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The present power generation system is confronted with difficulties such as reducing 

pollution, rising global energy consumption, high reliability requirements, energy 

cleanliness, and planning constraints. To achieve a sustainable and intelligent energy 

system, large and central generating stations are converted into small generating 

systems located close to residential buildings. Therefore, the design and installation of 

a micro grid lead to energy and cost savings. The micro grid consists of a number of 

loads, smart meters, communication system, traditional and alternative power 

generators, and storage systems. Energy management is necessary for the 

uninterrupted and reliable operation of a micro grid. Thus, energy management should 

be prioritized when developing multi-source system for economic and sustainable 

growth. 
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Optimum scheduling of power generators operation leads to proper utilization and 

optimization of available energy sources while maintaining a balance between supply 

and demand. Many programs and smart algorithms can be used to manage and control 

the production and consumption of energy generated in a micro grid in order to 

calculate operating costs, reduce harmful gas emissions, maximize the use of 

renewable energy, reduce the cost of energy storage, and respond quickly to high 

loads., reduce energy cost, and finally simulate the components of the micro grid while 

carefully considering the constraints. 

 

This thesis aims to manage energy within the micro grid to supply residential loads 

effectively and cheaply. The first objective is to analyze six combinations of different 

energy sources to determine the best hybrid source in addition to improving the size 

and number of generation and storage units based on the cheapest total costs of the 

project. After that, obtaining the best energy source by comparing several economic 

and environmental factors help the decision-maker determine the best suitable 

combination for feeding a residential building to ensure optimal control of micro grids 

by considering reducing energy costs and reducing gas emissions as a main goal. 

 

Three research stages were investigated to determine the best hybrid system in terms 

of cost and sustainability. The first stage is determining the best size and optimization 

of the proposed system; the goal of this section is to use multi criteria decision-making 

algorithms to select the optimal design of six energy systems for sustainable energy to 

supply some buildings located in Tripoli. In this part, the HOMER software results 

were used to select all of the criteria for decision-making analysis. At first, the study 

used Homer software to determine optimal energy systems that can meet load demand 

while minimizing net present cost and the cost of energy. The technical, economic, 

and environmental results are explored for the most suitable system companion. To 

select the best HRE system, two decision-making algorithms (Vikor and Topsis) were 

implemented. Following that, in comparison to the other HRES, the final scores proved 

that PV /WT/Batt/Diesel generators are the best micro grid component for supplying 

the building. This proves that significant investment in hybrid PV/WT/Batt/Diesel 

generator systems will give the Libyan residential sector an excellent chance of 

achieving sustainable power. 
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The second part of this study is a control strategy including "ON/OFF" operation of 

the available energy sources, including photovoltaic system PV- diesel generator, wind 

system, and energy storage banks using a Genetic algorithm. Then the output results 

from the algorithm are used as input data to machine learning models; in this phase, 

three algorithms were used to predict load and supply dispatch for the next 720 hours. 

The final part of the study compares the results obtained from the classification 

algorithms. The tables below show the high performance of the Decision Tree and 

Random Forest algorithms, where the accuracy reached 100% and 99%, respectively, 

in addition to the KNN algorithm, which was the worst with an accuracy of 90%. 

 

Key Words : Renewable Energies, Micro grid, Hybrid Energy System, Energy 

Management System, machine learning Algorithms, Energy 

consumption predication, Cost, Emissions reduction. 

Science Code :  90544 
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Doktora Tezi 

 

YENİLENEBİLİR ENERJİ KAYNAKLARINA DAYALI SÜRDÜRÜLEBİLİR 

ŞEHİRLER İÇİN ENERJİ YÖNETİM SİSTEMİ OPTİMİZASYONU 

 

Mohamed Ali ELWEDDAD 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Elektrik-Elektronik Mühendisliği 

 

Tez Danışmanı: 

Doç. Dr. Muhammet Tahir GÜNEŞER 

Temmuz 2023, 125 sayfa 

 

Mevcut enerji üretim sistemi, kirliliğin azaltılması, artan küresel enerji tüketimi, 

yüksek güvenilirlik gereksinimleri, enerji temizliği ve planlama kısıtlamaları gibi 

zorluklarla karşı karşıya bulunmaktadır. Daha sürdürülebilir ve akıllı bir elektrik 

enerjisi sistemine geçmek için, merkezi üretim tesisleri daha küçük ve dağıtık üretim 

sistemlerine evrilmektedir. Sonuç olarak, bir grup yük ve farklı tipte yenilenebilir 

enerji kaynağı ve batarya grubundan oluşabilen dağıtık enerji kaynaklarının bir araya 

geldiği mikro şebeke uygulamaları olarak kabul edilen sistemler ortaya çıkmaktadır. 

Bir dizi dağıtık enerji kaynağının olduğu sistemlerde enerji yönetimi, mikro şebeke 

sisteminin güvenilir bir şekilde çalışması için gereklidir. Sonuç olarak enerji yönetimi, 

ekonomik ve sürdürülebilir kalkınma için mikro şebeke operasyonunun kritik bir 

bileşenidir. 
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Enerji üretim operasyonunun optimum zamanlaması ile arz ve talep arasında bir denge 

korurken mevcut enerji kaynaklarının uygun şekilde kullanılmasına ve 

optimizasyonuna da imkân sağlanmaktadır. Mikro ölçekli enerji üretim tesislerinde 

optimum çalışma noktasını bulmak belli durumlarda mikro şebekede mevcut olan 

enerjinin daha verimsiz kullanımına yol açabilir. Bu problemi çözmek için ele alınan 

çeşitli enerji yönetimi modelleri; mikro şebeke değişkenleri ve şebeke tasarımı ile 

hücresel enerji üretim sistemlerinin işletme maliyetlerinin, geleneksel üretim kaynağı 

emisyon maliyetlerinin, yenilenebilir enerji kaynaklarının maksimum kullanımının, 

batarya bozulma maliyetinin, talep yanıt teşviklerinin ve yük maliyetinin nesnel 

fonksiyonlarını içermektedir. 

 

Bu tez, konutların enerji ihtiyaçlarını etkili ve ucuz bir şekilde karşılamak için mikro 

şebekedeki enerjiyi yönetmeyi amaçlamaktadır. İlk amaç, farklı enerji kaynaklarının 

altı kombinasyonunu en iyi hibrid enerji kaynak grubunu belirlemek için 

karşılaştırarak analiz etmek ve ek olarak projenin en ucuz toplam maliyete göre üretim 

ve depolama birimlerinin boyutunu ve sayısını iyileştirmeyi sağlamaktır. Ardından, 

bir konutun enerji maliyetlerini azaltma ve ana hedef olarak emisyonu düşürme 

önceliğiyle ve en iyi enerji kaynağını elde etmek için çeşitli ekonomik ve çevresel 

faktörleri karşılaştırarak mikro şebekenin optimal yönetimini sağlayacak alternatifi 

belirlemesi sağlanmıştır. Maliyet ve sürdürülebilirlik açısından en iyi hibrit sistemi 

belirlemek için üç araştırma aşaması yürütülmüştür. İlk aşama, önerilen sistemin en 

iyi boyutunu ve optimizasyonunu belirlemektir. Bu aşamada, Trablus'ta bulunan bazı 

binaları sürdürülebilir enerji ile beslemek için altı farklı enerji sisteminin optimal 

tasarımını seçecek çok kriterli karar verme algoritmaları kullanılmıştır.  Bu kısımda, 

HOMER yazılım sonuçları, karar verme analizi için tüm kriterleri seçmek için 

kullanılmıştır. Çalışmada, mevcut maliyeti ve enerji maliyetini en aza indirirken yük 

talebini karşılayabilen optimal enerji sistemlerini belirlemek için teknik, ekonomik ve 

çevresel faktörler en uygun sistem tasarımını hedefleme algoritmasına göre 

çalıştırılmıştır. En iyi hibrit enerji sistemini seçmek için iki karar verme algoritması 

(Vikor ve Topsis) uygulanmıştır. Bunu takiben, diğer hibrit enerji sistemlere kıyasla, 

son değerler, FV/Rüzgâr/Batarya/dizel jeneratör tasarımının binayı beslemek için en 

iyi mikro sistem bileşeni olduğu kanıtlanmıştır. Bu sonuç, hibrid 

FV/Rüzgâr/Batarya/dizel jeneratör kapsayan sistemlerine yapılacak yatırımın Libya 
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konut sektöründe sürdürülebilir enerji üretim tasarımı fırsatı sunulabileceği 

göstermektedir. 

 

Çalışmanın ikinci kısmı, dizel jeneratör, güneş fotovoltaik -rüzgar türbini ve batarya 
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önceliğiyle ve en iyi enerji kaynağını elde etmek için çeşitli ekonomik ve çevresel 

faktörleri karşılaştırarak mikro şebekenin optimal yönetimini sağlayacak alternatifi 

belirlemesi sağlanmıştır. Maliyet ve sürdürülebilirlik açısından en iyi hibrit sistemi 

belirlemek için üç araştırma aşaması yürütülmüştür. İlk aşama, önerilen sistemin en 

iyi boyutunu ve optimizasyonunu belirlemektir. Bu aşamada, Trablus'ta bulunan bazı 

binaları sürdürülebilir enerji ile beslemek için altı farklı enerji sisteminin optimal 

tasarımını seçecek çok kriterli karar verme algoritmaları kullanılmıştır.  Bu kısımda, 

HOMER yazılım sonuçları, karar verme analizi için tüm kriterleri seçmek için 

kullanılmıştır. Çalışmada, mevcut maliyeti ve enerji maliyetini en aza indirirken yük 

talebini karşılayabilen optimal enerji sistemlerini belirlemek için teknik, ekonomik ve 

çevresel faktörler en uygun sistem tasarımını hedefleme algoritmasına göre 

çalıştırılmıştır. En iyi hibrit enerji sistemini seçmek için iki karar verme algoritması 

(Vikor ve Topsis) uygulanmıştır. Bunu takiben, diğer hibrit enerji sistemlere kıyasla, 

son değerler, FV/Rüzgâr/Batarya/dizel jeneratör tasarımının binayı beslemek için en 

iyi mikro sistem bileşeni olduğu kanıtlanmıştır. Bu sonuç, hibrid 

FV/Rüzgâr/Batarya/dizel jeneratör kapsayan sistemlerine yapılacak yatırımın Libya 

konut sektöründe sürdürülebilir enerji üretim tasarımı fırsatı sunulabileceği 

göstermektedir. 

 

Çalışmanın ikinci kısmı, dizel jeneratör, güneş fotovoltaik -rüzgar türbini ve batarya 

dahil olmak üzere mevcut enerji kaynaklarının Genetik algoritma kullanarak 

"AÇIK/KAPALI" çalışmasını içeren bir kontrol stratejisini açıklamaktadır. Daha 

sonra algoritmanın çıktı sonuçları, makine öğrenimi modellerinde girdi verileri olarak 

kullanılarak, önümüzdeki 720 saat boyunca arz talep dağılımı üç farklı algoritma 

kullanılarak tahmin edilmiştir. Çalışmanın son bölümünde ise, en iyi performansı 

gösteren algoritmayı belirlemek için makine öğrenme tekniklerinin, yani Rastgele 

Orman (RF), Karar Ağacı (DT) ve K-En Yakın Komşuların (KNN) sonuçlarını 

karşılaştırılmaktadır. Sonuçlar, DT tekniğinin sınıflandırma uygulamasında %100 

doğrulukla en iyi performansa sahip olduğunu göstermiştir. Ayrıca, RF yaklaşımının 

%99'e varan doğrulukla kabul edilebilir sonuçlar verdiğini ve KNN algoritmasının 

%90'lik bir değerle doğruluk açısından en kötüsü olduğunu göstermektedir. 

 

. 
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PART 1 

 

INTRODUCTION 

 

1.1. HISTORY 

 

The primary source of power generation is a fossil fuel, but this option negatively 

impacts the environment significantly with carbon and its pollutants. As a result, 

harmful emissions are the primary issue in the world today since they destroy the 

atmosphere's greenhouse system. Energy sources such as wind, solar, biomass, and 

hydropower can help solve this issue. Several countries today are dealing with 

concerns related to energy and environmental security. The world's population is 

expanding exponentially, which has resulted in a steady rise in energy demand, mainly 

for electricity. The rising trend in energy application is a 2.8% annual increase. Since 

the current configuration of energy sources cannot meet the increasing need for power 

globally [1]. Alternative sources are being considered because of the rising costs of 

conventional electricity and environmental damage. Hence, renewable energy systems 

can be grid-connected or off-grid.  Off-grid hybrid sources with a diesel generator and 

battery unit power remote areas. The best off-grid system size is studied in the 

literature with relation to a maximum renewable fraction (RF), low (NPC), The lowest 

cost per kilowatt hour of energy (COE), and reduction of loss of power probability 

(LPSP) [2], [3]. Many papers have also been published on how to reduce co2 

emissions, unmet load and maximize the employment creation factor [4], [5]. Earlier 

research also assessed the optimal hybrid system size regarding social, technological, 

and economic benefits using many objectives and criteria. 

 

Accessibility to electrical power is vital to decreasing poverty in rural places where 

human progress is typically minimal [6], [7]. However, a considerable percentage of 

the global population, 17.8%, cannot access electricity, which indicates poor human 

advancement, according to a study in 2014 [8]. The population's living standards will 
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rise, through efficient energy use, improving education, higher net incomes, and 

increasing use of electrical appliances, leading to new employment opportunities [10]. 

Several authors have considered the Job Creation factor when designing HRES [11]. 

Many economic jobs might be created by clean energy, and a number of these 

opportunities would stay in the area because they involve infrastructure construction. 

The economy can be enhanced by shifting funds from energy costs to infrastructure 

development, encouraging employment creation. According to many studies, 

increasing the use of energy-efficient technologies and sustainable power sources 

generates financial benefits by creating jobs and protecting the economy from the 

economic and political risks associated with an excessive reliance on fuel sources. This 

review focuses on power generation management because it is the most significant 

vital energy section developing quickly and is the location of most employment/job 

creation research [12]. In addition to other factors, the population, gross domestic 

product, and energy prices are all intimately related to energy consumption. In order 

to secure sustained economic growth, Power management contributes to self-

sufficiency and cost-effectiveness. In order to plan for future demand, establish 

conservation strategies, determine the most valuable energy resources, optimize 

energy use, formulate plans for increased consumption management is necessary. In 

order to predict energy demand, energy models are created utilizing time series 

analysis. It supports developing and designing load management techniques [13]. 

 

This study focused more on the accuracy of the methods used in forecasting energy 

consumption. Its primary goal is to produce an energy usage predictive model for 

intelligent buildings utilizing various machine learning techniques. Advances in 

machine learning studies have dramatically impacted intelligent building energy 

management since it is necessary to lower consumption in residential and industrial 

buildings. Additionally, it helps industrial companies expect the development of their 

factories vs. load demand and predict the energy demand on their system over the long 

term. 

 

Related literature review several studies have analyzed the best design of microgrids, 

taking into account sustainable energy and demand response approaches. The required 

sizing aims have a significant influence on optimal power scheduling. Cagnano et al. 
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[19] investigated the present principal design characteristics and defined several 

control methods required to enable microgrids' cost-effective, and stable operation. in 

[20], a detailed literature study of microgrid-sizing approaches was covered. The two 

basic sizing approaches are cost-based and non-cost-based. To achieve low energy 

costs and sustainability, the ideal microgrid was designed and sized using the 

Grasshopper Algorithm [21]. When establishing the appropriate size of the microgrid, 

the reference [22] considered the capital cost, renewable energy availability, electricity 

price variation, and 𝐶02 emissions. To decrease initial and annual operation costs, The 

authors in.[23] used an evolutionary model to alculate optimal scale of distributed 

energy sources. In ref. [24], the enhanced hybrid optimized genetic algorithm was used 

to specify HRES cost and varying load levels for efficient and optimum microgrid 

sizing. Integrating microgrids into the electricity utility improves microgrid 

sustainability. [25] described a method for developing grid-connected generating units 

that improve dependability while supplying the demand at a minimal cost. A grid-

connected system that uses sustainable energy was effectively managed by using the 

enhanced bat algorithm in reference [26]. The microgrid was optimized by [27] using 

Homer and particle swarm methods. 

 

To enhance RE, the design of the electricity system should be upgraded first [14]. 

Conventional energy production systems or batteries for storing energy are commonly 

used as decision variables in the present investigation to obtain power demand 

balancing. Ref. [15] suggested a power management system that includes day-ahead 

production forecasting and optimum capacity modification. The corresponding system 

framework includes a wind generator (WT), a PV systems, and a storage system (Batt), 

all of which are derived from the Matlab software and use Mixed Integer Programming 

to simulate and optimize the capacity of the PV, WT, and battries system to reduce 

capital costs. Referencing [16] as the goal function predicts the appropriate size of the 

system comprising renewable and thermal generation and control its scheduling 

operation. The outcomes indicate that the proposed system can save alot of money 

over 20 years while generating thousands of kw of installed energy from renewable 

sources. The study [17] aimed to analyze a reactive power compensation system that 

considers solar, wind energy, and rechargeable batteries inside a remote area. 

According to the analysis results, the system architecture can reduce surplus energy 
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production. The publications described above all present clean energy sources such as 

wind and solar to generate energy using different methods. However, the established 

systems have insufficient use of renewable energy, so a sustainable plan for energy 

management and optimal configuration sizing is necessary for the best possible design 

of HESs. Choosing an appropriate energy management strategy is essential because it 

influences the system's operation by controlling power flow and prioritizing each 

system component [18]. So, an effective management plan may increase the system's 

stability, guarantee the power generation's quality, reduce the cost of energy (COE), 

and prevent components from damage. Furthermore, in grid-connected systems, the 

energy management strategy is essential for metering and controlling energy flow to 

and from the grid [19]. Several innovative strategies are carried out using various 

economic and technical criteria, relying on the system architecture and the 

optimization goals. These techniques can be more accessible or complex, enabling 

more straightforward or more difficult optimization algorithms [20]. 

 

1.2. ENERGY MANAGEMENT OF OFF-GRID MICRO GRID SYSTEM 

 

In MG systems, numerous power management strategies are employed. For instance, 

several studies applied linear programming (LP) to improve MG operating, 

optimizing, and forecasting renewable energy production using artificial intelligence 

(AI). Reference [21] summarizes the studies that utilized these approaches. For a 

standalone PV/battery micro grid, reliability problems, optimal sizing, and intelligent 

power control aspects are discussed [22]. A hybrid system with a Photovoltaic, a wind 

turbine, and storage batteries as a backup source was first presented by Ismail et al. 

For a remote Palestinian village, the authors established an innovative method for 

managing energy. In this situation, the study examined the heat released by the micro 

turbine and the generated electricity through Distributed generation [23]. Kilic 

investigated the effectiveness of two alternative energy management techniques in a 

fuel cell, solar, wind, and off-grid system. These techniques aim to improve the 

performance of fuel cells (FC) and guarantee the flow of power in the micro grid. [24]. 

In different study the authors modeled and analyzed a diesel-wind combination for a 

remote area. The system aims to provide energy to colleges, hospitals, and other rural 

institutions. In this system, the turbine is the primary energy source, with storage 



5 

 

batteries supplying surplus power. When battery storage systems are completely 

drained, a diesel generator (DG) provides electricity [25]. The HOMER software has 

been used in several projects to optimize configurations. For example, Bhakta et al. 

utilize this tool in Northeast India to optimize, and make economic study of the system 

including (PV-WT-battery). Off-grid systems are a practical choice for consumers in 

rural locations, according to the HOMER examination [26]. Many off-grid systems 

were proposed, and HOMER was used to analyze them for different scenarios. 

 

1.3. COMMONLY USED ALGORITHMS 

 

The optimization of particle swarms (PSO), a traditional optimization technique, as 

well as artificial intelligence (AI) techniques like neural networks, fuzzy logic, ant 

colony optimization, genetic algorithms (GA), and others have been used in many 

studies on power management over the past decade. This section reviews AI 

investigations, including one PSO, GA, and fuzzy-logic study. Azizipanah suggested 

an algorithm to enhance management methodology and dispatch at a cheaper cost. The 

algorithm aims to determine the appropriate battery size for MG with HRES. The 

technique determined the cost function and maintenance costs before defining the 

optimization problems. The suggested approach proved it could solve that problem 

rapidly [31]. Kumar et al. recommends optimization technique for (hybrid PV-WT) 

system to achieve optimal system effectiveness. The authors evaluated the findings 

with HOMER and PSO algorithm [32]. Ali et al. reduced operation costs and improved 

techno-economic effectiveness of hybrid micro grid using GA techniques. The 

maximum system efficiency is obtained, and excess power for supplying different 

loads is controlled by switching to low peak periods [33]. Figure 1.1.  presents the 

commonly used algorithms for energy management. 
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Figure 1.1.  The commonly used algorithms in micro grid management. 

 

1.3.1. Genetic Algorithm  

 

It is an effective and reliable technique for solving and improving problems that bases 

its search strategy on evolution and natural selection principles. As can be seen in 

Figure 1.2, it is commonly used for finding optimal solution to complex problems 

which need perfect and accurate results. It is widely used in many fields, including 

optimization, research, and machine learning. For example, a heuristic tool based on a 

genetic algorithm and simulated annealing is developed to fix the problem of 

identifying and determining the appropriate size of storage systems within an LV 

system. To overcome overvoltage challenges caused by increased PV penetration, this 

is used to investigate various energy storage designs and structures [34]. solar 

irradiance, temperature, wind speed, and demand are utilized in the predictive model 

control of the combined photovoltaic-wind-diesel-battery system [35]. The five 

control parameters' optimal set positions determine the best control approach for every 

hour. This study aims to improve the PV system's design using solar tracking, which 

involves improving the PV unit's component characteristics to maximize efficiency 

and minimize energy loss. Intelligent methods for studying and optimization obtained 

from natural evolution are known as evolutionary algorithms (EAs) [36]. In order to 
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reduce pollution and save money, a hybrid system was developed [37] that includes 

photovoltaic panels, hydropower, energy storage tank, and a diesel generator. The 

system comprises different components, including solar, wind generators, and battery. 

According to the study results, using the proposed technology can reduce operating 

costs by about 10% compared to DG [38]. 
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Figure 1.2.  The flow chart of genetic algorithm [117]. 

 

1.3.2. Fuzzy-Logic 

 

Borni et al. discuss the methods used to simulate MG that is connected to a utility grid. 

A fuzzy Technique controls the speed of a wind generator, and a PSO fuzzy algorithm 

controls the output of a PV [39]. The study proposes a new method to control the 

production of solar cells with rechargeable batteries. This method reduces the dynamic 

stress of the battery, which makes the battery live longer. This strategy reduces the 

power conversion rate, peak current, and battery power drawn [40]. In another study, 
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the author designed a microgrid containing a PV, a fuel cell, and an extensive storage 

system. The PI controller was used to design the process of charging and discharging 

the batteries from the energy generated from the solar cell, in addition to controlling 

the value of the energy withdrawn to feed the loads [41]. 

 

In reference [42], the author established fuzzy logic for a simple power generation 

system. The interchange between the solar and fuel cells allows the control of the 

power flow level and the amount that needs to be stored, as shown in Figure 1.3.  

 

Fuzzifier Defuzzifier 
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Inference

Crisp

inputs

Fuzzy Logic System

Crisp

outputs

Fuzzy input sets Fuzzy output sets

 

Figure 1.3. Fuzzy logic system architecture [117]. 

 

In a different article, Saravanan et al. suggested a novel approach to power 

management using an intelligent controller. Compared to a single renewable energy 

source, the control method achieves higher stability and optimizes the operational 

conditions of the Photovoltaic, wind, and fuel cell systems [43].  

 

1.3.3. PSO Algorithm 

 

The PSO algorithm is one of the more popular traditional approaches for developing 

MG systems based on clean energy sources with a mix of generators and storage 

configurations. The investment cost, unmet load, and gas emissions are reduced using 

the constraints mechanism. PSO simulation is used to tackle the multi-objective 

optimization problem [44]. PSO is utilized to handle the dynamic control problem of 

power-producing units like hydro, wind, and solar energy, and reliable outcomes are 

achieved [45]. A modified PSO technique for solving objective function, taking into 
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account how battery total capacity and uncertainty affect economic dispatch [46]. A 

"PV-wind turbine" system connected to the grid is designed with multiple objectives 

in mind to generate enough energy [47]. This study outlines a novel approach to 

optimal prediction for a standalone system that can supply an energy-starved tiny 

village in southern Libya. By considering the regulated power constraint and the 

appropriate number of Photovoltaic panels, backup generators, and batteries, the bat 

algorithm is utilized to reduce the system's yearly cost [48].  Solar station charging in 

smart cities uses the best energy management strategy [49]. In another study, the 

charging method has been created using pso algorithm, and MATLAB has performed 

the modeling of the EV battery charging operation [50]. Figure 1.4. shows the flow 

chart of PSO algorithm. 
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Figure 1.4. Flow chart of PSO algorıthm [117]. 

 

 1.4. CLASSICAL ENERGY MANAGEMENT APPROACHES 

 

Traditional techniques such as mixed integer linear and nonlinear programming are 

used in several EM optimization methods. These techniques can be considered 

practical ways of controlling micro grids depending on goals and limitations. To 

prevent frequency loss due to distributed energy production and load shifting, Rezae 

et al. proposed an accurate power flow controller for automated micro grid [51]. 

Information decision theory deals with the variable and essential factors in power 
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generation in MGs, such as temperature change, wind speed, solar radiation, and loads. 

In another context, the article [52] presents several optimization options for a hybrid 

system containing hydrogen storage devices. The system consists of three generating 

units: photovoltaic panels, wind turbines, and gas generators. The simulation results 

are implemented in MATLAB / Simulink with the gas generator as a backup power 

source. The control algorithm has been calibrated, and the power flow management 

results are presented in the paper [53]. The control scheme is developed to assure 

proper power management and power suitability between all different resources in the 

micro grid. In the study [54], MG with distributed generation is investigated. 

Environmental and economic considerations are specified as decision variables. The 

power management structure is assumed to be multi-objective problem. To manage 

MG excess power Dynamic programming method is applied, and simulation results 

are used to evaluate the algorithm's efficacy. The authors of [55] have put forth another 

piece of work, presenting a MILP to control energy consumption across several 

consumers. The model was proposed based on detailed information on the power 

transformer, batteries, clean energy generators, thermal units, in addition to the diesel 

generator to obtain the best scheduling and operation of the MG units. In order to 

reduce operation costs, the algorithm is built around the AC power flow, taking 

amplitude and power flow limits into account. Implementing MILP to decrease 

operating costs and take into account power dispatch management as a limitation on 

MG operation [56]. In [57], The authors presented an accurate MPC algorithm to 

improve the economical operation of small MGs. In addition, residential load building 

designs were developed in literature. Finally, using MILP for several case studies, 

issues including lowering energy usage, gas, and electricity costs. 

 

1.5. MACHİNE LEARNİNG RELATED REVIEW 

 

1.4.1. Machine Learning in HRES 

 

In both the generating and consumption fields, efficient energy management has been 

achieved using machine learning (ML) technologies. Furthermore, ML approaches can 

be applied to stand-alone or grid-connected renewable resources depending on the 

specifications of the type of barriers. Figure 1.5 shows the fields where techniques 
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based on machine learning can be applied to forecast electricity, forecast demand, 

manage renewable energy systems, and improve system performance. The following 

paragraphs briefly describe the main applications of ML approaches in HRES. 

 

 
                 Figure 1.5. Using machine learning in energy management system [66]. 

 

• Forecasting how much renewable energy will be produced. Predicting energy 

generation is a critical challenge with renewable energy sources and machine 

learning. 

• Identifying the Location, Design, and Size of Renewable Power Resources. A 

difficult task in HRES is determining the best size for renewable energy 

facilities. The power station site and other criteria, such as weather, geography, 

availability, and costs, depending on various variables. These decision-making 

processes may be enhanced by machine learning approaches [32]. 

• Overseeing the RE Integrated Smart Grid's General Operations. 

• Predicting the energy demand. The demand-supply scheme must be balanced 

correctly for electricity consumption estimation to guarantee the reliability of 

the power source [84]. The actual power consumption and demand estimation 

can be sorted using ML algorithms. 

• Producing materials for renewable energy. The ability of machine learning to 

improve material selection is growing. Other energy-related industries that can 

benefit from it include crystal creation, catalysis, solar panels, and batteries 

[87]. 
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It is a difficult to forecast energy demand accuratly. Because time series data are 

complicated and contain random periodic components. The periodic components 

contain overlapping periods on a daily basis due to the fluctuations in the use of 

electricity in household loads, and differences due to weather changes, economic 

effects, and inaccuracy of measurement data [58]. 

 

Electricity load forecasting is essential for adequately operating, maintaining, and 

planning electrical power systems. Electrical load forecasting can be classified into 

four categories, according to the time period: Long term: for several years. Mid-term: 

from one month to a year; short-term: estimates for today or next week; And a concise 

term: a few minutes to an hour before electricity consumption. Long and medium-term 

expectations are important for strategic planning in developing energy systems, which 

includes intelligent grid design, maintenance scheduling, and long-term demand 

measurement, all of which are quickly done using machine learning and artificial 

intelligence [59]. 

 

Exact demand forecasts are critical for efficient electrical system operation, although 

the electricity load is complex and unstable. Forecasting such complicated variables 

necessitates the use of appropriate prediction tools. Forecasting techniques can be 

classified into artificial intelligence (AI) and statistical data methodologies. As 

illustrated in [61], black-box algorithms are also classified as linear autoregressive. 

There are three types of power forecasting models: white box, gray box and black box 

[60]. Data-driven black-box and gray-box algorithms consider an irregular part 

whenever appropriate climate and energy usage data are available 

 

Probabilistic forecasting techniques compare the energy required for their correlational 

effects on mathematical algorithms. ANN, SVM, evolutionary models, and fuzzy logic 

are examples of AI-based approaches. Such techniques include Kalman filters, 

multiple regression techniques, and autoregressive moving averages [62]. Forecasting 

and scheduling are two essential parts of successful systems to manage energy (EMS). 

EMSs are critical to the overall stability of the SG. They are all in charge of controlling 

the SG parts' energy to decrease expenses and increase quality [63]. Estimating the 

electricity consumption of various devices is a critical component of the SG approach. 
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Power consumption can be represented as a nonlinear period with different 

complicated variables [64]. A significant number of studies published show various 

techniques to forecast the electricity consumed by different appliances. Elkonomou 

suggested an artificial neural network-based prediction approach [65]. The multilayer 

perceptron algorithm performed experiments to determine which design provided the 

best prediction. Real input and output data were utilized throughout the training, 

validation, and testing processes. 

 

The ability to forecast future energy demand is still a concern for power enterprises 

because of the increasing size of the world's population. Scientists predict that if energy 

usage is not controlled, there will be an energy crisis within the next few years. There 

are two ways to deal with the energy shortage: increase energy production or decrease 

energy use while cutting waste. Energy generation is an expensive, time- and resource-

intensive solution, but power consumption may be decreased by taking what is needed 

to be effective [66]. Scientists and other academics are also interested in forecasting 

and managing electricity use in residential buildings in order to ensure the 

sustainability of IoT-based intelligent home systems. Predictions using statistical 

evaluation and algorithms for learning applied to electricity information on energy 

usage are conventional energy-saving techniques [67]. The study's (68) objective is to 

forecast electricity usage every 10 minutes or every hour to identify the most effective 

method. To that purpose, we will contrast four standard machine learning models: the 

support vector machine for regression (SVR) with radial basis function kernel, the 

random forest, and the feed-forward neural network with the back-propagation 

algorithm method. Fazil Kaytez et al. [69] compared regression analysis, neural 

networks, and least squares support vector machines in estimating Turkey's power 

usage. Linear regression, fuzzy modeling, and models based on neural networks were 

all investigated by Henrique Pombeiro et al. [70] to forecast the amount of power used 

in a commercial building. Based on support vector machine technology, Subodh 

Paudel et al. [71] projected the energy consumption of low-energy buildings. Hamid 

R. Khosravani et al. [72] evaluated neural network-based prediction models for energy 

use in a bioclimatic building. The objective of data mining in this field is to enhance 

the operating performance of building energy systems. Data mining may significantly 

analyze information and data from various buildings [73]. Buildings can be regarded 
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as intelligent structures that promote the quick adoption of sustainable technology and 

lower operating expenses, productivity, welfare, and comfort levels while reducing 

carbon emissions [74]. Battery-powered energy storage (BES) and thermal storage 

(TES) are two types of storage used to decrease energy usage in the building. BES is 

a tool for energy storage that enhances system performance. This is the most widely 

used method for generating combined energy in structures. The distribution of thermal 

force inside the limitations of the energy storage system controls TES, which is 

dependent on it [75]. A. Tsana s  et al. used a machine learning framework to examine 

the relationship among input and output parameters [76].          

 

To analysis the important  factors that are related to households.  linear regression 

algorithm is used. This technique makes use of random forest approaches and 

nonlinear non-parametric approaches. Two outcome parameters were derived from a 

data simulation on 769 buildings. In this research, heating load  and cooling load  serve 

as output results . Ashori et al. [77] presented a strategy for decreasing energy usage. 

The end goal of this method is to build a structure with deficient power needs (an 

efficient building). It serves as a standard for home construction. This analysis shows 

consumers how much energy they are consuming due to inefficient load management. 

The building model is simulated with the help of an algorithm that utilizes neural 

networks and clustering methods. When choosing buildings, the classifications with 

the minimum energy consumption are prioritized. Using machine learning techniques 

like decision trees and random forests, Smarra et al. [78] suggested a novel approach 

to predictive control. They employed this strategy, which they labeled the Data-Based 

Predictive Model (DPC), in three separate experiments. These three tests aimed to 

show how well DPC performs, how easily it can be scaled, and how efficient it is. 

Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and Decision 

Trees are the three most common machine learning algorithms used for building 

energy prediction (DT). In order to train and analyze these algorithms [[79], [80], 

[81]], data from more than one thousand buildings have been used. Reviewing the use 

of ANN for daily sustainable building predictions, Runge and Zmeureanu (2019) 

found that the ANN method gives excellent results in single and multi-step forward 

forecasting [83]. Using a data set consisting of two 6-story houses, Neto et al. 

compared the prediction accuracy of ANN and the software package EnergyPlus, 
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which is used for energy simulation. The findings demonstrated that data-driven 

approaches (ANN) are superior for energy load prediction in buildings [82]. Bagnasco 

et al. investigated the feasibility of using multi-layer perceptron ANN to forecast 

electricity demand at a specific hospital according to weather input and daytime time. 

The ANN forecasting improved during the winter after deployment [80]. With 

nonlinear data, Decision Tree (DT) typically does not outperform neural networks. 

However, its rapid adoption is because it is simple to implement and yields predictive 

models with easy-to-understand frameworks [83]. It was discovered by Yu et al. [84] 

that the decision tree method was capable of correctly categorizing building energy 

consumption ranges. Tso and Yau compared the efficacy of three methods for 

forecasting a household's daily electricity use: a decision tree, a neural network, and a 

regression model. With a root of average squared error  of 38.36 [85], decision trees 

and neural networks performed considerably better than the regression technique. 

 

Furthermore, power consumption data is classified daily, seasonally, and monthly to 

forecast short, medium, and long-term productivity. For futre power prediction, four 

supervised algorithms are used: I Binary Decision Tree; ii) Regression Gaussian 

Process; iii) Stepwise Gaussian Processes; and iv) Linear Regression Model. The 

inputs include constrained external environmental information, day-type/hour-type, 

and the total power consumption of different load types. The result is the overall 

energy requirement of the building's power consumption[86]. [87] analyzes the 

efficiency of different methods based on deep learning in automatic generation 

information for improving building calculations. Completely autoencoders, 

convolutional autoencoders, and generative adversarial networks create three types of 

deep learning-based features. Their ability to predict building energy has been 

explored and compared to standard methods. 

 

1.6. MULTI CRITERIA DECISION ANALYSIS (MCDA) 

 

Decision analysis is a helpful method for resolving problems that are characterized by 

various criteria and purposes, as was already mentioned in the introduction part. The 

decision maker's preferences, options, criteria, and results are the five elements that 

make up most MCDM topics. Multiple Criteria Decision Making (MADM) depends 
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on the number of options being considered; if not, both have comparable properties. 

Using vectors of input values as specified limitations, MODM can be used to evaluate 

continuous alternatives [88]. The effectiveness of one or more targets is compromised 

while a combination of objective functions is optimized, taking the limitations into 

account. In MADM, fundamental criteria regarding examining limited choices make 

the evaluation and prioritizing more challenging. The results are determined by 

comparing various alternatives regarding each feature taken into account [89]. 

 

In order to achieve the objectives of various actors, energy planning is a complicated 

strategic activity that involves a wide range of interrelated activities, including power 

generation, transmission, and distribution [10]. In the investigations on energy 

planning, many objectives and multiple criteria are commonly utilized in the decision-

making process. These methods can produce excellent outcomes by effectively 

achieving several frequently competing goals or objectives. [90]. 

 

There are two primary MCDM techniques, subjective and objective processes, for 

determining the criteria weights and alternative values. In the subjective techniques, 

the alternatives' scores and the criteria weights are determined by pairwise 

comparisons of the decision makers' evaluations and opinions. The Analytic Hierarchy 

Process (AHP), created by Saaty, is one of the most extensively used subjective 

techniques [91]. Despite its widespread use, the use of AHP has regularly come under 

fire when there is confusion brought on by a lack of knowledge and difficulty caused 

by the differing opinions of decision-makers. One of the most common solutions to 

the complexity issue imposed by a lack of knowledge is the extension of AHP by 

connecting it with the theory of fuzzy sets. Moreover, random modeling can be 

combined with fuzzy AHP techniques to account for unpredictability from different 

decision-makers points of view. Sitorus et al. [92] showed that FSAHP algorithm 

might resolve the problems and, in addition to producing more accurate findings than 

AHP and its variations, also improved the reliability of decisions made in the face of 

confusion by using decision-making. 

 

Environmental, cultural, scientific, and economic aspects are just some of the factors 

that go into making the best choice when it comes to renewable energy technology 
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[93]. In order to make well-informed decisions, decision-makers require 

methodological tools that combine quantitative and qualitative evaluations of the 

various evaluation standards. So, the most effective resources should be used by 

decision-makers to assess the efficiency of sources of clean energy. Thus, selecting the 

most appropriate energy source to implement is a Multiple Criteria Decision Making 

(MCDM) challenges due to competing factors [94]. Wang et al. [95], Kumar et al. 

[96], and several other researchers have reviewed the available literature and found 

that MCDM approaches can be successfully applied to the selection of power sources 

(96). 

 

According to [97], the appropriate power supply option must take into account social, 

commercial, and environmental considerations. Therefore, power production 

techniques in the German downtown [98], and Niger country [99], were evaluated 

using the "Preference Ranking Organization Technique and AHP, respectively. 

Reference [100] has provided a framework for choosing new renewable generation 

plants and has brought down the price of establishing the sustainability of power. To 

choose the optimal solution, it is vital to consider both the social and environmental 

aspects. The study's primary objective is to find the attributes for choosing a renewable 

power source. The ELECTRE (elimination and choice expressing reality) approach 

was used to implement energy planning by Beccali et al. [101]. The study offers 

alternatives from 14 clean energy sources and three models for protecting the 

environment, economics, and energy. Kay suggested a simplified fuzzy TOPSIS 

algorithm in [102] to choose the optimal energy option. 

 

In the energy industry, MCDM approaches were effectively used to select on- and off-

grid hybrid solar, wind, and biomass power sources using integrated 

TOPSIS/EDAS/MOORA (103), to select the best design for solar, wind, and diesel 

power sources while integrating battery capacity using an integrated Fuzzy-VIKOR 

(104), and to choose the sources of clean energy using Fuzzy TOPSIS (105). The main 

areas of study for energy optimization in the literature are the location selection 

challenge, structured cabling, distribution of resources, energy modeling, and 

decision-making. Investigations on energy design commonly use multi-objective, 

decision-variable, and multi-criteria approaches. Previous studies' most often used 
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approaches are the PROMETHEE Method, ELECTRE (Elimination and Choice 

Expressing Reality), fuzzy logic, and AHP [106]. 

 

1.7. NOVELTY OF THE STUDY 

 

This study contains three related stages, each depending on the other results: First, an 

investigation and analysis of the micro grid components in terms of economic 

feasibility and the size of each generating unit are discussed. Using HOMER Pro 

software to optimize the system to reach the optimal and best combination with low 

cost and energy sustainable leads to the optimal system size. Then, a decision-making 

model (MADM) was created using two reliable methods TOPSIS and VIKOR to 

determine the best combination of energy sources based on the results obtained from 

the simulation in the first stage. After determining the best sources, we need to 

schedule the energy sources so that the available and cheapest power sources are 

turned on every hour. The operating schedule for the selected power system is 

managed using the genetic algorithm in the MATLAB environment. The algorithm 

was successfully used to manage the power within the micro grid to obtain the high 

utilizing   of renewable energy, in addition to obtaining the cheapest energy source as 

a priority, for an entire month, 720 hours. Thirdly, a prediction model based on 

supervised machine learning is proposed to build an intelligent operation control 

model. This model aims to operate the best available energy source, so that the energy 

demand always is satisfied, that is, to determine the time to turn on or off the three 

sources (solar energy, wind energy, diesel generator) based on the data obtained from 

the genetic algorithm. Then we presented how efficient the proposed algorithms by 

comparing the results and calibrating the model using some matrix tests to evaluate 

the algorithm's reliability. According to our knowledge and based on the previous 

studies that have been read, this study has not been done before in a similar way. 

 

1.8. OBJECTIVES 

 

Based on the results of previous studies, the most important factor for the success of 

designing any hybrid system that contains clean energy sources is determining the 

appropriate location in terms of abundance of solar radiation, wind speed, and 
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sufficient space. Therefore, the first objective of this study is to find a hybrid system 

capable of feeding residential loads at any time, at the lowest cost, and with the least 

emission of harmful gases such as carbon dioxide. The second objective is to design a 

system with less capital cost to obtain a small cost per kilowatt hour. The third and 

most important goal is to create an intelligent model using machine learning algorithms 

that is able to predict the available energy sources, variable loads, and the best 

combination of power sources that can feed the growing demand. In general, the three 

goals mentioned above will lead to using hybrid energy sources effectively, 

economically, and in a more environmentally friendly manner. In this thesis, different 

technologies have been used to achieve these goals. 

 

1.9.   SIGNIFICANCE OF THE STUDY 

 

This study is essential for several reasons: 

 

• Determine the appropriate energy sources to feed the loads at the target site to 

obtain the optimal and cheapest operation and ensure the continuity of power 

flow and non-interruption. 

• Machine learning algorithms can be used to predict the energy consumption 

and the sources that need to be operated for a specific residential building, and 

then these ready-made models can be applied to another building under the 

same weather conditions and the same components of the energy system. 

• Based on the results obtained, the model can choose the best suitable power 

source for each hour based on the input data, such as temperature, wind speed, 

and solar radiation. 

• This model will provide a reliable and high-accuracy program for designing 

energy sources for other buildings in the same area to shorten time and effort. 

• It should be noted that the Libyan state has set the goal of using renewable 

clean energy sources only to cover most of its energy consumption by the year 

2050. The plan includes replacing some fuel and gas stations with renewable 

energy systems. These systems will be built in several country cities, especially 

in remote villages. Accordingly, we preferred to study the possibility of 
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applying intelligent systems to control and predict the available alternative 

energy. 

 

1.10. THESIS STRUCTURE  

 

The thesis was divided into five chapters as follows: 

 

Chapter 1-The first chapter reviews the relevant previous studies to form a sufficient 

idea of the research, the most important results obtained, the algorithms and techniques 

used in the past, and their effectiveness. 

 

Chapter 2-The second chapter explains the microgrid and its renewable and 

conventional power generator components. In addition, it displays different designs 

for small networks to be connected to the main network or not. The chapter begins 

with an explanation of energy management, its principle of operation, and its methods. 

Then it gives a brief idea about renewable energy production and the crucial factors in 

designing these systems. 

 

Chapter 3-The third chapter explains alternative energy and diesel generator system 

components and their mathematic representation. In addition to how to use the Homer 

pro program and the critical inputs to simulate and study the hybrid system and 

improve the size of power generators, and then explain the method for making the 

appropriate recognition using MCDM methods. In addition, the chapter explains 

energy scheduling using the genetic algorithm, the characteristics of the algorithm, and 

the important mathematical equations. It also provides an explanation of the machine 

learning algorithms used in predicting the use of energy resources. Moreover, it 

proposes three classification algorithms, explaining their working method and how to 

use them in research. 

 

Chapter 4- demonstrates and discuss the most important results. 

 

Chapter 5- presents conclusions and future work. 

 



21 

 

1.11. CONTRIBUTION TO THE LITERATURE 

 

In comparison with previous studies, the methods and techniques used in related 

research, we conclude that many authors used different algorithms to control, improve 

and manage power generation and consumption. Therefore, this study suggests the use 

of classification algorithms for energy management based on the results of the genetic 

algorithm in scheduling the operation of generation units, unlike some authors who 

focused on managing energy generation (production) and scheduling loads (demand) 

to achieve a balance between generation and consumption, our research used three 

classification algorithms, which are as follows (RF, KNN, and DT) to intelligent 

control  the energy production and consumption in residential buildings and predict 

how many energy sources should be operated together at the same time. The link 

between Homer's results, decision-making methods, and energy scheduling using the 

algorithm, in addition to machine learning prediction, formed a smart and reliable 

strategy compared to some studies in the field. 
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PART 2 

 

INTRODUCTION 

 

The combination of different power generation units, batteries used to store excess 

energy, and residential, commercial, and industrial buildings in one place leads to the 

design of a microgrid capable of covering different loads at the lowest costs. Unstable 

production of clean energy sources and increased demand may cause a decrease in the 

reliability of the mini-grid. The closeness of the microgrid to residential communities 

contributes to the decrease in the costs of transmission and distribution lines and the 

transmission of high-voltage power over long distances, in addition to supporting the 

local energy market at low prices. In order to reach the stability and reliability of the 

network, the energy management model must be applied with intelligent methods to 

control generation units within the small network, in addition to controlling 

consumption by scheduling loads and applying a demand response program. This 

study established an Energy Management System (EMS) to ensure optimal 

management of interconnected generation systems such as solar energy, wind energy, 

diesel generators, and others. Generators can be controlled by a smart program that 

senses all crucial variables, such as temperature, wind, solar radiation, demand 

fluctuation, and technical problems within the network. Accordingly, energy 

management reduces operating and maintenance costs, fuel, and harmful emissions. It 

is important to know that improving operational efficiency will be brutal without using 

optimization using algorithms. Optimized artificial intelligence in the mini-grid. In the 

following sections, the concept of energy management in microgrids will be explained, 

which contributes to an understanding of our research and the work that has been done. 

 

2.1. ELECTIRCITY SYSTEMS 

 

The Generation, transmission, and distribution make up a power system. Generation 

is the method of producing energy from natural resources, whether conventional or 
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renewables . From power plants to distribution systems, power travels through high-

voltage electrical wires. In order to allow consumers to use the electricity, step-down 

transformers are used in the distribution process, which includes reducing high-voltage 

power to low-voltage electricity. Because system dependability is essential to the 

overall efficiency of the electrical grid, electricity companies must maintain the 

stability and reliability of the system. Energy suppliers should also guarantee that there 

will be enough electricity produced in the future. In addition to growing fuel costs, 

supply disruptions, technical developments, and supply instability risk, additional 

costs caused by climate change will increase the cost of operating existing resources 

[108]. Figure 2.1. presents the overview of electric power system. 

 

 

Figure 2.1. Overview of electric power system [66]. 

 

2.2. ENERGY MANAGEMENT SYSTEM 

 

It can be challenging to develop a management system for microgrid. It works for 

unreliable energy sources, which are common in residential buildings and are required 

to deal with power interruptions. Several systems may be used for microgrid 

management. A system of decentralized and centralized management. Tiny grids are 

given objectives such as failure minimization, voltage and frequency regulation, and 

power management. A process is a planned theory or action of numerous systems that 

work together to achieve desired results. The process must complete the task for each 

system or unit to go forward and come to a close. We can see that a mini-operations 

network correlates to the activities it must carry out to fulfill the demands imposed 

upon it. Complex control and optimization systems are created to benefit from the 

mini-grid. 
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The purpose of power management is to provide the microgrid with self-control, to act 

independently on and on and off the distribution network to exchange electricity with 

the generating units. Power control must be in the connected mode reliably and 

efficiently, support the grid, and participate in the operation of the power market. The 

mini-grid control system comprises software and hardware and can be centralized or 

distributed. A Microgrid control system describes the control of several generating 

units and loads at a specific location using communications and intelligent devices 

[109]. Figure2.2. depicts the energy management system process. 

 

 

Figure 2.2. Energy management system process [118]. 

 

2.3. MICROGRID  

 

The mini-grid produces continuous long-term electrical energy in order to contribute 

to creating sustainable energy. This dramatically ensures the energy requirements of 

groups of buildings. It is based on hybridization by creating conventional generation 

units and alternative energy together [110]. This system was developed to ensure 

reliable production to increase cheap energy and solve problems faced by the 

traditional electrical system, such as increased losses in distribution grid systems. The 

main objective is to transform the site of energy consumption into a production site 

using generators of different systems (microturbines, fuel cells, solar energy, wind 
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generators, etc.) with storage systems that can operate interconnected or separate from 

the main grid. Small grids use load management to balance generation and 

consumption. So that consumption efficiency can be improved while providing 

flexibility and controllability to increase economic efficiency. Power management 

improves the stability and constant monitoring of the microgrid; Figure 2.3 depicts a 

schematic diagram of the microgrid system device. A microgrid can be designed with 

many benefits, such as increasing reliability, reducing costs, or preventing accidents 

that cause outages. Moreover, small networks are classified according to their 

operational objectives [109] as follows: 

 

• Increased stability and durability 

• Supplying remote areas with energy at a low cost 

• Reduce transportation and distribution costs 

• Prevention of environmental disasters 

 

 

Figure 2.3. Power generation units in microgrid [119]. 

 

2.4. ENERGY MANAGEMENT İN MİCROGRİD  

 

The management system microgrid uses a set of parameters and commands that 

contribute effectively to maintaining the sustainability of energy flow without 

deficiency or problems. Energy management aims at the appropriate scheduling of the 

production process in the short and long term by using generators and batteries as well 

as loads that can be controlled to cover the increasing demand and reduce costs. The 
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management system creates a schedule for the commitment of each generation unit to 

obtain reliable results. Figure 2.4 shows the general scheme of the microgrid energy 

managment[110]. Using smart systems to schedule the operation and maintenance of 

generators in an effective manner. It includes monitoring the amount of power 

generated and overloads, in addition to determining the Unit Commitment (UC) and 

Best Economic Expedition (ED) for each generator. The unit commitment determines 

the best schedule for each power generation unit based on accurate information from 

sensors and measuring devices as well as on operating constraints, including reserve 

capacity and expected loads over short and medium periods of time. 

 

 

Figure 2.4. The general scheme of the micro grid energy managment. 

 

2.5. TOPOLOGY OF MICRO-GRIDS 

 

As previously stated, microgrids can operate in two modes: switched on or off 

connected [6]. Furthermore, the microgrid is supplied with small generation sources 

that create electricity for local usages, such as solar and wind power systems, a 

hydropower plant and etc. The small grid can also absorb any excess demand. The 

small grid's electricity consumption can come from residential, commercial, or 

industrial sectors. Using renewable resources is one of the advantages of the microgrid. 

However, there is one reason to be concerned: renewable energy is not constant. As a 

result, the mini-grid must have an adequate storage system, such as batteries, to 

minimize changes in wind speed and solar radiation. Smart meters, sensors, protection 

systems, and high-accuracy control devices are included in the microgrid. Based on 
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that, it may use this advanced technology to determine each consumer's energy profile. 

The microgrid uses advanced communications technologies to deliver and receive data 

between consumers and power companies via data cable or wireless connection, and 

it can interface with smart devices in consumers' households to manage them (on/off) 

as needed or to schedule their operation to reduce energy demand during peak hours 

[6]. 

 

2.5.1. The Stand-Alone Generation  

 

Off-grid generation is the ideal option for a house or community of homes when the 

area that needs to power is far from the main grid. Making the best size decisions is 

the first task to maintain supply regardless of weather or demand. Photovoltaic panels 

and micro wind turbines are the most suited production sources since they may be 

installed and maintained by a single customer. Also, in order to reduce the costs of 

transmission and distribution of energy from one city to another, it is better to build 

hybrid generating stations near residential and commercial buildings. Storage units are 

essential for storing excess energy and maintaining a balance between generation and 

consumption in the event of a shortage in access to energy and an increase in demand. 

The size of the small network units and the storage system is adjusted to have good 

flexibility and the ability to cover loads at peak times. Usually, in these systems, diesel 

and gas generators are used because it contributes to maintaining a balance between 

supply and demand, regardless of the price of fuel. 

 

2.5.2. Control Systems Used in microgrid EMS 

 

Centralized, decentralized, and hierarchical control approaches can all be used to 

develop the MG EMS control system [110]. Power generation, load profiles, electriity 

prices, weather information, etc. are all received by a single central controller in 

centralized system. A central controller makes the best microgrid energy scheduling 

decisions based on the inputs and then send those decisions to all operators in the 

control room. Figure 2.5 depicts the fundamental architecture of centralized system. 

But, if the central control system fails, the whole system might collapse. A 

decentralized control system differs from centralized control-based EMS; as shown in 



28 

 

Figure 2.6, it only uses local microgrid unit data to determine the property control 

decisions. 
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Figure 2.5. Centralized energy control system.  
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Figure 2.6. Decentralized energy control system [119]. 

 

2.5.3. Uncertainties in Microgrid Energy Management 

 

The problem with green energy production is the intermittent and unpredictable during 

the days, weeks, and monthes. The energy sources, such as  solar and wind ,etc are 

among the most accessible and frequently used in developing micro-networks. 

However, it is always tricky because wind speed and solar radiation are inconsistent. 

Since solar energy can only be used during the day, it is also affected by other elements 

like temperature and shade. The weather has an impact on wind speed. Additionally, 

consumer loads fluctuate regularly and randomly, and these changes may get more 
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complicated with the integration of the request-response. Dealing with the unreliability 

of renewable energy supply and the rise in energy consumption is one of the significant 

challenges with microgrids. 

 

As a result, it is crucial to create a suitable model, be aware of the issues, and find 

solutions to simulate small-scale systems accurately. Challenges, including wind 

power, increasing load demand, variation electricity costs, solar power generation, 

electric vehicle demand, etc., are considered by researchers [111]. The instability of 

RE and load demand are significant considerations in MG EMS. Therefore, modeling 

renewable resources and loads becomes the essential stage in the hybrid system's core 

to manage these components since proper modeling significantly impacts operational 

costs. There are numerous methods used for simulating microgrids and their 

applications. 

 

2.6. MICROGRID SYSTEM STRUCTURE 

 

 Based on international classifications, there are three combinations of microgrids such 

as direct current (DC), alternating current (AC), and a mixture of both(AC/DC). 

 

2.6.1. DC Microgrid  

 

This technology is used to supply DC loads, transmit energy over very long distances, 

and charge energy stores in industrial and commercial buildings. In this system, the 

power supplied by several sources is gathered on a single combined DC bus. 

Therefore, in the end, these systems use voltage rectifiers to convert the direct current 

into alternating current. One of the most critical features of this system is the simplicity 

of the control and protection process between its components. Its efficiency could be 

low due to batteries and losses in the converter [62]. Figure 2.18 represents the 

schematic of this DC system [14]. 
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2.6.2. AC Microgrid  

 

Flexible AC-generating systems can be built by integrating the microgrid multiple 

generating units.in this option, renewable and traditional energy sources can work 

together. To fulfill the growing demand needs, the system may be expanded by adding 

generators [62]. With this setup, each output may be controlled separately, and the 

voltage can be increased or decreased with a step up and down transformer. 

 

2.6.3. Decentralised Generation 

 

The distributor generates power from low-voltage networks and small substations. 

Distributed generation uses renewable energy with diesel and small gas turbine 

generators. Due to the liberalization of energy markets and lower electricity prices, 

this technology has become more attractive [47]. As a result, independent electricity 

producers can sell in competitive energy marketplaces. Due to governmental pressure 

to promote energy independence and minimize greenhouse gas emissions, increase in 

distributed generators and renewable energy in the global energy market. Distributed 

generation benefits residential, industrial, and commercial consumers [13]. Some 

advantages can be taken, such as the following  1. Local energy production decreases 

bills. 2. Decentralized generator-control center cooperation improves distribution 

networks during peak hours and gives small networks greater flexibility.3. Distributed 

generation helps consumers in buildings far from the distribution network. 5. improves 

suppling power to the critical loads. 

 

When designing any power generation system, production must always exceed 

consumption; However, due to the instability of renewable energy output may 

negatively affect system reliability. Poor power quality is considered one of the biggest 

problems facing operators and electricity companies, in addition to the difficulty of 

predicting the increase in loads in any event, so it is essential to place distributed 

generators as support for the network in areas of weakness and under protection from 

damage [39]. These distributed generators are often installed on a small grid, which 

contributes to a large surplus of energy, leading to a balanced market in terms of energy 

prices. Connecting batteries and other storage systems to the small grid will lead to the 
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establishment of flexible stations for any sudden change of loads, which is the most 

appropriate solution to the problems of energy shortages and electrical power quality 

problems. 

 

2.7. RENEWABLE ENERGY SYSTEMS USED IN MICROGRIDS  

 

To maximize the utilizaton of clean  energy that can be used in a microgrid, two 

conditions must be met: first, it must be possible to absorb the required power while 

maintaining the generator easily, and second, it must be more reliable economically 

than using a conventional grid. 

 

2.7.1. Wind Energy 

 

The generation of energy from wind turbines is one of the most important sources of 

clean energy, and it is widely available in some countries of the world. Some 

governments have focused on developing them because they contribute significantly 

to covering energy needs. In the last two decades, wind energy has become a preferred 

source for many consumers, with more than 592 TWh produced worldwide in 2020. 

Wind turbines can reach tens of meters in height, depending on the location, 

availability of wind, and the required space [48] In addition, there are small types that 

produce limited amounts of energy that are adapted for domestic use and can be 

installed near residential and commercial buildings. 

 

2.7.2. Types of Wind Turbines  

 

Vertical and horizontal axis wind turbines are widely used due to their low cost and 

excellent resistance to mechanical stress. Horizontal axis turbines have been the 

preferred use in recent years. These blades produce torque that drives the turbine to 

generate electricity. One or more blades can be used depending on the design. The 

three-blade rotor is the most popular design because it balances power factor, cost, and 

rotational speed [53]. Turbines are usually oriented in such a way that wind can flow 

through them quickly. This can be accomplished with a compass and the study of wind 

direction, such as leeward turbine, rudder, and dynamic balance. 



32 

 

2.7.3. Photovoltaic Solar Energy 

 

Solar energy systems are the most widespread and preferred by many consumers, 

including individuals, factories, and buildings. Where solar energy is produced by 

exposing the panels to solar radiation and converting this energy into direct current 

using semiconductors such as silicon; these panels and cells can release electrons when 

they are exposed to high external energy and can decouple their constituents as energy 

is released when photons hit electrons and release them from the bonding force of the 

nucleus. As a result, a light current is generated to charge the batteries or feed the loads 

directly through the inverter. Sometimes these systems are connected to the primary 

grid, contributing significantly to covering the energy deficit. It all depends on the 

design of the system to be built. [8]. The performance of solar cells depends on several 

factors, the most important of which are the orientation of the panels, their quality, 

humidity, and, finally, the temperature. 

 

2.7.4. Storage Stoarge System  

 

The storageof power  is the process of storing a sufficient amount of energy for future. 

It is essential to relevant problems, either to maximize energy sources or to enhance 

system performance. It reacts to different goals, allowing for an arrangement between 

consumption and production, achieving a real-time balance. When demand exceeds 

generation, however, this imbalance is resolved by compensation of the energy that 

stored in battreis. However, to deal with renewable energies' intermittency and 

unpredictable generation. It is necessary to have an auxiliary system, namely a battery, 

that will develop into a robust system [57]. 

 

2.8. HYBRID ENERGY SYSTEMS 

 

Hybrid systems combine several energy production sources, such as wind generators, 

solar panels, hydro, and conventional fossil fuel-powered machines, to generate 

electricity. The above systems can be large enough to supply an entire city or island or 

smaller enough to feed just one household. Many rural areas of the developing world 

will have electricity available due to hybrid energy sources because the power grid is 
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not feasible or cost-effective in these locations [43].. The Figure 2.7. presents schematic 

diagram of hybrid energy systems. 

 

 

Figure 2.7. Schematic diagram of hybrid energy systems. 

 

2.9. TYPES OF HYBRID ENERGY SYSTEM 

 

Small-scale systems mainly supply power to rural and distant places. The growth of 

the microgrid has correlated with price declines in solar, wind, and converter systems. 

These systems are classified as grid-tied or off-grid, depending on their 

interconnection with the electric grid [88]. 

 

2.9.1. Off-Grid Systems (Stand-Alone System) 

 

Off-grid systems make up the majority of small power systems that are created and 

optimized to supply the energy needs of isolated regions. A system that is off-grid is 

not connected to the main grid. theses systems come in a wide range of sizes and 

functions. The  Off-grid hybrid system is presented in Figure 2.8. [88]. 
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Figure 2.8. Off-grid hybrid solar-wind –diesel generator system with battery backup. 

 

2.9.2. Grid Tied System 

 

A system connected to the utility grid provides power directly into the distribution 

network. In this case, A synchronizing grid-tie inverter is necessary to convert the 

direct current (DC) to alternating current (AC) before electricity can be fed into the 

grid. Figure 2.9 shows the diagram grid connected of hybrid system [88].  

 

 

Figure 2.9. Grid connected of hybrid system. 
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2.10. DESCRIPTION OF THE PROPOSED HYBRID SYSTEM 

 

This work analyzes a hybrid system including of a solar energy system, wind system, 

generator, and energy storage system. Usually, the energy obtained from the 

generation units in this system must cover the demand needs at all times, especially 

the unexpected critical loads. If the consumption is less than the production from 

renewable sources, the surplus energy will be preserved inside the battery. If the power 

demand needs exceed the electricity generation output, the battery or the grid will 

supply the gap. In the hybrid model, the generator is primarily responsible for 

recharging the battery and fulfilling the load requirements. To save electricity costs, 

green sources may recharge the battery during off-peak hours and then release it to the 

demand or the power grid during peak hours. The primary source of energy to meet 

demand was anticipated to be alternative energy sources like solar and wind energy. 

The energy store will offer the appropriate alternate source to fill the gap if these 

sources are unstable and unable to produce energy. In this case, the batteries' charge 

value is monitored to ensure they can provide energy. If the charge falls below 20%, 

one of the system's energy sources recharges the batteries until they are fully charged. 

If the charging procedure is complete and the battery is connected to the load to 

discharge its energy and help compensate for the power shortfall, the control unit 

disconnects the battery from charging. 

 

2.10.1. Advantages of Hybrid Systems 

 

Many villages in isolated locations, especially in poor nations where connecting to the 

national power grid is not economically or technically possible, can rely on hybrid 

systems to fulfill their energy needs. Here are some of the benefits of hybrid systems 

that utilize clean sources of energy [17]: 

 

• Depending on the availability of resources, two or more renewable energy 

sources can be combined into a single system. 

• The renewable energies used in a hybrid system do not contribute to global 

warming in any way. 

• It is modular, simple to set up, and unsuitable for home use. 
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• Hybrid systems have the advantages of being less expensive than conventional 

ones and more straightforward than massive systems. 

• The hybrid system is ideally suited for providing electricity in areas not 

connected to the primary power grid. Electricity generated by hybrid systems 

is not affected by fluctuations in fuel cost because the source is unlimited and 

free. 
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PART 3 

 

MATERIALS AND METHODS 

 

3.1. BACKGROUND  

 

The main goal of any established generation system is to produce energy continuously 

and without interruption and technical problems. The most important achievement in 

our research is to rely on clean energy as an essential part that depends on it in feeding 

the loads. Accordingly, two sources of the best alternative energy options that are 

abundantly available in Libya have been combined. Wind and solar energy in addition 

to making use of the diesel generator in some critical times. Solar energy can be 

generated from sunrise to sunset, unlike wind energy, as it is available at most times 

of the day, according to wind speed and direction. Based on many studies and reports, 

most of the electrical loads come from residential buildings. We have focused on a 

suitable location containing several residential buildings, where the study was 

conducted on them to benefit from the results in real life and build new buildings based 

on these models and results. 

 

• Power generation side Production: 

a. PV system. 

b. wind system. 

c. Non-renewable energy (Disel generator). 

• Power  Consumption side: 

a. Residential building. 
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3.2. THE PROPOSED SYSTEM COMPONENTS 

 

This part explains the mathematical representation of the generation units used in this 

study, in addition to the target function, system limitations, and important inputs to the 

simulation. Below are the generating units from Alternative Energy and Generator. 

 

3.2.1. Wind System Modeling 

 

Wind speed and shaft height are among the most critical factors in power generation 

in this system, in addition to the characteristics of the turbine, such as wingspan and 

maximum output power. Therefore, the generated energy can be calculated using the 

following equations [20]: 

 

 u(h) = u(hg)                                                                                                      (3.1)   

                    

In the previous equation, u (h) represents the speed at different heights (h), and the 

symbol u (hg) refers to the wind speed obtained from the anemometer (hg), while α 

symbolizes the roughness factor that gives an important reading and varies according 

to the place. Depending on the turbine information, the plates, and the generator 

characteristics, the following equations are used to determine the output power. 

 

0 ≤ PW(t) ≤ Pw
max                                                                                                 (3.2) 

 

 
Pw(t) = 0  if vf < vci  and  vf  > vco

Pw(t) = Prated if vr ≤ vf ≤ vco

Pw(t) = Prated  ×
vf−vci 

vr−vci 
  ifvci ≤ v_f ≤ vr

                                                           (3.3) 

 

 

Where Pw is output power, the cut-in speed is denoted by 𝑉𝑐𝑖while 𝑉𝑐𝑜 denotes the cut-

off speed. The characteristics of the turbines utilized in the simulation model are listed 

in Table 1. The turbine's output of power production is estimated using the above 

equation 

 

Pw in the previous equations represents the output power, and the cut-in speed Vci, 
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which is important with Vco that refers to the cut-off speed, both determine the ability 

of the generator to produce power. The turbine's power output is estimated using the 

below equation 

 

 𝑃𝑤𝚤𝑛𝑑 𝑜𝑢𝑡 = 𝑃𝑤 × 𝐴𝑤 × 𝜂𝑔                                                                                    (3.4) 

 

Where 𝜂𝑔is the generator efficiency and any additional electronic equipment coupled 

to the turbine, and Aw is the overall swept surface (𝑚2). The number of turbines 

required for the power demands was calculated in this study using the above equation 

 

 𝑁𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 =
𝑃𝐿×𝑆𝐹

𝑃𝑤𝑖𝑛𝑑_𝑜𝑢𝑡
                                                                                              (3.5) 

 

Here, SF represents the safety factor, which is typically 120 %, and 𝑃𝑤𝑖𝑛𝑑 𝑜𝑢𝑡is the 

amount of power that a wind turbine produces in watts. 

 

Table 3.1. Wind turbine details. 

Turbine Details Value 

Output power (kW) 50 

Cut-in speed (m/s) 

Cut-off speed (m/s) 

Hub height (m) 

AC voltage (V) 

3 

25 

30 

220/380 

 

3.2.2. PV System Modeling 

 

The generated power from the photovoltaic system (P pv) is calculated based on the 

solar radiation, ambient temperature, and PV panel characteristics. [116]. 

 

𝑃𝑝𝑣 = 𝐻𝑡(𝑡) × 𝑃𝑉𝐴 × 𝜇𝑐(𝑡) 3.6) 

 

Thus, 𝐻𝑡represents the tilted panel, and 𝜇𝑐(𝑡) represents the immediate Photovoltaic 

modules efficiency, its calculated using the cell temperature𝑇𝑐(𝑡), as expressed in the 

following equation (7): 
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𝜇𝑐(𝑡) = 𝜇𝑐𝑟⌈1 − 𝛽𝑡 × (𝑇𝑐(𝑡) − 𝑇𝑐𝑟)⌉                                                          (3.7) 

 

The symbols 𝛽𝑡, Tc, and Tcr, respectively, are used to represent variables such as 

temperature factor, actual cell temperature, and the critical variable standard cell 

temperature, which is set at (25 °C). 

 

PVA represents   the total area of the panels that is required to satisfy the load. using 

Eq. (8), we can determine the PVA: [116]. 

 

𝑃𝑉𝐴 =
1

8760
∑

𝑃𝐿,𝑎𝑣(𝑡)𝐹𝑠

𝐻𝑡𝜂𝑐(𝑡)𝑉𝐹

8760
𝑡=1                                                                                      (3.8) 

 

where 𝐹𝑠 represents the safety factor and 𝑉𝐹 donates the variability factor of radiation 

fluctuations, 𝜂𝑐 is the efficiency system [21]. Table 2 provides the key details of the 

solar PV module used in the study. 

 

The number of solar panels in the solar system is significant in calculating the energy 

generated and the cost of the system, and the appropriate number can be determined 

using the following equation. 

 

 𝑁𝑝𝑣_𝑚𝑜𝑑𝑢𝑙𝑒𝑠 =
𝑃𝑝𝑣

𝑆𝑝𝑒𝑎𝑘_𝑝𝑜𝑤𝑒𝑟
                                                                                       (3.9) 

 

Where S_ (peak_energy) represents the maximum power that can be generated from 

the system, it can be accurately calculated using the following equation. 

 

 𝑃𝑝𝑣 = 𝑊𝑃𝑉𝑓𝑝𝑣 [
𝐺𝑇

𝐺𝑆𝑇𝐶
] [1 − 𝛼𝑝(𝑇𝑐 − 𝑇𝐶,𝑆𝑇𝐶)]                                                                        (3.10) 

 

In the previous equation 𝑊𝑃𝑉 denotes the output power in (kW), 𝑓𝑝𝑣represents  the 

derating factor (%) and 𝛼𝑝represets the  temperature coefficient, 𝐺𝑇 denotes the solar 

radiation (1 kW/m2), 𝐺𝑆𝑇𝐶  refers to  the radiation energy at 25 C ,  and  the temperature 

of the panel is represented  by  Tc . [116]. 
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Table 3.2. PV Module Details. 

PV system  specification 

output power  350 W 

Voltage  31 V 

Current  

Lifetime  

8.5 A 

25 years 

 

3.2.3. Storage System Modeling 

 

When renewable generation is included into residential buildings, it is more 

challenging to sustain an energy balance and prevent frequency deviations. Energy 

storage systems (BAT) are important for preserving the equilibrium between supply 

and demand and providing power quality correction in the case of sudden voltage 

changes. The ESS rating is affected by a number of factors, including battery type, 

backup duration, heat, battery size, depth of discharge, and the required reserve energy. 

The battery's charging and discharging cycle is expressed by equations (11) and (12) 

[116]. 

 

𝑃𝐵𝐸𝑆(𝑡) = 𝑃𝑐ℎ(𝑡)  𝑖𝑓𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) ≥ 0                                                   (3.11) 

 

𝑃𝐵𝐸𝑆(𝑡) = 𝑃𝑑𝑐ℎ(𝑡)  𝑖𝑓𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) < 0                                                 (3.12) 

 

𝑃𝑐ℎ and 𝑃𝑑𝑐ℎ illustrate the energy of batteries in charging and discharging modes, 

respectively, while 𝑃𝑃𝑉, 𝑃𝑊𝑇 represents the output power of solar and wind energy 

systems.BAT can only operate in one mode—either charging or discharging—at any 

particular time. The voltage used to charge and discharge the battery is calculated as 

follows: 

 

Charging mode: 

 

𝐸𝑐ℎ(𝑡) = (
𝑃𝑊𝑇(𝑡)+𝑃𝑝𝑣(𝑡)

𝜂𝑐𝑜𝑛𝑣
) ∗ ∆𝑡 ∗ 𝜂𝑐ℎ                                                               (3.13) 

 

𝐸𝑐ℎ is the hourly charged energy, and 𝜂𝑐𝑜𝑛𝑣 represents the charging cycle efficacy 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1)(1 − 𝜎) + 𝐸𝑐ℎ(𝑡)                                                         (3.14) 
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Discharging mode: 

 

𝐸𝑑𝑐ℎ is  the hourly  discharged energy, and 𝜂𝑐𝑜𝑛𝑣 donates discharging cycle  efficacy 

 

𝐸𝑑𝑐ℎ(𝑡) = (
−𝑃𝑊𝑇(𝑡)−𝑃𝑝𝑣(𝑡)

𝜂𝑐𝑜𝑛𝑣
) ∗ ∆𝑡 ∗ 𝜂𝑐ℎ                                                                (3.15) 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1)(1 − 𝜎) − 𝐸𝑐ℎ(𝑡)                                                          (3.16) 

 

Soc(t): represents state of charge  

Soc (t − 1): represents charge of the batteries at time t – 1 

 

3.2.3.1. Sizing of the Battery 

 

Determining the storage capacity is very important to know the amount of energy that 

will be stored from clean energy sources and how many hours the battery can store 

excess energy. The following formula can be used to calculate the necessary storage 

capacity in Ampere hour (Ah): 

 

 𝑀𝑏𝑎𝑡𝑡 =
𝐴𝑑×𝐸𝐿

𝜂𝑏𝑎𝑡𝑡×𝜂𝑖𝑛𝑣×𝐷𝑜𝐷×𝑉𝑠
                                                                                                  (3.17) 

 

here 𝐴𝑑 is the number of days that the batteries can provide energy without being 

recharged againe, DoD represents the max depth of discharge allowed for the batteries, 

and 𝑉𝑠 donates the charging voltage in (v). Table 3 shows the battery specification 

[116]. 

 

Table 3.3. Battery system details. 

Battery specification 

Nominal capacity 12 V/1000  

depth of discharge 90% 

efficiency 

Voltage range 

Lifetime (Years) 

86% 

160–230 V 

5 
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3.2.4. Power Convertors  

 

The power converter became necessary in the planned Hybrid system to maintain a 

constant power flow between the power supply and the load. DC-AC converter output 

power is determined by the converter's efficiency factor [60]. Equations (3.18) and 

(3.19) illustrate how the efficiency of the converting system modeled in HOMER  

which can be defined below. 

 

𝑃𝚤𝑛𝑣,𝑜𝑢𝑡 = 𝜂𝑖𝑛𝑣𝑃𝐷𝐶                                                                                                                       (3.18) 

 

 𝑃𝑟𝑒𝑐,𝑜𝑢𝑡 = 𝜂𝑟𝑒𝑐𝑃𝐴𝐶                                                                                                                      (3.19) 

 

where 𝑃𝚤𝑛𝑣,𝑜𝑢𝑡represents  the output power from the converter (kWh); 𝑃𝐷𝐶 depactis  

the dilevered power to the converter (kWh); 𝑃𝑟𝑒𝑐,𝑜𝑢𝑡 donates the rectified (DC) power 

from the converter; and 𝑃𝐴𝐶 represents  the AC output power in (kWh) [20]. 

 

3.2.5. Disel Generator Modeling 

 

The generator will be a backup option if the solar and wind energy sources are unable 

to satisfy the energy requirement. The diesel generator is operated as a backup in the 

micro grid system. The fuel consumption can be calculated by using Ref. [20]. 

 

 𝐹𝐷𝐺 = 𝐵𝐺𝑃𝑁 − 𝐷𝐺 + 𝐴𝐺𝑃𝑜𝑢𝑡                                                                             3.(20) 

 

Where 𝐹𝐷𝐺 refer to  fuel consumption (L/hr), 𝑃𝑁 − 𝐷𝐺 is the nominal power of diesel 

generator (kW ), 𝑃𝑜𝑢𝑡 is the output power (kW ), 𝐴𝐺 = 0.246 and  𝐵𝐺  = 0.0814, 𝐴𝐺 and 

𝐵𝐺  are the dieselconsumption coefficients (Load/kW h).  

 

By using the equation below (3.21), it is possible to predict the maximum power that 

the generator can produce per hour. 

 

EEDG(t) = PDEG × ηDEG × t                                                                                 (3.21)    
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The peak electricity demand typically determines the size of a diesel generator. For 

example, a 100 kW capacity is needed because the residential area's peak consumption 

is 250 kW. The generator's surplus will cover the spinning reserve, which could handle 

future load increases. 

 

Due to the lack of solar power during the day and the higher load demand at night, the 

generators work primarily at night. The generator will switch on if the solar, wind, and 

battery systems cannot satisfy the load during the day. The machine's initial and 

replacement costs were estimated at $50,000 and $40,000, respectively. It was 

assumed that the operating and maintenance costs would be relatively high, at $ 

0.5/hour. It is a result of the location under investigation being far away. Hence, when 

maintenance is required, and that would subsequently raise the cost, difficulty in the 

transportation problem arises. The generator was projected to operate for 15,000 hours 

in total.        

                             

3.3. INPUT DATA 

 

3.3.1. Load Profile For Selected Site 

 

This study analyzed the daily power profile and energy requirements of five residential 

buildings over a 30-day period. For the study to be more accurate, real information 

was obtained from the daily consumption of 5 buildings. Measuring devices were used 

to measure the monthly energy consumed per hour. The aim is to use these data in 

building a hybrid system of several generating units to feed loads effectively and 

reliably based on actual consumption values. The figure below shows the daily load 

for 24 hours. Figure 3. 1 presents the input load data to homer pro software.  

 

The hybrid system in this study consists of clean energy units such as solar modules 

(PV), wind turbines (WT), and a conventional diesel generator (DG), in addition to 

using sufficient storage units to save the surplus energy generated from solar and wind 

sources, as well as the power converter that very important in the system composition, 

which must be carefully chosen to obtain the maximum conversion power without 

interference. Weather data for the chosen location is essential for calculating the 
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generated energy, including solar irradiance, wind velocity, and temperature. Using 

the tripoli city latitude and longitude coordinates, the (NASA) database was queried 

for information on solar irradiance and wind speed [120].  

 

 

Figure 3.1. Ahourly Load profile in summer day. 

 

Calculating the components of the hybrid system needs real weather information, 

which, based on it the output power of the solar and wind generator can be calculated. 

Figures 3.2, 3.3, and 3.4 show the difference in temperature, solar radiation, and wind 

speed values in the chosen location for a year because the highest value of wind speed 

and solar radiation must be known. The average annual solar radiation is 6 kilowatt-

hours / 𝑚2/ day. The average temperature is moderate in some months of the year at 

25 C. Usually, the maximum temperatures in the site are in July and August, and the 

sunlight is abundant in these months. Figure 4 shows the average wind speed at a 

height of 50 meters, ranging from 2.6 to 7.9 m/s, at the given location. The months 

with the lowest wind speed are June and July, while the months with the highest wind 

speed sufficient for efficient power generation are January and February. 
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Figure 3.2. Monthly average high an low temperature [120]. 

 

 

Figure 3.3. Monthly average daily solar irradiation, and clearness index [120]. 

 

 

Figure 3.4. wind speed data [120]. 

 

Changes in the weather affect the energy produced, which happens throughout the 

year. Therefore, the basic idea is a hybrid system that must check weather information 

and electrical loads accurately to obtain the appropriate amount of renewable energy, 
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reduce the cost of building, operating, and designing the energy system, in addition to 

obtaining very low levels of greenhouse gases (GHG). 

 

3.4. SYSTEM DESCRIPTION 

 

This study investigates a hybrid system that utilizes two renewable energy sources. 

Wind energy with a maximum output of 150 kW, and a solar power system with a 70 

kW capacity. Priority is given to using these sources to feed the loads, but additionally 

a 100 kW diesel generator is also available to help maintain the power on and the 

buildings supplied. Furthermore, battery storage units are used to store excess energy 

produced during times of high generation and use it during times of low generation or 

peak demand. Figure 3.5 and Table (1) detail the specifications and components of the 

system 

 

 

Figure 3.5. Components of the micro grid system [121]. 

 

The details of system components. 
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Table 3.4. Micro grid parameters 

Generation units Specifications 

DG (kW) Output power range: 100kW. 

fuel consumption is 0.3 L/h/kW 

capital cost: 35000$ 

replacement 35000$ 

operation, maintenance is $0.04/hour. 

Lifetime: 15,000 h. 

Solar system Output power 70 kW. 

Operating temperature 47 ◦C and  0.4%/ 

maintenance ,operation  cost $10/year. 

Capital cost  $800/kW,  

replacement cost $800/kW 

Lifetime: 25 years. 

Wind system Output power 150kW. 

Hub Height: 30 m. 

operation, maintenance cost $5000/year 

capital cost  $220000,  

replacement cost $220000  

Lifetime:25 years. 

Battery stoarge 

sytem 

Discharge  0 to 1000Ah. 

charging voltage 24 V 

Efficiency: is 85%. 

capital cost $80 per unit 

 replacement $80 per unit 

operation and  maintenance $150/year. 

Lifetime: 5 years. 

Converter/(kW) Power  range: 0 to 150 kW. 

 capital cost:  30000$ 

operation and maintenance $100/year. 

 

3.4.1. Site Descriptıon  

 

The study site was chosen in tripoli city with coordinates, (32°00′17′′N 11°19′51′′E), 

and  it contains several residential buildings, and five buildings were chosen as a case 

study. Theses buildings contain 70 apartments. In total, they consume a maximum of 

250 kilowatts of energy in the summer, which records the highest levels of daily energy 

consumption. There are 260 people from 70 families living in the buildings mentioned. 

The chosen location suffers from power outages for long hours. To create a reliable 

model and obtain accurate results, we used the hourly data of the consumed energy  in 

one month. 
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3.4.2. Description of The Residantal Building (case study) 

 

The target buildings of the study are located in the city of Tripoli in one of the 

residential neighborhoods in the south of the city, with a population of (260 people). 

Each building contains 14 apartments, and the total area of each apartment is about 

200 square meters. The two walls on one side of the building occupy 20% of its total 

area, while on the other side, they occupy 15%. Where the thickness of the external 

walls of the bricks is 20, the internal walls are 10 cm, and all the walls were covered 

with cement. Unfortunately, all walls and ceilings do not use thermal insulation or 

other energy-saving materials, which causes a lot of energy consumption, such as 

cooling loads in summer and heating in winter. 

 

3.5. RESARCH METHOLOGY  

 

This study is divided into four tasks as follows 

 

• Determine the optimal size and appropriate group of microgrid components 

(Using Homer) 

• Selecting the optimum energy system by using decision-making techniques 

(using Topsis and Vikor) 

• Energy scheduling using Genetic algorithm 

• Energy classification and predication using machine learning algorithm 

 

3.5.1. Optimal Planning and Design of Microgrid 

 

Planning and designing a reliable microgrid that produces high-quality energy 

continuously in an area that suffers from problems in obtaining energy requires the 

availability of several vital factors that help in the success of this task. First, we must 

always focus on the use of sustainable energy and study several variables carefully, 

such as the number of energy sources required, the capital cost and the final energy 

price for the consumer, the amount of harmful gases, and methods to reduce them to 

the lowest level, the nearest suitable location so that the connection is made with the 

consumer and the main grid, in addition to excess energy during generation and how 
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to store and preserve it. Accordingly, all the factors mentioned above have an impact 

on the system proposed in our study, and we will discuss the results obtained to 

improve this system. 

 

3.5.1.1. Methodology Description 

 

Choosing the number and size of the generation units is a complex task because it is 

related to varying electrical loads and changing weather, in addition to the restrictions 

imposed on the hybrid system, which consists of the wind and solar systems, in 

addition to the diesel generator and a sufficient energy storage system using batteries. 

In order to provide a residential area with sustainable and cheap energy for loads 

ranging between 86kW and 250kW, there are four sections to work on interconnected 

depend on each other. First, the system's optimization, modeling, economic analysis, 

and calculation of the necessary costs are carried out using HOMER software to 

evaluate the technical and economic feasibility. Secondly, the best alternative energy 

source is selected, and the appropriate decision is made using two multi-criteria 

decision-making methods (MCDM), which compare all hybrid energy combinations 

and rank the best option based on the exact calculation equations. Thirdly, the genetic 

algorithm is used to schedule the four energy sources, and the priority is always for 

clean and cheaper energy. This stage includes entering weather data such as solar 

radiation, wind speed, temperature, and monthly demand (720 hours). The algorithm 

calculates the power generated by renewable energy sources and the battery's charge 

level. Then, the program will choose the most suitable energy source to supply the 

demand per hour, considering the available energy and the lowest cost per kilowatt 

hour. Fourth, the results of the genetic algorithm are used as inputs to the classification 

model, where three machine learning algorithms are used, which are explained in detail 

in this section. The model is trained on these load value data, available power, weather 

data, and energy sources that must be turned on per hour. Finally, the model will 

understand these inputs and use them to predict the sources required to supply the 

hourly load in other buildings under the same conditions. Figure 6 shows the 

methodology of the study. The following subsections describe the simulations and 

calculations in detail. 
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Figure 3.6. The detail of work procedure. 

 

3.5.1.2. System Sizing And Simulation 

 

Step 1. HOMER Simulation and Optimisation 

 

The HOMER software is considered the best in microgrid design based on years of 

experience building and implementing distributed energy systems and microgrids that 

combine renewable energy sources, storage, and oil-gas-based systems. With the 

assistance of HOMER, it is possible to estimate the system performance and lifespan 

cost, which considers both initial, total and operation costs. The program's main 

objectives are modeling and optimization of hybrid systems that include renewable 

and conventional energy sources, as well as sensitivity analysis. In addition, it aims to 

tackle microgrid studies and planning issues, such as uncertainty factors suh as  load 

demand , weather data, and future fuel costs  changes. It can be determined whether 

the system is economically efficient and cheap through important measurement factors 

such as the total annual cost of the system (NPC) and the cost of energy to the 

consumer (COE). 

 

 In this initial step, the simulation was implemented to achieve the best size and 

technical and economic outputs. HOMER is fed with all input parameters, including 

meteorological data, load, generation unit size, fuel cost, renewable energy sources, 

and other economic factors. This study compares the best size and power generation 

from several hybrid renewable energy sources (HRES). For optimizing the design 

Phase 1 

Phase 2 

Phase 3 

Weather data  Load data 
Power 

generatıon  
Homer analysis 

multi-criteria decision-making algorithms 

optimal system configurations 
Phase 4 
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system, this software compares several energy sources with various sensitivities and 

limitations. The system's technical parameters and Life Cycle Cost (LCC), including 

installation, operating, maintenance, energy, and initial capital costs, are evaluated. 

The objective is to reduce the LPSP, NPC, COE, TCC, and 𝐶𝑂2 emissions. NPC  

contains all costs associated with the system, including replacement costs, capital, 

operation and maintenance costs, and fuel consumption. Figure 7 presents how homer 

softwre is working. 

 

According to Figure 5, the system configuration including  of a wind system, PV 

arrays, batteries, a converter, and a charge controller. By considering the lowest energy 

cost and the availability of renewable energy supplies, the optimization algorithm of 

the software provides fast techno-economic analyses of alternative energy options. 

 

 

Figure 3.7. HOMER simulation flowchart. 

 

In the folowing scenarios configuration of hybrid energy system that are propsed in 

this study 

 

• (combinations 1) PV/wind/Diesel generator/battries .  

• (combinations 2)PV/diesel generator / battries  
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• (scenario 3) wind/ diesel  generator / battries  

• (scenario 4)diesel generator/ battries 

• (scenario 5) PV/ wind / battries   

• (scenario 6) PV/ battries 

 

3.5.2. Economical Model 

 

3.5.2.1. Net Present Total Cost 

 

It represents the life cycle cost of all system components, which is the present value of 

all the costs of building and operating the system over the life of the proposed project, 

subtracting from it the current revenues earned over the system's life. With high 

accuracy, HOMER calculates the net cost for each generating unit separately and for 

each system, and this helps decision-makers choose the appropriate and cheapest 

installation. Therefore, selected sizes must achieve the lowest NPC [119]. 

 

NPC =
Cann,tot

CRFiN
                                                                                                                      (3.22) 

 

Wher 𝐶𝑎𝑛𝑛,𝑡𝑜𝑡 is the  annual cost. 

 

N is the  the system lifetime 

 

3.5.2.2. CRF 

 

capital recovery is important  factor and can be calculated as follow[ 119 ]: 

 

𝐶𝑅𝐹(𝑖,𝑁) =
𝑖(1+𝑖)𝑁

(1+𝑖)−1
                                                                                                          (3.23) 

 

The overall annual costs 𝐶𝑎𝑛𝑛,𝑡𝑜𝑡, takes into account the  system initial, maintenance, 

and operation costs. Also batteries , converter, the replacement costs are included. The 

follwing equation calculateds the salvage value [92]   
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 𝑆𝑉 = 𝐶𝑟𝑒𝑝
𝑅𝑟𝑒𝑚

𝑅𝑐𝑜𝑚𝑝
                                                                                                            (3.24) 

 

Where 𝐶𝑟𝑒𝑝: is the  replacement cost, and  𝑅𝑟𝑒𝑚:  represents the rest of system lifetime 

[119], 

 

𝑅𝑐𝑜𝑚𝑝:  refers to the system lifetime 

 

3.5.2.3. Cost of Energy 

 

Another important factor of the system design is the COE, which is used to evaluate 

the system's economic feasibility. Equation(3.25). is used to compute it. [92]: 

 

𝐶𝑂𝐸 =
𝑁𝑃𝐶

∑ 𝑃𝑙𝑜𝑎𝑑
𝑡=8760
𝑡=1

× 𝐶𝑅𝐹                                                                                            (3.25) 

 

Technical optimization model 

 

 3.5.2.4. Loss of Power Probability     

      

LPSP is the performance of the system and a measurement of the unsatisfied 

load.number (1) indicates that the load is not supplied, while (0) means the load is 

completely satisfied. It is determined by Equation (3.26) [ 119]. 

 

𝐿𝑃𝑆𝑃 =
∑(𝑃𝑙𝑜𝑎𝑑−𝑃𝑝𝑣 𝑜𝑢𝑡−𝑃𝑊+𝑃𝑏𝑎𝑡𝑚𝑖𝑛

+𝑃𝐷𝐺 𝑜𝑢𝑡)

∑𝑃𝑙𝑜𝑎𝑑
                                                                        (3.26) 

 

3.5.2.5. Greenhouse Gases Emission 

 

Another crucial factor to take into account when establishing a hybrid system is the 

greenhouse gases that it releases (GHG). The system's environmental impact will 

increase as more GHG are released into the atmosphere. The DG, which mainly 

produces 𝐶𝑂2, 𝑆𝑂2, and 𝑁𝑜𝑥, is the system most responsible for this emission [19]. In 

order to determine the system's TGE, we apply the following equation [53]. 
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:𝑇𝐺𝐸 = ∑ (𝛼𝑐𝑜2 + 𝛼𝑠𝑜2 + 𝛼𝑁𝑜𝑥) × 𝑃𝑑𝑔_𝑜𝑢𝑡
8760
𝑡=1                                                                     (3.27) 

 

where TGE represents the Total Greenhouse gases 

Emission, 𝛼𝑐𝑜2, 𝛼𝑠𝑜2 and 𝛼𝑁𝑜𝑥 represent the emission factors  of  the gases 𝐶𝑂2, 𝑆𝑂2, 

and 𝑁𝑜𝑥 respectively, 𝑃𝑑𝑔_𝑜𝑢𝑡 is the diesel generator  rated power [53].  

 

3.5.3. Optimal Decision Making Techniques for Selecting The Best System 

Configuration 

 

3.5.3.1. Multicriteria Decision Making Methodes  (MCDM)  

 

At this stage, two techniques are used to accurately make decisions based on several 

system variables and using a set of equations that will be explained in this section. To 

determine the best energy source, two models were combined to build a decision 

matrix based on the criteria of system components derived from homer results, 

including technical results, economic and environmental costs. This part explains the 

mathematical equations needed for decision-making. First, some equations are solved 

to calculate the standard weights for each hybrid system combination. This contributes 

to measuring the importance of each energy system. After that, other equations are 

used to calculate the degree of importance and preference of different energy sources 

and to choose the optimal source accurately. 

 

Figure 8 shows the research plan that has been proposed using  (MCDM). The results 

from homer are used to give several important factors when selecting an energy source. 

The process figures out the importance of the evaluation criteria so that the best choice 

can be made from the available options 
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step 1 

 

 

 

 

step 2 

 

 

 

step 3  

 

 

 

 

Figure 3.8. Proposed framework for energy sources selection 

 

3.5.3.2. Methodology implementation  

 

Vikor-TOPSIS methodology are applied to evaluate and select the optimum green 

energy sources for sustainable energy planning by taking multiple criteria into account. 

The problem is initially organized into a hierarchy model, beginning with the study's 

goal, as seen in Figure 3. 9, and  the last step is the alternatives choices. Firstly, it 

demonstrates how the aim, criteria, and decision alternatives are related to each other. 

The best option for each is selected based on the criteria values indicated in Table 2. 

The decision criteria is described in the following subsection. 

 

The crucial pairwise matrix is build based on data from  hybrid system specifications, 

this provides the information of priorities for various criteria. Then, based on system 

parameters, the simulation result provides the performance score for each criteria for 

all alternatives. 

 

The final step involves weighing all criteria to determine the opinions of each system 

component. The sum of all the individual weights for each criteria gives the overall 

Identify alternatives in details 

Define criteria 

Calculate criteria weights 

Evaluate alternatives 

Identify renewable energy sources for a 

system 

Identify criteria of energy sources 

Determine the importance of each criterion 

using Topsis and Vikor methods 

Rank the energy source  in terms of 

technical and economic 
Select the optimum energy sourece 
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score for each option. The values for the criterion are then combined. In the end, the 

best alternative choice with the maximum performance score compared to the other 

options is selected the best. 

 

The decision-making process can be summed up in several points as following 

 

• Determine the problem; 

• Set goals; 

• Identify options; 

• Specify criteria 

• Chose a decision - making framework 

• Evaluate options with criteria; 

• Examine solutions against research objectives. 

• Select the optimal choice 

 

The table below explains the criteria and their meanings that were used in building the 

decision-making matrix. Six different criteria are illustrated in table 3.5 The criteria 

includes cost of energy, Net present,Operating, capital costs ,Renewable fraction and 

Carbon dioxide emissions .  

 

 
Figure 3.9. decision-making methodology for selecting energy source 

 

  

Renewable energy sources selectıon 

COE NPC
OC

FC
CO2 TCC

Solar energy Wind energy
Diesel 

generator
Batteries

Goal

Criteria

Alternatives
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Table 3.5. List of criteria and their meanings 

Criteria Index  Significance 

Cost of 

energy 

(USD/kWh) 

C1  It describes the generated power cost . 

Net present 

cost (USD) 

C2  refers to all costs associated with installing and 

operating the system during its life cycle 

Operating 

cost 

(USD/yr) 

C3  means the operating costs required for all 

generation units over the project lifespan 

Initial 

capital  

cost(USD) 

C4  This is the initial investment necessary to begin the 

hybrid power system deployment. 

Renewable 

fraction 

(%) 

C5  It presents the percentage of power delivered to a 

load comes from only renewable sources. 

Carbon 

dioxide 

emissions 

(t/yr) 

C6  refers to the amount of CO2 emitted by the 

microgrid over its lifetime. 

 

 

3.5.3.2. Topsis Technique 

 

Topsis is a method based on mathematical calculations to compare a set of alternatives 

and choose the best option. Simply, the solution is to find the nearest distance from the 

positive point and the farthest distance from the negative point. The distance between 

the positive and negative point is calculated after solving several mathematical 

equations as follows 

 

• Build a decision matrix 

• Calculation of weights for all six criteria 

• Create the Unified Matrix 

• Create a normalization matrix to calculate the distance between the 

alternatives. 

• Calculate the matrix of idealized positive and negative values 

• Measure the distance between the positive and negative points of each 

substitution. 

• Calculate the relative coefficient for all six alternatives. 
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• And finally, arranging energy sources and determining priority. 

 

The TOPSIS procedures as below [70]: 

 

step 1. Establishing  the decision matrix X  

 

𝑋 = ⌈𝑋𝑖𝑗⌉ =

[
 
 
 
 

𝑋11   .   .   .      𝑋1𝑛  
.

.                         .   
.

𝑋𝑚1      .     .   .         𝑋𝑚𝑛]
 
 
 
 

                                                                                  (3.28) 

 

xij indicates the attributes values where j = 1, 2, 3. .4 . , n and, i = 1, 2, 3. 4. . , m 

step 2. Normalizing the values of attributes using the following equation 

 

𝑟𝑖𝑗 = {

𝑋𝑖𝑗

∑ 𝑥𝑖𝑗
𝑛
𝑗=1

1 −
𝑋𝑖𝑗

∑ 𝑥𝑖𝑗
𝑛
𝑗=1   

,                                                                                                                    (3.29) 

 

step 3. Establishing  the normalized matrix using the equation(3.30) 

 

𝑅 = ⌈𝑟𝑖𝑗⌉ =

[
 
 
 
 

𝑟11   .   .   .      𝑟1𝑛  
.

.                         .   
.

𝑟𝑚1      .     .   .         𝑟𝑚𝑛]
 
 
 
 

                                                                    (3.30)       

  

rij indicates the normalized values of the the attributes  

 

step 4. Calculating criteria weight [71]: 

 

E = (e1, e2, . . . en), where: E means an entropy vector, 

 

𝑒𝑛 =
−1

𝑙𝑛𝑚
∑ 𝑍𝑖𝑗 ln 𝑍𝑖𝑗

𝑚
𝑖=1                                                                                                               (3.31) 
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Where 𝑍𝑖𝑗 ln 𝑍𝑖𝑗 = 0   and 𝑍𝑖𝑗 ln 𝑍𝑖𝑗 = 0                                                                                                                               

     𝑤 = (𝑤1,   𝑤2, …… . . 𝑤𝑛) 

∑ 𝑤𝑗
𝑛
𝑖=1 = 1,𝑤𝑗    ∈ [0,1],                                                                                                             (3.32) 

 

The criteria weight is represented by wj in the previous formula. If all criteria are 

correct, the weights can  be calculated using the formula: 

 

𝑤𝑗 =
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

                                                                                                                                  (3.33) 

 

step 5. The normalized indicator numbers were weighted using the equation given 

below 

 

𝑣𝑖𝑗 = 𝑟𝑖𝑗 . 𝑤𝑗                                                                                                                                 (3.34) 

 

step 6. The decision matrix V was generated using each attribute's weight: 

 

𝑉 = ⌈𝑣𝑖𝑗⌉ =

[
 
 
 
 

𝑣11   .   .   .      𝑣1𝑛  
.

.                         .   
.

𝑣𝑚1      .     .   .         𝑣𝑚𝑛]
 
 
 
 

                                                                                          (3.35) 

 

where: vij represents the weighted and normalized values  

 

step 7. Then the model generates the  positive (A +) and negitive (A −) values 

 

𝐴+ = (𝑣1
+, 𝑣2

+  , ……𝑣𝑚
+)                                                                                                            (3.36) 

 

𝐴− = (𝑣1
−, 𝑣2

−  , ……𝑣𝑚
−)                                                                                                            (3.37) 

 

Step 8. using the  equation (3.38) it  can be calculate  the positive distance (𝑑𝑖
+) for  

each attribute  and the negative distance (𝑑𝑖
−)  is calculated using the formula(3.39) 
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𝑑𝑖
+ = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

+)2𝑚
𝑖=1                                                                                                              (3.38) 

 

𝑑𝑖
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)2𝑚
𝑖=1                                                                                                            (3.39) 

here: i = 1, 2,3 .4 .. . , m.  

 

step 9. calculating the relative coefficient (RCi ) for each alternative  

𝑅𝐶𝑖 =
𝑑𝑖

−

𝑑𝑖
++𝑑𝑖

−                                                                                                                                 (3.40) 

 

where relative coefficient  should be between 0 and 1 , 0 ≤ RCi ≤ 1, i = 1, 2, 3. 4. . , m.  

step 10.  By utilising the formula(3.41), it can rank the different options and give each 

one a final score 

 

𝑅𝐶𝑖
, =

𝑅𝐶𝑖

∑ 𝑅𝐶𝑖
,𝑚

𝑖=1

, (𝑖 = 1.2… … ,𝑚)                                                                                                 (3.41) 

 

 step 11. Select the optimal and best choice  

 

3.5.3.3. VIKOR Method  

 

VIKOR is one of decision making techniques that prioritizes the best option found 

relative to the closest ideal solution. The distance from the ideal solutions is then used 

to evaluate the stages in the ranking process. In order to find the optimal option, the 

VIKOR technique uses linear normalization. Normalization of the matrix as above. 

 

Rij =
(X∗j−Xij)

X∗J−X,j
                                                                                                                      (3.42) 

 

Where Xij is Value of sample i and the criteria j 

 

 (J = 6 criteria) 

X*j is the best value  
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X'j is the worst value  

 

• Then determining  the  values of S and R 

 

𝑆𝑖 = ∑ 𝑤𝑗 × (𝑅𝑖𝑗)
𝑛
𝑗                                                                                        (3.43) 

Where Wj represents the weighting criteria. The values of S are determined by 

combining the results of multiplying the weighted criterion by the numerical value of 

each alternative. 

 

Ri= Max j [wj x Rij] 

 

• Ri is the greatest value obtained by multiplying the criteria weights by the 

normalized data of each alternative. 

• Calculates the final ranking 

 

Compute the values Qj; j = 1, 2..., m, 

 

 
Qj=[

Si−S,

S∗−S,]×V+[
Ri−R,

R∗−R,] ×(1−V)
                                                                                      (3.44)                

                                                                                                                                                          

Where the S' is the smallest value of S, and S* is the largest value of S  Rrepresents 

the smallest value of R and R* is the largest value of R 

 

 

3.5.4. Optimal Sceduling of Energy Sources Using (Genetic Algorithm) 

 

3.5.4.1.   Metheology Description 

 

 The system proposed in the study is a hybrid of different generation units not 

connected to the main grid. This system relies heavily on renewable energy such as 

solar and wind energy and the traditional diesel-powered generator to obtain 

sustainable, uninterrupted, and cheap energy for the consumer. Figure 1 shows the 

components of the system. A residential building receives power from the system. 250 

kW is the highest demand side, and 86 kW is the lowest demand. Throughout the entire 
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month, the HES sources have scheduled over 720 hours. There are two sections to the 

study, the first of which is a model for an energy scheduling using genetic algorithm. 

The program first estimates the building's electricity demand for a month (720 hours) 

and the weather information. Next, the state of charge of the battery and the power 

generated from renewable sources per hour is determined accordingly. The algorithm 

will choose the most appropriate energy source for each load and the lowest cost per 

hour based on the changing demand, always considering the available and stored 

energy and the least cost in terms of operation. Then the scheduling results for 720 

hours will be obtained and entered as data into the machine learning model. Then the 

model will be trained on this data so that the algorithms understand the scheduling 

results depending on the variable loads and the sources used to feed and meteorological 

data. Finally, the model will calculate the energy required per hour in new buildings 

under the same weather conditions, building size, generating unit size, and in the same 

city on all these inputs. The research methodology is shown in Figure (3.10) below. 

The following sections provide a detailed explanation of the management and 

forecasting process. To complete the objective of the study, the results of three 

machine learning techniques used in classification - Random Forest (RF), Decision 

Tree (DT), and K-Nearest Neighbors (KNN) - are compared to find out the best 

algorithm in terms of performance and results. 

 

 
Figure 3.10. The microgrid scheduling and prediction methodology. 
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3.5.4.2.   Details of The Generation Units In Microgrid 

 

The hybrid system comprises a 150-kW wind (WT), 70-kW PV capacity, 100-kW 

diesel generator, and battries for energy storage. Based on various hourly weather and 

demand loads, an Energy Management strategy is suggested to control the share of 

power among the three sources. The EMS is handled by the Genetic algorithm GA 

approach, which makes its choice based on the availability of energy sources and the 

system's operational costs. The scheduling process is explained in the subsequent 

steps. 

 

• The majority of the  load demand is supplied by photovoltaic and wind energy.. 

• When renewable energy sources produce more power than is needed, the 

surplus is delivered   to the BAT. 

• When the output power from the PV array and the WTs is insufficient, the BAT 

discharges. 

• When a maximum consumption occurs or renewable output varies, the BAT 

delivers a part of its energy. 

• The generator will swich on when  output power of  PV  and WT systems are 

insufficient. 

• In case the generated energy exceeds the load demand and the BAT is 

completely charged ,the extra energy is  sold  to the  main grid. 

• The priority always for the lowest cost source. 

 

Below are the restrictions that must be followed when applying energy management 

between generation units in the microgrid, as shown in equation (3.45). A balance must 

be maintained between generation and consumption continuously.  

 

  PL = PPV + PWT + PBatt + PDG                                                                 (3.45) 

 

The excess and deficit energy are represented by equations (3.46) and (3.47), 

respectively. 

 

𝑃𝐸𝑋(𝑡) = [𝑃𝑝𝑣(𝑡) + 𝑃𝑤𝑡(𝑡)] − 𝑃𝐿(𝑡)                                                                    (3.46) 
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𝑃𝐷𝑒𝑓(𝑡) = 𝑃𝐿(𝑡) − [𝑃𝑝𝑣(𝑡) + 𝑃𝑤𝑡(𝑡)]                                                                   (3.47) 

 

 𝑃𝐷𝐺(𝑡) ≤ 𝑃𝐷𝐺 𝑚𝑎𝑥                                                                                                (3.48) 

 

Where  𝑃𝑃𝑉(𝑡)  is the PV power, 𝑃𝑊𝑡(𝑡)is the wind system  power, 𝑃𝐿(𝑡)represents 

the demand power , 𝑃𝐵𝑎𝑡(𝑡) is the  obtained energy from the battery, 𝑃𝐷𝐺(𝑡)is the 

power delivered by the diesel generator, 𝑃𝐸𝑋(𝑡) is the the surplus power and 𝑃𝐷𝑒𝑓(𝑡)is 

the deficit power. 

 

In the previous equation P_PV (t) represents the output of the solar power system and 

P_wt (t) refers to the wind power output, while P_L (t) represents the electrical loads 

of the residential buildings, P_bat (t) is the energy stored in the battery, P_DG (t) 

represents the output power of the generator, P_ex (t) is the redundant energy 

generated by the wind and solar systems and P_def (t) represents the deficit and lost 

energy. 

 

3.5.4.2.   The Proposed Scheduling Algorithm 

 

3.5.4.2.1. Genetic Algorithm 

 

The genetic algorithm is a frequently used algorithm due to the accuracy of its results. 

It is mainly used in optimization, scheduling, and solving mathematical equations. Its 

classified as exploratory, looking for solutions closest to the ideal. The main step is to 

generate the population randomly, then evaluate the fitness function, and after that  

generate anew group to obtain better results. The chromosomes are randomly 

generated, which can be a practical solution to the problem as fitness is evaluated with 

each cycle. Then each individual in the group is evaluated to provide a near-perfect 

solution [30]. 

 

The reproduction process consists of three critical stages: selection, crossover, and 

mutation. The parents' generation is chosen based on their fitness level and survival 

ability. The crossover process is the process of generating new offspring with better 

characteristics. Then the genes are randomly recombined to produce new offspring. 
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The mutation process changes one or more values to generate a new population 

different from the initial one. The process is repeated n times to get the best solution, 

then the algorithm stops searching and gives us the final result. 

 

Objective functions with limitations, variables, and constants have been defined in M-

file to solve the optimization problem (MATLAB code). The energy system's 

microgrid, PV, WT, BAT, and DG components are regarded as four independent 

variables. The fitness function of the optimization problem has been determined using 

the toolbox for genetic algorithms. It was found that accurate outputs with a low 

generation cost were regarded as specified functions. The procedures of crossover, 

mutation, and selection were only applied to find optimal components. 

 

Figure 11 outlines some of the stages in the technique of the proposed GA-based 

energy scheduling methodology. The suggested algorithm has the advantage of 

including various renewable energy sources. 

 

• input initial parameters  

• input 720-hours load demand. 

• input solar irradiance , wind speed data 

• calculating  the output power from renewable sources. 

• enter the generator size  

• scheduling avilable  energy sources. 

• determine the best solution for the system every hour. 
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Figure 3.11. The Genetic Algorithm flowchart 

 

3.5.4.3.   Objective Function 

 

The Objective Function is minimizing the TC(Total cost) of the proposed system. 

The TC includes capital (Ccap), maintenance (Cmain), replacement costs (Crep) for all 

generation units. The price of energy per kilowatt-hour is related to the cost of 

building, operating and maintaining the PV and WT generation units and the diesel 

generator, in addition to the cost of energy storage and the number of batteries required 

[54]. 

 

 𝑀𝑖𝑛 𝑇𝐶 = 𝐶𝑎𝑝 + 𝐶𝑚𝑎𝑖𝑛 𝑎𝑛𝑑 𝑜𝑝 + 𝐶𝑟𝑒𝑝                                                                                       (3.49) 

 

The initial cost required for the installation of system is determined by the 

following[54]: 

 

 Ccap = CPVc × NPV + CWTc × NWT + CBattc × NBatt + Ccon × Ncon + CDGc × NDG          

(3.50) 
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The costs of maintaining and operating the system are shown below[57]: 

 

𝑪𝒎 𝒂𝒏𝒅 𝒐𝒑 = PWA × (𝑪𝑷𝑽𝒎 × 𝑵𝑷𝑽 + 𝑪𝑾𝑻 𝒎 × 𝑵𝑾𝑻 + 𝑪𝑩𝒂𝒕𝒕 × 𝑵𝑩𝒂𝒕𝒕𝒎 + 𝑪𝒄𝒐𝒏 ×

𝑵𝒄𝒐𝒏 + 𝑪𝑫𝑮𝒎 × 𝑵𝑫𝑮)                                                                                                                         (3.51) 

 

And the replacement cost is defined as follows[57]: 

 

 Crep = K × (CPVr × NPV + CWTr × NWT + CBattr × NBatt + Ccon × Ncon + CDGr ×

NDG)                                                                                                                      (3.52) 

 

The equations above, Ccap, Cmain, and Crep represent the capital, the operation and 

maintenance, and replacement costs respectively. The numbers NPV, NWT, NBat, 

Ncon, and NDG represent the number of solar panels, wind turbines, battries, and 

diesel generators. Subsystem capital costs are shown by CPVc, CWTc, CBatc, Cconv, 

and CDGc. Component operating and maintenance costs are shown by CPVm, 

CWTm, Cbatm, Cconv, and CDGm. The system replacement costs are shown by 

CPVr, CWTr, Cbatr, Cconr, and CDGr.. 

 

3.5.4.4.   Constraints 

 

3.5.4.4.1. Battery Bank Capacity Constraint 

 

To overcome the power deficit, which is determined as in equation(3.53) , a 

rechargeable battery is suggested. 

 

Egap
t =

EDmd
t

ηinv
− Pw

t × Nw × ∆t − Ppv
t × Npv × ∆t                                                            (3.53) 

 

where Egap
t  is the power gap at time t and EDmd

t is the power demand at time t; 

𝜼𝒊𝒏𝒗 represents the converter efficiency. Two cases, with Egap
t ≥0 and Egap

t ≤0, are 

considered in the operation of the microgrid system, therefore, the formula below can 

be used to determine the battery's available energy. 
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 Ebatt
t = {

Ebatt
t−1 × (1 − σ) − Egap

t × ηbatt
c , if Egap

t < 0  

Ebatt
t−1 × (1 − σ) − Egap

t ,                          if Egap
t ≥ 0 

                                        (3.54) 

 

where Ebatt
t and Ebatt

t−1  are the residual amounts of energy in the battery at 

times t and t−1, respectively. All batteries are considered to have an initial charge of 

20% of their rated capacity,  σ  is the rate of self-discharge per hour, and ηbatt
c  is how 

effectively the battery bank charges.At any time, the amount of charge in the battery 

system should be within the range of what the batteries can hold. 

 

 𝐸𝑏𝑎𝑡𝑡
𝑚𝑖𝑛 ≤ 𝐸𝑏𝑎𝑡𝑡

𝑡 ≤ 𝐸𝑏𝑎𝑡𝑡
𝑚𝑎𝑥                                                                                                              (3.55) 

 

 𝐸𝑏𝑎𝑡𝑡
𝑚𝑖𝑛 = (1 − 𝐷𝑂𝐷) × 𝐸𝑏𝑎𝑡𝑡

𝑚𝑎𝑥                                                                                                      (3.56) 

 

where 𝐸𝑏𝑎𝑡𝑡
𝑚𝑎𝑥  represents the maximum limit of the charging energy, which is 

determined by the amount of the battery bank's rated capacity, and 𝐸𝑏𝑎𝑡𝑡
𝑚𝑖𝑛  is the minimal 

capacity of energy storage, which is determined by the deepest point of discharge 

(DOD). 

 

3.5.4.4.2. Energy Supply Constraint 

 

The energy supply constraint for this system is specified in order to manage the 

microgrid power generation, which should be greater than the daily load demand. 

 

 ∑ (𝑃𝑝𝑣
𝑡 × 𝑁𝑝𝑣 × ∆𝑡 + 𝑃𝑤

𝑡 × 𝑁𝑤 × ∆𝑡 + 𝐸𝐷𝐺
𝑡 )24

𝑡=1 ≥ ∑
𝐸𝐷𝑛𝑑

𝜂𝑖𝑛𝑣

24
𝑡=1                                       (3.57) 

 

Three  energy sources are used to generate power (PV, wind, and diesel) in palance. 

The rechargeable battery is an energy storage system that stores extra energy generated 

by renewable energy.When the battery gets low, and a power outage occurs, the diesel 

generat or serves as an emergency backup. Generally, the generator is operated at 20 

to 100% of its nominal power[[17]. 
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3.5.4.4.3. System Component Size Constraints 

 

The following is the  capacity constraints of hybrid overall system. 

 

PminWT≤  PWT  ≤Pmax WT                                                                                                        (3.58) 

 

PminPV≤  PPV  ≤Pmax PV                                                                                                        (3.59) 

 

PminBat≤  Pbat  ≤PmaxBat                                                                                                       (3.60) 

 

Pmin DG ≤  PDG ≤ Pmax DG                                                                                                       (3.61) 

 

3.5.4.5. The Power Sharing Strategy In Side Microgrid 

 

The schduling  strategy  is described as follows: 

 

• PV wind systems provide enough power to meet the demand. The extra power 

will be  stored in the stoarge uints (batteries) .  

• In case that, the energy generated from renewable sources is inadequate, the 

batteries will  discharge its energy to compensate the power deficit. It is 

supposed that the battery system has the highest capacity at the initial stage.  

• (3) In this case, the power from solar panels, wind turbines, and batteries might 

not be enough. So the diesel generator makes up for the battery's shortfall. 

• The power management approach is typically very complicated due to the 

intermittent of renewable energy. Many scenarios included in this methodology 

are explained briefly below: 

 

Case 1: The battery will start charging when all renewable sources have satisfied the 

demand. 

Case 2: When renewable sources are unable to satisfy the load's needs, the battery will 

back up. 

Case 3: When renewable sources and the storage battery aren't enough the generator 

will turn on to supply the loads 
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Case 4: Once the batteries are completely charged, then the surplus energy will be sold 

to the main grid. 

 

In the scheduling stage, several scenarios have been proposed to ensure the optimal 

use of alternative energy and the sustainability of energy flow are stated as follows: 

 

case 1: microgrid including  PV, WT, Batteries and DG 

case 2: microgrid including  PV, WT and Batteries 

case 3: microgrid including   only DG 

 

 

Figure 3.12. The power schduling  strategy 

 

3.5.5. Energy Sources  operation Prediction using Machine Learning Algorithms 

 

3.5.5.1. Prediction Based On Machine Learning  

 

The most important applications of machine learning are classification and prediction 

based on historical data. ML has a variety of applications, including classification, and 

its divided into two primary categories: supervised and unsupervised [23]. In this 

study, we used supervised algorithms, which derive predictions from data sets 

containing specific input information and experience, to discover outputs directly 
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related to the input data [24]. The supervised ML method aims to determine the 

relationship between the input variables (independent variables) and the output  

(dependent variable)[25]. Furthermore, classification is regarded as a reliable 

technique for predicting future information extraction. Although there are many 

techniques related to machine learning, only classification belongs to our research. 

Figure 1 depicts the classification of machine learning (ML) techniques. 

 

3.5.5.2. Data Analysis 

 

There are 720 cases in the scheduling dataset for period of one month, which include 

7 features, 1 output variable, and 4 input variables. Hybrid energy source scheduling 

uses the 4 variables as inputs: solar power, wind power, hourly demand, and storage 

capacity. There are different attributes of classes. The encoding for these components 

is displayed in Table 2.  
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Precision F1 Score
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Evaluation 
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Fıgure 3.13. Flowchart of the classification process 
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Table 3.6. Encoded classes for all energy sources 

Class Class Encoding 

WT + batt 1 

WT +DG 2 

WT+PV+Batt 3 

WT+PV 4 

PV+WT+Batt+DG 5 

WT+Batt+DG 6 

DG 7 

 

3.5.5.3.  Random Forest (RF) Algorithm 

 

An collective supervised learning which is suitable for classification, regression, and 

other applications is the RF algorithm. Throughout the training process, several 

decision trees are created. In regression tasks, individual tree predictions are given 

back as the average predictions. The class that has the largest trees is what the RF 

produces when used to classification and prediction. RF is a classifier i.e., {h(x, Θ𝑘 ), 

k = 1,...}, where k is an independent vector. Multiple decision trees are created using 

different subtrees from the input data. Each decision tree classifies the data in a 

separate way from the other. Predictions are made through the use of data classification 

process. Data is classified based on some common features and a specific characteristic 

or numbers. The results of each tree can be different depending on the value of k which 

affects the classification accuracy and read all data without loss [27]. Figure13 shows 

RF flowchart. 

 

 

Figure 3.14. RF algorithm working principle 
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3.5.5.4. Decision Tree 

 

The DT decision tree is a supervised technique commonly used in classification issues 

because it is simple to use, produces reliable results, and assists in decision-making 

when the data is large. The method is a tree, with internal nodes representing data 

attributes, branches representing decision-making rules, and terminal nodes 

representing the result and final outcome. The decision node and the leaf node are the 

two nodes, with the decision node contributing to any choice and having multiple 

branches that branch out from the origin. The leaf node, on the other hand, is the result 

and does not include the expansion of other branches.Based on specific variables and 

features, a graphical representation of alternative solutions to any problem. The 

algorithm generally asks a question and divides the tree into multiple sub-trees based 

on the answer (yes/no) until it finds the desired answer. The process employed in the 

decision tree is presented in the diagram below  

 

 

Figure 3.15. DT algorithm architecture 

 

3.5.5.5.  Nearest Neighbors Algorithm 

 

Due to its simplicity and flexibility, KNN is widely used algorithms in the field of 

machine learning. KNN takes time to read and memory to store because it uses all of 

Energy 

sources

Load Temperature humidity
Power 

generation

WT PV Bat DGhigh lowHigh lowHigh low

WT + 

batt

WT 

+DG

WT+PV

+Batt

WT+Batt

+DG
WT+PV DGPV+WT+Bat+G

2 3 4 5 6 71
Final 

predication
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the training data. [29] gave a detailed overview of the benefits and drawbacks of the 

KNN approach. Regression and classification are both possible with KNN. The input 

data for both applications is a set of the k-closest training examples. KNN 

classification results in a class label. The object is allocated to the class with the 

greatest number of members among its k nearest neighbors (k is a small positive 

integer). If k = 1, the item is only assigned to the classes of its nearest neighbor. 

 

The approach is effective in cases when there is no linear relationship between the 

independent (x) and dependent (y) variables. The process of KNN is presented in 

the flowchart below Figure 3.16. 

 

 

Start

Input ata

Data preprocessing

Testing Training

knn classifier

accuracy value

End

  

Figure 3.16. KNN algorithm flowchart 
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3.5.6.  The Algorithms Evaluation    

 

Performance evaluation is an important final stage in building a machine-learning 

model. This can be achieved by using a variety of metrics and measurements. The 

performance and accuracy of the model are validated in the following four steps. 

 

Accuracy: It is a standard technique for evaluating classification problems, and it is 

calculated using equation (19): [32]: 

 

Accuracy= 
𝐓𝐏+𝐓𝐍

𝐓𝐨
                                                                                                   (3.62) 

 

TP denotes true positive, TO refers to classes number, and TN denotes true negative 

in this equation. The TP measurement is used if the expected value compared to the 

real value is "Yes", while if the two are not correct, the TN measurement is used. When 

data consists of imbalanced values, overall classification accuracy could be better for 

assessing the model's performance [38]. Additionally, because the algorithm can only 

detect one or two classes instantaneously, one class might be chosen over others. The 

following is a list of the best model performance evaluation metrics for input data that 

are imbalanced: 

 

Precision: It is simply, a fraction of TP samples that are forecasted of specific classes. 

According to Equation 13, the precision is calculated by dividing TP by the summation 

of TP and FP [32]. 

 

Precision=TP/(TP+FP)                                                                                                   (3.63) 

 

Recall: It refers to dividing the correct classified samples (TP) (belonging to a part of 

the real data) by the sum of the TP and FN measurements [32]. 

 

Recall=
𝐓𝐏

𝐓𝐏+𝐅𝐍
                                                                                                        (3.64) 
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F1 Score: It displays the accuracy, robustness, and balance between recall and 

precision of a model. This can be expressed mathematically as following [32]. 

 

  F1-score = 
𝟐

𝟏

𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧
+

𝟏

𝐫𝐞𝐜𝐚𝐥𝐥

                                                                                       (3.65)  
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PART 4 

 

DISSCUTION AND RESULTS 

 

4.1. BACKGROUND 

 

In order to deal with the problems associated with renewable energy sources, such as 

overload, voltage instability, and poor power quality, an energy storage system, such 

as a battery (BESS), can be added as an essential type of energy balance, with the 

appropriate use of renewable energy sources (PV and WT). [10] [16]. Because the cost 

of BESS per kilowatt is proportional to capacity and cycle life, powering loads with 

100% reliability using only renewable energy sources and BESS can be prohibitively 

expensive. Furthermore, because the energy stored in the battery is based on 

intermittent renewables, it is possible that the output of the renewables and battery 

becomes insufficient to satisfy the load while the MG is working. A dispatchable 

source, such as a diesel generator (DG), must also provide effective and affordable 

load feeding. On the one hand, distributed generation has several disadvantages, 

including high operating and maintenance costs and environmental degradation from 

greenhouse gas (GHG) emissions. Renewables and batteries, on the other hand, have 

high initial investment costs, low operating costs, and zero gas emissions. The high 

cost and gas emissions make it unsuitable for  residantal , commercial and industrial 

applications. As a result, developing a strategy to control generation and energy 

consumption is critical in any system that including  renewable energy sources, BESS, 

and DG. The amount of energy produced per hour was determined by developing 

mathematical models for wind and solar energy systems using weather inputs, the size 

of each generation unit, and the limitations applied. 
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4.2. HOMER SOFTWRE RESULTS 

 

HOMER analyzes the hybrid systems for power generation from an economic point of 

view, the impact on the environment, and the appropriate size for each generation unit. 

It gives the results and several options for the same system. The software then helps 

the researchers to choose the best micro-network configuration based on the lowest 

TNPC cost; it then chooses the best configuration of the six proposed combinations. 

Tables 4.1 and 4.2 at the bottom present the results obtained from the software, which 

contain a detailed economic analysis of the proposed system. The Scenario (1) which 

contains a solar and wind energy system and a diesel generator in addition to storage 

units A1 (PV / W / DG/BAT), has the lowest TNPC cost with the maximum clean 

energy use of 62%. While Scenario A5 contains alternative energy as the primary 

source of energy (PV/wind/battery), and Scenario A6 depends entirely on solar energy 

and batteries (PV / battery). This system has the highest cost record TNPC due to the 

increase in the cost of batteries and solar panels, as it requires a large number of panels 

and batteries. It is also noted that systems use renewable energy by 100%. However, 

using 100% renewable energy makes the combination the best choice based on its 

positive environmental impact. The table found that the most hybrid combination in 

terms of the total cost of the project is A6, as it requires high construction and 

establishment costs (TNPC) with a value of ($ 460,756). The least expensive TNPC 

combination was the system (PV/WD/DG/BAT) which cost $254,874. Table 2 

includes the details of the technical and economic criteria that assist the decision-

maker in choosing the appropriate combination of several energy sources. 

Accordingly, these results will be used in the second phase of the research during the 

implementation of multi-criteria decision-making methods, the results of which will 

be explained in the next section. Figure 4.1 shows the six hybrid systems that were 

studied using Homer. 
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Figure 4.1. presents six  energy combinations for all case studies. 

 

The MG design incorporating different renewable and conventional energy sources 

depends on the  low  capital cost . Geographical specifications varies from site to site 

depending on available natural resources , load demand and their behavior. Different 

combinations of energy generators and Battries can be selected based on geographical 

location and demand needs. It is also important to study the economic feasibility of 

each energy source and its ability to supply the loads efficiently and sustainably. 
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Practical factors should be analyzed to design reliable power source. As shown in 

Table 4.2, Initial capital cost ($), Cost of Energy COE, Total O&M Cost ($/yr),  CO2 

emissions(t/yr), and Fuel cost ($/yr).From the  table system A1 has low initial capital 

cost than other choices ,also the cost of energy(0.476) which is an essential factor in 

determining the size and components of the microgrid. the operating costs are also 

lower(2,645) This makes it the best choice compared to the rest of the scenarios. The 

renewable fraction is an important factor that explains the percentage of renewable 

energy use in the system to the total production. The highest value of this factor is 

(100%). The system in which the factor is 100 depends entirely on renewable energy 

only such as A5 and A6. For the rest of the scenarios, the percentage of involving clean 

energy varies according to the need and the increase in the load. For example, scenario 

(1) has 62%, scenario (2) shares 43% of the power generation, and scenario (3) was 

52% of the total power generation. The table shows that the systems that contain only 

wind and solar energy require the highest construction and capital cost due to the high 

price of wind and solar systems, such as scenario 6 (PV/BAT) costs 355,865$. In 

general, the Homer selects the system based on total NPC and energy cost. Hence, 

system 1(PV/WD/DG/BAT) is selected as an optimum choice for our case study. 

 

The important inputs required for the software in terms of capital, establishment, 

operation and maintenance costs were according to the current prices in the Libyan 

market. In addition to economic data, sensitive parameters such as the nominal 

discount rates (%) per generating unit and for the system as a whole range from 4% - 

17%, and the price of diesel fuel that is set. 0.4 $/L, measured solar radiation 5-7 

(kWh/m2), and finally measured wind speed 2-8 (m/s). 

 

The following are the six scenarios of the mini-grid obtained from the Homer 

simulation. 

 

Scenario1 (PV/WT/DG/BATT) 

Scenario2 (PV/DG/BATT) 

Scenario3 (WT/DG/BATT) 

Scenario4 (DG/BATT) 

Scenario5  (PV/WT/BATT)  
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Scenario6 (PV/BATT) 

 

Table 4.1. HOMER Technical results for the energy systems. 

Hybrid system PV/W

T/DG/

BATT  

PV/DG

/BATT 

WT/DG/

BATT) 

DG/BA

TT 

PV/ 

WT/ 

BAT 

PV/ 

BATT 

Wind turbine (kW) 150 0 200 0 200 0 

PV (kW) 70 140 0 0 140 300 

Diesel Generator (kW) 100 100 100 100 0 0 

Battery (kWh) 150 100 100 150 180 200 

Converter (kW) 150 120 150 50 250 250 

Unmet Load (kWh/yr) 0 0 0 0 13 37 

Renewable fraction 

(RF) (%) 

0.64 0.43 0.52 0 1 1 

Dispatch cc cc cc cc cc cc 

 

Table 4.2. HOMER Economic results for the hybrid systems. 

Hybrid system PV/WD/D

G/BAT  

PV/DG/

BAT 

WD/DG/

BAT) 

DG/BA

T 

PV/WD/

BAT 

PV/BA

T 

Total NPC ($) 254,874 289,657 322,867 344,546 422,756 460,756 

Initial capital cost ($) 193,567 112,756 260,756 280,865 340,756 355,865 

Cost of Energy COE 

(USD/kWh) 

0.476 0.487 0.576 1.765 0.687 0.712 

Total O&M Cost 

($/yr)  

2,645 2,965 3,265 3,567 1,123 895 

Fuel cost ($/yr) 2035 3065 2,565 6,756 0 0 

Fuel consumption 

(L/yr) 

11350 15678 12,657 37,756 0 0 

CO2 emissions(t/yr) 
 

2.435 3,785 2.956 5,756 0 0 

 

4.3. MULTİCRİTERİA DECİSİON MAKİNG ANALYSİS RESULTS 

 

Determining criteria for each choice is necessary to select the best energy source from 

a collection of hybrid energy sources. Therefore, making choices requires 

understanding essential information about each energy source and allocating weights 

to each criteria. The priority of the systems is based on the weights given to each 

criterion. Therefore, the weights significantly impact which systems are chosen over 

others. Table 4.3. shows the six power generation scenarios. And the weights assigned 
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to each calculated criterion are shown in Table 4.4. The MCDM algorithms use 

weights to establish the rank of the systems. Table 4.4 demonstrates that the sum of 

the criterion weights is 1. The table below shows an example of alternatives and 

corresponding criteria values (based on previously specified criteria in Table 2), with 

costs stated in thousands of dollars and production energy in kW. 

 

Table 4.3. Alternatives for six power generation systems. 

Alternatives Energy source 

S1 PV-WT-BATT-DG 

S2 PV/DG/BATT 

S3 WT/DG/BATT 

S4 DG/BATT 

S5 PV/WT/BATT 

S6 PV/BATT 

 

Table 4.4. Estimated criterion weights 

Criteria Index weights 

Net present cost C1 0.31 

Initial capital cost C2 0.10 

Cost of energy C3 0.04 

Total O&M cost C4 0.13 

Renewable fraction C5 0.28 

CO2 emissions C6 0.16 

 

4.3.1. Vikor Method for Selecting The Optimal Renewable Energy Copmanation 

 

Table 4.5 displays the performance scores from the simulation for each criterion. The 

greater the score, the more favorable the alternative compared to another. For example, 

the criterion 'capital cost' displays the lowest score for the PV+Batt alternative and the 

highest for the DG-PV-WT-Battery option. This indicates that the A1 option is a better 

choice for capital cost need and Net present cost when compared to other options. The 

Renewable portion criterion has the most weight in the system, followed by CO2 

emissions and the 'Initial capital cost criteria. This criterion weighs 0.10 because the 

A1 (DG-PV-WT-Battery) system requires less capital than other alternatives. 
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Similarly, the capital and NPC costs for six cases (PV/BAT) are higher than for the 

other four possibilities since the battery and PV request a higher capital and O&M 

cost. The criteria of NPC, Cost of energy, and capital cost have approximately similar 

performance scores (0.45626),(0.34072), and (0.45763) .for the second choice, the 

PV/DG/BAT scenario. The system architecture of the WT/PV-Battery option indicates 

that a larger battery bank be added to handle higher levels of PV and wind penetration. 

Compared to the other alternatives, this system has the highest weight for renewable 

share (100%) in the generation and the highest weight for Renewable fraction (0.28). 

Step 1 : Establish decision matrix 

 

Table 5 displays a normalized decision matrix (as in Eq. (21)) in the previous chapter,  

a set of alternatives with different  weights for all criteria (where 6 is the total number 

of all criteria). 

 

Table 4.5 .The normalized decision matrix 

alternatives C1 C2 C3 C4 C5 C6 

S1 0.02381 0.45626 0.19354 0.12183 0.27218 0.11234 

S2 0.40825 0.45763 0.16036 0.12867 0.7384 0.11032 

S3 0.55318 0.34072 0.18342 0.17830 0.26183 0.05432 

S4 0.38692 0.26348 0.29863 0.38226 0.34361 0.32172 

S5 0.62348 0.00342 0.40831 0.37643 0.318751 0.54216 

S6 0.15673 0.10087 0.21762 0.10127 0.32712 0.41412 

 

Step 2: calculate the best 𝑓𝑖
∗and the worst𝑓𝑖

− values of all criterion functions. 

 

Table 4.6. Shows the values of all criterion functions 

max 0.62183 0.45342 0.48483 0.38481 0.34841 0.54276 

min 0.02134 0.00187 0.19625 0.10271 0.20368 0.04214 

 

Step 3. calculate the values of Sj and Rj, j = 1,2,3.4…,J  

Step 4: calculate the values of Qj 
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Values for QS, QR, and Q are shown in Table 4.7 according to their respective Eqs. Q 

is provided for the compromise parameter (strategy coefficient) m (m = 0.25) in 

equations (22) and (23). 

 

Table 4.7 ranks the energy systems based on these values, and the (WT/PV/DG/Bat) 

system comes out on top. This is because most criteria, such as (c1, c2, c5), 

significantly affect the value of QR. The first (A1) and sixth (A6) choices stand in vital 

difference from each other. The final option in the table has high up-front costs due to 

the high price of batteries and solar panels but lower total project costs.With incredibly 

high impact scores for two of the six impact criteria (c1 and c2) and an overall ranking 

advantage over other options, these criteria could be recommended for final 

selection.The results demonstrate the viability of applying multicriteria decision-

making techniques to sustainable energy design. 

 

Table 4.7. Vikor methode final results 

Si Ri Qi Rank Optimal enery source 

0.796513 0.302143 0.956 1 PV-WT-BATT-DG 

0.730431 0.272341 0.806 6 PV/BATT 

0.677403 0.302211 0.827 2 PV/DG/BATT 

0.677044 0.302314 0.826 3 WT/DG/BATT 

0.666781 0.302316 0.811 5 PV/WT/BATT 

0.650739 0.302241 0.821 4 DG/BATT 

 

The above steps show the simplicity of VIKOR in facilitating the decision-making 

during designing and selecting the best energy sources based on selected criteria.By 

using different values of the weights - it can calculate the order of alternatives by 

linking between inputs consisting of economic and environmental parameters and 

outputs represented in the cheapest energy source that can be chosen. The VIKOR 

method has advantages and disadvantages, but overall it is a reliable tool by which the 

decision maker can rank the best among several different energy sources. To evaluate 

the results of VIKOR and to increase the reliability of the decision-making process, 

another method of decision-making was used, which is called Topsis, and the 

following are its results. 
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4.3.2. TOPSIS Method Results 

 

1: Calculate Normalized Matrix 

 

First, create decision matrix (𝑋̅𝑖𝑗) by dividing each value in a column by the sum of its 

columns using Equation (1). Normalization is required to compensate for differences 

in the values of the criteria associated with the metrics. This step is significant in 

building the initial decision-making matrix. 
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                                                                                                       (4.1) 

 

2-Determining the weighted Normalized Matrix 

 

Equation (2) is used to create the weighted matrix after normalizing the matrix To 

create the weighted matrix in this stage, AHP weights (Table 4) are added: 

    

𝑉𝑖𝑗 = 𝑋̅𝑖𝑗 × 𝑊𝑗                                                                                                                      (4.2) 

 

3- determining the best and worst ideal values 

 

Equations (3) and (4) are used to determine the best performance s+ and worst 

performance s- for each ideal criterion. TOPSIS depends on measuring distances, so 

the optimal option is close to the positive solution(s+) and far from negative solution 

(s-). This is achieved utilizing Equation (8) and Equation (9), respectively: 
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4-Calculate Performance Score 
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Table 4.8. The Normalized Matrix  

Alternative Net 

present 

cost(NPC) 

Initial 

capital 

cost(ICC) 

Cost of 

energy(COE) 

Total 

O&M 

cost 

Renewable 

fraction 

CO2 

emissions 

PV-WT-

BATT-DG 

0.303237 0.344583 0.224054 0.297043 0.491303 0.067115 

PV/BATT 0.227427 0.258436 0.358487 0.346553 0.070187 0.536924 

PV/DG/BATT 0.303237 0.043072 0.448113 0.297045 0.070185 0.536923 

WT/DG/BATT 0.682287 0.215363 0.134432 0.297042 0.350932 0.067113 

PV/WT/BATT 0.303238 0.43075 0.448113 0.346551 0.56146 0.536924 

DG/BATT 0.227428 0.43075 0.358487 0.396058 0.421115 0.335576 

 

After calculating the weights for all standards, the next step is to calculate the weighted 

normalized values, where this matrix is obtained by multiplying the normalized values 

in the previous step by the weights wj values. The results of this step are shown in 

Table 4. 9 

 

Table 4.9.  The weighted normalized values. 

Alternative  (NPC) (ICC) (COE) (TOC) (RF) (CO2)  

PV-WT-

BATT-DG 

0.030328 0.057434 0.037314 0.049506 0.081883 0.011187 

PV/BATT 0.037904 0.043076 0.059746 0.057756 0.011696 0.089486 

PV/DG/BATT 0.05057 0.007175 0.074687 0.049505 0.011697 0.089486 

WT/DG/BATT 0.113713 0.035895 0.022407 0.049505 0.058488 0.011185 

PV/WT/BATT 0.050547 0.071786 0.074686 0.057756 0.093581 0.089484 

DG/BATT 0.037907 0.071786 0.059746 0.06603 0.070185 0.055931 

 

Step 4: By using the equation, the positive (S +) and negative (S-) ideal values are 

calculated. These values affect the order of the alternatives. Where the alternative is 

closest to the positive and far from the negative values, it is the best choice as seen in 

Table 4.10. 
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Table 4.10. calculating positive(S+ ) and negative (S- ) solutions 

S+ 0.113714 0.071787 0.074683 0.06602 0.093583 0.089486 

S- 0.037904 0.007178 0.022405 0.041257 0.011697 0.011185 

 

5-Using the two equations (3) (2), the distance between each option and the ideal 

positive solution and ideal negative solution was computed in this step. The findings 

are shown in Table 4.11. 

 

Table 4.11. The results of The distance calculation 

Alternatives S + S - 

S1 0.110143 0.088895 

S2 0.116482 0.095323 

S3 0.123057 0.095354 

S4 0.107964 0.093965 

S5 0.063713 0.142043 

S6 0.087427 0.107725 

 

6- Determining the closeness to the desired Solution 

The table below shows the values that have been calculated in the next step, which is 

a very important step for choosing the best hybrid energy source. Using Equation 5, 

the distance to the negative solution can be divided by the total distance to the negative 

and positive solutions, denoted by the symbol (Pi), where Pi is the final output of the 

ideal topics steps. Based on the values obtained from the table, the hybrid energy 

sources are arranged as shown in Table 4.12.  

 

 In the final step, the hybrid system is chosen based on the largest value of (Pi) in the 

following table, where the system that consists (PV+DG+WT+BATT) of is 

determined as the best suitable option to provide the buildings with sufficient energy. 

 

Table 4.12. Final ranking of hybrid energy sources with the use of (Pi) 

Alternatives pi 

S1 0.69034 

S2 0.44661   

S3 0.5532 

S4 0.46534 

S5 0.45007 

S6 0.43656 
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High Pi values (0.69034) indicate that the alternative is more likely to be the best 

choice. 

 

According to Table 12, the option with the highest score value is (PV-WT-BAT-DG) 

system, and the remaining options are evaluated according to how closely they 

resemble the ideal solution . for example ,(PV/DG/BAT) which has a value of 0.5532 

is the second option.  And the system (WD/DG/BAT) with a value of 0.46534 is the 

thirthd  one. It is evident from a comparison of the two techniques (Vikor and Topsis) 

that both chose the PV+WT+BAT+DG structure as the optimal choice. İts noted that 

Net present value and capital cost  has high impact in the selection procedure. By 

comparing tables and final results all standards are converted to a standardized range 

using TOPSIS vector normalization and VIKOR linear scale normalization. VIKOR 

technology offers a compromise option based on the highest level of collective benefit. 

TOPSIS always chooses the solution closer to the ideal solution than the negative one. 

The calculated results are examined using the VIKOR and approache. For every 

method, the calculations provide index values to obtain the optimum solution , in case 

, by using  the VIKOR approach, which has the shortest index value, whereas the 

TOPSIS method has the biggest index value. Finally, both methods are accurate and 

reliable, and helped us determine the best power system. In the next section, we will 

explain the results obtained from scheduling the power units to supply energy to 

buildings using the genetic algorithm. In view of the results of the second stage, the 

decision-making methods were very effective.Table 4. 13 presents the final results of 

Topsis methode. 

 

Table 4.13. Topsis final results 

Alternatives pi Energy source Ranking 

A1 0.69034 PV-WT-BAT-DG 1 

A2 0.44661 DG/BAT 6 

A3 0.5532 PV/DG/BAT 2 

A4 0.46534 WD/DG/BAT 3 

A5 0.45007 PV/WD/BAT 4 

A6 0.43656 PV/BAT 5 
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4.4. ENERGY SCHEDULING AND MANAGEMENT RESULTS 

 

The EMS is managed by the Genetic algorithm technique, which decides depending 

on the system's operating expenses. Figure 4.2 depicts the management plan that was 

established. The suggested methodology enables the operator to manage the power 

supply to the loads based on one of the three scenarios specified below. In the initial 

scenario, renewable energy is given priority for power supply; batteries and generators 

are supportive sources. In contrast, in the second scenario, energy from renewable 

sources only provides the entire building's energy needs. Furthermore, the third 

scenario supposes that the diesel generator is the only power source. All three options 

are then economically evaluated to determine the best feasible option regarding energy 

costs for Libya's residential sector. 

 

Scenario 1
WT+PN+DG+

BAT

Scenario 2
WT+PV+BAT

Scenario 3

Energy 

management 

using GA

Hour 1

Hour 2

Hour 3

Hour 48

Load

 

Figure 4.2. The energy management methodology (included three scenarios). 

 

4.4.1. Scenarios 1 

 

The following subsection analyzes only 24-hour data to give sufficient information 

into the management and scheduling of power sources. Using the genetic algorithm, a 

hybrid PV-WT-DG system was suggested for powering the needs of residential loads. 

The study utilized a typical load profile with a maximum load of 250 kW. Energy 

production systems are designed to supply peak demands effectively. Still, 

the fluctuating nature of RES and customer habits may impact the reliability and 
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sustainability of the energy supply. The load curve and energy production graphs for 

a building are shown in Figure 4.3. As can be seen, the load fluctuates during the day, 

reaching periods of highs and lows. In order to meet consumption during the peak 

hours (from 7 pm to 12 pm and from 6 am to 8 am), energy producers must increase 

their output. The operators need more production capacity when energy 

consumption exceeds the average to meet unanticipated increases. Due to a reduction 

in the use of batteries and diesel generators, energy costs will go down. The cost of 

producing energy is frequently reduced by using renewable energy. Customers can 

take advantage of lower energy costs when energy prices are lower, from 9 am to 7 

pm. 

 

In some cases, load demand is higher than the combined output power of wind and 

solar systems. Therefore, at this time, the generator and battery storage will be 

connected to the load to compensate for the lack of energy. On the opposite, there are 

hours when the output power of renewable systems is greater than the load; in this 

case, the batteries will be charged with the surplus energy. Always the generator is 

kept on standby during these times to reduce running costs and ensure the 

sustainability of power generation. The optimal combination of the sources was 

determined to make energy balance between the sources and demand Figure 4.3 shows 

the energy obtained from solar and wind sources and the diesel generator. The solar 

energy system starts producing energy at sunrise at 08:00 and continues to generate 

for several hours until evening, based on the intensity of the solar radiation, where the 

rays are concentrated and intense at 14:00. :00, from 12 pm to 3 pm, the solar panels 

can produce effectively, as the highest value of the generated energy reaches 68 

kilowatts, and this also applies to generating energy from the wind system, as energy 

can be generated throughout the day due to the availability of wind at different times, 

we note from The figure shows that the total energy provided by the generating units 

is sufficient to supply the demand with sufficient and sustainable energy. To compare 

the energy obtained from the generation units, we find that during the first three hours 

of operation (from 01:00 am to 04:00 am), the wind system efficiently supplies the 

demand without the need for a generator or the solar system, as the total generation 

reached 238 kilowatts. During these hours, the energy stored in the batteries was used 

as a backup. 
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Depending on the consumption data, the highest value was at 5:00 pm, when the loads 

were supplied with a sharing between the energy sources as follows: PV (42 kW), WT 

wind system (100 kW), diesel generator (31 kW), and energy from The storage system 

was (37 kW). On the contrary, the lowest load was measured at 4 am 86 kW, as it was 

fed only by WT and BATT. Generally, the amount of energy produced and consumed 

is always balanced, and all constraints are achieved. The main factors that determine 

how power is shared are the cost and amount of the energy source. If the amount of 

energy needed is more than what can be produced using renewable sources, the 

generator is the only choice, despite how much energy costs at that time.  

 

 Batteries are considered to be fully charged at 100% SoC, with a maximum allowed 

discharge level of 20%. When the battery energy value decreases below 20%, and the 

energy provided by renewable systems is inadequate to feed the loads, the generator 

must be operated. The illustration clearly shows that due to a lack of sufficient energy 

from the wind turbines, the generator runs from 04:00 to 07:00 in the morning to 

support the system while also charging the batteries. In this situation, the battery 

charge level exceeds 70%. Thus, the energy consumption rises between 08:00 and 

10:00 a.m., as the batteries serve as an auxiliary power source for wind and solar 

systems, providing 59 kWh. Following that, with a drop in load from 11:00 to 15:00 

due to the exit of the majority of the population from their houses, where consumption 

values range from 159 to 165 kilowatts, as renewable energy systems alone can meet 

the energy demand efficiently without using the battery or generator. 

 

 From 11:00 in the morning until 3:00 in the evening, it mainly relied on renewable 

energy only. At this time, the batteries were recharged with excess energy, as the 

energy generated from the wind turbine was 621 kilowatts, and the total energy 

generated from the solar system was 235 kilowatts. During this period, surplus 

generation is sold to the main grid to contribute to feeding critical and unexpected 

loads. The batteries are discharged from 4:00 pm until 7:00 pm until they reach less 

than 20%, then they are charged again at 20:00 for two hours. The maximum power 

from the generator was used for an hour, 21:00 to 10:00 pm (100 kW), and the support 

was obtained from the wind generator (110 kW), in addition to fully discharging the 

batteries to reduce pressure on the generator, reduce fuel consumption, and harmful 
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gas emissions. Also, it is clear from the figure that the consumption from 9:00 pm to 

11:00 pm reaches 635 kilowatts. To meet this load, the wind generator was operated 

and supported by batteries, as shown in the Figure 4.3. 

 

The generator launches between 8 and 11 p.m. to make up for the 648 kilowatts of 

extra demand while the batteries charge. At night, the BATT and WT share their power 

until they reach minimum SOC limit, to reduce the pressure on the generator to 

minimize the fuel costs. The GA provides that during the hours of 8 a.m. and 4 p.m., 

the generator is off, and schedule the power between the two sources (WT+PV) and 

the batteries, and charging the batteries to avoid load shifting or power disruptions in 

the next few hours because RESs are unstable. In addition, the battery can operate at 

lower DOD values to increase its lifespan. The batteries used in the micro grid are 

expected to have an initial state of charge (SOC) of 100%. 

 

The total cost of power at each time unit is depicted in Figure 4.4. The highest cost of 

$ 120 was recorded at 5 a.m., while the lowest cost of $ 38 was acquired at 4 a.m. This 

is caused by the current significant share of renewables and the generator. 

 

 

Figure 4.3. Generated power from each energy source (case 1). 
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Figure 4.4. The power generation cost for 24 one day (case 1). 

 

During the day, the charging and discharge of batteries affect the energy cost overall. 

In this case, the batteries are charged between 3 a.m. and 7 a.m., 11 a.m. and 3 p.m., 

and 8 p.m. and 10 p.m., so their electricity can help make energy during high demand, 

making the generator and wind system less critical. When batteries (BATT) are added 

to the system, the algorithm can share energy between the source and the load more 

cost-effectively, which means the generator does not need to run continually. In 

general, storage systems can make a balance when there is an unexpected change in 

demand. 

 

4.4.2. Scenarios 2  

 

 This scenario supposes that the household demand is entirely supplied by renewable 

energy RE sources, i.e., PV+WT, without a diesel generator. Figure 4.5 depicts the 

algorithm results for this situation. The graph displays the percentage of power 

generated by each renewable unit. WT serves as a base generator, supplying electricity 

at all times. Due to its highest power output, the solar PV system is the only additional 

supplier to WT between 11:00 and 15:00. Moreover, WT, on the other hand, is 

supplementing source at some times. The chart demonstrates that the WT generates 

energy ranging from 73kW to 148kW, with the most significant values occurring 

between 13h and 21h. The most significant notable dependency was on this unit, 

particularly during hours when no solar energy was generated. Because there was 
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enough energy, the WT unit closed down from 11 to 15 hours to extend the system's 

lifetime and reduce maintenance and operation costs. Furthermore, the maximum 

power generated by the solar system from 9 a.m. to 6 p.m. is 68 kW, which was 

collected at 2 p.m. Figure 4.6 depicts the hourly cost the other hand. Because of the 

more significant capital cost of the wind system, the higher price is (169$ daily) at 5 

p.m., while the lowest price is 59$ at 4 a.m. This cost reduction is due to a significant 

decrease in load, which was 85 kW. 

 

 

Figure 4.5. Generated power from each energy source (case 2). 

 

 

Figure 4.6. The power generation cost for 24 one day (case 2). 
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the generator electricity is illustrated in Figure 4.8. the third scenario is the most 

expensive option compared to the other scenarios with the implication of renewable 

sources. In the third scenario, the highest hourly cost is at 17:00 with 485$ and the 

lowest was 167 $at 4 am morning. 

 

 

Figure 4.7. Generated power from diesel generator (case 3). 

 

 

Figure 4.8. The power generation cost for 24 one day (case 3). 

 

This option provides excellent reliability in the continuity of energy and supplying 

loads but at a higher price than the first and second cases. Based on the results in the 

three cases, we conclude that the first case (PV+WT+DG+Bat) produces energy at the 

lowest price and is considered the best option for the consumers in terms of the hourly 

price and also in terms of the total costs of establishing the system. 
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4.5. ENERGY CLASSIFICATION AND PREDICATION RESULTS 

 

This part will explain the results of the machine learning algorithms used to predict 

the energy sources that should operate related to the hourly consumption value. In this 

last part of our study, we will present an accurate prediction of energy consumption 

using classification algorithms. First, the data were divided into two groups: 70% for 

training and 30% for testing, and the total is 720 samples. The most important step in 

building the model is to train the algorithm on the input data obtained from the genetic 

algorithm. For example, system data is entered from generation units, electrical load 

data for a month, and weather data such as solar radiation, wind speed, temperature, 

operating hours of energy sources, and the number of sources used. After the model 

understands the data classification and classifies the four energy sources used 

accordingly, it can easily classify the sources used to feed the loads and predict them 

in any other building with the same specifications and size of the generating units. 

Comparison of three machine learning algorithms used to confirm the accuracy of the 

results. Below is an explanation of the results. 

 

4.5.1. Data Analysis 

 

The dataset consists of 720 cases, seven features, one output variable, four input 

parameters, and one output variable. Hourly demand, wind power, and solar power are 

the mentioned inputs; hybrid energy source scheduling is the output. There are six 

attributes in the class type. The encoding of these items is displayed in Table 14. 

 

Table 4.14. Encoded classes 

Class Class Encoding 

WT + Batt 1 

WT +DG 2 

WT+PV+Batt 3 

PV +WT 4 

PV +WT+Batt+DG 5 

WT+Batt+DG 6 

DG 7 
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Figure 15 depicts the monthly power supply schedule based on dispatching hours using 

machine learing algorithms. After the GA algorithm determined the optimal energy 

output by selecting energy combinations in order to receive the cheapest  amount of 

power supplied by the microgrid.then the classification algorithms will predicte the 

energy sources that shoud be swieched on hourly. 
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Figure 4.9. General schematic diagram of predication uding machine learning. 

 

Figure 16 depicts how frequently energy sources are turned on over the course of a 

month using machine learning. The figure shows the best hourly mix of power supplies 

chosen using algorithms to ensure all loads are fed and there is never a power shortage. 

It is noted that the Bat-WT formula is the most widely used (160 hours) within 720 

hours. Usually, renewable energy is available in abundance in the middle of the day 

due to the high production of solar cells, and this helps to dispense with the generator 

and, at the same time, charge the batteries. In addition, wind turbines are used in most 

periods of the day and night due to the availability of wind at different times. However, 

in the night hours, the dependence is on the generator and batteries significantly to 

support the wind turbines in providing energy. From the results of the classification 

algorithm, it is clear that the operation of (WT + DG) occurs 150 hours per month, 

which is considered excessive use of the generator, which causes an increase in the 

cost of energy for the consumer. On some days and in the night period, the Bat + WT 

combination cannot feed the load efficiently, so in this case, a generator runs for 45 

hours to back up the power. As for the solar energy system's results show that it 
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operates for 330 hours during the month, at an average of 10 hours per month. This is 

an excellent and ideal use of the system, which contributed to the stability of the energy 

flow at a low price and the reduction of harmful gas emissions from the combustion 

of generator fuel. In general, the results confirmed that the classification technique 

efficiently predicted the energy sources that supply residential buildings with 

electricity. Accordingly, this model can be used in any new building with the same 

four energy sources. Also, this procedure will facilitate the construction of a small 

network that includes renewable energy sources and a generator to serve a residential 

area or commercial. 

 

 

Figure 4.10. Operating hours for each (energy source) class. 

 

5.6. ALGORITHMS PERFORMANCE EVALUATION 

 

The model's performance is evaluated and analyzed in that stage, and the results are 

compared for validity. Figures 4. 11 to 4.13 show the precision, F1-score, and recall 

measurements used to evaluate the performance of the ML techniques. According to 

the results, DT is the most efficient algorithm with 100% accuracy. The KNN 

algorithm, on the other hand, has the lowest accuracy. Figures indicate that the 

algorithms DT and RF outperform the KNN algorithm in terms of overall performance 

across all classes. It is important to remember that for an effective classifier, the recall 

must be as high as feasible, preferably one. That is only achievable if the numerator 

and denominator of the formula 20 are the same, indicating that FN is zero. The recall 

value drops as the factor FN increases as well; as a result, a reliable classifier should 

ideally achieve a precision of 1. Just when FP = 0, the precision value equal 1. The F1-

score produces similar performance indicators as the precision and recall measures, as 
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seen in Figures below. The obtained findings demonstrated that the KNN method did 

not classify efficiently.  

 

 

Figure 4.11. The evaluation measures for DT algorithm. 

 

 

Figure 4.12. The evaluation measures for KNN algorithm. 

 

 

Figure 4.13. The evaluation measures for RF algorithm. 
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RF Algorithm 

 

The algorithm first builds small, branched decision trees trained on the data 

components and then combines the different results to form the final branch, 

representing the final prediction. To achieve the best results, entropy was used as an 

indicator of the accuracy and performance of the algorithm. Overall, the results show 

that the RF was very accurate, with a rate of 98% regarding the classification of 

similarities in the data. The results of the analysis are as follows: Precision 1.00 for the 

first six classifications and 0.96 for the sixth classification. Table 4.17 shows that the 

return is 1.00 for all results, and the F1 score is 1.00 for six classifications and 0.99 for 

class number 6. The results are generally considered good, and the algorithm performs 

high. Below are the results of the second algorithm. 

 

DT Algorithm 

 

 The algorithm includes several nodes and variables before it reaches its leaves to 

predict classes. We utilized the entropy metric for speed. Because of this, the DT 

technique provides 100% accuracy, the highest accuracy of any classification 

algorithm. The accuracy, recall, and F1-score for each class that was obtained are listed 

in Table 4.16, with high measured values for most classes being around 1.00. 

 

KNN Algorithm 

 

Determining the distances between points enables the classifier to perform Accurately. 

This algorithm labels data by locating closest neighbors (k) and combining similar and 

nearby values. The length of the distance and the value of the k factor influence the 

effectiveness and precision of the algorithm's output. As depicted in the figure below, 

we must first determine the optimal value for k, which ranges from 1 to 20, to improve 

the algorithm's precision. According to the initial results, the accuracy decrease as the 

number and distance of neighbors increases. The algorithm's overall accuracy was 

90% smaller than the other algorithms (DT and RF). As shown below, the results of 

the evaluation matrices are not adequate and accurate. Table 5 displays each class's 

recall, F1 score, and accuracy measurements. The evaluation results were generally 
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imporoved , for example, Precision in class (1) differs from 0.88 to 1, recall in four 

classes (1, 2, 3, 4,5) is 1 and this is good  result, but un other classes are les than 1  for 

example class number 6 and 7  and the scores for the left three classes are (0). classes 

(1,2,3,4,5) have the highest value of F1-score with value  of (1), while all other classes 

are less 0,90 ,0.89, which very similar to recall results. 

 

Table 4.15. Testing classification report of KNN algorithm 

Class Precision     Recall F1-score    Support Accuracy   

1 1 1 1 39 90 

2 1 1 1 12  

3 1 1 1 24  

4 1 1 1 10  

5 1 1 1 26  

6 0.88 0.89 0.90 3  

7 1 0.91 0.89 20  

 

Table 4.16. Testing classification report of DT algorithm 

Class Precision     Recall F1-score    Support Accuracy   

1 1 1 1 39 100 

2 1 1 1 12  

3 1 1 1 24  

4 1 1 1 10  

5 1 1 1 26  

6 1 1 1 3  

7 1 1 1 20  

 

Table 4.17. Testing classification report of RF algorithm 

Class Precision     Recall F1-score    Support Accuracy   

1 1 1 1 40 99 

2 1 1 1 14  

3 1 1 1 26  

4 1 1 1 13  

5 1 1 1 25  

6 0.96 1 0.99 23  

7 1 0.94 0.98 17  

 

The heat map in Figure 4.14 demonstrates a relationship between inputs and outcomes. 

The map shows the correlation between parameters on a scale of 1 to -1, with 1 being 

the strongest correlation and -1 being the weakest. There is no relationship between 

the variables if the correlation coefficient is 0, presenting a low reliance between model 

inputs and expected outputs. Consumption load, temperature, speed of the wind, solar 
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radiation, wind power, and solar power are all analyzed parameters in the map. 

Correlation variables demonstrated that when both irradiance and wind speed were 

high, and obtain the maximum power from both sources of renewable energy (wind 

and photovoltaic systems). 

 

 

Figure 4.14. Heat map. 

 

 The map illustrates direct and indirect relationships between the parameters by 

showing positive and negative correlations for certain classes. For example, the map 

displays a strong connection (above 1) between solar output power and sun radiation 

and an accepted correlation (about 0.49) between temp and radiation from the sun. 

Furthermore, by reaching 0.87, the relationship between wind energy's generated 

energy and wind speed is excellent. A model will frequently be developed by 

improving the correlation between each significant feature. Every input and output 

variables include positive and negative correlation coefficients; however, the 

correlation matrix analysis shows that these connections are not always strong. 

 

 Confusion matrices were used to understand the results further and evaluate the 

performance of the algorithms, which are usually used to determine the accuracy of 

the model, as shown in Table 4.18 . The below matrices summarize the overall 

performance of the model. Where the columns represent the actual results while the 

matrix rows represent the predictions, the table shows that the correct predictions are 

in red, and the rest of the elements wrapped in black represent the real data. Through 
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the matrix, the number of correct and skewed predictions produced by the three 

classifiers can be counted. Generally, the exact model contains large values in the 

diameter and smaller values in the rest of the array elements. Successful matrices show 

that the diagonal elements are large. At the same time, the rest of the cells have a value 

of zero, which means that the model is accurate and has succeeded in reading and 

classifying all data elements with an accuracy of up to 100% in the DT algorithm and 

98% in the RF algorithm. While in the case of the KNN algorithm, the numbers in the 

diagonal and the rest of the matrix are close and greater than zero, which is evidence 

of the poor ability of the algorithm to identify data elements and classify similar ones. 

For example, the first, sixth, and seventh columns contain values greater than zero, 

which indicates that the model is inaccurate and does not recognize all classifications. 

 

Table 4.18. Confusion matrix results 

Class 3 4 6 8 10 12 14 16 

3 40 0 0 0 0 0 0 0 

4 0 14 0 0 0 0 0 0 

6 0 0 0 0 0 5 4 0 

8 0 0 0 10 0 0 7 0 

10 0 0 0 0 26 1 0 0 

12 0 0 0 0 0 4 6 2 

14 0 0 0 0 0 2 8 3 

A. The confusion matrix of k-nearest neighbors algorithm 

class 3 4 6 8 10 12 14 16 

3 40 0 0 0 0 0 0 0 

4 0 14 0 0 0 0 0 0 

6 0 0 26 0 0 0 0 0 

8 0 0 0 13 0 0 0 0 

10 0 0 0 0 25 0 0 0 

12 0 0 0 0 0 23 0 0 

14 0 0 0 0 0 0 20 0 

16 0 0 0 0 0 0 0 14 

B. The confusion matrix of random forest algorithm 

 

 

 

 

 

 

The confusion matrix of decision tree algorithm 

class 3 4 6 8 10 12 14 16 

3 40 0 0 0 0 0 0 0 

4 0 14 0 0 0 0 0 0 

6 0 0 26 0 0 0 0 0 

8 0 0 0 11 0 0 0 0 

10 0 0 0 0 24 0 0 0 

12 0 0 0 0 0 3 0 0 

14 0 0 0 0 0 0 20 0 

16 0 0 0 0 0 0 0 15 
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PART 5 

 

CONCLUSION AND FUTURE RESEARCH 

 

5.1. CONCLUSION 

 

Energy production and management are essential challenges for all countries. As a 

source of energy, renewable energy sources are increasingly utilized. In such 

situations, microgrids that operate as completely operational power systems in several 

places are becoming an attractive option. To successfully implement a microgrid 

design, it is necessary to accurately forecast the power consumption of large consumer 

populations, such as residential ones. The aim of this study sought to develop a 

standard predicting model for switching on and off power sources. The goal of this 

study is to come up with the best microgrid design for the specified location. This 

design should ensure that power is always available at the lowest cost by using the best 

energy management system. The suggested best design for the microgrid is examined 

and evaluated at different comparisons, considering all possible scenarios and 

conditions. The proposed system comprises a photovoltaic system, a diesel generator, 

a wind system, a battery, and a power converter. This is the best combination of power 

sources to meet the energy needs of a residential building at the lowest cost over the 

next 25 years, with 62% of the energy derived from renewable sources. This helps 

make green and clean energy and reduces greenhouse gas emissions. To get the 

maximum benefit out of the microgrid, its size and how well it works are of the highest 

priority. Because of this, the suggested microgrid is designed, simulated, and 

optimized with the HOMER software. After carefully examining the economy, energy 

demand, and weather forecasts, the best mix of energy sources has been chosen to 

provide continuous energy at the lowest cost. In the end, a 70-kW PV power source, a 

100-kW diesel engine, a 150-kW wind system, and a 0-250-kWh energy storage unit 

were the best for the selected load profile.  
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This thesis' second section explains how the genetic algorithm estimates energy 

consumption and identifies the best power source to meet demand. By offering 

predictive models for energy supply and demand, this strategy enables end users to 

connect with the market for intelligent electricity systems and renewable energy 

sources. This study was focused on a standalone system with flexible components 

(such as demand loads, renewable energy generation, an energy backup system, and a 

diesel generator). The study focused on the power management procedure used in that 

microgrid. In the first stage, a rule-based system was created to choose the proper use 

of energy sources based on predictions for renewable resources. Considerations 

include decreasing operating costs, increasing reliance on clean energy sources, and 

exchanging power with diesel generation. 

 

Compared to single-source energy systems, hybrid power systems are more reliable 

and have lower production costs. We performed a techno-economic analysis to 

evaluate the hybrid system, in which the electric power is generated either by diesel 

engines or by renewable sources. In these situations, the cost of diesel fuel makes 

diesel-only generating uncompetitive with hybrid diesel/photovoltaic/wind 

generation. As well, the system that enables them to be turned off during the day and 

has energy storage offers the lowest energy cost. 

 

The results of scheduling different energy sources show how effectively the algorithm 

manages the energy available in the small grid to feed the loads efficiently. It is 

possible to build on these results and design a model to predict the energy consumption 

and the energy sources required to operate. In order to predict the sources that must be 

switched on for a month, essential factors were introduced to determine the sufficient 

source, such as the value of the load per hour, the energy generated for each source, 

and weather information. Using machine learning algorithms such as Decision Tree 

(DT), K-Nearest Neighbors (KNN), and Random Forest (RF), the feeding sources 

were classified for a month, and then the three models were compared to select the 

optimal model. After evaluating the results, it was discovered that the DT method was 

the best in accuracy and efficiency, while the performance of the KNN algorithm was 

insufficient. Moreover, the results showed that the RF and DT algorithms are accurate 

and robust, and this is through the results of the evaluation matrices and the 
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measurement equations used for that. To obtain the best model, the parameters of the 

algorithms were optimized for accuracy, which resulted in enhanced system reliability 

and reduced training time. 

 

 In general, the proposed models obtained different percentages. The DT algorithm 

obtained the best accuracy (100%), followed by the RF algorithm (98%), while the 

KNN method gave the least accuracy (28%). Moreover, the results of accuracy and 

recall, the DT algorithm works better than the rest. Finally, the results show the 

classifier's success in predicting energy sources for 720 hours. This research allows 

the optimal use of hybrid systems and benefits in developing an accurate prediction 

model; Thus, the operator can determine the time of use to achieve the best results in 

terms of reducing costs and continuity of energy flow. Moreover, unlike complex and 

difficult algorithms, the classification methods are simple and easy to use and 

implement. 

 

5.2. FUTURE WORK  

 

In the future, comparing grid-connected and off-grid plans for different places will be 

conducted. Also, hybrid systems that include other renewable resources like biomass, 

wind, and geothermal could be used to determine the best source. 

 

The effect of building design and orientation and increasing loads on energy 

consumption will be studied. In addition, the effect of consumer consumpation 

behavior and electric devices effecincy  on increasing demand will be analyzed. 

 

Secondly, one of the most important factors that increase the demand for cooling and 

heating in the building is the materials and insulators that are used. Therefore, it is 

important to study the effect of using thermal insulators to reduce energy consumption 

in the building. 

 

The majority of studies cited in the literature depend on conventional load and climate 

profiles. Frequently, these profiles are simulated artificially and may not reflect actual 

conditions. Due to the high costs of housing, building homes in Libya is restricted by 
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installation area limits. As a result, using case study analysis, the possibility of a HES 

system for residential buildings is investigated. Using profiles from weather regions, 

we try to overcome the lack of hourly load-profile data for the Tripoli region in this 

study. In addition, we suggest an approach for optimizing and analyzing the multiple 

objectives of a solar–wind–diesel generator HES system by taking into account the 

various economic factors. This study suggests an overall structure for the multi-

objective optimization of the NPC, Total capital cost (TCC), cost of energy (COE), 

and total CO2 emission objectives for a 20-year project lifecycle. 

 

A fitness evaluation technique with a balancing decision strategy is presented for 

optimal system design to increase energy savings from the HES system whereas 

maintaining CO2 emissions below the "No-hybrid system" level. Utilizing the 

suggested balanced strategy to select an unbalanced HES configuration, residential 

building users can find sustainable energy in rural areas, according to the results of the 

case study. The case study demonstrates that wind generation is important for 

minimizing total CO2 emissions and decreasing reliance on diesel generators, despite 

a limited installation area. However, individual electricity users cannot use wind 

turbines without government support due to the higher NPC costs. The case study also 

demonstrates that a HES system comprised of a PV - WT-DG system and small-

size battery storage provides the optimal equilibrium between economics and 

environmental issues. 

 

Finally, to build a accurate prediction model , comparison must be made with several 

algorithms, in addition to use a large number of data, up to a one year of electrical 

loads, to reach accurate results. 



110 

 

 

 

REFERENCES 

 

1.  Souza Silva, J. L., Costa, T. S., de Melo, K. B., Sakô, E. Y., Moreira, H. S., & 

Villalva, M. G. "A comparative performance of PV power simulation software 

with an installed PV plant," in 2020 IEEE international conference on industrial 

technology (ICIT), pp. 531-535:IEEE ,2020. 

2.  Bernal-Agustín, J. L., & Dufo-Lopez, R, "Simulation and  optimization of stand-

alone hybrid renewable energy systems," Renewable and sustainable energy 

reviews, 13(8), 2111 (2118). 

3.  Nema, P., Nema, R. K., & Rangnekar, S,"A current and future state of art 

development of hybrid energy system using wind and PV-solar: A review," 

Renewable and sustainable energy reviews, 13(8), 2096 (2103). 

4.  Tamrakar, S. Gupta, and Y. Sawle. "Study of characteristics of single and double 

diode electrical equivalent circuit models of solar PV module," in 2015 

International Conference on Energy Systems and Applications, pp. 312-317: 

IEEE, 2015. 

5.  Dufo-Lopez, R., & Bernal-Agustín, J. L, "Multi-objective design of PV–wind–

diesel–hydrogen–battery systems," Renewable energy, 33(12), 2559-2572 

(2008). 

6.  Shyu, C. W, "Ensuring access to electricity and minimum basic electricity needs 

as a goal for the post-MDG development agenda after 2015," Energy for 

sustainable development: 29-38  19 (2014). 

7.  Valer, L. R., Mocelin, A., Zilles, R., Moura, E., & Nascimento, A. C. S, 

"Assessment of socioeconomic impacts of access to electricity in Brazilian 

Amazon: case study in two communities in Mamirauá Reserve," Energy for 

sustainable development, 20, 58-65  (2014). 

8.  Woldeyohannes, A. D., Woldemichael, D. E., & Baheta, A. T, "Sustainable 

renewable energy resources utilization in rural areas," Renewable and 

Sustainable Energy Reviews, 66, 1-9 ( 2016). 

9.  Gómez, M. F., & Silveira, S, "Rural electrification of the Brazilian Amazon–

Achievements and lessons," Energy policy, 38(10), 6251-6260 (2010). 

10.  Lee, D., & Cheng, C. C,"Energy savings by energy    management systems: A 

review," Renewable and Sustainable Energy Reviews, 56, 760-777  (2016). 

11.  Moreno Rocha, C. M., Fernandez Perez, D., Rodriguez Retamoza, J., Silva 

Ortega, J., Brieva Bohorquez, D., & Taborda Catalan, L, "Evaluation, Hierarchy 



111 

 

and Selection of the best Source   of Energy by using AHP, as a Proposed Solution 

to an Energy and Socio-economic Problem, in the case of Colombia’s Pacific 

Zone," International Journal of Energy Economics and Policy, 12(5), 409-419 

(2022). 

12.  Wei, M., Patadia, S., & Kammen, D. M, "Putting renewables and energy 

efficiency to work: How many jobs can the clean energy industry generate in the   

US?," Energy policy, 38(2), 919-931 ( 2010). 

13.  Ghalehkhondabi, I., Ardjmand, E., Weckman, G. R., & Young, W.An overview 

of energy demand forecasting methods published in 2005–2015," Energy 

Systems, 8, 411-447,(2017). 

14.  HassanzadehFard, H., Tooryan, F., Collins, E. R., Jin, S., &Ramezani, B, "Design 

and optimum energy management of a hybrid renewable energy system based on 

efficient various hydrogen production," International Journal of Hydrogen 

Energy, 45(55), 30113-30128 (2020).  

15. Kiptoo, M. K., Adewuyi, O. B., Lotfy, M. E., Ibrahimi, A. M., & Senjyu, 

T."Harnessing demand-side management benefit towards achieving a 100%  

renewable energy microgrid," Reports. 6, pp. 680-685, 2020.     

16.  Ogunmodede, O., Anderson, K., Cutler, D., & Newman, A ,"Optimizing  design 

and dispatch of a renewable energy system,"Energy . 287. 116527 (2021).  

17.  D. Groppi, A. Pfeifer, D. A. Garcia, G. Krajačić, N. J. R. Duić, and S. E.  Reviews,  

"A review on energy storage and demand side management solutions   in smart  

energy islands," Applied Energy, 287, 116527(2021). 

18. Cheng, L., Wang, W., Wei, S., Lin, H., & Jia, Z, "An improved energy  

management strategy for hybrid energy storage system in light rail vehicles," 

Energies, 11(2), 423  (2018). 

19. Olatomiwa, L., Mekhilef, S., Ismail, M. S., & Moghavvemi, M ,"Energy 

management strategies in hybrid renewable energy systems:  A review," 

Renewable and Sustainable Energy Reviews, 62, 821-835  (2016). 

20.  Bizon, N., Oproescu, M., & Raceanu, M,  " Efficient energy control strategies for 

a standalone renewable/fuel cell hybrid power source," Energy Conversion and 

Management, 90, 93-110  (2018). 

21. Al Busaidi, A. S., Kazem, H. A., Al-Badi, A. H., & Khan, M. F,   "A review of 

optimum sizing of hybrid PV–Wind renewable energy systems in  oman," 

Renewable and sustainable energy reviews, 53, 185-193 (2016). 

22.  Khare, V., Nema, S., & Baredar, P,"Solar–wind hybrid   renewable energy system: 

A review," Renewable and Sustainable Energy Reviews, 58, 23-33  (2016). 

23. Ismail, M. S., Moghavvemi, M., & Mahlia, T. M. I, "Design of an   optimized 

photovoltaic and microturbine hybrid power system for a remote small  



112 

 

community: Case study of Palestine," Energy conversion and management, 75, 

271-281 ( 2013). 

24.  Dursun, E., & Kilic, O, "Comparative evaluation of  different power management 

strategies of a stand-alone PV/Wind/PEMFC hybrid   power system," 

International Journal of Electrical Power & Energy Systems, 34(1), 81-8981-

89 (2012) . 

25.  Nfah, E. M., & Ngundam, J. M, "Modelling of wind/Diesel/battery  hybrid power 

systems for far North Cameroon," Energy Conversion and Management, 49(6), 

1295-1301 (2008). 

26. Bhakta, S., Mukherjee, V., & Shaw, B,"Techno-economic   analysis and 

performance assessment of standalone photovoltaic/wind/hybrid power system in 

Lakshadweep islands of India," Journal of Renewable and Sustainable Energy, 

7(6) (2015). 

27.  Sen, R., & Bhattacharyya, S. C, "Off-grid electricity generation with  renewable 

energy technologies in India: An application of HOMER," Renewable energy, 62, 

388-398  (2014). 

28.  Lau, K. Y., & Tan, C. W,"Performance analysis of  photovoltaic, hydrokinetic, 

and hybrid diesel systems for rural electrification in  Malaysian Borneo," 

Environment, Development and Sustainability, 23, 6279-6300 (2021). 

29. Olatomiwa, L., Mekhilef, S., Huda, A. S. N., & Ohunakin, O. S, 

"Economicevaluation of hybrid energy systems for rural electrification in six geo-

political   zones  of Nigeria," Renewable Energy, 83, 435-446  (2015). 

30.  N andi, S. K., & Ghosh, H. R, "Prospect of wind–PV-battery hybrid power    

system as an alternative to grid extension in Bangladesh," Energy, 35(7), 3040-

3047 (2010). 

31.  Bahmani-Firouzi, B., & Azizipanah-Abarghooee, R.,   "Optimal sizing of battery 

energy storage for micro-grid operation management using a new improved bat 

algorithm," Journal of Electrical Power & Energy Systems, 56, 42-54 (2014). 

32. Kumar, R., Gupta, R. A., & Bansal, A. K., "Economic analysis   and power 

management of a stand-alone wind/photovoltaic hybrid energy system   using 

biogeography based optimization algorithm," Swarm and Evolutionary 

Computation, 8, 33-43(2013). 

33.  Arabali, A., Ghofrani, M., Etezadi-Amoli, M., Fadali, M. S., & Baghzouz, Y, 

"Genetic-algorithm-based optimization approach for energy   management," 

IEEE Transactions on Power Delivery, 28(1), 162-170( 2012). 

34.  Crossland, A. F., Jones, D., & Wade, N. S, "Planning the   location and rating of 

distributed energy storage in LV networks using a genetic   algorithm with 

simulated annealing," Journal of Electrical Power & Energy Systems, 59, 103-

110(2014). 



113 

 

35.  Dufo-López, R., Fernández-Jiménez, L. A., Ramírez-Rosado, I. J., Artal-Sevil, J. 

S., Domínguez-Navarro, J. A., & Bernal-Agustín, J. L ,"Daily operation 

optimisation of hybrid stand-alone system  by model predictive control 

considering ageing model," Energy conversion and management, 134, 167-177 

(2017). 

36. Gómez-Lorente, D., Triguero, I., Gil, C., & Estrella, A. E ,"Evolutionary 

algorithms for the design of grid-connected PV-systems," Expert Systems with 

Applications, 39(9), 8086-8094 (2012). 

37.  Phrakonkham, S., Remy, G., Diallo, D., & Marchand, C, "Pico vs Micro   hydro 

based optimized sizing of a centralized AC coupled hybrid source for  villages in 

Laos," Energy Procedia, 14, 1087-1092(2012) . 

38.  Kennedy, N., Miao, C., Wu, Q., Wang, Y., Ji, J., & Roskilly, T, "Optimal   hybrid 

power system using renewables and hydrogen for an isolated island in the   UK," 

Energy Procedia, 105, 1388-1393 (2017). 

39.  Borni, Abdelkrim , Zaghba,  Bouchakour,  Lakhdari,  & Zarour .    "Fuzzy logic, 

PSO based fuzzy logic algorithm and current controls comparative     for grid-

connected hybrid system," in AIP conference proceedings, vol.   1814, no. 1, p. 

020006:  ,2017. 

40.  Chong, L. W., Wong, Y. W., Rajkumar, R. K., & Isa, D, "An optimal  control 

strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy 

Storage System," Journal of Power Sources, 331, 553-565(2016). 

41. Berrazouane, S., & Mohammedi, K, "Parameter  optimization via cuckoo 

optimization algorithm of fuzzy controller for energy  management of a hybrid 

power system," Energy conversion and management, 78, 652-660 (2014). 

42. T iar, M., Betka, A., Drid, S., Abdeddaim, S., Becherif, M., & Tabandjat, A, 

"Optimal energy control of a PV-fuel cell hybrid system," International Journal 

of Hydrogen Energy, 42(2), 1456-1465 (2017). 

43.  Dong, W., Yang, Q., Fang, X., & Ruan, W, "Adaptive optimal fuzzy  logic based 

energy management in multi-energy microgrid considering operational  

uncertainties," Applied Soft Computing, 98, 106882 (2021). 

44. Sharafi, M., & ELMekkawy, T. Y, "Multi-objective optimal design of hybrid 

renewable energy systems using PSO-simulation based approach," Renewable 

energy, 68, 67-79 (2014). 

45. Yu, L., Chen, M., Yu, D. C., Zhang, L., Yang, F., & Zhai, J,"A novel information 

exchange particle swarm optimization for   microgrid multi-objective dynamic 

optimization control," Journal of Renewable and Sustainable Energy, 6(2) 

(2014). 

46. Wu, H., Liu, X., & Ding, M., "Dynamic economic dispatch of a microgrid: 

Mathematical models and solution algorithm," International Journal of 

Electrical Power & Energy Systems, 63, 336-346 ( 2014). 



114 

 

47.  Elbaz, A., & Guneser, M. T, "Multi-objective   optimization method for proper 

configuration of grid-connected PV-wind hybrid system in terms of ecological 

effects, outlay, and reliability," Journal of Electrical Engineering & Technology, 

16, 771-782 (2021). 

48.  Guneser, M. T, "Algorithms to model and optimize a stand-alone  photovoltaic-

diesel-battery system: an application in rural Libya," Tehnički vjesnik, 28(2), 523-

529 (2021). 

49. Guneser, M. Tahir, Mohamed Elweddad, and Cevat Ozarpa. "An energy 

management approach for solar charge stations in smart cities," Academic 

Perspective Procedia, 3(1), 410-417, 2020.  

50.  Rezaei, N., Ahmadi, A., Khazali, A. H., & Guerrero, J. M, "Energy and frequency 

hierarchical management system using information gap decision. theory for 

islanded microgrids," IEEE Transactions on Industrial Electronics, 65(10), 

7921-7932 (2018). 

51. Dufo-Lopez, R., Bernal-Agustín, J. L., & Contreras, J, "Optimization of  control 

strategies for stand-alone renewable energy systems with hydrogen   storage," 

Renewable energy, 32(7), 1102-1126 (2007). 

52.   Merabet, A., Ahmed, K. T., Ibrahim, H., Beguenane, R., & Ghias, A. M., "Energy 

management and control system for laboratory scale microgrid  based wind-PV-

battery," IEEE transactions on sustainable energy, 8(1), 145-154 (2016).  

53.   Wang, X., Ji, Y., Wang, J., Wang, Y., & Qi, L, "Optimal energy  management of 

microgrid based on multi-parameter dynamic programming," International 

Journal of Distributed Sensor Networks, 16(6), 1550147720937 (2020). 

54. Shekari, T., Gholami, A., & Aminifar, F, "Optimal  energy management in multi-

carrier microgrids: an MILP approach," Journal of Modern Power Systems and 

Clean Energy, 7(4), 876-886(2019). 

55. Helal, Najee,  Hanna,  Shaaban,  Osman, and  Hassan.   "An energy management 

system for hybrid microgrids in remote communities," In 2017 IEEE 30th 

Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 

1-4), 2017. 

 56.  Bozchalui, M. C., Hashmi, S. A., Hassen, H., Canizares, C. A., & Bhattacharya, 

K, "Optimal operation of residential energy hubs in smart grids," IEEE 

Transactions on smart grid, 3(4), 1755-1766 (2012).  

 57.  Hernández-Hernández, C., Rodríguez, F., Moreno, J. C., da Costa Mendes, P. R., 

& Normey-Rico, J. E, "The use of Model Predictive Control (MPC) in the optimal 

distribution of electrical energy in a microgrid located in southeastern of Spain: A 

case study simulation," Renewable Energy and Power Quality Journal, 1, 221-

226 (2017). 

58. Rana, M., & Koprinska, I, "Forecasting electricity load with advanced wavelet 

neural networks," Neurocomputing, 182, 118-132 (2016). 



115 

 

59.  Friedrich, L., & Afshari, A, "Short-term forecasting of the Abu Dhabi electricity 

load using multiple weather variables," Energy Procedia, 75, 3014-3026 (2015). 

60   Amara, F., Agbossou, K., Cardenas, A., Dubé, Y., & Kelouwani, S, "Comparison 

and simulation of building thermal models for effective energy management," 

Smart Grid and renewable energy, 6(04), 95 (2015). 

61. Bourdeau, M., qiang Zhai, X., Nefzaoui, E., Guo, X., & Chatellier, P, "Modeling 

and forecasting building energy consumption: A review of data-driven 

techniques," Sustainable Cities and Society, 48, 101533(2019). 

62. El-Baz, W., & Tzscheutschler, P, "Short-term smart learning electrical load 

prediction algorithm for home energy management systems," Applied Energy, 

147, 10-19 (2015). 

63. Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F, "Fuzzy 

logic-based energy management system design for residential grid-connected 

microgrids," IEEE Transactions on Smart Grid, 9(2), 530-543 (2016). 

64. Mocanu, E., Nguyen, P. H., Kling, W. L., & Gibescu, M, "Unsupervised energy 

prediction in a Smart Grid context using reinforcement cross-building transfer 

learning," Energy and Buildings, 116, 646-655 (2016). 

65. Ekonomou, L, "Greek long-term energy consumption prediction using artificial 

neural networks," Energy, 35(2), 512-517 (2010). 

66. Yang, Y., Bremner, S., Menictas, C., & Kay, M, "Battery energy storage system 

size determination in renewable energy systems: A review," Renewable and 

Sustainable Energy Reviews, 91, 109-125 (2018). 

67. Li, X., Wen, J., & Bai, E. W, "Developing a whole building cooling energy 

forecasting model for on-line operation optimization using proactive system 

identification," Applied Energy, 164, 69-88 (2016). 

68. Zhao, Y., Zhang, C., Zhang, Y., Wang, Z., & Li, J, "A review of data mining 

technologies in building energy systems: Load prediction, pattern identification, 

fault detection and diagnosis," Energy and Built Environment, 1(2), 149-164 

(2020). 

69. Kaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F, "Forecasting electricity 

consumption: A comparison of regression analysis, neural networks and least 

squares support vector machines," International Journal of Electrical Power & 

Energy Systems, 67, 431-43 (2015). 

70. Runge, J., & Zmeureanu, R., "Forecasting energy use in buildings using artificial 

neural networks: A review," Energies, 12(17), 3254 (2019). 

71. Pombeiro, H., Santos, R., Carreira, P., Silva, C., & Sousa, J. M, "Comparative 

assessment of low-complexity models to predict electricity consumption in an 

institutional building: Linear regression vs. fuzzy modeling vs. neural networks", 

Energy and Buildings, 146, 141-151 (2017). 



116 

 

72.  Paudel, S., Elmitri, M., Couturier, S., Nguyen, P. H., Kamphuis, R., Lacarrière, 

B., & Le Corre, O, "A relevant data selection method for energy consumption 

prediction of low energy building based on support vector machine", Energy and 

Buildings, 138, 240-256 ( 2017). 

73. Khosravani, H. R., Castilla, M. D. M., Berenguel, M., Ruano, A. E., & Ferreira, P. 

M ,"A Comparison of Energy Consumption Prediction Models Based on Neural 

Networks of a Bioclimatic Building", Energies, 9(1), 57 ( 2016).  

74. D’Oca, S., Hong, T., & Langevin, J, "The human dimensions of energy use in 

buildings: A review," Renewable and Sustainable Energy Reviews, 81, 731-742 

(2018). 

75. Sharma, S., Xu, Y., Verma, A., & Panigrahi, B. K., "Time-coordinated multienergy 

management of smart buildings under uncertainties," IEEE Transactions on 

Industrial Informatics, 15(8), 4788-4798 (2019). 

76. Tsanas, A., & Xifara, A, "Accurate quantitative estimation of energy performance 

of residential buildings using statistical machine learning tools," Energy and 

buildings, 49, 560-567 (2012). 

77. Ashouri, M., Fung, B. C., Haghighat, F., & Yoshino, H, "Systematic approach to 

provide building occupants with feedback to reduce energy consumption," 

Energy, 194, 116813 (2020). 

78. Smarra, F., Di Girolamo, G. D., De Iuliis, V., Jain, A., Mangharam, R., & 

D’Innocenzo, A, "Data-driven switching modeling for mpc using regression trees 

and random forests," Nonlinear Analysis: Hybrid Systems, 36, 100882 (2020). 

79. Pham, A. D., Ngo, N. T., Truong, T. T. H., Huynh, N. T., & Truong, N. S, 

"Predicting energy consumption in multiple buildings using machine learning for 

improving energy efficiency and sustainability," Journal of Cleaner Production, 

260, 121082 (2020). 

80. Bagnasco, A., Fresi, F., Saviozzi, M., Silvestro, F., & Vinci, A, "Electrical 

consumption forecasting in hospital facilities: An application case," Energy and 

Buildings, 103, 261-270 (2015). 

81. Dong, B., Li, Z., Rahman, S. M., & Vega, R ,"A hybrid model approach for 

forecasting future residential electricity consumption," Energy and Buildings, 

117, 341-351 (2016). 

82. Runge, J., & Zmeureanu, R., "Forecasting energy use in buildings using artificial 

neural networks: A review," Energies, 12(17), 3254 (2019). 

83. Neto, A. H., & Fiorelli, F. A. S, "Comparison between detailed model simulation 

and artificial neural network for forecasting building energy consumption," 

Energy and buildings, 40(12), 2169-2176 (2008). 



117 

 

84. Rahman, A., Srikumar, V., & Smith, A. D, "Predicting electricity consumption for 

commercial and residential buildings using deep recurrent neural networks," 

Applied energy, 212, 372-385 (2018). 

85. Yu, Z., Haghighat, F., Fung, B. C., & Yoshino, H,"A decision tree method for 

building energy demand modeling," Energy and Buildings, 42(10), 1637-1646 

(2010). 

86. Ahmad, T., Chen, H., Huang, R., Yabin, G., Wang, J., Shair, J., & Kazim, M, 

"Supervised based machine learning models for short, medium and long-term 

energy prediction in distinct building environment," Energy, 158, 17-32 (2018). 

87. Fan, C., Sun, Y., Zhao, Y., Song, M , & Wang, J, "Deep learning-based feature 

engineering methods for improved building energy prediction," Applied energy, 

240, 35-45. (2019).  

88. Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H, "Review on multi-criteria 

decision analysis aid in sustainable energy decision-making," Renewable and 

sustainable energy reviews, 13(9), 2263-2278. (2009).  

89. Pohekar, S. D., & Ramachandran, M, "Application of multi-criteria decision 

making to sustainable energy planning—A review." Renewable and sustainable 

energy reviews, 8(4), 365-381 (2004).  

90. Ervural, B. C., Evren, R., & Delen, D, "A multi-objective decision-making 

approach for sustainable energy investment planning," Renewable energy, 126, 

387-402 (2018). 

91. Dos Santos, P. H., Neves, S. M., Sant’Anna, D. O., De Oliveira, C. H., & Carvalho, 

H. D, "The analytic hierarchy process supporting decision making for sustainable 

development: An overview of applications," Journal of cleaner production, 212, 

119-138 (2019). 

92. Sitorus, F., Cilliers, J. J., & Brito-Parada, P. R, "Multi-criteria decision making for 

the choice problem in mining and mineral processing: Applications and trends," 

Expert systems with applications, 121, 393-417 (2019).  

93. Wu, Y., Xu, C., & Zhang, T, "Evaluation of renewable power sources using a fuzzy 

MCDM based on cumulative prospect theory: A case in China," Energy, 147, 

1227-1239 (2018). 

94. Büyüközkan, G., & Güleryüz, S, "Evaluation of Renewable Energy Resources in 

Turkey using an integrated MCDM approach with linguistic interval fuzzy 

preference relations," Energy, 123, 149-163 (2017). 

95. Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H, "Review on multi-criteria 

decision analysis aid in sustainable energy decision-making," Renewable and 

sustainable energy reviews, 13(9), 2263-2278 (2009). 

96. Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C, "A 

review of multi criteria decision making (MCDM) towards sustainable renewable 



118 

 

energy development," Renewable and Sustainable Energy Reviews, 69, 596-609 

(2017). 

97.  Kosenius, A. K., & Ollikainen, M, "Valuation of environmental and societal 

trade-offs of renewable energy sources," Energy Policy, 62, 1148-1156 (2013). 

98.  Oberschmidt, J., Geldermann, J., Ludwig, J., & Schmehl, M, "Modified 

PROMETHEE approach for assessing energy technologies," international 

Journal of energy sector management, 4(2), 183-212 (2010). 

99.  Bhandari, R., Arce, B. E., Sessa, V., & Adamou, R, "Sustainability assessment 

of electricity generation in Niger using a weighted multi-criteria decision 

approach," Sustainability, 13(1), 385 (2021). 

100.  Afgan, N. H., & Carvalho, M. G, "Multi-criteria assessment of new and 

renewable energy power plants," Energy, 27(8), 739-755 (2002). 

101.  Becchio, C., Bottero, M. C., Corgnati, S. P., & Dell’Anna, F, "Decision making 

for sustainable urban energy planning: An integrated evaluation framework of 

alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land use 

policy, 78, 803-817 (2018). 

102. Kaya, T., & Kahraman, C, "Multicriteria decision making in energy planning 

using a modified fuzzy TOPSIS methodology," Expert Systems with 

Applications 38(6), 6577-6585. (2011). 

103. Ullah, Z., Elkadeem, M. R., Kotb, K. M., Taha, I. B., & Wang, S, "Multi-criteria 

decision-making model for optimal planning of on/off grid hybrid solar, wind, 

hydro, biomass clean electricity supply," Renewable Energy 179, 885-910 

(2021). 

104. Kotb, K. M., Elkadeem, M. R., Khalil, A., Imam, S. M., Hamada, M. A., Sharshir, 

S. W., & Dán, A, "A fuzzy decision-making model for optimal design of solar, 

wind, diesel-based RO desalination integrating flow-battery and pumped-hydro 

storage: Case study in Baltim, Egypt," Energy Conversion and Management 

235, 113962 (2021). 

105. Rani, P., Mishra, A. R., Mardani, A., Cavallaro, F., Alrasheedi, M., & Alrashidi, 

A , "A novel approach to extended fuzzy TOPSIS based on new divergence 

measures for renewable energy sources selection," Journal of Cleaner 

Production, 257, 120352 (2020). 

106. Antunes, C. H., Martins, A. G., & Springer, "Multi-objective optimization and 

multi-criteria decision analysis in the energy sector (part II–MCDA)," Multiple 

Criteria Decision Analysis, 1067-1165 (2014). 

107. Meng, L., Sanseverino, E. R., Luna, A., Dragicevic, T., Vasquez, J. C., & 

Guerrero, J. M, "Microgrid supervisory controllers and energy management 

systems: A literature review," Renewable and Sustainable Energy Reviews, 60, 

1263-1273 (2016). 



119 

 

108. Shuai, Z., Sun, Y., Shen, Z. J., Tian, W., Tu, C., Li, Y., & Yin, X, "Microgrid 

stability: Classification and a review," Renewable and Sustainable Energy 

Reviews, 58, 167-179 (2016). 

109. Nejabatkhah, F., Li, Y. W., Nassif, A. B., & Kang, T, "Optimal design and 

operation of a remote hybrid microgrid," CPSS Transactions on Power 

Electronics and Applications, 3(1), 3-13(2018). 

110. Zia, M. F., Elbouchikhi, E., & Benbouzid, M., "Microgrids energy management 

systems: A critical review on methods, solutions, and prospects," Applied energy, 

222, 1033-1055 (2018). 

111. Izquierdo-Monge, O., Peña-Carro, P., Villafafila-Robles, R., Duque-Perez, O., 

Zorita-Lamadrid, A., & Hernandez-Callejo, L, "Different aspects of microgrid 

management: A comprehensive review," Applied Sciences, 11(11), 5012 (2020). 

112. Restrepo, D., Restrepo-Cuestas, B., & Trejos, A, "Microgrid analysis using 

HOMER: a case study," Dyna, 85(207), 129-134 (2018).  

113. Cepeda, J. C. O., Khalatbarisoltani, A., Boulon, L., Pinto, G. A. O., Gualdron, C. 

A. D., & Martinez, J. E. S,"Design of an incentive-based demand side 

management strategy for stand-alone microgrids planning," International 

Journal of Sustainable Energy Planning and Management, 28, 107-120 

(2020). 

114. Hossain, M. A., Pota, H. R., Squartini, S., Zaman, F., & Muttaqi, K. M, "Energy 

management of community microgrids considering degradation cost of battery," 

Journal of Energy Storage, 22, 257-269 (2019). 

115. de Souza Silva, J. L., Costa, T. S., de Melo, K. B., Sakô, E. Y., Moreira, H. S., & 

Villalva, M. G. "A comparative performance of PV power simulation software 

with an installed PV plant," in 2020 IEEE international conference on 

industrial technology (ICIT), IEEE ,pp. 531-535, 2020. 

116. Elweddad, M., Güneşer, M., & Yusupov, Z, "Designing an energy management 

system for household consumptions with an off-grid hybrid power system," 

AIMS Energy, 10(4) (2022). 

117. Elweddad, M., Guneser, M. T., & Yusupov, Z. "Energy management techniques 

in off grid energy systems: A review," in The Proceedings of the International 

Conference on Smart City Applications , pp. 281-292: Springer, 2021. 

118. Zahraoui, Y., Alhamrouni, I., Mekhilef, S., Basir Khan, M. R., 

Seyedmahmoudian, M., Stojcevski, A., & Horan, B, "Energy management 

system in microgrids: A comprehensive review," Sustainability, 13(19), 10492 

(2021). 

119. Monesha, S. G. K. S., Kumar, S. G., & Rivera, M , "Methodologies of energy 

management and control in microgrid," IEEE Latin America Transactions, 

16(9), 2345-2353 (2018). 



120 

 

120. Nassar, Y., El-Khozondar, H. J., Ghaboun, G., Khaleel, M., Yusupov, Z., Ahmed, 

A. A., & Alsharif, A, "Solar and Wind Atlas for Libya," International Journal 

of Electrical Engineering and Sustainability (IJEES), 27-34 (2023). 

121. Elweddad, M. A., & GUNESER, M. T, "Intelligent Energy Management and 

Prediction of Micro Grid Operation Based on Machine Learning Algorithms and 

genetic algorithm," International Journal of Renewable Energy Research 

(IJRER), 12(4), 2002-2014 (2022). 

 

  



121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A. 

 

 PUBLICATIONS 

  



122 

 

 

 

 

 

 

 

 

 

 



123 

 

INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH M. 

 

Elweddad and M. T. Güneşer, Vol.12, No.4, December 2022 

 

Intelligent Energy Management and Prediction of Micro Grid Operation Based 

On Machine Learning Algorithms and Genetic Algorithm 

 

Mohamed Elweddad*, Muhammet Tahir Güneşer**, 

* Department of Electrical and Electronic Engineering, Karabuk University, 

Karabuk, Turkey 

** Department of Electrical and Electronic Engineering, Karabuk University, 

Karabuk, Turkey 

(mohmeeedmali@gmail.com, mtguneser@karabuk.edu.tr,) 

‡ Corresponding Author; Mohamed Elweddad, Karabuk, Turkey, Tel: 

+905467199910, 

Fax: 0 (370) 418 7085 / 7085, mohmeeedmali@gmail.com 

Received: 09.09.2022 Accepted: 27.10.2022 

 

Abstract- Micro grid energy management has become critically important due to 

inefficient power use in the residential sector. High energy consumption necessitates 

developing a strategy to manage the power flow efficiently. For this purpose, this work 

has been divided into two phases: The first is the "ON/OFF" operation, which has been 

executed using a genetic algorithm for the hybrid system, including diesel generator, 

solar photovoltaic (PV), wind turbine, and battery. Then, in the second phase, the 

output results were used as input in three algorithms to predict load and supply dispatch 

one month ahead. This study has two objectives; the first is to decide which energy 

source should meet the load one month ahead. The second is to compare the outcomes 

of machine-learning techniques, namely Random Forest (RF), Decision Tree (DT), 

and K-Nearest Neighbours (KNN), to determine the one that performs the best. The 

results indicated that the DT technique has the best performance in the application of 

classification with an accuracy of 100%. The findings also show that the RF approach 

gives acceptable results with an accuracy of up to 98%, and the KNN algorithm was 

poor in terms of accuracy with a value of 28%.  
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Abstract: This paper analyzes the effect of meteorological variables such as solar 

irradiance and ambient temperature in addition to cultural factors such as consumer 

behavior levels on energy consumption in buildings. Reducing demand peaks to 

achieve a stable daily load and hence lowering electricity bills is the goal of this work. 

Renewable generation sources, including wind and Photovoltaics systems (PV) as well 

as battery storage are integrated to supply the managed home load. The simulation 

model was conducted using Matlab R2019b on a personal laptop with an Intel Core i7 

with 16 GB memory. The model considered two seasonal scenarios (summer and 

winter) to account for the variable available energy sources and end-user electric 

demand which is classified into three demand periods, peak-demand, mid-demand, and 

low-demand, to evaluate the modeled supplydemand management strategy. The 

obtained results showed that the surrounding temperature and the number of family 

members significantly impact the rate of electricity consumption. The study was 

designed to optimize and manage electricity consumption in a building fed by a 

standalone hybrid energy system. 
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