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ABSTRACT 

 

M. Sc. Thesis 

 

THE CONTROL AND OPTIMIATION OF SWARM ROBOTS ON ROS2 

PLATFORM 

 

Mohammed SEDEG 

 

Karabük University 

Institute of Graduate Programs 

The Department of Mechatronic Engineering 

 

Thesis Advisors: 

Assoc. Prof. Dr. Can FIDAN 

August 2023, 80 pages 

 

With the increase in application demands in the field of robotics, 5th level automation 

is aimed in many areas of our daily life, while the development of fault-tolerant multi-

agent networks that can perform complex tasks without the need for a central unit is 

seen as a great need. 

 

In this study, a ROS2 framework for multi-agent systems focusing on cooperation and 

coordination for executing distributed optimization and control algorithms is 

presented. The framework works within a peer-to-peer, Decentralized structure, with 

a special emphasis on heterogeneous networks that lack a central unit. The 

functionality of the system allows the implementation of highly complex optimization-

oriented control schemes, including distributed dynamic task assignment and 

distributed Model Predictive Control (MPC). 
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Moreover, the proposed framework supports a simpler yet equally functional 

implementation of control feedback laws. This feature allows agents to exchange 

information without optimization requirements, fostering seamless communication 

among agents. This architectural design empowers developers and programmers to 

seamlessly incorporate and execute intricate optimization and control algorithms on a 

heterogeneous fleet of robots, all without the necessity of a central unit. 

 

Importantly, this streamlined implementation process encourages a focus on 

innovative optimization and problem-solving techniques. 

 

Keywords : ROS2 framework, multi-agent system, cooperative coordination, 

distributed optimization, peer-to-peer structure, heterogeneous 

networks, dynamic task assignment, Model Predictive Control 

(MPC). 

Science Code : 92902 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

  

  

ÖZET 

 

Yüksek Lisans Tezi 

 

ROS2 PLATFORM ÜZERINDE SÜRÜ ROBOTLARININ KONTROLÜ VE 

OPTIMIZASYONU 

 

Mohammed SEDEG 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Mekatronik Anabilim Dalı 

 

Tez Danışmanı: 

Doç. Dr. Can FİDAN 

Ağustos 2023, 80 sayfa 

 

Robotik alanındaki uygulama taleplerinin artmasıyla birlikte günlük hayatımızın 

birçok alanında 5. seviye otomasyon hedeflenirken, merkezi bir birime ihtiyaç 

duymadan karmaşık görevleri yerine getirebilen hataya dayanıklı çok aracılı ağların 

geliştirilmesi büyük bir ihtiyaç olarak görülmektedir. 

 

Bu çalışmada, dağıtılmış optimizasyon ve kontrol algoritmalarını yürütmek için iş 

birliği ve koordinasyona odaklanan çok aracılı sistemler için bir ROS2 çerçevesi 

sunulmaktadır. Çerçeve, merkezi bir birimden yoksun heterojen ağlara özel bir vurgu 

yaparak, eşler arası, merkezi olmayan bir yapı içinde çalışmaktadır. Sistemin 

işlevselliği; dağıtılmış dinamik görev ataması ve dağıtılmış Model Tahmini Kontrolü 

(MPC) dahil olmak üzere, oldukça karmaşık optimizasyon odaklı kontrol şemalarının 

uygulanmasına olanak sağlar. 
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Üstelik önerilen çerçeve, kontrol geri bildirim yasalarının daha basit ama aynı 

derecede işlevsel bir uygulamasını desteklemektedir. Bu özellik, aracıların 

optimizasyon gereksinimleri olmadan bilgi alışverişinde bulunmasına olanak 

tanıyarak aracılar arasında kesintisiz iletişimi teşvik eder. Bu mimari tasarım, 

geliştiricilere ve programcılara, karmaşık optimizasyon ve kontrol algoritmalarını, 

merkezi bir üniteye ihtiyaç duymadan, heterojen bir robot filosu üzerinde sorunsuz bir 

şekilde birleştirme ve yürütme yetkisi verir. 

 

Daha da önemlisi, bu kolaylaştırılmış uygulama süreci, yenilikçi optimizasyon ve 

problem çözme tekniklerine odaklanmayı teşvik eder. 

 

Anahtar Kelimeler : ROS2 çerçevesi, çoklu ajan sistemi, iş birliği koordinasyonu, 

dağıtılmış optimizasyon, eşten eşe yapısı, heterojen ağlar, 

dinamik görev atama, Model Öngörülü Kontrol (MPC). 

Bilim Kodu : 92902 
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PART 1 

 

 INTRODUCTION 

 

1.1. BACKGROUND INTRODUCTION 

 

There is a rapid race we facing as a human race which is the race of meeting our 

growing needs and demands with the aid of technology. Therefore, a similar rapid race 

in technology is taking place in the industrial fields mostly to reduce the factors of 

time and cost. As a result, in our days the humans have been replaced by semi-

autonomous system but in the near future the same semi-autonomous systems will 

leave for fully autonomous systems as the industrial fields have been moving 

aggressively toward the level 5 automation (there are five level of automation level 

zero is fully Manuel to level 5 which mean the human factor in the operation is totally 

zero)[1].This leads us to robotics, generally we can define the robot as any mechanical 

system which perform certain tasks either by direct guide from human interference or 

indirect by pre-defined program or even auto-generated guides by AI [2].Robotics 

researches could be classified in to three main categories and under them even more 

categories as shown in figure 1.1: 

 

• Robot manipulators: or robot arm is a serial of combined actuators that perform 

a certain task like carrying an object with it end effector. This type is used 

heavily in production line and I other industrial applications. 

• Mobile robots: this term describe a certain type of robot that specialized in 

moving from place to place while carrying tasks and consisting of a platform 

locomotive element. Within this category there are other branches differ on the 

medium of the travel (aerial, aquatic or terrestrial) 

• Biologically inspired robots: a more complex in the designed because the 

similarity with the complex biological beings [3]. 
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Figure 1.1. Evolution of the robotics research. 

 

1.2. MULTI- ROBOTICS SYSTEM 

 

We can define multi-robotic system (MRS) as collection of two or more robots 

working in coordination to achieve certain goals. The fundamental theory behind 

(MRS) state that dividing a main complex problem in to multiple sub-problem and 

give it to an individual robot among the group may be a very optimal solution, rather 

than trust the whole process to one main robot even if it’s very capable [4]. 

 

Multi-robotic system holds many advantages over single robotic systems, the most 

obvious advantage is the parallelism of the system in the sense that the system can 

work parallelly to enhance the performance and work in tasks which is not possible 

for single robot. Robustness mean that the system has no single fault point like the 

single robot system, so if a single agent faces a fault the rest of the can carry on the 

task with no stop. Scalability over the centralized systems that mean covering a bigger 

area. The (MRS) could be both homogeneous or heterogeneous this mean that the robot 

team can both the similarity and dissimilarity when it come to the physical hardware. 

Other advantages can be summarized as: flexibility, economic benefits and low cost 

for assembly and maintenance, stability and efficiency in both energy and task 

handling [5].  
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The classification of (MRS) can be judged by many criteria like efficiency, 

effectiveness, the task’s nature, robustness, and flexibility. In addition, other 

classification was found [6] on other researches based on:  

 

• The size of the swarm. 

• The communication probabilities such as:(bandwidth, structure and range).   

• Reconfigurability. 

• The processing capability of every single agent. 

 

There is no clear difference between the two terms multi-robotics and swarm robotics, 

in fact the two term is used interchangeably through the previous researches, but others 

distinguished them not on the hardware aspect but on the problems and their solutions 

[7].  

 

The designing of swarm robotic should be accomplished under a number of abstraction 

layers according to [8]: 

 

• The first layer: the micro-layer of the system as every single induvial of the 

swarm has its own automation identity. 

• The second layer: the macro layer as the whole control identity of the system 

represented by a set of differential equation. 

• The third layer: the communication layer and it’s all probabilities, rules and 

approaches. 

• The fourth layer: the sensor and actuator layer as how the agents will 

communicate and interact with the surrounding environment. 

• The fifth layer: the swarm intelligent algorithm layer and which method will 

be used for example particle swarm optimization (PSO). 

 

1.2.1. Coordination Movement 

 

Like our human society the (MRS) has a collective behavior that could described as 

cooperative and comparative. Cooperative behavior refers to a scenario where multiple 

robots nearby need to interact with each other to achieve a certain a task, this task 
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divided by the robots to serval sub-tasks handled collectively by the team while 

increasing the utility of the system. On the other hand, comparative behavior is the 

opposite behavior which includes a conflicting function like a chess match between 

two robots [9].  

 

Coordination movement is the core of (MRS) technology. Its directly lead to the 

success or the failure of the system. Coordination movement can be separated in to 

two categories: static and dynamic. The static coordination (also known as offline 

coordination) is based on previously inherent commands that fed to the robot for 

example traffic rules [10]. The dynamic coordination (also known as online 

coordination) on the hand is based on real time information fed to the robot via 

communication, therefore we can classify dynamic coordination into implicit and 

explicit coordination based on the communication type (implicit and explicit 

communication) [11].The static coordination is very suited for complex tasks but 

unreliable in real time controlling, in the same time dynamic coordination is perfect 

for real time control but unreliable in complex tasks.so its best to combine the two 

types and take the best characteristics of the both . 

 

Flocking is one of the most known tasks among swarm robotics, other tasks include 

aggregation, object clustering and sorting, chain formation, self-deployment and 

collaborative, manipulation. The explanation for every task mentioned is shown in 

table 1.1 : 

 

Table 1.1. The description of common swarm robotics tasks [12]. 

Task Description 

 Aggregation The collection of the swarm is to gather in one around one main goal. 

Flocking Flocking is the collective movement of the swarm toward one 

desired goal.  

Clustering The swarm collect different objects to one unified position. Like ant 

collecting food. 

Chain 

Formation 

The main object of chain formation is to form the shortest path chain 

between two locations. 

Collaborative 

manipulation 

Collective effort from all the swarm to move unified object from one 

point to the other. 

Shape 

formation 

The swarm form a certain formation geometrical or non-geometrical 

by exchanging position information between the swarm. 
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1.2.2. Communication 

 

Communication is one of the most important characteristic and challenges in multi-

robot system (MRS). The robots in (MRS) are generally simple in structure and design, 

so in order for the system to achieve a goal a communication protocol must be set in 

order to multiply the capability and maximize the efficiency[13]. communication is 

mode of interaction between the agents for mainly two purposes: the first is to 

communicate the state of the environment through the sensors, the second is to 

communicate and exchange information with the other agents. Communication 

methods can be classified in many ways for example we can classify based on the 

interaction mode into three types: interaction via sensing, interaction via environment 

and via explicit communication [14]. Other way of classification is based on the 

information exchange between the agents which include: direct and indirect 

communication [15]. But mostly there are mainly two types of communication implicit 

and explicit, the explanation as follow: 

 

Explicit communication in the robotic term refer to the operation of sending the 

information from one robot to the other through the different communication methods 

like Bluetooth and wi-fi and Bluetooth. This type of communication is very beneficial 

in applications that require fast reaction in smaller systems. On the other hand, implicit 

communication is the operation of one robot observing other robot behavior to copy it 

without the observed robot contribution in the communication operation [16]. Even so 

there is no clear indication on what type of communication must be applied, some 

researchers aiming toward implicit communication for its robustness[17] , and other 

introduced the implementation of both implicit and explicit communication . The most 

important question remains how to choose the communication characteristic like 

structure, algorithm and medium to insure the desired performance from the system. 

The answer to this question is lying under four main factors: 

 

• Application: the application at hand is a very important factor in choosing the 

right communication specially the communication range, for example a swarm 

of drone for agriculture monitoring requires a wide range in contrast other 
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application like chain formation requires a short-range communication for 

control [18].  

• Robot: in other words, the physical hardware which include the receive and 

transmit capability of the hardware, for example the raspberry pi Pico W 

controller has a build in Wi-Fi, another example is the GPS which is very 

important factor in Ariel swarm control [19]. 

• Algorithm: the used algorithm is the connection link between the application 

and the robot. Various algorithm can be implemented in (MRS) like: Particle 

swarm optimization (PSO), nature inspired algorithm like Ant colony and bee 

colony approaches and machine learning (ML) algorithm [18]. 

• Environment: when it come to the environment surrounding the robot many 

questions must be answered to determine the network design, some of these 

questions are is the environment empty of full of obstacles, is there a wireless 

interference, is the environment indoor or outdoor. 

 

 

Figure 1.2. Flow diagram of communication in MRS. 
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1.2.3. Swarm Intelligent (SI) 

 

Swarm intelligence, as a problem-solving ability, arises from interactions among 

simple information-processing units. The term "swarm" implies diversity, 

randomness, and complexity, while "intelligence" indicates the method's effectiveness 

in solving problems. The information-processing units within a swarm can take various 

forms, such as animate beings like insects, birds, or humans, or they can be 

mechanical, computational, or mathematical entities like robots, standalone 

workstations, or array elements. The interactions between these units can possess 

diverse characteristics, but interaction among them is essential [20]. 

 

Swarm behavior is commonly applied in mobile robots and involves the cooperative 

movement of creatures. Swarm robotic collective decision-making is the ability to 

make joint decisions through local interactions without a centralized leader [21]. Task 

distribution exemplifies this collaborative behavior. 

 

Swarm robots efficiently perform tasks by moving towards specific targets and 

creating coordinated patterns. This behavior is akin to bacterial colonies' distribution 

of molecules [22], inspired by pattern formations  and foraging behavior observed in 

ants and social insects [23]. 

 

The aim of this thesis is to enable multiple ground mobile vehicles to cluster and form 

predetermined geometric formations. To achieve this, the study applies what we called 

Team Guidance Layer (TGL) which is a peer-to-peer non-centralized communication 

layer that act as a platform for different control algorithms to be built and tested on 

GAZEBO-ROS simulation. TGL allow us to execute complex distributed multi-robot 

tasks, such as model predictive control (MPC) and tasks assignment and formation 

control either in simulation or experimentally.  

 

Chapter 2 presents a literature review on the subject, while Chapter 3 delves into 

swarm intelligent (SI), including mathematical models and clustering algorithms. The 

models created in Chapter 4 are evaluated through GAZEBO-ROS simulation. Finally, 

Chapter 5 provide the conclusion.
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PART 2 

 

 LITERATURE REVIEW 

 

The characteristics of nature beings living in form of swarm have capture the attention 

of the scientific world for many years. The swarm behavior phenomenon can be 

observed very clearly in nature in the form of bird and fish flocking and or migrating 

cells etc. their collective actions display advanced behaviors and impressive feats that 

can be observed showing the total benefit of swarm behavior to the whole system[24]. 

therefore, researcher aim to observe the swarm behavior to mimic it through modeling.  

the herd intelligence of living species in nature. Behaviors of living creatures modeling 

can yield productive results in many areas [25]. 

 

 

 

 

 

 

 

Figure 2.1. Swarm behavior in nature. 

 

Multi-agent, also known as swarm research, contributes significantly to search and 

rescue missions, military operations, economics, finance, and numerous applications 

in engineering. It is also vital in solving optimization problems and other autonomous  
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tasks. The desired approach in solving engineering problems is to reach a global target 

using simple local rules. The concept of the best solution in multi-agent optimization 

was first introduced by F.Y. Edgeworth (1881), who worked on problems of buying 

and selling decisions in the field of economics. V. Pareto's (1896) concept of Pareto 

Optimality has gained significant acceptance in the field of economics. The first 

studies of biologists examining swarm behaviors were conducted by Breder [26], 

Warburton and Lazarus [27], Okubo and Grunbaum [28], and Parrish [29]. Inspired by 

these studies, recent research [30] has made important contributions to swarm 

formation. 

 

2.1. EARLY LITERATURE 

 

We can trace through the literature reviews that the researchers in the late 1980’s have 

been more motivated to design and build a team of robots capable to execute different 

tasks through cooperation, coordination, and communication. This determination 

stems from the fact that (MRS) hold several advantages against the typical single robot 

system, and all the early studies aims to harvest these advantages. To understand how 

multiple entities can work together in harmony researchers has to turn to natural and 

study different example like bees and ant colonies. 

 

Among the earlier research is [31] which proposed a multi-robot system scheme goes 

by the name M+, this scheme is a decentralized system for the purpose of task 

distribution and task cooperation. An early and simpler version of the system is 

implemented and test on a simulation. ALLIANCE is “a novel, fault tolerant 

cooperative control architecture for small- to medium-sized heterogeneous mobile 

robot teams applied to missions involving loosely coupled, largely independent tasks 

“ [32], this architecture operate in two Leve: level one is the induvial robot level which 

allow the agent to execute any task it choose without relying on centralized command 

and level two is on the robot team level gives equal control command to every agent 

which allow any robot to choose a sub-task without relying in centralized command. 

This system is applied into both the physical and simulation medium, specifically on 

box pushing task. The study [33] offers a comparison between three different 

approaches in (MRS) coordination mentioning the pros and cons of every induvial 
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approach, in addiction the study also discussed the communication scheme between 

the system in every approach and also the problem of fault tolerance and robustness. 

The paper [34] provide an overview of a project named GOFER, which is the 

implementation of serval dozen robot in indoor environment, the project dealt with 

many research issues such as: the communication of man to robot and robot to robot, 

the multi-task planning, fault tolerance and the implementation of non-conflicting 

sensor system. In addition, the study [35] proposed the idea of (CEBOT) or Cellular 

Robotic System, this system consist of a huge number of robots every single one called 

cell, and the robotic manipulator described by geometric calculation. Also, all the 

experimental results are showed in GEBOT Mark 2 which is a prototype of CEBOT. 

Since this early research the field of (MRS) has been grown dramatically with a wider 

range of topic to be addressed, despite this we cannot yet describe the field as mature, 

because there are many specific topics to be addressed and researches compared to the 

single robot system. In survey [36]  stated the main topic that need to addressed are in 

(MRS) through the literature:  

 

• Communication. 

• Movement coordination. 

• Task allocation and control. 

• Localization and mapping. 

• Object transportation and manipulation. 

 

2.2. MULTI-ROBOT COMMUNICATION  

 

Since the beginning of (MRS) studies communication has been an important issue, 

where is several studies focus specifically on the effect of communication on the 

system, in addition studying the different types and every task suited for it. Generally, 

all the research agreed on that even a small scale of communication can lead to huge 

benefit to the system. 

 

Several communication protocols have been explored through the literature, for 

example (PRNET) [37] which stand for Packet Radio Networking is highly reliable 

communication protocol aim to exchange information between two separated 
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computers geographically via radio channels. The (DSDV) or ‘Destination sequenced 

distance vector routing’ is a table-driven algorithm developed in [38] utilized the 

mobile nodes as routers and every single router assigned to sequence number to 

prevent loops by making distinct different between new and old routers. In addition, 

the communication protocol known as (WRP) or Wireless Routing Protocol [39] is 

designed for the purpose of reducing the number of loops by having a massage 

transmitting list, every node uses this updating massage for exchanging information 

between them for fast coverage. Taking the next step further the study [40] propose 

communication protocol (GRS) or Global State Routing designed for multi-hop 

mobile wireless network to avoid the overflow of the updated massages, this achieved 

by making every node have a list of neighbor nodes including next step hop and 

distance hop. So, to overcome the drawback of (GRS) which include the size of the 

massage of the close and distance neighbor, the study [41] purpose (FSR) standing for 

Fisheye State Routing which provide an accurate list of information only for the close 

node neighbor to avoid the massage size problem associated with [40]. 

 

The interaction between the human operator and the swarm robotic via communication 

protocols can be divided in to two main parts: first the remote interaction which can 

be define as a communication method when the human operator operates outside the 

swarm, on the other hand the second type of communication is proximal interaction, 

this type assume that the human operator and the swarm share the same environment 

[42]. Majority of the research focus on remote interaction despite the many technical 

difficulty facing it, but at the same time it’s the ideal method for operating in dangerous 

area for humans, which is the main objective of swarm robotics in the first place. One 

example of centralize control can be found in study [43], in this study the swarm 

consist of 112 robots with the gate-way robot its main objective is to receive 

programming from the operator and podcast it to the swarm, on the contrary the 

centralized operator interface with the gate-way robot to receive information about the 

state of the swarm. One major problem in the communication domain is the bandwidth 

limitation which explored in [44], the study examined three bandwidth conditions 

(low, medium and high) in coordination tasks and the result as follow: the low 

bandwidth condition only a single robot communicate with the operator in single time 

step. The medium condition centralizes the location information in a single robot then 
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send it to the operator. In the high condition all the robots in the swarm communicate 

with the operator in a single time step. The proximal interaction allows the operation 

to observe the swarm as they share the same environment. The operator communicates 

in most studies by a gesture as face recognition [45] or speech [46] recognized by the 

robot and then act upon according to the commands attached to the exact gesture. One 

example of this type of communication interaction in the GAURDIAN project [47] 

which was implemented in firefighting Sicario’s. Generally, the proximal interaction 

is not focus on by the literature as it shows shortcoming when it comes to control a 

large swarm. 

  

2.3. MULTI-ROBOT COORDINATION: 

 

Another unavoidable topic in the domain of (MRS) is the concept of motion 

coordination. We can define coordination in multi-Robot system as any collective and 

cooperative behavior from two or more robots to achieve certain task according to 

specific algorithm. The research in this topic have been very extensive and well 

documented, although the real challenge seems to be the physical demonstration of 

these studies. Some of these well documented studies in coordination includes: path 

planning [48] , formation changing [49], traffic control [50], target tracking [51]. All 

these topics is well studied and understood in the simulation area rather than the 

physical real-life applications. 

 

the coordination movement of (MRS) is based on algorithms inspired by nature. These 

algorithms are: Bee Colony Optimization (BCO) [52], Ant Colony Optimization [53], 

Firefly Optimization [54], Bat Optimization [55], Cuckoo Optimization [56] and 

Particle Swarm Optimization and the later been the most used and research 

optimization methods since its proposal by James Kennedy and Russel Eberhart in 

1995 [57], in this study the researchers presented an algorithm that mimic the social 

behavior of swarms in nature (like ant and fish) by continually updating the velocity 

and victor movement of the swarm to better the state of the swarm. Taking it a step 

further the study [58] offer an improvement of the original (PSO). The study [59] 

implemented the (PSO) on a number Elisa-3 robot on Webots simulator, the result 

show that the robots trying to gather around the pre-assigned supervisor robot. A 
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comparison between Particle Swarm Optimization (PSO) and genetic algorithm (GA) 

was made in study [60] , the study was performed on experiment robot behavior based 

on neural learning animat and the result show that (PSO) outperform the simple (GA) 

on simple task with neural network learning, also the result compares to a previous 

study [58] which did the same thing by training with (PSO)and (GA) while adding 

noise resistance modification and similar to [59] (PSO) shows a superior performance 

compare to (GA). 

 

On the practical side the study [61] propose a mini-robot well suited for multi-Robotic 

application, the robot equipped with a stereo camera for environment monitoring and 

image processing applications, for data exchange between the robot, in addition the 

study uses three serial buses (SPI, I2C and UART). The study [62], there are two level 

of control a lower and higher level, as the lower level the control is executed by PID 

and CNN for more complex situation. All this ran on a simulation successfully. In 

addition, the study [60] propose a more flexible formation than a traditional one by 

[63]. For industrial application the study [61] propose [64]. Results show that these 

methods can improve the operating efficiency of (MRS) in industrial applications. For 

switching formation, the study [65] uses GOACM. A leader robot is responsible for 

path planning and guiding the follower, while the follower switch in obstacle 

avoidance mode. The proposed system executes successfully in both simulation and 

physical. The common idea is to control one team of robot but in 2005 the study [66] 

proposed (VOMAS) or Virtual Operating Multi-Agent System to control several robot 

teams. The structure of the proposed system in divided into two main parts, the first 

one is the user agent handle the high-level control, the second is the robot agent 

handling the low-level control. The main benefit of this system is that possibility of 

adding robots to the system. 

 

Flocking is a known trait of (MRS) which enable the robot team to cohesively put 

maintain a safe space to avoid collisions. In [67] the flocking method handle all the 

objects as obstacles whether it’s really an obstacle or another robot in the robot team, 

the researcher argue that this method cut the amount of information exchange to the 

bare minimum as the information of position and velocity is not required. In the 

opposite side the study [68] required a connectivity between the robots since the study 
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propose a leader-follower scheme and the leader act as the center of the flocking. In 

addition, the study combines the flocking control with reinforcement learning to make 

the robot team to flock while avoiding obstacle and maintain connectivity. In summary 

the flocking seems to rely on decentralized control, but the challenge seems in the 

rising complexity of the foraging task since the team need to coordinate and avoid 

obstacles while maintain the connectivity between all the entities in the (MRS).  

 

In the cooperative manipulation field, we can’t fail to mention the box-pushing 

problem which became very synonymous with (MRS) early researchers. One of these 

researches is [69], which proposed the moving of objects from place to place by a 

group of mobile robots. The robot team consist of two group: steerer robots 

programmed with path tracking and push robots to exert force into the object. In 

addition, the study [70] propose a formation control method to transport an object 

where a group of robots surround the object to move it cooperatively. Contrary to the 

studies and [69] [70] the AVERT project proposed in study [71] require a strong and 

stable connectivity to exchange path planning with the command base. AVERT is used 

to move and extract vehicles from one location to the other by using a lifting robot unit 

equipped with trajectory planning and object detection.  

 

A very promising and relatively new area is cloud robotics, which can be defined as a 

mixture of robotics and cloud computing. The advantages of cloud computing can be 

incorporated in robotics to help agents to complete tasks in their environment by 

designing a cloud-base system to enhance the effectiveness of the system. One of the 

very first research in this area is RoboEarth [71] and DaVinci [72], which both aim to 

offload the huge load of information on the board of the robots to a cloud-computing 

structure for maximum the effectiveness of (MRS). 

 

2.4. FORMATION 

 

Examining the mathematical model of natural phenomena has drawn the interest of the 

scientific community. Clustering behavior or the gathering of life forms in 

communities is abundant in nature. This clustering behavior can be observed in animal 

flocks, such as goose flocks, bird flocks, fish schools, mammal herds, and so on. Goose 
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flocks usually fly in a reversed "V" formation. Flying in a formation like a reversed 

"V" provides several advantages. Some of these advantages include 24% more flying 

power for each goose compared to flying alone and 71% greater flight range [73]. The 

control of the formation and the alignment of the generated formation points with 

mobile robots are necessary. The assignment process aims to reach the formation in 

the minimum time and without collisions. The Hungarian algorithm [74] is used to 

solve discrete (combinatorial) problems. The formation control process can be 

classified according to interaction topology as position, displacement, and distance 

control. 

 

Turpin et al. (2004) proposed a decentralized method, called D-CAPT, as a solution to 

the Concurrent Assignment and Trajectory Planning (CAPT) problem for swarm 

robots. The C-CAPT algorithm is the most suitable solution to the CAPT problem in 

a collision-free environment. In their approach, they developed the C-CAPT 

algorithm, which is a centralized solution for the assignment and route planning 

problem, reducing the cost function based on the square of velocity during the 

trajectory. They successfully applied this algorithm to eight quadrotor micro aerial 

vehicles and reported that the trajectories were globally optimal and safe [75]. 

 

Gazi et al. (2007) developed strategies using the sliding mode control method and 

artificial potential functions for clustering and formation control problems in swarms. 

They detailed their work by applying the same approach to tasks such as food 

searching, formation control, and tracking moving targets through simulation studies, 

which were successfully accomplished [76]. 

 

Yao et al. (2006) presented a decentralized stable control method for swarm agents to 

achieve formation control and follow a moving target. They utilized artificial 

potentials for target tracking and formation control processes. Through simulation 

tests, they demonstrated that their proposed method was more stable than the leader-

follower model [77]. 

 

Tanner et al. (2004) examined the stability properties of mobile agent formations based 

on leader following. They created nonlinear gain estimates of how inter-agent distance 
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errors affected leader behavior. They proposed a method to improve the Leader 

Formation Stability (LFS) gains [78]. 

 

Miswanto et al. (2015) achieved formation control for swarms by having agents follow 

the path of a leader. They used the Pontryagin Maximum Principle method for leader 

control and a geometric approach for formation control, showing that each agent's 

orientation and position could be controlled relative to the leader [79]. 

 

Desai et al. (2001) developed control strategies using graph formation control for non-

holonomic mobile robots in environments with obstacles. Their approach aimed to 

maintain the desired formation and enable formation transitions when needed [80]. 

 

Xie et al. (2000) studied the natural algebraic structure of the chained form system 

along with ideas from the sliding mode theory while designing control laws. They 

reported that the sliding mode approach needed to be considered for the stabilization 

and tracking problem of the system called "chained system" from non-holonomic 

systems [81]. 

 

Mancini et al. (2007) proposed an approach for solving the problem of following a 

leader in a swarm of equal-numbered robots. They used a discrete-time sliding mode 

approach for controlling non-holonomic robots performing the task of following a 

leader [82]. 

 

Pranoto et al. (2012) performed simulation studies of the leader-following algorithm 

for formation control. They tackled the best tracking control problem for a swarm with 

a specific geometric formation using the Dubin's car model. They created a model of 

three agents and a swarm leader, showing that the agents moved to follow the leader's 

path, and the resulting error during tracking was very low. They demonstrated that the 

position and orientation values of each swarm member (agent) were controlled relative 

to the swarm leader [73]. 

 

Mısır et al. (2020) proposed a clustering method for swarm robots, which involved 

homogeneous robots clustering with limited distance sensor and angle data without 
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central control. They noted that the collision avoidance controller was separate from 

the clustering controller. Each robot made individual decisions during the clustering 

process, following the nearest perceived robot's movements, and directed itself based 

on the motion of the other perceived robots. They reported the successful application 

of the clustering behavior and that performance decreased as the number of robots 

increased [83]. 

 

Sial et al. (2021) developed a new search and mission execution model for the control 

of distributed formations of UAVs (Unmanned Aerial Vehicles). In the first stage of 

their study, they aimed to find solutions to swarming, collision avoidance, and tracking 

problems for distributed UAV formations using multiple artificial potential fields and 

agent graph theory. The proposed algorithm's first stage involves target search and 

mission execution operations, while in the final stage, swarming is applied during the 

mission process. They reported the successful testing of swarm swarming operations 

and mission execution algorithms in a simulation environment[84] . 

 

Mechali et al. (2021) proposed a new control method for UAVs that creates a leader-

follower interaction and handles non-linear behaviors with continuous non-vanishing 

disturbances. They designed a control law for a distributed formation. The formation's 

formation points were determined, and a reference formation trajectory was created 

and followed using a synthesized fixed-time position control method. They conducted 

simulation studies in the ROS/GAZEBO environment to analyze the control 

performance, and they reported that their approach showed higher performance 

compared to other control methods [85]. 

 

In their study, Gauci et al. (2014) proposed a controller as a solution to a self-

organizing aggregation problem that does not require complex computations. They 

used a "if-then-else" structure as the controller, enabling the swarm to self-organize 

during aggregation. The research focused on collective gathering behavior. They 

employed 2-bit sensors for their swarm robots to detect their neighbors. Initially, they 

set the detection range of these sensors to be unlimited. However, through 

experiments, they varied the detection range to examine its impact on the aggregation 

behavior and controller performance [86]. 
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Mısır et al. (2020) proposed a fuzzy logic-based self-organizing aggregation method 

in their study. Unlike traditional clustering methods, they evaluated limited sensor data 

using fuzzy logic as the controller. They conducted regular experiments in a simulation 

environment with swarm robots having different detection ranges, different numbers 

of robots, and various field sizes. They reported that the swarm robots exhibited 

clustering behavior despite changes in the detection range and the number of robots 

during the regular experiment phase [87]. 

 

Parhizkar et al. (2020) took inspiration from the clustering behavior of the social 

amoeba Discotyostelium Discodeum and applied this biological example to swarm 

robots. They examined the signal propagation model of the biological aggregation 

behavior in a simulation environment. In their study, they demonstrated the biological 

aggregation behavior in physical swarm robots called "kilobots" [88]. 
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PART 3 

 

THEORETICAL BACKGROUND 

 

3.1. SWARM INTELLIGENT ALGORITHMS 

 

Since the dawn of man, the idea of absorbing nature and even borrowing from it is a 

well-established practice. Humans always looking to nature for solving complex 

problems they face, and nature always directly or indirectly provides the perfect 

solutions, since nature faced through millions of years variety of challenges, it’s only 

natural for human to come with nature-inspired algorithms for real-life applications 

and solutions. One of these algorithms is the swarm intelligent (SI) which created by 

absorbing the different colonies and collections of living beings in nature like:  bees, 

ant and bats [89].  

 

The concept of swarm intelligent (SI) has gathered a lot of attention in the researching 

filed. We can define SI as a collective behavior based on collective intelligent in self-

organized and decentralized system. Another definition was provided by Bon beau 

[80]: “The emergent collective intelligence of groups of simple agents”. Two main 

concepts are the properties of SI according to [90]: self-organization and the divining 

of tasks. Self-organization is defined as the ability of the system to organize his its 

agents without an external force. This idea relies on four main fundamentals: positive 

feedback, negative feedback, fluctuations, and multiple interactions. In addition, the 

second concept is the task division which is defined as the parallel execution of simpler 

sub-tasks by agents which allow the system to execute a complex task as the bigger 

objective.  

 

The Nature-Inspired Algorithms (NIA) showed a great result; therefore, a wide variety 

of algorithms has been discussed in the literature (up to 140 algorithms), however such
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 a wide range of algorithms could lead to confusion around the researcher regarding 

which algorithm work and which doesn’t based on mathematically approach. Every 

(NIA) mimic a unique natural process, some of these algorithms are well-known and 

established like Genetic Algorithms, Particle Swarm Optimization (PSO) and Ant 

Colony Optimization 

   

 

Figure 3.1.  Swarm intelligence framework [91]. 

 

In the addition other algorithms are not at the same level as the previous mentioned 

algorithms for reasons such as: under-development or efficiency etc. In this chapter 

we will explore mainly the most known algorithms and will discuss the lesser-known 

algorithms briefly [92]. 

 

 In this section we will explore different types of (NIA)s or SI-based algorithms 

highlighting their main properties and applications. These algorithms are: 

 

• Genetic Algorithms (GA). 

• Particle Swarm Optimization (PSO). 

• Ant Colony Optimization (ACO). 

• Artificial Bee Colony (ABC). 
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• Glowworm Swarm Optimization (GSO). 

• Other Evolutionary Algorithms. 

 

3.1.1. Genetic Algorithms (GA) 

 

Introduced in 1975 by John Holland [93], the basic concept of (GA) is to mimic the 

natural process called survival of the fittest which a mechanism of selecting the 

strongest options among the population. In GA a set of population is alter for the best 

by crossover and mutation by following these steps:  

 

• The Generation of a random set of population, this population can be represented 

by a set of strings called chromosomes.  

• Ranking the population by performing a calculation on the chromosome based 

on the fitness function, the value of the fitness function is what determine the 

process of the selection between the population. 

• The operation of reproduction is to select the best candidate of the population 

according to the fitness function,  

• Performing the crossover which basically to crossover the fittest candidate to the 

next generation of the population. 

• Performing the mutation which to alter some gene of the chromosome to fit the 

next generation of the better population.   

• Replacing the old population with the new and better population [94]. 

• Check if algorithm achieve the goal if not repeat the operation until achieving 

the desired goal.  

 

3.1.2. Particle Swarm Optimization (PSO) 

 

Particle Swarm Optimization (PSO) is one of the most used and research optimization 

methods since its proposal by James Kennedy and Russel Eberhart in 1995 [57]. PSO 

is an SI-algorithm that mimic the social behavior of swarms in nature (like bird and 

fish) by continually updating the velocity and victor movement of the swarm to better 

the state of the swarm. PSO can be describes by three main behaviors according to as 

shown in figure (9):  
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• Separation: is a non-collision behavior between the swarm. 

• Alignment: is behavior of maintaining space and velocity between the swarm 

• Cohesion: is the collective behavior of moving toward and united direction. 

 

 

Figure 3.2. the three main behavior of PSO.  

 

On the mathematical side PSO can be represented by the following formula [95]: 

      

𝑣ⅈ𝑑
𝑡+1 = 𝑣ⅈ𝑑

𝑡 +  𝑐1 ⋅ rand(0,1) ⋅ (𝑃ⅈ𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡 )    + 𝑐2 ⋅ rand(0,1) ⋅  (𝑃𝑔𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡 )  (3.1)      

            

𝑥ⅈ𝑑
𝑡+1 = 𝑥ⅈ𝑑

𝑡 + 𝑣ⅈ𝑑
𝑡+1                                                                                             (3.2) 

 

Where: 

 

𝑣ⅈ𝑑
𝑡+1  : the velocity of the particle             

𝑥ⅈ𝑑
𝑡+1 : the position of the particle                                                         

d: dimension                                                

i: the particle index 

t: the iteration number                                    

C1 and C2: the speed regulating the space. 

rand (0,1): random value between 1 and 0 

Pi: the best position by particle i                     

Pg: the best position by neighbor particle 
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PSO flow chart of processing as follow: first the PSO utilize the population, the higher 

number of the population the better the result, calculating for each particle the fitness 

value, thirdly updating the velocity and positions for each particle, lastly continuing 

the process until the desired goal achieved [95].  

 

To improve the performance of PSO researchers use many approaches, for example 

using a higher number of populations which lead to faster convergence. Other 

approaches also introduced like balancing between exploration and exploitation and 

using a sub-swarm to increase the efficiency of the PSO which is a common approach 

these days [96]. Continuing in the PSO performance improvement, Shi and Eberhart 

[97] introduce the inertia weigh[98]t (w) as a new variant in the PSO equation. 

According to the (w) value the process of exploration and exploitation will occur, if 

(w) is high this led to exploration behavior and if its low it will lead to exploitation 

behavior. The new proposed PSO equation as follow: 

 

𝑣ⅈ𝑑
𝑡+1 = 𝑤. 𝑣ⅈ𝑑

𝑡 +  𝑐1 ⋅ rand(0,1) ⋅ (𝑃ⅈ𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡 )    + 𝑐2 ⋅ rand(0,1) ⋅  (𝑃𝑔𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡 )  (3.3) 

 

the introduction of (w) in the PSO equation was an improvement in the speed of 

convergence, later the study [98] suggest to increase the value of (w) higher than 1 to 

encourage the exploration in the early stages and reduce the value less than 1 to find 

the best exploitation toward the end. Later the study [99] propose the K factor to lower 

the possibility of convergence and the particle leaving the searching area. The new 

equation with the addition of k factor as follow: 

 

𝑣ⅈ𝑑
𝑡+1 = 𝐾[𝑣ⅈ𝑑

𝑡 + 𝑐1 ⋅ rand(0,1) ⋅ (𝑃ⅈ𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡 )  + 𝑐2 ⋅ rand(0,1) ⋅ (𝑃𝑔𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡 )]  (3.4) 

 

in summary both factors (w) and (K) show an improvement in the performance of basic 

PSO, and that according to study [91] which conduct a comparison between the two 

factors and their contribution on the basic performance of PSO. 
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3.1.3. Ant Colony Optimization (ACO) 

 

ACO is an algorithm aim to mimic the natural behavior of ants in activities such as 

foraging. ACO propose as a PhD thesis by Marco Dorigo in 1992 [53]. ACO consist 

mainly of four components: first ant as the algorithm imaginary agents responsible for 

the exploration and exploitation. Second is the pheromones is a chemical component 

used by the ants as trail mark in their search for the target, the intensity of the chemical 

is a sign and indicator for the collective group and operate as global memory to the 

colony. Third is the daemon actions is to gather global information for the trail and 

decides whether a more pheromones is needed or not, this must be done as a formation 

group and not as a single agent. The fourth and last element In ACO is decentralized 

control which provide a false tolerance mechanism against the failure of ne agent. 

Figure (10) explain the process of ACO in three steps: first, the ants move randomly 

back and forth between the colony and the source of food. Second, the ants discovered 

multiple paths to the target. Lastly, the shortest path is chosen which lead to the ants 

replacing the pheromones to indicate the path for other ants and that leads to the ant 

colony using the selected path.  

 

 

Figure 3.3. Ant colony optimization. 

 

Mathematically ACO for finding the best paths is represented by the following 

equation: 
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𝑃(𝑖𝑗)
𝑘 (𝑡)= 

𝜏𝑖𝑗(𝑡)
2[𝑛𝑖𝑗]

𝛽

𝛴𝑘𝜖𝐽𝑘 [([𝜏𝑖𝑗  (𝑡)]
𝛼
.[𝑛𝑖𝑗]

𝛽                                                          (3.5)                                                   

                                                       

where: 

 

𝑃(𝑖𝑗)
𝑘 (𝑡) : the movement from node i to j node. 

 𝜏𝑖𝑗(𝑡) :  the array of nodes which agents allowed to travel to from node I visibility 

between I and j. 

𝑛𝑖𝑗 : amount of pheromone between i and j. 

α and β: factors control the behavior of the colony, depending on their values. 

 

The deposing of the pheromone is depended on the following formula:     

                                                                                                                                                          

𝛥𝜏𝑖𝑗
𝑘 (𝑡) = ∑ 𝑘(𝑡)

𝑄

𝐿
0

                                                                                           (3.6)  

                                                                                                                           

where: 

 

Q: constant                                                       

L: The length of the path                                       

t: iteration number                                 

K: ants                           

       

the amount of pheromone determines the behavior of the ants whether they will have 

an exploration behavior or exploitation, too high pheromone amount will result in ants 

getting lost and too low amount will lead to ants not finding the optimal path. 

 

3.1.4. Artificial Bee Colony (ABC) 

 

ABC was one of the most recent algorithms introduced in 2005 by Dervis Karaboga 

[52]. ABC is very simple and easy to apply like PSO and DE, the algorithms inspired 

by the natural behavior of the bee’s colony when it comes to find food sources and 

share information of the sources between the bees. The algorithms depend on three 
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types of bees, every type has its own function in the algorithm. The three types are: 

first, the employee which their job is to find the source of food and save the information 

in their memories. The second type is the onlooker which to receive the information 

from the employee and pass it to the scout bees to gather the food from the nectar.  

 

The whole process of ABC can be summarized in the following steps [100]: 

 

Step1. All the control parameters are set, the scout bees are initializing the food source, 

which is represented by vector of the population xi, the vector xi has n variables and 

been optimized by the higher value of the bound xi represented ui by and the lower 

value of xi bound represented by li. the previous mentioned phase is represented by 

the following formula.           

 

𝑥𝑖 = 𝑙𝑖 + rand (0,1) ∗ (𝑢𝑖 − 𝑙𝑖)                                                                               (3.7)      

        

Step2. The searching phase by the employee bees which the value of the new food 

source vi is increased for the purpose of having food around the near neighborhood of 

the previous food source xi. the new source of food is defined by the following 

formula: 

 

𝑣𝑖 = 𝑥𝑖 + 𝜙𝑗(𝑥𝑖 − 𝑥𝑗)                                                                                (3.8)  

 

Where: 

 

 xj: is a random selected food source                              

Øi: random number in [a, -a] 

 

after the value of equation (7) and (8) is produced a greedy evaluation happened 

between the two values. The behavior of exploration and exploitation happened 

according to the value of xi- xJ. if the value if high then is exploration happening where 

if the value is low the is exploitation happening. the fitness operation is conducted by 

the following equation:  
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𝑓ⅈ𝑥(𝑥𝑖⃗⃗  ⃗) = {

1

1+𝑓𝑖(𝑥𝑖⃗⃗  ⃗) 
  𝑖𝑓 𝑓𝑖(𝑥𝑖⃗⃗  ⃗) 𝑚𝑜𝑟𝑒 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0

1 + 𝑎𝑏𝑠 (𝑓𝑖(𝑥𝑖⃗⃗  ⃗))  𝑖𝑓 𝑓𝑖(𝑥𝑖⃗⃗  ⃗)𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 0
                                              (3.9)                                                         

                  

where:  

 

fi(xi) is the objective function of the solution xi 

 

Step3. The onlooker bee phase. Here the onlooker is waiting for the information from 

the employee bees and fitness value calculation in equation (9) to calculate the 

probability value based on the following equation:          

    

𝑝𝑖 = 
𝑓ⅈ𝑡𝑖(𝑥 𝑖)

𝛴ⅈ=1
𝑆𝑁  𝑓ⅈ𝑡𝑖(𝑥 𝑖)

                                                                                              (3.10) 

 

Step4. The scout bee phase which a certain food sources is terminated due to its 

unimproved fitness value through the iteration, this called abandoned criteria. 

 

Step5. All the information, positions and fitness value are saved and memorized. 

 

Step6. The termination of the program in case the conditions are met, if not the process 

continue from step2 to step6 until the condition are met. 

  

3.1.5. Glowworm Swarm Optimization (GSO) 

 

A relatively new proposed SI-algorithm by Krishnanad and Ghose in 2005 where 

physical the agents in GSO are called glowworm[101] . this algorithm has three main 

parameters changing over time [99]: position in the search space (xm(t)), luciferin 

level (lm(t)) and a neighborhood range (rm(t)). Three phases are repeated according to 

the three previously mentioned parameters until the condition and the program is 

terminated [100]. 

 

The first parameter position in the search place calculated by the following formula:   
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𝑥𝑚(𝑡) = 𝑥𝑚(𝑡 − 1) +   𝑠(
𝑥𝑛(𝑥𝑛𝑙𝑡−1)−𝑥𝑚(𝑡−1)

𝑥𝑛(𝑥𝑛𝑙𝑡−1)−𝑥𝑚(𝑡−1)
)                                                  (3.11)        

           

where s represents the step size. According to the difference value between xn and xm 

the behavior is determined, if the value is high the exploration behavior occurs, in the 

contrary the exploitation occurs. 

 

After obtaining the xm(t) parameter the update luciferin[89]level lm(t) is calculated by 

the following formula:        

 

𝑙𝑚 = (1 − 𝑝) ⋅ Im(𝑡 − 1) + 𝛾𝐽(𝑥𝑚(𝑡))                                                            (3.12)   

                           

Where: 

 

 p: is the luciferin factor          

γ: the luciferin constant          

J: the objective function. 

  

the glowworm m is considered a neighbor to glowworm n under the condition that the 

distance between m and n is shorter than the neighborhood rm(t). but in case there are 

multiple choice close to the glowworm m the probability is calculated via the following 

equation: 

 

𝑃𝑚(𝑡) =
Im(𝑡)−ln(𝑡)

𝛴𝑘∈𝑁𝑖(𝑡)
 𝑙𝑘(𝑡)−𝐼𝑛(𝑡)

                                                                                 (3.13)   

                                                                     

the glowworm with the highest probability is chosen. 

 

The final step is to update the final parameter which is the range of the neighborhood 

rm(t). this updates the range of the communication between the glowworm 

community.  

 

The following formula is used to calculate rm(t):  
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𝑟𝑚(𝑡 + 1) = mⅈn{𝑟𝑠,max [0, 𝑟𝑚(𝑡) +  𝛽(𝑛𝑑 − |𝑛𝑚(𝑡)|)]}  (3.14) 

 

where: 

 

rs: the sensing range     nd:  number of neighborhoods.     nm: number of neighborhoods. 

 

3.1.6. Other Evolutionary Algorithms 

 

While the previous sections focused on introducing and discussing well-known and 

commonly used SI-based approaches, it is important to acknowledge the existence of 

several other interesting evolutionary algorithms. These algorithms have unique 

characteristics and applications that set them apart from the ones previously discussed. 

In this section, we will provide a brief overview of some of these algorithms: 

 

Like Genetic Algorithms (GA), GP follows a series of steps involving initial 

population creation, fitness evaluation, selection, and reproduction. However, GP uses 

the term "program" to represent the solution instead of "chromosome" used in GA. 

The key distinction lies in the selection procedure. While GA selects predefined 

percentages of the fittest population for reproduction, GP allows each program to 

select one or a few programs from the population based on their fitness probabilities 

[102]. 

 

EP shares some similarities with GA in terms of initialization, mutation, and evaluation 

operations. However, the main difference lies in the absence of crossover operations 

in EP. Instead, EP relies on stochastic selection, where solutions compete against a 

predetermined number of other solutions, and the least-fit solutions are eliminated 

[103]. 

 

ES is an optimization approach that shares methodology similarities with GA and 

Differential Evolution (DE). However, ES introduces self-adaptive mutation rates, 

which enhance its efficiency. There are three types of ES: (1+1)-ES, (1+λ)-ES, and 

(μ/ρ +, λ)-ES. Each of these types involves specific rules for generating mutants and 

selecting new parents for the next generation[104]. 
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Inspired by the behavior of fireflies, the FA algorithm involves using flashing light to 

attract each other. Fireflies' fitness determines the brightness of their flashes, which 

decreases over distance. Fireflies move towards brighter ones, and if there are none, 

they move randomly[105]. 

 

Introduced by Yang and Gandomi in 2012, the Bat Algorithm draws inspiration from 

bats' foraging behavior. Similar to Particle Swarm Optimization (PSO), it consists of 

velocity and position equations. The algorithm also incorporates echolocation 

capabilities and a frequency equation to influence the velocity equation, determining 

the search direction [55]. 

 

Inspired by the predatory behavior of grey wolves, the GWO algorithm organizes 

agents (wolves) into a hierarchy of alpha, beta, delta, and omega categories. Each 

hierarchy has distinct roles in finding solutions, resembling preys in this context [106]. 

 

It is worth noting that the above algorithms represent just a few examples of the vast 

array of evolutionary algorithms available. There are many more techniques that have 

not been discussed in this section. 

 

3.2. SOFTWARE PLATFORM 

 

3.2.1. Robotic Operation System (ROS) 

 

Writing robotic software could be a very complex process especially in the modern 

robotic application which demand a complex structure from the simple driving 

software to the computer perception, logic, and reasoning. Therefore, a swarm of 

experimentations and software has been introduced to meet the ever-growing 

complexity of robotic applications. 

 

Robotic Operation System (ROS) is not an operation system in the typical sense but 

rather a framework for robotic programming which include a variety of tools and 

liberties to simplify the complex robotic behavior for both programmers and users. 

Dealing with real life robotic problems can be a very taunting task for induvial and 
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even institutes, therefore (ROS) provide the ground up solutions instead of from 

scratch method of programming or problem solving [107]. 

 

 

Figure 3.4. ROS as a framework for all applications. 

 

In summary the ROS framework provide the following: 

 

• A structure commination field.  

• Passing massages between the nodes and processes. 

• The management of the packages. 

• Low-level device control. 

• Hardware abstraction. 

• A variety of tools and libraries. 

 

The communication protocol in ROS is a peer-to-peer communication combined with 

the ROS communication infrastructure, therefore the process of data transportation 

between the machines utilizes different mechanisms. The main concept of ROS is 

presented in different mini concepts which are: nodes, massages, topics, and services 

[112]. 

 

Nodes: the ROS node is basically a software with a computing power which increase 

the ROS fault tolerance by dividing the bigger system into small, organized nodes 
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which are communicate with each other via peer-to-peer communications. different 

nodes can utilize different technologies and software as long as they communicate via 

ROS mechanisms. rosnode is the ROS command assigned to showing the information 

about any nodes. Every node has a node type aligned with a class assigned to specific 

function or task.  

 

Massages: communicate the nodes with each other. The standard massage type 

(integer, Boolean and float…etc.) are supported in ROS. Every massage is identified 

in a simple massage type which show the type of the massage. 

 

Topics: is just the name that identified the massage flow between the nodes, every 

node in ROS either a publisher or subscribers. When a node needs a massage, it called 

subscriber node and request information from the topic and subscribe to it and then 

receive the massage from a publisher node. The publisher and subscriber nodes are not 

aware of each other exitance but rather communicate via the topic. A node is either a 

publisher or subscriber, although a single topic can be assigned to by different 

subscriber and publisher. rostopic is the command in ROS to show all the information 

about a certain topic like the massage periods, the number of the subscriber and 

publishers and the size of the information traffic in Bytes. The previously stated flow 

of information between nodes is shown in Figure 3.5. 

 

 

Figure 3.5. the flow of the massages between nodes. 
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Services: in ROS services is a request/reply mechanism for the unidirectional 

movement of the ROS massages between the nodes. ROS service is defined by two set 

of massages one foe request and other for reply. Every node can offer a service under 

the name of client. rossrv and rosservice are the ROS command line tool to display 

information about services [108]. 

 

3.2.2. Gazebo 

 

Gazebo is a 3D sensor-based simulator suitable for indoor or outdoor simulation and 

compatible with the ROS nodes by utilizing plugin presentable as the same massages 

interface in the ROS structure. The Gazebo simulator provides realistic sensor 

feedback and physical interaction between the robots and their environment. The main 

components of the Gazebos simulator explained simply as follow: 

 

• World File: an SDF file (Simulation Description Format) Contains all the 

elements in a simulation. 

• Model File: also, SDF file used to describe a single model. 

• Environment Variables: For storing environment, communication settings. 

• Gazebo Server Client: The two main components of a simulation. 

• Plugins: A simple mechanism to interface with the simulation world [109]. 

 

3.2.3. RVIZ 

 

RVIZ which stand for ROS Visualization is a powerful 3D visualization tool in ROS 

that allows users to view and interact with various types of sensor data and robot-

related information in a 3D environment. Here are some key points about Rviz and its 

functionalities: 

 

• Visualization of Sensor Data: Rviz allows to visualize sensor data, such as 

camera images, laser scan data, and point clouds. For example, if you have a 

robot model equipped with a Kinect sensor in Gazebo (a robotic simulator), 

you can visualize the laser scan data generated by the Kinect sensor in Rviz. 
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• Mapping and Navigation: Laser scan data, when processed appropriately, can 

be used to build a map of the environment. This map can be utilized for 

autonomous navigation or other purposes. 

• Frames: In Rviz, the concept of "frames" refers to coordinate frames used in 

the robot's kinematic chain. Different components of the robot may have their 

own coordinate frames, and RVIZ helps in visualizing data with respect to 

these frames. 

• Displays in RVIZ: RVIZ provides various display types, allowing users to view 

data from different sensors. Some common display types include Grid Display, 

Laser Scan Display, Point Cloud Display, Camera Display and Axes Display 

• Adding Displays: Users can add displays to Rviz by clicking on the "Add" 

button and selecting the type of data they want to visualize. For example, if 

you want to visualize laser scan data, you can add a Laser Scan Display, and if 

you want to see the camera feed, you can add a Camera Display. 

 

Overall, RVIZ is a valuable tool for roboticists and developers working with ROS, as 

it allows them to visually inspect and debug the robot's sensor data and other relevant 

information in a 3D space [110]. 
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PART 4 

 

 METHDOLOGY 

 

4.1. SYSTEM OVERVIEW  

 

In response to the escalating demands within the realm of robotics applications at large, 

and the intricate domain of multi-agent systems in particular, this thesis presents an 

innovative proposition: a dynamic ROS2 multi-agent framework tailored explicitly for 

fostering coordination and facilitating cooperative applications. Since its inaugural 

introduction in 2007 by Willow Garage, Stanford Artificial Intelligence Laboratory, 

and Open Robotics, the Robotic Operating System (ROS) has soared in popularity, 

captivating the imagination of robotic researchers and developers alike. Its allure can 

be attributed to a constellation of attributes: a meticulously crafted modular 

architecture, seamless abstraction of hardware intricacies, a fabric of standardized 

communication threads, a spirited and thriving community, immersive simulation 

capabilities, pedagogical significance, programming dexterity, adeptness in distributed 

computing environments, a suite of diagnostic aids, and an ethos of open-source 

collaboration. This confluence of factors renders ROS an unrivaled choice, an 

indispensable toolkit for the inception, trial, and coalescence of novel robotic systems. 

 

Furthermore, as the sun sets on ROS and the dawn of ROS 2 emerges, the community 

reaps even greater rewards. With amplified performance benchmarks, fortified 

communication protocols, and a more streamlined development pipeline, ROS 2 

epitomizes progress and ingenuity. Addressing the previous iteration's limitations, 

ROS 2 unfurls as an even more tantalizing prospect for those intrepid researchers and 

developers poised on the precipice of innovation, seeking a vehicle to architect the 

next generation of advanced robotic systems.
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While it is widely acknowledged fact that multi-robotic systems confer distinct 

advantages over their single-robot counterparts, as elucidated in the preceding sections 

of this thesis, it is imperative to acknowledge an intrinsic complexity hurdle that multi-

robot systems grapple with. This complexity stems from the dearth of comprehensive 

data and computational resources requisite for tackling intricate control and 

optimization conundrums. Notably, challenges such as formation control, task 

allocation, and model predictive control (MPC) burgeon in complexity. The intricate 

nature of these control paradigms is exacerbated by the absence of holistic knowledge, 

localized computation, and effective communication channels. It is within this 

contextual tapestry that the proposed peer-to-peer, non-centralized framework shines 

forth—a beacon designed to emulate and meticulously experiment within a fleet of 

robots, thus infusing much-needed insights into the intricate choreography of multi-

robot systems. 

 

The proposed framework is fully written in Python and based on ROS2 platform. 

Facilitates the creation of various multi-robot applications like the encoding of 

distributed control algorithms, the establishing of agent-to-agent communication, the 

devising and planning of control strategies, and visually conducting experiments on 

robotic fleets by simulations using Gazebo while visualizing data through RVIZ. 

 

4.2. ARCHITECTURE DESCRIPTION 

 

To simplify the process, the framework is divided into three primary layers: The first 

layer, known as TGL (High-Level Layer Multi-Agent Communication Framework), 

manages peer-to-peer communication among agents and interfaces with the second 

control layer. The second and third layer forms a low-level layer focused on individual 

robot control. This layer comprises two key elements: Roboplanning and Robocontrol. 

Seamless communication between these framework segments, depicted in Figure 4.1, 

is essential for the overall functioning:   

 

 

 

 



37 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. System overall flow-chart.  

 

4.2.1. TGL  

 

The Team Guidance Layer (TGL) stands as the central pillar within this software 

platform. A comprehensive examination of this layer is slated for the upcoming 

section; however, a brief preview is offered here. Primarily, the TGL revolves around 

the "Guidance" class, designed to capture fundamental data from each agent. It's 

important to note that this "Guidance" layer remains abstract, devoid of any reasoning 

or control logic, necessitating further extensions for functionality. In our instance, 

we've crafted two extension classes, each bearing distinct features and functions. The 

two extension classes intertwined with the "Guidance" layer are as follows: the 

"OptimizationGuidance" class, which encompasses optimization-oriented attributes, 

laying the groundwork for optimization-driven distributed control strategies like task 

allocation, optimal control, and model predictive control. On the other hand, the 

"DistributedControlGuidance" class comes into play for more straightforward 

applications like containment and formation control.  

 

4.2.2. Robot Planning and Robot Control 

 

Unlike the TGL layer, the trajectory and control layers operate in isolation. In other 

words, agents within this layer do not communicate. Each robot maintains 

independence in terms of planning and control, with communication responsibilities 

High-level 

Decision 
TGL 

RoboPlanning 

RoboControl 

Low-level 

Control 

Actions  
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resting upon the layer. The planning layer is overseen by the "Planner" class, primarily 

functioning as a point-to-point planner within both 2D and 3D contexts. This "Planner" 

class synergizes harmoniously with controllers, steering and guiding robots towards 

designated points. Notably, this class suits both ground and aerial robots, ensuring 

versatility. On the flip side, the "Controller" class caters specifically to unicycle ground 

robots, laying the foundation for control strategies. Within the domain of mobile 

ground robots, a pair of unicycle controllers offer alternatives for reaching designated 

points or achieving specific velocities.To culminate this ecosystem, the platform 

achieves seamless integration with the Gazebo and Rviz simulation environments. 

Facilitated by the "RoboIntegration" class, this integration not only streamlines 

visualizations of distributed control and optimization algorithms but also enhances the 

overall experiential coherence. The overall ecosystem is graphically illustrated in 

figure 4.2:  

 

 

Figure 4.2. Framework architecture. 

 

4.3. EXPLORING TGL 

 

As highlighted earlier, the framework's foundation significantly hinges on the TGL, 

which stands as a pivotal and comprehensive cornerstone housing the entirety of its 
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functionality. Therefore, this section endeavors to delve even deeper into this layer to 

glean a more profound comprehension. The TGL, in essence, comprises three central 

components: the first is graph-based communication, followed by the primary 

applications embodied within the OptimizationGuidance and 

DistributedControlGuidance classes. This exploration aims to offer a comprehensive 

grasp of TGL's intricate workings. 

 

 

Figure 4.3. TGL Architecture. 

 

The foundation of this layer predominantly rests upon the "Guidance" class, previously 

introduced as an abstract entity devoid of control logic and reasoning. The "Guidance" 

class forms the bedrock for the guidance level in multi-robot scenarios. It establishes 

the subsequent attributes: 

 

• `agent_id`: Identification of the agent. 

• `n_agents`: Total count of agents. 

• `in_neighbors`: List of in-neighbors. 

• `out_neighbors`: List of out-neighbors. 

• `current_pose`: Present robot pose. 

• `communicator`: Facilities for neighboring communication. 
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Extending from Guidance, the OptimizationGuidance surfaces as a subclass, 

augmenting the framework with optimization-centric attributes. It introduces the 

subsequent features: `optimizer` and `optimization_thread` classes. 

 

4.3.1. Graph-based Communication 

 

At the heart of distributed control and optimization lies Graph-Based Communication, 

where robots exchange information within a network structured as a graph. Nodes 

depict robots, while edges symbolize communication links, allowing decentralized 

coordination and data sharing for enhanced autonomy and teamwork in intricate 

settings. 

 

The BestEffortCommunicator and TimeVaryingCommunicator classes are subclasses 

of the CommInterface class. They implement distinct versions of the neighbors_send() 

and neighbors_receive() methods.BestEffortCommunicator employs an asynchronous 

communication approach. This means that neighbors_send() and neighbors_receive() 

don't halt the calling thread; instead, they return immediately while messages are sent 

and received asynchronously in the background. 

 

Conversely, TimeVaryingCommunicator adopts a synchronous communication 

mechanism. neighbors_send() and neighbors_receive() methods here pause the calling 

thread until all messages have been sent and received. TimeVaryingCommunicator 

also introduces neighbors_exchange(), synchronously exchanging information with 

neighbors. It forwards the send_obj to in-neighbors, then awaits messages from all out-

neighbors before returning a dictionary of received messages keyed by the sender. 

 

BestEffortCommunicator creates a publisher and subscription for each neighbor. The 

publisher transmits messages, while the subscription receives them. neighbors_send() 

serializes the send_obj and publishes it for each neighbor, while neighbors_receive() 

repeatedly invokes spin_once() of the rclpy.node.Node object until a message is 

received from each neighbor. 
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TimeVaryingCommunicator, akin to BestEffortCommunicator, differs in its QoS 

profile, ensuring reliable message transmission. neighbors_exchange() follows the 

pattern of sending send_obj to in-neighbors, then waiting for messages from out-

neighbors before returning the received messages in a dictionary. These classes offer 

flexibility based on the context. They are beneficial for handling scenarios where 

communication links dynamically change due to factors such as limited range or 

energy consumption. Unlike standard ROS applications, explicit message type 

declaration is not required for robot communication. The std_msgs/ByteMultiArray 

message type, managed by the Communicator class and Python's dill package, allows 

versatile message exchange including vectors, matrices, text, and images. Importantly, 

changes can be made at runtime without predefined message types. 

 

4.3.2. Distributed Optimization 

 

This segment within the framework is devoted exclusively to the execution of 

optimization tasks. The main entry point for this division is the OptimizationGuidance 

class. It's widely acknowledged that achieving desired outcomes through optimization 

requires multiple iterations. In this context, the OptimizationThread is introduced as 

an iterative loop, separate from the main class. This design empowers users to 

customize the optimization process according to specific tasks. Serving as a 

foundational element for threads engaged in optimization tasks, the 

OptimizationThread class encompasses attributes such as: 

 

• `_halt_event`: An event that triggers the halt of optimization. 

• `_begin_event`: An event that initiates the start of optimization. 

• `_quit_event`: An event that signifies the termination of the thread. 

• `_lock`: A lock to ensure concurrent access protection to `_is_optimizing`. 

• `_is_optimizing`: A flag indicating the ongoing optimization status. 

• `_gc_end`: A Guard Condition activated at the end of each optimization. 

• `guidance`: A Guidance object. 

• `optimizer`: An Optimizer object. 
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The run method of OptimizationThread constitutes a loop that awaits either the 

`_begin_event` or the `_quit_event` to be set. 

 

• If the `_begin_event` is triggered, the thread commences an optimization task. 

• If the `_quit_event` is set, the thread discontinues. 

 

The `do_optimize` method is abstract and must be implemented by subclasses. This is 

where optimization algorithms need to be added, as demonstrated later with task 

assignment and MPC implementation. 

 

The framework facilitates modeling and problem-solving at two levels: 

 

• Locally on the robot level. 

• Globally on the network level.  

 

On that note an integration between TGL and the DISTROP package [111] must be 

implemented. The DISTROP is a Python package for distributed optimization over 

peer-to-peer networks. The package allows users to define and solve optimization 

problems through distributed optimization algorithms. It offers a range of pre-

implemented distributed optimization schemes and supports the semantic modeling of 

optimization issues. The compatibility of the Communicator classes with DISROPT 

streamlines the utilization of its distributed algorithms, requiring no additional 

adjustments. 

 

4.3.3. Distributed Control 

 

In contrast to the previously mentioned OptimizationGuidance class, the 

DistributedControlGuidance class is designed for simplicity and user-friendliness. 

This class serves as a foundational framework for communication and control. It 

commences by sharing the current position with neighboring robots, proceeds to 

calculate a velocity profile based on exchanged data and chosen feedback strategies, 

and ultimately publishes the control input to a designated topic. Despite its relative 

simplicity compared to the optimization class, this class's structure is highly capable 
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of executing distributed control algorithms like formation control and containment. 

These functionalities will be implemented within the Gazebo/Rviz simulation 

environment. 

 

The DistributedControlGuidance class inherits attributes from the Guidance class, 

which underpins basic functionalities for guidance systems.Functionally, the 

DistributedControlGuidance class implements a distributed control system. This 

system involves a group of robots communicating to exchange their position data. The 

robots then utilize this data to compute control inputs that maintain them in a desired 

formation. 

 

The "__init__" method of the DistributedControlGuidance class takes specific 

arguments: 

 

• "update_frequency": The rate at which the control law is evaluated. 

• "pose_handler": The name of the ROS topic for publishing the robot's pose. 

• "pose_topic": The ROS topic for subscribing to the robot's pose. 

• "input_topic": The ROS topic for publishing the robot's control input. 

 

The "control" method of this class is periodically invoked at the defined update 

frequency. It checks if the robot's current position is available; if not, it returns. 

Otherwise, it shares position information with neighboring robots, computes the 

robot's control input, and conveys it to the planner/controller.The "send_input" method 

broadcasts the control input to the specified ROS topic. The "evaluate_input" method 

is a placeholder, requiring implementation by subclasses. This method's purpose is to 

compute the control input for the robot. 

 

In simple terms, the DistributedControlGuidance class establishes a distributed control 

system that sustains a group of robots in a desired formation. This involves periodic 

sharing of position information among the robots, which then use this information to 

calculate a control input for maintaining the desired formation. The update frequency 

dictates how often these processes occur. 
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4.4. THE IMPLEMENTATION OF DISTRIBUTED CONTROL AND 

OPTIMIZATIONS 

 

Following the comprehensive exploration of TGL along with the involved Python 

classes detailed in the preceding sections, this segment will delve into the practical 

implementation of a distributed robotics scenario. This scenario involves a mobile 

ground robot platform named Turtlebot, simulated within the Gazebo environment and 

visualized using Rviz. The forthcoming implementation will encompass four distinct 

distributed scenarios, each having been predefined in academic papers and research: 

 

• Containment in Leader-Follower Networks [112]. 

• Distributed formation control [113].  

• Distributed Model Predictive Control (MPC) [114]. 

• Distributed dynamic task [115]. 

 

These scenarios are ranked by their level of complexity., with the initial 

implementation being the simplest and the final one being the most intricate. 

 

4.4.1. Containment in Leader-Follower Networks for Single-Integrator Systems 

 

Math problem: we examine a group of N robots navigating within the (x, y) plane. 

Each individual robot is represented as a single-integrator dynamical system, 

characterized by the equation: 

 

 ẋi(t)=ui(t)                                                                                                                                 (4.1) 

 

where for all i ∈ {1,…,N}, xi ∈ R2 denotes the i-th state (position), and ui∈ R2 is the 

i-th input (velocity). Communication among robots handled by 

TimeVaryingCommunicator as undirected graph G = (V, E), with V = {1…, N} 

representing the robot set and E ⊂ V × V denoting the set of edges. If (i, j) ∈ E, then 

(j, i) ∈ E as well, allowing robots i and j to exchange information. The neighbors of 

agent i are denoted as Ni = {j ∈ V ∣ (i, j) ∈ E}. 
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The robots are categorized into leaders and followers. Followers aim to converge 

towards the convex hull formed by the positions of leaders. Achieving this goal 

involves implementing dynamics that drive the followers towards the desired 

formation.  

 

�̇�𝒊(𝒕) = 𝟎                                                     (leaders)                                                              (4.2a) 

 

 �̇�𝒊(𝒕) =   ∑ 𝒙𝒊𝒋∈𝑵𝒊
(𝒕) − 𝒙𝒋(𝒕)              (followers)                                                           (4.2b)   

                             

Implementation: as far as the software implementation can be achieve by 

implementing two main classes which an extension from DistributedControlGuidance. 

the classes are: ContainmentGuidance and TimeVaryingContainmentGuidance. Both 

implement a distributed control law for robots to maintain a formation and use 

parameters like update frequency, gain, and pose handling. The evaluate_input method 

calculates control inputs using neighbor data. The implementation of the control law 

in the software as follow: 

 

 

 

ContainmentGuidance computes the error between robot positions and desired 

positions, applying control inputs to minimize this error. 

TimeVaryingContainmentGuidance allows dynamic neighbor changes based on 

probabilities, useful in uncertain environments. ContainmentGuidance distinguishes 

leaders and computes control inputs based on errors. 

TimeVaryingContainmentGuidance selects active neighbors randomly and adapts 

neighbor connections. 
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Next step is to implement the SignalIntegrator class which is an inherited class from 

the main Integrator class. The class implement the Euler method for single-integrator 

dynamics: 

 

ẋ = u                                                                                                                          (4.3)    

                                                                         

where ẋ is the state of the system and u   is the control input. 

 

The implantation on the code as follow:  

 

 

 

4.4.2. Distributed Formation Control  

 

 Math problem: similar to the previous implantation of containment in leader-follower 

scenario, we assume that: 

 

N robots navigate the 2D plain. 

Every robot presented by single-integrator dynamic system. 

Communication handles by graph-based communication. 

The distributed control law must be applied for every robot as follow: 

 

𝒖𝒊 = ∑ || (𝒙𝒊(𝒕) − 𝒙𝒋
𝒋∈𝑵𝒊

(𝒕))^𝟐|| − 𝒅𝒋𝒊^𝟐)(𝒙𝒊(𝒕) − 𝒙𝒋(𝒕))                                  (4.4) 

   

Next, we assume that several N robots must form a desired geometric shape, so in that 

light we must adjust the adjacency matrix for robot communication based on graph 

theory, in addition of distance matrix to adjust the distance between the robot to form 

the desired shape. Usually, the adjacency matrix used to represent direct and undirect 

graph communication. Each entry in the adjacency matrix represents the connection 

between two nodes. If there is an edge between two nodes, the corresponding entry in 
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the matrix is 1. If there is no edge between two nodes, the corresponding entry in the 

matrix is 0.For example, consider the following graph: 

 

A---B 

|       | 

|       | 

C---D 

 

The adjacency matrix for this graph would be: 

 

[ 1 0 0 1] 

[ 0 1 0 0] 

[ 0 0 1 0] 

[ 1 0 0 1] 

 

The first row of the matrix represents the connections between node A and the other 

nodes in the graph. The second row represents the connections between node B and 

the other nodes in the graph, and so on. 

 

Implementation: to implement the formation control into the software framework we 

must consider the following two building blocks: firstly, a "Team Guidance" node 

facilitates the exchange of current positions among neighboring robots, enabling 

computation of the input ui(t) at a defined frequency. Secondly, a "Control" node 

undertakes the task of converting the single-integrator input (vector velocity) into 

appropriate unicycle inputs (angular and linear velocity).and finally visualize it 

through a launch file in Gazebo simulation. 

 

In more detail regarding the first block, a DistributedControlGuidance class must be 

extended to a child class by the name of FormationControlGuidance to override the 

velocity methods as shown in the main part of the code: 
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4.4.3. Distributed Model Predictive Control (MPC) 

 

Model Predictive Control (MPC) in multi-robotic systems is a sophisticated control 

strategy that involves predicting the future behavior of the robots and optimizing their 

actions over a finite time horizon to achieve desired objectives. MPC considers a 

mathematical model of the system dynamics and constraints to make informed 

decisions about the robots' actions. 

 

In the context of multi-robot systems, MPC operates by formulating an optimization 

problem that considers various factors such as robot dynamics, environmental 

conditions, task requirements, and constraints. It then computes a sequence of control 

actions that each robot should follow to optimize a specified objective function. This 

objective function could be related to tasks like formation control, collision avoidance, 

path tracking, or any other cooperative behavior. Key characteristics of MPC in multi-

robot systems include: 

 

• Prediction. 

• Constraints. 

• Optimization. 

• Real-time Adaptation. 

• Cooperative Behavior. 
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Math Problem: The linear dynamics of the N robots, along with the associated 

constraints, outputs, and local cost functions. 

Linear Dynamics: The dynamics of each robot i can be represented as: 

 

 𝑥𝑖(𝑡 + 1) =  𝐴𝑖𝑥𝑖 + 𝐵𝑖𝑢𝑖                                                                               (4.5)    

       

where is the state vector and is the control input vector for robot i. 

Constraints: Each robot must adhere to local state and input constraints: 

 

 𝑥𝑖(𝑡) = 𝑋𝑖                                                                                                       (4.6a) 

 

𝑢𝑖(𝑡) = 𝑈𝑖                                                                                                         (4.6b) 

 

where and are the state and input constraint set for robot i, respectively. 

Outputs: For each robot i, the output is defined as: 

 

𝑧𝑖(𝑡 + 1) =  𝐶𝑖𝑥𝑖(𝑡) + 𝐷𝑖𝑢𝑖(𝑡)                                                                      (4.7)          

                                                                        

Where 𝑧𝑖(𝑡 + 1)  is the output for robot i. 

Coupled Output Constraint: The outputs of all robots are constrained to satisfy:  

 

 ∑  𝑧𝑖(𝑡)𝜖𝑠
𝑁
𝑖=1                                                                                                      (4.8)       

         

where S constraint set for the coupled outputs. 

 

Local Cost Function: Each robot i has an associated local cost function that it aims to 

minimize: 

 

 𝑖 = (𝑥𝑖 , 𝑢𝑖)                                                                                                     (4.9) 

 

Overall Objective: Considering the above components, the overall objective can be 

formulated as a multi-objective optimization problem is to minimize the sum of local 

cost functions while adhering to constraints: subject to:                                                                                                                                                                      
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• linear dynamics 

• Local state and input constraints: 

• Coupled output constraint. 

 

Solving this multi-objective optimization problem involves finding control inputs  for 

each robot i that minimize their respective local cost functions while satisfying the 

dynamics, state/input constraints, and the coupled output constraint.This formulation 

captures the interplay between the robots' dynamics, constraints, outputs, and local 

objectives, aiming to achieve coordinated behavior that optimizes local cost functions 

while adhering to overall constraints. 

 

Implementation: to implement the MPC distributed algorithms we must apply the 

following steps: 

 

• Implement the TGL node to compute and communicate the MPC algorithms 

through MPCGuidance class. 

• The implantation of integrator node to override the MPCGuidance class 

frequency. 

• The visualization step to communicate the necessary data like robots’ position 

to ROS topic. 

 

The MPCGuidance class, which is a subclass of OptimizationGuidance. This class 

employs a model predictive control (MPC) algorithm for optimizing robot motion 

within a multi-agent system. Key methods include: 

 

init__(): Initializes the class, taking parameters like sampling period, pose handler, and 

topic name. 

 

initialize(): Prepares the MPC problem with parameters like prediction horizon, 

matrices, and constraints. 

 

control (): Main control loop: initializes trajectories, gathers and receives data from 

agents, solves local optimal control, and updates trajectories. 
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optimization_ended(): Handles post-optimization actions, updating trajectories and 

sending data. 

 

shift_horizon (): Extends output trajectory via trajectory_continuation() function. 

collect_trajectories (): Aggregates trajectories from neighboring agents at agent 0. 
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After implementing the first main guidance class, the OptimizationThread loop come 

in place which is a straightforward to start and stop the optimization when the required 

number of the iterations is reached. Therefore, the entire optimization process is 

relying on MPCOptimizer class. The MPCOptimizer class implements a model 

predictive control algorithm that can be used to optimize the motion of a robot. The 

MPC algorithm considers the system dynamics, cost functions, coupling constraints, 

and local constraints of the robot to find the optimal control inputs for the next 

prediction horizon.  

 

The main body of the MPCOptimizer contain the following methods:  

 

• The initialize_scenario() method first initializes the system matrices, cost 

matrices, coupling constraints, and local constraints of the MPC problem. It then 

creates a parametric optimal control problem that has the two parameters: the 

initial condition of the robot and the output trajectories of the robot. 

• The create_opt_control_problem() method creates the actual optimal control 

problem. It takes in the initial condition and output trajectories as parameters, 

and it uses the system matrices, cost matrices, coupling constraints, and local 

constraints that were initialized in the initialize_scenario() method. 

• The optimize() method solves the MPC problem using a numerical solver. It 

keeps track of the solution in a dictionary, where the keys are the time steps, and 

the values are the states, controls, and outputs of the robot. 

• The get_result() method returns the solution of the MPC problem. It takes the 

dictionary that was created in the optimize() method and returns the states, 

controls, and outputs of the robot. 
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After implementing the TGL node the next step is to consider the integrator node to 

override the TGL frequency similar to the previous implantation. The integrate() 

method integrates the robot's motion for one-time step. It takes the current position and 

velocity of the robot as input, and it returns the new position of the robot. The 

integrate() method uses the following equation to integrate the robot's motion: 

 

new_pos = old_pos + samp_time * u                                                                     (4.10) 

 

where: 

 

• new_pos is the new position of the robot. 

• old_pos is the old position of the robot. 

• samp_time is the sampling time of the integrator. 

• u is the robot's velocity. 
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Finally, the implantation is completed after the next two steps related mainly to ROS2 

and further exploration will be done in the next chapter, but we briefly mentioned the 

steps as follow: 

 

We employ the utils.Visualizer class for the visualization node. This node's objective 

is straightforward: it subscribes to the odom topic and transfers messages to the 

visualization_marker topic. RVIZ then interprets data from this source, illustrating 

circles denoting robots, accurately positioned. Finally, we write a launch file to launch 

the distributed MPC algorithms through RVIZ. 

 

4.4.4. Distributed Dynamic Task Assignment 

 

Distributed dynamic task allocation involves a decentralized strategy for distributing 

tasks among multiple agents or robots in a dynamic setting. The term "dynamic" 

implies that tasks, agents, or the environment can change over time, necessitating 

ongoing adjustment and reallocation of tasks. In scenarios of distributed dynamic task 

assignment, multiple agents or robots cooperate to effectively distribute tasks among 

themselves, factoring in evolving circumstances, preferences, and limitations. This 

stands in contrast to centralized methods where a sole entity handles all task 

assignments. In distributed systems, decision-making responsibility is shared across 
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agents, allowing them to make localized decisions while taking broader objectives into 

account. 

 

Math problem: Consider a set of N agents or robots, indexed by i = 1, 2, ..., N, and a 

set of M tasks, indexed by j = 1, 2, ..., M. Each agent i has a set of possible tasks it can 

perform, denoted as Ti, and each task j has a set of potential agents that can perform 

it, denoted as Aj. Let xij be a binary decision variable representing whether agent i is 

assigned to task j. The value of xij is 1 if agent i is assigned to task j, and 0 otherwise. 

The goal is to optimize the assignment of agents to tasks while considering various 

objectives or constraints. This can be formulated as an optimization problem, often 

with the objective of maximizing or minimizing a certain metric. For example, 

maximizing the overall efficiency, minimizing the total cost, or achieving a balanced 

assignment. 

 

Mathematically, a common formulation for the distributed dynamic task assignment 

problem can be expressed as follows. 

 

Maximize/Minimize ∑ⅈ,k cik xik 
 

Solving this mathematical optimization problem involves finding the values of the 

decision variables xij that optimize the specified objective while adhering to the 

constraints. In a distributed setting, agents collaborate to make local decisions about 

their task assignments, considering both their own preferences and the constraints 

imposed by the problem. Communication and coordination between agents are crucial 

to achieve a balanced and efficient task assignment. 

 

In our scenario there is a M number of tasks send the mobile robot’s overtime through 

a cloud, as soon as one task is completed, other tasks will be sent to be executed 

through the optimization loop. To maintain the tasks, overflow a task table is implanted 

through PositionTaskTable and the flow chart of the process is shown in 4.4: 
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Figure 4.4. Task assignment chart flow. 

 

The implementation: the implantation of the task assignment is similar to the previous 

implementation of MPC. The main guidance class TaskGuidance is responsible for the 

distribution of the task optimization and communicate the information to the task table, 

in addition solving the optimization problems is handled by TaskOptimizer and 

TaskOptimizationThread similar to the previously mentioned MPCOptimizer and 

MPCOptimizationThread. But in contrast to MPC implementation. The task 

assignment needs more classes to communicate the information and algorithms to 

gazebo through the Turtlebot unicycle robot platform, therefore: 

 

PositionTaskExecutor class: this class notify TGL layer when the task completed by 

controlling the navigation of the robot to the desired position. 

 

TwoDimPointToPointPlanner class: a part of planner class, simply act as the bridge 

between TGL and the controller class by forwarding the position target from the first 

to the later. 

 

Controller class: a class that implement the unicycle control explain in [116] 
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PART 5 

 

SIMULATION AND RESULTS 

 

The ROS2 platform served as the foundation for our comprehensive multi-layer 

software framework, which was entirely realized using Python programming. 

Leveraging various Python libraries, we successfully brought this framework to 

fruition. The outcomes were effectively visualized through the Gazebo 9 simulator and 

the data visualization tool RVIZ2. 

 

Our approach involved implementing diverse control and optimization scenarios by 

integrating the respective mathematical models into dedicated software classes. This 

integration facilitated the execution of various control and optimization strategies 

seamlessly. 

 

Both hardware and software components played a pivotal role in the project: 

 

• HP ProBook 650 (Intel Core i7) 

• ROS2 Dashing Diademata 

• Gazebo 9 

• RVIZ2 

• TurtleBot 3 ROS package 

• Xterm – terminal emulator 

 

The simulation was grounded in the visualization tools Gazebo and RVIZ, which 

effectively illustrated the outcomes of four distinct distributed optimization and 

control scenarios. These scenarios were built upon the team guidance layer (TGL) and 

encompassed: 

 

• Containment within a leader-follower network for a single-integrator system. 
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• Distributed geometrical formation control designed for unicycle ground robots. 

• Implementation of a distributed model predictive control (MPC) strategy. 

• Execution of distributed dynamic task assignment for unicycle robots. 

• Through these meticulously developed scenarios, our framework demonstrated 

its capabilities in addressing a spectrum of control and optimization challenges. 

 

5.1. CONTAINMENT 

 

The simplest approach among the various scenarios involved the combination of two 

core components: the "ContainmentGuidance" and "SingleIntegrator" classes. The 

outcomes of this particular implementation were visualized without the requirement 

of external tools. Instead, the ROS2 toolbox RVIZ was employed. This tool effectively 

showcased the robots as markers and acquired pose data from the "SingleIntegrator" 

component. 

 

To initiate the simulation, a ROS2 launch file was employed. This file encompassed 

all the essential nodes responsible for both distributed control and visualization within 

RVIZ. The culmination of these efforts is illustrated in Figure 13, providing a clear 

visual representation of the achieved results.        

                                                                                    

 

Figure 5.1. RVIZ containment simulation. 

 

The RVIZ simulation outcome vividly depicts a group of six robots, intelligently 

categorized into leaders and followers. This division is balanced, with an equal number 

of robots in each role. The simulation showcases a dynamic movement pattern among 
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the follower robots, as they efficiently transition from their initial positions to occupy 

specific positions that collectively form a triangular configuration. This geometric 

arrangement is strategically designed to align with the positions of the leader robots, 

illustrating a successful containment and guidance strategy in action. 

 

5.2. FORMATION CONTROL 

 

The core objective of this implementation is to guide a cluster of robots from initially 

scattered positions to adopt specific and discernable geometric formations within the 

(x, y) plane. This objective is achieved by harnessing the potential of a distributed 

control law. The results of this endeavor are expertly showcased through the Gazebo 

simulator, which provides a visual representation of each distinct formation pattern. 

 

For initiating the simulation, a ROS2 launch file takes center stage. This 

comprehensive file harmoniously brings together all the essential nodes, orchestrating 

their roles in enabling both the facilitation of distributed control and the generation of 

visual representations within the Gazebo environment. This integrated approach 

guarantees a seamless and coherent portrayal of the achieved outcomes. Moreover, the 

simulation capitalizes on the utilization of the TurtleBot 3 Burger model and the 

corresponding ROS2 package. These elements contribute to the physical simulation of 

the formations, enhancing the authenticity of the outcomes. 

 

Each unique formation pattern is meticulously demonstrated in isolation, offering a 

clear insight into its specific geometric configuration. These demonstrations serve as 

compelling evidence of the efficacy of the employed distributed control strategies. the 

patterns are :  

 

• Triangle formation 

• Square formation 

• Side-by-side tringles  

• Pentagon formation 

• Hexagon formation 
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5.2.1. Triangle Formation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Tringle formation with 3 robots. 
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5.2.2. Square Formation 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Square formation with 4 robots. 
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5.2.3. Side-by-side Triangle  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Side-by-side tringles with 5 robots. 
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5.2.4. Pentagon Formation  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Pentagon formation with 5 robots. 
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5.2.5. Hexagon Formation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Hexagon formation with 6 robots. 
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5.3. MPC 

 

The implementation of Model Predictive Control (MPC) introduces a sophisticated 

optimization scenario integrated into the Distributed Optimization segment of the 

Team Guidance Layer (TGL). This complex scenario employs a classical algorithm 

designed for linear single-integrator systems, as exemplified through a numerical 

instance. The overarching objective of this optimization framework is to guide a group 

of N robots, each characterized by linear dynamics, towards the origin. Throughout 

this process, it remains crucial to respect the coupling constraints inherent in the robots' 

output interactions. 

 

The resultant algorithmic approach was validated and assessed using simulation, 

effectively leveraging the RVIZ data visualization tool as part of the software 

integration. Upon initiating the simulation, an RVIZ window comes to life. Within a 

brief span of time, a collection of circles, representing the individual robots, initiates 

movement towards the origin point. Notably, these robots coordinate their motion to 

ensure their mutual inter-distances remain within predefined limits, effectively 

showcasing the control strategy's success in action. 

 

 

Figure 5.7. Model Predictive Control (MPC) algorithm. 
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5.4. TASK ASSIGNMENT  

 

The algorithm orchestrates the actions of a quartet of Turtlebot 3 Burger robots, 

assigning them a collection of M tasks that manifest as positions within the Gazebo 

simulator's (x, y) plane. This algorithm operates in a continuous optimization loop, 

recalculating and determining fresh tasks promptly after each task completion. 

Simultaneously, it updates the task information table, subsequently influencing the 

trajectories of the robots. These recalibrations are relayed to the dedicated controller 

class, which takes on the role of guiding the robots. 

 

The framework for distributing task positions operates via a cloud service, employing 

a task table that is visually represented through the xterm application. As the 

simulation unfolds, the group of four Burger robots dynamically aligns itself with the 

tasks stipulated in the task table. New tasks are computed and introduced, a sequence 

that unfolds within the confines of the xterm terminal. These tasks are then 

disseminated among the robots, with each robot's specific task distribution being 

displayed within its corresponding xterm window. 

 

Consequently, the robots adapt their trajectories to address the new set of tasks. This 

adaptation involves the resolution of optimization challenges both at an individual 

robot's scale and across the network level. As this synchronization occurs, the 

algorithm manages tasks locally within each robot while simultaneously striving to 

achieve global optimization across the network of robots. This dynamic interplay 

serves to efficiently allocate tasks and guide the robots in a coordinated manner, 

ensuring effective task execution and trajectory adjustment. 
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Figure 5.8. Turtlebot burger launch in the environment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Xterm terminal showing the task table. 
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Figure 5.10. Xterm terminal launch in the simulation environment. 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Several xterm launched for every agent. 
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PART 6 

 

CONCLUSION 

 

This study introduces a robust ROS2 framework for facilitating distributed multi-agent 

cooperation behaviors. The framework operates as a peer-to-peer, non-centralized 

layer that excels in executing distributed optimization and control algorithms without 

requiring a central unit. The implementation was accomplished using Python and 

leveraged the capabilities of ROS2 Dashing, Gazebo 9, and Rviz2 platforms. The 

framework's design is based on a three-layer structure, with the Team Guidance Layer 

(TGL) being the most pivotal. TGL incorporates three crucial components: 

 

• Graph-based Communication: Facilitates direct, indirect, synchronous, and 

asynchronous data exchange among agents. 

• Distributed Optimization: Empowers complex optimization scenarios such as 

task assignment and model predictive control (MPC). 

• Distributed Feedback Control: A simplified yet fully functional version of 

distributed optimization, supporting control algorithms like formation control 

and leader-follower containment control. 

 

Numerous scenarios were implemented to showcase the framework's capabilities. The 

scenarios were categorized based on their complexity and the distributed algorithms 

they employed. Containment and formation control scenarios utilized distributed 

feedback control, while more intricate optimization scenarios like task assignment and 

MPC were built on distributed optimization principles. The outcomes of the 

implementations are as follows:
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• A leader-follower containment scenario for a single integrator system was 

executed using distributed feedback control algorithms. Visualized in RVIZ2 

simulator, the results showcased a group of 6 robots, divided equally into 

leaders and followers, forming a triangular arrangement as followers clustered 

around leader robots. 

• Formation control for unicycle TurtleBot robots was realized through 

distributed control law implementation. Gazebo 9 simulator displayed various 

geometrical formations achieved by a minimal number of robots for each 

formation. Formations included triangle, square, pentagon, side-by-side 

triangles, and hexagon. 

• The implementation of a classical MPC algorithm for a linear system leveraged 

distributed optimization algorithms on a single integrator system. The 

outcomes were simulated and visualized via RVIZ2 integration. 

• A dynamic task assignment scenario was demonstrated. Multiple TurtleBot 

robots aimed to execute tasks defined by positions in the (x, y) plane. The task 

execution was showcased through a cloud node and task table visualized in 

xterm alongside the Gazebo simulation. 

 

The combined results of experiments and simulations portrayed a heterogeneous fleet 

of robots functioning seamlessly in a decentralized manner. These robots were guided 

by distributed optimization and control algorithms, effectively tackling complex 

scenarios through the proposed ROS2 framework. This architecture empowers 

developers and programmers to seamlessly incorporate and execute intricate 

optimization and control algorithms on a heterogeneous robot fleet without 

necessitating a central unit. Importantly, this streamlined implementation process 

allows for a focus on innovative optimization and problem-solving techniques. 
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