
 
COMPLEX NETWORK-BASED LINK 

PREDICTION IN COMPUTER SCIENCE, SOCIAL 
SCIENCE, AND MEDICAL SCIENCE 

PUBLICATIONS IN IRAQ 
 
 
 
 

2023 
MASTER THESIS 

COMPUTER ENGINEERING 
 
 
 
 

Albatol Abdulmahdi Saleh AL-DHAYAB 
 
 
 
 

Thesis Advisor 
Assist. Prof. Dr. Emrah ÖZKAYNAK 



COMPLEX NETWORK-BASED LINK PREDICTION IN COMPUTER 

SCIENCE, SOCIAL SCIENCE, AND MEDICAL SCIENCE PUBLICATIONS 

IN IRAQ 

 

 

 

 

Albatol Abdulmahdi Saleh AL-DHAYAB 

 

 

 

Thesis Advisor 

Assist. Prof. Dr. Emrah ÖZKAYNAK 

 

 

 

T.C. 

Karabuk University 

Institute of Graduate Programs 

Department of Computer Engineering 

Prepared as 

Master Thesis 

 

 

 

KARABUK 

September 2023 



ii 

I certify that, in my opinion, the thesis submitted by Albatol Abdulmahdi Saleh AL-

DHAYAB titled “COMPLEX NETWORK-BASED LINK PREDICTION IN 

COMPUTER SCIENCE, SOCIAL SCIENCE, AND MEDICAL SCIENCE 

PUBLICATIONS IN IRAQ” is fully adequate in scope and quality as a thesis for the 

degree of Master of Computer Engineering.                                                                    

APPROVAL 

 

Assist. Prof. Dr. Emrah ÖZKAYNAK      …………………...              

Thesis Advisor, Department of Computer Engineering                                           

 

This thesis is accepted by the examining committee with a unanimous vote in the 

Department of Computer Engineering as a Master of Science thesis. September13, 

2023 

 

Examining Committee Members (Institutions)                                  Signature 

 

Chairman : Assist. Prof. Dr. Muhammet ÇAKMAK (SU)             …………………….  

 

Member : Assist. Prof. Dr. Emrah ÖZKAYNAK (KBU)           ………………......... 

                

Member : Assist. Prof. Dr. Mehmet Zahid YILDIRIM (KBU)   …...…….………….                                   

                                 

 

 

 

 

 

 

 

The degree of Master of Computer Engineering by the thesis submitted is approved 

by the Administrative Board of the Institute of Graduate Programs, Karabuk 

University. 

 

Assoc. Prof. Dr. Zeynep ÖZCAN                                         .................................                                  

Director of the Institute of Graduate Programs                                                                        



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“I declare that all the information within this thesis has been gathered and presented 

by academic regulations and ethical principles, and I have, according to the 

requirements of these regulations and principles, cited all those which do not 

originate in this work.” 

 

Albatol Abdulmahdi Saleh AL-DHAYAB 



iv 

 

 

ABSTRACT 

 

M. Sc. Thesis 

 

COMPLEX NETWORK-BASED LINK PREDICTION IN COMPUTER 

SCIENCE, SOCIAL SCIENCE, AND MEDICAL SCIENCE PUBLICATIONS 

IN IRAQ 

 

Albatol Abdulmahdi Saleh AL-DHAYAB 

 

Karabuk University 

Institute of Graduate Programs 

The Department of Computer Engineering 

 

Thesis Advisor: 

Assist. Prof. Dr. Emrah ÖZKAYNAK 

September 2023, 85 pages 

 

 Scientific collaboration networks are used to display the relationships between 

researchers who work on joint research, projects or papers. The analysis of scientific 

cooperation networks plays an important role in the dissemination of knowledge, the 

creation of new associations and the emergence of new innovations. Especially in the 

establishment of national or international scientific cooperation, data obtained from 

scientific cooperation networks are widely used. In addition, scientific cooperation 

networks are used in the dissemination of joint studies in similar disciplines or 

interdisciplinary. Link prediction is widely used in the analysis of new associations 

based on scientific collaboration. Link prediction is the process of predicting new 

connections that may arise in the future by looking at the status of existing 

connections in the network. Link prediction in scientific collaboration networks is 

important for understanding and strengthening scientific collaborations and 
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increasing efficiency in scientific collaboration. In addition, link prediction plays an 

important role in increasing interdisciplinary collaboration. Many methods based on 

data mining, machine learning, and complex network analysis have been proposed 

and used today for link prediction in networks. Neighborhood-based methods are the 

most common among the proposed methods. The most important reason why 

neighborhood-based methods are preferred is the high estimation success with little 

information in the network. These methods, which work based on the analysis of 

common neighbors between nodes, reveal similarities between nodes. In this thesis, 

scientific cooperation networks were created from the publications of Iraqi 

researchers in the fields of computer science, health sciences and social sciences by 

looking at the link prediction studies in scientific cooperation networks, and 

neighborhood-based link prediction processes were carried out in these networks. In 

the study, data belonging to the joint publications of Iraqi researchers were collected 

from many sources such as Web of Science, Google Scholar and Microsoft 

Academic. In link prediction processes, along with neighborhood-based link 

prediction methods, machine learning methods such as Support Vector Machine 

(SVM), Random Forest (RF) and Logistic Regression (LR) are also used. Results 

from experimental studies show that link prediction methods are successful in 

predicting new links in established scientific collaboration networks. Among the 

machine learning methods used, the RF classifier was the most successful with 96% 

accuracy. The study demonstrates the usability of neighborhood-based link 

prediction methods and machine learning methods in recommendation systems to be 

created for the dissemination of scientific collaborations 

 

Keywords : Complex networks, link prediction,  machine learning, data mining.  

Science Code : 92429 
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BİLİMLER YAYINLARINDA KARMAŞIK AĞ TABANLI BAĞLANTI 

TAHMİNİ 

 

Albatol Abdulmahdi Saleh AL-DHAYAB 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi Emrah ÖZKAYNAK 

September 2023, 85 sayfa 

 

 Bilimsel işbirliği ağları, ortak araştırma, proje veya makale çalışmaları yapan 

araştırmacılar arasındaki ilişkilerin gösteriminde kullanılmaktadır. Bilimsel işbirliği 

ağlarının analizi,  bilginin yayılmasında, yeni birlikteliklerin oluşturulmasında ve 

yeni inovasyonların ortaya çıkmasında önemli rol oynamaktadır. Özellikle ulusal ya 

da uluslararası bilimsel işbirliklerinin oluşturulmasında bilimsel işbirliği ağlarından 

elde edilen veriler yaygın olarak kullanılmaktadır. Ayrıca benzer disiplinlerde ya da 

disiplinler arası ortak çalışmaların yaygınlaştırılmasında da bilimsel işbirliği ağları 

kullanılmaktadır. Bilimsel işbirliğine dayalı yeni birlikteliklerin analizinde bağlantı 

tahmini yaygın olarak kullanılmaktadır. Bağlantı tahmini, ağdaki mevcut 

bağlantıların durumuna bakarak gelecekte ortaya çıkabilecek yeni bağlantıları tahmin 

etme işlemidir. Bilimsel işbirliği ağlarında bağlantı tahmini, bilimsel işbirliklerin 

anlaşılması, güçlendirilmesi ve bilimsel işbirliğindeki verimliliğin artırılması için 
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önemlidir. Ayrıca, disiplinler arası işbirliğinin arttırılmasında da bağlantı tahmini 

önemli bir rol oynamaktadır. Ağlarda bağlantı tahmini için veri madenciliği, makine 

öğrenmesi, karmaşık ağ analizi tabanlı pek çok yöntem önerilmiş ve günümüzde 

kullanılmaktadır. Önerilen yöntemler içerisinde en yaygın olanı ise komşuluk tabanlı 

yöntemlerdir. Komşuluk tabanlı yöntemlerin tercih edilmesinin en önemli sebebi ise 

ağdaki az bilgiyle yüksek tahmin başarısıdır. Düğümler arası ortak komşuların 

analizine dayalı çalışan bu yöntemler düğümler arasındaki benzerlikleri ortaya 

çıkarmaktadır. Bu tez çalışmasında bilimsel işbirliği ağlarında bağlantı tahmini 

çalışmalarına bakılarak bilgisayar bilimi, sağlık bilimleri ve sosyal bilimler 

alanlarında Iraklı araştırmacıların yapmış oldukları yayınlardan bilimsel işbirliği 

ağları oluşturulmuş ve oluşturulan bu ağlarda komşuluk tabanlı bağlantı tahmini 

işlemleri gerçekleştirilmiştir. Çalışmada, Web of Science, Google Scholar ve 

Microsoft Academic gibi bir çok kaynaktan Iraklı araştırmacıların ortak yayınlarına 

ait veriler toplanmıştır. Bağlantı tahmini işlemlerinde komşuluk tabanlı bağlantı 

tahmini yöntemleri ile birlikte Destek Vektör Makinesi (SVM), Rastgele Orman (RF) 

ve Lojistik Regresyon (LR) gibi makine öğrenmesi yöntemleri de kullanılmıştır. 

Deneysel çalışmalardan elde edilen sonuçlar bağlantı tahmini yöntemlerinin 

oluşturulan bilimsel iş birliği ağlarında yeni bağlantıları tahmin etmede başarılı 

olduğunu göstermektedir. Kullanılan makine öğrenimi yöntemleri içerisinden RF 

sınıflandırıcısı %96 doğruluk oranıyla en başarılı sınıflandırıcı olmuştur. Çalışma, 

bilimsel işbirliklerinin yaygınlaştırılması için oluşturulacak öneri sistemlerinde 

komşuluk tabanlı tahmini yöntemleri ve makine öğrenimi yöntemlerinin 

kullanılabilirliğini göstermektedir. 

 

Anahtar Kelimeler: Karmaşık ağlar, bağlantı tahmini, makine öğrenmesi, veri 

madenciliği. 

Bilim Kodu : 92429 
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PART 1 

 

INTRODUCTION 

  

1.1. MOTIVATION 

 

LP is an important study field in network analysis that estimates the chance of a 

connection being formed among two nodes. It has implications in various domains, 

including social networks, transportation networks, biological networks [1],[2], etc. 

In computer science publications, LP is also essential as it helps to predict the 

possibility of collaboration among researchers, co-authorship of papers, and citation 

networks. Complex network-based LP has emerged as a powerful technique to 

predict links in computer science, medical science, and social science publications.                               

                                                                                                                     

The primary motivation behind this study is to address the critical issue of accurately 

predicting new links or relationships in large and complex networks. LP has several 

real-world applications, such as recommender systems, online shopping, social 

media, and collaboration in various fields. With the increasing size of networks and 

the number of users, it has become challenging to identify potential links that can 

form in the future. Therefore, developing effective LP algorithms is critical for the 

success of these systems.                                                                                                                    

                                                                                                                              

The importance of LP can be observed in e-commerce websites, where it is necessary 

to suggest products that interest a user. By providing accurate recommendations, e-

commerce sites can increase customer satisfaction and loyalty, increasing profits. 

Similarly, accurate LP is essential in social media applications like Instagram and 

Reddit to keep users engaged and interested. Instagram and Reddit's success relies on 

their ability to provide users personalized recommendations and content, making LP 

crucial in retaining user interest.             
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Moreover, LP has become increasingly important in research, where identifying 

potential collaborators can significantly impact the quality and scope of research 

projects. For instance, researchers can use LP algorithms to identify potential co-

authors or collaborators with similar research interests. LP can also help identify 

potential funding sources, leading to new research opportunities.                                    

                                        

To increase anticipated linkage reliability, this research presents a new method that 

integrates data from several temporal network sources with existing LP techniques. 

The study also proposes a novel evaluation metric that can compare the performance 

of different LP methods. The findings of this study have implications for the 

development of recommendation systems, online shopping, and social media 

applications, as well as academic research.                                                                       

                                                                                                                            

1.2. PROBLEM STATEMENT 

 

Implementing complex network-based link prediction in the publications of 

computer science, social science, and medical science in Iraq poses several 

noteworthy challenges. The limited availability and quality of data pose significant 

challenges to the precision and effectiveness of link prediction algorithms in 

academic research. The issue is exacerbated by the absence of standardized data 

formats and interoperability among various research databases. The political and 

economic challenges in Iraq may potentially have a detrimental impact on the 

financial and resource allocation for research endeavors, consequently impeding the 

advancement and dissemination of state-of-the-art methodologies for forecasting 

connections. The political and economic challenges Iraq faces could be hindered by 

institutional barriers and a fragmented research landscape, as the intricate nature of 

interconnected systems requires collaboration among experts from various fields. 

Lastly, an issue about human resources in Iraq pertains to the scarcity of proficient 

data scientists and researchers with the requisite skills to undertake intricate network 

analysis. Collaboration among academia, government entities, and international 

organizations is imperative to facilitate data sharing, allocate resources toward 

research infrastructure, cultivate interdisciplinary cooperation, and cultivate a skilled 
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workforce capable of effectively utilizing the potential of complex network-based 

link prediction to advance scientific knowledge. 

 

The proliferation of communication tools has led to the development of complex 

network structures, which provide a framework for understanding relationships and 

dynamics among individuals, objects, and events in daily life. However, predicting 

new links in complex systems, including social and biological networks and 

transportation networks, is challenging. While there are several mathematical and 

computing processes for LP, there is a need to explore the use of complex network-

based LP techniques to foresee potential connections among writers and their future 

computer science publishing output in Iraq. 

 

1.3. OBJECTIVE 

 

New connections among authors and their publications in (CS, MS, and SS) in Iraq 

will be predicted using complicated network-based LP algorithms, which will be 

investigated in this study. A bibliographic data collection culled from the Web of 

Science, Google Scholar, and Microsoft Academic will be used for the research. We 

used three different classifiers—the Support Vector Machine, the RF, and the LR—

to predict how likely a new connection will be made among a certain author and their 

respective publication. The study aims to evaluate the classifiers' performance using 

various metrics, including Accuracy, precision, and recall. The project's findings will 

have applications in recommendation systems and academic network analysis. 

 

1.4. SCOPE OF STUDY 

 

The objective of this thesis is to undertake a comprehensive examination of the 

effectiveness of different methodologies employed for the evaluation and ranking of 

scholarly articles in the domains of Computer Science (CS), Medical Science (MS), 

and Social Sciences (SS). The research centers on comparing various architectures 

and evaluating training and validation results from different upscaling methods, 

activation functions, cost functions, post-processing techniques, and pre-processing 

methodologies. 
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The scope of this study is to assess the efficacy of these methodologies; distinct 

performance metrics are utilized, such as the Jaccard coefficient, sensitivity, and 

specificity. The metrics above are widely acknowledged in information retrieval and 

ranking tasks. We offer valuable insights into the models' capacity to accurately 

evaluate the relevance and quality of academic papers within the designated fields. 

 

1.5. CONTRIBUTION 

 

The contribution of this study lies in its application of complex network-based LP 

techniques to predict new links among authors and their publications in computer 

science, medical science, and social science. By utilizing a bibliographic dataset 

obtained from multiple sources and employing three different classifiers, the study 

demonstrates the effectiveness of these techniques in predicting new links in the 

three publications, with the RF classifier showing the highest performance. The 

study's findings have important applications in recommendation systems and 

academic network analysis, allowing for a better understanding of the relationships 

and dynamics within the publication networks. This study provides a practical 

example of how complex network-based LP techniques can be applied to real-world 

scenarios. It highlights their potential to make meaningful contributions to various 

fields. 

 

The Random Forest (RF) model was trained on the utilized dataset, resulting in a 

notable accuracy rate of 96%. This achievement can be considered successful. 
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PART 2 

 

LITERATURE REVIEW 

 

A literature review on this topic would likely explore the concept of network-based 

complex correlation in computer science research. It can examine the different 

methodologies used to analyze complex networks and their correlations, such as 

network motifs and clustering algorithms. The review can also investigate the impact 

of complex network analysis on different fields within computer science, such as 

ML, social network analysis, and bioinformatics.                                                                     

                                        

The literature review can also discuss the challenges and limitations of network-

based complex correlation analysis, such as scalability issues, data sparsity, and 

network inference accuracy. It can also explore future research directions, including 

developing new methods and techniques for analyzing and modeling complex 

networks and integrating network analysis with other computational approaches. 

 

2.1. SIMILARITY-BASED METHODS 

 

Regarding LP, similarity-based algorithms are some of the simplest and most tried-

and-true. These strategies figure out how similar two nodes are by comparing their 

neighbors. Eventually, connections will be made among nodes that share many 

neighbors. Common Neighbors, Jaccard's Coefficient, and Adamic-Adar are only a 

few similarity-based approaches available. 

 

Li, Shibao, et al. [3] first offered LP as a concept in 2018. They developed the 

similarity-based Future Common Neighbors (SFCN) model. The SFCN model 

successfully predicts network links by locating nodes likely to have similar neighbors 

in the future. Three simulated experiments are run in MATLAB, with the first 

demonstrating that future shared neighbors are more influential in complex networks 
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than present ones. The remaining two tests test the SFCN model's accuracy and 

performance resilience by comparing it against eight methods across five networks. 

 

In 2019, Najari, Shaghayegh, et al. [4] presented a new method to predict missing or 

future links in multiplex networks, considering interlayer likeness and proximity-

based features. The proposed framework considers the structural information of other 

layers when predicting links in one layer. Adamic-Adar and Jaccard Coefficient are 

proximity-based features that are easy to compute and don't require learning. When 

predicting connections in multiplex networks, the suggested method beats state-of-

the-art methods. 

 

Bastami et al.[5]  introduced a novel unsupervised LP method that enhances local 

and global predictions by integrating node properties, community information, and 

graph characteristics. Local prediction accuracy is improved by using a gravitation-

based method for community discovery, while global prediction error is decreased by 

scattering search results throughout the graph. The experimental results demonstrate 

the superiority of the proposed method over the existing similarity-based methods in 

terms of execution time and accuracy. The accuracy of the proposed technique 

improves when the network has robust communities, triangular links, and narrow 

diameters. Although there is a trade-off among accuracy and execution time, the 

method may be used for very large and complex networks. 

 

The TSLP, introduced by Meybodi M. R. et al. [6] in 2019, is a novel similarity-

based LP approach for temporal networks. In order to foretell missing connections in 

a network, the approach considers local and global temporal similarities. The authors 

utilized two real-world temporal networks to show that their method outperformed 

the current gold standard in LP. TSLP considers the network's history of foretelling 

how node connections will change over time. Their research shows that temporal 

likeness metrics might be useful for predicting links in temporal networks. In 

conclusion, TSLP is a promising method for enhancing the precision of LP in 

temporal networks. 
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In 2019, Gu, Weiwei, et al. [7] reviewed various methods used for LP in complex 

networks. They analyzed the performance of these methods on different types of 

networks and highlighted their strengths and weaknesses. The survey provides a 

valuable resource for researchers and practitioners interested in LP in complex 

networks. Overall, their work highlights the importance of understanding the 

strengths and limitations of different LP methods.  

 

Complex network modeling and community identification were the basis for an LP 

model developed by Ai, Jun et al. [8] in 2019. Users' shared tastes in genres, rating 

distributions, and top-rated goods were considered as they built these intricate 

networks. Objects serve as nodes in a network, with likeness calculation results 

serving as link weights. Accuracy is improved, and multi-factor community 

identification streamlines the prediction process depending on node likeness, 

conducted after collected community information. Depending on the findings, user 

actions like rating and choosing products reveal a latent community structure that 

may be used for connection prediction and a deeper comprehension of complex 

systems.                   

 

Zareie, Ahmad, and Rizos Sakellariou [9] proposed using correlation and common 

neighbors to determine the grade of likeness among two nodes in 2020. Likeness-

based methods determine the structural likeness of two nodes by tallying the number 

of their common neighbors. However, there are certain cases that this approach will 

not cover. The experimental results show that the innovative method is superior to 

state-of-the-art methods for LP. 

 

In 2020, Liu, JiaHui, et al. [10] proposed a novel likeness-based method for LP in 

heterogeneous networks that considers the likeness of both nodes and links in the 

network. Presents their approach and its evaluation on several real-world networks. 

They demonstrated that their method outperforms existing likeness-based methods, 

indicating the potential to incorporate node and link likeness in LP. Their work 

highlights the importance of considering the heterogeneous nature of networks in LP 

and provides a promising direction for improving the accuracy of LP in such 

networks.  



8 

The CNDP algorithm, developed by Rafiee et al. [11] in 2020, is a likeness-based LP 

approach considering topological aspects and network architecture. The method 

introduces a new measure that depends on the clustering coefficient, a structural 

feature of the network. To further improve its efficiency, the CNDP algorithm 

considers the neighbors of shared neighbors. Synthetic and real-world network 

evaluations show that the proposed technique outperforms competing methods 

thanks to its high accuracy and low complexity.                                                                                                       

                                                                                                                         

The topological nearest-neighbor likeness was introduced by Guo et al. [12] in 2023 

to anticipate linkages in directed networks. The research enhanced the Sorensen 

index and its variations in directed networks and created a matrix algebra 

representation for them. The topological nearest-neighbors likeness index was 

calculated by considering each index's GLHN likeness index and the nearest-

neighbors topology. Several real-world directed network datasets were used to verify 

the approach, and three different evaluation criteria were used to compare the results 

to benchmark indices. The experimental findings demonstrated the suggested 

method's superiority in LP for directed networks compared to the benchmark indices. 

 

2.2.  LOCAL RANDOM WALK 

 

Considering a node's close neighbors, the local random walk may mimic a random 

walk from a source node to a destination node. Local random walk is predicated on 

the assumption that nodes with comparable neighbors are more likely to be linked. 

LP in complex networks is common, typically employed inside likeness-based 

algorithms. By taking the network's local structure into account, local random walks 

may increase the accuracy of LP. Several research has employed this method with 

encouraging results for foreseeing missing connections in complicated networks.  

 

Zhang, Lin, et al. [13] established an auxiliary optimization approach for public 

transit route networks (PTRN) utilizing LP in 2018. They used Space R to evaluate 

Jinan's PTRN's topological features and gathered LP summary indices and algorithm 

sets. Structural likeness-based LP would succeed since the network is a typical small-

world network with a high average clustering coefficient. They chose Jinan's PTRN's 
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three most accurate indices for auxiliary optimization depending on LP. The network 

topology was steady and organized except for a limited section that needs 

optimization and restoration.   

 

Berahmand et al. [14] suggested a variant of DeepWalk that combines network 

topology with node characteristics in 2021 for LP in attributed networks. A novel 

random walk model is presented based on the hypothesis that two nodes on the 

network will be connected if they are geographically close or have other 

characteristics. The suggested approach is compared to other cutting-edge network 

embedding techniques and tested on six real-world attributed networks. According to 

the findings, a connection is more likely to form among two nodes with a comparable 

structure and set of attributes.   

 

Kumar et al. [15] 2022, the LGQ model uses feature sets from different combinations 

of the L, G, Q, LG, LQ, GQ, and LGQ indices to improve ML-based LP. The local 

likeness was determined by CN, AA, JC, and PA (Common Neighbors, 

Adamic/Adar Index, and Jaccard Coefficient), whereas cos+, ACT, SP, and MFI 

measured global likeness. LP and L3 quasi-local indices were used. LGQ was tested 

using seven reference methods and six popular dynamic network datasets. The LGQ 

model and its modifications beat the baseline techniques in AUPR, F1 score, BAC, 

AUC, and other parameters. They also examined the accuracy of prediction models 

depending on Neural Networks and Xgboost for many variants of the suggested 

feature sets.  

 

In 2023, Li, Wenjun, et al. [16] resolved the MSN LP Problem (LPP). The approach 

may determine reliable routes by assessing each Link in node communication 

channels. In network maps, the weighted network shows connection significance. 

MSN topological properties determine interlayer and intralayer connections and their 

respective significance. A weighted network and trustworthy paths were used to 

create the Local Random Walk measure of likeness. In order to capture the structure 

of networks, this metric employs a random walk to find commonalities and new 

connections. The approach was tested on seven different, authentic MSN datasets. 
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2.3. MACHINE LEARNING-BASED METHODS 

 

NetworkGAN, developed by Yang, Min, et al. [17] in 2019, is a cutting-edge 

technique for accurate temporal LP. To simulate the geographical and temporal 

characteristics of dynamic networks, NetworkGAN employs deep learning methods. 

Graph convolutional networks (GCNs) and temporal matrix factorization (TMFs), 

This technique combines generative adversarial networks (GANs), long short-term 

memory networks (LSTMs), and others. First, a thorough GCN discovers the spatial 

properties of dynamic networks. We use a TMF-enhanced attentive LSTM to record 

temporal relationships and predict the network snapshot at the following timestamp. 

A GAN framework improves temporal LP after a discriminative model trains the 

deep generative model in an adversarial process.                                                                       

                                                                                                             

A methodology for anticipating cross-industry trends of technology convergence was 

developed by Cho et al. [18] in 2021. utilizing ML approaches with different LP 

indices, they built a network of inter-process communication co-occurrences utilizing 

association rule mining to foresee where technologies would merge. Next, we 

utilized a topic modeling method called latent Dirichlet allocation (LDA) to find 

terms relevant to the expected merging technologies. In 2012 and 2014, the USPTO 

granted patents using this approach in chemical computing and ecological 

technology. Empirical results show that over a 4-year time horizon, the proposed 

framework's RF model yields the best reliable forecasts.                                                                            

                                                                                           

LP-based Network Representation (LPNR) was developed in 2021 by Gu, Weiwei, et 

al. [19], and it generalizes the most recent graph neural network to maximize a 

specially crafted objective function that maintains linkage structures. Superior 

accuracy in measuring node centrality and community connectivity and highly 

accurate performance in the LP challenge discovery are all possible because of the 

meaningful node representations that LPNR can learn. Three different real-world 

networks are used in experiments to demonstrate LPNR's efficacy. Using the mini-

batch and fixed sampling technique, LPNR can learn to embed even very big graphs 

in only a few hours.                                                                                                                
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To automatically extract the best attributes for LP, Keikha et al.[20] presented a 

novel LP framework named "DeepLink" in 2021. DeepLink is an LP system that 

eliminates the need for human-created features. For optimal performance, the 

framework uses structural and content data. Several approaches of LP may be 

utilized to generate a wide variety of structural feature vectors. During structural 

feature learning, the framework can absorb all proximity orders shown on a network. 

DeepLink was tested using the Telegram and irBlogs real-world social network 

datasets.                                 

                                                                      

In 2022, Anand et al. [21] suggested utilizing NSMLLP to forecast links. Each pair 

of network nodes has a set of characteristics generated by combining their 

centralities, similarities, and the results of ML classifiers. Each node's popularity is 

measured, and the likeness among any two pairs of nodes is assessed.                                                     

                                                    

A novel graph embedding approach, informed by findings in network science, was 

suggested by Kerrache et al. [22] 2022. Using several real-world networks, They 

tested their link projection method, which depends on the spreading-likeness and 

local attraction theories. The experimental results demonstrated that their method is 

superior to state-of-the-art graph embedding techniques and stable in sparse data 

conditions and varying embedding dimensions.                                                                                         
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PART  3 

 

LINK PREDICTION IN COMPLEX NETWORKS 

 

3.1. OVERVIEW 

 

In recent decades, computer science has witnessed substantial growth due to 

technological advancements, the evolution of the Internet, and the proliferation of 

digital communication networks [1],[2]. As a result, the number of computer science 

publications has increased considerably, making it challenging to navigate the vast 

research literature. LP has emerged as a powerful technique for analyzing and 

visualizing the relationships among different publications and researchers in this 

context.                                                                                                                              

 

LP is a technique that aims to predict the likelihood of a link forming among two 

nodes in a network [1],[2],[23]. In the case of computer science publications, the 

nodes represent the publications themselves, and the links represent the relationships 

among them, such as co-authorship, citation, or reference [24], [25]. By predicting 

these links, researchers can better understand the structure of the network of 

publications and identify important papers and authors.                                                   
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(A). Graph at time t 

 

 
Graph at time t+n  . (B) 

 

Figure 3.1. (A and B) represent the example of complex network analysis [26]. 

 

LP in computer science publications has been the subject of extensive research in 

recent years. Several techniques have been proposed, ranging from simple heuristics 

to complex ML models. However, most of these techniques have focused on 

analyzing the citation network, representing the connections among papers 

depending on their references. Although this provides valuable information, it does 

not capture the full complexity of the publication network in computer science.      

                          

Using complex network analysis, this thesis suggests a new method for predicting 

links in academic papers on computer science. We have produced a data collection 

detailing the interconnections among publications regarding authors and citations. 

SVM, RFC, and LR are the classifiers we use on this dataset. These classifiers have 

proven useful in many settings and see extensive usage in the field of ML.                                                                                                                       
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Our dataset consists of information about the co-authorship and reference 

relationships among publications in computer science. We use complex network 

analysis to investigate the structural properties of the publication network, such as 

the grade distribution, clustering coefficient, and amazingness centrality. We then 

apply the SVM, RFC, and LR classifiers to this dataset and evaluate their 

performance.                

                 

Depending on our findings, the complex network analysis-based strategy we 

presented is superior to other approaches that depend exclusively on the citation 

network. We discovered that the SVM classifier provided the greatest Accuracy for 

predicting relationships among articles. In addition, our investigation into the 

network's underlying structure uncovered evidence of small-world and scale-free 

behaviors in the publishing sphere. This hints that our suggested method may be used 

in other research areas.                                                                                                      

  

In conclusion, we have proposed a novel approach to LP in computer science 

publications that depend on complex network analysis. We have demonstrated that 

our approach outperforms existing methods that rely solely on the citation network. 

Our findings suggest that complex network analysis can provide a valuable tool for 

analyzing and visualizing the structure of publication networks in computer science 

and other scientific domains. Future research could focus on extending our approach 

to other fields and domains and exploring its potential applications in various areas.        

       

3.2. GRAPH THEORY 

 

It is the branch of mathematics concerned with studying graph and network 

characteristics. A graph is a mathematical structure with vertices (nodes) and edges 

(links) (sometimes called "lines") connecting the nodes (figure 3.2). Computer 

science, physics, the social sciences, and even computer science itself may all benefit 

from using graphs as a modeling tool [2],[23][27].                                                          

                                                                              

Edge type, orientation, weights, and the total amount of edges are only a few features 

that may be used to categorize graphs.                                                                              
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1) In a simple graph, the edges are not weighted and are undirected. Since there 

is no discernible pattern to the edges, they may be assumed to reflect purely 

binary connections among nodes. 

2) Directed edges are present among nodes in directed graphs (digraphs). An 

edge's orientation specifies the path along which two nodes are connected . 

3) Various linkages, including self-loops, may exist among nodes in a 

pseudograph. They may be represented as stacked graphs with the same 

nodes but only one kind of edge, and they can include both directed and 

undirected linkages. This notation may also depict multi-graphs where each 

edge has many labels or kinds . 

4) Each edge has a certain weight in a weighted graph, often expressed as a real 

integer. The number of edges among any two nodes in a multi-graph may be 

used to create a weighted graph   . 

5) Hypergraphs have edges called hyperlinks or hyperedges, connecting more 

than two nodes. A folksonomy is a hypergraph of nodes representing people, 

resources, and tags. Users contribute content such as papers, photographs, 

audio files, connections to other websites, and other online resources to the 

network. Words or phrases that describe a resource are called tags. An 'edge' 

in the network represents a connection among three nodes (a user node, a 

resource node, and a tag node . 

 

 

Figure 3.2. Graph Embeddings for Link Prediction. 
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3.2.1.  Essential Concepts 

 

The following are some important and basic concepts in graph theory. Vertex grade, 

path, Graph connectivity, Subgraph, and Maximum flow problem. 

 

• Vertex grade  

 

A vertex's grade in a graph without direction is denoted by the symbol How many 

edges have v as an occurrence vertex is denoted by G. The amount of edges that are 

directed toward v and away from v, respectively, makeup v's in-grade and out-grade, 

respectively, in a directed graph. Deg(v) is often used to represent the level of a 

vertex [27],[28].   

                                                                                                                                                            

deg(i) =  ∑ 𝐴(𝑖, 𝑗)𝑛
𝑗=1                                                                                                (3.1)                                                                

                                                                                               

An adjacency matrix (sometimes termed a "graph matrix") in graph theory depicts 

how a graph is linked. A graph with n vertices may be characterized by an n-by-n 

matrix where each component A(i,j) is one if vertex i is related to vertex j by an edge 

and 0 otherwise. Vertices are near. An (i,j) may indicate the edge weight among 

points i and j in a weighted graph. Diagonal entries in the adjacency matrix indicate 

self-loops in directed graphs, generally 0. Diagonal entries are frequently 0 in graphs 

without direction.                                                                                                              

                                                                                                               

• The path 

 

It consists of a series of edges that connect a group of nodes. A route using the origin 

and destination vertices is considered simple. A path's length is equal to the sum of 

its edge counts. Among any two vertices in a graph, the route having the smallest 

length is known as the shortest path. Many techniques have been devised to 

determine the shortest route among two vertices in a graph since this is a basic topic 

in graph theory. Among the most well-known algorithms, Dijkstra's is among the 

[27],[29].                   
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• Graph connectivity  

                                                                                                        

If an edge can reach every pair of vertices in the graph, then we say the graph is 

linked. Divining an unconnected graph into two or more associated subgraphs is 

possible. Algorithms like depth-first and breadth-first search may be used to 

determine the total amount of vertices in a graph. [27],[30].                                           

                                  

• Subgraph 

 

It is a graph created by eliminating nodes and links from another graph. When 

describing a graph, "spanning subgraph" refers to a subgraph that includes all the 

vertices. A tree has no cycles, making it a linked acyclic graph. A tree with n nodes 

has n minus one edge. Since trees may be grouped to form a forest, the graph can 

contain more than one "tree [27]. "                                                                                  

                                             

• Maximum flow problem 

 

A graph represents a network, and the edges represent pipes or channels that can 

transport some material, such as water or data. The maximum flow problem seeks to 

determine the maximum amount of material via the network from a starting point to 

an ending point. The Ford-Fulkerson and the Edmonds-Karp algorithms can solve 

the greatest flow issue [31].                                                                                                    

                                                                                                                                

Changing a graph's vertices so that no two neighbors share a color yields the 

chromatic amount of the graph. This fundamental idea in graph theory has several 

uses in computer science, particularly in graph coloring difficulties.                               

                                                                                                                           

3.3. COMPLEX NETWORKS ANALYSIS 

                                               

Early sociologists like George Simmel and Émile Durkheim [32],[33] recognized the 

theoretical merit of delving into patterns of interactions among social actors, laying 

the groundwork for what is now known as Social Network Analysis (SNA). 
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Numerous independent components engage in nonlinear interactions within a 

complex network [32],[33],[34].                                                                                       

 

Cells are networks of molecules linked by molecular interactions, and the nervous 

system consists of a network of nerve cells connected by axons [35],[36]. In addition, 

societies are complex interdependent webs of individuals linked by a wide range of 

interpersonal exchanges. At the ecological and food web sizes, predator-prey 

interactions may be represented as networks [37],[38]. Technological networks 

include the internet (a collection of related web pages), router networks, power grids, 

and transportation systems.                                                                                               

                                               

Graph theory has become an important method for studying intricate webs of 

connections. It has been widely used across biology, physics, telecommunications, 

computer science, and more for network research while originating in sociology and 

mathematics. Structured network analysis, temporal network evolution analysis, 

content-based network analysis, and more are all subfields of graph theory [39],[40].    

Structural analysis of networks focuses on understanding the network's architecture, 

including the arrangement of nodes and edges and their connectivity patterns [41]. 

On the other hand, temporal analysis is concerned with the evolution of networks 

over time, including the study of how network properties change due to the addition 

or removal of nodes or edges [42]. Content-based analysis, as the name implies, 

involves analyzing the content of network components, such as the messages 

exchanged among nodes or the attributes of the nodes themselves [43],[44].                                   

                                                               

Complex networks are found in various biological, social, and technological systems, 

and their analysis is crucial to our understanding of these systems. Graph theory 

provides a powerful tool for exploring network properties, and its various branches 

offer different perspectives on network structure and function.                                       
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3.3.1. Complex Network Characteristics 

 

A variety of complex networks exhibit similar topological characteristics that are 

shared across different domains. The following are among the most salient and 

significant features.                                                                                                           

                                                                                                           

• Connectedness. Nodes in complicated networks tend to cluster into 

subnetworks. Subgraphs of a network with a route among every possible pair 

of nodes are called "connected components"; this implies that all vertices are 

connected to every other vertex. One or two of these components are often 

much bigger than the rest of the network, but the network as a whole also 

contains a great amount of smaller components[34],[45],[46]. 

• Grade distribution (DD). This means the likelihood that a node in a 

complicated network has k neighbors. As a functional connection among two 

variables, a power law describes the DD of these networks by describing the 

variation of one quantity as the power of another. Therefore, the distribution 

has a narrow peak followed by a lengthy tail [47],[48]. This kind of network 

was given the name "scale-free networks" by Barabasi [49],[50]. Numerous 

nodes with low grades and few with high grades characterize a network 

where the grades follow a power law dispersion. Increases in the power-law 

coefficient suggest a steeper decline in the grade distribution curve, whereas 

increases in the power-law coefficient indicate a more even distribution of 

node grades. 

• Clustering coefficient (CC).  Many real-world networks are transitive, 

meaning that pairs of nodes linked to the same node often form new 

connections [51],[52]. This is the social counterpart of the "friend of a friend 

is probably a friend of mine" principle. The local CC depends on this 

connectivity among nodes and their neighbors. Triangle counts in networks 

are also provided [53]. The formula [54],[55] for the local CC or local 

transitivity of a node vi V in a graph G = < V, E > reads as follows. 

 

Cc (vi) =   
  Ntriangles(vi)  

Ntriples(vi)
                                              (3.2)  
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The amount of triangles containing node vi is denoted by Ntriangles (vi), while the 

amount of triples produced at node vi is denoted by Ntriples (vi). The local CC is the 

ratio of linkages among a set of nodes to the maximum possible number of links. In 

an undirected graph, Ntriples (vi) = 
𝑘𝑖(𝑘𝑖−1)

2
   and Ntriangles(vi) =| {(vj,vk) . vj,vk ∈ 

Γ(vi),(vj,vk) ∈ E} |. 

 

The CC of a graph can be defined as the arithmetic mean of the local CC of all 

nodes, which is calculated by dividing the sum of the CC of individual nodes by the 

total amount of nodes in the graph [56],[57] Mathematically; it can be expressed as.  

 

Cc (G) =    
1

|V|
     ∑ 𝐶𝑐(𝑣𝑖)𝑣𝑖∈𝐕

                                                                     (3.3)  

 

V represents the set of all nodes in the graph, and Cc (vi) denotes the clustering 

coefficient of node vi. 

 

Complex networks generally exhibit a significantly higher average CC than simple 

networks. 

 

• Average distance.  The average length of a route may be taken among any 

two nodes in a network. It is determined by adding up all the shortest paths 

among pairs of nodes and dividing that amount by the amount of pairs of 

nodes. This amount is rather low in many real-world complex networks, 

suggesting high connectivity among nodes [58],[59]. 

 

The average distance in an unweighted N-node graph G is calculated by dividing the 

sum of all shortest route lengths among any two nodes by the total amount of node 

pairs in the network. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑣𝑔 (G) = 
2

N.(N−1)
   ∑ 𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣𝑗)𝑣𝑖 ,𝑣𝑗 ∈𝐕                                  (3.4) 
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• Diameter. A graph's diameter refers to the shortest path's largest possible 

length among any two nodes within the graph [60],[61]. It can be defined 

formally as. 

 

Diameter (G) = max ({dist (vi , vj) ∀ vi , vj ∈ V})                                       (3.5) 

 

The shortest route among two nodes, u and v, is denoted by d(u, v), where V is the 

collection of all nodes in the graph. 

 

O(N^2) is the well-known computational difficulty of computing the diameter of a 

graph, where N is the total amount of nodes in the network. In complicated networks, 

however, the diameters are often much less than the total network size. 

 

To compute the diameter of a network, the network must be connected. In the 

absence of connectivity, the maximum value of the shortest path among the 

connected nodes is considered. Alternatively, the average of the connected 

components' diameters can also be considered [62]. 

 

• Density. The number of sides in the graph is divided by the greatest possible 

number of edges [63],[64]. The density can be mathematically expressed for a 

graph G =< V, E >. 

 

Density (G) =  
2|E|

|V| x (|V|−1)
                                                                             (3.6) 

 

Here, |V| represents the number of nodes in the graph, and |E| denotes the number of 

edges. The factor of 2 is included in the numerator to account for each edge 

connecting two nodes in the graph. 

 

Complex networks are often depicted by a relatively low density, indicating that they 

are highly sparse  [65]. 
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• Community structure. Cluster nodes in components and communities often 

develop in complicated networks. When nodes in a network have 

commonalities, they form communities, which are sub-graphs of the network. 

Typically, there are more connections among nodes inside a community than 

those outside the community [66],[67]. Figure (1.3) depicts a sample 

community's basic organizational setup. In a network, there may be 

overlapping or non-overlapping communities. 

 

In addition, real-world networks often demonstrate temporal variations, which may 

lead to the emergence and demise of vertices and edges for the network's lifetime. 

Because of this, the features of the graph, such as its average grade, density, average 

clustering coefficients, etc., might change over time as a result. 

 

 

Figure 3.3. Networks with complicated community structures. 

 

3.4. LINK PREDICTION  

 

Predicting the probability of a connection among two nodes in a network is the focus 

of this subject of network analysis. Social media platforms, citation networks, and 

networks of biology are just a few examples of where this issue has surfaced. The 

purpose is to identify missing connections and extrapolate the system's structure. 

[68],[69].                                                                                                                            
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One of the simplest and most widely used methods for LP is the common neighbor's 

method. This method assumes nodes with many common neighbors will likely be 

connected [68],[69]. The amount of common neighbors among two nodes, i and j, 

can be calculated using the following formula 

 

CN (i,j)=|𝑁(𝑖) ∩ 𝑁(𝑗)|                                                                                     (3.7) 

 

Node i have neighbors who make up the set N (i), and node j also has neighbors who 

make up the set N (j). More often than not, nodes i and j will be linked in the future if 

has a high value.                                                                                                       

 

The Jaccard coefficient approach is another common technique for LP. The number 

of shared neighbors among two nodes is used to calculate their likeness, with the 

total number of neighbors serving as a normalizer. [70]. The Jaccard coefficient 

among two nodes i and j is given by.                                                                                                   

                                                                                                                     

JC (i,j) =   
 |N(i) ∩ N(j)|

  |N(i) ∪ N(j)| 
  (3.8) 

 

where |N(i) N(j)| is the sum of the neighboring i and j nodes, and |N(i) N(j)| is the 

number of neighbors that both i and j have in common. The value of JC (i,j) will 

increase if there is a high chance that nodes i and j will be 

connected.                                                 

                 

The preferred attachment model is a more sophisticated strategy for predicting links. 

According to this theory, a higher grade at a node increases its chances of gaining 

linkages in the future [71],[72]. The number of edges passing through a given node, 

i, is its grade. As i increase in grade, so does the likelihood that a new link will be 

linked to it, as provided by.                                                                                               

                                                                       

JC (i,j) =   
k(i) 

∑j k(j) 
 (3.9) 
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Where k(i) is the grade of node i, the summation is over all nodes j in the network. 

The higher the value of PA (i), the more likely it is that node i will attract new links.    

 

Another method for LP depends on the concept of node likeness. The assumption is 

that nodes similar in their properties or attributes will likely be connected. The 

likeness among nodes i and j can be computed using various likeness measures, such 

as cosine likeness, Pearson correlation, or Euclidean distance. The likeness score 

among nodes i and j can be used to predict the probability of a link using LR or a 

decision tree classifier.                                                                                                      
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PART 4 

 

MACHINE LEARNING 

 

4.1. OVERVIEW 

 

Machine learning (ML) is a branch of artificial intelligence (AI) focused on creating 

algorithms and models that enable computers to learn from data and improve their 

performance without human intervention. The purpose of machine learning is to 

teach computers to draw conclusions and draw conclusions from data. Because they 

can be trained on massive datasets to improve Accuracy and efficiency, ML models 

are good tools for handling complex challenges in many domains. There are several 

types of ML, each with its own set of benefits and drawbacks; examples include 

supervised learning, unsupervised learning, and reinforcement learning. 

 

4.2. SUPERVISED LEARNING 

 

Supervised learning is an ML approach where machines are trained using labeled 

data, allowing them to predict outputs depending on that data [73],[74]. Labeled data 

refers to input data tagged with the correct output, which guides the machines to 

learn how to predict outputs accurately[73]. 

 

In the same way that a teacher guides and instructs their students, training data 

functions as a coach to educate computers on making accurate predictions of future 

results. This method has several applications, including computer vision, voice 

recognition, and NLP. [75],[76]. 

 

By using algorithms that can learn from labeled data and make predictions, 

supervised learning can generalize to new, unseen data. It has led to significant 

advances in image and speech recognition and has become an essential tool in 
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developing various artificial intelligence applications. By leveraging labeled data to 

train ML models, supervised learning enables more accurate and efficient 

predictions, ultimately leading to improved decision-making and outcomes. 

 

Modeling a system using input data x X and its matching output (response) y Y is 

supervised learning, an ML approach. X denotes the range of admissible input 

values. In contrast, the range of admissible output values is denoted by Y. Finding a 

decision function that reliably predicts the response of incoming samples given the 

observable input state x X [75],[76], [77] is the objective of supervised learning. 

 

For binary classification issues, the training samples inform a decision function that 

will ultimately place unseen data into one of two classes. The labels Y = 1 and +1 

make up the response set of the function, and a new sample is classified as either a 

member of the first or second group. 

 

The function ψ in supervised learning represents the decision equation that converts 

x into y. The equation for the function ψ can vary depending on the specific problem 

and algorithm used. 

 

ψ(x) = sign (w^T x + b)                                                                                           (4.1) 

 

Where w is the weight vector, b is the bias term, and the sign function assigns the 

output label depending on whether the function's value is positive or negative. 

 

In more complex problems, such as image recognition or natural language 

processing, the decision function can involve using neural networks or other deep 

learning techniques, which can have a more complex structure and involve many 

layers of interconnected neurons. In these cases, the function ψ can be represented as 

a series of connected nodes or layers, each performing a specific operation on the 

input data to produce the final output prediction [76],[78],[79].  
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4.3. MACHINE LEARNING TECHNIQUES 

 

4.3.1    Logistic Regression 

 

To predict binary or categorical outcomes in ML, statisticians turn to LR [80]. It is a 

kind of regression analysis in which the chances of something happening are 

calculated using data from several independent factors. The dependent variable in LR 

is binary, taking on only the values 0 or 1 (figure 4.1). There is flexibility in the form 

of the independent variables. Finding the optimal model for predicting the 

probability of the outcome variable from the input variables is the purpose of LR 

[81],[82],[83]. 

 

In the LR model, the likelihood of the result of the parameter is modeled by a logistic 

function. The logistic function is an S-shaped sigmoid function. A sigmoid function 

converts an input number to a likelihood between 0 and 1 between those extremes.  

 

p =   
1 

(1 + e^(−z))  
                                                                                                     (4.2)  

 

When z is the linear relationship among the independent parameters, p is the 

likelihood that the event will occur, e is the base of the logarithm of natural numbers, 

and the equation shows the Linear combining of the separate variables. 

 

z = b0 + b1x1 + b2x2 + ... + bn*xn                                                                         (4.3) 

 

The intercept is denoted by b0, the independent variable coefficients by b1 through 

bn, and the values of the independent variables, x1 through xn, by the bracketed 

expression. For each independent variable, the LR model's coefficients express the 

proportion by which the log odds of the event happening shift for every one-unit shift 

in that variable. The log odds are the reciprocal of the odds ratio, which is the ratio 

between the chances of an event happening and the odds of it not happening [84]. 

 

The highest likelihood (LR) calculation is used throughout the training process. 

Finding the coefficient values that increase the probability of what was seen given 
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the model is the purpose of maximum likelihood estimation [85]. The likelihood 

function is the equation that represents the probability that the data will be seen given 

the model.  

 

L = ∏ (p^yi * (1-p)^(1-yi))                                                                                     (4.4) 

 

For each observation in the training data, we take the product yi(0,1), p(0,1), where 

yi is the observable result variable, and p(0,1) is the expected likelihood of the final 

result variable. When multiplying very tiny probabilities, underflow errors may occur 

if using the likelihood function directly; hence the model of the probability function 

is utilized instead. The equation for the log-likelihood operation, which is the 

logarithm of the likelihood function, looks like this. 

 

l = ∑ (yi*log(p) + (1-yi)*log(1-p))                                                                          (4.5) 

 

Finding the coefficient values that optimize the log-likelihood function is the key to 

fitting the LR model. Mathematical enhancement methods like descent gradient and 

Newton's approach are often used for this purpose [82,[86]. 

 

One-vs-all and softmax regression methods show how LR may be adapted to handle 

multi-class classification issues. To do one-versus-all LR, an LR model is fitted for 

each class independently, and the class with the greatest predicted probability is then 

forecasted. Fitting a single LR model that predicts the probability of each class and 

normalizes the probabilities using the softmax function is what softmax regression is 

all about[81],[87]. 

 

 

Figure 4.1. LR with sigmoid [88]. 



29 

4.3.2. Support Vector Machines (SVM) 

 

(SVMs) are an effective machine learning (ML) method for categorization and 

retraction. Using a cost function that imposes penalties for incorrect classifications, 

they locate the hyperplane that maximizes the gap between the two groups. To 

process non-linearly separable data, SVMs may be modified to use a kernel function 

to translate the input data into a higher-dimensional feature space. Figure 4.2 

illustrates how the input data and the desired qualities of the decision boundary play 

a role in determining which kernel function is best suited for use with support vector 

machines [89],[90].    

 

Support vector machines aim to find the excessive level that optimizes the margin 

between the two classes. Distance from the hyperplane to the nearest data points in 

each class constitutes the margin. In order to achieve the greatest margin while still 

accurately categorizing all of the training data points, the excessive level is selected 

in such a manner [89],[90],[91]. The equation stands for the excessive level that 

divides the two groups. 

 

w^T x + b = 0                                                                                                          (4.6) 

 

Weights are denoted by w, input data by x, and bias by b. Because the weight 

component w is perpendicular to the excessive level, it sets the excessive level initial 

orientation in the input space. The excessive level is moved to the correct location in 

the input space by the bias term b. SVMs use cost functions that punish incorrect 

classifications for determining the best excessive utilization level. This is what we 

mean by "cost function." 

 

C * Σ(max(0, 1 - y_i(w^T x_i + b)))                                                                       (4.7) 

 

For the i-th training data point, the variable of interest is y_i (which can be either 1 or 

-1), the input component is x_i, and the expected result is wT x_i + b, where C is the 

cost parameter that regulates the trade-off between greatest the margin and reducing 

the ranking mistakes. 
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To process non-linearly separable data, SVMs may be modified to use a kernel 

function to translate the input data into a higher-dimensional feature space. The 

kernel function maps the input data into a new space where a linear decision 

boundary may be located. The kernel function is selected according to the input 

data's features and the decision boundary's desired attributes. The linear kernel, 

polynomial kernel, and radial basis function (RBF) kernel are only a few examples of 

popular kernel functions [89],[90]. Since the RBF kernel is both computationally 

economical and capable of handling complicated decision boundaries, it is often used 

in support vector machines. The formula for the RBF kernel is. 

 

K(x, x') = exp(-gamma * ||x - x'||^2)                                                                        (4.8) 

 

Where x and x' are two input components, gamma is the kernel parameter that 

determines the size of the Gaussian function, and the square of the Euclidean 

distance among them is ||x - x'||^2. The RBF kernel projects the input data into an 

infinite-dimensional feature space to locate a linear decision boundary. 

 

 

Figure 4.2. Support vector machine [92]. 

 

4.3.3. Random Forest (RF)  

 

The ML method RF is widely used for both ranking and regression purposes. It is a 

kind of ensemble learning in which many different decision trees are used to create a 

single prediction. Accuracy, scalability, and high-dimensional data management are 
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hallmarks of RFs [93],[94]. Different input data sets train many decision trees (figure 

4.3). Each decision tree is taught to use a predetermined set of attributes to determine 

what category a given data item belongs to. In order to prevent overfitting and boost 

the classifier's precision, the trees are generated using a random subset of input 

characteristics [95]. The final Prediction depends on the votes of all the separate 

decision trees. For each input data point, the decision tree with the most votes for a 

certain class is chosen as the projected class. 

 

The decision trees in an RF classifier are constructed using a recursive partitioning 

algorithm. The algorithm selects a feature that best separates the training data 

depending on a specified splitting criterion. The splitting criterion typically depends 

on impurity measures such as entropy, Gini index, or classification error.  The 

splitting criterion determines the optimal feature and threshold for splitting the data 

into two subsets. When a stopping requirement is reached, such as achieving the 

deepest level or the smallest amount of data points in a node's leaf, each subset is 

repeated recursively. The output of a decision tree is a binary decision depending on 

the input features. The output of an RF classifier is the majority vote of the 

individual decision trees. The probability of the predicted class can also be estimated 

depending on the proportion of decision trees that predict each class [96],[97]. It can 

use this equation to explain the RF classifier mathematically.. 

 

f(x) = argmax(c) Σ(w_i * I(T_i(x) = c))                                                                  (4.9) 

 

Where f(x) is the predicted class for input data point x, T_i(x) is the decision tree i, c 

is the class label, w_i is the weight assigned to the decision tree i, and I(T_i(x) = c) is 

an indicator function that equals one if the decision tree i predicts the class label c for 

input data point x and 0 otherwise. 

 

Each decision tree may be given a different weight depending on how well it predicts 

or how critically important the information it uses is. The weights may be adjusted 

accordingly to ensure that each decision tree contributes an equal amount to the final 

Prediction. There are several ways in which RFs excel above other types of ML 

algorithms. They are adept at handling large, complex datasets and have a lower 
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propensity for overfitting [95]. They can also withstand some grade of random 

variation or missing information. It has been shown that RFs are effective for both 

binary and multi-class issues in classification and regression analysis [95],[98],[99]. 

 

 

Figure 4.3. RF algorithm. 
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PART  5 

 

METHODOLOGY 

 

This chapter will present formulas and provide a detailed explanation of the 

complexity underlying LP algorithms. Subsequently, an exposition of the datasets 

employed in the study will be offered, followed by the necessary steps for data 

preparation. Finally, an in-depth discussion will be conducted on the particulars of 

the examination process. By delving into the intricacies of the LP algorithms, we aim 

to shed light on their mathematical foundations and elucidate the underlying 

principles driving their predictive power. The datasets used in this study will be 

described in detail, including their sources, characteristics, and preprocessing 

techniques applied. 

 

5.1. EXPLORING GRAPH-BASED LIKENESS MEASURES 

 

5.1.1. Common Neighbor  (CN) 

  

The common neighbor classifier is an ML technique for foretelling relationships in 

social networks and other graph-based data structures. The method determines the 

likelihood of a link between two nodes in a network by counting the number of 

common neighbors between them. The method operates on the premise that 

connected nodes are more likely to share neighbors than their unconnected 

counterparts [100],[101]. To describe this behavior, use the following equation. 

 

P(i,j) = Σ_k I(A_ik = 1) * I(A_jk = 1)                                                                    (5.1) 

 

A_ik denotes the adjacency matrix entry between vertices i and k, and an indicator 

function, I(A_ik = 1), evaluates to 1 if a connection exists between vertices i and k 

and 0 otherwise. 
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One limitation is that it does not consider the network's grade distribution [102]. In 

networks with highly skewed grade distributions, nodes with many neighbors are 

likelier to share common neighbors than nodes with few neighbors, even if they are 

not directly connected. This can lead to false positives in LP. Despite its limitations, 

it is a simple and effective algorithm for LP in social networks and other graph-based 

data structures. It can be applied to various problems, including recommender 

systems, collaborative filtering, and social network analysis [102],[103]. 

 

5.1.2. Adamic Adar (AA) 

 

In LP tasks in social networks and other graph-based data structures, it serves as a 

measure of how similar two nodes are [72]. The technique relies on the hypothesis 

that more connections will be made between nodes that share few neighbors. The 

equation for this is as follows. 

 

AA (i,j) = Σ_k I(A_ik = 1) * I(A_jk = 1) * (1/log(d_k))                                        (5.2) 

 

Where AA(i,j) is the Adamic Adar coefficient among nodes i and j, A_ik is the 

adjacency matrix entry among nodes i and k, and I(A_ik = 1) is an indicator function 

that equals one if there is a link among nodes i and k and 0 otherwise. The term 

(1/log (d_k)) is a weighting factor that reflects the rarity of the neighbors shared by 

nodes i and j. The logarithmic function avoids giving too much weight to nodes with 

very high grades. 

 

It can also be extended to include additional features, such as the preferential 

attachment score or the clustering coefficient, which capture additional aspects of the 

network structure [104]. These features can further improve the accuracy of the LP 

techniques.  Despite its effectiveness, it has some limitations. It assumes that the 

network is static and does not take into account the temporal dynamics of the 

network. It also assumes that the rare neighbors shared by nodes i and j are equally 

important, which can not always be the case [105]. 
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5.1.3. Jaccard Coefficient (JC) 

 

The grade of likeness among two datasets may be calculated using the Jaccard 

coefficient (JC), also known as the Jaccard likeness coefficient. Common 

applications include clustering, classification, and recommendation systems [106], all 

of which fall within the purview of ML. The ratio of the crossroads of two sets to 

their union is known as the intersection ratio. 

 

J  (A,B) =   
|A ∩ B|  

|A ∪ B| 
  (5.3) 

 

A and B are two collections, and A's cardinality (the number of items in A) and B's 

cardinality (the number of items in B) are, respectively. The value of JC may be 

either 0 (indicating that the two sets share no items) or 1 (indicating that they are 

identical). 

 

The JC is often used to measure the likeness between two text documents. In this 

case, the sets are the words in each document. The JC can be used to compare the 

overlap among the words in the two documents, providing a measure of how similar 

the documents are regarding their content. It can also be used in clustering 

algorithms, where it is used to measure the likeness among clusters of data points. In 

this case, the sets are the data points that belong to each cluster. The JC can be used 

to compare the overlap among the data points in two clusters, providing a measure of 

how similar the clusters are [106],[107],[108].  

 

One limitation of JC is that it does not consider the frequency of occurrence of the 

elements in the sets. Two sets with a high grade of overlap but with different 

frequencies of elements can have a low JC [107]. To overcome this limitation, the 

Jaccard index can be used, which considers the frequency of occurrence of the 

elements in the sets. 

 

JI(A,B) =   
|A ∩ B|  

|A ∪ B| 
                                 (5.4) 
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Where |A ∪ B| is the sum of the frequencies of the elements in the two sets. 

 

5.1.4. Preferential Attachment (PA) 

 

In network research, the PA describes the phenomena where higher-grade nodes 

draw more linkages than lower-grade nodes. To what extent a network displays 

preferential attachment may be measured using the PAC [109],[110]. The PAC is the 

constant-factor-normalized ratio of the product of any two nodes' grades to the 

square of the network's total amount of grades. 

 

PAC (i,j)  =   
k_i ∗ k_j 

(2m)^2  
                  (5.5) 

 

In this case, 2m represents the total number of edges in the network, while k_i and 

k_j represent the quality of nodes i and j, respectively. If the PA is 1, all new edges 

are connected to the nodes with the highest grade; if it is 0, new edges are connected 

at random. 

 

Machine learning programs like LP and community detection may benefit from the 

PAC. Using the two nodes' grades and the network's aggregate grade, the PAC can 

forecast the probability of a new connection forming between them in LP. A larger 

PAC indicates a higher probability of connectivity between nodes. Based on their 

ratings and the network's overall grade, the PAC can determine which nodes are 

more likely to belong to the same community. [109],[111]. 

 

One of the main features of the PAC is that it is a simple and efficient measure that 

can be calculated quickly for large-scale networks. It can also capture the 

heterogeneity of the network's grade distribution, a common feature of real-world 

networks. However, the PAC has some limitations. For example, it assumes that 

nodes with a higher grade are always more attractive to new links, which is not 

always true in practice. It also does not consider the network's topology, such as the 

presence of communities or the grade of correlation among nodes [112]. 
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5.1.5. Resource Allocation Index (RAI) 

 

It is an approach used in ML to evaluate the performance of multiple models when 

applied to a single task. RAI assesses how efficiently resources, such as 

computational time or memory, are allocated among different models to optimize 

their overall performance [113]. The formula of RAI can be expressed as follows. 

 

RAI =   
accuracy 

Computational cost^k 
             (5.6) 

 

Accuracy is the model's performance metric, such as precision or F1 score; 

computational cost is the resource consumed by the model, such as CPU time or 

memory usage; and k is a scaling exponent determining the relative importance of 

accuracy and computational cost. 

 

RAI allows for comparing models with different performance and resource 

requirements and helps identify the most efficient models. For instance, if two 

models have similar accuracy, but one consumes fewer computational resources, the 

RAI will be higher for the more efficient model [113],[114]. 

 

RAI is good equipment for optimizing the performance of ML models, particularly in 

resource-constrained environments such as mobile devices or embedded systems. It 

can also help researchers better understand the trade-offs among accuracy and 

computational cost in ML and develop more efficient algorithms [113],[114]. 

 

5.2. DATASETS 

 

The dataset utilized in this study was sourced from three distinct origins: (1) web of 

science; (2) microsoft academic; and (3) google scholar. This dataset had been 

collected in year 2022. 

 

These websites contain significant metadata alongside citations to digital renditions 

of published materials. Within the given dataset, individual nodes correspond to 

distinct authors of scientific articles, while an edge connecting two authors signifies a 
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collaborative publication involving both individuals. The publication date of the 

collaborative work can be determined by examining the timestamp associated with 

each edge. In instances where two authors have collaborated on multiple articles, 

only the initial publication they co-authored will be considered for the analysis. 

 

The datasets were obtained through a meticulous process involving collecting and 

compiling articles from the journals above. Subsequently, a systematic categorization 

and tabulation procedure was employed to create three separate datasets. Computer 

science, Medical, and Social. In this context, each node within the datasets represents 

a cluster of authors who collaborated on scientific papers, while the edges symbolize 

the pooled connections among these authors. By structuring the datasets in this 

manner, the intricate network of author collaborations can be effectively captured 

and analyzed, providing valuable insights into the dynamics and patterns of scientific 

cooperation across different domains.  

 

5.2.1. Dataset Properties 

 

5.2.1.1. Computer Science Dataset 

 

The data were coded, and the data sources were published papers acquired from 

various places, including scientific publications, conferences, and other places. The 

dataset had (5410) different nodes. When the code was executed, it returned the 

amount (838), the number of nodes in the utilized database. This database consists of 

three columns, each representing one of the following. The name of the piper, the 

name of the person participating, and the number of nodes that were supplied as a 

code when the code was executed. 

             

5.2.1.2. Medical Dataset  

  

The data were coded from written studies in various places, such as scientific 

journals, conferences, and other places. These papers were mostly about medicine 

and how medical image processing can be used to diagnose diseases. There were 

(3410) different nodes in the collection. When the code was run, it returned the 
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amount (435) of used database nodes. This database has three columns. Each column 

shows one of the following. The name of the piper, the name of the person taking 

part in the piper, and the amount of nodes that were given as a code when the code 

was run.     

                 

5.2.1.3. Social Dataset 

 

The information was coded and derived from textual research in several locations, 

including conferences, scientific publications, and other venues. Most of these 

publications dealt with geography articles and the application of social image 

processing. The collection had (883) unique nodes. The result showed that (237) 

database nodes were used. Three columns make up this database. The names of the 

piper, the participant in the piper, and the amount of nodes provided as a code when 

the code was executed are each shown in a separate column.                                         

                                                                                               

5.2.2. Dataset Splitting 

 

Dividing the dataset into a set to be trained and a test collection is recommended, 30 

% for the texting set and 70 % for the training set (1/3 ratio), with the training set 

taking up the biggest portion and the test set taking up the smallest. So, first, we use 

the training set to hone the model, and then we use the test set to see how well it 

performed. 

 

There are several approaches to prevent overfitting, including splitting the data set 

into testing and training sets. The training and test sets must contain patterns like 

those seen in real-world data, as this improves the model's performance evaluation.  

Set validation is essential when choosing among various models and evaluating 

which performs better, regardless of the model's performance (table 5.1). 
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Table 5.1. Allocation of data into training and testing set. 

Dataset No. of data Training set Testing set 

Computer science dataset 5410 3787 1623 

Medical dataset 3410 2387 1023 

Social dataset 883 618 265 

 

5.2.3. Data Processing 

 

A graph's overall number of edges could be less important than the number of edges 

that should be used for training. On the other hand, there can be graphs that need a 

greater amount of edges in order to do this job. The precise percentages that are used 

to divide depend on a variety of different criteria. The amount of edges utilized for 

testing should be as few as is practically practicable, yet as many as is required. This 

indicates that the assessment shouldn't be swayed because only a limited amount of 

testing node pairs are available. However, access to the maximum amount of 

information feasible for training should also be available. The same is true about 

both the feature graph and the training graph. The percentage used to partition the 

training graph and the feature graph also lowers the features' quality and reduces the 

number of node pairs in the training set. If the percentage is too high, only a few 

positive cases in the training set will affect the execution of the little graphs. If the 

percentage is too low, on the other hand, the feature graph will become extremely 

fragmented, and the features that are created for the training set will not have any 

significant significance. Additionally, this will result in deficiencies during training, 

which will cause the performance of the supervised procedures to deteriorate as a 

direct consequence. 

 

5.2.3.1. Processing Of Computer Science Dataset 

 

Each node_A from 0 to 838 has been linked to another node_B from 0 to (838) in 

order to make a pair [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), and so on]. ------

----- (619,618)]. After removing duplicate entries, the final database will contain 

350,703 rows. Thanks to the previous phase, this ensures that every opportunity has 

been explored. To construct a pair by connecting two nodes [(0, 1), (0, 2), (0, 3), (0, 
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4), (0, 5), (0, 6), (0, 7),] -- --------- (619,618)] inside the whole database that is going 

to be made . 

 

The total amount of rows in the completed database is (350703), and the pairs [(0, 1), 

(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), and (0, 7),] can be found there. ----------- 

(619,618)]. The value zero in the completed database created in the previous phases 

indicates that these 347998 nodes are not connected via a link or edge. The data 

carries a single amount; the rest indicates a connection (link) or edge among these 

nodes and their respective amount. 

 

According to the previously reported data, the number of nodes that supplied an LP 

was (2705), whereas the number of nodes that provided a non-link forecast was 

(347998). The percentage allocation to nodes can be illustrated in Table (5.2) and 

Figure (5.1). 

 

 

Figure 5.1. Computer science dataset LP diagram. 
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Table 5.2. Nodes with LP and non-LP in computer science dataset 

No. of nodes LP % Non-LP % 

27966 2705 0.77% 47998 99.23% 

 

5.2.3.2. Processing of Medical Dataset 

 

Each node_A among 0 and 838 has been connected to another node_B among 0 and 

838 to form a pair [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), and so on]. ---------

-- (619,618)].  The final database will have 350,703 rows once duplicate items are 

removed. Because of the last step, this assures that every possibility has been 

investigated. To build a pair, join two nodes [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), 

(0, 7). - --------- (619,618)] throughout the whole database that will be created (figure 

5.11). 

 

There are 93961 rows in the finished database, including the pairings [(0, 1), (0, 2), 

(0, 3), (0, 4), (0, 5), (0, 6), and (0, 7). ----------- (619,618)] The amount 0 indicates 

that these 347998 nodes are not linked to one another through a link or edge in the 

finished database that was produced in the earlier steps.  

 

Based on the information presented above, we can deduce that the number of nodes 

that provided an LP is (1704), whereas the number of nodes that provided a non-link 

forecast is (92257). The percentage allocation to nodes can be illustrated in Table 

(5.3) and Figure (5.2). 

 

Table 5.3. Nodes with LP and non-LP in the medical dataset 

No. of nodes LP % Non-LP % 

27966 1704 1.81% 92257 98.19% 
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Figure 5.2. Medical dataset connection prediction diagram. 

 

5.2.3.3. Processing For Social Dataset 

 

The pairs [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7], etc., are formed by 

connecting one node_A among 0 and 838 to another node_B among 0 and 838. ------

----- (619,618)].  (350,703) records make up the final database once duplicate entries 

are eliminated. This ensures that every option has been looked at because of the 

previous phase. Join two nodes [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7) to 

create a pair. The whole database that will be constructed will include - --------- 

(619,618)]. 

 

The final database has 93961 rows, which includes the pairs [(0, 1), (0, 2), (0, 3), (0, 

4), (0, 5), (0, 6), and (0, 7). ----------- (619,618)]. These (27966) nodes are not 

connected by a link or edge in the final database created in the preceding phases, as 

indicated by the amount 0. Because all the data comprises a single amount. 

 

Table (5.4) demonstrates that the amount of nodes that provided an LP is (441), and 

the amount of nodes that provided a non-link forecast is (27525) depending on the 

information presented previously. The percentage allocation to nodes can be 

illustrated in Figure (5.3). 
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Table 5.4. Nodes with LP and non-LP in the social dataset 

No. of nodes LP % Non-LP % 

27966 441 1.58% 27525 98.42% 

 

 

Figure 5.3. Social dataset connection prediction diagram. 

 

5.3. IMPLEMENTATION 

 

"The trials were carried out in the Python programming language with the assistance 

of PyCharm version 2019.3.3 Community edition. PyCharm is a Python Integrated 

Development Environment (IDE) created for experienced software programmers. 

 

Because of the size of the graphs involved, it is necessary to carry out the 

calculations using techniques that have been optimized. In addition, one of the most 

important concerns is ensuring these procedures are successful and efficient. 

Creating such procedures from scratch would require significant time and effort. As a 

result, to reduce these expenditures, we decided to use libraries provided by other 

parties. We determined that the NetworkX[123]  Pandas[124] Python Data Analysis 

Library[124] were the best options. While Pandas is a popular open-source toolkit for 

data analysis in Python, NetworkX[123]   is a Python package that offers complete 

network analysis capabilities. 
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The NetworkX[123] Python library, especially NetworkX[123] 2.4, is invaluable 

when managing complicated networks. It can read networks and create graphs for 

training and test sets. 

 

The Pandas[124]  Python Data Analysis Library, version 1.2.4, is useful for various 

data-related tasks, including analysis and the construction of data structures. It is 

used to store the outcomes of the procedures and write them in an Excel format. 

 

The code file is divided up into three primary sections. The first part of the code is 

where the input datasets are read and where the graphs that correspond to those 

datasets are created. Figure (5.4) shows that this activity uses procedures found in the 

NetworkX library[123]. It also illustrates receiving the input and separating the 

graphs for the training and test sets. This is done so that the train and test graphs can 

be processed independently. 

 

list_of_algorithms = [] 

list_of_algorithms.append(('Logistic Regression', 

LogisticRegression(max_iter=1000))) 

 

list_of_algorithms.append(('Support Vector Classification', SVC())) 

 

list_of_algorithms.append(('Random Forest Classifier', RandomForestClassifier())) 

 

fig, ax = plt.subplots() 

 

display_labels = ['No Link', 'Has a Link'] 

 

For name, algorithm in list_of_algorithms. 

    newPipe = Pipeline(steps=[('preprocessor',preprocessor), 

                      (name,algorithm)]) 

    newPipe.fit(X_train, y_train) 

    y_pred = newPipe.predict(X_test) 

    roc_disp = RocCurveDisplay.from_estimator(newPipe, X_test, y_test, ax=ax, 

name='{}'.format(algorithm.__class__.__name__)) 

    print(f'Algorithm . {name}') 

    print(classification_report(y_test,y_pred)) 

    ConfusionMatrixDisplay.from_estimator(newPipe, X_test, 

y_test,display_labels=display_labels)   

 

Figure 5.4. Analyzing inputs and displaying test-and-training data. 
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After the graphs have been built, any nodes not connected to other nodes are deleted 

to obtain the huge component. It is of the utmost importance that the train graph and 

the test graph have the same collection of nodes. This is because the major purpose 

of the experiments is to evaluate the efficacy of prediction algorithms in finding new 

connections among pre-existing nodes. Eliminating nodes that are exclusive to only 

one graph is required in order to fulfill this requirement—this phase, which brings 

the first section to a close. 

 

After that, the supplied coding data visually represents building the network. In this 

stage, We will create a graphical depiction of the structural connections inside the 

network. 

 

Establishing an experimental framework will be the main emphasis of the second 

stage of this procedure, which will allow the methods to be assessed. This section 

will discuss the implementation of the framework, focusing on evaluating the 

Common Neighborhood. On the other hand, it is crucial to emphasize that the other 

frameworks' implementation will adhere to a strategy similar to the one outlined 

above. 

 

In order to ascertain the predictions that are produced by the common neighborhood 

approach, it is required to calculate the number of common neighbors for every 

prospective pair taken from the graph. Only then will it be possible to determine the 

predictions. In order to accomplish this goal, a framework consisting of nested loops 

has been put into place to create all possible pairings. 

If a graph has n nodes, the total amount of potential node pairs can be determined by 

using a formula equivalent to selecting all subsets of the node set, provided that each 

subset has precisely two components. This method can compute the total amount of 

potential node pairs. As a result, the amount of possible pairings will be exceedingly 

high, given that it increases according to the order of a factorial function. As a direct 

consequence of this, it is not possible to generate and process all pairings 

concurrently. In order to overcome this obstacle, the generation of node pairs and the 

processing of those pairs are carried out in chunks.  
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For undirected networks, the number of potential combinations can be enumerated 

using n (n-1)/2, where n is the number of nodes. The order of the nodes will be 

irrelevant. Take, for instance, the links (1,3) and (3,1); they are identical. 

 

When a chunk has been generated and filled with pairs, the next step is calculating 

the amount of common neighbors each pair shares inside the chunk. After that, the 

calculated values are contrasted with the best ones found up to this point. The 

candidates with the most potential are chosen to go on from the combined list of 

values, while the other values are thrown out. This strategy guarantees that only the 

candidates with the highest probability of success, i.e., the pairings It, which is going 

to be a part of the forecasting of the technique that is being assessed, are stored in 

memory. Consequently, memory use can be improved, and problems caused by 

insufficient memory can be alleviated. In addition, as each stage is completed, a 

larger proportion of pairings can be analyzed, and the final results indicate that the 

candidates with the highest likelihood of success depend on the total amount of graph 

that has been processed so far. 

 

In order to calculate the metrics, namely Score, Shared Neighbors, Adamic Adar 

Index (AAI), Preferential Attachment (PA), Jaccard Coefficient (JC), and Link, for 

each edge, the following code will be executed. This code encompasses a set of 

computational instructions that systematically analyze the characteristics of the graph 

structure and the relevances among nodes. By traversing the graph's edges, the code 

applies mathematical formulas and algorithms to determine the corresponding 

metrics. These metrics provide insights into the graph's connectivity patterns, 

likeness measures, and growth tendencies. The code implementation enables the 

extraction of valuable information that can be utilized for various purposes, such as 

network analysis, recommendation systems, and community detection. Through the 

execution of this code, a comprehensive understanding of the graph's properties and 

the associations among its nodes can be achieved, facilitating further analysis and 

decision-making processes in scientific, social, and technological domains. 
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5.3.1. Model Testing  

   

The suggested models are put through their paces by having test data input, 

preprocessed, and then fed into them during the testing phase. The test data are then 

analyzed to look for suitable features that could be used for LP. If the condition is 

met, the system generates an output that verifies the presence of LP using the data 

gathered while learning how to do something. If this is not the case, the system will 

give an LP assertion. There are two ways that the output model is checked. 1- 

Determine whether or not it corresponds to the labels in our dataset. 2- Make certain 

that a single data portability process minimizes lost data when applied to data 

collection. Figure (5.5) An explanation of the proposed model's training and testing 

procedure is included below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Testing-Training model Flowchart 

    

5.4. PREDICTION 

 

The data sets are converted into a graph representing the network during the stage 

responsible for preparing the input data. During the process stage known as "method 

execution," the prepared graph is fed into the method realization codes, which are 

Dataset 

Testing dataset Training dataset 

Preprocessing 

 

Preprocessing 

Implementation  

 

Labeling 

 

Training the modes (Logiolistic 

Regression, Support vector 

Classification, and Random 

Forset Classifier 

 

Predicting 

 
Trained 

model 
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then put through their paces. In conclusion, the evaluation metrics that were acquired 

before, during, and after the method execution are kept as part of the process of 

creating the final result report. The activities used to construct the result reports and 

the evaluation metrics defined in Section 3.4 are carried out during this stage. Section 

3.4 Evaluation metrics are computed using the data recorded while the procedure is 

carried out. 

 

Methods for forecasting, output formatting, the generation of visualizations, and 

output file storage are all included. Processing the graphs from real-world data sets is 

challenging due to the large quantities of information in these sets. The graphs can 

include thousands of nodes and edges connecting them. Attempting to keep track of 

all potential node pairings that may be linked in the next graph stage would be an 

enormous undertaking; we will quickly run out of memory for this endeavor. We 

have begun the process of producing candidate pairings in chunks of data as opposed 

to doing it all at once so that we can get around this problem. This enables us to free 

up the memory section used for a chunk after processing that chunk. Memory 

problems can be avoided, and the whole set of results can be acquired if the 

candidates are first broken up into manageable parts, and then the pieces are worked 

through in phases. 

 

5.5. PLATFORM USED 

 

The laptop utilized for this study was a Lenovo with an Intel(R) Core(TM) i5-

7200CPU running at 2.5 or 2.7 GHz, a 64-bit, sixth-generation processor, 8 GB of 

RAM, and a Windows 10 operating system. 

 

5.6. CLASSIFICATION METRICS 

 

Several measures assess a model's performance in machine learning classes. 

Accuracy, Precision, Recall, F1-Score, and Area under the ROC Curve (AUC) are 

some of such measurements. Proper estimation of these parameters is essential for 

understanding the built model and its possible defects. 
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True Positive (TP) is a crucial metric that identifies phishing attacks correctly 

classified as positive by the model. On the other hand, True Negative (TN) metric 

identifies non-phishing measures that are accurately ranked as negative. False 

Positive (FP) is a metric that indicates non-phishing instances classified as phishing 

attacks, while False Negative (FN) identifies phishing attacks classified as non-

phishing instances. 

 

By utilizing these metrics, we can better comprehend the execution of an ML model 

and make informed decisions about potential improvements. These metrics allow 

researchers to make informed conclusions about the accuracy and precision of their 

models while identifying and addressing potential sources of errors. In conclusion, 

utilizing these metrics is crucial for obtaining comprehensive evaluations of ML 

models. 

 

• Accuracy is the proportion of cases properly categorized relative to the total 

number of occurrences in the dataset [118],[119]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
                                                                                 (5.7) 

 

• Precision in phishing detection refers to the proportion of identified instances 

of phishing attacks that are accurate or have true positive results [118]. It is 

estimated as. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                      (5.8) 

 

• Recall refers to the proportion of true positive cases in a classification model 

that accurately identifies phishing attacks [120]; it is calculated as. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                            (5.9) 
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• The F1 score is a common indicator of success in several domains, including 

ML and IR. This metric and recall measure accuracy in categorization or 

detection. Precision is the proportion of true positives among all accurate 

forecasts, whereas recall represents how many prognoses were right overall 

[121],[122]. The F1-score is a fair measure of the system's efficacy since it is 

the consistent mean of the accuracy and recall scores. The F1 score would be 

1 in a perfect system, but in a random system, it would be 0.    

 

𝐹𝐼 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 =  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 +  𝐹𝑁
                             (5.10) 

 

• Receiver Operating Curve (ROC) is a popular statistic for evaluating a 

model's performance when classifying data into positive and negative 

categories. The ROC curve illustrates the compromise among TPR and FPR 

at different cutoffs for classification. The entire performance of the ROC 

curve is summarized by the Area under the Receiver (AUC) statistic, which 

takes values between 0.5 and 1.0. A higher AUC suggests a superior classifier 

with a higher TPR and a lower FPR for each given decision criterion. In this 

sense, the AUC metric is a complete assessment of classifier performance 

since it considers every potential cutoff value. 
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PART 6 

 

RESULTS AND DISCUSSION 

 

The early results of the acquired metrics will be given in this part, both graphically 

and in tabular form. Methods and results from various studies will be compared to 

determine which ones provide the most promising performance measures and 

methods. In addition, a comprehensive investigation will be conducted to uncover the 

driving forces behind the observed accomplishment. We hope that by carefully 

analyzing these outcomes, we can better understand what makes the indicated 

measurements and methodologies so effective. 

 

6.1. RESULTS 

 

Because this investigation used three different datasets, the outcomes for the three 

suggested models, which were trained using those data sets, will be presented. 

 

6.1.1. Computer Science Dataset Results 

  

Visualizing the network once the computer science dataset has been applied to it is 

seen in Figure (6.1). 
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Figure 6.1. Visualizing the network for computer science dataset. 

 

To measure and calculate the proximity of nodes on their shared neighbors. The 

following methods must be calculated when calculating the score for each node and 

edge with the computer science dataset: common neighbors, Adam's index, 

preferential attachment, and Jacquard's modulus. The result will be as in Figures 

(6.2), and Table (6.1) explains the AUC score for each method; Figure (6.3) reveals 

the histogram.  

 

Table 6.1. AUC score performed using measurement methods to the computer 

science dataset.         

Method AUC score 

Common Neighbor 0.38 

Adamic Adar Coefficient 0.41 

Jaccard Coefficient 0.40 

Preferential Attachment Coefficient 0.46 
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(A) (B) 

 

 
(B) (D) 

 

Figure 6.2. Plot Representation of node affinity metrics applying to a computer                    

science dataset. (A); Common Neighbor, (B). Adamic Adar Coefficient,                   

(C); Jaccard Coefficient, and (D); Preferential Attachment Coefficient.  

        

 

Figure 6.3. AUC score histogram for a computer science dataset. 

 

The plot for AUC that results from applying the LR, Support Vector Classification, 

and RF Classifier on the computer science dataset is shown in Figure (6.4). Also, 
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table (2) explains the results which had been got, and Figure (6.5) reveals the 

histogram. 

 

Table 6.2. AUC score collected using the algorithms of the computer science dataset. 

Model AUC score 

LR 0.99 

Support Vector Classification 0.99 

RF Classifier 0.99 

 

 

Figure 6.4. Plot for AUC score when applying the algorithms to computer 

sciencedataset to computer science dataset. 

 

 

Figure 6.5. AUC score histogram for algorithms on computer science dataset. 

 

LR was applied to the the computer science dataset; the results are shown in Table 

(6.3). Accuracy = 0.94, Precision = 0.91, Recall = 0.98, and F1-score = 0.94 for the 
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non-LP. Accuracy = 0.94, Precision = 0.98, Recall = 0.91, and F1-score = 0.94 all 

indicate the LP shown in (1). Figure (6.6) displays confusion matrices for the 

proposed approaches applied to the medical dataset. 

 

Table 6.3. Results performed using the LR model to the computer science dataset 

Dataset Algorithm Type of 

Link 

Result 

Accuracy Precision     Recall      F1- 

score 

Computer 

science 

dataset 

LR Non-LP 0.94 0.91 0.98 0.94 

LP 0.94 0.98 0.91 0.94 

 

 

 

Figure 6.6. Confusion matrix using LR model to computer science dataset. 

 

Table (6.4) shows the outcomes of applying Support Vector Classification to the 

computer science dataset. Accuracy = 0.94, Precision = 0.91, Recall = 0.98, and F1-

score = 0.94 for the non-LP. Accuracy = 0.94, Precision = 0.98, Recall = 0.91, and 

F1-score = 0.94 all indicate the LP shown in (1). The application of the offered 

strategies is shown in Figure (6.7), along with corresponding confusion matrices. 

 

Table 6.4. Results performed using the Support Vector Classification model to 

computer science dataset.                                                                           

Dataset Algorithm Type of 

Link 

Result 

Accuracy Precision     Recall      F1- score 

Compute

r science 

dataset 

Support 

Vector 

Classification 

Non-LP 0.94 0.91 0.98 0.94 

LP 0.94 0.98 0.91 0.94 
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Figure 6.7. Confusion matrix using the Support Vector Classification model to                         

computer science dataset. 

 

Table (6.5) shows the outcomes of applying RF Classifier to the computer science 

dataset. Accuracy = 0.94, Precision = 0.91, Recall = 0.98, and F1-score = 0.94 for the 

non-LP. Accuracy = 0.94, Precision = 0.98, Recall = 0.91, and F1-score = 0.94 all 

indicate the LP shown in (1). The histogram  is given in Figure (6.9), and the 

confusion matrices for the recommended procedures are shown in Figure (6.8). 

 

Table 6.5. Results performed using the RF Classifier model to computer science                     

dataset. 

Dataset Algorithm Type of 

Link 

Result 

Accuracy Precision     Recall      F1- score 

Computer 

science 

dataset 

RF 

Classifier 

Non-LP 0.94 0.91 0.98 0.94 

LP 0.94 0.98 0.91 0.94 

 

 

Figure 6.8. Confusion matrix using RF Classifier model to computer science dataset. 
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Figure 6.9. Histogram of accuracy for algorithms on computer science dataset. 

 

6.1.2. Medical Dataset Results  

 

Visualizing the network once the medical dataset has been applied to it is seen in 

Figure (6.10). 

 

 

Figure 6.10. Visualizing the network for the medical dataset. 
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We compute the following methods when computing the score for each node and 

edge by medical dataset. Common neighbors, Adam's index, preferred attachment, 

and Jacquard's modulus. This allows us to quantify and compute the proximity of 

nodes depending on their shared neighbors. The outcome will be shown in Figures 

(6.11) and Table (6.6) to explain the AUC score for each methodology; Figure (6.12) 

represents the histogram. 

 

Table 6.6. AUC score performed using measurement methods to the medical dataset. 

Method AUC score 

Common Neighbor 0.45 

Adamic Adar Coefficient 0.46 

Jaccard Coefficient 0.46 

Preferential Attachment Coefficient 0.44 

 

 

 
(A)                                                                   (B) 

 
(C) (D) 

 

Figure 6.11. Plot Representation of node affinity metrics applying to a medical                            

dataset. (A); Common Neighbor, (B), Adamic Adar Coefficient, (C);                             

Jaccard Coefficient, and (D); Preferential Attachment Coefficient.  
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Figure 6.12. AUC score histogram for a medical dataset. 

 

The plot for the area under the curve (AUC) that results from applying the LR, 

Support Vector Classification, and RF Classifier on the medical dataset is shown in 

Figure (6.13). Also, table (6.7) explains the results which had been got; Figure (6.14)  

represents the histogram. 

 

Table 6.7. AUC score performed using the algorithms to a medical dataset 

Model AUC score 

LR 0.99 

Support Vector Classification 0.99 

RF Classifier 1.00 

 

 

Figure 6.13. Plot for AUC score when applying the algorithms to a medical dataset. 
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Figure 6.14. AUC score histogram for algorithms on medical dataset. 

 

The outcomes of stratifying the LR method to the medical dataset are shown in Table 

(6.8). Accuracy = 0.91, Precision = 0.87, Recall = 0.95, and F1-score = 0.91 for the 

no-LP. The link (1) prediction has an F1-score of 0.91, a precision of 0.95, a recall of 

0.87, and an accuracy of 0.91. Figure (6.15) displays confusion matrices for the 

proposed approaches applied to the medical dataset. 

 

Table 6.8. Results performed by LR model with medical dataset 

Dataset Algorithm Type of 

Link 

Result 

Accuracy Precision Recall      F1- score 

Medical 

dataset 

LR Non-LP 0.91 0.87 0.95 0.91 

LP 0.91 0.95 0.87 0.91 

 

 

Figure 6.15. Confusion matrix using the LR to the medical dataset. 
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The outcomes of stratifying the Support Vector Classification method to the medical 

dataset are shown in Table (6.9). The non-LP with an accuracy of 0.96, precision of 

0.96, recall of 0.95, and F1-score of 0.96 is represented by the amount zero. 

Accuracy, Precision, Recall, and F1-score were all 0.96 for the LP shown in (1). 

Figure (6.16) shows the confusion matrices generated by the proposed approaches 

applied to the medical dataset. 

 

Table 6.9. Results performed using the Support Vector Classification model to                       

medical dataset. 

Dataset Algorithm Type of 

Link 

Result 

Accuracy Precision Recall      F1- 

score 

Medical 

dataset 

Support 

Vector 

Classification 

Non-LP 0.96 0.96 0.95 0.96 

LP 0.96 0.95 0.97 0.96 

 

 

Figure 6.16. Confusion matrix using Support Vector Classification with                                 

medical dataset. 

 

The outcomes of stratifying the RF Classifier method to the medical dataset are 

shown in Table (6.9). The non-LP with a score of 0 indicates perfect accuracy, 

precision, recall, and F1-score. The link (1) prediction has a perfect F1-score, F2-

score, F1 accuracy, and F2 precision. Figure (6.17) depicts confusion matrices for the 

proposed approaches applied to the medical dataset, and Figure (6.18) is a histogram 

of the data. 
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Table 6.10. Results performed using the RF Classifier model to the medical dataset. 

Dataset Algorithm Type of 

Link 

Result 

Accuracy Precision     Recall      F1- 

score 

 

Medical 

dataset 

 

RF 

Classifier 

Non-LP 0.99 0.99 0.98 0.99 

LP 0.99 0.99 0.99 0.99 

 

 

Figure 6.17. Confusion matrix using RF Classifier model to the medical dataset. 

 

 

Figure 6.18. Histogram of accuracy for algorithms on medical dataset. 

 

6.1.3. Social Dataset Results  

 

Visualizing the network once the social dataset has been applied to it is seen in 

Figure (6.19). 
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Figure 6.19. Visualizing the network for a social dataset. 

 

We compute the following methods when computing the score for each node and 

edge by social dataset. Common neighbors, Adam's index, preferred attachment, and 

Jacquard's modulus. This allows us to quantify and compute the proximity of nodes 

depending on their shared neighbors. The outcome will be shown in Figure (6.20), 

and Table (6.11) will explain the AUC score for each methodology; Figure (6.21) 

represents the histogram. 

 

Table 6.11. AUC score performed using measure methods to the social dataset. 

Method AUC score 

Common Neighbor 0.60 

Adamic Adar Coefficient 0.51 

Jaccard Coefficient 0.51 

Preferential Attachment Coefficient 0.87 
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(A)                                                                   (B) 

 

 
(C)                                                                   (D) 

 

Figure 6.20. Plot Representation of node affinity metrics applying to a social dataset .  

(A); Common Neighbor, (B), Adamic Adar Coefficient, (C); Jaccard                     

Coefficient, and (D); Preferential Attachment Coefficient.         

 

 

Figure 6.21. AUC score histogram for a social dataset. 

 

The outcomes of using LR, Support Vector Classifier, and RF Classifier on the social 

dataset are shown in the area under the curve (AUC) plot in Figure (6.22). The 
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results of the various categorization strategies are shown in this graphic. In addition, 

the obtained findings are broken down and explained in Table (6.12); Figure (6.23)  

represents the histogram. 

 

Table 6.12. AUC score collected using the algorithms of the social dataset 

Model AUC score 

LR 0.96 

Support Vector Classification 0.97 

RF Classifier 0.98 

 

 

Figure 6.22. Plot for AUC score when applying the algorithms to a social dataset 

 

 

Figure 6.23. AUC score histogram for algorithms on the social dataset. 

 

LR was stratified to the social dataset and the resulting table (6.13). Accuracy, 

Precision, Recall, and F1-score were all 0.87 for the case without a connection 
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(represented by 0). Accuracy, Precision, Recall, and F1-score were all 0.87 for the 

LP shown in (1). Figure (6.24) displays confusion matrices for the proposed 

approaches applied to dataset. 

 

Table 6.13. Results were applied to the social dataset using the LR model. 

Dataset Algorithm Type of 

Link 

Result 

Accuracy Precision     Recall      F1- 

score 

Social 

dataset 

LR Non-LP 0.87 0.82 0.93 0.87 

LP 0.87 0.93 0.82 0.87 

 

 

Figure 6.24. Confusion matrix using LR model to the social dataset. 

 

The application of Support Vector Classification to the social dataset yielded the 

findings shown in Table (6.14). The non-LP with an accuracy of 0.93, precision of 

0.93, recall of 0.92, and F1-score of 0.93 is represented by the amount zero. The link 

(1) prediction has a score of 0.93 for accuracy, 0.93 for precision, 0.94 for recall, and 

0.94 for F1. Figure (6.25) displays confusion matrices for the proposed approaches 

applied to the  dataset. 

 

Table 6.14. Results performed using Support Vector Classification to social dataset. 

Dataset Algorithm Type of 

Link 

Result 

Accuracy Precision     Recall      F1- score 

Social 

dataset 

Support 

Vector 

Classification 

Non-LP 0.93 0.93 0.92 0.93 

LP 0.93 0.93 0.94 0.94 
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Figure 6.25. Confusion matrix for Support Vector Classification with a social 

dataset. 

 

RF Classifier was applied to the social dataset and the resulting table (6.15). The 

non-LP with values of 0.94 for accuracy, precision, recall, and F1-score indicates a 

value of (0). The link (1) prediction has a precision of 0.94, recall of 0.94, accuracy 

of 0.94, and F1-score of 0.94. Figure (6.26) displays confusion matrices for the 

proposed approaches applied to the  dataset, whereas Figure (6.27) depicts the 

histogram. 

 

Table 6.15. Results performed using RF Classifier to a social dataset. 

Dataset Algorithm Type of 

Link 

Result 

Accuracy Precision     Recall      F1- score 

Social 

dataset 

RF 

Classifier 

Non-LP 0.94 0.94 0.93 0.93 

LP 0.94 0.94 0.94 0.94 

 

 

Figure 6.26. Confusion matrix using RF Classifier to a social dataset. 
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Figure 6.27. Histogram of accuracy for algorithms on social dataset. 

 

6.2. DISCUSSION 

 

Evaluating the AUC score offers insightful information on the effectiveness of 

various approaches used on the Computer science, Social, and Medical datasets. The 

Preferential Attachment Coefficient technique is on top compared to the other three 

methods investigated when applied to Computer science and Social datasets. On the 

other hand, when it comes to performance, the Jaccard Coefficient and Jaccard 

Coefficient approaches come out on top when compared to the other two ways. Both 

of these methods use the Jaccard Coefficient. 

 

The social networks used for this research are non-targeting platforms; this attribute 

indicates that the material provided is open to large audience access instead of being 

tailored for particular persons. 

 

Pairs of nodes with higher normalized values have a better likeness index when using 

the Preferential Attachment Coefficient approach, which indicates that they are more 

likely to be picked when the predictions are made. This gives rise to the hypothesis 

that the pairings above have a solid connection and are more likely to have features 

or interests in common. However, it is essential to keep in mind that a greater 

percentage of currently shared neighbors within an area's total population of 

neighbors may also be indicative of a feeling of complacency in the area. This 
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indicates that a person has previously posted extensively about issues that they are 

interested in, making it less likely for them to continue posting frequently on the 

same themes they have already covered in depth. 

 

On the other hand, the Adamic Adar Coefficient and the Jaccard Coefficient both 

award lower likeness indices to pairs of similar nodes, which indicates a decreased 

possibility of being picked. On the other hand, these approaches prefer pairings of 

nodes with lower ratios, which suggests that the common material among these pairs 

has not been thoroughly investigated. As a result, these strategies consider the 

possibility that users' interest levels in these subjects may grow throughout their stay 

with the platform. The Adamic Adar Coefficient and the Jaccard Coefficient 

techniques assume that users will continue to post within the areas where they 

already have expertise while also considering the likelihood that users' interests 

could branch into various diverse themes. 

 

The study's findings show that user behavior matches more closely with the ideas 

covered by the Preferential Attachment Coefficient (PAC) approach compared to the 

concepts covered by other methods. This suggests that users tend to broaden the 

scope of their interests into other areas. On the other hand, the findings acquired 

from the European email core dataset make it clear that there is no substantial 

difference in the performance of these two approaches. This is apparent when one 

examines the data. This finding may be explained using the following components, 

which all contribute uniquely. 

 

Compared to users of an online forum, the members of a big organization are often 

less dynamic in their interactions with one another than those of the forum. In 

addition, the carried out inside these kinds of organizations sometimes cover 

extended periods. As a consequence of this, it is more probable that nodes that are 

linked by similar edges will continue to be connected again. Consequently, we 

anticipate that the PAC approach will provide fruitful results in the circumstance 

above. However, it is essential to remember that certain projects may be completed, 

and employees may move on to other projects or departments after that. When this 

occurs, it is possible for people who previously had few to develop new relationships 
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with one another. Consequently, it is predicted that the remaining approaches will 

likewise display adequate performance within the scope of this discussion. 

 

After delving further into the study of the outcomes of the retrieval measure, one 

striking feature that immediately comes to mind is the much lower scores that were 

attained by using the Adamic Adar Coefficient (AAC) technique. In this aspect, it 

demonstrates a very bad performance. This finding lends credence to the hypothesis 

that the AAC technique does not perform at its peak efficiency level when incorrect 

negative predictions are included in the metric computations. It is important to point 

out that the Jaccard Coefficient (JC) approach has the propensity to produce a 

significant amount of erroneous negative predictions, one of the factors contributing 

to the bad performance of the AAC method. 

 

Using the Figure (1.2) histogram, we can bring attention to the findings we acquired 

after applying the three suggested algorithms and training them on the three data sets. 

This will give us a clear perspective of the results we obtained (table 6.16) 

 

Table 6.16. Results of execution of the algorithms to the datasets. 

 

Algorithm 

Accuracy with specific dataset 

Computer science 

dataset 

Medical dataset Social dataset 

LR 94% 91% 87% 

Support Vector 

Classification 

94% 93% 93% 

RF Classifier 94% 99% 94% 

 

The RF Classifier method outperformed previous algorithms, especially when trained 

on medical datasets. It displayed outstanding accuracy in both uncorrelated and 

correlated predictions. It stands out from other approaches because of its high rate of 

accuracy, which can be achieved using it. On the other hand, the accuracy produced 

via the training of the LR and Support Vector Classification algorithms was 

considerably lower. 
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PART 7 

 

CONCLUSION 

 

This research provides three training methods suggested for tackling the issue of 

correlation prediction on complex network. This research compares the accuracy of 

four popular methods for predicting relationships: The Common Neighbor, Adamic 

Adar, Jaccard, and Preferential Attachment Coefficient. Accuracy, recall, F1 score, 

precision, and AUC were used to evaluate the success of the procedures above in a 

battery of tests. The research used three different real-world data sets of varying 

sizes. 

 

The Python-coded trials evaluated the effectiveness and efficiency of prediction 

algorithms. External tools like the Network X library expedite the development and 

guarantee quality. 

 

Without taking into account the peculiarities of the dataset in issue, two 

approaches—SVC and RFC—come out on top in the analysis of performance 

indicators. Each of the assessed LP methods achieved similar results. Although the 

new LP method produced some promising findings, there is still room for 

improvement regarding the data's scalability. Over various dataset sizes, none of the 

approaches dissatisfied by acting strangely or outside the graph. The performance of 

the different techniques during runtime showed little to no variation. 

 

All of the techniques evaluated in this study are categorized as topology-based 

approaches since they all provide predictions using node-based data. Among the 

many experimental approaches available for greater performance, We can use ML 

techniques to facilitate more powerful tactics, you can use path-based data, or you 

can use random traverse approach. This study may be expanded by including the 

methods chosen from the categories above in the trials to understand the LP 
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strategies' performance statistics better. This addition could help practitioners 

comprehend things better. 

 

For future work,  we notice that to use the findings in research and development 

facilities, it is preferable to extend the study to incorporate bigger data sets and train 

additional classifiers and algorithms inside an ML method. 
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