tasks has become

increasingly tricky [2]. Integrating software into the daily routine, with the wide

adoption of smart mobile devices and the recent emergence of the Internet of Things

(IoT), has further heightened the race to keep up with network administration tasks.

Network administrators are thus responsible for configuring vendor-specific devices

and setting policies for effective and reliable operation to accommodate the ever-

changing network environment. Unfortunately, managing networks and dynamic

responses to events and applications is arduous and error prone. The service providers,

however, must meet consumers' growing traffic and data rate demand by investing in

more extensive and faster links and edge routers, despite the slow revenue growth [3]

[4]. Network administrators and vendors face significant challenges, making it

essential to optimize and innovate current network design and architecture with cost,

programmability, and network robustness in mind, to meet the growing demands of

users.

The paradigm of Software-Defined Networking (SDN) has become increasingly

popular in recent times. SDN-based networks replace traditional data centers and

operator networks because they provide a more reliable, flexible, and secure

environment [5], [6]. As a result, deploying SDN in cloud computing environments

and data centers provides a flexible and reliable network architecture. The primary

innovation behind SDN is the separation of control and data planes. SDN provides

2

intelligent centralization through controllers that manage the forward packet devices.

The well-designed configuration of these devices, such as Open-Flow, is also essential

[7], [8]. In an SDN, switches only forward logic, while decision-making and control

logic is carried out by software in an SDN controller. The SDN controller is

responsible for creating new network flow policies and instructing switches to follow

the guidelines maintained in a flow table [9].

Moreover, SDN architecture represents a groundbreaking and innovative approach to

network management [10]. SDN upends conventional network paradigms by assigning

switches a fundamentally different role. Instead of traditional packet processing,

switches perform a matching operation against their forwarding tables, delegating

unmatchable packets to the controller for processing. The controller serves as the

veritable operating system of the SDN, responsible for handling packet processing and

determining whether to forward or discard each packet. This process thus bifurcates

the traditional forwarding and processing planes of network architecture, yielding an

agile and highly programmable network environment. The SDN architecture lends

itself to forming a network comprising many controllers, each of which interfaces with

a network of switches, yielding a complex mesh of individual network slices. This

granular segmentation offers a unique opportunity to safeguard each slice against the

perils of DDoS attacks. Notably, if the connection between a given controller and its

associated switches is severed, the processing plane of the entire network slice will

falter. The attendant consequence of such an occurrence is the virtual extinction of

packet processing capability within the affected slice, leading to a pronounced collapse

of the overarching SDN architecture.

The controller's accessibility can be jeopardized by various factors, including but not

limited to the threat of a DDoS attack [11]. This attack operates by inundating a host

or group of hosts within a given network with packets. These packets are often

furnished with falsified source addresses, eluding conventional switch-matching

protocols and necessitating the controller's intervention. However, the cumulative load

of legitimate and DDoS-sourced packets can exert a crippling strain on the controller's

resources, depleting them in an unrelenting torrent of processing. This protracted

overuse renders the controller inaccessible to legitimate incoming packets and

3

potentially causes the entire SDN architecture to collapse. Even the existence of a

backup controller is not a panacea, as it too would be confronted with the same

problem in the event of a DDoS attack [12], [13]

The present chapter illustrates the problem statement by scrutinizing the menace posed

by DDoS Attacks in the SDN architecture. After that, the motivation driving the

research and its objectives will be expounded. Subsequently, the research

contributions will be delimited, followed by a delineation of the organizational

structure of this thesis.

 1.1. MOTIVATION

 As such, the emergence of SDN has brought great potential to overcome the need for

flexible, secure, reliable, and well-managed next-generation networks [14]. SDN

transforms switches into simple data forwarding devices by separating networks'

control and data plane, while a logically centralized controller controls network

management. This remarkable feature of SDN provides a programmable, vendor-

agnostic, cost-effective, and innovative network architecture.

The future of SDN depends on its acceptance and deployment. Although technology

deployment typically takes years before becoming available to end-users due to

standardization processes and Requests for Comments (RFC), it remains unclear

whether the same will hold for SDN. Thus far, researchers have conducted experiments

on campus networks, leading to the deployment of SDN on a small scale and,

ultimately, the proposal of a new network architecture, ETHANE, for enterprise

networks[15][16]. Figure 1.1 illustrates the conventional development trend of

technology [15].

4

Figure 1.1. Diffusion of innovation [17].

The trajectory of SDN development may deviate slightly from the traditional path as

manufacturers and vendors of network equipment are increasingly drawn to the

potential and benefits of this technology, as demonstrated by Google's deployment of

B4 in their WAN data center [18], VMware's NSX virtualization platform [19], and

the Linux Foundation's collaborative project, OpenDaylight [20]. However, despite its

critical features of programmability, flexibility, universal connectivity, and centralized

control, security issues remain a significant concern for SDN. These security

vulnerabilities include an increased potential for DDoS attacks due to network device

controller centralization and flow table limitation [21]. Additionally, the abstraction of

flows and underlying hardware resources renders it easier to gather intelligence that

can be used for further exploitation and malicious network reprogramming by a bad

actor [22], [3].

Security is a paramount concern in computer networks, as illicit access to these

systems would entail virtually unfettered control over the company's resources. Virtual

Local Area Networks (VLANs) were conceptualized as physically segregating distinct

organizational functions to preclude direct interactivity and bolster legacy network

security. In the context of SDN, network virtualization is enabled by implementing

rigorous criteria – such as packet header fields – which allow for the high-level

abstraction necessary to facilitate the efficient sharing of physical network

infrastructure among multiple users concurrently. Network Function Virtualization

(NFV), a closely related and complementary concept to SDN, further catalyzes the

5

programmability of essential network functions, including DNS and caching, thereby

fostering an environment ripe for service innovation and the introduction of novel

network services [23].

In SDN, the controller communicates with the forwarding plane via the southbound

API utilizing a secure transport layer service. Each switch has a designated flow table

that contains specific flow information. When a packet arrives at the switch, and its

header fields fail to conform to the established flow table entries, the packet is

automatically routed to the controller as a "packet-in" message. The controller then

processes the packet and returns a "packet-out" or "flow-mod" message containing the

requisite flow rules installed in the flow table. Subsequent packets with similar

characteristics will then be efficiently acted upon without any reference to the

controller.

Despite its impressive innovations, several components of the SDN-based network

environment pose additional security threats to the SDN controller. Thus, the security

of the SDN controller is becoming a key challenge for developing future SDN-based

networks [2]. The centralization of the controller has the potential to simplify network

management, yet it poses a significant security threat [24]. Malicious actors can launch

voluminous requests to the controller to overwhelm it and render it offline, causing

service unavailability and disabling the SDN. Moreover, SDN is vulnerable to DDoS

attacks, which can target the controller and flow tables in the switch, clogging them

with data and rendering the entire network inoperable [24]. These vulnerabilities

underscore the necessity of having backups for controllers. However, the backup

controllers are equally susceptible to attacks, which can result in their compromise and

eventual shutdown based on the amount of traffic directed at them [12], [13].

Therefore, there is a compelling need for a proactive and responsive system capable

of detecting and mitigating such attacks in real-time.

1.2. PROBLEM STATEMENT

SDN separates the data and control planes, simplifying network management and

enabling programmability[25]. However, the centralized nature of the controller in

6

SDN networks makes it vulnerable to DDoS attacks, which can bring down the entire

network [24]. These attacks flood victims with traffic from multiple compromised

systems using spoofed source IP addresses, making it difficult to block them based

solely on IP addresses. Distinguishing legitimate user traffic from attack traffic

becomes challenging when the sources are dispersed across the Internet. Effective

DDoS detection and response methods are crucial for network operations, with SDN

networks being particularly vulnerable [12] [2]. The controller's central role makes it

an attractive target for attackers, and the attack packets overwhelm switches and the

controller, depleting their resources and potentially causing network failure [13].

DDoS attacks are more damaging and faster in SDN networks compared to traditional

networks, emphasizing the need for reliable detection methods and prompt action [21],

[26]. In large data centers where SDN networks are prevalent, it is essential to identify

targeted network segments quickly to facilitate mitigation measures. While controllers

are designed with backups and ample memory, switches have limited resources,

making them more susceptible to attacks. Hence, implementing lightweight

provisional methods to prevent switch breakdown at the first signs of an attack is

crucial. The detection method should impose minimal additional load on the controller.

Consequently, this study proposes a novel approach designed explicitly for detecting

DDoS attacks in SDN environments, providing distinct benefits over existing

solutions.

1.3. RESEARCH QUESTIONS

This thesis aims to answer the following questions:

1. What types of DDoS attacks target SDN, and how can they be detected?

2. How can a realistic SDN dataset with regular and attack traffic be generated?

3. How can Stacking Classifiers effectively detect DDoS attacks in SDN?

1.4. RESEARCH OBJECTIVES

In the modern interconnected world, security breaches propagate rapidly and can affect

many networks across the globe within a matter of hours or days. Even with secure

7

perimeters, organizations often face internal security breaches. Security-focused SDN

architecture has been developed to prevent malicious users from exploiting

vulnerabilities in the network. Therefore, this study aims to propose an intelligent

machine learning based approach utilizing a stacking classifier model to detect DDoS

attacks in SDN environments.

To achieve this aim, the study defines the following objectives:

1. Identifying DDoS attacks on SDN and reviewing detection methods.

2. Designing an SDN topology to generate a dataset with regular and attack traffic.

3. Developing a stacking classifier model consisting of multiple base classifiers for

DDoS detection.

1.5. SCOPE OF THE RESEARCH

This research investigates the effectiveness of machine learning approaches in

detecting DDoS attacks in SDN networks. It also focuses on identifying DDoS attacks

in SDN networks and evaluating existing SDN security solutions related to these

attacks. The Stacking Classifier technique will be introduced to detect DDoS attacks

in SDN networks, and its effectiveness in improving the classification performance

will be evaluated.

Real SDN traffic datasets were used to evaluate the proposed approach for detecting

DDoS flooding and attack-free network traffic, as discussed in Chapter 4. It is

important to note that all DDoS flooding attacks launched during the research were

orchestrated from internal networks. As a result, DDoS attacks launched from external

networks are not covered and are beyond the scope of this work.

1.6. ORGANIZATION OF THE THESIS

The present thesis comprises six chapters, each with a specific focus. Chapter 1 serves

as an introduction, outlining the concept of Software-Defined Networking (SDN) and

presenting the research objectives and questions, as well as the scope of the research.

8

Chapter 2 provides an overview of SDN and its components, followed by an

examination of Distributed Denial of Service (DDoS) attacks and their various types.

Furthermore, the chapter discusses the impact of DDoS attacks on controllers.

Chapter 3 reviews the literature on DDoS detection and mitigation within SDN.

Chapter 4 proposes an end-to-end intrusion detection approach for SDN-based

networks.

Chapter 5 presents an experimental evaluation of the proposed intrusion detection

system.

Finally, Chapter 6 summarizes the proposed method and its simulation results. The

chapter also outlines the solution's limitations and suggests future work.

9

PART 2

THEORETICAL BACKGROUND

The Open Networking Foundation (ONF) [28] is a non-profit organization devoted to

the standardization, research, and commercialization of software-defined networking

(SDN). ONF has supplied the most explicit and widely accepted description of SDN:

SDN is a new network architecture separating network control from forwarding and

can be programmed directly [29] [30]. This isolation is done by rebuilding the network

so that the switch forwarding instructions are received from the controller rather than

spending its resources to process incoming packets. The Openflow protocol

orchestrates the SDN architecture. Consequently, OpenFlow switches, a controller,

and a secure connection between the controller and the switches make up this

architecture.

This chapter will overview SDN, the OpenFlow protocol, and its specification. Lastly,

it will cover Distributed Denial of Service (DDoS) Attacks in the SDN environment.

2.1. SOFTWARE DEFINED NETWORK (SDN)

First, it is necessary to mention the traditional networks to note the change brought by

the SDN networks. In traditional network systems, network devices require powerful

hardware for processing and making decisions, saving routing tables and access lists,

and robust hardware for passing packets, as shown in Figure 2.1.

On the other hand, the network devices each include their own unique routing tables

and access lists. This leads to the decentralization of the network, which in turn implies

that each device must be set independently. In addition, it becomes more difficult to

identify defects and issues in big networks as the number of network devices continues

to grow. In addition, when a new device is introduced to the network, all of the existing

10

devices on the network need to have their settings adjusted so that they can function

in tandem with the newly added device. The implementation layer, which is the

physical forces of the network, is separated from the decision-making layer, which is

the brains of the network, by software-defined networking (SDN), which adds a

control center to the network (Controller) that provides a comprehensive view of the

network devices and the rules that are imposed on them.

Figure 2.1. SDN vs. traditional networks.

However, SDN is a new network architecture significantly improves network

performance [2]. It provides the flexibility to control the entire network without the

need to access all the devices, which are usually geographically far apart. Figure 2.2

shows the main features of these networks. Specific criteria have been unmet by

traditional network architecture, such as virtualization, accessibility, dynamic

management, high bandwidth, high connection speed, and cloud computing [31]. As a

result, SDN, which has a flexible, programmable, and dynamic network design, has

emerged as a viable alternative to traditional networks [28].

SDN is characterized as:

11

1. Programmable: Decoupling forwarding and control plans makes this possible

[28].

2. Agile: the abstraction of the control layer from the forwarding layer allows

network engineers to adjust traffic flow to fit their present demands.

3. Programmatically Configured: SDN provides network engineers with the ability

to set up, administer, protect, and quickly optimize network resources, utilizing

dynamic, custom-built SDN programs that are vendor-agnostic and built by

themselves.

4. Central Management: SDN employs the advantage of the global view that the

controller must facilitate network management. Also, it is possible to

simultaneously reconfigure several devices[32].

SDN is vendor-agnostic and utilizes open-source standards, simplifying network

design and operation because SDN controllers provide commands rather than various

vendor-specific devices and protocols.

Figure 2.2. SDN features.

Accordingly, as summarized in Table 2.1, it can be distinguished between the

software-defined networks and the traditional networks in that the SDN can be

configured during the network operation easier. In addition, the control's centralization

feature helps reduce the cost of operating and managing the network. Also, when

designing the network, it is necessary to focus on the services provided by the network

12

Accordingly, as described in Table 2.1, it is possible to differentiate between software-

defined networks and traditional networks in that the SDN may be set during the

operation of the network more easily. This is one of the key differentiating factors. In

addition, the centralized function of the control helps cut down on the expenses

associated with maintaining and administering the network. It is also necessary to

focus on the services provided by the network control center when designing the

network. This is true regardless of the types and manufacturers of switches that are

used in the network; this is because SDN networks operate on the OpenFlow protocol,

which has been agreed upon by the manufacturers. When it comes to conventional

networks, configuring them while they are operational might be difficult, and doing so

entails pausing the network while the initialization process is carried out. Additionally,

in order to exercise control, conventional networks need the individual configuration

of each device. This is the conundrum that conventional networks face when it comes

to the detection of defects. On the other hand, detecting faults requires a lot of

time.control center, regardless of the types and manufacturers of switches used in the

network; This is because the SDN networks operate on the OpenFlow protocol agreed

by the manufacturers. As for traditional networks, it isn't easy to configure when it is

working, and this requires stopping the network at the time of initialization. Also, in

terms of control, traditional networks must configure each device separately.

Regarding detecting errors, this is the dilemma of traditional networks. In contrast,

finding errors takes a long time.

Table 2.1. Comparisons of SDN and traditional networks.

Features Software-Defined Networks Traditional Networks

Programmability

and Data and

Control Plane

Isolation

Yes No, with complex network control

requiring different techniques for each

problem

Configuration Automated with centralized

authentication

Manual configuration is error-prone [33]

Performance Global control that is dynamic,

using input from other layers

Limited information and a rather endless

configuration

Innovation A straightforward software

implementation for novel

concepts, a comprehensive testing

environment that allows for

isolation, and an upgrade system

that makes deployment simple

Hardware implementation for novel

concepts is complex, there is a limited

testing environment, and the

standardization process is lengthy

13

2.2. SDN ARCHITECTURE

A typical representation of an SDN architecture consists of three layers. Northbound

APIs connect applications to the control layer, whereas southbound APIs connect the

control layer to the data plane, as shown in Figure 2.3.

Figure 2.3. SDN structure (Wazirali et al., 2021).

1. Application Layer: this layer includes typical network applications and

operations that businesses use, such as Intrusion detection systems (IDS), load

balancing, firewalls, etc... Moreover, SDN networks replace a traditional

network's specialized equipment with an application that can build a single view

of the network by collecting information from the controller for decision-making

purposes and regulating data plane behavior.

2. Control Layer: This plane has been referred to as the "brain" of the SDN [28].

The intelligence needed for this layer is provided by a centralized SDN

controller. This controller is the software that takes instructions or commands

from the application layer and then distributes those instructions or commands

to the networking components. Additionally, it gathers statistical data by

employing open APIs in order to give a perspective of the network and its

topology that is as current as possible [23]. Despite the fact that the forwarding

14

engine is located in the switches (in the Data Plane), all of the network

management tasks, such as monitoring traffic and routing it, are carried out by a

centralized software-based controller [21]. This technology makes it possible to

make dynamic changes to the routing rules that are implemented in network

devices such as switches and routers. In addition, approaches for the detection

and mitigation of network-based attacks are able to be built with such

capabilities.

3. The Data Layer is the infrastructure layer, and it consists of both physical and

virtual network devices in its Data Plane. Historically, both the control and data

planes of traditional networks were included inside the same physical device.

Nevertheless, only the data plane is present in SDN-based network devices. As

a consequence of this, the most important responsibility of these network devices

is to transmit data. Because of this, the method for forwarding is made to be very

effective.

Meanwhile, SDN Controller uses APIs to control and communicate with these higher

and lower layers.

1. Northbound Interface (NBI): SDN applications depend on the controller to

inform them of the network infrastructure state so that they may determine what

resources are accessible. Furthermore, the SDN controller may verify that

application traffic is routed under network administrators' policies. However, the

control layer orchestrates how these apps are allowed access to the network's

resources. It also utilizes its intelligence to determine the best path for the

application in terms of latency and security requirements. The orchestration process

is fully automated and does not require any manual configuration. Also, it varies

considerably from one controller to another. This is because each controller

provides and uses its version of the NBI [34].

2. Southbound Interface (SBI): The SDN controller communicates with network

equipment in the data layer through southbound APIs, such as routers and switches.

However, there are several SBIs available for controllers to communicate with

devices. The most used SBI protocol in SDN is OpenFlow [34]. To establish a

15

connection with the switches, controllers listen to TCP port number 6653 for

OpenFlow V1.3+. The OpenFlow protocol uses different messages to regulate

communication between switches and controllers. Flow Mod, Packet IN, and

Packet OUT are the three most used messages by OpenFlow to handle flow rules.

2.3. OPEN FLOW

OpenFlow, considered one of the primary standards for the southbound

interface in SDN, was initially designed by researchers at Stanford University in 2008

[35]. Currently, the Open Networking Foundation (ONF) manages this protocol [28]

with version 1.5 being the most recent one used in the industry. OpenFlow provides

more straightforward communication between controllers and physical devices on the

data plane [12] built on top of the Transmission Control Protocol (TCP) and utilizing

Transport Layer Security (TLS) to secure its communications [34]. The

communication between switches and controllers uses OpenFlow messages, and

comprehending these messages and events is essential for building SDN scripts to

modify the forwarding layer's behavior.

2.3.1. Open Flow Events

The OpenFlow protocol defines a set of events that can be triggered during the

communication between the controller and the switches in an SDN network. These

events include the connection up event, which occurs when a control channel is

established between the controller and the switch, and the connection down event,

which occurs when the connection is terminated. The flow_removed event is triggered

when the switch informs the controller that a flow entry has been deleted due to an idle

or hard timeout. The Packet_in event is launched by the controller when a packet

received by the switch does not match any of the flow entries, and it is critical for

DDoS detection, particularly for packet spoofing and ACK DDoS attacks.

Additionally, statistical events are triggered when the controller receives an OpenFlow

statistics response message from the switch, such as the ofp_stats_reply message.

These events, including the ofp_aggregate_stats_reply, ofp_port_stats,

16

ofp_table_stats, ofp_flow_stats, and ofp_queue_stats, allow the controller to retrieve

various statistics from the switches, such as flow statistics, which are essential for

DDoS detection. By analyzing the number of flows acquired via stats request from the

controller, DDoS attacks can be predicted in the SDN network. Therefore,

understanding OpenFlow events is crucial for building effective DDoS detection

mechanisms in SDN networks.

2.3.2. Open Flow Messages

OpenFlow messages facilitate communication between controllers and switches and

can trigger specific events. Some key OpenFlow messages are described below:

1. Features Request: A message sent by the controller to the switch, consisting

solely of the OpenFlow header.

2. Features Reply: The switch's response to the controller's ofpt_features_request

message.

3. Packet Out: A message the controller sends to the switch, instructing it to send,

enqueue, or discard a packet. This message includes attributes such as buffer ID,

in_port, actions, and data.

4. Flow Modification Message: A message sent by the controller to the switch that

indicates how to modify the flow table. The hard and idle timeout fields are

critical because they control how quickly flows expire, allowing the controller

to delete questionable flows.

5. Port Modification Message: A message used to change the behavior of physical

ports.

6. Statistics Messages: Messages related to flow statistics, including Aggregate

Flow Statistics, Port Statistics, Individual Flow Statistics, and Table Statistics.

7. Packet-In Message: Sent by the switch to the controller when packets arrive that

don't match any fields. The controller then decides what actions to take, such as

forwarding the packet to a specific port, dropping it, or altering its headers.

8. Flow Removed Message: Sent by the switch to the controller to indicate that a

flow has been deleted. This message includes fields such as the OpenFlow

header, match, cookie field, packet count, byte count, and duration, which can

17

be measured in nanoseconds or seconds. The 'reason field' in this message

specifies why the flow was removed, such as because of idle timeout or hard

timeout.

SDN allows for deploying various applications, such as traffic engineering, network

security, virtualization, routing, network monitoring, and load balancing. SDN's ability

to enable the network to develop at the speed of software rather than hardware has

made all these features possible.

2.3.3. Open Flow Switch

The Openflow switch comprises a flow table, or multiple tables, and a secure channel

to the controller. Each table contains a match field, counters, and instructions for each

entry. The matching process of the switch covers various packet header fields, which

are specified in Table 2.1. One of the fields in the table is the metadata field, which is

defined as a maskable register that carries information from one table to another in

cases where multiple tables are used. This enables the transfer of header information

between tables. It is common for switches to have multiple pipelined tables, with the

packet moving from one table to another until a match is found.

When a packet enters the switch, it is compared against all existing flows in the tables.

The corresponding action is executed if a match is found and the associated counter is

updated. The counters cover various components in the switch, such as counters per

flow entry, per table, per port, per queue, and other areas. For example, the duration

countermeasures the amount of time a flow spends in the table. The controller can

access some of these counters for different purposes. However, it is essential to note

that not all counters are used, as controllers are developed or configured to match the

vendor's needs. Additionally, version 1.3 of the specifications allows counters to be

disabled.

The packet is sent to the controller if a match is not found. In version 1.3 of the

specifications, if no field can be matched, the packet is dropped since its header does

18

not contain any fields specified in Table 2.2. Therefore, the packet is considered

invalid or illegal.

Table 2.2. Packet header match fields.

Header Field

Ingress Port

Metadata

Ether src

Ether dst

Ether type

VLAN id

VLAN priority

MPLS label

MPLS traffic class

IPv4 src

IPv4 dst

IPv4 proto / ARP opcode

IPv4 ToS bits

TCP / UDP/ SCTP src port ICMP

Type

TCP / UDP / SCTP DST ICMP code

In the context of SDN, packets can be either sent entirely to the controller or the switch

can buffer only the header information, which is the default mode of operation. The

packet is encapsulated and marked as an OFPT_PACKET_IN message in the former

case, called Packet-In. The controller is responsible for processing these packets,

considering the number of switches, time of day, packet length, and priority. After

processing, the controller sends a response with an action to be taken for that packet

and subsequent packets from the same source. At this point, the switch's role is limited

to forwarding the packets.

The controller can issue a set of actions to the switch, including forwarding, dropping,

queuing, quality of service, and modifying specific fields such as VLAN tag, MAC

address, or IP address. Forwarding and dropping are the primary actions while queuing

and modifying fields are optional. The controller sets the desired action for the packet

and returns it to the switch through a Packet-Out message.

19

Figure 2.4. Flow entry process [12].

Figure 2.4 illustrates the flow entry process. If a packet is marked with a drop action,

a corresponding flow entry will be created, and any packet matching that flow will be

dropped. Without incoming packets, the flow entry will eventually expire and be

removed from the table after a predetermined time.

2.4. DISTRIBUTED DENIAL OF SERVICE ATTACK

DoS attacks aim to prohibit legitimate users from accessing a service by overwhelming

servers, networks, or service resources. Furthermore, it can not only restrict legal users

from gaining access and utilizing network resources but also destroy the network

[36][37]. DoS attacks can be coordinated, including many clients, to make the attack

more effective. This attack is known as DDoS because it targets a service via

distributed sources. Because these distributed resources are typically geographically

separated, identifying the head of the attack and blocking malicious traffic can be

difficult. While DDoS attacks necessitate client coordination, botnets are commonly

20

used to carry them out. A botnet is a collection of zombie computers (bots) controlled

by a central command and control server.

The DoS/DDoS attacks represent a persistent and severe threat to both traditional and

modern network environments, including the Internet of Things (IoT) [38], cloud

computing[39] [40], and fifth-generation (5G)[41], [42] communication networks. In

recent years, these attacks' frequency, volume, and severity have continued to escalate.

According to the Kaspersky DDoS attacks report for Q4 2020 [43]. Compared to 2019,

the number of DDoS attacks in 2020 increased three times. Likewise, according to

Amazon Web Services (AWS) research, the most significant DDoS attack to date was

2.3 Tbit/s in Q1 2020 [44]. Also, the attacks have become more sophisticated and

intelligent over time, posing a more significant challenge for network security [45].

According to [46] a DDoS attack consists of four components, as illustrated in Figure

2.5:

1. The primary attacker oversees all aspects of the attack preparation and

intelligence.

2. The handlers, or masters, are infected hosts that run special programs to control

numerous agents.

3. The infected hosts run the attacker's malware and generate packet streams to

target victims. These agents, also known as zombie hosts, are frequently

unknown to the owner of the agent system.

4. The intended victim or destination.

21

Figure 2.5. Text text.

The attacker identifies devices that have security vulnerabilities that can be exploited

to gain access to them over the internet. To ensure the effectiveness of the attacking

malware, the attacker must verify that the selected hosts meet the system requirements.

This task is facilitated by the availability of readily accessible programs, thereby

simplifying the attacker's job. The attacker can exploit the detected vulnerabilities and

execute its code on the host. The codes are designed in a format that utilizes only a

fraction of the host system's resources to evade detection by its owners. In addition,

the codes are developed to be as undetectable as possible by the host system's

programs. The attacker needs to communicate with the handlers to assess the eligibility

of hosts for participation in the attack or to manipulate their codes. One or more

handlers are responsible for managing each host, and communication between the

attacker and the handlers is facilitated by UDP, TCP, or ICMP protocols. The attacker

devises a plan for the attack, including the target victim's address and the parameters

of the attack traffic, such as the port, duration, TTL, and traffic type. To avoid

detection, all these characteristics may be altered during the attack stage.

2.4.1. DDOS Attack Types

It is vital to categorize these attacks in order to have a better knowledge of them due

to the fact that there are many different forms of DDoS attacks. Some research, such

as [43], [44], and [45], has established categories for different types of DDoS attacks.

22

The suggested research, on the other hand, offers a taxonomy of the three DDoS

attacking strategies that are used the most frequently: volumetric attacks, protocol-

exploitation attacks, and application-layer attacks. Attacks that flood TCP and UDP

connections are classified as volumetric those, while attacks that flood DNS and HTTP

connections are considered application-layer attacks [2].

 2.4.1.1. Volume Based Attacks (Volumetric attacks)

In a volumetric-based attack, the victim is overwhelmed with massive traffic to drain

its bandwidth. The magnitude of this type of attack is measured in Byte per second

(Bps). However, these attacks include two main types: Flooding attacks and

Amplification attacks.

2.4.1.1.1. Flood Attack

This assault is frequently carried out by sending a significant traffic volume to a target

system, utilizing numerous bots on a botnet. The goal is to flood the targeted system's

network capacity with this large amount of IP traffic, causing the victim host to slow

down or crash, making it unable to reply to legal requests. User Datagram Protocol

(UDP) flood and Internet Control Message Protocol (ICMP) flood attacks are

examples of these attacks.

2.4.1.1.2. UDP Flood

This attack starts on a remote target by rapidly sending many UDP packets to random

ports on the victim machine [45]. As a result, the available network bandwidth is

exhausted [47]. Whenever a specific target system receives a UDP packet, the system

identifies the service accepting connections on the specified port. However, suppose

the system does not have a service accepting connections on that port. In that case, the

server generates an ICMP packet with the message “destination unreachable” and

sends it to the source address, which is usually forged. Because the targeted system's

resources are restricted, delivering enough packets will prevent the victim system from

responding to legitimate requests or potentially stop working altogether. Typically, an

23

attacker spoofs the assaulting packets' source IP addresses so that the actual attackers

are masked, and the zombies, who are frequently weak clients, do not get responses

that might impede their network resources [48].

2.4.1.1.3. ICMP (Ping) Flood

When zombies flood the victim system with ICMP_ECHO_REQUEST (ping)

packets, it's known as a DDoS ICMP flood attack. The aim is to overload the victim's

incoming and outgoing bandwidth by forcing it to reply to all ping queries. Because

the victim's servers frequently attempt to answer with ICMP_ECHO_REPLY packets,

the overall system will be significantly slowed. It also cannot respond to a legitimate

request.

2.4.1.2. Amplification attacks

This attack aims to magnify and reflect the attack by utilizing the broadcast IP address

attribute on most routers, as shown in Figure 2.7.

Figure 2.6. Amplification attack.

https://www.imperva.com/learn/application-security/ping-icmp-flood/

24

Furthermore, an amplification attack is any attack in which the attacker may double

their power using an amplification factor. Amplification attacks are “asymmetric,”

which means that an attacker only needs a small number or low level of resources to

generate a higher level of malfunction or failure of target resources. Smurf Attack

(ICMP amplification) is an example of an amplification attack.

2.4.1.2.1. Smurf Attack

Smurf malware creates faked ICMP packets with the target's IP address as the source

IP address and sends these ping packets to a network amplifier (a system that provides

broadcast addressing). As a result, all the network's connected hosts send ICMP ECHO

REPLY packets to the victim machine. Because the attack factor is doubled by the

number of active hosts in the network, and because there are so many attacking agents,

the bandwidth of the target host is filled, and the host might become overloaded, unable

to reply to legitimate requests [49].

 2.4.1.3. Protocol Exploit Attack

The attack aims to exploit the unique features of the design or implementation of the

protocol running on the target system to trick the victim into exhausting their resources

[48]. The number of packets per second (Pps) is a measurement unit. TCP SYN attack

is an example of a protocol attack.

2.4.1.3.1. TCP SYN Attacks

The perpetrator of a Distributed Denial of Service attack known as a TCP SYN DDoS

instructs zombies to send false TCP SYN requests to a victim server in an effort to

exhaust the target server's available CPU resources and stop it from responding to real

requests. The TCP SYN attack takes advantage of the three-way handshake that occurs

between the transmitting and receiving systems in order to overwhelm the target

system with TCP SYN packets that have forged source IP addresses. Therefore, in

order to react to the uninvited system, the victim's system sends an ACK followed by

a SYN. The server will eventually run out of available CPU and memory resources if

25

it handles a large number of SYN requests but does not get an ACK + SYN answer in

response to those requests. If a significant number of TCP SYN attack requests are

sent and the attacks are allowed to continue for an extended period of time, the victim's

system will ultimately be unable to reply to legitimate users.

2.4.1.4. Application Layer Attack

These are low-volumetric attacks that make use of vulnerabilities in layer seven

protocols such as HTTP. Application attacks are the most difficult to detect and

counteract among DDoS attacks [50]. These are the most sophisticated and covert

attacks [49] since they may be highly successful with a single machine sending low-

volume traffic and crashing the web server. This makes standard flow-based

monitoring technologies like IDS (intrusion detection system) exceedingly tricky to

proactively monitor these attacks. Requests per second (Rps) are used to measure the

Magnitude of such attacks. However, Hypertext Transfer Protocol (HTTP) flooding is

one example of such an attack.

2.4.1.4.1. HTTP flood

In such an attack, distributed clients are coordinated to submit several HTTP GET

requests for diverse content from a specified server, such as files, photos, or other

online resources. To attack a server, using spoofed addresses or sending large amounts

of data is unnecessary. Simple HTTP GET and POST requests are issued, which

demand a massive quantity of data in response, wasting a lot of bandwidth and

bringing the server down. The attack is most effective when the server or application

is forced to allocate the maximum number of resources feasible in response to every

single request.

Every one of these attacks has one thing in common: they flood the victim's network

with traffic, which depletes the available resources on that network. A better

comprehension of the effect that these high-volume flows have on the architecture of

SDN will be facilitated by the identification and avoidance of these flows in the

conventional networks that are in use today.

26

The essence of the attack, as well as its many forms, were briefly covered in the

sections that came before this one. This study is primarily focused on the effects that

DDoS has on SDN, hence a more comprehensive analysis would go beyond the scope

of this research. As a direct consequence of this, the next part will concentrate on

DDoS in SDN. DDoS assaults, which are becoming more common, represent a serious

danger for all networks, but particularly SDN. Due to the fact that the SDN is a new

design and is through the maturation process, there is the possibility that flaws in the

SDN might be discovered, which can lead to a more robust protection against assaults

of this kind.

2.5. DDOS ATTACKS IN SDN AND THEIR EFFECT ON CONTROLLER

The switches in SDN had no control over incoming packets and do not waste time

processing them except if a rule in their tables contained instructions. So, this indicates

that the controller is the first and most affected component in an attack.

Moreover, to determine the existence of the DDoS, the controller must continuously

gather network traffic statistics from the switches. As a result, the controller's burden

grows. Therefore, the controller's security is considered one of the most critical

challenges in developing networks that depend on SDN. DDoS attacks are among the

most hazardous and common in software-defined networks [36][31]. The attacker has

three significant targets in attacking the SDN network: to exhaust the controller's

sources, to consume the bandwidth of the channel between the switch and the

controller, and to clog up the switch's flow tables with superfluous flows. When the

controller attacks, the attacker uses zombie users to send many packets to the

OpenFlow switch. It's hard for the controller to distinguish between malicious and

legitimate traffic clearly. The OpenFlow switch checks the packet header and looks

for a match with its flow table. The packet is delivered to the controller

using PACKET IN message if no match is found. The controller then sends the OFPT

FLOW_MOD message back. This message contains the procedure that will be

performed on the packet and the timeout of the flow allocated to the packet in the flow

table. And therefore, the controller's sources (memory, CPU, and bandwidth) become

depleted as the number of packets routed to it increases. So, it is impossible to process

27

new flow input for legitimate packets coming to the network, and the SDN architecture

comes crashing down. Another issue arising from a DDoS attack is the overloading of

switch tables. If the attack goes undiscovered, the switch tables will remain filled with

flows as the controller keeps adding them. According to the OpenFlow protocol

definition [51], each flow will be assigned a timeout, according to this. If the flow is

idle, it will time out and be deleted from the table.

Because DDoS packets are bogus, no traffic will follow the flow is introduced, and the

entry will remain in the table until it expires. The volume of incoming assault traffic,

on the other hand, will be significantly faster than the volume of flows that are timed

out and eliminated from the tables. In this case, the switch's tables will quickly fill up,

restricting the number of additional flows that can be introduced. As a result, the

network cannot process and route freshly arriving traffic correctly. Figure 2.7 depicts

the discussed scenario.

Figure 2.7. SDN controller systematic attack diagram.

2.6. CONCLUDING REMARKS

This chapter gives an introduction to SDN as well as an overview of the Open Flow

protocol and its standards. A succinct explanation and classification of the several

types of DDoS assaults that may be launched against SDN are also provided. As a

result of reading this review, it is much simpler to identify the efforts that have been

28

done to design a method for detecting and mitigating this attack in order to make SDN

safer. The next chapter will discuss DDoS attack strategies as well as detection

methods that may differentiate regular traffic from abnormal traffic.

29

PART 3

LITERATURE REVIEW

Comprehensive defenses against DDoS attacks have been developed in traditional

network environments for decades. Several techniques for detecting such attacks and

countermeasures may be used to stop them. This chapter has looked at much

research done in SDN environments regarding detection and countermeasure

techniques. Since the proposed study includes two crucial areas, the previous works

have been classified into two main groups: DDoS attack defense techniques based on

SDN and Detecting DDoS attacks with machine learning algorithms.

3.1. DDOS DEFENSE TECHNIQUES BASED ON SDN

DDoS attacks have been researched in production networks for a long time, and several

strategies for detecting and mitigating them exist. On the other hand, SDN is a novel

architecture that provides many functional capabilities for network management,

which supports the detection and prevention of DDoS attacks[25]. This section

highlights some available strategies and techniques for detecting and preventing DDoS

attacks and their limitations. [52] Propose an SDN and Openflow-based intrusion

detection system. Figure 3.1 depicts the architecture of such a system. The procedure

renames the existing controllers to sub-controllers and adds an event processing

module on top of them. As a hyper controller, the event processing module receives

events from the sub-controllers and evaluates them for potential attacks. It appears that

the hyper controller is intended to have a more comprehensive view of the network for

a deeper understanding of the attack. However, this is only the author's conjecture. The

hyper controller attack detection method is not disclosed. The solution has not been

evaluated where the findings should be compared to a solution used in SDN to validate

them.

30

 Figure 3.1. Architecture for Event-Based IDS [52].

Authors in [36] suggested an approach based on fusion entropy. This method

efficiently uses the advantages of log-energy and information entropy to quickly detect

the attack with an apparent change in the entropy value. The experimental results

proved that the entropy decreases by 91.25% of its value in regular data traffic, which

makes the method more efficient than the one that uses one type of entropy in detecting

DDoS attacks. However, the threshold cannot be dynamically modified, a drawback

of this method.

In [12], The author proposed a lightweight and effective solution based on the entropy

variations of the destination IP to detect DDoS attacks and defend the SDN

architecture of the network in its early stages. According to findings, this technique

may discover the attack on a single host or a subnet within just 250 packets of

malicious traffic. In addition, the threshold value was set to achieve a detection rate of

96%. However, the authors focused on the attack detection mechanism regardless of

the attack's mitigation or determining its source. Also, the attack on the entire network

will not be detected in this mechanism, especially since the change in the value of the

entropy will then not be noticeable. On the other hand, utilizing the suggested entropy

detection technique alone will lead to false positive attack detections when the

network's traffic load surges during peak times with legal traffic. This is due to the

given algorithm's inability to adjust to variations in traffic load dynamically. Finally,

31

since this method is a statistical method, and these methods rely on historical network

flow information, which may not accurately capture the dynamics of current network

traffic due to the evolving nature of malicious network flows. Moreover, statistical

techniques heavily rely on user-defined criteria that must adapt dynamically to keep

pace with network changes. The computational effort required for entropy and

correlation-based methods can be significant, rendering them unsuitable for real-time

detection[53].

The Safe-Guard Scheme (SGS) was proposed in SDN to secure the control plane from

DDoS attacks [54]. The proposed method uses DDoS attack detection behaviours that

rely on the data plane and control plane cooperation. It is divided into two steps:

Dynamic controller defense in the control plane, and anomalous traffic detection,

which identifies fraudulent flows from authentic ones in the data plane. However, since

this method relies on multiple controllers, the detection time is significantly increased.

Moreover, the technique is incapable of detecting low-rate DDoS attacks.

Despite the benefits of SDN, it also comes with a variety of security risks that are

inherent in traditional networks. TCP SYN flooding is one of these risks, and it is the

most common of all DoS attacks, which exploit the TCP vulnerability at any form of

TCP-based service or the web server end. SAFETY is a novel technique for detecting

and mitigating TCP SYN flooding in the early stage, proposed in [55]. SAFETY uses

the entropy approach to estimate the randomness of flow data, taking advantage of

SDN features such as programming and broad visibility. The authors carried out

extensive tests and found that the average response time and average assault detection

time have significantly improved. However, this strategy is only suitable for dealing

with a single victim, and when numerous victims are involved simultaneously, the

network becomes unstable.

3.2. DETECTING DDOS ATTACKS WITH MACHINE LEARNING

In SDN, machine learning algorithms perform admirably when detecting DDoS

attacks [25], [2]. The researchers in [56] employ the method called Self-organizing

Maps (SOM) for detection DDoS [57]. This research demonstrates effective DDoS

32

attack detection with high detection rates and meager false alarm rates. The accuracy

of this method is between 98.6% and 99.11%. This approach trains SOM by gathering

flow statistics from Openflow switches, and NOX is the controller. The metrics that

are examined during SOM training include average bytes per flow, growth of single

ports, an average duration per flow, growth of single flow, average packet per flow,

growth of single ports, and percentage of pair flows. As time goes on and more

statistics are obtained, the SOM will enhance the statistics of its vectors.

 Most networks that non-SDN use this technique [25]. It follows the same process and

ignores DDoS's impact on the controller when applied to SDN networks. So, before

the solution can be utilized in the network, it must operate concurrently with SDN and

undergo a brief training period. Another problem is that SDN could regularly alter the

network. This indicates that the SOM solution must be retrained for improved security.

Finally, a lightweight solution becomes a significant burden for the network as the

SOMs' neurons must grow as the network grows, resulting in expansive neurons in the

network. Furthermore, another issue with this approach is that false negatives will be

reported when the attack parameter is set to a low value. In [58] the researchers use

three machine learning methods named: Support Vector Machine (SVM), k-nearest

neighbors (K-NN), Random Forest (RF), and four deep learning mechanisms such: as

multilayer perceptron (MLP), convolutional neural network (CNN), Gated recurrent

unit (GRU), Long short-term memory (LSTM), to detect DOS/DDOS attacks in both

transport and application layers in SDN. The authors used two ways to evaluate the

proposed work: 1) Using an Open Network Operating System (ONOS) controller and

a Mininet network emulator on a testbed. 2) The CICDoS2017 and CICDDoS2019

datasets were used, and both are up to date. This work had the best results, with up to

95 % accuracy rate for application-layer DDoS attacks and up to 98 % accuracy rate

for transport DDoS attacks. However, this research focused on detecting DDoS attacks

without addressing the strategy of mitigating those attacks when they occur.

In [59] , the authors used machine learning algorithms such as: (RF, Decision Tree,

SVM, and MLP) to detect many types of DDoS attacks named: (flow-table attacks,

controller attacks, and bandwidth attacks). Scapy tools are used to make each attack.

To simulate an SDN environment, Mininet with a POX controller was used. Moreover,

33

a particular POX module was codified to gather and save the data in a data flow file to

create the data set. As a result, the RF algorithm has the best accuracy, while the DT

algorithm has the fastest processing time. However, online detection of DDoS attacks

in real traffic wasn’t evaluated in this proposed work, nor was the mitigation or

avoidance technique for DDoS attacks. In addition, the authors used the same features

with the dataset to train the classifiers for detecting the three different types of attack,

which caused the ‘controller attack’ to have the lowest accuracy in classification by all

algorithms. So, if the researchers are more interested in this type of attack, a special

classifier may be created to identify it. Other attributes might be selected to categorize

this type of DDoS Attack better.

Furthermore, in [2] several feature selection methods have been employed to identify

the best features from the NSL-KDD dataset for training and testing ML models. These

methods can be classified into three categories: embedded, wrapper, and filter.

Besides, the list of best features chosen for each feature selection technique is used as

a source of information through various ML classifiers such as RF, DT, SVM, KNN,

and NB (Naïve Bayes). Eventually, the experimental results demonstrate the

effectiveness of the RF classifier with the recursive feature elimination (RFE), which

achieves 99.97% accuracy for DDoS attack detection in SDN controllers. However,

this research relied on the NSL-KDD dataset, which does not represent real-world

network traffic [60]. Also, it hasn't contained any new data items, and some tuples are

backdated [33]. Therefore, it was better to use the Up-to-Date Dataset.

In the SDN context, authors in [32] utilize machine learning techniques such as SVM

and DT to detect SYN flooding attacks on one host in SDN. To connect the topology

of the SDN network and simulate it, the Mininet simulator was used. Furthermore, the

suggested model was trained and tested using the KDD99 dataset. In these conditions,

experiments demonstrate that SVM outperforms Decision tree techniques. However,

the ML classifiers in this work achieved low accuracy, 78% for DT and 85% for SVM.

The authors in the previous study [25], [61] mainly utilized the KDD99 dataset with

an SVM classifier and acquired 99% accuracy. On the other hand, The KDD'99 dataset

is old [62], unbalanced, and contains duplicate data, introducing a bias into the result

set [33], [25].

34

Table 3.1. Comparative Analysis of DDoS Attack Detection Methods Using Different

Classifiers.

Method Accuracy Dataset Limitations Attack Type

SVM, K-

NN, RF,

MLP, CNN,

GRU,

LSTM [53]

Up to 95%

for

Application-

layer DDoS

attacks, up to

98% for

Transport

DDoS attacks

CICDoS2017

and

CICDDoS2019

Focused on

detection, not

mitigation.

Application-

layer DDoS

Attacks, &

Transport

DDoS

Attacks.

RF, Decision

Tree, SVM,

MLP [54]

Best accuracy

with RF,

fastest

processing

time with DT

Custom

Dataset

No real traffic

evaluation.

Low accuracy

for "controller

attack".

Flow-table

attacks,

Controller

Attacks, And

Bandwidth

Attacks.

RF, DT,

SVM, KNN,

NB [2]

99.97%

NSL-KDD

dataset

Relied on

outdated NSL-

KDD dataset.

N/A

SVM, DT

[27]

78% for DT,

85% for SVM

KDD99

dataset

Low accuracy of

78-85%.

Used

outdated KDD99

dataset.

SYN

Flooding

Attacks.

Stacking

classifiers

[Proposed

solution]

99.99% for

the Stacking

model

Custom

Dataset

Binary

classification;

multi-class

approach not

used.

UDP &

ICMP Flood

attacks,

Smurf Attack,

TCP SYN

Attack.

Machine learning-based approaches are favored to identify suspicious activities based

on strange network behavior. However, the dataset that has been used for training often

affects how well these techniques [63].

3.3. CONCLUDING REMARKS

This chapter has surveyed much research performed in SDN milieus regarding

detection and countermeasure techniques. Since the proposed work in this research

includes two significant areas, the previous results have been categorized into two

35

main groups: DDoS attack defense mechanisms predicated on SDN and Detecting

DDoS attacks with machine learning algorithms.

36

PART 4

RESEARCH METHODOLOGY

This chapter presents the proposed solution for detecting and mitigating DDoS attacks

on computer networks. The chapter begins by discussing the three main modules of

the resolution, namely Feature Creation, Stacking Classifier, and Attack Detection.

Section 4.2 outlines the necessary Environment Requirements, including the RYU

Controller, Mininet Network Emulator, and Packet Generation using Hping3. The

following section, 4.3, provides information about the Data Collection and Dataset,

which includes data on the volume of network traffic in three categories: TCP, UDP,

and ICMP. Section 4.4 describes the Feature Selection process, which utilizes a

Random Forest to calculate the value of variable importance. The subsequent section,

4.5, details the Classification Methodology, which includes several algorithms, such

as Random Forest (RF), K Nearest Neighbor (KNN), Decision Tree (DT), Logistic

Regression (LR), Multi-Layer Perceptron (MLP), and Stacking Classifier. Section 4.6

explains the Grid search hyperparameter tuning method to optimize the solution's

performance.

Machine learning aims to teach computers to carry out specific tasks without explicit

instructions by learning patterns from datasets. SDN has proven helpful in identifying

DDoS attacks by building predictive machine learning models. Five machine learning

techniques were used on a DARPA dataset, with SVM providing the most outstanding

detection accuracy and lowest false positive rate[64]. However, the dataset obtained

from the simulated software-defined network environment is not compared with the

analysis reported in that study.

Self-organizing Maps (SOM), an unsupervised artificial neural network, have also

been utilized to detect flooding attacks in SDN [56]. The suggested method, when

compared to other methods using the KDD-99 dataset, achieves a high detection rate

37

and a low rate of false alarms in less period of computing (CPU) time by training the

traffic flow with 6-tuple features.

Deep Learning is another exciting method for SDN DDoS attack detection [65][66].

Although machine learning algorithms have been used to detect DDoS in SDN, most

use the KDD and NSL-KDD datasets [25], with only a few extracting real network

data from SDN configuration.

This chapter focuses on detecting DDoS attacks in SDN environments, utilizing

Machine Learning (ML) and MLP algorithms. The threat of DDoS attacks on network

infrastructure has increased in recent years, and it is crucial to develop effective

strategies for their detection and mitigation. This study employed ML/DL algorithms

to detect DDoS attacks using a dataset created for this purpose.

4.1. PROPOSED SOLUTION

The proposed approach for intrusion detection, as illustrated in Figure 4.1, aims to

enhance the security of SDN-based networks by employing automated and intelligent

analysis of network flows, followed by intrusion detection mechanisms. This end-to-

end intrusion process is based on three main modules, Feature Creation, Stacking

Classifier, and Attack Detection, implemented in an SDN application at the application

layer. The Feature Creation module collects network flows from the switches at regular

intervals and computes the required features for each flow, which the Stacking

Classifier subsequently uses. The stacking classifier applies its pre-built intrusion

detection model on the flow instance and forwards the output to the Attack Detection

module. Finally, the Attack detection module determines the appropriate course of

action based on the classification result and installs flow rules into the corresponding

switches, identifying the affected host.

38

Figure 4.1. Network security with AI-Powered SDN architecture.

The process outlined involves the periodic collection of network flow entries from the

switches, with features being created for every flow retrieved by the Feature Creation

module. The "_monitor" function initiates the process by sending a request for

statistics to all the switches registered with the controller. Once the switches receive

this request, they send the relevant statistical data back to the controller. The controller

then processes this data using the "_flow_stats_reply_handler" function to extract the

relevant information.

After the data have been retrieved, they are placed in a file known as

"PredictFlowStatsfile.csv," which is a text document that details the flow of network

traffic in the network that is being monitored. After then, the "flow predict" function

is invoked, which makes use of a Stacking classifier that has been pre-trained to make

a prediction about the flow of network traffic based on the statistical data that has been

acquired. The detected attack type as well as the source identifiers of the flow, which

include the source IP address, the source MAC address, and the physical switch port

the packet is originating from, are transmitted to the Attack detection module if the

39

classification conclusion is any form of attack. The machine learning model is

constantly updated by inserting fresh training data for previously identified kinds of

attacks, as well as adding previously unknown types of attacks when they are found.

The training data for the stacking model consisted of a variety of different DDoS attack

types as well as regular traffic. This led to the formation of a binary classification

model.

To summarize, this process involves collecting network statistics data from switches,

processing the data to extract relevant information, storing the information in a file,

and then using a pre-trained Stacking Classifier to predict the flow of network traffic

based on the collected statistics.

Moreover, Figure 4.2 displays the systematic workflow of the model under

consideration, which commences with acquiring data from the source. The data is then

transformed into a structured dataset, which undergoes a preprocessing stage to

enhance its quality and relevance. The model is then generated and applied to the

preprocessed dataset to extract meaningful insights. To facilitate a comprehensive

understanding of the model, each of its constituent steps is explained in detail in the

subsequent sections.

Figure 4.2. Workflow of the model.

40

4.2. ENVIRONMENT REQUIREMENTS

A customized topology is designed for this study to capture actual SDN data. The

proposed methodology employs a Stacking classifier that integrates four machine

learning algorithms and an MLP as a deep learning technique to classify DDoS attacks

based on the collected data as input. The simulation environment utilized for this study

is the Mininet virtualized network environment that employs the RYU controller based

on the Python programming language. In addition, Hping3 scripts [67] are utilized to

generate legitimate and malicious network traffic on the hosts in the simulation.

4.2.1. Controller

For the initial stage of the experiment, the selection of a controller is necessary. There

are several well-known controllers available. The one utilized in this experiment is

RYU[68] based SDN framework that supports the full OpenFlow version. RYU has

several advantages over other SDN controllers. It is open-source, highly customizable,

and written in Python, making it easy to learn and use.

Additionally, RYU is highly scalable and can manage and control networks of any

size. Besides, RYU has a robust API that allows for the development of custom

applications to control the network. Finally, RYU has several features that can be used

to simulate a DDOS attack, such as the ability to set up virtual networks and monitor

and control traffic flows.

4.2.2. Network Emulator

The network emulator utilized for this experiment is Mininet [69]. It is a standard

network emulation tool that may be applied to SDN. Mininet may simulate a network

using the kernel namespace feature on a laptop or PC. Due to network namespace,

individual processes can have their own network interfaces, ARP tables, and routing

tables. Mininet takes advantage of this kernel ability. To operate switches and hosts on

the kernel, it utilizes process-based virtualization. A variety of large networks1 with

various topologies may be tested and emulated with the help of a controller. In

41

addition, the Mininet emulation-created code may be transferred to a real production

network. As shown in Figure 12, Mininet makes it simple to design complex and

unique network topologies that operate with several concurrent users independently.

The test beds may be created and tested with help from the Command Line Interface

(CLI). Mininet also includes the MiniEdit tool, which aids in network design and

implementation after user interface editing is done. One OS can support up to 4096

hosts, according to claim Mininet.

Figure 4.3. Mininet Features.

4.2.3. Packet Generation

Hping3 [67] is used in this research to create legal and attacking traffic. hping3 can

generate ICMP/UDP/TCP packets and show target responses, even as ping does for

ICMP replies.

Python is utilized to write the code that generates random source IP addresses and host

IP addresses. The " randrange " function derives from the "random" function. IP

addresses in Mininet are gradually assigned starting from 10.0.0.1. The source IP

address for normal traffic is constructed using the range specified in the script (e.g.,

10.0.0.1 – 10.0.0.19).

The random function "randrange (1,19)" establishes the destination IP addresses. The

attack scripts are employed to simulate attacks on a single victim. All packets in the

single-victim attack script are forwarded to the victim's destination address, specified

when the attack script is called. However, the same method used for normal traffic

produces the source IP addresses of attack traffic.

42

4.2.4. System Architecture and Setup

The experiment was performed on a Dell laptop with an Intel Core i7-10870H,

2.21GHz CPU, and 24 GB RAM as a host machine. Python is the language used to

create all simulation software besides the Ubuntu server as the RYU controller's

primary operating system. The operating system is Linux Ubuntu 14.04.6 and Mininet

version 2.2.2, which supports the 1.4 Openflow version and is used to simulate the

network's topology. Oracle Virtual Box served as the virtual environment for

simulation. Six switches and 18 hosts were used to establish a network using Mininet,

as shown in Figure 4.4. Network switches were Open Virtual Switch (OVS)[70]. An

OVS switch utilizes both hardware and software to function. There is no distinction

between Openflow and OVS switch for this work. Both do the same task, and Mininet

supports both.

Figure 4.4. Network experiment using six switches and 18 hosts.

Even though it isn't a large-scale topology, an attacker may use packet manipulation

tools on a single machine to produce spoofed packet streams. Because these streams

appear to flow from several IP addresses, this environment effectively simulates a

much broader topology. Additionally, the method won't change significantly

depending on whether the dataset is obtained using one controller or multiple

controllers [31].

43

Table 4.1. Experiment Setup.

Equipment/Software Specifications
Host Machine Dell laptop with Intel Core i7-10870H,

2.21GHz CPU, and 24 GB RAM

Virtual Environment Oracle Virtual Box

Guest Operating System Linux Ubuntu 14.04.6

Network Simulator Mininet version 2.2.2

Controller RYU controller

Switch Type Open Virtual Switch (OVS)

Number Of Switches 6

Number Of Hosts 18

Programming Language Python

Attack Simulation Single machine with packet

manipulation tools” Hping3.”

Dataset Collection One controller

The following subsection discusses details on the dataset produced for SDN-based

network simulation.

4.3. DATA COLLECTION AND DATASET

As technology develops and the amount of data generated increases, it is increasingly

important to have an accurate means to represent data before attempting to create an

algorithm that can effectively solve the problem. Over time, the focus has shifted to

developing algorithms that can effectively address the challenges posed by the

emergence of 5G, IoT [71], and cyber-physical processes [72].

Likewise, with the rise of SDN technology, the threat of DDoS attacks has become

increasingly prevalent. To better understand and protect against these attacks,

researchers have developed datasets of SDN-based DDoS attack scenarios. These

datasets provide a comprehensive overview of the various types of DDoS attacks that

can be launched against SDN networks and the techniques used to detect and mitigate

them.

The normal datasets are used as the baseline for the machine learning method to detect

anomalies, and deviations from these baselines are marked as attacks [73]. Any

machine learning algorithm's efficacy is determined by its ability to identify

44

abnormalities. This necessitates a comprehensive dataset with both normal and

abnormal network traffic. As a result, it is vital to ensure data accuracy and integrity

to construct a reliable detection system. However, developing accurate detection

algorithms is difficult due to the benchmark DDoS attack dataset that is currently

available. For example, The KDD’99 dataset has many duplicate records, which

frequently causes a bias in the detection results in favor of the frequently occurring

forms in the training set [33].

Additionally, the researcher [74]pointed up a few issues and weaknesses in the

CICIDS 2017 data. The dataset includes 203 missing information instances and

288602 missing class labels. The CICIDS 2017 dataset also appears unsuitable for any

IDS training due to its enormous size and abundance of duplicated information.

Furthermore, most proposals did not take advantage of the new security datasets

[75][45], [58], making it impossible to evaluate the most recent DoS/DDoS attacks

[25]. Moreover, these datasets illustrate intrusions that can occur in a single SDN

network component without showing attack mechanisms across several SDN layers.

Consequently, a new dataset with modern DDoS attacks in SDN was gathered and

analyzed to overcome the drawback of the benchmark datasets currently available,

such as (1) Lack of a contemporary attack style in SDN. (2) absence of contemporary

normal traffic scenarios. (3) varying how training and testing sets are distributed[76].

This means that some attack types available in the testing set of the existing benchmark

data sets are not present in the training set.

The dataset used in this research consists of four different kinds of DDoS attacks, as

well as realistic normal traffic activities taken from the controller every 10 seconds.

Figure 4.5 briefly describes the data-cleaning procedure used to create the dataset for

classification.

45

Figure 4.5. Procedures for collecting and cleaning data.

Dataset: Complete set of data that is organized in rows and columns.

This study uses the SDN Dataset created in the SDN environment. The data must be

preprocessed before beginning the training of a machine learning model. However,

This Dataset contains 21 features and 2,667,523 traffic flows in all. The normal data

brings a total of 906853 which is labeled as “0”. There are also 1760670 instances in

the attack traffic with a “1” label.

Meanwhile, the dataset provided includes information on the volume of network traffic

in three categories: TCP, UDP, and ICMP. The distribution of traffic by the protocol

is represented as a pie graph, shown in Figure 4.6. Each section of the chart

corresponds to one of the three protocols, and the size of each area is proportional to

the traffic volume for that protocol.

46

Figure 4.6. Proportional distribution of network traffic by protocol.

More profoundly, the provided dataset contains information on the volume of network

traffic in six distinct categories: TCP normal, TCP DDoS, UDP normal, UDP DDoS,

ICMP normal, and ICMP DDoS, which are present in Figure 4.7. The dataset consists

of the number of network traffic instances in each category, which is presented as

follows: TCP normal (359530), TCP DDoS (689937), UDP normal (127844), UDP

DDoS (482066), ICMP normal (419479), and ICMP DDoS (588667). The data

analysis revealed that TCP DDoS traffic has the highest volume among all categories,

followed by ICMP DDoS, UDP DDoS, TCP normal, ICMP normal, and UDP normal

traffic, respectively.

Figure 4.7. Volume of network traffic by type in a six-category dataset.

47

It can be noted that the dataset is considered balanced as there is no significant bias

towards either normal or DDoS traffic instances. Although the amount of DDoS traffic

is higher than normal traffic, the ratio of normal to DDoS traffic instances is not

heavily skewed towards one category, indicating a balanced dataset. This type of

balanced dataset is ideal for ML algorithms, as it ensures that the algorithm is exposed

to sufficient data from normal and DDoS traffic instances.

Besides, the dataset contains various features that can be used to analyze and identify

network traffic patterns. These features have been grouped into several categories,

including network identifier, packet-based, bytes-based, and flow timer features. In

this way, the various types of features in the dataset can be used to gain insights into

the behavior and characteristics of network traffic.

1. Network identifiers feature (socket information features): identify the source and

destination of network traffic. These features include IP addresses (ip_src,

ip_dest), port numbers (tp_src, tp_dest), and protocol type(ip_proto) and

(flow_id). it can be used to track the origin and destination of network traffic and

identify malicious or suspicious activity.

2. Packet-based features: describe the characteristics of individual packets in a

network—for example, packet_count.

3. Bytes-based features measure the size of data being sent or received, such as

byte_count.

4. Flow timer features are attributes that measure the duration of a flow. Include:

4.1. flow_duration_sec.

4.2. Idle_timeout: measures when a flow can remain inactive before it is

terminated. 4.3. Flow end time and flow idle time.

4.4. Idle_time: the amount of time a flow was inactive.

4.5. Hard_time: is the amount of time a flow was active.

These features can be used to identify patterns and trends in network traffic and make

predictions about future data. It can also be used to detect anomalies and malicious

activity.

48

In addition, since the features have varying ranges, they need to be normalized such

that the scale of values is restricted to falling somewhere between 0 and 1. Data

normalization helps to guarantee that all of the characteristics included within a dataset

are measured on the same scale, which can contribute to an increase in the accuracy of

machine learning models. In addition to this, it helps decrease the impact of outliers as

well as the computational cost of training models.

Finally, the dataset was split into two files using the ratio scale measurement method

to obtain accurate findings for this experiment. 75:25 is the ratio used to partition this

dataset, 75% for the training set and 25% for the testing set [77]. This allows the model

to be trained on a large enough dataset while still providing enough data for testing the

model's performance [25]. These training and testing sets will then be saved as CSV

files.

4.4. FEATURE SELECTION

When analyzing the data used to design and optimize the model, it was observed that

some features had minimal contribution or even negatively impacted model accuracy

when the number of insignificant features was high [78] [79]. To address this issue,

random forests to calculate the value of variable importance [80] was utilized for

feature selection. The first few features obtained through this method, listed in

descending order of significance, are presented in Figure 4.8 below.

49

Figure 4.8. Importance of the features.

The feature selection process that is supported by random forests estimates the number

of votes for the proper class by utilizing the out-of-bag (OOB) cases that are present

in each tree. This allows the algorithm to evaluate the relevance of a given feature.

After performing a random permutation on the values of the characteristic in question,

this number is then compared to the number of votes that were cast for the correct

class. The raw significance score for the feature is calculated by taking the average

difference between these two values and averaging it. This value is then divided by the

feature's standard error to get at the z-score. After that, the significance of the feature

is evaluated by subtracting this z-score from zero. This gives the value of the feature's

relevance. A representation of the feature significance values, with the order of

importance decreasing from highest to lowest, is shown in Figure 4.9.

50

Figure 4.9. Feature importance visualization plot using RandomForestClassifier.

As depicted in the previous figure, The bars in the plot represent each feature's

importance, with the higher bars representing the most critical features. The plot can

be used to identify the key features that should be used to make accurate predictions.

Additionally, this plot can help determine which features are unnecessary for making

accurate predictions.

Accordingly, it is noticeable that the intrusions are likely related to the source of the

IP address. This indicates that the origin of the IP address may be an informative and

relevant factor when detecting intrusions.

However, feature selection is a critical component in this research due to the potential

for overfitting when many features are used in training and testing on datasets with

limited data [81]. Having too many features can lead to sampling error, resulting in a

decrease in the model's ability to generalize. As such, it is important to carefully

identify the most useful features that have the most impact on model accuracy. So that

the feature selection was applied to remove fields such as datapath_id, idle_timeout,

hard_timeout, flags… that were determined to have little impact on the investigation.

51

4.5. CLASSIFICATION METHODOLOGY

Machine learning algorithms can learn from data and create models to uncover hidden

insights and detect anomalies without requiring explicit programming. This makes

them well-suited for detecting DDoS flooding attacks by identifying deviations in

traffic flow. However, selecting the most appropriate machine learning model for a

given dataset is essential for accurate classification and prediction. The model's

accuracy is critical in determining the quality of the predictions and providing

scientific evidence for decision-making and policy formulation. This study evaluates

a variety of machine learning models for their effectiveness in detecting DDoS attacks

in SDN environments, and the relevant characteristics of each model will be discussed

in detail.

4.5.1. Random Forest (RF)

Random Forest (RF) is a robust ML algorithm that is used for supervised learning

tasks. It uses numerous decision trees to create a forest of decision trees and combines

the results of each tree to make a more accurate prediction [82]. To understand how

random forest works, one must first understand a decision tree. A decision tree is a

structure that divides data into distinct branches based on certain conditions or

thresholds. The mathematics behind this structure involves using a recursive function

to construct the tree from the bottom up. This function recursively splits input data into

smaller subsets until all the data points in each subset have an identical output value.

Once the recursive process is complete, a decision tree is formed, which can be used

to make predictions about unseen data.

The random forest algorithm combines multiple decision trees to make predictions

using an assembling technique called bagging. Bagging stands for 'bootstrap

aggregating,' which involves taking various samples from the dataset with replacement

so that each instance contains some elements of both classes. These samples are then

used to combine several decision trees to form an ensemble model. This bagging

technique helps reduce variance between separate models while increasing overall

accuracy.

52

This algorithm also relies on several mathematical operations such as entropy,

information gain, and Gini impurity for training and fitting the model. Entropy

measures how much uncertainty exists in each set of data points. Information gain

measures how different attributes in a dataset can be used to divide data points into

distinct subsets. Gini impurity measures how “pure” each subset of the data point is.

Using these operations, random forest finds optimal thresholds for splitting datasets

into distinct branches and building accurate prediction models.

Figure 4.10 illustrates a decision tree that was generated using a random forest in order

to perform a job involving the identification of network intrusions. This perspective of

the tree indicates that the entropy of the surrounding environment diminishes as one

gets closer to the leaves. A particular threshold of the feature values is used by the

algorithm to identify which nodes further up in the tree should be divided into two

separate nodes. A random forest is a kind of machine learning model that uses a variety

of decision trees, each of which is generated using a randomly chosen portion of the

training dataset.

Visualizing a Sample Decision Tree from Random Forest can help gain insight into

the model's inner workings. The decision tree can show which features are most

important for predicting whether a network intrusion has occurred. It can also reveal

any biases or inconsistencies in the data. Visualizing the tree can help identify the most

valuable features and provide an opportunity to fine-tune the model’s hyperparameters

[83].

53

Figure 4.10. An example random forest tree for a network intrusion detection task.

4.5.2. K Nearest Neighbor

K Nearest Neighbor (KNN) is a supervised machine learning technique that makes use

of a distance metric to determine which K examples in the training data are the most

similar to new cases. It does this by finding the K neighbors with the shortest distance.

The forecast for the new instance is then determined by the algorithm by taking the

average of the results obtained by the neighbors. This technique is a non-parametric

strategy that may be used for classification as well as regression work. This means that

it does not make any assumptions about the distribution of the data that is being used.

Because of this, it is well suited for discovering patterns in large data sets.

To guarantee precise results from the KNN prediction method, the appropriate value

for k must be selected. When the value of K in the k-nearest neighbor method is

54

increased, the algorithm's predictions become more dependable and accurate as a result

of the majority voting up to a certain point without adding inaccuracy. This is because

the process uses majority voting. On the other hand, when the value of K is reduced

until it reaches 1, there is no longer a majority vote, which results in forecasts that are

less dependable and more prone to mistakes. In addition, KNN trains sophisticated

models rapidly and is resistant to noisy training data [80], which means that it is able

to deliver correct results even when the data being used is not ideal.

4.5.3. Decision Tree

The Decision Tree (DT) method is a kind of supervised learning that is used to solve

issues involving classification and regression. In order for it to operate, a model is first

constructed that is able to forecast the value of a target variable by learning basic

decision rules that are inferred from the properties of the data, and the decision tree

itself also continuously developed [81]. The nodes located at the root, decision, branch,

and leaf of a DT make up the majority of its constituents. Each node in the tree

illustrates a choice that was made about a component of the whole data set. According

to the equation, the information theory, also known as entropy, is used in order to

determine the location of the root, the nodes, and the leaves , as specified in Eq. (1)

Entropy (P) =− ∑ 𝑃𝑖 log (𝑃𝑖)𝑁
𝑖=1 (4.1)

Where p is the data's probability distribution, entropy is a measure of the randomness

or uncertainty in each data set. In decision tree algorithms, entropy is used to measure

the efficiency of splitting a node based on a particular feature. An entropy value near

0 indicates that the split is efficient and can be used to create a more accurate model.

In contrast, a higher entropy suggests that the separation is less efficient. In network

intrusion detection tasks, using entropy in the decision tree can be used to identify

malicious activities quickly.

There are several hyper-parameters that have the potential to regulate DT structure.

These hyper-parameters include the maximum number of splits, the minimum leaf

55

size, and the minimum parent size. Because of this, it is very necessary to do DT

optimization in order to develop a model that is straightforward and applicable.

On the other hand, in order to construct a DT, the following procedures are taken:

1. A training set and a test set are created from the data set.

2. The training set is used as the tree's root input.

3. The root is identified by considering information theory described in Equation

(1).

4. The tree is pruned to have a single node at each node.

5. Continue with steps 1 through 4 until all nodes are leaf nodes.

Figure 4.11. Decision tree for a network intrusion detection task

56

A perspective of a decision tree that was built for a sample network intrusion detection

job based on the SDN dataset is shown in Figure 4.11. However, A decision tree graph

is a hierarchical structure that may be used to depict the choices that are produced by

an algorithm that uses decision trees. It is made up of nodes and branches, with each

node standing for a choice and each branch expressing the many potential results that

decision may have. This graph may be used to rapidly determine the most significant

decisions that are being made by the algorithm, in addition to the connection that exists

between the various options. It is a potent instrument for gaining an understanding of

the algorithm's behavior and for assisting in the process of fine-tuning the algorithm's

parameters in order to generate more accurate models. The entropy of the nodes

decreases as they go closer to the leaves, as seen in the figure.

4.5.4. Logistic Regression

A classification model known as logistic regression (LR) is one that makes use of a

mathematical function to make predictions about the likelihood of a binary event. It is

a supervised learning algorithm, which means that it learns from data that has been

labeled in order to generate predictions about data that has not yet been seen.

The logistic function and the sigmoid function serve as the foundation for this

approach. This function takes any real-valued input and returns a number between 0

and 1 as the output. This value may be understood as the likelihood that the positive

class will occur. The following is a definition of the logistic function:

p(x) = 1 / (1 + e^(-z))

Where:

 p(x): is the predicted probability of the positive class,

 x: is a vector of input features,

 z: is a linear combination of the input features and their corresponding weights,

e: is the base of the natural logarithm.

57

The logistic regression model is capable of dealing with both continuous and

categorical variables that are input. In order for categorical characteristics to be used

as input to a model, they are normally one-hot encoded binary variables after going

through a conversion process. LR provides a number of benefits when used to machine

learning. It is a straightforward model that is easy to understand and can be rapidly

trained using extensive datasets. Additionally, it is able to deal with noisy or missing

data and is less prone to overfitting than other models that are more sophisticated.

However, it does have a few drawbacks, such as the assumption that there is a linear

connection between the input characteristics and the output probability, as well as the

difficulty in dealing with extremely non-linear correlations. Nevertheless, it is still a

useful tool. In machine learning, logistic regression is a model that is both practical

and commonly utilized for classification problems.

4.5.5. Multi-Layer Perceptron (MLP)

In the field of artificial neural networks, a Multi-Layer Perceptron (MLP) is a form of

neural network that is often used for classification and regression problems. There are

many layers of neurons that make up this structure. Every neuron is a mathematical

function that receives one or more inputs, performs a weighted sum on those inputs,

includes a bias term, and then runs the result through an activation function.

In a multilayer perceptron (MLP), the input layer is made up of input nodes, which are

responsible for receiving the characteristics and attributes of the input data. The output

layer is made up of nodes known as outputs, which are responsible for producing the

network's final predictions or outputs. It is possible for there to be one or more hidden

layers containing hidden nodes in between the input and output layers. The hidden

layers enable the network to learn complicated patterns in the input data by modifying

the inputs via non-linear functions. This is made possible by the fact that the network

has access to the data.

The Scikit-learn platform [84] is utilized to implement all the discussed ML

techniques.

58

4.5.6. Stacking Classifier

Once the data has experienced preprocessing, generating the model is next. This study

focuses primarily on the machine-learning technique of stacking, as depicted in Figure

4.12.

Figure 4.12. Stacking concept diagram.

A greater degree of prediction model performance may be reached by the use of the

stacking methodology, which combines many tiers of classifiers. A collection of

common machine learning algorithms makes up the first level, which is often referred

to as the "base level" or "base learners." The information gleaned from the primary

level is used by the second level, often known as the "meta-level" or "meta learners"

[85][27]. The heterogeneous nature of multiple classification algorithms is leveraged

by stacking them in two levels, enabling the optimal combination of the strengths of

each classifier [86]. This is especially beneficial as every classifier comes with specific

strengths and drawbacks. In this study, the following classifiers were employed as base

learners: Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), Multi-

Layer Perceptron (MLP), and K-Nearest Neighbors (KNN). To ensure model

performance, 5-fold cross-validation was performed on the preprocessed data to avoid

overfitting. This involves dividing the data into five equal parts or folds, using four

parts for training and one part for validation, and repeating the process five times, with

59

each part used for validation once. This technique helps reduce variability and improve

the model's generalization performance [87]. Finally, the average scores across all the

K iterations of the K-fold cross-validation loop was calculated as shown in Figure 4.13

below.

Figure 4.13. Text text.

 Several classifiers were evaluated for the meta-learner level, and the RF classifier was

selected for various reasons [88]. Firstly, RF is an ensemble method that combines

multiple decision trees, which can increase the diversity of the base estimators used in

the stacking classifier. Secondly, it can handle numerous input features, which is

beneficial when dealing with high-dimensional datasets [89]. Finally, RF is less prone

to overfitting than other ML algorithms, which can improve the generalization

performance of the stacking classifier. Therefore, the RF is used as the final estimator

in a stacking classifier based on its ability to handle high-dimensional datasets with

complex interactions, provide feature importance measures, and exhibit robustness to

60

noise and outliers, among other advantages. It is vital to have a diverse set of base

learners to produce results based on different assumptions. Therefore, five of the

classifiers mentioned above were chosen.

This stacking approach allows the meta-level to determine the best way to maximize

the strengths of each base learner and produce optimal prediction results.

Consequently, the stacking classifier has several advantages over single-model

classifiers [90]. First, the stacking classifier can be more accurate than any base models

used individually. Second, the stacking classifier can be more robust than single-model

classifiers, as it can overcome the weaknesses of individual models. Finally, the

stacking classifier can be used to combine models with different learning

characteristics, improving the overall prediction's generalization performance [91].

Stacking is a powerful and flexible ensemble learning method that can be applied to a

wide range of classification problems and significantly improve machine learning

models' predictive performance.

4.6. HYPERPARAMETER TUNING

The process of determining the ideal settings for the machine learning model's

hyperparameters, which may have a considerable influence on the overall performance

of the model, is referred to as hyperparameter tuning. This may be accomplished by

testing out a variety of various configurations of hyperparameters and picking the one

that provides the most beneficial outcomes. However, since adjusting a large number

of hyperparameters may be a computationally intensive process, it might be difficult

to identify the hyperparameter settings that are best [89]. Grid search [90] is a

technique that enables hyperparameter tuning to be carried out in a methodical manner

by methodically reviewing each set of hyperparameter values automatically

throughout the process of model training [92]. This method looks through all of the

potential combinations of hyperparameters by requiring the user to define a range of

possible values for each hyperparameter. It then chooses the combination of

hyperparameters that results in the highest level of performance.

61

Table 4.2 enumerates the parameters that were specified for the classifiers under

consideration. The values of the parameters were pre-determined by the sci-kit learn

library.

Table 4.2. Parameters specified for various classifiers.

Parameters Classifiers

Random Forest n_estimators=25, criterion="gini”, max_depth=1

Decision Tree criterion='gini', random_state=10, splitter= 'random',

min_samples_split=10, max_depth=6

Logistic Regression (max_iter=500

Multi-Layer Perceptron activation='tanh’, solver='lbfgs',

learning_rate='constant', alpha=0.0001,

hidden_layer_sizes=(100,50,3), random_state=33)

K-Nearest Neighbors n_neighbors=50, metric='minkowski', p=2

One of the advantages of grid search is that it allows for independent hyperparameter

settings, making it suitable for parallel computing [93]. This means that the tuning

process can be distributed across multiple computing nodes, reducing the computation

time required to find the optimal hyperparameters.

The implementation of grid search was done in Python using the scikit-learn package,

which offers a robust set of tools for machine learning tasks [94], [95], [45] Grid search

involves assigning a series of values to each hyperparameter. The program iterates

through all possible combinations of hyperparameter values to train and evaluate the

performance of different models. Each variety of hyperparameter values is referred to

as a hyperparameter setting. Multiple rounds of grid search were conducted, assigning

a distinct set of values to each hyperparameter, to identify the optimal combination of

hyperparameters that yielded the best model performance.

4.7. CONCLUDING REMARKS

In conclusion, the proposed solution presented in this chapter offers a comprehensive

approach to detecting and preventing network attacks. The methodology involved

using three main modules: Feature Creation, Stacking Classifier, and Attack Detection,

along with various environmental requirements such as RYU Controller and Mininet

62

Network Emulator. The data collection process and feature selection using Random

Forests were crucial in ensuring the accuracy of the classification methodology, which

included Random Forest, K Nearest Neighbor, Decision Tree, Logistic Regression,

Multi-Layer Perceptron, and Stacking Classifier. Finally, implementing

hyperparameter tuning using the Grid search method improved the solution's overall

performance. This methodology provides a solid foundation for addressing network

security concerns in today's digital landscape.

63

PART 5

EXPERIMENTAL EVALUATION

Model evaluation is a critical step in experimental evaluation, where the performance

of the trained machine learning (ML) model is assessed using various performance

metrics. In the context of ML-based DDoS detection techniques in an SDN

environment, choosing performance metrics is crucial to understanding the strengths

and limitations of the different ML models and selecting the most effective ones for

deployment in real-world scenarios.

This chapter presents the experimental evaluation of the proposed machine learning-

based DDoS detection system. Section 5.1 provides a detailed analysis of the confusion

matrix that is obtained by evaluating the system's performance. In Section 5.2, the

results of various classifier models, including Random Forest, K Nearest Neighbor,

Decision Tree, Logistic Regression, Multi-Layer Perceptron (MLP), and Stacking

Classifier, are presented and compared. Section 5.3 discusses the validation and

evaluation process of these models. Furthermore, Section 5.4 introduces the Receiver

Operating Characteristic (ROC) Curve, which is used to evaluate and compare the

performance of different models.

5.1. CONFUSION MATRIX (CM)

A confusion matrix (CM) is a table that is used in the process of evaluating the

effectiveness of a machine-learning model. It shows the proportion of accurate and

inaccurate forecasts produced by the model in relation to the results that were obtained

(i.e., ground truth).

The CM is structured in the form of four quadrants, each of which represents one of

the four potential outcomes of a binary classification issue. These possibilities are as

64

follows: true positives (TP), true negatives (TN), false positives (FP), and false

negatives (FN) for a given set of predictions [96].

In the context of an issue involving binary classification, the terms "correct

predictions" and "number of correct predictions" refer, respectively, to the number of

positive and negative classes. On the other hand, FP and FN stand for the total number

of erroneous predictions made for the positive and negative classes, respectively.

Having said that, this matrix is often displayed in the form of a table that has two rows

and two columns.

The classes that were really present are represented by the rows, whereas the classes

that were expected to be present are represented by the columns. Each field in the table

has a number that reflects the total number of occurrences that may be assigned to a

certain category. A problem with binary classification may have one of four alternative

results, which are represented by the four cells in the table.

The number of occurrences that were accurately identified as positive is shown in the

true positives (TP) column. The number of occurrences that have been accurately

labeled as negative is shown in the true negatives (TN) column. The number of cases

that were wrongly labeled as positive is shown in the false positives (FP) cell. The

number of cases that were mistakenly categorized as negative is shown in the "false

negatives" (FN) field of the table.

Calculating several performance measures for the classification model, such as

accuracy, precision, recall, and F1 score, may be accomplished with the assistance of

the data that is provided in the confusion matrix. These metrics provide a glimpse into

the model's strengths and limitations, and they may be put to use either to fine-tune the

model or to evaluate it in comparison to other models.

In the context of detecting DDoS attacks, a confusion matrix can be used to evaluate

the performance of the detection method in terms of its ability to correctly identify

DDoS attacks and differentiate them from legitimate traffic. This evaluation can be

done in terms of the method's ability to identify and distinguish DDoS attacks from

65

legitimate traffic. The performance indicators that are obtained from the confusion

matrix may give useful insights into the strengths and limits of the detection approach,

as well as assist identify areas in which improvements can be made.

However, it is essential to note that a confusion matrix alone may not comprehensively

evaluate the DDoS attack detection method's performance. Other evaluation methods

may be necessary to provide a more complete evaluation.

Moreover, the confusion matrix allows calculating several performance metrics for a

binary classification model, including:

1. Accuracy: The proportion of correct predictions the model makes, calculated as

(TP + TN) / (TP + TN + FP + FN).

2. Precision: The proportion of true positive predictions out of all positive

predictions made by the model, calculated as TP / (TP + FP).

3. Recall (or sensitivity): The proportion of true positive predictions out of all

actual positive instances, calculated as TP / (TP + FN).

4. F1 score: The harmonic means of precision and recall, calculated as 2 *

(precision * recall) / (precision + recall)).

It is important to note that selecting performance metrics that align with the

application's goals and requirements. Precision and recall are vital metrics that can be

used to assess the effectiveness of ML-based DDoS detection techniques[97].

Precision is an excellent metric for minimizing false positives, while recall is useful

for reducing false negatives.

The F1 score is a helpful metric as it balances precision and recall equally and can be

chosen when there's a trade-off between the two or when both metrics are essential

[97]. The selection of performance metrics is critical for evaluating the efficacy of

ML-based DDoS detection techniques. The F1 score is a good option for balancing

precision and recall.

66

5.2. CLASSIFIER MODELS RESULT

This section presents the performance of several machine learning classifiers on the

dataset proposed in Chapter 4. A 75:25 train-test split was performed using the ratio

scale splitting method to ensure a fair and unbiased evaluation of the models.

Five common supervised learning algorithms were evaluated:

5.2.1. Random Forest

The Random Forest Classifier model was trained and evaluated on the proposed

dataset. The model's training accuracy score was found to be 0.9790822146091105,

indicating that the model could correctly predict 97.91% of the instances in the training

data. Similarly, the model's test accuracy score was found to be 0.979092221850675,

indicating that the model could correctly predict 97.91% of the instances in the test

data.

The confusion matrix was also calculated to better understand the model's

performance. The confusion matrix shows that out of 212681 + 13915 = 226596 actual

negative instances, the model correctly predicted 212681 instances and incorrectly

predicted 13915 instances as positive. Similarly, out of 28 + 440257 = 440285 actual

positive instances, the model correctly predicted 440257 instances and incorrectly

predicted 28 instances as negative.

Finally, the success and fail accuracies were calculated to analyze the model's

performance further. The success accuracy was calculated to be 97.91%, which is the

percentage of instances the model correctly classified, and the failure accuracy was

estimated to be 2.09%, which is the percentage of instances that the model incorrectly

classified. Figure 5.1 below shows the results of this algorithm.

67

Figure 5.1. The random forest classifier model results.

Overall, the high and low fail accuracy scores suggest that the model performs well on

the dataset. However, further analysis may be required to understand why the model

makes certain incorrect predictions and how the model's performance can be further

improved.

5.2.2. K Nearest Neighbor

The following Figure 5.2 shows the results of the KNeighbors Classifier model.

68

Figure 5.2. The Kneighbors classifier model results.

The KNeighbors Classifier model was trained and evaluated using the proposed

dataset. The training and test scores of the model were calculated as 0.9972 and 0.9971,

respectively, indicating that the model performed well in both the training and testing

phases.

The confusion matrix was used to assess the performance of the model. The matrix

showed that out of 666,881 instances, 226,596 instances were predicted correctly as

“success” and 438,381 instances were predicted correctly as “fail.” However, the

model made 1,904 false predictions by classifying “fail” instances as “success.”

The success accuracy of the model was found to be 99.71%, indicating that the model

correctly predicted “success” instances in the dataset with high accuracy. However,

69

the failure accuracy of the model was only 0.29%, indicating that the model struggled

to predict “fail” instances in the dataset.

5.2.3. Decision Tree

The results presented in Figure 5.3 relate to the performance of a Decision Tree

Classifier on a binary classification problem. The dataset was partitioned into training

and testing sets, and the model was trained on the training data and evaluated on the

testing data[77].

The Decision Tree Classifier achieved a training score of 0.9682, meaning it correctly

classified 96.82% of the samples in the training data. The model also achieved a test

score of 0.9685, correctly classifying 96.85% of the samples in the testing data. These

scores suggest that the model can effectively generalize new data.

The confusion matrix shows the number of true positives, true negatives, false

positives, and false negatives for the model's predictions. The model correctly

predicted that 435,018 samples belonged to the positive class (true positives), while

incorrectly predicting that 5,267 samples belonged to the negative class (false

negatives) and 15,749 samples belonged to the positive class when they belonged to

the negative class (false positives). The model correctly predicted that 210,847

samples belonged to the negative (true negatives) class.

The success accuracy of the model, also known as the overall accuracy, is calculated

as the number of correct predictions (true positives + true negatives) divided by the

total number of predictions. In this case, the success accuracy is 96.85%. The failure

accuracy of the model, also known as the error rate, is calculated as the number of

incorrect predictions (false positives + false negatives) divided by the total number of

predictions. In this case, the failure accuracy is 3.15%.

70

Figure 5.3. The decision tree classifier model results.

Overall, the results suggest that the Decision Tree Classifier can classify the binary

target variable in the dataset with a high success accuracy and low error rate.

5.2.4. Logistic Regression

Figure 5.4 below shows the confusion matrix and accuracy scores for a logistic

regression model on a binary classification task.

71

Figure 5.4. The logistic regression classifier model results.

In this case, the model classified 215,732 samples as successful (true negatives) and

439,167 as unsuccessful (true positives). However, the model misclassified 1,118

unsuccessful samples as successful (false positives) and 10,864 successful samples as

unsuccessful (false negatives).

 The "success accuracy" of 98.20% indicates that the model correctly classified

98.20% of the successful samples in the testing dataset. In comparison, the "fail

accuracy" of 1.80% suggests the model correctly classified only 1.80% of the

unsuccessful samples in the testing dataset.

These accuracy scores provide a more detailed evaluation of the model's performance

for each class in the classification problem. In general, accuracy scores are used to

measure the effectiveness of a classification model in terms of its ability to predict

72

class labels accurately. High accuracy scores indicate that the model makes correct

predictions for the given classification issue.

5.2.5. Multi-Layer Perceptron (MLP)

The MLP Classifier model was trained and evaluated on the dataset, and the confusion

matrix in Figure 5.5 shows that the model is performing exceptionally well. It made

223,038 correct predictions of true negatives and 439,615 correct predictions of true

positives but also made 3,043 incorrect predictions of false positives and 1,185

incorrect predictions of false negatives.

The success accuracy of the model is 99.37%, indicating that the model correctly

predicted the class labels for 99.37% of all instances in the dataset. The failure

accuracy is 0.63%, meaning that the model misclassified 0.63% of instances in the

dataset.

Figure 5.5. The MLP classifier model result.

73

5.2.6. Stacking Classifier

Figure 5.6 presents the findings of an analysis that examined how well a stacking

classifier model performed on a binary classification dataset. The performance of a

classification model may be evaluated with the use of a table called the confusion

matrix. This matrix works by contrasting the predicted class labels with the actual class

labels.

In this particular scenario, the confusion matrix reveals that the stacking classifier

model has generated 226,671 true positive predictions (that is, the model accurately

predicted the positive class) and 440,155 true negative predictions (i.e., the model

correctly predicted the negative class). There are also 42 erroneous negative

predictions, which means that the model mistakenly predicted the negative class while

the actual class was positive. On the flip side, there are 13 inaccurate positive

predictions (i.e., incorrectly predicted the positive class when the actual class was

negative).

To get the success accuracy of a model, just take the ratio of accurate forecasts to the

total number of predictions produced by the model, then multiply that number by 100.

In this instance, the success accuracy is 99.99 percent, which suggests that the stacking

classifier model works very well in properly predicting the class labels. This is shown

by the fact that the percentage of successful predictions is so high.

A stacking classifier model is one that combines the predictions of numerous base

classifiers into one. This helps to increase the model's overall accuracy as well as its

resilience. The findings indicate that the basic classifiers used in the stacking classifier

model are operating well, and that their predictions are being merged in an efficient

manner to provide correct outcomes.

Figure 5.6. The stacking classifier model result.

74

5.3. THE VALIDATION AND EVALUATION OF MACHINE LEARNING

MODELS

k-fold cross-validation is an approach that is often used in the process of assessing

machine learning models. This method requires splitting the dataset into k subsets of

equal size, training the model on k-1 subsets, and utilizing the remaining subset for

testing, as is seen in Figure 5.7. This method is carried out k times, with each iteration

employing a unique subset for testing. The findings of these iterations are then

averaged together to get the final assessment metrics. In order to evaluate the

effectiveness of the models, it is common practice to utilize evaluation measures such

as accuracy, sensitivity, specificity, and precision, as well as the F1 score [84], [90],

[95].

Each fold must have these features in order to guarantee that the majority of the

categorization attributes are used in both the training and the testing phases [96]. As

the ultimate predictive and definitive validation strategy, the 5-fold cross-validation

technique was used. An independent test set is carried out using this strategy [96], [97].

Figure 5.7. k-fold cross-validation for the generation of metadata, zb , k = 5 [98].

In this study, the performance of five popular machine learning algorithms was

evaluated using 5-fold cross-validation. These algorithms were Random Forest (RF),

Decision Tree (DT), Logistic Regression (LR), Multi-Layer Perceptron (MLP), and

K-Nearest Neighbors (KNN). In addition, a Stacking Classifier was used to combine

the predictions of these models.

75

Accuracy, sensitivity, specificity, and precision were the evaluation metrics that were

taken into consideration for this research. The F1 score was also taken into account.

The use of k-fold cross-validation in conjunction with these evaluation measures was

deemed to be appropriate due to the general acceptance of both, as well as their

capacity to provide a reliable and all-encompassing evaluation of model performance.

It is important to keep in mind, however, that in k-fold cross-validation, increasing or

lowering the number of folds does not always ensure a more accurate result every time.

There is a complicated link between the number of folds and the accuracy of the model;

increasing the number of folds may result in an increase in computing expenses

without necessarily leading to an increase in accuracy [99].

Table 5.1 Performance comparison of machine learning models for a binary

classification task.

Model Accuracy Sensitivity Specificity Precision F1 Score

Random

forest

97.91% 99.98% 93.88% 96.95% 98.44%

K nearest

neighbor

99.73% 99.58% 100.00% 100.00% 99.79%

Decision

tree

96.85% 98.80% 93.05% 96.51% 97.64%

Logistic

regression

98.20% 99.75% 95.18% 97.57% 98.65%

MLP 98.77% 98.40% 99.48% 99.73% 99.06%

Stacking

model

99.99% 100.00% 99.98% 99.99% 99.99%

As can be seen in Table 5.1, six distinct machine learning models were used to make

predictions on the proposed dataset. The performance of each model was evaluated

using a variety of metrics on a separate test set that was not used during the training

process. This test set was kept separate from the training set. The use of this method

helps to guarantee that the outcomes of the assessment are trustworthy and impartial.

The stacking model achieved the maximum level of accuracy, 99.99 %, based on the

findings that were provided. This suggests that the stacking model has the potential to

appropriately categorize DDoS assaults in an SDN setting. Additionally, the MLP

model did quite well, with an accuracy of 98.77 %, which is encouraging. The decision

tree model, on the other hand, had the lowest accuracy of all the models, which implies

76

that it is not necessarily the most suitable option for this particular application.

Accuracy alone is not always a good metric for evaluating the performance of a model,

and it is important to note that other metrics such as sensitivity, specificity, precision,

and F1 score should also be considered. It is important to note that accuracy alone is

not always a good metric for evaluating the performance of a model.

The next metric reported is the sensitivity of each model, which is the ability of the

model to identify true positive cases. A higher sensitivity indicates that the model is

better at correctly identifying positive cases, vital in applications where false negatives

can have serious consequences.

Based on the results, the stacking model has the highest sensitivity of 100%, correctly

identifying all true positive cases. This is followed closely by the random forest model

with a sensitivity of 99.98% and the logistic regression model with a sensitivity of

99.75%. The K nearest neighbor and MLP models have lower sensitivity scores,

indicating they may be less effective in correctly identifying positive cases. The

decision tree model has the lowest sensitivity of 98.80%.

Based on the specific results, K nearest neighbor, logistic regression, MLP, and

stacking model seem to have high values, indicating that they can effectively identify

true negative cases of no DDoS attack in SDN. On the other hand, random forest and

decision tree models have relatively lower values, indicating that they may have a

higher chance of falsely identifying regular traffic as a DDoS attack.

Precision measures the proportion of true positive predictions out of all positive

predictions made by the model. In detecting DDoS attacks in SDN, precision is a

critical metric because it measures the model's accuracy in identifying real attacks

while avoiding false positives.

The results show that all models achieved high precision values ranging from 96.95%

to 100%. This suggests that all models effectively minimize the number of false

positives, which is crucial for reducing the risk of disrupting legitimate network traffic.

Moreover, the K nearest neighbor model achieved the highest precision value of 100%.

77

This means that all positive predictions made by this model were true positives,

indicating that it is the most accurate model in detecting DDoS attacks in SDN.

In general, the precision values obtained by all models indicate that they are well-

suited for detecting DDoS attacks in SDN and can be used in practice to enhance

network security. The F1 score is a measure of a model's accuracy that takes both

precision and recall into account. The higher the F1 score, the better the model's overall

performance. Looking at the F1 scores of the models, the K nearest neighbor model

has the highest score of 99.79%. This suggests it has the best overall balance between

precision and recall for detecting DDOS attacks in SDN. The stacking model also has

a high F1 score of 99.99%, indicating that it performs very well in overall accuracy.

The MLP and logistic regression models also have high F1 scores of 99.06% and

98.65%, respectively, indicating that they are also effective in detecting DDOS attacks

in SDN. The decision tree and random forest models have lower F1 scores of 97.64%

and 98.44%, respectively, suggesting they may not be as effective as the other models

in detecting DDOS attacks in SDN. These results indicate that the stacking classifier

is a highly effective ML algorithm for the problem. Its superior performance can be

attributed to combining the predictions of multiple models, each of which may have

different strengths and weaknesses. By leveraging the strengths of other models, the

stacking classifier can achieve higher accuracy and robustness compared to any single

model alone. The resulting bar chart shows the values of different evaluation metrics

for various machine learning models. The x-axis represents the names of the models,

while the y-axis shows the importance of metrics such as accuracy, sensitivity,

specificity, precision, and F1 score.

78

Figure 5.8. Comparison of ml models based on multiple evaluation metrics.

Based on the findings presented in Figure 5.8, it is evident that the stacking model

exhibits superior performance over all other models evaluated, as indicated by its

higher values for all the considered evaluation metrics. Furthermore, the K Nearest

Neighbor model demonstrates good performance, having achieved perfect scores for

sensitivity, specificity, and F1, albeit with marginally lower accuracy than the stacking

model.

The Random Forest model has a high accuracy but a lower sensitivity and precision

than the Stacking and K Nearest Neighbor models. The Logistic Regression and MLP

models also have high values for all metrics but are slightly lower than those of the

Stacking and K Nearest Neighbor models.

Finally, the Decision Tree model has the lowest accuracy and sensitivity among all the

models, although its specificity, precision, and F1 score are still relatively high.

Overall, the graph provides a quick and easy way to compare the performance of

different machine learning models on multiple evaluation metrics and can help choose

the best model for a given task.

79

5.4. RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE

The Receiver Operating Characteristic Curve, often known as the ROC Curve, is a

graphical figure that depicts the performance of a binary classification model [95]. It

generates a graphic that compares the true positive rate (TPR) to the false positive rate

(FPR) using a variety of threshold values. The true positive rate, or sensitivity, is the

proportion of genuine positive samples that the model properly identifies, while the

false positive rate, or FPR, is the proportion of actual negative samples that are

wrongly categorized as positive. Both measures are expressed as a percentage. The

performance of binary classifiers is often evaluated using the Area Under the ROC

Curve (AUC), which is an alternative name for the ROC area. The area under the

receiver operating characteristic curve for a perfect classifier is 1, whereas the AUC

for a random classifier is 0.5 [86].

Figure 5.9. The receiver operating characteristic (ROC) curve for various classification

models.

The ROC curve for the training and testing sets was produced by plotting the TPR

against the FPR at various classification thresholds, as can be seen in the Figure 5.9

that was just shown. The ROC curve is constructed within the context of the prior code

in order to assess the performance of the recommended DDoS attack detection model.

The ROC curve illustrates the degree to which the model is able to differentiate

80

between a DDoS attack and typical network traffic. The performance of the model is

said to be superior the closer the ROC curve is to the top left corner of the graph.

In addition, it would seem that all of the models, including MLP, DT, RF, KNN, LR,

and Stacking, perform remarkably well in identifying DDoS assaults in an SDN

environment, with AUC values ranging from 0.97 to 1.00. This conclusion is based on

the AUC values that are shown in the graph. A model is considered to have flawless

classification performance if it has an AUC value of 1.0, which implies that it is able

to differentiate between normal and malicious traffic in an accurate manner.

It is important to point out that the stacking model has an AUC value of 1.00, which

indicates that it is doing even better than the separate models. Stacking is a method

that combines the predictions that are produced by numerous models in order to get a

final forecast that is more accurate. The fact that the stacking model is doing so well

provides strong evidence that the separate models are additive to one another and may

be merged to get a more accurate forecast of the whole.

Overall, the ROC curve is a powerful tool for evaluating the performance of binary

classification models [99], including DDoS attack detection methods. It provides a

visual representation of the tradeoff between detection accuracy and false alarms and

allows us to choose the threshold that best balances these two factors.

5.5. CONCLUDING REMARKS

In summary, this chapter has presented the results of evaluating various machine

learning classifier models for DDoS detection. The Confusion Matrix provided a

detailed analysis of the system's performance, while the Classifier Models Results

demonstrated the success accuracy of each model, ranging from 96.85% to 99.99%.

The Validation and Evaluation of Machine Learning Models offered insights into the

performance of these models. Finally, the Receiver Operating Characteristic (ROC)

Curve showed the superiority of the Stacking Classifier model, which outperformed

the individual models with an AUC value of 1.00. These findings are significant for

developing effective DDoS detection systems that can enhance network security.

81

PART 6

CONCLUSION AND FUTURE WORK

This chapter provides a summary of the key findings and contributions made to the

field of network security, specifically in the context of software-defined networking

(SDN) and DDoS attack detection. Additionally, highlights potential areas for future

research and development in the field, to further enhance the security and resilience of

SDN networks against DDoS attacks.

6.1. RESEARCH SUMMARY

In contemporary times, networks have emerged as an indispensable element in

facilitating various activities. They provide vital communication links that enable

organizations to operate their applications and maintain competitiveness. With the

increasing demand for high data rates and real-time applications, the networking

industry is confronted with the challenge of constantly reconfiguring already complex,

vendor-specific equipment, which offers little or no flexibility and interoperability.

SDN is an open technology that holds promise for more innovative, flexible, and

effective solutions. While SDN presents a simple framework for network

programmability and monitoring, its security remains a significant aspect, and the

potential impact of a security breach cannot be overemphasized. Despite the rapid pace

of research into network security in the scientific and mathematical world, its

applications and practicality have not kept pace.

The research aims to address the issue of DDoS attacks in SDN by proposing a

comprehensive approach for detecting network attacks. The research reviews the

vulnerabilities of SDN to DDoS attacks and the efforts made to detect and mitigate

them. To achieve this goal, a novel network topology was designed and implemented,

82

which enabled the extraction of real-time SDN traffic data before and after a DDoS

attack to generate a unique dataset. The proposed solution involves the use of three

main modules: Feature Creation, Stacking Classifier, and Attack Detection, along with

various environmental requirements. The classification methodology includes

multiple ML/DL algorithms, and the implementation of the Grid search

hyperparameter tuning method improves the overall performance of the solution. The

results demonstrate the success accuracy of each model, ranging from 96.85% to

99.99%, and the superiority of the Stacking Classifier model for developing effective

DDoS detection systems that can enhance network security.

 However, a DDoS attack with a higher number of active agents can result in greater

severity. Therefore, the implementation of a sturdy and resilient security architecture

for SDN is imperative. Although assessing the impact of DDoS attacks on SDNs is a

challenging task, the present research provides a preliminary framework for

conducting an objective evaluation of DDoS attacks on SDNs.

6.2. RESEARCH CONTRIBUTIONS

This research contributes to the field of network security, specifically in the context.

of SDN.

1. Identify and analyze the different types of DDoS attacks that can affect SDN

networks, as well as evaluate the existing SDN security solutions that can be

used to mitigate them. This can lead to a better understanding of the security

challenges faced by SDN networks and the effectiveness of current solutions,

which can inform the development of new and more effective security measures.

2. An end-to-end intrusion detection system architecture is proposed for SDN-

based networks. This architecture tracks traffic flows at the controller, classifies

traffic using a machine learning-based intelligent attack detection module and

modifies flow rules accordingly.

3. a novel SDN dataset is generated that includes regular traffic and various attack

traffic types.

83

4. The Stacking Classifier technique is introduced for detecting DDoS attacks in

SDN, which combines the predictions of multiple base classifiers to improve

classification performance. To the best of our knowledge, this is the first study

that applies the stacking classifier technique to detect DDoS attack in SDN.

These findings suggest that incorporating the stacked classifier technique may

enhance the accuracy and robustness of DDoS attack detection models in SDN,

making it a valuable contribution to the field of network security.

5. The approach offers significant advantages over existing solutions, including

direct protection for the controller against DDoS attacks, a focus specifically on

SDN environments, and a high accuracy rate of 99%. Finally, the detection

algorithm is successfully implemented in both the RYU controller and Mininet,

demonstrating the practical utility of the proposed approach.

The diagram presented in Figure 6.1 illustrates the interrelation between the

contributions of this study, the corresponding research questions that have been

addressed, and the way they have been addressed in the ensuing chapters.

Figure 6.1. Interrelation between research questions and chapters.

84

6.3. RESEARCH LIMITATIONS

1. The research only focused on the binary classification of attacks. A multi-class

classification approach can be used to detect and differentiate between different

types of cyberattacks.

2. The research only considered DDoS attacks targeting individual hosts. DDoS

attacks targeting network subnets can have larger impacts, but also pose

additional challenges for detection and mitigation.

3. The research did not assess the impacts of DDoS attacks launched through

external compromised networks (botnets). Such DDoS attacks can potentially

cause damage on a much larger scale.

6.4. FUTURE WORK

The thesis presented herein proposes several areas for future research and expansion

within the field of software-defined networking (SDN) security. This section outlines

specific recommendations for future work, including proposals to expand upon the

current study and suggestions for entirely new areas of inquiry. These

recommendations serve to guide and inform future research efforts, with the goal of

advancing our understanding of the challenges and potential solutions related to SDN

security.

6.4.1. Self-healing

A timely error log helps reduce network downtime due to the SDN controller's global

view advantage. Network self-healing is attractive because service outages and other

network-related problems may be fixed immediately without the need for network

administrators to become involved [100]. Fewer network managers will be needed in

self-healing networks provided by SDN, saving the cost for organizations and higher

customer satisfaction. Several studies on self-healing networks regarding SDN may be

found in [101][102][103] [104].

85

6.4.2. Load Balancing

Resource allocation is addressed via load balancing, which ensures that the use of

available resources is effective [105]. During a DDoS attack, an overloaded link can

be avoided by locating underutilized paths and distributing traffic among them [106].

The following are some studies on load balancing [107] [108].

6.4.3. Integration to Cloud

Network resources are now available on demand due to cloud computing technology,

which provides pay-as-you-go services [109] [110]. SDN-enabled cloud services will

provide elastic services to clients with high availability, and the SDN controller can

efficiently manage cloud networking resources [39] [111].

6.4.4. Database Optimization

 We believe the dataset generated in this study will be a valuable resource for future

research on ML-based intrusion detection in SDN networks. A potential avenue for

future work involves expanding the generated dataset to include additional attack types

and network topologies.

6.4.5. Exploring the Impacts of DDoS Attacks Launched Through External

Networks

In the future, it would be valuable to study the impacts of DDoS attacks that come

from outside a targeted system or network. Currently, research on DDoS attacks has

mostly focused on those that originate from within the targeted system. However,

attacks from external networks, such as botnets or other compromised systems, are

becoming increasingly common and can be just as damaging. Therefore, studying

these types of attacks could provide important insights into the threat landscape and

inform strategies for defending against them.

86

6.4.6. Enhancing Performance of Security Models Through Human-in-the-Loop

(HITL) and Continuous Learning

Even though the suggested method has achieved good results in the network

environment it was trained for, adaptability to other networks would necessitate

actively training the model through online learning. However, through continuous

learning, this will enable not just the ability to recognize attack types that have already

been identified, but also the capability to classify recent attacks correctly.

On the other hand, while certain transfer learning techniques are effective, in many

situations they fall short of the performance of ML models trained on data collected

from real operational environments. So, future work will focus on building continuous

learning with a Human-In-The-Loop (HITL) system [112] to achieve high

performance in various network structures.

6.4.7. Secure Network Control

Blockchain can create a decentralized and tamper-resistant network control plane

[113] . Instead of relying on a central controller, blockchain-based SDN can distribute

the control plane across multiple nodes, making it more resilient against single points

of failure or attacks on the controller. Consensus algorithms, such as Proof of Work

(PoW) or Proof of Stake (PoS), can validate and agree upon network control decisions

[114].

6.4.8. Identity and Access Management

 Blockchain can enhance identity and access management (IAM) in an SDN

environment [115]. By using blockchain-based identity systems, such as self-

sovereign identity (SSI) or decentralized identifiers (DIDs), it becomes possible to

establish secure and verifiable identities for network devices, users, and applications

[116]. This can strengthen authentication and authorization mechanisms in SDN,

ensuring that only trusted entities have access to the network.

87

REFERENCES

[1] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,”

ACM SIGCOMM computer communication review, vol. 38, no. 2, pp. 69–74,

2008.

[2] M. W. Nadeem, H. G. Goh, V. Ponnusamy, and Y. Aun, “Ddos detection in sdn

usingmachine learning techniques,” Computers, Materials and Continua, vol.

71, no. 1, pp. 771–789, 2022, doi: 10.32604/cmc.2022.021669.

[3] A. Sangodoyin, T. Sigwele, P. Pillai, Y. F. Hu, I. Awan, and J. Disso, “DoS

attack impact assessment on software defined networks,” in Wireless and

Satellite Systems: 9th International Conference, WiSATS 2017, Oxford, UK,

September 14-15, 2017, Proceedings 9, Springer, 2018, pp. 11–22.

[4] S. Das, G. Parulkar, and N. McKeown, “Rethinking IP core networks,” Journal

of Optical Communications and Networking, vol. 5, no. 12, pp. 1431–1442,

2013.

[5] E. Molina and E. Jacob, “Software-defined networking in cyber-physical

systems: A survey,” Computers & electrical engineering, vol. 66, pp. 407–419,

2018.

[6] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, “A survey on software defined

networking with multiple controllers,” Journal of Network and Computer

Applications, vol. 103, pp. 101–118, 2018.

[7] A. Mondal, S. Misra, and I. Maity, “AMOPE: Performance analysis of

OpenFlow systems in software-defined networks,” IEEE Syst J, vol. 14, no. 1,

pp. 124–131, 2019.

[8] M. Conti, C. Lal, R. Mohammadi, and U. Rawat, “Lightweight solutions to

counter DDoS attacks in software defined networking,” Wireless Networks, vol.

25, pp. 2751–2768, 2019.

[9] C. B. Zerbini, L. F. Carvalho, T. Abrão, and M. L. Proenca Jr, “Wavelet

against random forest for anomaly mitigation in software-defined

networking,” Appl Soft Comput, vol. 80, pp. 138–153, 2019.

88

[10] O. Dakkak, S. A. Nor, and S. Arif, “Scheduling Jobs through Gap Filling and

Optimization Techniques in Computational Grid.,” J. Comput. Sci., vol. 13, no.

5, pp. 105–113, 2017.

[11] O. Dakkak, S. A. Nor, and S. Arif, “Proposed algorithm for scheduling in

computational grid using backfilling and optimization techniques,” Journal of

Telecommunication, Electronic and Computer Engineering (JTEC), vol. 8, no.

10, pp. 133–138, 2016.

[12] S. M. Mousavi and M. St-Hilaire, “Early Detection of DDoS Attacks Against

Software Defined Network Controllers,” Journal of Network and Systems

Management, vol. 26, no. 3, pp. 573–591, Jul. 2018, doi: 10.1007/s10922-017-

9432-1.

[13] Y. Xu and Y. Liu, “DDoS attack detection under SDN context,” in IEEE

INFOCOM 2016-the 35th annual IEEE international conference on computer

communications, IEEE, 2016, pp. 1–9.

[14] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and S. Guizani,

“Securing software defined networks: taxonomy, requirements, and open

issues,” IEEE Communications Magazine, vol. 53, no. 4, pp. 36–44, 2015.

[15] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,”

ACM SIGCOMM computer communication review, vol. 38, no. 2, pp. 69–74,

2008.

[16] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

“Ethane: Taking control of the enterprise,” ACM SIGCOMM computer

communication review, vol. 37, no. 4, pp. 1–12, 2007.

[17] H. Al Mansoori, A. Bin Ali, and M. K. al Hassan, “Nature and Quality of Smart

Government Services: The Case of the UAE,” Int J Enhanc Res Sci Technol

Eng, vol. 5, no. 1, pp. 53–64, 2016.

[18] S. Jain et al., “B4: Experience with a globally-deployed software defined

WAN,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp.

3–14, 2013.

[19] “Network Virtualization and Security Software.”.

[20] “THE LINUX FOUNDATION PROJECTS”.

[21] S. Sezer et al., “Are we ready for SDN? Implementation challenges for

software-defined networks,” IEEE Communications Magazine, vol. 51, no. 7,

pp. 36–43, 2013.

[22] D. Kreutz, F. M. V Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-defined networking: A comprehensive survey,”

Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

89

[23] O. Dakkak, S. A. Nor, and S. Arif, “Scheduling through backfilling technique

for HPC applications in grid computing environment,” in 2016 IEEE

Conference on Open Systems (ICOS), IEEE, 2016, pp. 30–35.

[24] J. C. Correa Chica, J. C. Imbachi, and J. F. Botero Vega, “Security in SDN: A

comprehensive survey,” Journal of Network and Computer Applications, vol.

159. Academic Press, Jun. 01, 2020. doi: 10.1016/j.jnca.2020.102595.

[25] T. ALASALI and O. DAKKAK, “EXPLORING THE LANDSCAPE OF SDN-

BASED DDOS DEFENSE: A HOLISTIC EXAMINATION OF DETECTION

AND MITIGATION APPROACHES, RESEARCH GAPS AND PROMISING

AVENUES FOR FUTURE EXPLORATION,” International Journal of

Advanced Natural Sciences and Engineering Researches, vol. 7, no. 4, pp. 327–

349, 2023.

[26] T. Han et al., “A comprehensive survey of security threats and their mitigation

techniques for next-generation SDN controllers,” in Concurrency and

Computation: Practice and Experience, John Wiley and Sons Ltd, Aug. 2020.

doi: 10.1002/cpe.5300.

[27] B. Pavlyshenko, “Using stacking approaches for machine learning models,” in

2018 IEEE second international conference on data stream mining &

processing (DSMP), IEEE, 2018, pp. 255–258.

[28] Open Networking Foundation, “Open Networking Foundation. Software-

Defined Networking: The New Norm for Network,”

https://opennetworking.org/sdn-resources/whitepapers/software-defined-

networking-the-new-norm-for-networks/.

[29] Y. Y. Baydilli and İ. Türker, “Is the world small enough?—A view from

currencies,” Int J Mod Phys B, vol. 33, no. 12, p. 1950120, 2019.

[30] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A Survey on Software-

Defined Networking,” IEEE Communications Surveys and Tutorials, vol. 17,

no. 1. Institute of Electrical and Electronics Engineers Inc., pp. 27–51, Jan. 01,

2015. doi: 10.1109/COMST.2014.2330903.

[31] H. Polat, O. Polat, and A. Cetin, “Detecting DDoS attacks in software-defined

networks through feature selection methods and machine learning models,”

Sustainability (Switzerland), vol. 12, no. 3, Feb. 2020, doi:

10.3390/su12031035.

[32] K. M. Sudar, M. Beulah, P. Deepalakshmi, P. Nagaraj, and P. Chinnasamy,

“Detection of Distributed Denial of Service Attacks in SDN using Machine

learning techniques,” in 2021 International Conference on Computer

Communication and Informatics, ICCCI 2021, Institute of Electrical and

Electronics Engineers Inc., Jan. 2021. doi:

10.1109/ICCCI50826.2021.9402517.

90

[33] M. Ahmed, S. Shatabda, A. K. M. Islam, M. Robin, and T. Islam, “Intrusion

Detection System in Software-Defined Networks Using Machine Learning and

Deep Learning Techniques–A Comprehensive Survey,” 2021.

[34] B. Rauf et al., “Application Threats to Exploit Northbound Interface

Vulnerabilities in Software Defined Networks,” ACM Computing Surveys, vol.

54, no. 6. Association for Computing Machinery, Jul. 01, 2021. doi:

10.1145/3453648.

[35] W. Braun and M. Menth, “Software-Defined Networking Using OpenFlow:

Protocols, Applications and Architectural Design Choices,” Future Internet,

vol. 6, no. 2, pp. 302–336, May 2014, doi: 10.3390/fi6020302.

[36] C. Fan, N. M. Kaliyamurthy, S. Chen, H. Jiang, Y. Zhou, and C. Campbell,

“Detection of DDoS Attacks in Software Defined Networking Using Entropy,”

Applied Sciences (Switzerland), vol. 12, no. 1, Jan. 2022, doi:

10.3390/app12010370.

[37] D. Melkov and S. Paulikas, “Security Benefits and Drawbacks of Software-

Defined Networking,” in 2021 IEEE Open Conference of Electrical, Electronic

and Information Sciences, eStream 2021 - Proceedings, Institute of Electrical

and Electronics Engineers Inc., Apr. 2021. doi:

10.1109/eStream53087.2021.9431466.

[38] M. M. Salim, S. Rathore, and J. H. Park, “Distributed denial of service attacks

and its defenses in IoT: a survey,” J Supercomput, vol. 76, pp. 5320–5363, 2020.

[39] O. Dakkak, S. A. Nor, M. S. Sajat, Y. Fazea, and S. Arif, “From grids to clouds:

Recap on challenges and solutions,” in AIP Conference Proceedings, AIP

Publishing LLC, 2018, p. 020040.

[40] K. Srinivasan, A. Mubarakali, A. S. Alqahtani, and A. Dinesh Kumar, “A

survey on the impact of DDoS attacks in cloud computing: prevention, detection

and mitigation techniques,” in Intelligent Communication Technologies and

Virtual Mobile Networks: ICICV 2019, Springer, 2020, pp. 252–270.

[41] A. Habbal, S. I. Goudar, and S. Hassan, “Context-aware radio access technology

selection in 5G ultra dense networks,” IEEE access, vol. 5, pp. 6636–6648,

2017.

[42] D. Gurusamy, M. Deva Priya, B. Yibgeta, and A. Bekalu, “DDoS risk in 5G

enabled IoT and solutions,” Int J Eng Adv Technol, vol. 8, no. 5, pp. 1574–1578,

2019.

[43] “ Kaspersky. (2021). Kaspersky Q4 2020 DDoS Attacks Report. [Online].”

[44] “2020-Q1_AWS_Shield_TLR”.

[45] N. M. Yungaicela-Naula, C. Vargas-Rosales, and J. A. Perez-Diaz, “SDN-based

architecture for transport and application layer DDoS attack detection by using

91

machine and deep learning,” IEEE Access, vol. 9, pp. 108495–108512, 2021,

doi: 10.1109/ACCESS.2021.3101650.

[46] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mechanisms:

Classification and state-of-the-art,” Computer Networks, vol. 44, no. 5, pp. 643–

666, Apr. 2004, doi: 10.1016/j.comnet.2003.10.003.

[47] L. Xinlong and C. Zhibin, “Ddos attack detection by hybrid deep learning

methodologies,” Security and Communication Networks, vol. 2022, 2022.

[48] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mechanisms:

Classification and state-of-the-art,” Computer Networks, vol. 44, no. 5, pp. 643–

666, Apr. 2004, doi: 10.1016/j.comnet.2003.10.003.

[49] M. D. Prasad, P. B. V, and C. Amarnath, “Machine Learning DDoS Detection

Using Stochastic Gradient Boosting,” International Journal of Computer

Sciences and Engineering, vol. 7, no. 4, pp. 157–166, Apr. 2019, doi:

10.26438/ijcse/v7i4.157166.

[50] N. Dayal, P. Maity, S. Srivastava, and R. Khondoker, “Research Trends in

Security and DDoS in SDN,” Security and Communication Networks, vol. 9,

no. 18, pp. 6386–6411, Dec. 2016, doi: 10.1002/sec.1759.

[51] “OpenFlow Switch Specification Version 1.5.1 (Protocol version 0x06) for

information on specification licensing through membership agreements,” 2015.

[Online]. Available: http://www.opennetworking.org

[52] Y.-L. Hu, W.-B. Su, L.-Y. Wu, Y. Huang, and S.-Y. Kuo, “Design of event-

based Intrusion Detection System on OpenFlow Network,” in 2013 43rd Annual

IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), 2013, pp. 1–2. doi: 10.1109/DSN.2013.6575335.

[53] F. O. Catak and A. F. Mustacoglu, “Distributed denial of service attack

detection using autoencoder and deep neural networks,” Journal of Intelligent

& Fuzzy Systems, vol. 37, no. 3, pp. 3969–3979, 2019.

[54] Y. Wang, T. Hu, G. Tang, J. Xie, and J. Lu, “SGS: Safe-Guard Scheme for

Protecting Control Plane Against DDoS Attacks in Software-Defined

Networking,” IEEE Access, vol. 7, pp. 34699–34710, 2019, doi:

10.1109/ACCESS.2019.2895092.

[55] P. Kumar, M. Tripathi, A. Nehra, M. Conti, and C. Lal, “SAFETY: Early

Detection and Mitigation of TCP SYN Flood Utilizing Entropy in SDN,” IEEE

Transactions on Network and Service Management, vol. 15, no. 4, pp. 1545–

1559, Dec. 2018, doi: 10.1109/TNSM.2018.2861741.

[56] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack

detection using NOX/OpenFlow,” in IEEE Local Computer Network

Conference, 2010, pp. 408–415. doi: 10.1109/LCN.2010.5735752.

92

[57] M. Ramadas, S. Ostermann, and B. Tjaden, “Detecting Anomalous Network

Traffic with Self-organizing Maps.”

[58] N. M. Yungaicela-Naula, C. Vargas-Rosales, and J. A. Perez-Diaz, “SDN-based

architecture for transport and application layer DDoS attack detection by using

machine and deep learning,” IEEE Access, vol. 9, pp. 108495–108512, 2021,

doi: 10.1109/ACCESS.2021.3101650.

[59] R. Santos, D. Souza, W. Santo, A. Ribeiro, and E. Moreno, “Machine learning

algorithms to detect DDoS attacks in SDN,” in Concurrency and Computation:

Practice and Experience, John Wiley and Sons Ltd, Aug. 2020. doi:

10.1002/cpe.5402.

[60] A. Devarakonda, N. Sharma, P. Saha, and S. Ramya, “Network intrusion

detection: A comparative study of four classifiers using the NSL-KDD and

KDD’99 datasets,” in Journal of Physics: Conference Series, IOP Publishing

Ltd, Jan. 2022. doi: 10.1088/1742-6596/2161/1/012043.

[61] P. Wang, K.-M. Chao, H.-C. Lin, W.-H. Lin, and C.-C. Lo, “An efficient flow

control approach for SDN-based network threat detection and migration using

support vector machine,” in 2016 IEEE 13th international conference on e-

business engineering (ICEBE), IEEE, 2016, pp. 56–63.

[62] S. Gupta and D. Grover, “A Comprehensive Review on Detection of DDoS

Attacks using ML in SDN Environment,” in Proceedings - International

Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, Institute

of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 1158–1163. doi:

10.1109/ICAIS50930.2021.9395987.

[63] N. Bawany, J. Shamsi, and K. Salah, “DDoS Attack Detection and Mitigation

Using SDN: Methods, Practices, and Solutions,” Arab J Sci Eng, vol. 42, Oct.

2017, doi: 10.1007/s13369-017-2414-5.

[64] R. T. Kokila, S. T. Selvi, and K. Govindarajan, “DDoS detection and analysis

in SDN-based environment using support vector machine classifier,” in 2014

sixth international conference on advanced computing (ICoAC), IEEE, 2014,

pp. 205–210.

[65] C. Li et al., “Detection and defense of DDoS attack–based on deep learning in

OpenFlow‐based SDN,” International Journal of Communication Systems, vol.

31, no. 5, p. e3497, 2018.

[66] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep

recurrent neural network for intrusion detection in sdn-based networks,” in 2018

4th IEEE Conference on Network Softwarization and Workshops (NetSoft),

IEEE, 2018, pp. 202–206.

[67] Kali, “Hping3”.

93

[68] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,

“Advanced study of SDN/OpenFlow controllers,” in ACM International

Conference Proceeding Series, 2013. doi: 10.1145/2556610.2556621.

[69] http://mininet.org/, “mininet.”

[70] OVS, “openvswitch.”

[71] M. Alabadi, A. Habbal, and X. Wei, “Industrial internet of things:

Requirements, architecture, challenges, and future research directions,” IEEE

Access, 2022.

[72] R. Sommer and V. Paxson, “Outside the closed world: On using machine

learning for network intrusion detection,” in 2010 IEEE symposium on security

and privacy, IEEE, 2010, pp. 305–316.

[73] R. Sommer and V. Paxson, “Outside the closed world: On using machine

learning for network intrusion detection,” in 2010 IEEE symposium on security

and privacy, IEEE, 2010, pp. 305–316.

[74] R. Panigrahi and S. Borah, “A detailed analysis of CICIDS2017 dataset for

designing Intrusion Detection Systems,” International Journal of Engineering

& Technology, vol. 7, no. 3.24, pp. 479–482, 2018.

[75] N. N. Tuan, P. H. Hung, N. D. Nghia, N. Van Tho, T. Van Phan, and N. H.

Thanh, “A DDoS attack mitigation scheme in ISP networks using machine

learning based on SDN,” Electronics (Switzerland), vol. 9, no. 3, Mar. 2020,

doi: 10.3390/electronics9030413.

[76] N. Moustafa and J. Slay, “The evaluation of Network Anomaly Detection

Systems: Statistical analysis of the UNSW-NB15 data set and the comparison

with the KDD99 data set,” Information Security Journal: A Global Perspective,

vol. 25, no. 1–3, pp. 18–31, 2016.

[77] R. S. Olson and J. H. Moore, “TPOT: A tree-based pipeline optimization tool

for automating machine learning,” in Workshop on automatic machine learning,

PMLR, 2016, pp. 66–74.

[78] R. Durgut, Y. Y. Baydilli, and M. E. Aydin, “Feature selection with artificial

bee colony algorithms for classifying Parkinson’s diseases,” in Proceedings of

the 21st EANN (Engineering Applications of Neural Networks) 2020

Conference: Proceedings of the EANN 2020 21, Springer, 2020, pp. 338–351.

[79] P. R. K. Varma, V. V. Kumari, and S. S. Kumar, “Feature selection using

relative fuzzy entropy and ant colony optimization applied to real-time intrusion

detection system,” Procedia Comput Sci, vol. 85, pp. 503–510, 2016.

[80] J. Zhang and M. Zulkernine, “Network Intrusion Detection using Random

Forests.,” in Pst, Citeseer, 2005.

94

[81] M. Dash and H. Liu, “Feature selection for classification,” Intelligent data

analysis, vol. 1, no. 1–4, pp. 131–156, 1997.

[82] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, pp. 197–

227, 2016.

[83] Y. Baydilli and U. Atila, “Understanding effects of hyper-parameters on

learning: A comparative analysis,” in Proceedings of the International

Conference on Advanced Technologies, Computer Engineering and Science,

Safranbolu, Turkey, 2018, pp. 11–13.

[84] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” the Journal of

machine Learning research, vol. 12, pp. 2825–2830, 2011.

[85] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp.

241–259, 1992.

[86] N. Chand, P. Mishra, C. R. Krishna, E. S. Pilli, and M. C. Govil, “A comparative

analysis of SVM and its stacking with other classification algorithm for

intrusion detection,” in 2016 International Conference on Advances in

Computing, Communication, & Automation (ICACCA)(Spring), IEEE, 2016,

pp. 1–6.

[87] K. Korjus, M. N. Hebart, and R. Vicente, “An efficient data partitioning to

improve classification performance while keeping parameters interpretable,”

PLoS One, vol. 11, no. 8, p. e0161788, 2016.

[88] İ. Tozlu, Ş. G. Öğüdücü, A. Çelebi, S. Kalaycı, and S. Arslan, “Accelerating

balance sheet adjustment process in commercial loan applications with machine

learning methods,” in 2019 11th International Conference on Electronics,

Computers and Artificial Intelligence (ECAI), IEEE, 2019, pp. 1–8.

[89] Y. Y. Baydilli and Ü. Atila, “Classification of white blood cells using capsule

networks,” Computerized Medical Imaging and Graphics, vol. 80, p. 101699,

2020.

[90] S. R. Sharma, B. Singh, and M. Kaur, “A novel approach of ensemble methods

using the stacked generalization for high-dimensional datasets,” IETE J Res, pp.

1–16, 2022.

[91] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp.

241–259, 1992.

[92] O. Dakkak, A. S. Che Mohamed Arif, and S. Awang Nor, “A critical analysis

of simulators in grid,” J Teknol, vol. 77, no. 4, pp. 111–117, 2015.

[93] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert,

“Deep learning-based electroencephalography analysis: a systematic review,” J

Neural Eng, vol. 16, no. 5, p. 051001, 2019.

95

[94] I. Stancin and A. Jovic, “An overview and comparison of free Python libraries

for data mining and big data analysis. 42nd International Convention on

Information and Communication Technology,” Electronics and

Microelectronics. doi, vol. 10, 2019.

[95] M. J. J. Douglass, “Book Review: Hands-on Machine Learning with Scikit-

Learn, Keras, and Tensorflow, by Aurélien Géron: O’Reilly Media, 2019, 600

pp., ISBN: 978-1-492-03264-9.” Springer, 2020.

[96] Y. Y. Baydilli, U. Atila, and A. Elen, “Learn from one data set to classify all–

A multi-target domain adaptation approach for white blood cell classification,”

Comput Methods Programs Biomed, vol. 196, p. 105645, 2020.

[97] A. K. Sarica and P. Angin, “Explainable security in SDN-based IoT networks,”

Sensors, vol. 20, no. 24, p. 7326, 2020.

[98] S. Zian, S. A. Kareem, and K. D. Varathan, “An empirical evaluation of stacked

ensembles with different meta-learners in imbalanced classification,” IEEE

Access, vol. 9, pp. 87434–87452, 2021.

[99] A. Ahmad, E. Harjula, M. Ylianttila, and I. Ahmad, “Evaluation of machine

learning techniques for security in SDN,” in 2020 IEEE Globecom Workshops

(GC Wkshps, IEEE, 2020, pp. 1–6.

[100] O. Dakkak, Y. Fazea, S. A. Nor, and S. Arif, “Towards accommodating

deadline driven jobs on high performance computing platforms in grid

computing environment,” J Comput Sci, vol. 54, p. 101439, 2021.

[101] K. Hasan, S. Shetty, A. Hassanzadeh, and M. Ben Salem, “Self-healing cyber

resilient framework for software defined networking-enabled energy delivery

system,” in 2018 IEEE Conference on Control Technology and Applications

(CCTA), IEEE, 2018, pp. 1692–1697.

[102] P. Thorat, S. M. Raza, D. T. Nguyen, G. Im, H. Choo, and D. S. Kim,

“Optimized self-healing framework for software defined networks,” in

Proceedings of the 9th International Conference on Ubiquitous Information

Management and Communication, 2015, pp. 1–6.

[103] L. Ochoa-Aday, C. Cervelló-Pastor, and A. Fernández-Fernández, “Self-

healing and SDN: bridging the gap,” Digital Communications and Networks,

vol. 6, no. 3, pp. 354–368, 2020.

[104] F. lahmood HAMEED and O. DAKKAK, “Brain Tumor Detection and

Classification Using Convolutional Neural Network (CNN),” in 2022

International Congress on Human-Computer Interaction, Optimization and

Robotic Applications (HORA), IEEE, 2022, pp. 1–7.

[105] O. Dakkak, S. Arif, and S. A. Nor, “Resource allocation mechanisms in

computational grid: A survey,” ARPN Journal of Engineering and Applied

Sciences, vol. 10, pp. 6662–6667, 2006.

96

[106] M. Belyaev and S. Gaivoronski, “Towards load balancing in SDN-networks

during DDoS-attacks,” in 2014 international science and technology

conference (modern networking technologies)(MoNeTeC), IEEE, 2014, pp. 1–

6.

[107] Y. Zhou, K. Zheng, W. Ni, and R. P. Liu, “Elastic switch migration for control

plane load balancing in SDN,” IEEE Access, vol. 6, pp. 3909–3919, 2018.

[108] A. A. Abdelltif, E. Ahmed, A. T. Fong, A. Gani, and M. Imran, “SDN-based

load balancing service for cloud servers,” IEEE Communications Magazine,

vol. 56, no. 8, pp. 106–111, 2018.

[109] M. N. Hindia, A. W. Reza, O. Dakkak, S. Awang Nor, and K. A. Noordin,

“Cloud computing applications and platforms: A Survey,” 2014.

[110] J. Son and R. Buyya, “A taxonomy of software-defined networking (SDN)-

enabled cloud computing,” ACM computing surveys (CSUR), vol. 51, no. 3, pp.

1–36, 2018.

[111] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang, “Meridian:

an SDN platform for cloud network services,” IEEE Communications

Magazine, vol. 51, no. 2, pp. 120–127, 2013.

[112] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He, “A survey of human-in-

the-loop for machine learning,” Future Generation Computer Systems, 2022.

[113] S. Aiman, S. Hassan, A. Habbal, A. Rosli, and A. H. M. Shabli, “Smart

electricity billing system using blockchain technology,” Journal of

Telecommunication, Electronic and Computer Engineering (JTEC), vol. 10, no.

2–4, pp. 91–94, 2018.

[114] S. M. Karim, A. Habbal, S. A. Chaudhry, and A. Irshad, “BSDCE-IoV:

Blockchain-Based Secure Data Collection and Exchange Scheme for IoV in 5G

Environment,” IEEE Access, 2023.

[115] H. Seyam and A. Habbal, “A Systematic Review of Blockchain-based Identity

Management Solutions,” in International Conference on Recent Academic

Studies, 2023, pp. 246–253.

[116] M. Raeisi-Varzaneh, O. Dakkak, A. Habbal, and B.-S. Kim, “Resource

Scheduling in Edge Computing: Architecture, Taxonomy, Open Issues and

Future Research Directions,” IEEE Access, vol. 11, pp. 25329–25350, 2023.

97

RESUME

Tasnim Kamal ALASALI is an accomplished individual with a Bachelor's Degree in

Computer Engineering from the Syrian Private University. She graduated in 2016 and

demonstrated a strong understanding of complex technological concepts during her

studies. Tasnim furthered her education by pursuing a Master's Degree in Computer

Engineering at Karabük University from 2021 to 2023. Her postgraduate studies

allowed her to delve into advanced topics and conduct extensive research, fueling her

passion for the field. Tasnim's solid educational foundation and commitment to

professional growth make her a valuable asset in the realm of computer engineering.

