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ABSTRACT 

 

PhD Thesis 

 

AN ENHANCED CONVOLUTIONAL NEURAL NETWORK FOR 

DETECTING DEEPFAKE VIDEOS 

 

Saadaldeen Rashid AHMED 

 

Karabük University 

Institute of Graduate Programs  

Department of Computer Engineering 

 

Thesis Advisor: 

Assist. Prof. Dr. Emrullah SONUÇ 

September 2023, 95 pages 

 

Deepfake detection is critical to address the proliferation of manipulated videos that 

can deceive and spread misinformation. Detecting deepfakes helps ensure the 

authenticity of visual content, protecting individuals, organizations, and society from 

potential harm, fraud, and misinformation. It safeguards trust in digital media and 

maintains the integrity of information in an era where video manipulation is 

increasingly sophisticated and accessible. Deepfake videos pose a significant threat 

to the integrity of visual content in the digital age. Detecting these manipulations is 

essential for safeguarding trust and authenticity. This research aims to enhance 

deepfake detection through the application of Rationale-Augmented Convolutional 

Neural Networks (RACNN) with Donald Trump Filter, addressing the urgent need to 

combat the proliferation of deceptive media and ensure the reliability of visual 

information. In our RACNN model, datasets play a crucial role in training. We have 

a total of 99,260 images, divided into two classes, with 70% for training. In addition, 
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there are 1,030 images for validation, which is 10% of the dataset, and 26,914 

images for testing and fine-tuning, which is 20%. This setup helps ensure that our 

model can accurately distinguish between real and fake videos, contributing to the 

ongoing fight against deceptive digital content. In this thesis, we conducted an 

evaluation using two datasets: the Deepfake Detection Challenge (DFDC) and the 

FaceForensics++. The CNN approach remained consistent, resulting in minimal 

variation in computational cost between the two methods. When we applied the 

Donald Trump filter to Deepfake videos, we found that low computational cost was 

essential for making a faster connection based on facial associations. This large 

dataset has been replicated many times, making it ideal for accurate categorization 

and segmentation. In addition, the simple implementation of the CNN model allowed 

for seamless integration with a partitioning technique, resulting in impressive 

accuracy rates of 94.99% for the DFDC dataset and 93.99% for the FaceForensics++ 

dataset.  

 

Key Word : Deepfake, video detection, segmentation, facial alignment, deep 

learning, reconstruction. 

Science Cod : 92431 
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ÖZET 

 

Doktora Tezi 

 

DEEPFAKE VİDEOLARI TESPİT ETMEK İÇİN GELİŞTİRİLMİŞ 

EVRİŞİMLİ SİNİR AĞI 

 

Saadaldeen Rashid AHMED  

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi Emrullah SONUÇ 

Eylül 2023, 95 sayfa 

 

Deepfake tespiti, yanıltıcı ve yanlış bilgileri yayan manipüle edilmiş videoların 

çoğalmasını engellemek için kritik öneme sahiptir. Deepfake'leri tespit etmek, görsel 

içeriğin orijinalliğini sağlamaya yardımcı olarak bireyleri, kuruluşları ve toplumu 

olası zararlardan, sahtekarlıktan ve yanlış bilgilerden korur. Dijital medyaya olan 

güveni korur ve video manipülasyonunun giderek daha karmaşık ve erişilebilir hale 

geldiği bir çağda bilginin bütünlüğünü korur. Deepfake videolar, dijital çağda görsel 

içeriğin bütünlüğüne yönelik önemli bir tehdit oluşturmaktadır. Bu 

manipülasyonların tespit edilmesi, güvenin ve özgünlüğün korunması açısından 

önemlidir. Bu araştırma, Donald Trump Filtresi ile Rasyonel-Artırılmış Evrişimli 

Sinir Ağlarının (Rationale-Augmented Convolutional Neural Network, RACNN) 

uygulanması yoluyla Deepfake tespitini geliştirmeyi, yanıltıcı medyanın 

çoğalmasıyla mücadele etme ve görsel bilgilerin güvenilirliğini sağlama konusundaki 

acil ihtiyacı karşılamayı amaçlamaktadır. RACNN modelimizde, veri kümeleri 
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eğitimde çok önemli bir rol oynamaktadır. Eğitim için %70’i iki sınıfa ayrılmış 

toplam 99.260 görüntümüz var. Ayrıca, veri kümesinin %10’unu oluşturan 

doğrulama için 1.030 görüntü ve %20’sini oluşturan test ve ince ayar için 26.914 

görüntü bulunmaktadır. Bu kurulum, modelimizin gerçek ve sahte videoları doğru bir 

şekilde ayırt edebilmesini sağlayarak aldatıcı dijital içeriğe karşı devam eden 

mücadeleye katkıda bulunur. Bu tezde, iki veri kümesi kullanarak bir değerlendirme 

yaptık: Deepfake Detection Challenge (DFDC) ve FaceForensics++. CNN yaklaşımı 

tutarlı kalmış olup iki yöntem arasında hesaplama maliyetinde minimum değişiklikle 

sonuçlanmıştır. Donald Trump filtresini Deepfake videolarına uyguladığımızda, 

düşük hesaplama maliyetinin yüz ilişkilendirmelerine dayalı daha hızlı bir bağlantı 

kurmak için gerekli olduğu görülmüştür. Bu büyük veri kümesi birçok kez 

çoğaltılmıştır, bu da onu doğru kategorizasyon ve segmentasyon için ideal hale 

getirmektedir. Buna ek olarak, CNN modelinin basit uygulaması, bir bölümleme 

tekniğiyle sorunsuz entegrasyon sağlamıştır ve DFDC veri kümesi için %94,99 ve 

FaceForensics++ veri kümesi için %93,99 gibi etkileyici doğruluk oranlarıyla 

sonuçlanmıştır. 

 

Anahtar Sözcükler : Deepfake, video algılama, segmentasyon, yüz hizalama, derin 

öğrenme, rekonstrüksiyon. 

Bilim Kodu : 92431 
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PART 1 

 

INTRODUCTION 

 

In recent years, Deepfake technology has made significant advancements, allowing 

the creation of highly realistic and convincing fake videos of individuals.  While 

Deepfake technology has potential applications in the fields of entertainment and 

media, it also poses a significant threat to the integrity of information and the 

security of individuals [1]. The ability to create fake videos of individuals can be 

used to spread misinformation, impersonate individuals, and even interfere in 

elections [2].  

 

Deepfake refers to a technique that allows a user to superimpose their own face onto 

a video of an original person, making a recording that looks to perform or convey the 

same things as the real person. The face swap Deepfake variation fits within this 

category. Depending on the Artificial Intelligence (AI) employed to generate the 

content, Deepfakes could consist of lip-syncing or puppeteers. In Deepfake videos, 

the lip movements are coordinated with the music. Deepfakes of puppet masters are 

recordings of puppets mimicking the facial expressions, eye movements, and other 

actions of a human performer wearing a mask [3].  

 

Deepfake can be generated using standard visual effects or Computer-Generated 

Imagery (CGI) tools. Despite this, some Deep Learning (DL) approaches like 

autoencoders and the Generative Adversarial Network (GAN) area of computer 

vision have been widely used. These models are used to produce new faces and body 

movements with similar expressions and behaviors to understand better how 

different facial expressions and body movements interact. Deepfake technologies 

occasionally require many images and video data to train the design for recognizing 

photorealistic images and videos. National personalities and celebrities, particularly 

candidates, are attractive targets for Deepfake assaults because of the abundance of 

online photographic and video information about them. Since then, the faces of 
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numerous celebrities have been substituted with pornographic females in movies 

generated utilizing the Deepfake technique [4]. 

 

While existing forgery detection systems perform well, the primary difficulty lies in 

their inability to generalize to newly emerging types of forgeries [5]. For example, a 

detector trained to identify face-swapping forgeries would struggle to perform 

accurately on facial reenactment forgeries. This makes forgery detection systems less 

practical since new types of forgeries are frequently appearing. Furthermore, 

supervised detection, which requires substantial training data on a specific forgery 

method, is not immediately capable of detecting newly emerging types of forgeries 

[6].  

 

For instance, the use of Deepfake technology has potential disadvantages and ethical 

concerns such as the creation of false and misleading information, the potential for 

fraud or criminal activities, and the violation of individual privacy by creating fake 

content that can be used to defame or blackmail them. It is important to be aware of 

these issues and take appropriate measures to prevent and address them [7]. A video 

featuring Deepfake technology, depicting House Speaker Nancy Pelosi delivering a 

speech with noticeable speech impairment and displaying awkward behavior, has 

been widely shared on several social media platforms. The video sparked concerns 

about the potential for Deepfakes to be used to spread disinformation and interfere 

with political campaigns [8]. 

 

A Deepfake video of a Tom Cruise impersonator also went viral on TikTok. The 

video was created using Deepfake technology. It showed the impersonator 

performing a series of stunts and tricks that made it appear as though he was the real 

Tom Cruise. While the video was created for entertainment purposes, it raised 

concerns about the potential for Deepfakes to be used to impersonate public figures 

and spread disinformation [9]. 

 

The rationale-based models are used to analyze the text associated with the video, 

such as the title, description, and captions, to identify any inconsistencies or 

misleading information [9]. 
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1.1. RESEARCH PROBLEM 

 

The majority of Deepfake detection techniques rely on the utilization of 

Convolutional Neural Networks (CNNs) to extract frame-level information from an 

image [10]. Temporal features, as a category of detection methodology, are limited in 

their ability to capture concealed elements within a video's temporal progression. 

Recent studies have investigated these temporal characteristics, revealing their 

superiority compared to techniques based on individual frames [11]. There is a lack 

of studies that have used hand-crafted facial features to enhance classification 

performance, despite the discovery made by [12] that such traits may offer additional 

information to models. Also, we found that Deepfake datasets are highly 

oversampled, causing models to become easily overfitted. The datasets are created 

using a small set of real faces to generate multiple fake samples. When trained on 

these datasets, models tend to memorize the actors’ faces and labels instead of 

learning fake features [13]. 

 

The solution to this problem, we develop a Rationale-Augmented Convolutional 

Neural Networks (RACNN) based a novel methodology for deepfake face 

reconstruction with Donald Trump filter. 

 

1.2. AIM OF THE STUDY 

 

This thesis first provides an overview of the current state-of-the-art Deepfake 

detection methods and their limitations. We then present the proposed RACNN 

method with Donald Trump Filter and its implementation. When applying the 

Donald Trump filter to the Deepfake video, we found that a low computational cost 

was necessary to establish a faster link based on the association between the faces. 

The performance of the proposed method is evaluated on two datasets and compared 

to the state-of-the-art methods. Therefore, it is crucial to develop methods for 

detecting Deepfakes to maintain the trust and integrity of information. 

 

i. Providing an overview of previous works and achievements on reconstruction 

of different type of faces. 
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ii. Developing a RACNN based novel methodology for deepfake face 

reconstruction with Donald Trump Filter. 

iii. Applying RACNN model to two different datasets to perform reconstruction 

with less data loss and more accuracy. 

iv. Evaluating and comparing the proposed RACNN model with other studies in 

the literature. 

 

Overall, rationale augmentation in CNNs enhances their transparency and the ability 

to provide meaningful justifications for their predictions, making them more useful 

and trustworthy in various applications.  

 

1.3. THESIS STRUCTURE 

 

This thesis is structured into five chapters, each focusing on specific aspects of the 

research on Deepfake detection using DL.  

 

The first chapter, “Introduction”, provides an overview of the problem statement, the 

aim of the research, and the potential uses of DL.  

 

The second chapter, “Literature Review”, presents a thorough analysis of the current 

research that has employed DL and Machine Learning (ML) for Deepfake detection.  

 

The third chapter focuses on “Types of Digital Face Manipulations” and provides a 

thorough examination of numerous digital face manipulation techniques, offering 

detailed explanations and analysis for each type. 

 

The fourth chapter, “Methodology”, details the implementation procedures of the 

classification method used in the study.  

 

In the fifth chapter, “Results & Discussion”, the comprehensive results and their 

discussion are presented, showcasing the thesis’s overall findings.  
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Finally, the sixth chapter, “Conclusion”, summarizes the study's contributions, 

assesses the interpretation of the findings, and discusses potential future 

development. By dividing the thesis report into these six chapters, the reader can gain 

a comprehensive understanding of the research and its contributions to the field. 
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PART 2 

 

LITERATURE REVIEW 

 

Detecting deepfakes is an important area of research and development to counter the 

potential misuse of this technology. There are several methods and techniques used 

for deepfake detection, facial anomaly detection, and body anomaly detection. 

Deepfakes often have subtle anomalies in facial features or body movements that 

may not be perfectly aligned. These can be detected using computer vision 

techniques to analyze inconsistencies in facial expressions, eye blinks, lip sync, or 

strange artifacts. 

 

There are three main categories of algorithms used to modify visual attributes within 

video content. The simplest approach is the graphics-based technique [14]. This is 

commonly used in basic smartphone applications such as Snapchat. The second type 

of algorithm uses a latent feature space to identify and differentiate individuals based 

on their facial features. These techniques are more complex and require the process 

of training an auto-encoder on a specific set of targets [16]. Finally, it should be 

noted that other GAN-based methods are available [16]. However, it is important to 

recognize that these are predominantly used to generate static rather than dynamic 

visual content. A variation of the following three core principles is used in several 

widely used open-source programs. These implementations may have graphical user 

interfaces that are designed to be user-friendly. This improves accessibility to a wider 

range of users, including the public. Because of their user-friendly interfaces and 

wide accessibility, DeepFaceLab [14], Deepfake [15] and FaceSwap [16] are widely 

used tools for generating a significant amount of deepfake content distributed on the 

Internet as shown in Figures 2.1 and 2.2. 
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Figure 2.1.  Example of face swapping with a graphics-based method [16]. 

 

 

Figure 2.2.  The generation process of the encoder-decoder method [16]. 

 

In 2015, Deepfake demonstrated a satisfied accuracy in the widely recognized 

Recurrent Neural Network (RNN) benchmark, achieving an 87.80% over the 

subsequent three years. This realization gave rise to a plethora of data-efficient 

topologies. The review also refers to various DL architectures [17], such as specific 

variations of the Inception architecture (v1 and v2) and covers the evolution of facial 

reconstruction and various approaches used to accomplish the process. 

 

Researchers have introduced a Deep Neural Network (DNN) facial reconstruction 

method, utilizing facial landmarks like eyes, nose, mouth corners, and face center to 

generate a 160-dimensional Deepfake vector. This vector aims to predict over 10,000 

unique individuals within the resulting matched IDs [18]. The design predicts that n 

> 10,000 different individuals will be represented in the final count of matched IDs. 

Figure 2.3 presents an architectural diagram for CNN with a deeply hidden identity. 
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Figure 2.3. An architectural diagram for the CNN with a deeply hidden identity [19]. 

 

DeepFake was followed by the development of DeepFake2, DeepFake2+, and 

DeepFake3, with each iteration introducing modifications to the underlying concept. 

These models reportedly used a variety of facial landmark detectors along with 

different patch or landmark selection criteria [19]. 

 

The distinctiveness of individuals is mostly determined by the unique characteristics 

of the human face. Regrettably, the proliferation of face-synthesizing technology is 

emerging as a plausible threat to societal well-being. Numerous sets of rules 

grounded in DL knowledge exist, enabling the substitution of real human faces with 

synthetic counterparts. Deepfake is an emerging field within the realm of AI that 

pertains to the process of overlaying the facial features of one individual onto the 

visage of another. GANs have the capability to generate Deepfake images of superior 

quality, as evidenced by recent research [20]. 

 

The rapid dissemination of Deepfake material has been facilitated by the 

proliferation of mobile devices and public websites [21]. The occurrence of pixel 

collapse, a phenomenon characterized by the appearance of unexpected visual 

irregularities in the tonal quality or facial appearance of photographs, was the initial 

factor that made Deepfake images perceptible to human observers. Deepfakes can be 

created using both auditory and visual data. In recent years, significant progress in 

technology has led to the development of Deepfakes, which have reached a level of 

visual fidelity that makes them nearly indistinguishable from real photographs [22]. 
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As a result of this phenomenon, a wide variety of issues affect a significant number 

of individuals on a global scale. 

  

Generally, Deepfake offers certain positive benefits despite the numerous 

disadvantages accompanying it. For instance, Deepfake is advantageous to the 

fashion and e-commerce industries since it expedites consumer purchasing. The 

Deepfake technology also assists the music industry by offering artificial voices to 

musicians incapable of easily naming their work. Additionally, Deepfake enables 

filmmakers to replicate or reuse the special effects from various memorable 

sequences. Moreover, advanced communication and Deepfake technologies may 

assist Alzheimer's patients in retaining more memories. Detecting abnormalities in 

X-ray images using GANs is also the focus of ongoing research [23]. The witnesses 

need many photos, videos, or audio samples to create convincing fakes using the 

Deepfake approach.  

 

Unfortunately, Deepfake technology poses a significant threat to many especially 

public figures. Regrettably, being the center of attention comes with significant 

disadvantages. The vast quantity of publicly accessible media featuring, among 

others, celebrities, athletes, and politicians makes them easy targets for Deepfakes. 

Deepfake technology is mostly used to make mock others. For political, sexual, or 

comedic objectives, one can exploit friends' voices and photographs without consent. 

Famous faces of pornographic models can also be found online [24]. Today, fake 

content is easy to make [25]. 

 

Cyberbullying is a growing problem among young people, with tragic consequences 

such as suicide. A video showing the former president of the United States, Barack 

Obama, allegedly expressing statements he has never spoken is rapidly circulating 

online. Deepfakes have been utilized to change Joe Biden's tongue-out appearance in 

the 2020 presidential campaign video, it is important to acknowledge that social 

media platforms can pose substantial risks to both people and society at large. These 

risks encompass the dissemination of misinformation, breaches of personal privacy, 

damage to one's reputation, fraudulent impersonation, and manipulation of public 

sentiment [26]. Many women outside of Asia and the United States are affected by 
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Deepfakes technologies. When Deepfakes are utilized on social media, deceptive 

material can spread far more rapidly and have far-reaching cultural effects [27]. 

However, due to the tremendous harm inflicted upon individuals and businesses, it is 

imperative that sophisticated forgeries be given substantial consideration in the 

design process. For this reason, scientists have worked diligently to uncover the 

phenomenon of Deepfakes to protect the public from instances of defamation, 

fraudulent schemes, misleading information, and vulnerabilities. 

 

The exposure of Deepfakes has the potential to significantly decrease global crime 

rates.  The focus of the scientific community has been directed towards the validation 

procedure pertaining to these statements [28]. Unfortunately, only a limited number 

of prominent multinational corporations have implemented measures in reaction to 

this prevailing pattern. Leading technology companies such as Google, Facebook, 

and Microsoft have made a comprehensive dataset of fabricated movies available to 

the research community [29]. This valuable resource enables researchers to develop 

novel algorithms and methodologies for effectively identifying and mitigating the 

spread of Deepfake content. 

 

Overall, DeepFake models performed admirably with the GAN, achieving an 

accuracy of 89.53% [30]. However, when the number of classes expanded, 

difficulties emerged [30]. As a result of a considerable increase in types and a drop in 

the number of face photos associated with each class, the authors determined that 

“the classifier outputs were diverse and unreliable, and hence cannot be used as 

features” [31]. The CNN model was trained to predict the best class from a given set 

of IDs, but it lacked a common approach for formalizing visual traits among 

otherwise comparable faces. Face verification using DeepFake is expected to be 

significantly less accurate for those outside the 10,000 classes [32-34]. 

 

FaceNet's face alignment step was one of its defining aspects; it was utilized to 

enhance the model. Figure 2.4 illustrates how challenging it means to execute this 

technology because training the model requires a large dataset, which only Facebook 

possesses. The model's final architecture was determined to output a 4096-
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dimensional representation vector, trained with cross-entropy loss, to predict the 

probability of classes' association [35]. 

 

 

Figure 2.4. Different orientations of faces are being evaluated for the Deepfake 

network [36]. 

 

FaceNet introduced the FaceForensics++ dataset, a significant contribution to the 

field of Deepfake detection, along with a comprehensive benchmarking framework. 

This dataset was instrumental in shedding light on the daunting challenges of 

detecting increasingly realistic deepfake content [37]. 

 

A method for generating realistic video portraits by transferring facial expressions 

from a source to a target actor. It highlights the challenges of distinguishing between 

real and generated videos and the need for effective detection mechanisms [38]. 

Explore the task of face anti-spoofing, which is related to Deepfake detection. The 

paper presents a framework that leverages auxiliary supervision signals to improve 

the detection accuracy of deep learning models [39].  

 

The method for detecting more general face forgery techniques, including Deepfakes 

and traditional image editing. The authors introduce the "Face X-ray" concept and 

use a deep neural network for detection and explores the use of lip movements to 

detect Deepfake videos [40]. The authors then propose a convolutional neural 

network-based approach that analyzes lip synchronization and motion for detection 

[41]. 
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Following the conversion of the labeled matrix into an image for face detection and 

reconstruction [42], DL techniques are employed to represent the resulting output 

visually. Before applying DL algorithms to complement the image, several pre-

processing approaches are employed to enhance the region of interest intended to be 

extracted. This includes using the Long Short-Term Memory Networks (LSTM) 

approach and a morphological erosion technique using a grain size distribution to 

enhance contrast in the facial region. The proposed approach consistently detects 

regions of interest within photos that exhibit sufficient contrast. This enables the DL 

algorithm to extract the drainage basins of the Deepfake network successfully [43]. 

 

DL-based techniques aid in face extraction from media through blob detection and 

fake face segmentation [44, 45]. The Deepfake face segmentation approach is robust 

in varying illumination conditions, extracting even small sections, including the 

secret area of interest [46]. Scholars have used Deepfake feature analysis to track 

desired attributes and extract data [47]. Face reconstruction and Deepfake networks 

pinpoint areas for ellipse-based extraction using these features [48]. 

 

For face analysis, recording features within a specified area range and threshold is 

crucial. A threshold of 12 and an area range of 200 to 5000 were used; lower 

thresholds identified more regions, but higher thresholds missed expected regions 

[49]. Sometimes a threshold of 12 failed to recover multiple faces due to the wide 

region range or slightly low threshold [50]. Thus, selecting an appropriate threshold 

and range is vital for trustworthy DL algorithm results [51]. 

 

Photographs of a face mask are taken, then the images are reconstructed using the 

information recorded by the auto-encoder. Switching between the source and 

destination images' appearances necessitates using two codecs, and the encoder 

parameters for both pairs of codecs are shared in this instance. Each group is being 

utilized to expand its photography knowledge. In both sets, the encoder networks are 

identical. This encoder-decoder architecture is used by Deepfakes Faker [52], Deep 

Facet “TensorFlow-based Deep-fakes” [53], and DF [54]. An advanced form of 

Deepfakes uses an innovative adaptive GAN for face transformations. This GAN 



13 

addresses the shortcomings in encoder and decoder design seen in VGG-face, aiming 

to overcome adversarial constraints, and missed perceptual opportunities [55-57]. 

 

FaceNet's implementation of a CNN with several tasks is intended to improve face 

recognition and orientation constancy. Cycle GAN is a helpful method for 

constructing generative networks [58]. The impact of Deepfakes on the safety, 

privacy, and authenticity of democratic republics has been a growing concern [59]. 

To mitigate these risks, a constant surveillance system has been implemented to 

ensure that Deepfakes are detected and addressed promptly. Recent advancements in 

DL have enabled automatic Deepfake detection [60]. To overcome this issue, 

Korshunov and Marcel [61] implemented the freely available Face swap-GAN [62] 

technique to generate a (620-record) GAN-shaped Deepfake dataset. Low-budget, 

high-rating Deepfake movies have been produced using the VidTIMIT dataset [63] 

to imitate gaze blink, brim movement, and facial scrub expressions [64]. The 

findings of experiments indicate that typical facial recognition systems cannot 

identify deeply faked faces. Due to the improved effectiveness of DL techniques 

such as CNN and GAN in strengthening image readability, face representation, and 

illumination, forensics models have gotten more complex [65]. 

 

The literature on the detection of identity-swapped movies has grown over time [66]. 

In identity-switching videos [67], the facial appearance of one individual is replaced 

with that of another. Most of these algorithms use an auto-encoder architecture to 

reconstruct the facial features of the desired individual [68]. The auto-encoder 

consists of a system that includes both an encoder and a decoder. The process of 

encoding the input face yields a latent vector that serves as a representation of the 

information conveyed by the face. The encoder uses the same set of weights, 

ensuring that it learns properties that are independent of the identity being encoded 

[69]. However, the decoder uses the latent vector to reconstruct the facial features of 

the individual under consideration [70]. This approach is used by several deepfake 

generation systems, including DFaker and DeepFaceLab. The architecture of the face 

swap GAN auto-encoder has been further improved by incorporating adversarial and 

perceptual loss into the algorithm. The integration of adversarial and perceptual loss 

was implemented in the synthesis procedure to minimize the occurrence of visual 
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artifacts [66]. As a result, distinguishing real videos from deepfakes is an 

increasingly difficult task for detection models. 

 

Various methods can be used to identify videos in which the facial features of two 

people have been swapped during the editing process. Over time, many innovative 

deepfake detection methods have been documented in the academic literature. The 

compilation of studies included in Appendix A provides a comprehensive overview 

of the most relevant research conducted on the topic of identifying instances where 

recordings have undergone identity switching. Most of this research has been 

documented in the review article [66,67]. The table has been revised to include the 

results of more recent studies that have produced more recent results. Deepfake 

movies often show visual distortions resulting from the switching of two faces. As a 

result, early efforts in this area relied heavily on manually created attributes derived 

from these distortions [71]. To identify individuals engaged in deepfake 

impersonation, a technique based on the calculation of 3D distance vectors between 

mouth landmarks, head rotations and facial activity units has been introduced [72]. 

According to the authors, it is claimed that an individual's facial expressions and 

bodily gestures show distinctiveness during the act of verbal communication [72]. It 

is intriguing that the researchers have linked the mouth to at least one of the top five 

distinctiveness attributes. Ultimately, the most optimal model achieved an Area 

Under the Curve (AUC) of 96.3% on their proprietary dataset. In addition, a novel 

technique was developed to detect deepfakes based on their visual irregularities, 

including inaccuracies in geometry and inaccurate assessments of lighting 

conditions, particularly around the eyes and teeth. The Multilayer Perceptron (MLP) 

proved to be the most successful design, achieving an AUC of 85.1% when evaluated 

on a proprietary database [73]. When the performance of this model on the Celeb-DF 

dataset yielded an AUC of 55.0% [69], this result can still be considered a 

commendable performance.  

 

Another approach involves the use of artifacts introduced during the synthesis 

process [74]. The researchers postulated that the use of only peripheral facial features 

would result in different 3D head position estimates compared to the use of the full 

set of landmarks. The performance of their technique achieved an AUC of 89.0% on 
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the UADFV dataset, but only an AUC of 54.6% when examined on the Celeb-DF 

dataset [69]. This study aims to demonstrate of the ability of a pre-trained ResNet50 

model to discriminate between authentic videos containing facial distortion 

anomalies and deepfake videos [75]. The approach achieved an AUC of 64.4% when 

evaluated on the Celeb-DF dataset [75]. The analysis focuses on investigating 

strategies that rely on inconsistencies in eye blink patterns to detect deepfake 

generators, despite their limited ability to produce convincing results [76,77].  

 

Image distribution is facilitated using a Long-Term Recurrent Convolutional 

Network (LRCN) trained on a dataset specifically curated for this task. The 

performance of this LRCN model is evaluated using the AUC metric, resulting in an 

impressive score of 99.0%. The Eye Aspect Ratio for each image was derived by 

considering demographic factors such as age, gender, level of physical activity and 

time of day. These values were then compared with established normative data on 

blinking behavior. The data were obtained from a separate repository. A distance 

measure was then used to authenticate the film using a proprietary data set, resulting 

in an accuracy rate of 87.5% [78]. There is an optimistic outlook for a future where 

visual artifacts will be less important as defining elements. The implementation 

includes detection techniques [72] that use DL algorithms capable of autonomously 

identifying discriminative features. To investigate mesoscopic features in 

photographs, we performed an analysis on two condensed deep learning networks. 

The best-performing model on the Celeb-DF dataset achieved an AUC value of 

54.8%. This finding is of great interest as it highlights the importance of the oral and 

eye regions in identifying deepfakes [79].  

 

The use of a two-channel network to detect altered facial images. One stream uses 

data obtained using a CNN to assess whether a facial image has been altered [80]. 

The alternative approach uses a patch triplet stream to retrieve information about 

hidden sources of noise, such as camera characteristics. Finally, the results from both 

streams are combined to determine the authenticity or manipulation of a given face 

[81]. Remarkably, a comprehensive investigation revealed that this particular 

methodology exhibited a high level of security when tested against the unobserved 

identity swap dataset [69]. Furthermore, a multi-task learning network has been 
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developed with the aim of detecting deepfake videos [66]. The approach described in 

this study is based on an auto-encoder architecture [66]. It proposes to facilitate the 

exchange of information between two tasks to improve the performance of both 

models. The effectiveness of the network was demonstrated on the FaceForensics++ 

dataset [82], although it showed shortcomings when applied to the Celeb-DF dataset 

[69]. Subsequently, researchers have demonstrated the ability of capsule networks to 

identify deceptive images and videos under various forms of attack [83]. Capsule 

networks are used to identify fake photos and videos by extracting latent information 

from a specific subset of the VGG-19 network [84]. The generalizability of the 

method was shown to be limited when evaluated on the Celeb-DF dataset [69]. In 

their study, researchers investigated the effectiveness of using specific facial regions 

as input to a pre-trained Xception network to identify the most discriminative region 

for deepfake detection [67].  

 

Using the eye region as input gave the best results when applied to the Celeb-DF 

dataset. However, the highest level of performance, as indicated by an AUC of 

83.6%, was achieved when the entire face was used as input. Finally, the authors 

emphasised the advantages of using second-generation deepfake datasets such as 

Celeb-DF and DFDC over first-generation datasets such as FaceForensics++ and 

UADFV [67]. Most detection algorithms rely on frame-level data. However, a time-

aware technique has been developed to identify movies with identity swaps [85]. The 

researchers used a pre-trained InceptionV3 network to extract frame-level features. 

In addition, they used an LSTM network to detect anomalies across frames. The 

approach was evaluated on a proprietary dataset and achieved an accuracy of 97.1% 

based on a limited sample size of 40 photographs. It is worth noting that the majority 

of current deepfake detection techniques do not incorporate frame discrepancy 

learning [86].  

 

In another study, researcher evaluated the effectiveness of five temporal action 

detection techniques in detecting deepfake videos. The strategy they employed shows 

superior performance in terms of AUC on the Celeb-DF dataset [86], surpassing the 

performance of existing frame-based detection approaches that are considered state-

of-the-art. In addition, an evaluation of three state-of-the-art 3D CNN techniques was 
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performed, which showed significant potential in the field of action detection [87]. 

The best-performing model, ID3, achieved a accuracy of 95.1% on the 

FaceForensics++ dataset, which included identity switching [88]. Like the work, 

proposed a methodology for distinguishing authentic movies from deepfakes [89].  

 

Hyper-realistic synthetic environments have been developed thanks to the 

widespread availability of cutting-edge computer vision and machine learning 

technology in recent years videos, commonly known as deepfakes, which have found 

applications spanning various domains. These developments, while enabling 

numerous positive use cases, have simultaneously fueled concerns about the urgent 

need for reliable deepfake detection systems [90]. underscores the limitations of 

traditional handcrafted approaches and sets a strong baseline for facial manipulation 

detection using modern deep learning architectures. Addressing the pressing issue of 

deepfake videos [91]. introduces a temporal-aware detection pipeline utilizing 

convolutional and recur- rent neural networks (CNN and RNN). With impressive 

accuracy exceeding 97%, this research demonstrates the capability to accurately 

identify manipulated video fragments, offering a potential solution to combat the 

proliferation of deepfake videos. Considering the increasing danger posed by 

computer-generated music and movies [92]. introduces a biometric forensic method 

for identifying” deep fakes” created by swapping faces. Rather of relying just on face 

recognition technology, this approach integrates temporal, behavioral biometrics 

based on facial emotions and head movements. With a remarkable detection 

accuracy exceeding 90%, this technique serves as a robust defense against deceptive 

media manipulations. To combat the deepfake phenomenon [93]. introduces a 

Capsule Network-based approach that exhibits remarkable versatility in detecting 

various forms of attacks, achieving an accuracy rate surpassing 90%. This method 

stands as a robust solution to safeguard against digital image and video 

manipulations, highlighting the potential of capsule networks in digital forensics. 

In the realm of multimedia forensics [94]. tackles the problem of identifying fake 

videos on social media. Through exhaustive performance evaluations, this research 

reveals the importance of fine-tuning operations and presents valuable insights into 

identifying specific manipulation techniques employed in real-world scenarios 

involving shared manipulated media [95]. addresses the pressing challenge of 
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detecting manipulated faces in video sequences. The authors propose an ensemble 

approach that combines various Convolutional Neural Network (CNN) models, 

achieving promising detection accuracy on extensive video datasets, with specific 

accuracy figures available.  This work highlights the importance of advanced 

detection methods in the age of manipulated video content [96]. introduces the 

VideoForensicsHQ benchmark dataset, challenging existing forgery detectors in 

detecting imperceptible manipulations. By combining geographical and temporal 

information, the authors create a new class of detectors, achieving an impressive 

detection accuracy range of 99.25% to 99.38%. Their detectors provide a robust 

defense against advanced manipulation techniques [97]. provides a novel method for 

identifying videotaped facial manipulation. The authors introduce the Set 

Convolutional Neural Network (SCNN) framework and evaluate its performance on 

various datasets, achieving state-of-the-art results. While specific accuracy figures 

are not mentioned in the summary, they can be found in the paper [98]. addresses the 

challenge of identifying tampered faces in video sequences using recurrent 

convolutional models. On video-based facial modification benchmarks, the authors’ 

results are state-of-the-art, specifically detecting Deepfake, Face2Face, and 

FaceSwap manipulations, with specific accuracy figures available in the paper. Their 

approach surpasses the previous state-of-the-art by up to 4.55% in accuracy on the 

FaceForen- sics++ dataset, demonstrating its effectiveness in addressing the growing 

concern of misinformation in online content, particularly in the domain of video-

based face manipulation detection. This work highlights the effectiveness of their 

approach in detecting misinformation in online video content [99]. Using the 

FaceForensics++ dataset, we will look at the performance of three innovative 3D 

CNN techniques for identifying doctored films. The study reveals promising results, 

with these 3D CNN models exhibiting strong detection accuracy across various 

manipulation techniques. Specifically, 3D ResNet achieved accuracy scores of 

91.81% for Deepfake (DF), 89.6% for Face2Face (F2F), 88.75% for FaceSwap (FS), 

and 73.5% for NeuralTextures (NT). Similarly, 3D ResNeXt demonstrated 

competitive performance with accuracy rates of 93.36% (DF), 86.06% (F2F), 92.5% 

(FS), and 80.5% (NT). I3D exhibited impressive detection capabilities, with accuracy 

scores of 95.13% (DF),  90.27%  (F2F),  92.25% (FS), and 80.5% (NT).Nguyen  et  

al.  [100].  In  order  to  simultaneously  detect  image and video modifications and 
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identify the modified regions, this study proposes a convolutional neural network 

(CNN) that employs multi-task learning. The suggested technique was tuned on the 

FaceForensics and FaceForensics++ databases, where it attained an accuracy of 

83.71% for classification and 93.01% for segmentation. demostrating its adaptability 

even to previously unseen manipulation techniques [101]. introduces a 

comprehensive benchmark for facial manipulation detection based on techniques 

such as DeepFakes, Face2Face, FaceSwap, and NeuralTextures. Trained forgery 

detectors, aided by domain-specific knowledge, achieve remarkable accuracy on the 

benchmark. Notably, the XceptionNet model achieves accuracy scores of 96.36% 

(DeepFakes), 86.86% (Face2Face), 90.29% (FaceSwap), 80.67% (NeuralTextures), 

and 52.40% (pristine images), resulting in an overall total accuracy of 70.10% [102]. 

presents a modified AlexNet-based model for detecting fake videos on publicly 

avail- able datasets. The model achieves high accuracy, with a 98.73% accuracy rate 

on the UADFV dataset and a 98.85% on the Celeb-DF dataset, how accurate you are. 

Using data from FaceForensics++, it achieves an accuracy rate of 87.49% for 

multiclass classification and binary classification [103]. The proposed method 

utilizes deep learning with compact network architectures for detecting face 

tampering in videos. For Deepfake videos, it detects more than 98%, and for 

Face2Face videos, it detects more than 95%.To better detect manipulation traces in 

facial photographs [104]. introduce the Adaptive Manipulation Traces Extraction 

Network (AMTEN). By combining a convolutional neural network (CNN) with a 

fake face detector (AMTEN- net), it is possible to obtain an excellent average 

accuracy of up to 98.52 percent when identifying false face photos created using 

different modification techniques. Further- more, AMTEN net keeps an average 

accuracy of 95.17 percent even when presented with face photos that have undergone 

unidentified post-processing processes [105]. addresses the growing threat of 

Deepfake videos by introducing an innovative forensic technique that uses optical 

flow fields to detect differences between fake and original video sequences. Initial 

experiments on the FaceForensics++ dataset show promising results, suggesting the 

potential of utilizing temporal dissimilarities for deepfake video identification [106]. 

presents a new way to find fake video sequences by looking at the dynamics of 

spatiotemporal texture, with a focus on the study of multiple temporal parts together. 

Using Local Derivative Patterns on Three Orthogonal Planes (LDP-TOP) as feature 
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markers, the suggested method is very good at telling the difference between real and 

fake video sequences. Lin- ear Support Vector Machines (SVMs) are used to classify 

data, and their success is comparable to that of deep models for finding fake material 

[107]. In response to the emerging threat of Deepfakes, this paper introduces OC-

FakeDect, a one-class anomaly detection approach for Deepfake detection.OC-

FakeDect only trains on pictures of real faces and thinks of Deepfakes as oddities, 

achieving a remarkable accuracy of 97.5% on the NeuralTextures dataset from the 

FaceForensics++ bench- mark, all without using any fake images for training. This 

one-class-based approach demonstrates its potential for robust Deepfake detection 

[108]. proposes FRe- TAL, an approach to transfer learning for deepfake detection 

that uses Representation Learning (ReL) and Knowledge Distillation (KD) to reduce 

the risk of catastrophic forgetting. Results from the FaceForensics++ dataset show 

that FReTAL excels in domain adaptation challenges, with experimental results 

showing accuracy of up to 86.97% on low-quality deepfakes [109] response to the 

increasing concerns posed by facial manipulation technologies, presents a new face 

forgery detection method based on frequency-aware discriminative feature learning 

(FDFL). This method produces state-of-the-art results on three variants of the FF++ 

dataset by combining a single-center loss (SCL) with an adaptive frequency feature 

generating module, addressing the need for more discriminative and data-driven 

techniques in this critical domain of computer vision [110] introduces the A Facial 

Imitation Detection Method Using  Spatial-Phase  Shallow  Learning  (SPSL),  

leveraging both spatial and frequency information, particularly emphasizing the 

importance of phase spectrum in detecting up-sampling artifacts. SPSL achieves 

state-of-the-art performance on cross-dataset evaluations and multi-class 

classification, offering a com- prehensive solution considering the security issues 

posed by sophisticated face forgery methods [111]. introduces a novel approach 

using capsule networks for detecting various forms of image and video forgeries, 

including computer-generated content and replay attacks. The proposed method 

outperforms other state-of-the-art algorithms and achieves great accuracy, with a 

99.13% success rate on the FaceForensics++ dataset and a 96.75% success rate in 

distinguishing CGIs from PIs. This research demonstrates how capsule networks may 

be used in other areas of computer vision and forgery detection. 
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The model used in their study uses a bidirectional Gated Recurrent Unit network in 

conjunction with DenseNet for feature extraction. When evaluated on the 

FaceForensics++ dataset, the model achieved an AUC score of 99.4%. Different 

strategies can be used to detect and discriminate different video frame dynamics. A 

comparative analysis was conducted to identify deepfake movies by evaluating 

several DL algorithms [85]. One solution used a triplet loss architecture and metric 

learning techniques. This technique is used to distinguish different from similar 

features within the feature space. The approach was evaluated using the 

FaceForensics++ dataset and achieved an AUC of 92.9% using a limited number of 

25 frames per video. The researchers used a different methodology, training an 

Xception network in its entirety using face data. As a result, they achieved the 

highest AUC (99.2%) on the Celeb-DF dataset. Additional information can be 

beneficial for classification models, and research has shown that manually generated 

features can contribute to this improvement [68]. Furthermore, the identification of 

facial emotions and human behavior has been improved by using both hand-crafted 

and deep features [112]. Researchers have integrated the dynamic attributes derived 

from deep learning with hand-crafted features to develop a method that effectively 

identifies facial expressions with high accuracy. DNNs may not adequately account 

for low-level geometric or appearance-based information, which can be effectively 

represented by hand-crafted features [112] 

 

Table 2.1. Comparison table for related work to shown Main Findings Contributions, 

Limitations Challenges, algorithm used, strength and weaknesses.  

Ref Main 

Findings 

Contributio

ns 

Limitations 

Challenges 

Algorithm 

Used 

Strengths Weaknesses 

[38]  Addresses 

the 

generation of 

realistic 
video 

portraits and 

the need for 

deepfake 

detection 

Challenges 

in 

distinguishin

g between 
real and 

generated 

videos 

Facial 

expression 

transfer, 

deepfake 
detection 

Addresses 

the challenge 

of generating 

realistic 
videos 

Limited 

information 

on the 

specific 
algorithms 

used 

[39]  Presents a 

framework 

Challenges 

in face anti-

Deep 

learning, 

Enhances 

deepfake 

May require 

labeled data 
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for 

improving 

deepfake 

detection 

accuracy 

using 

auxiliary 

supervision 

signals 

spoofing 

detection 

auxiliary 

supervision 

signals 

detection 

accuracy 

for auxiliary 

supervision 

[40]  Introduces 

the "Face X-

ray" concept 

for detecting 

face forgery 

techniques 

including 

Deepfakes 

Detection of 

various face 

forgery 

techniques 

Deep neural 

network, 

"Face X-ray" 

concept 

Addresses a 

range of face 

forgery 

techniques 

 

[41]  Proposes a 

convolutiona

l neural 

network-

based 

approach for 

deepfake 

detection 

using lip 

synchronizati

on 

Detecting 

deepfakes 

using lip 

movements 

Convolutiona

l neural 

network, lip 

synchronizati

on 

Focuses on a 

specific 

aspect of 

deepfake 

detection 

May not 

cover all 

types of 

deepfake 

manipulation

s 

[42]  Converts 

labeled 

matrices into 

images for 

face 

detection and 

reconstructio

n using DL 

techniques 

Challenges 

in face 

detection 

and 

reconstructio

n 

Deep 

learning 

techniques, 

face 

detection 

Offers a 

novel 

approach to 

face 

detection and 

reconstructio

n 

Limited 

information 

on the 

specific 

algorithms 

used 

[43]  Uses DL 

algorithms to 

successfully 

extract the 

drainage 
basins of the 

Deepfake 

network 

Challenges 

in extracting 

drainage 

basins 

DL 

algorithms, 

drainage 

basins 

extraction 

Provides 

insights into 

Deepfake 

network 

analysis 

Limited 

information 

on the 

specific DL 

techniques 
used 

[44]  Utilizes DL 

techniques 

for face 

extraction 

Challenges 

in blob 

detection for 

face 

DL 

techniques, 

blob 

detection 

Effective in 

extracting 

faces from 

media 

May not 

cover all 

types of 

media or 
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from media 

using blob 

detection 

extraction manipulation 

types 

[45]  Develops a 

robust 

Deepfake 

face 

segmentation 

approach for 

varying 

illumination 

conditions 

Challenges 

in robust 

face 

segmentation 

for 

Deepfakes 

Deepfake 

face 

segmentation

, robustness 

Addresses 

the issue of 

varying 

illumination 

conditions 

Limited 

information 

on the 

specific 

segmentation 

method 

[46]  Uses 

Deepfake 

feature 

analysis to 

track desired 

attributes and 

extract data 

Challenges 

in tracking 

attributes in 

Deepfakes 

Deepfake 

feature 

analysis, 

attribute 

tracking 

Provides 

insights into 

tracking 

attributes in 

Deepfakes 

Limited 

information 

on the 

specific 

feature 

analysis 

[47]  Pinpoints 

areas for 

ellipse-based 

extraction 

using 

Deepfake 

networks 

Challenges 

in ellipse-

based 

extraction 

Face 

reconstructio

n, ellipse-

based 

extraction 

Offers an 

approach to 

extract 

regions of 

interest 

Limited 

information 

on the 

specific 

extraction 

method 

[48]  Discusses the 

importance 

of selecting 

an 

appropriate 

threshold and 

range for 

face analysis 

Challenges 

in threshold 

selection for 

face analysis 

Threshold 

selection, 

face analysis 

Provides 

guidance on 

threshold 

selection 

May require 

domain-

specific 

knowledge 

for threshold 

selection 

[49]  Discusses the 

reconstructio

n of face 

mask images 

using auto-

encoders 

Challenges 

in face mask 

image 

reconstructio

n 

Auto-

encoders, 

face mask 

reconstructio

n 

Addresses 

the 

reconstructio

n of face 

mask images 

Limited 

information 

on the 

specific auto-

encoder used 

[50]  Highlights 

the use of 
encoder-

decoder 

architecture 

in Deepfake 

generation 

Challenges 

in Deepfake 
generation 

Encoder-

decoder 
architecture, 

Deepfake 

generation 

Provides 

insights into 
the Deepfake 

generation 

process 

May not 

cover all 
aspects of 

Deepfake 

generation 

[51] Introduces an 

innovative 

Challenges 

in face 

Adaptive 

GAN, face 

Addresses 

limitations in 

Limited 

information 
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adaptive 

GAN for 

face 

transformatio

ns in 

Deepfakes 

transformati

on using 

GANs 

transformatio

ns 

GAN-based 

face 

transformatio

ns 

on the 

specific GAN 

architecture 

[52]  Implements a 

CNN with 

multiple 

tasks for face 

recognition 

and 

orientation 

constancy 

Challenges 

in face 

recognition 

and 

orientation 

constancy 

Convolutiona

l neural 

network, 

FaceNet 

Aims to 

improve face 

recognition 

and 

orientation 

constancy 

May require 

large labeled 

datasets for 

training 

[53] Discusses the 

use of Cycle 

GAN for 

constructing 

generative 

networks 

Challenges 

in generative 

network 

construction 

Cycle GAN, 

generative 

networks 

Offers a 

method for 

constructing 

generative 

networks 

Limited 

information 

on specific 

applications 

or datasets 

[54]  Highlights 

concerns 

about the 

impact of 

Deepfakes on 

safety and 

privacy in 

democratic 

republics 

Challenges 

in addressing 

the impact of 

Deepfakes 

Deepfake 

impact, 

safety, 

privacy 

Addresses a 

pressing 

societal 

concern 

May not 

provide 

concrete 

solutions for 

addressing 

the impact 

[55] Recent 

advancement

s in DL 

enable 

automatic 

Deepfake 

detection 

Challenges 

in automatic 

Deepfake 

detection 

Deep 

learning, 

automatic 

detection 

Addresses 

the need for 

automated 

detection 

May require 

large 

computationa

l resources 

for training 

[58]  Implements 

Face swap-

GAN to 

generate a 

Deepfake 

dataset 

Challenges 

in generating 

a diverse 

Deepfake 

dataset 

Face swap-

GAN, 

Deepfake 

dataset 

Provides a 

dataset for 

Deepfake 

detection 

research 

May not 

cover all 

possible 

Deepfake 

variations 

[59]  Produces 

low-budget, 

high-rating 

Deepfake 

movies using 

the 

VidTIMIT 

Challenges 

in creating 

high-quality 

Deepfake 

movies 

VidTIMIT 

dataset, 

Deepfake 

movies 

Demonstrate

s Deepfake 

generation 

capabilities 

Quality of 

Deepfake 

movies may 

vary 
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dataset 

[60] Deep 

learning 

techniques 

enhance 

image 

readability, 

face 

representatio

n, and 

illumination 

Challenges 

in improving 

image 

forensics 

with DL 

techniques 

Deep 

learning, 

image 

forensics 

Improves 

image 

forensics 

effectiveness 

Limited 

information 

on specific 

DL 

techniques 

used 

[66]  Focuses on 

detecting 

identity-

swapped 

videos where 

one person's 

face is 

replaced with 

another's 

Detection of 

identity-

swapped 

videos 

Auto-

encoder 

architecture 

Targets a 

specific type 

of deepfake 

manipulation 

May not 

cover all 

types of 

deepfake 

manipulation

s 

[67]  Investigates 

effectiveness 

of using 

specific 

facial regions 

for deepfake 

detection 

Limited 

generalizabil

ity to other 

manipulation 

techniques 

Deep 

learning, 

specific 

facial regions 

 Provides 

insights into 

effective 

feature 

regions 

Limited to 

detecting 

identity-

swapped 

videos 

[68]  Integrates 

dynamic 

attributes 

from deep 

learning with 

hand-crafted 

features for 

facial 

expression 

detection 

Effectivenes

s of hand-

crafted 

features in 

deepfake 

detection 

Deep 

features, 

hand-crafted 

features 

Effective in 

identifying 

facial 

expressions 

May not 

generalize 

well to all 

manipulation 

techniques 

[69]  Utilizes 

frame-level 

data for 

deepfake 

detection 

using a 

multi-task 

learning 

network 

Challenges 

in detecting 

deepfakes 

using frame-

level data 

Multi-task 

learning 

network, 

frame-level 

data 

Effective in 

detecting 

deepfake 

manipulation

s 

Limited 

interpretabilit

y of multi-

task learning 

models 

[70]  Focuses on 

detecting 

facial 

Detecting 

facial 

manipulation 

Long Short-

Term 

Memory 

Incorporates 

temporal 

information 

May require 

substantial 

computationa
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manipulation 

using Long 

Short-Term 

Memory 

(LSTM) 

networks 

in videos (LSTM) 

networks 

for detection l resources 

[71]  Uses 3D 

distance 

vectors 

between 

mouth 

landmarks, 

head 

rotations, and 

facial activity 

units for 

deepfake 

detection 

Dependence 

on 3D 

landmarks 

for detection 

3D distance 

vectors, 

mouth 

landmarks 

Provides a 

unique 

approach 

using 3D 

information 

Limited 

applicability 

to non-3D 

deepfake 

manipulation

s 

[72]  Combines 

deep learning 

with hand-

crafted 

features to 

detect facial 

emotions and 

human 

behavior 

Identifying 

facial 

emotions 

and behavior 

Deep 

learning, 

hand-crafted 

features 

Effective in 

identifying 

emotional 

and 

behavioral 

cues 

May not 

generalize 

well to all 

manipulation 

techniques 

[73]  Utilizes 

Multilayer 

Perceptron 

(MLP) for 

detecting 

deepfake 

videos based 

on eye blink 

patterns 

Identifying 

deepfake 

videos based 

on eye blink 

patterns 

Multilayer 

Perceptron 

(MLP), eye 

blink patterns 

Achieves 

high 

accuracy in 

detecting 

specific 

manipulation

s 

May not 

cover all 

types of 

deepfake 

manipulation

s 

[74]  Investigates 

the use of 

peripheral 

facial 

features for 

detecting 
facial 

manipulation 

Detecting 

facial 

manipulation 

using 

peripheral 

features 

Peripheral 

facial 

features, 3D 

head position 

Effective in 

distinguishin

g 

manipulated 

features 

Limited to 

specific types 

of 

manipulation

s 

[75] Proposes a 

modified 

ResNet50 

model for 

detecting 

Detecting 

deepfake 

videos using 

modified 

ResNet50 

Modified 

ResNet50 

model 

Achieves 

high 

accuracy in 

detecting 

deepfake 

May require 

substantial 

computationa

l resources 
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deepfake 

videos 

videos 

[76]  Investigates 

inconsistenci

es in eye 

blink patterns 

for detecting 

deepfake 

generators 

Detecting 

deepfake 

generators 

based on eye 

blink 

inconsistenci

es 

Long-Term 

Recurrent 

Convolutiona

l Network 

(LRCN) 

Achieves 

high 

accuracy in 

identifying 

inconsistenci

es 

May not 

generalize 

well to non-

eye-related 

manipulation

s 

[77]  Uses an 

LSTM 

network to 

detect 

anomalies 

across frames 

for 

identifying 

movies with 

identity 

swaps 

Detecting 

movies with 

identity 

swaps 

LSTM 

network, 

frame-level 

features 

Provides a 

unique 

approach 

using 

temporal 

information 

Limited 

information 

on dataset 

diversity 

[78]  Evaluates 

temporal 

action 

detection 

techniques in 

detecting 

deepfake 

videos 

Detecting 

deepfake 

videos using 

temporal 

action 

detection 

Temporal 

action 

detection 

techniques 

Achieves 

superior 

performance 

in detecting 

deepfakes 

- May require 

substantial 

computationa

l resources 

[79]  Investigates 

mesoscopic 

features in 

photographs 

using deep 

learning 

networks 

Detecting 

mesoscopic 

features in 

photographs 

Deep 

learning 

networks, 

mesoscopic 

features 

Provides 

insights into 

mesoscopic 

feature 

detection 

Limited 

interpretabilit

y of deep 

learning 

models 

[80] Uses a two-

channel 

network to 

detect altered 

facial images 

Detecting 

altered facial 

images using 

two-channel 

network 

Two-channel 

network, 

facial 

alteration 

detection 

Effective in 

detecting 

alterations in 

facial images 

Limited 

information 

on model 

architecture 

[81] Develops a 

multi-task 
learning 

network for 

detecting 

deepfake 

videos 

Detecting 

deepfake 
videos using 

multi-task 

learning 

Multi-task 

learning 
network, 

deepfake 

detection 

Improves 

performance 
in deepfake 

detection 

May require 

substantial 
computationa

l resources 

[82]  Demonstrate

s the ability 

Identifying 

deceptive 

Capsule 

networks, 

Outperforms 

other 

 Limited 

generalizabili
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of capsule 

networks to 

identify 

deceptive 

images and 

videos 

images and 

videos 

deceptive 

image, and 

video 

detection 

algorithms in 

identifying 

deception 

ty to non-

deceptive 

manipulation 

[83] Investigates 

the use of 

specific 

facial regions 

as input to a 

pre-trained 

Xception 

network for 

deepfake 

detection 

Detecting 

deepfakes 

using 

specific 

facial 

regions 

Xception 

network, 

specific 

facial regions 

Achieves 

high 

accuracy 

when using 

entire face 

input 

Limited to 

specific types 

of 

manipulation

s 

[84]  Uses an 

LSTM 

network to 

detect 

anomalies 

across frames 

for 

identifying 

movies with 

identity 

swaps 

Detecting 

movies with 

identity 

swaps 

LSTM 

network, 

frame-level 

features 

Provides a 

unique 

approach 

using 

temporal 

information 

Limited 

information 

on dataset 

diversity 

[85]  Evaluates 

temporal 

action 

detection 

techniques in 

detecting 

deepfake 

videos 

Detecting 

deepfake 

videos using 

temporal 

action 

detection 

Temporal 

action 

detection 

techniques 

Achieves 

superior 

performance 

in detecting 

deepfakes 

May require 

substantial 

computationa

l resources 

[86]  Evaluates 3D 

CNN 

techniques in 

action 

detection for 

deepfake 

videos 

Detecting 

actions in 

deepfake 

videos 

3D CNN 

techniques, 

action 

detection 

Achieves 

high 

accuracy in 

action 

detection 

Limited 

information 

on model 

architecture 

[87]  Proposes 

ID3, a 

deepfake 

detection 

model, and 

achieves high 

accuracy 

Detecting 

deepfakes 

using ID3 

ID3 model Achieves 

high 

accuracy in 

deepfake 

detection 

Limited 

interpretabilit

y of deep 

learning 

models 
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[88] Proposes a 

methodology 

for 

distinguishin

g authentic 

movies from 

deepfakes 

Distinguishi

ng authentic 

movies from 

deepfakes 

Methodology

, deepfake 

detection 

Provides a 

systematic 

approach to 

differentiate 

May not 

cover all 

types of 

deepfake 

manipulation

s 

[89] Utilizes deep 

learning 

networks for 

feature 

analysis 

Challenges 

in feature 

extraction 

and 

classification 

Deep 

learning 

networks, 

feature 

analysis 

Incorporates 

deep 

learning for 

improved 

accuracy 

Complexity 

in feature 

extraction 

[90] Sets strong 

baseline for 

facial 

manipulation 

detection 

using modern 

DL 

architectures 

Limitations 

of traditional 

handcrafted 

approaches 

Deep 

learning 

architectures, 

modern DL 

techniques 

Achieves 

robust 

detection 

using DL 

architectures 

Lack of 

interpretabilit

y in DL 

models 

[91] Achieves 

impressive 

accuracy 

exceeding 

97% in 

identifying 

manipulated 

video 

fragments 

Addressing 

the 

proliferation 

of deepfake 

videos 

Convolutiona

l and 

recurrent 

neural 

networks 

(CNN and 

RNN) 

Accurate 

detection of 

manipulated 

video 

fragments 

Limited 

information 

on dataset 

diversity 

[92]  Integrates 

temporal, 

behavioral 

biometrics 

based on 

facial 

emotions and 

head 

movements 

Robust 

defense 

against 

deceptive 

media 

manipulation

s 

Temporal 

and 

behavioral 

biometrics, 

facial 

emotions 

Offers a 

multi-modal 

approach for 

detection 

Limited 

robustness 

against 

adversarial 

attacks 

[93]  Remarkable 

versatility in 

detecting 

various 

forms of 

attacks, 

accuracy rate 

exceeding 

90% 

Safeguarding 

against 

digital image 

and video 

manipulation

s 

Capsule 

Networks, 

multi-modal 

approach 

High 

accuracy in 

detecting 

diverse 

attacks 

May lack 

scalability for 

large datasets 

[94]  Importance 

of fine-

Identifying 

manipulation 

Fine-tuning 

operations, 

Provides 

insights into 

Generalizabil

ity to all 
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tuning 

operations, 

insights into 

identifying 

specific 

manipulation 

techniques 

techniques in 

real-world 

scenarios 

insights into 

techniques 

real-world 

scenarios 

manipulation 

techniques 

[95]  Ensemble 

approach 

combining 

various CNN 

models, 

promising 

detection 

accuracy on 

extensive 

video 

datasets 

The 

challenge of 

detecting 

manipulated 

faces in 

video 

sequences 

Ensemble of 

CNN 

models, 

extensive 

video 

datasets 

Achieves 

promising 

detection 

accuracy 

May require 

significant 

computationa

l resources 

[96]  Combines 

geographical 

and temporal 

information, 

provides a 

robust 

defense 

against 

advanced 

manipulation 

techniques 

Detecting 

imperceptibl

e 

manipulation

s 

Geographical 

and temporal 

information, 

robust 

defense 

Excellent 

detection 

accuracy 

against 

advanced 

manipulation

s 

May not 

cover all 

types of 

manipulation

s 

[97] Introduces 

the Set 

Convolutiona

l Neural 

Network 

(SCNN) 

framework, 

achieving 

state-of-the-

art results 

Addressing 

the growing 

concern of 

misinformati

on in online 

content 

Set 

Convolutiona

l Neural 

Network 

(SCNN) 

Achieves 

state-of-the-

art results 

May require 

substantial 

computationa

l resources 

[98] State-of-the-

art results in 

detecting 
Deepfake, 

Face2Face, 

and 

FaceSwap 

manipulation

s 

Detecting 

misinformati

on in online 
video 

content 

Recurrent 

convolutiona

l models, 
various 

manipulation 

techniques 

Effective 

detection of 

manipulated 
faces 

May not 

generalize 

well to all 
manipulation 

techniques 

[99] Promising Identifying 3D CNN Robust Complexity 
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results with 

3D CNN 

models 

exhibiting 

strong 

detection 

accuracy 

across 

various 

manipulation 

techniques 

manipulated 

films across 

different 

techniques 

models, 

various 

manipulation 

techniques 

detection 

across 

diverse 

manipulation 

techniques 

in training 

and 

deployment 

[100]  Achieves 

adaptability 

even to 

previously 

unseen 

manipulation 

techniques 

Identifying 

image and 

video 

modification

s 

Convolutiona

l Neural 

Network 

(CNN) 

Demonstrate

s adaptability 

to new 

manipulation 

techniques 

Limited 

interpretabilit

y of CNN 

models 

[101]  Trained 

forgery 

detectors 

achieve 

remarkable 

accuracy on 

the 

benchmark 

Detecting 

various 

forms of 

facial 

manipulation 

Trained 

forgery 

detectors, 

comprehensi

ve 

benchmark 

Provides a 

strong 

benchmark 

for 

evaluation 

May not 

cover all 

emerging 

manipulation 

techniques 

[102]  Achieves 

high 

accuracy, 

especially on 

publicly 

available 

datasets 

Detecting 

fake videos 

using 

compact 

network 

architectures 

Modified 

AlexNet 

model, 

publicly 

available 

datasets 

High 

accuracy in 

detecting 

fake videos 

Limited 

information 

on model 

architecture 

[103]  Detects more 

than 98% of 

Deepfake 

videos, more 

than 95% of 

Face2Face 

videos 

Challenges 

in detecting 

face 

tampering in 

videos 

Compact 

network 

architectures, 

deep learning 

 High 

detection 

accuracy for 

specific 

manipulation 

techniques 

May not 

generalize 

well to all 

manipulation 

techniques 

[104]  Combines 

CNN with a 

fake face 

detector, 

achieving an 

excellent 

average 

accuracy 

Identifying 

false face 

photos 

created using 

different 

modification 

techniques 

CNN, fake 

face detector, 

various 

modification 

techniques 

Excellent 

average 

accuracy in 

identifying 

manipulated 

photos 

Complexity 

in model 

training and 

implementati

on 

[105]  Promising Detecting Optical flow Addresses May require 
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results in 

utilizing 

temporal 

dissimilaritie

s for 

deepfake 

video 

identification 

deepfake 

video based 

on temporal 

differences 

fields, 

temporal 

dissimilaritie

s 

temporal 

dissimilaritie

s for 

deepfake 

detection 

computationa

l resources 

for optical 

flow 

computation 

[106]  Focuses on 

the study of 

multiple 

temporal 

parts 

together, 

uses Linear 

Support 

Vector 

Machines 

(SVMs) 

Classifying 

data using 

SVMs for 

finding fake 

material 

Spatial-

temporal 

texture, 

Linear 

Support 

Vector 

Machines 

(SVMs) 

Effective in 

finding 

differences 

between real 

and fake 

sequences 

May not 

generalize 

well to all 

manipulation 

techniques 

[107]  OC FakeDect 

achieves 

remarkable 

accuracy of 

97.5% on the 

NeuralTextur

es dataset 

Robust 

Deepfake 

detection 

using one-

class 

anomaly 

approach 

One-class 

anomaly 

detection, 

robust 

Deepfake 

detection 

High 

accuracy in 

detecting 

Deepfakes 

Limited to 

specific 

dataset and 

Deepfake 

variations 

[108]  FReTAL 

excels in 

domain 

adaptation 

challenges, 

shows 

accuracy of 

up to 86.97% 

Reducing the 

risk of 

catastrophic 

forgetting in 

deepfake 

detection 

Transfer 

learning, 

domain 

adaptation, 

ReL, KD 

Improves 

domain 

adaptation in 

deepfake 

detection 

Limited 

interpretabilit

y in complex 

deep learning 

models 

[109]  State-of-the-

art results on 

three variants 

of the FF++ 

dataset, 

combines 

SCL with 

adaptive 
frequency 

feature 

generating 

module 

Addressing 

the need for 

more 

discriminativ

e and data-

driven 

techniques 

Frequency-

aware feature 

learning, 

SCL, 

discriminativ

e feature 

learning 

Achieves 

state-of-the-

art results on 

challenging 

datasets 

May require 

substantial 

computationa

l resources 

for training 

[110]  Emphasizes 

the 

importance 

Detecting 

subtle image 

manipulation

Spatial-Phase 

Shallow 

Learning 

- Focuses on 

detecting 

subtle image 

Limited 

information 

on SPSL 
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of phase 

spectrum in 

detecting up-

sampling 

artifacts 

s using 

spatial-phase 

information 

(SPSL), 

phase 

spectrum 

manipulation

s 

implementati

on details 
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PART 3 

 

TYPES OF DIGITAL FACE MANIPULATIONS 

 

3.1. ENTIRE FACE SYNTHESIS 

 

One of the initial methodologies in this context was Progressively Generative 

Adversarial Network (ProGAN) [113]. The fundamental concept involved 

commencing with a lower resolution and subsequently incorporating more layers that 

imitate increasingly intricate characteristics during training, thereby gradually 

enhancing the synthesis process. Promising results were observed for synthesizing 

whole faces through experiments utilizing the CelebA dataset [114]. The source code 

for the ProGAN architecture is publicly available and may be accessed on the 

GitHub platform. Style Generative Adversarial Network (StyleGAN) was introduced 

as an improved iteration incorporating an alternate G architecture inspired by the 

style transfer literature [115]. The StyleGAN framework introduces a novel generator 

architecture that enables the manipulation of synthesis at different scales intuitively. 

This approach leads to the automatic acquisition of unsupervised separation between 

high-level attributes, such as pose and identity, in the case of human faces and the 

stochastic variation present in the generated images, such as freckles and hair. 

Illustrative instances of these modifications are depicted in Figure 3.1, explain 

generated during the training of the StyleGAN model using the CelebA-HQ and 

FFHQ datasets [116]. 
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Figure 3.1. Examples of the entire face synthesis manipulation group, real images are 

extracted from http://www.whichfaceisreal.com/ and fake images from 

https://thispersondoesnotexist.com. 

 

Lastly, it is worth mentioning two widely recognized GAN techniques, namely 

StyleGAN2 [117] and StyleGAN2-ADA [118], which incorporate adaptive 

discriminator augmentation. Insufficient data during the training of a GAN 

sometimes results in the phenomenon of discriminator overfitting, which 

subsequently leads to training divergence. The proposed approach of StyleGAN- 

adaptive discriminator augmentation introduces an adaptive discriminator 

augmentation mechanism, which effectively enhances training stability in scenarios 

with limited data availability. The proposed methodology allows for training a GAN 

without altering the loss functions or network topologies. This approach may be 

applied to either train a GAN from its initial state or to enhance the performance of 

an existing GAN when presented with a novel dataset. The researchers have provided 

evidence to support the notion that excellent outcomes can be attained even with a 

very small quantity of training photographs, specifically a few thousand. To conduct 

tests on detecting real and fraudulent images within this digital modification group, 

researchers must get real facial photographs from various publicly accessible digital 

repositories. These sources include CelebA [114], FFHQ [115], CASIA-WebFace 

[119], VGGFace [120], and MegaFace [121]. 
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The Diverse Fake Face Dataset marks its recent entry into the field. To do full-face 

synthesis, the authors employed many synthetic pictures created by pre-trained 

models like ProGAN and StyleGAN [122]. 

 

The iFakeFaceDB dataset has been made available to the public [122]. The 

generation of the 250,000 and 80,000 synthetic facial images in this dataset was 

achieved using StyleGAN and ProGAN, respectively. To enhance its differentiation 

from prior dataset and maintain high realism while avoiding false detections, the 

iFakeFaceDB dataset employed a technique known as GANprintR (GAN fingerprint 

Removal) to eliminate the fingerprints of GAN designs. Figure 3.2 depicts two 

instances of fake photos, whereby one is generated directly by StyleGAN and the 

other is enhanced by eliminating the GAN fingerprint information. Including the 

GANprintR step in iFakeFaceDB renders it more formidable for robust fake 

identification than another dataset [117,118]. 

 

 

Figure 3.2. Examples of a fake image created using StyleGAN [122]. 

 

3.2. IDENTITY SWAP 

 

To create the desired impact (target), the countenance of an individual depicted in the 

original footage is substituted with the visage of another individual. In contrast to the 
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thorough synthesis of facial features, the objective of identity swap is to provide fake 

videos that are highly persuasive. Figure 3.3 illustrates examples of visual data 

retrieval [123]. 

 

 

Figure 3.3. Examples of the Identity Swap manipulation group [123]. 

 

The video clips studied are authentic recordings extracted from YouTube, depicting 

individuals of different age groups, ethnicities, and genders, all belonging to the 

Celeb-DF dataset [101]. YouTube also offers a variety of high-quality and authentic 

representations of these transitions. This form of manipulation has the potential to 

yield benefits across all sectors, with the film industry being particularly poised to 

reap significant advantages. Conversely, this technology can be used for a wide 

range of illicit activities, including but not limited to financial fraud, identity theft, 

the creation of explicit footage of celebrities, and the dissemination of 

misinformation. Typically, two primary tactics are taken into consideration when 

engaging in the manipulation of identity swaps [124]. 

 

In computer graphics, conventional techniques such as FaceSwap coexists with 

innovative DL approaches like DeepFakes, accompanied by established software 
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packages such as FaceSwap and DeepFaceLab. The procedural stages associated 

with producing an identity exchange film are illustrated in Figure 3.3 [123].  

 

The progression of visual changes in fake movies has been observed, beginning with 

the utilization of publically accessible fake dataset such as the UADFV dataset [125], 

and subsequently advancing to more recent dataset like Celeb-DF, Deepfake 

Detection Challenges (DFDC), DeeperForensics-1.0, and WildDeepfake datasets 

[126]. These modifications have contributed to the enhancement of realism in fake 

videos. Consequently, two discrete generations of identity swap dataset have 

emerged as shown in Figure 3.4.  

 

The initial cohort comprises three distinct datasets. The UADFV dataset can be seen 

as an early instance of a dataset that was made available to users without any cost or 

restrictions. This compilation involved the digital superimposition of Nicolas Cage's 

facial features onto the original subjects in a total of 49 YouTube videos, utilizing the 

mobile application known as FakeApp. Consequently, the fabrication of all fake 

videos solely revolves around the portrayal of a single individual's identity. Each 

video segment has a duration of 11.14 seconds and showcases a solitary human with 

a resolution of 294 by 500 pixels [127]. 

 

An additional Deepfake dataset was generated by using the VidTIMIT database 

videos for the generation of Deepfake content [128,129]. The VidTIMIT collection 

includes 620 created videos that cover 32 subjects [130]. The creation of fake videos 

has been made more accessible by using a commonly used GAN face-swapping 

technique. 

 

The GAN face-swapping technique makes use of a generative network produced by 

CycleGAN [131] and the weight parameters of FaceNet [132]. To achieve accurate 

face matching and reliable face recognition, researchers have created a Multi-Task 

Cascaded Convolutional Neural Network [133] 
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Figure 3.4. Graphical representation of the weaknesses presents in Identity Swap 

[125]; Celeb-DF and DFDC (2nd generation) [126]. 

 

3.3. FACE MORPHING 

 

To generate fake biometric face samples that exhibit characteristics like the biometric 

information of many individuals, one can employ digital face alteration techniques 

such as face morphing [134]. The development of morphing face pictures raises 

concerns about the reliability of facial sample checks used in various security 

systems. Studies have shown that these pictures have the potential to bypass such 
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checks for multiple individuals [135], posing a significant threat to the effectiveness 

and accuracy of face recognition systems. The illustration presented in Figure 3.5 

exemplifies the utilization of digital editing techniques to morph a facial image 

[134]. It is important to note that face morphing primarily focuses on image-level 

modifications, such as identity swaps, rather than video-level transformations. As 

depicted in Figure 3.5, it is common to consider the frontal view of the face as well. 

Extensive research has been conducted about face morphing in recent times. 

 

In previous studies, extensive investigations have been conducted on both morphing 

strategies and morphing attack detectors [135]. The generation method of face 

morphing images often involves considering the following three phases in sequential 

order. Identifying shared characteristics among the multitude of shown visages. 

Several commonly used techniques for achieving this objective involve:  

 

• The isolation of identifiable facial attributes such as eyes, noses, mouths, and 

so on. 

• The manipulation of the original facial images to ensure that their 

corresponding elements (known as landmarks) are geometrically aligned 

within the samples.  

• The merging of color values from the altered images. Post-processing 

techniques are frequently employed to eliminate anomalous artifacts resulting 

from pixel or region-based morphing [136]. 
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Figure 3.5. Example of a face morphing [134]. 

 

3.4. ATTRIBUTE MANIPULATION 

  

Facial variations encompass a range of modifications, including changes in colour, 

hair pigmentation, chronological age, biological sex, and the utilization of eyeglasses 

[137]. The technique of modification is frequently implemented by employing 

GANs, such as the previously introduced StarGAN approach [138]. An example of 

such manipulation is demonstrated by the extensively utilized smartphone 

application recognized as FaceApp. The emergence of this technology has rendered 

it possible to practically replicate the act of trying on eyeglasses, applying makeup, 

and even exploring various haircuts. The instances of attribute adjustments created 

by FaceApp are depicted in Figure 3.6, as documented by reference [139]. 

 

The application of GAN frameworks for modifying facial characteristics is prevalent 

[140]. Nevertheless, the researchers faced a dearth of publicly accessible information 

pertaining to this specific field, which posed a challenge for their research endeavors. 

One of the primary factors that contributes significantly to this phenomenon is the 

extensive accessibility of source code for various GAN techniques on the Internet. 

The provided accessibility facilitates the seamless generation of customized synthetic 

datasets by researchers to cater to their individual requirements. This section 

provides a compilation of the most recent approaches in the field of Generative 
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Adversarial Networks (GANs), organized in reverse chronological order. 

Additionally, matching references to source code are included. 

 

 

Figure 3.6. Examples of the Attribute Manipulation group [137].  

 

The integration of an encoder with a conditional GAN to develop the Invertible 

Conditional GAN enables sophisticated picture manipulation at a higher level. This 

methodology yields precise results when altering properties. However, this alteration 

significantly transforms the visual aspect of the object [141]. 

 

An encoder-decoder framework can be effectively trained to reconstruct images by 

capturing the essential features of the image and the attribute values directly in the 

latent space. Nevertheless, like the Invertible Conditional GAN, the generated 

images may have significant omissions of essential elements or exhibit unforeseen 

distortions [142]. 

 

3.5. EXPRESSION SWAP 

 

Face reenactment refers to the process of modifying the facial expression of an 

individual. While the literature proposes various techniques for manipulation, such as 

utilizing well-known GAN architectures for image-level manipulation [84], our 

research group specifically concentrates on two widely recognized methods, namely 
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Face2Face and NeuralTextures [143]. These methods involve substituting the facial 

expression of one individual in a video with that of another. The screenshots from the 

FaceForensics++ dataset [144] are depicted in Figure 3.7. The utilization of such 

manipulative tactics may yield significant ramifications, as evidenced by the 

dissemination of a viral film wherein Mark Zuckerberg is observed providing 

misleading statements. 

 

The only publicly available dataset for research in the field is an extended version of 

FaceForensics known as FaceForensics++ [145]. The primary focus of the 

FaceForensics dataset was first directed towards the Face2Face approach. The 

proposed technique in computer graphics enables the transfer of emotional content 

from one video to another while preserving the subject's identity [146]. 

 

In every video, the initial frames were used to create a transient three-dimensional 

model of the individual's face, afterward employed to monitor the individual's facial 

expressions throughout the remainder of the film. Subsequently, the set of 76 

Blendshape coefficients representing the source expression parameters for each 

frame was used in the application of the target video, resulting in the production of 

simulated iterations of the initial content. In a subsequent iteration of 

FaceForensics++ [143], a novel learning methodology centered around 

NeuralTextures. The approach employed in this study involves utilizing the raw 

video data to train a neural network that captures the texture of the subject. This 

neural network is integrated into a rendering network. The authors used the patch-

based GAN-loss of Pix2Pix in their approach [146]. 
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Figure 3.7. Examples of the expression swap manipulation group [144]. 

 

The chapter explores various types of digital face manipulations, including entire 

face synthesis, identity swap, face morphing, attribute manipulation, and expression 

swap. These manipulations encompass a wide range of techniques and applications, 

from generating high-resolution images using Progressive Generative Adversarial 

Networks (ProGAN) to altering facial attributes like complexion and hair 

pigmentation using Generative Adversarial Networks (GANs) such as StarGAN and 

FaceApp. The discussed techniques have both positive and negative implications. On 

the positive side, technologies like face morphing and attribute manipulation can be 

used for creative purposes in the fashion and entertainment industries, allowing users 

to experiment with different looks and styles. Additionally, identity swap and 

expression swap techniques have potential applications in filmmaking and special 

effects. However, these technologies also pose significant challenges and risks. The 

ability to create highly convincing fake videos and images, such as those generated 

by identity swap and expression swap methods, raises concerns about 

misinformation, identity theft, and financial fraud. Face morphing can undermine the 

reliability of facial recognition systems, potentially compromising security measures. 
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The availability of publicly accessible datasets, such as CelebA and FFHQ, has 

facilitated research in this area. Researchers have developed datasets like Celeb-DF 

and FaceForensics++ to support the study of deepfake detection and manipulation 

detection techniques. These datasets play a crucial role in evaluating the 

effectiveness of detection methods. 

 

In conclusion, digital face manipulations have become increasingly sophisticated, 

thanks to advancements in deep learning and GAN technology. While these 

techniques offer exciting possibilities for creative expression and entertainment, they 

also present significant challenges and risks in terms of privacy, security, and the 

spread of misinformation. The development of datasets like Celeb-DF and 

FaceForensics++ has allowed researchers to explore and develop detection methods 

to identify manipulated content accurately. These efforts are crucial in mitigating the 

potential harm caused by the misuse of digital face manipulation technologies. As 

technology continues to evolve, it is essential to strike a balance between innovation 

and responsible use. Ethical considerations, privacy safeguards, and detection 

mechanisms must be continually developed to address the challenges posed by 

digital face manipulations. Additionally, public awareness and education regarding 

the existence and implications of deepfake technology are essential to empower 

individuals to discern and respond to manipulated content effectively. 
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PART 4 

 

METHODOLOGY 

 

This chapter explains the methodology applied throughout this research. Section 4.1 

explains our RACNN model and datasets. Section 4.2 explains a comparative study 

of three enhancement-based models. Then, Section 4.3 explains the performance 

metrics. Finally, Section 4.4 explains transfer learning techniques for neural 

networks.  

 

4.1. RATIONALE-AUGMENTED CONVOLUTIONAL NEURAL 

NETWORKS (RACNN) MODEL  

 

Using the RACNN models applied in this study, our study found out that the 

Deepfake facial reconstruction problem has already been solved in terms of accuracy 

and for most available datasets. Figure 4.1 is a flowchart illustrating this process. 

Alternatively, our models were robust enough to perform Deepfake facial 

reconstruction without a publicly available training/testing dataset. 

 

. 
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Figure 4.1. Flowchart of the procedural method. 

 

4.1.1. Dataset Description 

 

This section explains the two data sets used in our RACNN model. 
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4.1.1.1. Deepfake Detection Challenges Dataset  

 

The Deepfake Detection Challenges dataset is a critical resource for addressing the 

emerging problem of deepfake videos, which are manipulated videos created using 

advanced AI techniques. This dataset has been carefully curated to include a wide 

range of real and Deepfake videos of varying complexity. It typically includes 

samples from a variety of sources, including different facial expressions, lighting 

conditions, camera angles, and scenarios [145].  

 

One of the primary goals of this dataset is to facilitate the development and 

evaluation of deepfake detection models. Researchers and practitioners use this 

dataset to build and refine machine learning algorithms that can effectively 

distinguish between authentic and manipulated videos. The dataset is organized into 

training, validation, and test subsets, allowing models to be trained on a large set of 

labeled data while evaluating their performance on unseen examples. This approach 

supports the development of robust and accurate deepfake detection algorithms that 

can potentially mitigate the harmful effects of misinformation and fraudulent content 

spread through manipulated videos. 

 

4.1.1.2. Faceforensics++ Dataset  

 

The Faceforensics++ dataset, or FF++, dataset is a significant contribution to the 

field of Deepfake detection research. This dataset is specifically designed to advance 

the capabilities of Deepfake detection methods. It consists of an extensive collection 

of manipulated videos that simulate real-world scenarios in which facial 

manipulation occurs. The dataset includes various manipulation techniques such as 

face swapping, reenactment, and more to generate convincing deepfake content 

[146]. 

 

Faceforensics++ provides a comprehensive suite of evaluation videos spanning 

multiple domains, including news, entertainment, and social media. It also provides 

corresponding original and manipulated videos, providing a controlled environment 

for training and testing deepfake detection models. Researchers and data scientists 
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can use this dataset to develop sophisticated deepfake detection methods using 

CNNs, attention mechanisms, and other state-of-the-art techniques. The diversity and 

realism of the dataset helps create robust and accurate models that can detect even 

the subtlest signs of facial manipulation, promoting trust in digital media and 

protecting against the potential misuse of manipulated content. 

 

In our RACNN model, these datasets collectively serve as the basis for training, 

99260 images belonging to 2 classes with  70%, 1030 images belonging to 2 classes 

with  10% validating, 26914 images belonging to 2 classes with 20% for testing and 

fine-tuning your Deepfake detection algorithms, ensuring that your model can 

effectively distinguish between real and fake videos, ultimately contributing to the 

ongoing effort to combat the spread of deceptive digital content. 

 

4.1.2. Feature Extraction  

 

Feature extraction using a RACNN involves exploiting the network's ability to 

highlight important regions, or "rationales," within an input image or video frame. 

These highlighted regions can serve as meaningful features for downstream tasks 

such as classification, object detection, or further analysis. Here's how feature 

extraction with a RACNN typically works: 

 

1. Input Data: Start with the input video frame. 

 

2. Rationale Generation: Pass the input data through the RACNN. The RACNN 

employs advanced techniques such as attention mechanisms to identify and highlight 

specific regions of interest within the input. 

 

3. Feature Extraction: Extract the highlighted regions or rationales as features. These 

regions are often represented as spatial maps that indicate the importance of each 

pixel or area within the input. 

 

The key advantage of using a RACNN for feature extraction is that it provides 

meaningful and context-aware regions of interest, which can enhance the 
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performance of subsequent tasks. This is especially valuable in scenarios where 

transparency and interpretability are important, as the rationale behind the features is 

readily available. 

 

4.1.3. Cropping and Alignment  

 

Cropping and alignment are essential preprocessing steps in deepfake detection, as 

they help ensure that input images or frames are in a standardized format, making it 

easier to compare and analyze them. Here's how cropping and alignment are typically 

performed in deepfake detection: 

 

1. Face Detection and Localization: 

   - Initially, face detection algorithms are used to locate faces within an image or 

video frame. 

   - These algorithms identify facial landmarks and the bounding box around the 

detected face(s). 

 

2. Cropping: 

   - Once the faces are detected, a cropping process is applied to isolate the face 

region. This involves extracting the pixels within the bounding box. 

 

3. Alignment: 

   - To ensure consistent facial features across different frames or images, alignment 

techniques are employed. 

   - Facial alignment involves adjusting the position and orientation of the detected 

face within the bounding box. 

   - Common alignment methods include landmark-based alignment, where facial 

landmarks (e.g., eyes, nose, mouth) are used to normalize the face's position, 

rotation, and scale. 

 

4. Normalization: 
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   - After cropping and alignment, the facial region is often normalized to a fixed size 

and orientation. This step is crucial for ensuring that all faces are represented 

consistently for analysis. 

   - Normalization may involve resizing the cropped face to a predefined resolution 

(e.g., 224x224 pixels) and ensuring it's centered within the image. 

Figure 4.2 explains that by cropping and aligning the faces within input images or 

frames, Deepfake detection models can focus on the most critical information, which 

is the facial region. This preprocessing step improves the model's ability to detect 

inconsistencies and anomalies that may indicate the presence of a Deepfake. 
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Figure 4.2. Cropping and Image alignment.  

 

 

4.1.4. Donald Trump Filter with RACNN Model  
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In our study, we utilize the "Donald Trump Filter," a specific computational filter 

characterized by its distinct attributes and capabilities that have been instrumental in 

facilitating the detection process in the context of our thesis. Rationale augmentation 

in CNNs is a technique used to improve the interpretability and explain ability of the 

network's decisions.  

 

The RACNN content was structured based on both the VGG model and the ethnic 

background of the individuals. The binary classification study resulted in identifying 

two categories: Category 0 includes real facial images, which include natural, 

legitimate, and disguised samples, while Category 1 refers to forgeries, which 

includes impersonator face images. 

 

Using the DFDC and FF++ datasets [123], all three models were trained for ten 

iterations at a training rate of 0.001 over ten hours. We applied the dataset to the test 

set to determine its reliability. We used data augmentation to flip all the original 

images horizontally and vertically, thereby doubling the growth rate (original image 

plus horizontally flipped image plus vertically flipped image). 

 

The Custom CNN design connected six convolutions via batch normalization, 

maximum pooling, and dropout layers (Conv2D). The input and output layers use a 

sigmoid function. However, the input layer employs a Rectified Linear Unit (ReLU). 

To improve the accuracy of the image analysis, we added padding to one kernel, and 

the method was applied to all layers to prevent overfitting. We trained and validated 

custom architectures on the original and enhanced datasets at a scale of 1/255. We 

created a training set to understand how data aggregation affects simulation results. 

Since not all photos had the same pixel quality, we included a horizontal flip, a 0.2 

zoom range, a 0.2 shear range, and a rescaling factor in the operation level to 

compensate for changes in image quality that would otherwise have affected the 

model's classification performance. 

 

We modeled a 16-layer CNN architecture, consisting of pooling layers, five max-

pooling layers, and one SoftMax layer using an approach identical to that of the 

VGG-19 model. Since VGG-19 has been pre-trained on numerous object classes, it 
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can acquire representations of deep features. VGG-19 has demonstrated the ability to 

correctly classify full faces. We applied a high-end setup to it by adding a dense 

layer after a previous layer block providing the face features and a dense network as 

the output layer to sigmoidal activation to create a model for Deepfake identification 

tasks. 

 

This study extends the Keras DenseNet-264 architecture by introducing a denser 

output layer. This architecture involves the placement of a 2x2 convolutional layer 

after a 3x3 MaxPooling layer with a stride of two. Furthermore, the input layers are 

equipped with a sigmoid activation function, batch normalization, and the ReLU 

activation method. In addition, the ensemble contains four full cubes, and the 

transition layers connecting each dense block contain a two-by-two average max 

pooling along with a one-by-one convolution. The classification model developed for 

this dense block-centered output layer accumulates image features from all levels of 

the network and is positioned before the final dense block. This model's training set 

comprises one hundred thousand photographs, validated against an additional twenty 

thousand. The training and validation utilize scaled versions of the baseline, 

grayscale, and enhanced datasets, incorporating horizontal flips, 20-degree rotations, 

and the rescaling method applied in the customized CNN architecture to enhance 

training data diversity. A separate training of the DenseNet structure on grayscale-

only data investigates the influence of color on classifying data into fake and real 

categories due to variations in pixel-level resolution between grayscale and color 

images. 

 

However, the VGG framework is constructed and evaluated exclusively on the 

primary dataset. All models are built as expected, except for an additional deep 

network with a sigmoid activation function. This additional layer consistently 

provides a useful rectifier nonlinear activation for binary classification, providing 

probability outputs between 0 and 1 that can be easily translated into specific class 

values. Currently, implementing a facial reconstruction system for security requires 

training all new individuals, which is not currently feasible with the existing 

architecture. The computational cost of a single forward pass image precludes real-

time face reconstruction. The training of the cross-entropy loss function, as shown in 
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Figure 4.3, guides the model to optimize the correct number of classifications within 

a dataset, rather than quantifying new facial features into an encoded vector. These 

two key challenges must be overcome to build a robust statistical model with high 

reliability and performance. 

 

 

Figure 4.3. Schematic of a rationally enhanced CNN network. 

 

It involves enhancing the model's capability to provide explanations or justifications 

for its predictions by highlighting relevant input features. Here are some key features 

of rationale augmentation in CNNs: 

 

1. Interpretability: Rationale augmentation helps make CNNs more interpretable by 

generating explanations for why a particular prediction was made. This can be 

crucial in applications where understanding the model's reasoning is important. 

 

2. Attention Mechanisms: Rationale augmentation often incorporates attention 

mechanisms into CNNs. These mechanisms allow the model to focus on specific 

regions or features of the input data that are most relevant to the prediction, making 

the model's decision more transparent. 

 

3. Highlighting Important Features: Rationale augmentation methods aim to 

highlight important input features or regions that contributed most to the model's 

decision. This can be visualized as heatmaps or saliency maps, showing which parts 

of the input were influential. 
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4. Improved Trustworthiness: By providing rationales or explanations, CNNs with 

rationale augmentation can instill more trust in their predictions, especially in critical 

domains such as healthcare, finance, or autonomous systems. 

 

5. Human-AI Collaboration: These models facilitate human-AI collaboration by 

enabling humans to understand and potentially correct model decisions when 

necessary. Users can intervene based on the provided rationales. 

 

6. Reducing Bias and Errors: Rationale augmentation can help identify biases or 

errors in model predictions by making it easier to detect when the model is relying on 

irrelevant or biased information. 

 

7. Natural Language Generation: In some cases, rationale augmentation may involve 

generating natural language explanations alongside the visual or numerical 

justifications, making the model's output more accessible to users. 

 

8. Explainable AI: Rationale augmentation aligns with the broader field of 

Explainable AI, which aims to make AI models more transparent and understandable 

to humans. 

 

Overall, rationale augmentation in CNNs enhances their transparency and the ability 

to provide meaningful justifications for their predictions, making them more useful 

and trustworthy in various applications. 

 

Then temporal features in the context of video analysis refer to patterns and 

information that evolve over time across multiple frames of a video sequence. 

Analyzing these features can be crucial for tasks such as motion detection, object 

tracking, action recognition, and more. These methods for visualizing temporal 

features can be valuable in various video analysis applications, from surveillance and 

security to entertainment and sports analytics. Depending on the specific task, the 

choice of visualization technique and feature extraction method may vary. Finally 

show fake video detection.  
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4.2. A COMPARATIVE STUDY OF ENHANCEMENT-BASED MODELS 

 

This section examines neural network techniques based on transfer learning. Transfer 

learning [149] involves employing pre-trained models in the prediction process, 

leveraging previously acquired knowledge to enhance prediction performance. The 

fine-tuning methods based on transfer learning retrain specific sections of pre-

existing networks using new datasets. 

 

This section analyzes the working principle of transfer learning approaches used for 

deepfake detection. The configuration settings and architecture of (NN) techniques 

are analyzed. This is followed by a classification of techniques with descriptions of 

each. 

 

• Proposed Net: A CNN can be constructed by overlaying multiple neural 

subunits. In each epoch, weight values are updated in the training phase using 

techniques such as backpropagation, which establishes connections between 

neurons and assigns weights to their connections. The initial part of the CNN 

captures features, while the subsequent part handles categorization. Pre-

trained networks such as DenseNet, accessible through the Keras API, have 

been employed. The DenseNet architecture, shown in Figure 4.5, includes 

models such as DenseNet201, DenseNet169, and DenseNet121, chosen to 

improve computational efficiency. The FF-CNN facilitates the 

interconnection between each level, ensuring that inputs from previous levels 

to maintain the feedforward nature, raising them for subsequent levels [150]. 

• The Dense Block: The Dense Block is a CNN module that directly connects 

all layers (with equivalent feature map sizes).  Initially proposed as a part of 

the DenseNet design, it ensures feed-forward nature by receiving additional 

inputs from previous layers and distributing its feature maps to subsequent 

layers. Unlike ResNets, features are concatenated rather than summed before 

being added to a layer. Consequently, a layer with l inputs gathers feature 

maps from all prior convolution blocks and distributes them to subsequent 

Level L layers. This approach adds L(L+1)/2 connections to an L-layer 

network, referred to as "dense connectivity". Convolutional layers play a 
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critical role in neural networks by capturing complex features from input data 

of fixed dimensions. DenseNet architectures include multiple dense blocks, 

such as the DenseNet169 with 169 layers distributed across 4 dense blocks, 

each consisting of three transition layers, a classification layer, and a 

convolutional layer. This model is initiated with max pooling of 56 following 

a 112 convolution, accepting 224x224 RGB images as input. The 

architecture, shown in Figure 4.4, illustrates a dense block (DB) consisting of 

six stacked layers [149]. 

 

 

Figure 4.4. Dense block (DB) with dense layers (DL) [149]. 

 

• Dense Connections: Dense connections are a type of layer found inside a 

(DNN). This layer is also known as Fully Linked Connections because it is 

the only layer in which each input is weighted and connected to each output. 

This means that both input and output parameters are available. This can 

result in many parameters for a large network, as shown in Figure 4.5, which 

represents the dense connection process. Eq. (4.5) describes the calculation of 

dense connections [149]. 

 ℎ𝑙 = 𝑔(𝑊𝑇ℎ𝑙−1)                                                                                          (4.5) 

where 𝑔 is a function of activation. 
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Figure 4.5. Dense Connections processes [149]. 

 

• The DenseNet: With dense blocks, we directly connect all layers (with 

equivalent feature map sizes). To maintain the feed-forward nature, each 

layer receives additional inputs from all previous layers and sends its feature 

maps to all subsequent layers. Figure 4.6 shows a dense net design [149]. 

 

 

Figure 4.6. The shape of Dense-Net [127]. 

 

• DenseNet121: The architecture of DenseNet represents a significant 

advancement over Residual CNN (ResNet). Unlike ResNet and other CNNs, 

DenseNet has direct connections between each layer and the next within the 

network [127]. Notably, DenseNet121, a precise model within the Keras 

framework, demonstrates extensive use of dense layers similar to the final 

layers. The model's compact structure encompasses multiple tightly packed 

blocks, including levels such as Batch Standardization (BN) and 3 × 3 

turnaround. Between the dense blocks, there are transition layers that contain 
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an average pooling of 2x2 and a 1x1 convolution. Following the previous 

dense block, a customized dense layer with sigmoid activation is 

incorporated. Furthermore, DenseNet-121 integrates six densely stacked 

layers within a dense block. The output of each dense layer correlates with its 

growth rate. 

• DenseNet201: The DenseNet201 uses a compressed network to facilitate 

training simplicity and parameter-efficient models that are expected to 

recycle features across successive layers. As a result, the input to the next 

layer is more diverse, which improves performance [149]. 

 

• DenseNet169: One of the most effective models for dealing with fading 

gradients has 169 levels and only three parameters. In addition, ResNet-50 

was integrated into the evaluation framework of this study for performance 

evaluation. The Residual Network (ResNet) is a neural architecture 

characterized by the incorporation of multiple deep layers to improve 

accuracy and efficiency in solving complex tasks. The introduction of more 

layers is based on the premise that this augmentation will increase the 

complexity of the layer attributes [149]. 

 

• ResNet50: ResNet50 consists of forty-eight convolution layers. This includes 

a maximum pool layer, and a typical pool layer. The sum of each of its 

floating-point processes is 3,8*109 [150]. This is shown in Figure 4.7. Instead 

of learning unsourced functions, ResNets learn residual features about the 

layer inputs. Instead of assuming that each of the few stacked layers directly 

corresponds to a preset underlying mapping, residual nets allow these stacked 

layers to adhere to a residual mapping. Residual nets are constructed by 

stacking residual blocks on top of each other. For example, a ResNet50 

consists of fifty layers of these blocks. Formally, with the required base 

mapping represented as H(x), we let the stacked nonlinear layers 

accommodate an additional mapping of F(x): = H(x)x. The initial mapping is 

modified to become F(x+x). There is empirical evidence that such networks 

are easier to tune or can be optimized from a greater depth [150]. 
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Figure 4.7. Design of Res-Net50 [150]. 

 

• VGG16: The widely used VGG16 model is primarily used for image 

recognition tasks. It uses a CNN structure and was first used in the 2014 

Large Scale Visual Recognition Challenge. In this study, VGG16 was 

adapted for Deepfake detection by replacing the top layers with a multilayer 

perceptron (MLP) [129]. The architecture of the model is detailed in Table 

4.1, where the first layer is the input layer. Subsequent layers include various 

components, including flattened layers, drop layers for regularization, dense 

layers for complex feature extraction, and sigmoid activation output layers for 

Deepfake classification. The focus is on 3*3 filter convolution levels and 

single pooling stages. The model culminates with a SoftMax output after two 

fully connected layers, where the "16" in VGG16 denotes the sixteen 

weighted layers in the model, as shown in Figure 4.8. Table 4.1 examines the 

configuration parameters and architectural layer analysis of the VGG16 

model. The initial layer acts as an input layer with dimensions (100, 256, 256, 

3). The implementation of VGG16 modeling layers with 512 units and 

14,714,688 training parameters follows. A drop layer is a subsequent layer of 

architecture that prevents model overfitting. Using flattened layers, the pixel 

data is turned into a series of a one-dimensional arrays. Predictions of 

Deepfake depend on a series of complex layers. In the dense layer, there are 

six units with feedback connections. To categorize Deepfakes, we applied the 

output data layer with sigmoid activation. The emphasis was placed on 3*3 

filter convolution levels and a single tempo rather than many 

hyperparameters. These stages used the same padding and maximum pool 

level as the 2*2 filter speed. Convolution and maximum pool levels are 

organized uniformly across the design. The output is a SoftMax after two 
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fully connected levels. The number 16 in VGG16 alludes to the fact that it 

contains sixteen weighted levels, as seen in Figure 4.8. 

Table 4.1. Model configuration settings and layer structure analysis for VGG16. 

# Layers Unity  Function of Activation  Shape of Output  Parameters 

1 Sec. Layers of Input / / (100, 256, 256, 3) zero 

2  Layers of VGG16  512 / (None, 8, 8, 512) 14,714,688 

3 Layers of Dropout  0.2 / (100, 8, 8, 512) zero 

4 Layers of Flatten  / None (100, 32,768) zero 

5 Layers of Dense  64 Re-LU (100, 64) 2,097,216 

6 Layers of Output  1 Sigmoid (curved) (100, 1) 65 

 

 

Figure 4.8. Design of VGG16 [151]. 

 

• VGG19: In terms of performance, a single convolutional layer outperforms 

the sophisticated CNN approach. For example, the layer allows max-pooling 

downsampling and a modified ReLU activation function to select the highest 

values within an image region for area averaging. Downsampling layers are 

often used to reduce variables while preserving important sample features, as 

shown in Figure 4.9 for VGG19. 
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Figure 4.9. Design of VGG19 [151]. 

 

• The VGG-Face: The most efficient technique for mental image identification 

is to use the standard face recognition datasets published by the Oxford 

Visual Geometry Group [152]. This strategy allows us to create a large 

training dataset while consuming little energy. All five rows of the layer 

contain convolutional and max-pooling levels. Each first and second block 

had two 3x3 convolutional levels and one pooling level. 

 

For the 3x3 convolution, the levels are determined by the max-pooling level, with 

each level consisting of blocks three, four, and five. At each convolution level, we 

used the ReLU activation function. VGG-Face requires pre-trained weights. Finally, 

we added dense levels to our five-level blocks to achieve the necessary facial 

features. The final step was to add the net production and the activated sigmoid to the 

dense level set. As shown in Figure 4.10, this study also introduced a pattern that 

shows the same overall difference. 
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Figure 4.10. Design of VGG-Face [152].  

 

They misclassified 138 real images as fake and 497 as false, making it hard to 

distinguish real images from phony ones. Figure 4.11 shows a screenshot of the 

classification of "true" and "false" images. 

 

 

Figure 4.1. Classification of the real and fake pictures. 

 

Once the face is detected and an image of a face is cropped, reconstruction with a 

triplet-loss trained network becomes a straightforward operation. A forward pass in 

such a model produces a 128-dimensional vector representing the unique 

identification of the individual. This result indicates the degree of similarity between 

two faces by calculating the L2 (Euclidean) distance between the 128-dimensional 

identity vectors of two photographs. In addition, a threshold value determines how 

similar or dissimilar a face must be to be considered a match. Comparing the 128-

dimensional feature vector to a set of known encodings until another vector is found 

within the threshold makes it easy to reconstruct. Table 4.2 summarizes the values 

for each CNN layer used in this study. 
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Table 4.2. Summary of the values for each CNN layer used in this study. 

Layer Size- in Size- out Kernel Param FLPS 

Conv1 220 X 220 X 3 110 X 110 X 64 7 X 7 X 3,2 9K 115M 

Pool1 110 X 110 X 64 55 X 55 X 64 3 X 3 X 64,2 0  

Rnorm1 55 X 55 X 64 55 X 55 X 64  0  

Conv2a 55 X 55 X 64 55 X 55 X 64 1 X1 X64,1 4K 13M 

Conv2 55 X 55 X 64 55 X 55 X 192 3 X 3 X64,1 111K 335M 

Rnorm2 55 X 55 X 192 55 X 55 X 192  0  

Pool2 55 X 55 X 192 28 X 28 X 192 3 X 3 X 192,2 0  

Conv3a 28 X 28 X 192 28 X 28 X 192 1 X1 X192,1 37K 29M 

Conv3 28 X 28 X 192 28 X 28 X 384 3 X 3 X 192,1 664K 521M 

Pool3 28 X 28 X 384 14 X 14 X 384 3 X 3 X 192,2 0  

Conv4a 14 X 14 X 384 14 X 14 X 384 1 X1 X384,1 148K 29M 

Conv4 14 X 14 X 384 14 X 14 X 256 3 X 3 X 384,1 885K 173M 

Conv5a 14 X 14 X 256 14 X 14 X 256 1 X1 X 256,1 66K 13M 

Conv5 14 X 14 X 256 14 X 14 X 256 3 X 3 X 256,1 590K 116M 

Conv6a 14 X 14 X 256 14 X 14 X 256 1 X1 X 256,1 66K 13M 

Conv6 14 X 14 X 256 14 X 14 X 256 3 X 3 X 256,2 590K  116M 

Pool4 14 X 14 X 256 7 X 7 X 256  0  

contact 7 X 7 X 256 7 X 7 X 256  0  

Fc1 7 X 7 X 256 1 X 32 X 128 Maxout p=2 103M 103M 

Fc2 1 X 32 X 128 1 X 32 X 128 Maxout p=2 34M 34M 

Fc7128 1 X 32 X 128 1 X 1 X 128  524K 0.5M 

L2  1 X 1 X 128 1 X 1 X 128  0  

Total     140M 1.6B 

 

We investigated architectural changes and preprocessing techniques that could 

improve the overall performance/efficiency of the models after one or more models 

have been selected. Using Deepfake models, a Python library designed specifically 

for this purpose, we were able to experiment with triplet loss trained networks and 

gain access to pre-trained face reconstruction models via CNN. 

 

Figure 4.12 shows the basic diagram for several DL designs. The initial step involved 

collecting the data and extracting the relevant features. Eight neural network 

topologies were employed, and each was evaluated based on five separate evaluation 

metrics: precision, precision, F1-score, recall, and Receiver Operating Characteristic 

Curve (ROC curve). This stage extracts several features from the feedback images. 

Using a filter of a certain size (P*P), the input image is convolved with the filter. 

Further stages can then use this data to learn more about what they see in the corners 

and edges of the image. After that, it undergoes a stage of pooling. This stage 

achieves its primary goal of reducing the size of a convoluted feature map by 

eliminating the connections between levels and executing autonomously on each 

element plan. Pooling can be conducted in a variety of ways to achieve distinct 
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outcomes. The Max Pooling technique is used to perform downsampling (pooling) 

on a feature map by identifying the maximum value within patches of the feature 

map. This layer is often used after a convolutional layer. Incorporating a limited 

degree of translation invariance ensures that most pooled outputs are essentially 

unaffected by variations in image size [148]. 

 

 

Figure 4.12. The employment method [148]. 

 

4.3. PERFORMANCE METRICS 

 

Accuracy: indicates how close the predictive algorithm is to the goal or actual 

outcome (fake versus real), i.e., the number of times the prototype was able to make 

accurate predictions out of all the predictions it chose to make. The number of 

correct predictions and the total number of predictions made represent the model's 

true prediction and total predictions, respectively see in Eq. (4.1.), [148]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
                               (4.1) 

 

Precision: indicates the stability of the results, regardless of how close they are to the 

true value while using the target label. Eq. (4.2) defines the ratio that indicates the 

proportion of correct identifications by model. In Eq. (4.2), TP is the number of true 

positives, and FP is the number of false positives [148]. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                           (4.2) 

 

Recall: is the proportion of correct predictions that the model has correctly detected. 

This ratio is represented by Eq. (4.3), where TP is the number of true positives and 

FN is the number of false negatives. Recall is the ability of the classifier to identify 

all positive samples [148]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                (4.3) 

 

F1-score: By balancing precision and recall, the F1 score indicates a model's ability 

to reliably predict both TP and TN (True Negative) classes. F1-score is the harmonic 

mean of precision and recall. For Deepfake categorization, the score is a more 

appropriate metric for evaluating model performance, given both classes are 

significant and the relative contributions of precision and recall to an F1 score are 

greater than equal. The equation for the F1-score is given by Eq. (4.4) [148]. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                  (4.4) 
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PART 5 

 

RESULTS 

 

5.1. DEEPFAKE DETECTION BY USING DFDC DATASET  

 

This thesis presents a research methodology aimed at improving the effectiveness of 

deepfake models by using CNN with improved logic within MATLAB 2019b. The 

approach involves incorporating depth information into the CNN model, using either 

a stereo camera or a depth sensor, to address instances of fake face images, such as 

those displayed on external screens or printed on paper. In essence, the detection-

oriented CNN model will only initiate face reconstruction when it identifies an RGB 

image with depth information, as opposed to the conventional flat RGB images. 

 

Figures 5.1- 5.9 present experimental findings illustrating how the proposed method 

use augmented CNN to generate successful triplets by producing faces comparable to 

those in the DFDC dataset but with different feature vectors and labels. Large 

datasets are in short supply for firms like Google and Apple to employ in training 

their state-of-the-art DL models, making this method helpful for researchers. In 

addition, this approach aims to improve the accuracy of Deepfake identification by 

developing a system that can effectively categorize Deepfake images while 

minimizing data loss. Furthermore, it aims to comprehensively explore the potential 

consequences and future aspects associated with the application of DL methods in 

the field of deepfake detection. 
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Figure 5.1. Sample images-1 for evaluation. 

   

 

Figure 5.2. Sample video image-1 during training and validation. 

 

 

Figure 5.3. Initialization image-1 in applied model. 
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Figure 5.4. Sample image-2 for evaluation.  

 

 

Figure 5.5. Image sample-2 during training and validation of the Deepfake network. 

 

 

Figure 5.6. Initialization image-2 in applied model. 
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Figure 5.7. Video sample images-3 for evaluation. 

 

 

Figure 5.8. The video image sample-3 during training and validation. 

 

  

Figure 5.9. Initialization image-3 in applied model. 

 

Figure 5.10 shows 12700 for TPs, 757 for FPs, 589 for FNs, and 12868 for TNs in 

the confusion matrix for the DFDC dataset, and Table 5.1 compares the results across 

various models using different evaluation metrics for the DFDC dataset. VGG-Face 
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achieved a remarkable 99.1% accuracy rate on our training set, outperforming all 

other pre-trained neural networks. However, the least efficient design, VGG16, 

achieved an accuracy rate of 93%. DenseNet121 and ResNet50 showed comparable 

performance, both achieving an accuracy rate of 98%, resulting in a tie for second 

place. Both the DenseNet201 and DenseNet169 models achieved high accuracy rates 

of 97% and 96%, respectively. The highest achievable accuracy (99%) was achieved 

by combining four models. The models used were ResNet50, VGGFace, 

DenseNet169 and DenseNet121. VGGFace achieved a recall rate of 98%. The 

DenseNet201 and VGG19 models performed similarly to the VGGFace model, with 

all three achieving 97% recall. The VGGFace architecture demonstrated the highest 

F1 score, reaching an impressive 99. The DenseNet121 model was observed to have 

the lowest F1 score at 85%. ResNet50 achieved an F1 score of 98%, positioning it as 

the second highest performing model. The DenseNet121 design had the lowest AUC 

value, while the VGGFace architecture had the highest AUC value, with achieving a 

score of 99.9%. The RACNN model proposed demonstrated a high level of accuracy, 

achieving a rate of 95.00% on the DFDC dataset. The custom architecture 

demonstrated a precision of 94.37% and a recall of 95.57%. Despite achieving a 

recall rate of 94.37%, the F1 score dropped to 94.97%. In addition, a remarkable 

AUC of 94% was achieved. 

 

 

Figure 5.10. Confusion matrix for DFDC dataset. 
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Table 5.1. Comparison of the many models on DFDC dataset. 

Model Accuracy Precision Recall F1 score AUC 

VGG19 0.940 0.910 0.970 0.940 0.9870 

VGG16 0.930 0.930 0.920 0.920 0.9770 

VGG-Face 0.991 0.990 0.980 0.990 0.9990 

DenseNet169 0.960 0.990 0.920 0.950 0.9960 

DenseNet201 0.970 0.960 0.970 0.960 0.9940 

DenseNet121 0.980 0.990 0.750 0.850 0.9710 

ResNet50 0.980 0.990 0.950 0.980 0.9970 

Our Model 0.9500 0.9437  0.9557 0.9497 0.940 

 

To demonstrate the effectiveness of our CNN model, we first used several features of 

different dimensions within a sliding window that spans the entire Deepfake network 

video. During training, these features act as "weak classifiers" that distinguish 

whether they contribute to facial attributes. The classifier identifies features that 

resemble those of human faces, effectively ignoring image regions with minimal or 

no features that don't contribute to subsequent computations. Using a multi-CNN 

architecture, CNNs are used to construct the face bounding box. We show how 

multiple iterations of network propagation can refine many imprecise bounding 

boxes into a manageable, high-quality selection. Figure 5.11 shows the training and 

validation accuracies evaluated after 50 training epochs, where an accuracy of 

95.00% is achieved. 

 

Figure 5.11. Graph of training and validation accuracy.  
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In addition, it is important to consider the dataset to be used. The reasoning 

augmented CNN (labeled faces in the wild) public dataset seems excellent for this 

purpose, assuming the images are rotated and cropped appropriately, based on the 

publications cited. Finally, to improve the accuracy and minimize the loss of the 

model, we undertook the task of adjusting the hyperparameters and using 

regularization or dropout approaches. This strategy is predicated on the assumption 

that we lack the capacity to train the model internally. In this scenario, an 

examination was conducted to explore potential methodologies that could be utilized 

to enhance the efficiency of the facial reconstruction procedure by leveraging state-

of-the-art ML models. Figure 5.12 shows the training and validation loss over 50 

training epochs, reaching a minimal value of 0.675. 

 

 

Figure 5.12. Graph of training and validation loss. 

 

Table 5.2 provides a comparative evaluation of our research results in relation to 

several previous studies. Several studies [131] in this area used a RNN model and 

achieved a comparable level of accuracy of approximately 54.08%. In another study 

[132], the use of the Vision Transformer with Xception Network (ViXNet) model 

resulted in an accuracy rate of 83.18%. Similarly, researchers in another study [133] 

reported an accuracy rate of 94.43% when using the LSTM model in their research. 

Meanwhile, another research [134] used a CNN model and achieved an accuracy rate 

of 84.4%. Finally, the study conducted by a separate group of authors [135], which 

incorporated the Xception model, demonstrated an accuracy of 81.6%. 
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Table 5.2. Performance of our model in comparison to existing approaches in terms 

of different evaluation metrics on DFDC dataset. 

Reference  Method / Model  Accuracy Precision Recall AUC 

[153]   RNN 54.08% 24.96% 35.08% 51% 

[154]  ViXNet 83.18% - - 90.26% 

[155] LSTM  94.43% - 94.30% - 

[156]  CNN  84.40%  - - 84% 

[157] Xception 81.60% - - 66.16% 

Our Model  RACNN + 

Donald Trump 
95.00% 94.37%  95.56% 94.00% 

 

5.2. DEEPFAKE DETECTION BY USING FACEFORENSICS++ DATASET 

 

The methodology includes face alignment, Gaussian Newton optimization, and 

image blending. Figure 5.13 shows the creation of a manipulated video using a DL 

technique called CNN Merger with Rationale-Augmented. It transforms an image of 

Nicolas Cage into a deepfake resembling Donald Trump, highlighting the use of DL 

algorithms and CNNs in conjunction with the Rationale-Augmented approach to 

create highly realistic, deceptive video content. 

 

 

Figure 5.13. The detection of motion in the input images across multiple evaluations 

of the face. 

 

The experimental results shown in Figures 5.14 and 5.14 demonstrate the feasibility 

of using an improved CNN model to accurately construct correct triplets using the 

FaceForencies++ dataset. This dataset generates faces with similar features but 

different feature vectors and labels. Figure 5.14 illustrates the application of DL 

models to identify the authenticity of images of Donald Trump and Nicolas Cage.  In 

addition, the proposed technique involves analyzing video frames to identify 
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anomalies in motion patterns that could potentially serve as indicators of deepfake 

manipulation. Figure 5.15 shows the motion detection process applied to various 

instances of character transformation, with a specific focus on Donald Trump. 

 

    

Figure 5.14. Facial landmarks are detected using a state-of-the-art face alignment 

network that accurately captures 2D and 3D coordinates. 

 

 

Figure 5.15. The detection of motion in the input images across multiple evaluations 

of the face. 

 

Figure 5.16 shows 22156 for true positives, 1514 for false positives, 1327 for false 

negatives, and 22343 for true negatives in the confusion matrix for the FF++ dataset. 

The RACNN model was designed considering several factors such as the quality and 

quantity of the training data and the inclusion of regularization methods. A 

comparison was made with the CNN model where the collected data was trained and 

validated for 50 epochs. The RACNN model proposed achieved an accuracy of 

94.00% on the FF++ dataset. The custom architecture demonstrated a precision of 
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93.60% and a recall of 94.35%. Despite achieving a recall rate of 94.35%, the F1 

score dropped to 93.97%. In addition, a remarkable AUC of 94% was achieved. The 

model loss was measured during the training and validation phases for both datasets.  

 

 

Figure 5.16. Confusion matrix for FF++ dataset. 

 

Table 5.3 provides a detailed evaluation of our model's performance in terms of 

accuracy relative to existing methods, using the FF++ dataset as the basis for 

comparison. Several research efforts in Deepfake detection have used different 

neural network architectures and strategies to achieve accurate results. For example, 

in [136], the VGG16 and ResNet50 models emerged as robust contenders, with 

accuracies approaching 86.61% and 75.46%, respectively. A different approach in a 

separate study [137] focused on the Resnet18 model, which showed a remarkable 

accuracy rate of 92.23%. In a parallel study [138], researchers harnessed the potential 

of the AMTENnet model and achieved an admirable accuracy rate of 90.11%. 

Notably, another scientific investigation [139] turned to the VGG16 model, 

achieving a commendable accuracy rate of 91.21%, while another investigation [140] 

ventured into the realm of the EfficientNet model, yielding an accuracy rate of 

85.84%. Finally, Efficient Capsule Network [141] achieved a remarkable accuracy 

rate of 94.51%. These comparative results provide valuable insights into the 

effectiveness of different deepfake detection methods and contribute significantly to 

the ongoing discourse and progress in this critical research area. 
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Table 5.3. Performance of our model in comparison to existing approaches in terms 

of accuracy on FF++ dataset. 

Reference Model Accuracy 

[158] VGG16 81.61% 

[158] ResNet50 75.46% 

[159] Resnet18 92.23% 

[160] AMTENnet 90.11% 

[161] VGG16 91.21% 

[162] EfficientNet 85.84% 

[163] Efficient-Capsule Network 94.51% 

Our model RACNN + Donald Trump 94.00% 

 

These results underscore the effectiveness of the RACNN in accurately 

distinguishing between real and fake images, demonstrating its potential utility in 

real-world scenarios. The remarkable accuracy of the model is due to its unique 

design, which incorporates advanced architectural techniques such as sophisticated 

CNN layers, attention mechanisms, and the integration of temporal information. This 

holistic approach enables the RACNN to capture intricate features and patterns 

associated with real and fake images, setting it apart from other models.  



79 

 

 

PART 6 

 

CONCLUSION 

 

A Deepfake network architecture has significant potential in the field of global 

security research, providing solutions to address misbehavior and security challenges 

through facial reconstruction. Our Deepfake architecture might be applied to various 

applications, ranging from security to unfamiliar observational contexts such as face 

detection and reconstruction. In this thesis, we evaluated two datasets, the first 

dataset DFDC dataset using a MATLAB R2019a-based, Rationale-Augmented 

Convolutional Neural Network (RACNN), and the second FaceForensics++ dataset. 

The CNN strategy is practically constant, and there is little variation in 

computational cost between the two methods. When applying the Donald Trump 

filter to the Deepfake video, we found that a low computational cost was necessary to 

establish a faster link based on the association between the faces. This large dataset 

has been produced many times, making it perfect for precise grouping and splitting. 

Moreover, the simple implementation of the CNN model facilitated its integration 

with a partitioning technique, yielding a remarkable accuracy of 94.9989% for the 

DFDC dataset and 93.9987% for the FaceForensics++ dataset.  

 

Future research may explore unsupervised assembly techniques such as autoencoders 

to evaluate their effectiveness in Deepfake classification within CNN algorithms. 

Recommendations for future studies are further outlined below: 

 

• Classification methods could be developed to analyze and then flag users of 

social networking sites who upload pictures or videos before being published 

online. This would help stop the spread of false information and prevent its 

further dissemination.  

• We intend to enhance further the performance of DL algorithms and 

investigate the implementation of video steganography, steganalysis, and 
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cryptanalysis in identifying and classifying honest and persuasive facial 

images. This would allow us to classify and identify real and fake face 

images.  

• Generate training data that can be used to improve model effectiveness by 

collecting and testing a variety of hidden classifiers.  

• Implement the patch-dependent fuzzy rough set feature selection technique to 

identify deepfakes through anomaly detection in originally used patches. 

• Combining local image techniques with inter-plus ensemble modeling 

approaches, such as holistic, content, noise level, and steganographic, to 

achieve improved performance by considering different aspects of image 

characteristics. 

• Evaluating the performance of EffectiveNet on the Deepfake image datasets 

used in this thesis to identify potentially suitable modeling frameworks for 

ensemble-based approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

 

REFERENCES 

 

1. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner, 

“FaceForensics++: Learning to Detect Manipulated Facial Images,” 2019 

IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019. 

 

2. E. M. Torralba, “Fibonacci Numbers as Hyperparameters for Image Dimension 

of a Convolu-tional Neural Network Image Prognosis Classification Model of 

COVID X-ray Images,” International Journal of Multidisciplinary: Applied 

Business and Education Research, vol. 3, no. 9, pp. 1703–1716, Sep. 2022. 

 

3. Y. Li, M.-C. Chang, and S. Lyu, “In Ictu Oculi: Exposing AI Created Fake 

Videos by Detecting Eye Blinking,” 2018 IEEE International Workshop on 

Information Forensics and Security (WIFS), Dec. 2018.  

 

4. P. Korshunov and S. Marcel, “Vulnerability assessment and detection of 

Deepfake videos,” 2019 International Conference on Biometrics (ICB), Jun. 

2019.  

 

5. J. Fridrich and J. Kodovsky, “Rich Models for Steganalysis of Digital Images,” 

IEEE Transactions on Information Forensics and Security, vol. 7, no. 3, pp. 

868–882, Jun. 2012.  

 

6. R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-Garcia, 

“Deepfakes and beyond: A Survey of face manipulation and fake detection,” 

Information Fusion, vol. 64, pp. 131–148, Dec. 2020. 

 

7. P. Yu, Z. Xia, J. Fei, and Y. Lu, “A Survey on Deepfake Video Detection,” IET 

Biometrics, vol. 10, no. 6, pp. 607–624, Apr. 2021. 

 

8. W. M. Wubet*, “The Deepfake Challenges and Deepfake Video Detection,” 

International Journal of Innovative Technology and Exploring Engineering, 

vol. 9, no. 6, pp. 789–796, Apr. 2020. 

 

9. D. Guera and E. J. Delp, “Deepfake Video Detection Using Recurrent Neural 

Networks,” 2018 15th IEEE International Conference on Advanced Video and 

Signal Based Surveillance (AVSS), Nov. 2018. 

 

10. E. Sabir, et al. Recurrent convolutional strategies for face manipulation detection 
in videos. Interfaces (GUI), 3.1: 80-87, 2019. 

 

11. O. de Lima, S. Franklin, S. Basu, B. Karwoski and A. George, "Deepfake 

detection using spatiotemporal convolutional networks", IEEE Access, 2020. 

 



82 

12.  Z. Tianyu, M. Zhenjiang, and Z. Jianhu, “Combining CNN with Hand-Crafted 

Features for Image Classification,” 2018 14th IEEE International Conference 

on Signal Processing (ICSP), Aug. 2018. 

 

13. S. Das, S. Seferbekov, A. Datta, M. S. Islam and M. R. Amin, "Towards Solving 

the DeepFake Problem: An Analysis on Improving DeepFake Detection using 

Dynamic Face Augmentation," 2021 IEEE/CVF International Conference on 

Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021. 

 

14. DeepFaceLab. https://github.com/iperov/DeepFaceLab, accessed: 2020-03-30. 

 

15.  faceswap. https://github.com/deepfakes/faceswap, accessed: 2020-03-30. 

 

16. MarekKowalski/FaceSwap. https://github.com/MarekKowalski/ FaceSwap, 

accessed: 2020-04-06. 

 

17. C.-K. Lee, Y.-J. Cheon, and W.-Y. Hwang, “Least Squares Generative 

Adversarial Networks-Based Anomaly Detection,” IEEE Access, vol. 10, pp. 

26920–26930, 2022.  

 

18. Y. Que and H. J. Lee, “Densely Connected Convolutional Networks for Multi-

Exposure Fusion,” 2018 International Conference on Computational Science 

and Computational Intelligence (CSCI), Dec. 2018. 

 

19. Y. Sun, X. Wang, and X. Tang, “Deep Learning Face Representation from 

Predicting 10,000 Classes,” 2014 IEEE Conference on Computer Vision and 

Pattern Recognition, Jun. 2014.  

 

20. A. Kolekar and V. Dalal, “Barcode Detection and Classification using SSD 

(Single Shot Multibox Detector) Deep Learning Algorithm,” SSRN Electronic 

Journal, 2020.  

 

21. C. Xiaopeng, C. Jiangzhong, L. Yuqin, and D. Qingyun, “Improved Training of 

Spectral Normalization Generative Adversarial Networks,” 2020 2nd World 

Symposium on Artificial Intelligence (WSAI), Jun. 2020.  

 

22. O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” 

International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, Apr. 

2015. 

 

23. H. Mo, B. Chen, and W. Luo, “Fake Faces Identification via Convolutional 
Neural Network,” Proceedings of the 6th ACM Workshop on Information 

Hiding and Multimedia Security, Jun. 2018.  

 

24. L. Dang, S. Hassan, S. Im, J. Lee, S. Lee, and H. Moon, “Deep Learning Based 

Computer-Generated Face Identification Using Convolutional Neural Network,” 

Applied Sciences, vol. 8, no. 12, p. 2610, Dec. 2018.  

 

https://github.com/MarekKowalski/


83 

25. Z. Liu, Y. Niu, and Q. Qu, “Fingerprint Identification using Ridge Lines,” 2022 

3rd International Conference on Computer Vision, Image and Deep Learning 

&amp; International Conference on Computer Engineering and Applications 

(CVIDL &amp; ICCEA), May 2022 

 

26. C.-C. Hsu, Y.-X. Zhuang, and C.-Y. Lee, “Deep Fake Image Detection Based on 

Pairwise Learning,” Applied Sciences, vol. 10, no. 1, p. 370, Jan. 2020. 

 

27. S. Unnikrishnan and A. Eshack, “Face spoof detection using image distortion 

analysis and image quality assessment,” 2016 International Conference on 

Emerging Technological Trends (ICETT), Oct. 2016.  

 

28. I. Korshunova, W. Shi, J. Dambre, and L. Theis, “Fast Face-Swap Using 

Convolutional Neural Networks,” 2017 IEEE International Conference on 

Computer Vision (ICCV), Oct. 2017.  

 

29. Y. Zhang, L. Zheng, and V. L. L. Thing, “Automated face swapping and its 

detection,” 2017 IEEE 2nd International Conference on Signal and Image 

Processing (ICSIP), Aug. 2017.  

 

30. X. Wang, N. Thome, and M. Cord, “Gaze latent support vector machine for 

image classification improved by weakly supervised region selection,” Pattern 

Recognition, vol. 72, pp. 59–71, Dec. 2017. 

 

31. S. Bai, “Growing random forest on deep convolutional neural networks for scene 

categorization,” Expert Systems with Applications, vol. 71, pp. 279–287, Apr. 

2017.  

 

32. L. Zheng, S. Duffner, K. Idrissi, C. Garcia, and A. Baskurt, “Siamese multi-layer 

perceptrons for dimensionality reduction and face identification,” Multimedia 

Tools and Applications, vol. 75, no. 9, pp. 5055–5073, Aug. 2015.  

 

33. X. Xuan, B. Peng, W. Wang, and J. Dong, “On the Generalization of GAN 

Image Forensics,” Lecture Notes in Computer Science, pp. 134–141, 2019.  

 

34. P. Yang, R. Ni, and Y. Zhao, “Recapture Image Forensics Based on Laplacian 

Convolutional Neural Networks,” Lecture Notes in Computer Science, pp. 119–

128, 2017.  

 

35. B. Bayar and M. C. Stamm, “A Deep Learning Approach to Universal Image 

Manipulation Detection Using a New Convolutional Layer,” Proceedings of the 

4th ACM Workshop on Information Hiding and Multimedia Security, Jun. 

2016.  

 

36. X. Liu, X. Wang, and S. Matwin, “Interpretable Deep Convolutional Neural 

Networks via Meta-learning,” 2018 International Joint Conference on Neural 

Networks (IJCNN), Jul. 2018.  

 



84 

37. Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus 

Thies, Matthias Nießner. "FaceForensics++: Learning to Detect Manipulated 

Facial Images." In IEEE International Conference on Computer Vision 

Workshops (ICCVW), 2019. DOI: 10.1109/ICCVW.2019.00173 

 

38. Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, 

Matthias Nießner, Patrick Pérez, Christian Richardt, Michael Zollhöfer. "Deep 

Video Portraits." In ACM Transactions on Graphics (TOG), 2018. DOI: 

10.1145/3197517.3201283 

 

39. Zitong Yu, Chenxu Zhao, Zhengming Ding, Mingming Jiang, Jinqiao Wang, 

Xiaopeng Hong. "Learning Deep Models for Face Anti-Spoofing: Binary or 

Auxiliary Supervision." In IEEE Transactions on Information Forensics and 

Security, 2019. DOI: 10.1109/TIFS.2018.2889071 

 

40. Xin Yang, Yuezun Li, Zheng Wang, Yuan Yuan, Chenggang Yan. "Face X-ray 

for More General Face Forgery Detection." In IEEE Transactions on 

Information Forensics and Security, 2020. DOI: 10.1109/TIFS.2019.2927976 

 

41. Muhammad Usama, Mian Ahsan Iftikhar, Muhammad Arsalan. "Detecting 

Deepfake Videos from the Lip Movements Using CNN." In IEEE Access, 2020. 

DOI: 10.1109/ACCESS.2020.3011343 

 

42. C. Zhang, Y. Feng, B. Qiang, and J. Shang, “Wasserstein Generative Recurrent 

Adversarial Networks for Image Generating,” 2018 24th International 

Conference on Pattern Recognition (ICPR), Aug. 2018.  

 

43. K. Lei, M. Mardani, J. M. Pauly, and S. S. Vasanawala, “Wasserstein GANs for 

MR Imaging: From Paired to Unpaired Training,” IEEE Transactions on 

Medical Imaging, vol. 40, no. 1, pp. 105–115, Jan. 2021. 

 

44. C.-K. Lee, Y.-J. Cheon, and W.-Y. Hwang, “Least Squares Generative 

Adversarial Networks-Based Anomaly Detection,” IEEE Access, vol. 10, pp. 

26920–26930, 2022. 

 

45. G. Keren, J. Deng, J. Pohjalainen, and B. Schuller, “Convolutional Neural 

Networks with Data Augmentation for Classifying Speakers’ Native Language,” 

Interspeech 2016, Sep. 2016.  

 

46. I. J. Goodfellow, J. P. Abadie, M. Mirza et al., "Generative adversarial nets, 

"NIPS" 14," Proceedings of the 27th Inter- national Conference on Neural 

Information Processing Sys- tems, vol. 2, pp. 2672–2680, 2014.  

 

47. K. Kulkarni, “DeepFake Detection: A survey of countering malicious 

DeepFakes,” International Journal for Research in Applied Science and 

Engineering Technology, vol. 10, no. 6, pp. 4492–4495, Jun. 2022. 

 



85 

48. T. Jung, S. Kim, as well as K. Kim, "DeepVision: Deep fakes detection 

utilization human eye blinking pattern," IEEE Access, vol. 8, pp. 83144–83154, 

2020. 

 

49. M. Westerlund, "The emergence of Deepfake technology: a review," 

Technology Innovation Management Review, vol. 9, no. 11, pp. 39–52, 2019. 

 

50. M.-H. Maras as well as A. Alexandrou, "Determining authenticity of video 

evidence in the age of artificial intelligence as well as in the wake of Deepfake 

videos," International Journal of Evidence as well as Proof, vol. 23, no. 3, pp. 

255–262, 2019. 

 

51. A. M. Almars, "Deep fakes detection techniques utilization deep learning: a 

survey," Journal of Computer as well as Communications, vol. 9, no. 5, pp. 

20–35, 2021. 

 

52. L. Guarnera, O. Giudice, as well as S. Battiato, "DeepFake detection by 

analyzing convolutional traces," in Proceedings of the 2020 IEEE/CVF 

Conference on Computer Vision as well as Pattern Rec- ognition Workshops 

(CVPRW), pp. 2841–2850, Seattle, WA, U.S.A., 2020. 

 

53. A. Punnappurath as well as M. S. Brown, "Learning raw image reconstruction-

aware deep image compressors," IEEE Transactions on Pattern Analysis as 

well as Machine Intelligence, vol. 42, no. 4, pp. 1013–1019, 2020. 

 

54. Z. Cheng, H. Sun, M. Takeuchi, as well as J. Katto, "Energy compaction-based 

image compression utilization convolutional AutoEncoder," IEEE Transactions 

on Multimedia, vol. 22, no. 4, pp. 860–873, 2020. 

 

55. J. Chorowski, R. J. Weiss, S. Bengio, as well as A. van den Oord, "Unsupervised 

speech representation learning utilization WaveNet autoencoders," IEEE/ACM 

Transactions on Audio, Speech, as well as Language Processing, vol. 27, no. 

12, pp. 2041–2053, 2019. 

 

56. Faceswap, "Deep fakes software for all," https://github.com/ Deep-

fakes/faceswap. 

 

57. FakeApp 2.2.0, https://www.malavida.com/en/soft/fakeapp/. 

 

58. DeepFaketf, “Deepfake based on tensorflow,” 

https://github.com/StromWine/DeepFake%20tf. 

 

59. DFaker, https://github.com/dfaker/df. 

 

60. DeepFaceLab, https://github.com/iperov/DeepFaceLab. 

61. Faceswap-GAN, https://github.com/shaoanlu/faceswap-GAN. 

 

62. Keras-VGGFace, “VGGFace implementation with Keras frame-work,” 

https://github.com/rcmalli/keras-vggface. 

https://www.malavida.com/en/soft/fakeapp/
https://github.com/StromWine/DeepFake%20tf
https://github.com/dfaker/df
https://github.com/iperov/DeepFaceLab
https://github.com/shaoanlu/faceswap-GAN
https://github.com/rcmalli/keras-vggface


86 

 

63. FaceNet, https://github.com/davidsandberg/facenet. 

 

64. CycleGAN, https://github.com/junyanz/pytorch-CycleGAN- and-pix2pix. 

 

65. R. Chesney and D. K. Citron, “Deep Fakes: A Looming Challenge for Privacy, 

Democracy, and National Security,” SSRN Electronic Journal, 2018. 

 

66. T. T. Nguyen et al., “Deep Learning for Deepfakes Creation and Detection: A 

Survey,” SSRN Electronic Journal, 2022. 

 

67. R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-Garcia, 

“Deepfakes and beyond: A Survey of face manipulation and fake detection,” 

Information Fusion, vol. 64, pp. 131–148, Dec. 2020.  

 

68. A. Kumar, A. Bhavsar, and R. Verma, “Detecting Deepfakes with Metric 

Learning,” 2020 8th International Workshop on Biometrics and Forensics 

(IWBF), Apr. 2020.  

 

69. Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-DF: A Large-Scale 

Challenging Dataset for DeepFake Forensics,” 2020 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), Jun. 2020. 

 

70. S. Lyu, “Deepfake Detection: Current Challenges and Next Steps,” 2020 IEEE 

International Conference on Multimedia &amp; Expo Workshops (ICMEW), 

Jul. 2020 

 

71. M. Boháček and H. Farid, “Protecting world leaders against deep fakes using 

facial, gestural, and vocal mannerisms,” Proceedings of the National Academy 

of Sciences, vol. 119, no. 48, Nov. 2022.  

 

72. F. Matern, C. Riess, and M. Stamminger, “Exploiting Visual Artifacts to Expose 

Deepfakes and Face Manipulations,” 2019 IEEE Winter Applications of 

Computer Vision Workshops (WACVW), Jan. 2019.  

 

73. F. Matern, C. Riess, and M. Stamminger, “Exploiting Visual Artifacts to Expose 

Deepfakes and Face Manipulations,” 2019 IEEE Winter Applications of 

Computer Vision Workshops (WACVW), Jan. 2019.  

 

74. X. Yang, Y. Li, and S. Lyu, “Exposing Deep Fakes Using Inconsistent Head 

Poses,” ICASSP 2019 - 2019 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), May 2019 

 

https://github.com/davidsandberg/facenet


87 

75. LI, Yuezun; LYU, Siwei. Exposing deepfake videos by detecting face warping 

artifacts. arXiv preprint arXiv:1811.00656, 2018. 

 

76. Y. Li, M.-C. Chang, and S. Lyu, “In Ictu Oculi: Exposing AI Created Fake 

Videos by Detecting Eye Blinking,” 2018 IEEE International Workshop on 

Information Forensics and Security (WIFS), Dec. 2018.  

 

77. T. Jung, S. Kim, and K. Kim, “DeepVision: Deepfakes Detection Using Human 

Eye Blinking Pattern,” IEEE Access, vol. 8, pp. 83144–83154, 2020.  

 

78. D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “MesoNet: a Compact 

Facial Video Forgery Detection Network,” 2018 IEEE International Workshop 

on Information Forensics and Security (WIFS), Dec. 2018.  

 

79. P. Zhou, X. Han, V. I. Morariu, and L. S. Davis, “Two-Stream Neural Networks 

for Tampered Face Detection,” 2017 IEEE Conference on Computer Vision 

and Pattern Recognition Workshops (CVPRW), Jul. 2017.  

 

80. M. Goljan and J. Fridrich, “CFA-aware features for steganalysis of color 

images,” Media Watermarking, Security, and Forensics 2015, Mar. 2015.  

 

81. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner, 

“FaceForensics++: Learning to Detect Manipulated Facial Images,” 2019 

IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019.  

 

82. H. H. Nguyen, J. Yamagishi, and I. Echizen, “Capsule-forensics: Using Capsule 

Networks to Detect Forged Images and Videos,” ICASSP 2019 - 2019 IEEE 

International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), May 2019.  

 

83. SIMONYAN, Karen; ZISSERMAN, Andrew. Very deep convolutional 

networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 

2014. 

 

84. D. Guera and E. J. Delp, “Deepfake Video Detection Using Recurrent Neural 

Networks,” 2018 15th IEEE International Conference on Advanced Video and 

Signal Based Surveillance (AVSS), Nov. 2018.  

 

85. DE LIMA, Oscar, et al. Deepfake detection using spatiotemporal convolutional 

networks. arXiv preprint arXiv:2006.14749, 2020. 

 

86. Y. Wang and A. Dantcheva, “A video is worth more than 1000 lies. Comparing 

3DCNN approaches for detecting deepfakes,” 2020 15th IEEE International 



88 

Conference on Automatic Face and Gesture Recognition (FG 2020), Nov. 

2020.  

 

87. K. Hara, H. Kataoka, and Y. Satoh, “Can Spatiotemporal 3D CNNs Retrace the 

History of 2D CNNs and ImageNet?,” 2018 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, Jun. 2018. 

 

88. A. Traore and M. A. Akhloufi, “Violence Detection in Videos using Deep 

Recurrent and Convolutional Neural Networks,” 2020 IEEE International 

Conference on Systems, Man, and Cybernetics (SMC), Oct. 2020.  

 

89. Z. Tianyu, M. Zhenjiang, and Z. Jianhu, “Combining CNN with Hand-Crafted 

Features for Image Classification,” 2018 14th IEEE International Conference 

on Signal Processing (ICSP), Aug. 2018.  

 

90. A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies and M. Nießner, 

"Faceforensics: A large-scale video dataset for forgery detection in human 

faces", arXiv:1803.09179, 2018.   

 

91. D. Guera and E. J. Delp, “Deepfake Video Detection Using Recurrent Neural 

Networks,” 2018 15th IEEE International Conference on Advanced Video and 

Signal Based Surveillance (AVSS), Nov. 2018.  

 

92. S. Agarwal, H. Farid, T. El-Gaaly, and S.-N. Lim, “Detecting Deep-Fake Videos 

from Appearance and Behavior,” 2020 IEEE International Workshop on 

Information Forensics and Security (WIFS), Dec. 2020.  

 

93. H. H. Nguyen, J. Yamagishi, and I. Echizen, “Capsule-forensics: Using Capsule 

Networks to Detect Forged Images and Videos,” ICASSP 2019 - 2019 IEEE 

International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), May 2019.  

 

94. F. Marcon, C. Pasquini, and G. Boato, “Detection of Manipulated Face Videos 

over Social Networks: A Large-Scale Study,” Journal of Imaging, vol. 7, no. 

10, p. 193, Sep. 2021.  

 

95. N. Bonettini, E. D. Cannas, S. Mandelli, L. Bondi, P. Bestagini, and S. Tubaro, 

“Video Face Manipulation Detection Through Ensemble of CNNs,” 2020 25th 

International Conference on Pattern Recognition (ICPR), Jan. 2021.  

 

96. G. Fox, W. Liu, H. Kim, H.-P. Seidel, M. Elgharib, and C. Theobalt, 

“Videoforensicshq: Detecting High-Quality Manipulated Face Videos,” 2021 

IEEE International Conference on Multimedia and Expo (ICME), Jul. 2021.  

 



89 

97. Z. Xu et al., “Detecting facial manipulated videos based on set convolutional 

neural networks,” Journal of Visual Communication and Image 

Representation, vol. 77, p. 103119, May 2021.  

 

98. E. Sabir, J. Cheng, A. Jaiswal, W. Abd-Almageed, I. Masi and P. Natarajan, 

"Recurrent convolutional strategies for face manipulation detection in videos", 

Proc. CVPR Workshops, pp. 80-87, 2019. 

 

99. Y. Wang and A. Dantcheva, “A video is worth more than 1000 lies. Comparing 

3DCNN approaches for detecting deepfakes,” 2020 15th IEEE International 

Conference on Automatic Face and Gesture Recognition (FG 2020), Nov. 

2020.  

 

100.  H. H. Nguyen, F. Fang, J. Yamagishi, and I. Echizen, “Multi-task Learning for 

Detecting and Segmenting Manipulated Facial Images and Videos,” 2019 IEEE 

10th International Conference on Biometrics Theory, Applications and 

Systems (BTAS), Sep. 2019.  

 

101.  A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner, 

“FaceForensics++: Learning to Detect Manipulated Facial Images,” 2019 

IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019. 

 

102. D. Xie, P. Chatterjee, Z. Liu, K. Roy, and E. Kossi, “DeepFake Detection on 

Publicly Available Datasets using Modified AlexNet,” 2020 IEEE Symposium 

Series on Computational Intelligence (SSCI), Dec. 2020.  

 

103. D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “MesoNet: a Compact 

Facial Video Forgery Detection Network,” 2018 IEEE International Workshop 

on Information Forensics and Security (WIFS), Dec. 2018.  

 

104. Z. Guo, G. Yang, J. Chen, and X. Sun, “Fake face detection via adaptive 

manipulation traces extraction network,” Computer Vision and Image 

Understanding, vol. 204, p. 103170, Mar. 2021.  

 

105. I. Amerini, L. Galteri, R. Caldelli, and A. Del Bimbo, “Deepfake Video 

Detection through Optical Flow Based CNN,” 2019 IEEE/CVF International 

Conference on Computer Vision Workshop (ICCVW), Oct. 2019.  

 

106. M. Bonomi, C. Pasquini, and G. Boato, “Dynamic texture analysis for detecting 

fake faces in video sequences,” Journal of Visual Communication and Image 

Representation, vol. 79, p. 103239, Aug. 2021.  

 



90 

107. H. Khalid and S. S. Woo, “OC-FakeDect: Classifying Deepfakes Using One-

class Variational Autoencoder,” 2020 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition Workshops (CVPRW), Jun. 2020.  

 

108. M. Kim, S. Tariq, and S. S. Woo, “FReTAL: Generalizing Deepfake Detection 

using Knowledge Distillation and Representation Learning,” 2021 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition Workshops 

(CVPRW), Jun. 2021. 

 

109. J. Li, H. Xie, J. Li, Z. Wang, and Y. Zhang, “Frequency-aware Discriminative 

Feature Learning Supervised by Single-Center Loss for Face Forgery 

Detection,” 2021 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), Jun. 2021.  

 

110. H. Liu et al., “Spatial-Phase Shallow Learning: Rethinking Face Forgery 

Detection in Frequency Domain,” 2021 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition (CVPR), Jun. 2021.  

 

111.  H. H. Nguyen, J. Yamagishi, and I. Echizen, “Capsule-forensics: Using Capsule 

Networks to Detect Forged Images and Videos,” ICASSP 2019 - 2019 IEEE 

International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), May 2019.  

 

112. X. Fan and T. Tjahjadi, “Fusing dynamic deep learned features and handcrafted 

features for facial expression recognition,” Journal of Visual Communication 

and Image Representation, vol. 65, p. 102659, Dec. 2019.  

 

 

113. Isabella di Lenardo, Simone Bianco, Paolo Napoletano, Raimondo Schettini. 

"ForgeryNet: A Large-Scale Dataset for Forgery Detection in Art." In 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR) Workshops, 2020.  

 

114. J. K. Lewis et al., “Deepfake Video Detection Based on Spatial, Spectral, and 

Temporal Inconsistencies Using Multimodal Deep Learning,” 2020 IEEE 

Applied Imagery Pattern Recognition Workshop (AIPR), Oct. 2020  

 

115. Y. Zhang, L. Zheng, and V. L. L. Thing, “Automated face swapping and its 

detection,” 2017 IEEE 2nd International Conference on Signal and Image 

Processing (ICSIP), Aug. 2017.  
 

116. Passos LA, Jodas D, da Costa KA, et al (2022) A review of deep learning-

based approaches for deepfake content detection. arXiv preprint 

arXiv:220206095 

 



91 

117. TIWARI, Aniruddha; DAVE, Rushit; VANAMALA, Mounika. Leveraging 

Deep Learning Approaches for Deepfake Detection: A Review. arXiv preprint 

arXiv:2304.01908, 2023. 

 

 

118. T. Karras, T. Aila, S. Laine and J. Lehtinen, "Progressive growing of GANs for 

improved quality stability and variation", Proc. Int. Conf. Learn. 

Representations, 2018. 

 

119. Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the 

Wild,” 2015 IEEE International Conference on Computer Vision (ICCV), 

Dec. 2015. 

 

120. T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for 

Generative Adversarial Networks,” 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), Jun. 2019. 

 

121. X. Huang and S. Belongie, “Arbitrary Style Transfer in Real-Time with 

Adaptive Instance Normalization,” 2017 IEEE International Conference on 

Computer Vision (ICCV), Oct. 2017. 

 

122. T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, 

“Analyzing and Improving the Image Quality of StyleGAN,” 2020 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 

2020 

 

123. T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen and T. Aila, "Training 

generative adversarial networks with limited data", Proc. Conf. Neural Inf. 

Process. Syst., pp. 12104-12114, 2020 

 

124. S. Liu, P. Cui, W. Zhu, and S. Yang, “Learning Socially Embedded Visual 

Representation from Scratch,” Proceedings of the 23rd ACM international 

conference on Multimedia, Oct. 2015. 

 

125. Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2: A 

Dataset for Recognising Faces across Pose and Age,” 2018 13th IEEE 

International Conference on Automatic Face &amp; Gesture Recognition 

(FG 2018), May 2018.  

 

126. A. Nech and I. Kemelmacher-Shlizerman, “Level Playing Field for Million 

Scale Face Recognition,” 2017 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), Jul. 2017 

 

127. J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, H. Proenca, and J. 

Fierrez, “GANprintR: Improved Fakes and Evaluation of the State of the Art in 

Face Manipulation Detection,” IEEE Journal of Selected Topics in Signal 

Processing, vol. 14, no. 5, pp. 1038–1048, Aug. 2020 

 



92 

128. Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-DF: A Large-Scale 

Challenging Dataset for DeepFake Forensics,” 2020 IEEE/CVF Conference 

on Computer Vision and Pattern Recognition (CVPR), Jun. 2020 

 

129. Y. Mirsky and W. Lee, "The creation and detection of deepfakes: A survey", 

arXiv:2004.11138, 2020 

 

130. Y. Li, M.-C. Chang, and S. Lyu, “In Ictu Oculi: Exposing AI Created Fake 

Videos by Detecting Eye Blinking,” 2018 IEEE International Workshop on 

Information Forensics and Security (WIFS), Dec. 2018 

 

131. B. Dolhansky, R. Howes, B. Pflaum, N. Baram and C. C. Ferrer, "The 

deepfake detection challenge (DFDC) preview dataset", arXiv:1910.08854v2, 

2019 

 

132. Y. Li, M.-C. Chang, and S. Lyu, “In Ictu Oculi: Exposing AI Created Fake 

Videos by Detecting Eye Blinking,” 2018 IEEE International Workshop on 

Information Forensics and Security (WIFS), Dec. 2018 

133. R. Skibba, “Accuracy Eludes Competitors in Facebook Deepfake Detection 

Challenge,” Engineering, vol. 6, no. 12, pp. 1339–1340, Dec. 2020 

 

134. P. Korshunov and S. Marcel, "DeepFakes: A new threat to face recognition? 

Assessment and detection", arXiv:1812.08685v1, 2018 

 

135. C. Sanderson and B. C. Lovell, “Multi-Region Probabilistic Histograms for 

Robust and Scalable Identity Inference,” Lecture Notes in Computer Science, 

pp. 199–208, 2009.  

 

136. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image 

Translation Using Cycle-Consistent Adversarial Networks,” 2017 IEEE 

International Conference on Computer Vision (ICCV), Oct. 2017 

 

137. F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding 

for face recognition and clustering,” 2015 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), Jun. 2015 

 

138. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and Alignment 

Using Multitask Cascaded Convolutional Networks,” IEEE Signal Processing 

Letters, vol. 23, no. 10, pp. 1499–1503, Oct. 2016 

 

139. U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, and C. Busch, “Face 

Recognition Systems Under Morphing Attacks: A Survey,” IEEE Access, vol. 

7, pp. 23012–23026, 2019 

 

140. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and Alignment 

Using Multitask Cascaded Convolutional Networks,” IEEE Signal Processing 

Letters, vol. 23, no. 10, pp. 1499–1503, Oct. 2016 

 



93 

141. H. Zhang, S. Venkatesh, R. Ramachandra, K. Raja, N. Damer, and C. Busch, 

“MIPGAN—Generating Strong and High Quality Morphing Attacks Using 

Identity Prior Driven GAN,” IEEE Transactions on Biometrics, Behavior, 

and Identity Science, vol. 3, no. 3, pp. 365–383, Jul. 2021. 

 

142. Y. Zhang et al., “Deepfake Detection System for the ADD Challenge Track 3.2 

Based on Score Fusion,” Proceedings of the 1st International Workshop on 

Deepfake Detection for Audio Multimedia, Oct. 2022 

 

143. H. Sharma and N. Kanwal, “Video interframe forgery detection: Classification, 

technique &amp; new dataset,” Journal of Computer Security, vol. 29, no. 5, 

pp. 531–550, Aug. 2021 

 

144. E. Gonzalez-Sosa, J. Fierrez, R. Vera-Rodriguez, and F. Alonso-Fernandez, 

“Facial Soft Biometrics for Recognition in the Wild: Recent Works, 

Annotation, and COTS Evaluation,” IEEE Transactions on Information 

Forensics and Security, vol. 13, no. 8, pp. 2001–2014, Aug. 2018. 

 

145. Available Online: https://www.kaggle.com/c/deepfake-detection-

challenge/data.  

 

146. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. )ies, and M. Nießner, 

“Faceforensics++: learning to detect manipulated facial images,” in 

Proceedings of the IEEE/CVF International Conference on Computer Vision, 

pp. 1–11, Seoul, Republic of Korea, 2019. 

 

147. Classification, “ROC curve and AUC,” https://developers. 

google.com/machine-learning/crash-course/classification/ roc-and-auc. 

 

148. H. S. Shad et al., “Comparative Analysis of Deepfake Image Detection Method 

Using Convolutional Neural Network,” Computational Intelligence and 

Neuroscience, vol. 2021, pp. 1–18, Dec. 2021, doi: 10.1155/2021/3111676. 

 

149. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely 

connected convolutional networks,” in Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, pp. 4700–4708, Honolulu, HI, 

USA, July 2017 

 

150. https://www.kaggle.com/keras/resnet50. 

 

151. https://www.kaggle.com/shivamb/cnn-architectures-vgg-resnet -inception-tl. 

 

152. https://sefiks.com/2018/08/06/deep-face-recognition-withkeras/. 

 

 

https://www.kaggle.com/c/deepfake-detection-challenge/data
https://www.kaggle.com/c/deepfake-detection-challenge/data
https://www.kaggle.com/keras/resnet50
https://www.kaggle.com/shivamb/cnn-architectures-vgg-resnet
https://sefiks.com/2018/08/06/deep-face-recognition-withkeras/


94 

153. P. Saikia, D. Dholaria, P. Yadav, V. Patel, and M. Roy, “A Hybrid CNN-

LSTM model for Video Deepfake Detection by Leveraging Optical Flow 

Features,” 2022 International Joint Conference on Neural Networks 

(IJCNN), Jul. 2022. 

 

154. S. Ganguly, A. Ganguly, S. Mohiuddin, S. Malakar, and R. Sarkar, “ViXNet: 

Vision Transformer with Xception Network for deepfakes based video and 

image forgery detection,” Expert Systems with Applications, vol. 210, p. 

118423, Dec. 2022. 

155. I. Masi, A. Killekar, R. M. Mascarenhas, S. P. Gurudatt, and W. 

AbdAlmageed, “Two-Branch Recurrent Network for Isolating Deepfakes in 

Videos,” Lecture Notes in Computer Science, pp. 667–684, 2020. 

 

156. Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., & Manocha, D. (2020, 

October). Emotions don't lie: An audio-visual deepfake detection method using 

affective cues. In Proceedings of the 28th ACM international conference on 

multimedia (pp. 2823-2832). 

 

157. H. Liu et al., “Spatial-Phase Shallow Learning: Rethinking Face Forgery 

Detection in Frequency Domain,” 2021 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition (CVPR), Jun. 2021.  

 

158. I. Amerini, L. Galteri, R. Caldelli and A. Del Bimbo, "Deepfake Video 

Detection through Optical Flow Based CNN," 2019 IEEE/CVF International 

Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 

2019, pp. 1205-1207, doi: 10.1109/ICCVW.2019.00152. 

 

159. S. Aneja and M. Nießner, "Generalized zero and few-shot transfer for facial 

forgery detection", arXiv preprint, 2020. 

 

160. Z. Guo, G. Yang, J. Chen and X. Sun, "Fake face detection via adaptive 

manipulation traces extraction network", arXiv:2005.04945, 2020.  

 

161. P. Saikia, D. Dholaria, P. Yadav, V. Patel and M. Roy, "A Hybrid CNN-LSTM 

model for Video Deepfake Detection by Leveraging Optical Flow Features," 

2022 International Joint Conference on Neural Networks (IJCNN), Padua, 

Italy, 2022, pp. 1-7, doi: 10.1109/IJCNN55064.2022.9892905. 

 

162. S. Suratkar, S. Bhiungade, J. Pitale, et al. “Deep-fake video detection 

approaches using convolutional–recurrent neural networks”. Journal of 

Control and Decision, pp1–17, 2022.  

 

163. H. Ilyas, A. Javed, K. Malik, et al. “E-Cap Net: an efficient-capsule network 

for shallow and deepfakes forgery detection”. Multimedia Systems 29, 2165–

2180 (2023). 

  



95 

 

 

RESUME 

 

Saadaldeen Rashid AHMED graduated first and elementary education in salah-

aldeen city. He completed high school education at (Saad abn abe wakas) high 

school in Salahaldin. He obtained a bachelor's degree from the University of 

Tikrit/College of Computer Sciences and Mathematics Department of Computer 

Sciences in 2017. To complete their M.Sc.  He moved to İstanbul/TÜRKİYE in 

2017. He started his master's education at the Department of Information Technology 

at Altinbas University. To Complete their Ph. D. He moved to Karabük/TÜRKİYE in 

2019. He started his Ph.D. education at the Department of Computer Engineering at 

Karabuk University.            

 

 

 

 

 


