

THE CONTROL AND OPTIMIZATION OF
SWARM ROBOTS ON ROS2 PLATFORM

2023
MASTER THESIS

MECHATRONICS ENGINEERING

Mohammed SEDEG

Thesis Advisor
Assoc. Prof. Dr. Can FİDAN

THE CONTROL AND OPTIMIZATION OF SWARM ROBOTS ON

ROS2 PLATFORM

Mohammed SEDEG

Thesis Advisor

Assoc. Prof. Dr. Can FİDAN

T.C.

Karabuk University

Institute of Graduate Programs

Department of Mechatronics

Prepared as

Master Thesis

KARABUK

August 2023

ii

I certify that in my opinion the thesis submitted by Mohammed SEDEG titled “THE

CONTROL AND OPTIMIZATION OF SWARM ROBOTS ON ROS2 PLATFORM”

is fully adequate in scope and in quality as a thesis for the degree of Master of science.

APPROVAL

Assoc. Prof. Dr. Can FİDAN

Thesis Advisor, Department of Mechatronics Engineering

This thesis is accepted by the examining committee with a unanimous vote in the

Department of Mechatronics Engineering as a Master of Science thesis. 28 / 08 /2023

Examining Committee Members (Institutions) Signature

Chairman : Assoc. Prof. Dr. Can FIDAN (KBU)

Member : Assoc. Prof. Dr. Murat TUNA (KLU)

Member : Assist. Prof. Dr. A. Talha SÖZER (KBU)

The degree of Master of Science by the thesis submitted is approved by the

Administrative Board of the Institute of Graduate Programs, Karabuk University.

Assoc. Prof. Dr. Zeynep OZCAN

Director of the Institute of Graduate Programs

iii

“I declare that all the information within this thesis has been gathered and presented

in accordance with academic regulations and ethical principles and I have according

to the requirements of these regulations and principles cited all those which do not

originate in this work as well.”

Mohammed SEDEG

iv

ABSTRACT

M. Sc. Thesis

THE CONTROL AND OPTIMIATION OF SWARM ROBOTS ON ROS2

PLATFORM

Mohammed SEDEG

Karabük University

Institute of Graduate Programs

The Department of Mechatronic Engineering

Thesis Advisors:

Assoc. Prof. Dr. Can FIDAN

August 2023, 80 pages

With the increase in application demands in the field of robotics, 5th level automation

is aimed in many areas of our daily life, while the development of fault-tolerant multi-

agent networks that can perform complex tasks without the need for a central unit is

seen as a great need.

In this study, a ROS2 framework for multi-agent systems focusing on cooperation and

coordination for executing distributed optimization and control algorithms is

presented. The framework works within a peer-to-peer, Decentralized structure, with

a special emphasis on heterogeneous networks that lack a central unit. The

functionality of the system allows the implementation of highly complex optimization-

oriented control schemes, including distributed dynamic task assignment and

distributed Model Predictive Control (MPC).

v

Moreover, the proposed framework supports a simpler yet equally functional

implementation of control feedback laws. This feature allows agents to exchange

information without optimization requirements, fostering seamless communication

among agents. This architectural design empowers developers and programmers to

seamlessly incorporate and execute intricate optimization and control algorithms on a

heterogeneous fleet of robots, all without the necessity of a central unit.

Importantly, this streamlined implementation process encourages a focus on

innovative optimization and problem-solving techniques.

Keywords : ROS2 framework, multi-agent system, cooperative coordination,

distributed optimization, peer-to-peer structure, heterogeneous

networks, dynamic task assignment, Model Predictive Control

(MPC).

Science Code : 92902

vi

ÖZET

Yüksek Lisans Tezi

ROS2 PLATFORM ÜZERINDE SÜRÜ ROBOTLARININ KONTROLÜ VE

OPTIMIZASYONU

Mohammed SEDEG

Karabük Üniversitesi

Lisansüstü Eğitim Enstitüsü

Mekatronik Anabilim Dalı

Tez Danışmanı:

Doç. Dr. Can FİDAN

Ağustos 2023, 80 sayfa

Robotik alanındaki uygulama taleplerinin artmasıyla birlikte günlük hayatımızın

birçok alanında 5. seviye otomasyon hedeflenirken, merkezi bir birime ihtiyaç

duymadan karmaşık görevleri yerine getirebilen hataya dayanıklı çok aracılı ağların

geliştirilmesi büyük bir ihtiyaç olarak görülmektedir.

Bu çalışmada, dağıtılmış optimizasyon ve kontrol algoritmalarını yürütmek için iş

birliği ve koordinasyona odaklanan çok aracılı sistemler için bir ROS2 çerçevesi

sunulmaktadır. Çerçeve, merkezi bir birimden yoksun heterojen ağlara özel bir vurgu

yaparak, eşler arası, merkezi olmayan bir yapı içinde çalışmaktadır. Sistemin

işlevselliği; dağıtılmış dinamik görev ataması ve dağıtılmış Model Tahmini Kontrolü

(MPC) dahil olmak üzere, oldukça karmaşık optimizasyon odaklı kontrol şemalarının

uygulanmasına olanak sağlar.

vii

Üstelik önerilen çerçeve, kontrol geri bildirim yasalarının daha basit ama aynı

derecede işlevsel bir uygulamasını desteklemektedir. Bu özellik, aracıların

optimizasyon gereksinimleri olmadan bilgi alışverişinde bulunmasına olanak

tanıyarak aracılar arasında kesintisiz iletişimi teşvik eder. Bu mimari tasarım,

geliştiricilere ve programcılara, karmaşık optimizasyon ve kontrol algoritmalarını,

merkezi bir üniteye ihtiyaç duymadan, heterojen bir robot filosu üzerinde sorunsuz bir

şekilde birleştirme ve yürütme yetkisi verir.

Daha da önemlisi, bu kolaylaştırılmış uygulama süreci, yenilikçi optimizasyon ve

problem çözme tekniklerine odaklanmayı teşvik eder.

Anahtar Kelimeler : ROS2 çerçevesi, çoklu ajan sistemi, iş birliği koordinasyonu,

dağıtılmış optimizasyon, eşten eşe yapısı, heterojen ağlar,

dinamik görev atama, Model Öngörülü Kontrol (MPC).

Bilim Kodu : 92902

viii

ACKNOWLEDGMENT

I would like to extend my sincere appreciation to my advisor Assoc. Prof. Dr. Can

Bülent FIDAN, for his invaluable guidance and support throughout the preparation of

this thesis. His unwavering interest and assistance have been instrumental in making

this thesis possible.

Furthermore, I would like to express my heartfelt gratitude to my parents and

especially my mother, whose unwavering belief in me and continuous support have

been a constant source of motivation. I am also grateful to my brothers, who have

always been my pillars of strength in life. I am immensely thankful to my friends, who

keep me grounded, remind me of the important things in life, and provide unwavering

support in all my endeavors. Lastly, I would like to extend my thanks to everyone who

has stood by me during this journey.

ix

CONTENTS

Page

APPROVAL ... ii

ABSTRACT .. iv

ÖZET... vi

ACKNOWLEDGMENT ... viii

CONTENTS .. ix

LIST OF FIGURES.. xii

LIST OF TABLES .. xiii

SYMBOLS AND ABBREVITIONS INDEX .. xiv

PART 1... 1

INTRODUCTION.. 1

1.1. BACKGROUND INTRODUCTION... 1

1.2. MULTI- ROBOTICS SYSTEM .. 2

1.2.1. Coordination Movement ... 3

1.2.2. Communication .. 5

1.2.3. Swarm Intelligent (SI) .. 7

PART 2... 8

LITERATURE REVIEW... 8

2.1. EARLY LITERATURE ... 9

2.2. MULTI-ROBOT COMMUNICATION ... 10

2.3. MULTI-ROBOT COORDINATION: .. 12

2.4. FORMATION .. 14

PART 3... 19

THEORETICAL BACKGROUND ... 19

3.1. SWARM INTELLIGENT ALGORITHMS ... 19

3.1.1. Genetic Algorithms (GA) ... 21

3.1.2. Particle Swarm Optimization (PSO) ... 21

x

Page

3.1.3. Ant Colony Optimization (ACO) ... 24

3.1.4. Artificial Bee Colony (ABC) .. 25

3.1.5. Glowworm Swarm Optimization (GSO) .. 27

3.1.6. Other Evolutionary Algorithms .. 29

3.2. SOFTWARE PLATFORM .. 30

3.2.1. Robotic Operation System (ROS) .. 30

3.2.2. Gazebo .. 33

3.2.3. RVIZ ... 33

PART 4... 35

METHDOLOGY.. 35

4.1. SYSTEM OVERVIEW .. 35

4.2. ARCHITECTURE DESCRIPTION... 36

4.2.1. TGL .. 37

4.2.2. Robot Planning and Robot Control .. 37

4.3. EXPLORING TGL... 38

4.3.1. Graph-based Communication ... 40

4.3.2. Distributed Optimization .. 41

4.3.3. Distributed Control ... 42

4.4. THE IMPLEMENTATION OF DISTRIBUTED CONTROL AND

OPTIMIZATIONS ... 44

4.4.1. Containment in Leader-Follower Networks for Single-Integrator

Systems ... 44

4.4.2. Distributed Formation Control ... 46

4.4.3. Distributed Model Predictive Control (MPC) .. 48

4.4.4. Distributed Dynamic Task Assignment .. 54

PART 5... 57

SIMULATION AND RESULTS ... 57

5.1. CONTAINMENT ... 58

5.2. FORMATION CONTROL .. 59

5.2.1. Triangle Formation ... 60

5.2.2. Square Formation ... 61

5.2.3. Side-by-side Triangle ... 62

xi

Page

5.2.4. Pentagon Formation .. 63

5.2.5. Hexagon Formation .. 64

5.3. MPC.. 65

5.4. TASK ASSIGNMENT ... 66

PART 6... 69

CONCLUSION .. 69

REFERENCES ... 71

RESUME.. 80

xii

LIST OF FIGURES

Page

Figure 1.1. Evolution of the robotics research. .. 2

Figure 1.2. Flow diagram of communication in MRS. .. 6

Figure 2.1. Swarm behavior in nature. ... 8

Figure 3.1. Swarm intelligence framework. ... 20

Figure 3.2. the three main behavior of PSO. .. 22

Figure 3.3. Ant colony optimization. ... 24

Figure 3.4. ROS as a framework for all applications. .. 31

Figure 3.5. The flow of the massages between nodes. ... 32

Figure 4.1. System overall flow-chart. ... 37

Figure 4.2. Framework architecture. .. 38

Figure 4.3. TGL Architecture... 39

Figure 4.4. Task assignment chart flow. .. 56

Figure 5.1. RVIZ containment simulation. .. 58

Figure 5.2. Tringle formation with 3 robots. .. 60

Figure 5.3. Square formation with 4 robots. .. 61

Figure 5.4. Side-by-side tringles with 5 robots. ... 62

Figure 5.5. Pentagon formation with 5 robots.. 63

Figure 5.6. Hexagon formation with 6 robots. ... 64

Figure 5.7. Model Predictive Control (MPC) algorithm. ... 65

Figure 5.8. Turtlebot burger launch in the environment. ... 67

Figure 5.9. Xterm terminal showing the task table. ... 67

Figure 5.10. Xterm terminal launch in the simulation environment. 68

Figure 5.11. Several xterm launched for every agent. ... 68

xiii

LIST OF TABLES

Page

Table 1.1. The description of common swarm robotics tasks 4

xiv

SYMBOLS AND ABBREVITIONS INDEX

ABBREVITIONS

AI : Artificial Intelligent

MRS : Multi-robot System

PSO : Particle Swarm Optimization

ACO : Ant Colony Optimization

BCO : Bee Colony Optimization

GA : Genetic Algorithm

ML : Machine Learning

DSDV : Destination sequenced distance vector.

TGL : Team Guidance Layer

MPC : Model Predictive Control

GSO : Glowworm Swarm Optimization

FA : Firefly Algorithm

SDF : Simulation Description Format

ROS : Robotic Operating System

1

PART 1

 INTRODUCTION

1.1. BACKGROUND INTRODUCTION

There is a rapid race we facing as a human race which is the race of meeting our

growing needs and demands with the aid of technology. Therefore, a similar rapid race

in technology is taking place in the industrial fields mostly to reduce the factors of

time and cost. As a result, in our days the humans have been replaced by semi-

autonomous system but in the near future the same semi-autonomous systems will

leave for fully autonomous systems as the industrial fields have been moving

aggressively toward the level 5 automation (there are five level of automation level

zero is fully Manuel to level 5 which mean the human factor in the operation is totally

zero)[1].This leads us to robotics, generally we can define the robot as any mechanical

system which perform certain tasks either by direct guide from human interference or

indirect by pre-defined program or even auto-generated guides by AI [2].Robotics

researches could be classified in to three main categories and under them even more

categories as shown in figure 1.1:

• Robot manipulators: or robot arm is a serial of combined actuators that perform

a certain task like carrying an object with it end effector. This type is used

heavily in production line and I other industrial applications.

• Mobile robots: this term describe a certain type of robot that specialized in

moving from place to place while carrying tasks and consisting of a platform

locomotive element. Within this category there are other branches differ on the

medium of the travel (aerial, aquatic or terrestrial)

• Biologically inspired robots: a more complex in the designed because the

similarity with the complex biological beings [3].

2

Figure 1.1. Evolution of the robotics research.

1.2. MULTI- ROBOTICS SYSTEM

We can define multi-robotic system (MRS) as collection of two or more robots

working in coordination to achieve certain goals. The fundamental theory behind

(MRS) state that dividing a main complex problem in to multiple sub-problem and

give it to an individual robot among the group may be a very optimal solution, rather

than trust the whole process to one main robot even if it’s very capable [4].

Multi-robotic system holds many advantages over single robotic systems, the most

obvious advantage is the parallelism of the system in the sense that the system can

work parallelly to enhance the performance and work in tasks which is not possible

for single robot. Robustness mean that the system has no single fault point like the

single robot system, so if a single agent faces a fault the rest of the can carry on the

task with no stop. Scalability over the centralized systems that mean covering a bigger

area. The (MRS) could be both homogeneous or heterogeneous this mean that the robot

team can both the similarity and dissimilarity when it come to the physical hardware.

Other advantages can be summarized as: flexibility, economic benefits and low cost

for assembly and maintenance, stability and efficiency in both energy and task

handling [5].

3

The classification of (MRS) can be judged by many criteria like efficiency,

effectiveness, the task’s nature, robustness, and flexibility. In addition, other

classification was found [6] on other researches based on:

• The size of the swarm.

• The communication probabilities such as:(bandwidth, structure and range).

• Reconfigurability.

• The processing capability of every single agent.

There is no clear difference between the two terms multi-robotics and swarm robotics,

in fact the two term is used interchangeably through the previous researches, but others

distinguished them not on the hardware aspect but on the problems and their solutions

[7].

The designing of swarm robotic should be accomplished under a number of abstraction

layers according to [8]:

• The first layer: the micro-layer of the system as every single induvial of the

swarm has its own automation identity.

• The second layer: the macro layer as the whole control identity of the system

represented by a set of differential equation.

• The third layer: the communication layer and it’s all probabilities, rules and

approaches.

• The fourth layer: the sensor and actuator layer as how the agents will

communicate and interact with the surrounding environment.

• The fifth layer: the swarm intelligent algorithm layer and which method will

be used for example particle swarm optimization (PSO).

1.2.1. Coordination Movement

Like our human society the (MRS) has a collective behavior that could described as

cooperative and comparative. Cooperative behavior refers to a scenario where multiple

robots nearby need to interact with each other to achieve a certain a task, this task

4

divided by the robots to serval sub-tasks handled collectively by the team while

increasing the utility of the system. On the other hand, comparative behavior is the

opposite behavior which includes a conflicting function like a chess match between

two robots [9].

Coordination movement is the core of (MRS) technology. Its directly lead to the

success or the failure of the system. Coordination movement can be separated in to

two categories: static and dynamic. The static coordination (also known as offline

coordination) is based on previously inherent commands that fed to the robot for

example traffic rules [10]. The dynamic coordination (also known as online

coordination) on the hand is based on real time information fed to the robot via

communication, therefore we can classify dynamic coordination into implicit and

explicit coordination based on the communication type (implicit and explicit

communication) [11].The static coordination is very suited for complex tasks but

unreliable in real time controlling, in the same time dynamic coordination is perfect

for real time control but unreliable in complex tasks.so its best to combine the two

types and take the best characteristics of the both .

Flocking is one of the most known tasks among swarm robotics, other tasks include

aggregation, object clustering and sorting, chain formation, self-deployment and

collaborative, manipulation. The explanation for every task mentioned is shown in

table 1.1 :

Table 1.1. The description of common swarm robotics tasks [12].

Task Description

 Aggregation The collection of the swarm is to gather in one around one main goal.

Flocking Flocking is the collective movement of the swarm toward one

desired goal.

Clustering The swarm collect different objects to one unified position. Like ant

collecting food.

Chain

Formation

The main object of chain formation is to form the shortest path chain

between two locations.

Collaborative

manipulation

Collective effort from all the swarm to move unified object from one

point to the other.

Shape

formation

The swarm form a certain formation geometrical or non-geometrical

by exchanging position information between the swarm.

5

1.2.2. Communication

Communication is one of the most important characteristic and challenges in multi-

robot system (MRS). The robots in (MRS) are generally simple in structure and design,

so in order for the system to achieve a goal a communication protocol must be set in

order to multiply the capability and maximize the efficiency[13]. communication is

mode of interaction between the agents for mainly two purposes: the first is to

communicate the state of the environment through the sensors, the second is to

communicate and exchange information with the other agents. Communication

methods can be classified in many ways for example we can classify based on the

interaction mode into three types: interaction via sensing, interaction via environment

and via explicit communication [14]. Other way of classification is based on the

information exchange between the agents which include: direct and indirect

communication [15]. But mostly there are mainly two types of communication implicit

and explicit, the explanation as follow:

Explicit communication in the robotic term refer to the operation of sending the

information from one robot to the other through the different communication methods

like Bluetooth and wi-fi and Bluetooth. This type of communication is very beneficial

in applications that require fast reaction in smaller systems. On the other hand, implicit

communication is the operation of one robot observing other robot behavior to copy it

without the observed robot contribution in the communication operation [16]. Even so

there is no clear indication on what type of communication must be applied, some

researchers aiming toward implicit communication for its robustness[17] , and other

introduced the implementation of both implicit and explicit communication . The most

important question remains how to choose the communication characteristic like

structure, algorithm and medium to insure the desired performance from the system.

The answer to this question is lying under four main factors:

• Application: the application at hand is a very important factor in choosing the

right communication specially the communication range, for example a swarm

of drone for agriculture monitoring requires a wide range in contrast other

6

application like chain formation requires a short-range communication for

control [18].

• Robot: in other words, the physical hardware which include the receive and

transmit capability of the hardware, for example the raspberry pi Pico W

controller has a build in Wi-Fi, another example is the GPS which is very

important factor in Ariel swarm control [19].

• Algorithm: the used algorithm is the connection link between the application

and the robot. Various algorithm can be implemented in (MRS) like: Particle

swarm optimization (PSO), nature inspired algorithm like Ant colony and bee

colony approaches and machine learning (ML) algorithm [18].

• Environment: when it come to the environment surrounding the robot many

questions must be answered to determine the network design, some of these

questions are is the environment empty of full of obstacles, is there a wireless

interference, is the environment indoor or outdoor.

Figure 1.2. Flow diagram of communication in MRS.

7

1.2.3. Swarm Intelligent (SI)

Swarm intelligence, as a problem-solving ability, arises from interactions among

simple information-processing units. The term "swarm" implies diversity,

randomness, and complexity, while "intelligence" indicates the method's effectiveness

in solving problems. The information-processing units within a swarm can take various

forms, such as animate beings like insects, birds, or humans, or they can be

mechanical, computational, or mathematical entities like robots, standalone

workstations, or array elements. The interactions between these units can possess

diverse characteristics, but interaction among them is essential [20].

Swarm behavior is commonly applied in mobile robots and involves the cooperative

movement of creatures. Swarm robotic collective decision-making is the ability to

make joint decisions through local interactions without a centralized leader [21]. Task

distribution exemplifies this collaborative behavior.

Swarm robots efficiently perform tasks by moving towards specific targets and

creating coordinated patterns. This behavior is akin to bacterial colonies' distribution

of molecules [22], inspired by pattern formations and foraging behavior observed in

ants and social insects [23].

The aim of this thesis is to enable multiple ground mobile vehicles to cluster and form

predetermined geometric formations. To achieve this, the study applies what we called

Team Guidance Layer (TGL) which is a peer-to-peer non-centralized communication

layer that act as a platform for different control algorithms to be built and tested on

GAZEBO-ROS simulation. TGL allow us to execute complex distributed multi-robot

tasks, such as model predictive control (MPC) and tasks assignment and formation

control either in simulation or experimentally.

Chapter 2 presents a literature review on the subject, while Chapter 3 delves into

swarm intelligent (SI), including mathematical models and clustering algorithms. The

models created in Chapter 4 are evaluated through GAZEBO-ROS simulation. Finally,

Chapter 5 provide the conclusion.

8

PART 2

 LITERATURE REVIEW

The characteristics of nature beings living in form of swarm have capture the attention

of the scientific world for many years. The swarm behavior phenomenon can be

observed very clearly in nature in the form of bird and fish flocking and or migrating

cells etc. their collective actions display advanced behaviors and impressive feats that

can be observed showing the total benefit of swarm behavior to the whole system[24].

therefore, researcher aim to observe the swarm behavior to mimic it through modeling.

the herd intelligence of living species in nature. Behaviors of living creatures modeling

can yield productive results in many areas [25].

Figure 2.1. Swarm behavior in nature.

Multi-agent, also known as swarm research, contributes significantly to search and

rescue missions, military operations, economics, finance, and numerous applications

in engineering. It is also vital in solving optimization problems and other autonomous

9

tasks. The desired approach in solving engineering problems is to reach a global target

using simple local rules. The concept of the best solution in multi-agent optimization

was first introduced by F.Y. Edgeworth (1881), who worked on problems of buying

and selling decisions in the field of economics. V. Pareto's (1896) concept of Pareto

Optimality has gained significant acceptance in the field of economics. The first

studies of biologists examining swarm behaviors were conducted by Breder [26],

Warburton and Lazarus [27], Okubo and Grunbaum [28], and Parrish [29]. Inspired by

these studies, recent research [30] has made important contributions to swarm

formation.

2.1. EARLY LITERATURE

We can trace through the literature reviews that the researchers in the late 1980’s have

been more motivated to design and build a team of robots capable to execute different

tasks through cooperation, coordination, and communication. This determination

stems from the fact that (MRS) hold several advantages against the typical single robot

system, and all the early studies aims to harvest these advantages. To understand how

multiple entities can work together in harmony researchers has to turn to natural and

study different example like bees and ant colonies.

Among the earlier research is [31] which proposed a multi-robot system scheme goes

by the name M+, this scheme is a decentralized system for the purpose of task

distribution and task cooperation. An early and simpler version of the system is

implemented and test on a simulation. ALLIANCE is “a novel, fault tolerant

cooperative control architecture for small- to medium-sized heterogeneous mobile

robot teams applied to missions involving loosely coupled, largely independent tasks

“ [32], this architecture operate in two Leve: level one is the induvial robot level which

allow the agent to execute any task it choose without relying on centralized command

and level two is on the robot team level gives equal control command to every agent

which allow any robot to choose a sub-task without relying in centralized command.

This system is applied into both the physical and simulation medium, specifically on

box pushing task. The study [33] offers a comparison between three different

approaches in (MRS) coordination mentioning the pros and cons of every induvial

10

approach, in addiction the study also discussed the communication scheme between

the system in every approach and also the problem of fault tolerance and robustness.

The paper [34] provide an overview of a project named GOFER, which is the

implementation of serval dozen robot in indoor environment, the project dealt with

many research issues such as: the communication of man to robot and robot to robot,

the multi-task planning, fault tolerance and the implementation of non-conflicting

sensor system. In addition, the study [35] proposed the idea of (CEBOT) or Cellular

Robotic System, this system consist of a huge number of robots every single one called

cell, and the robotic manipulator described by geometric calculation. Also, all the

experimental results are showed in GEBOT Mark 2 which is a prototype of CEBOT.

Since this early research the field of (MRS) has been grown dramatically with a wider

range of topic to be addressed, despite this we cannot yet describe the field as mature,

because there are many specific topics to be addressed and researches compared to the

single robot system. In survey [36] stated the main topic that need to addressed are in

(MRS) through the literature:

• Communication.

• Movement coordination.

• Task allocation and control.

• Localization and mapping.

• Object transportation and manipulation.

2.2. MULTI-ROBOT COMMUNICATION

Since the beginning of (MRS) studies communication has been an important issue,

where is several studies focus specifically on the effect of communication on the

system, in addition studying the different types and every task suited for it. Generally,

all the research agreed on that even a small scale of communication can lead to huge

benefit to the system.

Several communication protocols have been explored through the literature, for

example (PRNET) [37] which stand for Packet Radio Networking is highly reliable

communication protocol aim to exchange information between two separated

11

computers geographically via radio channels. The (DSDV) or ‘Destination sequenced

distance vector routing’ is a table-driven algorithm developed in [38] utilized the

mobile nodes as routers and every single router assigned to sequence number to

prevent loops by making distinct different between new and old routers. In addition,

the communication protocol known as (WRP) or Wireless Routing Protocol [39] is

designed for the purpose of reducing the number of loops by having a massage

transmitting list, every node uses this updating massage for exchanging information

between them for fast coverage. Taking the next step further the study [40] propose

communication protocol (GRS) or Global State Routing designed for multi-hop

mobile wireless network to avoid the overflow of the updated massages, this achieved

by making every node have a list of neighbor nodes including next step hop and

distance hop. So, to overcome the drawback of (GRS) which include the size of the

massage of the close and distance neighbor, the study [41] purpose (FSR) standing for

Fisheye State Routing which provide an accurate list of information only for the close

node neighbor to avoid the massage size problem associated with [40].

The interaction between the human operator and the swarm robotic via communication

protocols can be divided in to two main parts: first the remote interaction which can

be define as a communication method when the human operator operates outside the

swarm, on the other hand the second type of communication is proximal interaction,

this type assume that the human operator and the swarm share the same environment

[42]. Majority of the research focus on remote interaction despite the many technical

difficulty facing it, but at the same time it’s the ideal method for operating in dangerous

area for humans, which is the main objective of swarm robotics in the first place. One

example of centralize control can be found in study [43], in this study the swarm

consist of 112 robots with the gate-way robot its main objective is to receive

programming from the operator and podcast it to the swarm, on the contrary the

centralized operator interface with the gate-way robot to receive information about the

state of the swarm. One major problem in the communication domain is the bandwidth

limitation which explored in [44], the study examined three bandwidth conditions

(low, medium and high) in coordination tasks and the result as follow: the low

bandwidth condition only a single robot communicate with the operator in single time

step. The medium condition centralizes the location information in a single robot then

12

send it to the operator. In the high condition all the robots in the swarm communicate

with the operator in a single time step. The proximal interaction allows the operation

to observe the swarm as they share the same environment. The operator communicates

in most studies by a gesture as face recognition [45] or speech [46] recognized by the

robot and then act upon according to the commands attached to the exact gesture. One

example of this type of communication interaction in the GAURDIAN project [47]

which was implemented in firefighting Sicario’s. Generally, the proximal interaction

is not focus on by the literature as it shows shortcoming when it comes to control a

large swarm.

2.3. MULTI-ROBOT COORDINATION:

Another unavoidable topic in the domain of (MRS) is the concept of motion

coordination. We can define coordination in multi-Robot system as any collective and

cooperative behavior from two or more robots to achieve certain task according to

specific algorithm. The research in this topic have been very extensive and well

documented, although the real challenge seems to be the physical demonstration of

these studies. Some of these well documented studies in coordination includes: path

planning [48] , formation changing [49], traffic control [50], target tracking [51]. All

these topics is well studied and understood in the simulation area rather than the

physical real-life applications.

the coordination movement of (MRS) is based on algorithms inspired by nature. These

algorithms are: Bee Colony Optimization (BCO) [52], Ant Colony Optimization [53],

Firefly Optimization [54], Bat Optimization [55], Cuckoo Optimization [56] and

Particle Swarm Optimization and the later been the most used and research

optimization methods since its proposal by James Kennedy and Russel Eberhart in

1995 [57], in this study the researchers presented an algorithm that mimic the social

behavior of swarms in nature (like ant and fish) by continually updating the velocity

and victor movement of the swarm to better the state of the swarm. Taking it a step

further the study [58] offer an improvement of the original (PSO). The study [59]

implemented the (PSO) on a number Elisa-3 robot on Webots simulator, the result

show that the robots trying to gather around the pre-assigned supervisor robot. A

13

comparison between Particle Swarm Optimization (PSO) and genetic algorithm (GA)

was made in study [60] , the study was performed on experiment robot behavior based

on neural learning animat and the result show that (PSO) outperform the simple (GA)

on simple task with neural network learning, also the result compares to a previous

study [58] which did the same thing by training with (PSO)and (GA) while adding

noise resistance modification and similar to [59] (PSO) shows a superior performance

compare to (GA).

On the practical side the study [61] propose a mini-robot well suited for multi-Robotic

application, the robot equipped with a stereo camera for environment monitoring and

image processing applications, for data exchange between the robot, in addition the

study uses three serial buses (SPI, I2C and UART). The study [62], there are two level

of control a lower and higher level, as the lower level the control is executed by PID

and CNN for more complex situation. All this ran on a simulation successfully. In

addition, the study [60] propose a more flexible formation than a traditional one by

[63]. For industrial application the study [61] propose [64]. Results show that these

methods can improve the operating efficiency of (MRS) in industrial applications. For

switching formation, the study [65] uses GOACM. A leader robot is responsible for

path planning and guiding the follower, while the follower switch in obstacle

avoidance mode. The proposed system executes successfully in both simulation and

physical. The common idea is to control one team of robot but in 2005 the study [66]

proposed (VOMAS) or Virtual Operating Multi-Agent System to control several robot

teams. The structure of the proposed system in divided into two main parts, the first

one is the user agent handle the high-level control, the second is the robot agent

handling the low-level control. The main benefit of this system is that possibility of

adding robots to the system.

Flocking is a known trait of (MRS) which enable the robot team to cohesively put

maintain a safe space to avoid collisions. In [67] the flocking method handle all the

objects as obstacles whether it’s really an obstacle or another robot in the robot team,

the researcher argue that this method cut the amount of information exchange to the

bare minimum as the information of position and velocity is not required. In the

opposite side the study [68] required a connectivity between the robots since the study

14

propose a leader-follower scheme and the leader act as the center of the flocking. In

addition, the study combines the flocking control with reinforcement learning to make

the robot team to flock while avoiding obstacle and maintain connectivity. In summary

the flocking seems to rely on decentralized control, but the challenge seems in the

rising complexity of the foraging task since the team need to coordinate and avoid

obstacles while maintain the connectivity between all the entities in the (MRS).

In the cooperative manipulation field, we can’t fail to mention the box-pushing

problem which became very synonymous with (MRS) early researchers. One of these

researches is [69], which proposed the moving of objects from place to place by a

group of mobile robots. The robot team consist of two group: steerer robots

programmed with path tracking and push robots to exert force into the object. In

addition, the study [70] propose a formation control method to transport an object

where a group of robots surround the object to move it cooperatively. Contrary to the

studies and [69] [70] the AVERT project proposed in study [71] require a strong and

stable connectivity to exchange path planning with the command base. AVERT is used

to move and extract vehicles from one location to the other by using a lifting robot unit

equipped with trajectory planning and object detection.

A very promising and relatively new area is cloud robotics, which can be defined as a

mixture of robotics and cloud computing. The advantages of cloud computing can be

incorporated in robotics to help agents to complete tasks in their environment by

designing a cloud-base system to enhance the effectiveness of the system. One of the

very first research in this area is RoboEarth [71] and DaVinci [72], which both aim to

offload the huge load of information on the board of the robots to a cloud-computing

structure for maximum the effectiveness of (MRS).

2.4. FORMATION

Examining the mathematical model of natural phenomena has drawn the interest of the

scientific community. Clustering behavior or the gathering of life forms in

communities is abundant in nature. This clustering behavior can be observed in animal

flocks, such as goose flocks, bird flocks, fish schools, mammal herds, and so on. Goose

15

flocks usually fly in a reversed "V" formation. Flying in a formation like a reversed

"V" provides several advantages. Some of these advantages include 24% more flying

power for each goose compared to flying alone and 71% greater flight range [73]. The

control of the formation and the alignment of the generated formation points with

mobile robots are necessary. The assignment process aims to reach the formation in

the minimum time and without collisions. The Hungarian algorithm [74] is used to

solve discrete (combinatorial) problems. The formation control process can be

classified according to interaction topology as position, displacement, and distance

control.

Turpin et al. (2004) proposed a decentralized method, called D-CAPT, as a solution to

the Concurrent Assignment and Trajectory Planning (CAPT) problem for swarm

robots. The C-CAPT algorithm is the most suitable solution to the CAPT problem in

a collision-free environment. In their approach, they developed the C-CAPT

algorithm, which is a centralized solution for the assignment and route planning

problem, reducing the cost function based on the square of velocity during the

trajectory. They successfully applied this algorithm to eight quadrotor micro aerial

vehicles and reported that the trajectories were globally optimal and safe [75].

Gazi et al. (2007) developed strategies using the sliding mode control method and

artificial potential functions for clustering and formation control problems in swarms.

They detailed their work by applying the same approach to tasks such as food

searching, formation control, and tracking moving targets through simulation studies,

which were successfully accomplished [76].

Yao et al. (2006) presented a decentralized stable control method for swarm agents to

achieve formation control and follow a moving target. They utilized artificial

potentials for target tracking and formation control processes. Through simulation

tests, they demonstrated that their proposed method was more stable than the leader-

follower model [77].

Tanner et al. (2004) examined the stability properties of mobile agent formations based

on leader following. They created nonlinear gain estimates of how inter-agent distance

16

errors affected leader behavior. They proposed a method to improve the Leader

Formation Stability (LFS) gains [78].

Miswanto et al. (2015) achieved formation control for swarms by having agents follow

the path of a leader. They used the Pontryagin Maximum Principle method for leader

control and a geometric approach for formation control, showing that each agent's

orientation and position could be controlled relative to the leader [79].

Desai et al. (2001) developed control strategies using graph formation control for non-

holonomic mobile robots in environments with obstacles. Their approach aimed to

maintain the desired formation and enable formation transitions when needed [80].

Xie et al. (2000) studied the natural algebraic structure of the chained form system

along with ideas from the sliding mode theory while designing control laws. They

reported that the sliding mode approach needed to be considered for the stabilization

and tracking problem of the system called "chained system" from non-holonomic

systems [81].

Mancini et al. (2007) proposed an approach for solving the problem of following a

leader in a swarm of equal-numbered robots. They used a discrete-time sliding mode

approach for controlling non-holonomic robots performing the task of following a

leader [82].

Pranoto et al. (2012) performed simulation studies of the leader-following algorithm

for formation control. They tackled the best tracking control problem for a swarm with

a specific geometric formation using the Dubin's car model. They created a model of

three agents and a swarm leader, showing that the agents moved to follow the leader's

path, and the resulting error during tracking was very low. They demonstrated that the

position and orientation values of each swarm member (agent) were controlled relative

to the swarm leader [73].

Mısır et al. (2020) proposed a clustering method for swarm robots, which involved

homogeneous robots clustering with limited distance sensor and angle data without

17

central control. They noted that the collision avoidance controller was separate from

the clustering controller. Each robot made individual decisions during the clustering

process, following the nearest perceived robot's movements, and directed itself based

on the motion of the other perceived robots. They reported the successful application

of the clustering behavior and that performance decreased as the number of robots

increased [83].

Sial et al. (2021) developed a new search and mission execution model for the control

of distributed formations of UAVs (Unmanned Aerial Vehicles). In the first stage of

their study, they aimed to find solutions to swarming, collision avoidance, and tracking

problems for distributed UAV formations using multiple artificial potential fields and

agent graph theory. The proposed algorithm's first stage involves target search and

mission execution operations, while in the final stage, swarming is applied during the

mission process. They reported the successful testing of swarm swarming operations

and mission execution algorithms in a simulation environment[84] .

Mechali et al. (2021) proposed a new control method for UAVs that creates a leader-

follower interaction and handles non-linear behaviors with continuous non-vanishing

disturbances. They designed a control law for a distributed formation. The formation's

formation points were determined, and a reference formation trajectory was created

and followed using a synthesized fixed-time position control method. They conducted

simulation studies in the ROS/GAZEBO environment to analyze the control

performance, and they reported that their approach showed higher performance

compared to other control methods [85].

In their study, Gauci et al. (2014) proposed a controller as a solution to a self-

organizing aggregation problem that does not require complex computations. They

used a "if-then-else" structure as the controller, enabling the swarm to self-organize

during aggregation. The research focused on collective gathering behavior. They

employed 2-bit sensors for their swarm robots to detect their neighbors. Initially, they

set the detection range of these sensors to be unlimited. However, through

experiments, they varied the detection range to examine its impact on the aggregation

behavior and controller performance [86].

18

Mısır et al. (2020) proposed a fuzzy logic-based self-organizing aggregation method

in their study. Unlike traditional clustering methods, they evaluated limited sensor data

using fuzzy logic as the controller. They conducted regular experiments in a simulation

environment with swarm robots having different detection ranges, different numbers

of robots, and various field sizes. They reported that the swarm robots exhibited

clustering behavior despite changes in the detection range and the number of robots

during the regular experiment phase [87].

Parhizkar et al. (2020) took inspiration from the clustering behavior of the social

amoeba Discotyostelium Discodeum and applied this biological example to swarm

robots. They examined the signal propagation model of the biological aggregation

behavior in a simulation environment. In their study, they demonstrated the biological

aggregation behavior in physical swarm robots called "kilobots" [88].

19

PART 3

THEORETICAL BACKGROUND

3.1. SWARM INTELLIGENT ALGORITHMS

Since the dawn of man, the idea of absorbing nature and even borrowing from it is a

well-established practice. Humans always looking to nature for solving complex

problems they face, and nature always directly or indirectly provides the perfect

solutions, since nature faced through millions of years variety of challenges, it’s only

natural for human to come with nature-inspired algorithms for real-life applications

and solutions. One of these algorithms is the swarm intelligent (SI) which created by

absorbing the different colonies and collections of living beings in nature like: bees,

ant and bats [89].

The concept of swarm intelligent (SI) has gathered a lot of attention in the researching

filed. We can define SI as a collective behavior based on collective intelligent in self-

organized and decentralized system. Another definition was provided by Bon beau

[80]: “The emergent collective intelligence of groups of simple agents”. Two main

concepts are the properties of SI according to [90]: self-organization and the divining

of tasks. Self-organization is defined as the ability of the system to organize his its

agents without an external force. This idea relies on four main fundamentals: positive

feedback, negative feedback, fluctuations, and multiple interactions. In addition, the

second concept is the task division which is defined as the parallel execution of simpler

sub-tasks by agents which allow the system to execute a complex task as the bigger

objective.

The Nature-Inspired Algorithms (NIA) showed a great result; therefore, a wide variety

of algorithms has been discussed in the literature (up to 140 algorithms), however such

20

 a wide range of algorithms could lead to confusion around the researcher regarding

which algorithm work and which doesn’t based on mathematically approach. Every

(NIA) mimic a unique natural process, some of these algorithms are well-known and

established like Genetic Algorithms, Particle Swarm Optimization (PSO) and Ant

Colony Optimization

Figure 3.1. Swarm intelligence framework [91].

In the addition other algorithms are not at the same level as the previous mentioned

algorithms for reasons such as: under-development or efficiency etc. In this chapter

we will explore mainly the most known algorithms and will discuss the lesser-known

algorithms briefly [92].

 In this section we will explore different types of (NIA)s or SI-based algorithms

highlighting their main properties and applications. These algorithms are:

• Genetic Algorithms (GA).

• Particle Swarm Optimization (PSO).

• Ant Colony Optimization (ACO).

• Artificial Bee Colony (ABC).

21

• Glowworm Swarm Optimization (GSO).

• Other Evolutionary Algorithms.

3.1.1. Genetic Algorithms (GA)

Introduced in 1975 by John Holland [93], the basic concept of (GA) is to mimic the

natural process called survival of the fittest which a mechanism of selecting the

strongest options among the population. In GA a set of population is alter for the best

by crossover and mutation by following these steps:

• The Generation of a random set of population, this population can be represented

by a set of strings called chromosomes.

• Ranking the population by performing a calculation on the chromosome based

on the fitness function, the value of the fitness function is what determine the

process of the selection between the population.

• The operation of reproduction is to select the best candidate of the population

according to the fitness function,

• Performing the crossover which basically to crossover the fittest candidate to the

next generation of the population.

• Performing the mutation which to alter some gene of the chromosome to fit the

next generation of the better population.

• Replacing the old population with the new and better population [94].

• Check if algorithm achieve the goal if not repeat the operation until achieving

the desired goal.

3.1.2. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is one of the most used and research optimization

methods since its proposal by James Kennedy and Russel Eberhart in 1995 [57]. PSO

is an SI-algorithm that mimic the social behavior of swarms in nature (like bird and

fish) by continually updating the velocity and victor movement of the swarm to better

the state of the swarm. PSO can be describes by three main behaviors according to as

shown in figure (9):

22

• Separation: is a non-collision behavior between the swarm.

• Alignment: is behavior of maintaining space and velocity between the swarm

• Cohesion: is the collective behavior of moving toward and united direction.

Figure 3.2. the three main behavior of PSO.

On the mathematical side PSO can be represented by the following formula [95]:

𝑣ⅈ𝑑
𝑡+1 = 𝑣ⅈ𝑑

𝑡 + 𝑐1 ⋅ rand(0,1) ⋅ (𝑃ⅈ𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡) + 𝑐2 ⋅ rand(0,1) ⋅ (𝑃𝑔𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡) (3.1)

𝑥ⅈ𝑑
𝑡+1 = 𝑥ⅈ𝑑

𝑡 + 𝑣ⅈ𝑑
𝑡+1 (3.2)

Where:

𝑣ⅈ𝑑
𝑡+1 : the velocity of the particle

𝑥ⅈ𝑑
𝑡+1 : the position of the particle

d: dimension

i: the particle index

t: the iteration number

C1 and C2: the speed regulating the space.

rand (0,1): random value between 1 and 0

Pi: the best position by particle i

Pg: the best position by neighbor particle

23

PSO flow chart of processing as follow: first the PSO utilize the population, the higher

number of the population the better the result, calculating for each particle the fitness

value, thirdly updating the velocity and positions for each particle, lastly continuing

the process until the desired goal achieved [95].

To improve the performance of PSO researchers use many approaches, for example

using a higher number of populations which lead to faster convergence. Other

approaches also introduced like balancing between exploration and exploitation and

using a sub-swarm to increase the efficiency of the PSO which is a common approach

these days [96]. Continuing in the PSO performance improvement, Shi and Eberhart

[97] introduce the inertia weigh[98]t (w) as a new variant in the PSO equation.

According to the (w) value the process of exploration and exploitation will occur, if

(w) is high this led to exploration behavior and if its low it will lead to exploitation

behavior. The new proposed PSO equation as follow:

𝑣ⅈ𝑑
𝑡+1 = 𝑤. 𝑣ⅈ𝑑

𝑡 + 𝑐1 ⋅ rand(0,1) ⋅ (𝑃ⅈ𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡) + 𝑐2 ⋅ rand(0,1) ⋅ (𝑃𝑔𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡) (3.3)

the introduction of (w) in the PSO equation was an improvement in the speed of

convergence, later the study [98] suggest to increase the value of (w) higher than 1 to

encourage the exploration in the early stages and reduce the value less than 1 to find

the best exploitation toward the end. Later the study [99] propose the K factor to lower

the possibility of convergence and the particle leaving the searching area. The new

equation with the addition of k factor as follow:

𝑣ⅈ𝑑
𝑡+1 = 𝐾[𝑣ⅈ𝑑

𝑡 + 𝑐1 ⋅ rand(0,1) ⋅ (𝑃ⅈ𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡) + 𝑐2 ⋅ rand(0,1) ⋅ (𝑃𝑔𝑑
𝑡 − 𝑥ⅈ𝑑

𝑡)] (3.4)

in summary both factors (w) and (K) show an improvement in the performance of basic

PSO, and that according to study [91] which conduct a comparison between the two

factors and their contribution on the basic performance of PSO.

24

3.1.3. Ant Colony Optimization (ACO)

ACO is an algorithm aim to mimic the natural behavior of ants in activities such as

foraging. ACO propose as a PhD thesis by Marco Dorigo in 1992 [53]. ACO consist

mainly of four components: first ant as the algorithm imaginary agents responsible for

the exploration and exploitation. Second is the pheromones is a chemical component

used by the ants as trail mark in their search for the target, the intensity of the chemical

is a sign and indicator for the collective group and operate as global memory to the

colony. Third is the daemon actions is to gather global information for the trail and

decides whether a more pheromones is needed or not, this must be done as a formation

group and not as a single agent. The fourth and last element In ACO is decentralized

control which provide a false tolerance mechanism against the failure of ne agent.

Figure (10) explain the process of ACO in three steps: first, the ants move randomly

back and forth between the colony and the source of food. Second, the ants discovered

multiple paths to the target. Lastly, the shortest path is chosen which lead to the ants

replacing the pheromones to indicate the path for other ants and that leads to the ant

colony using the selected path.

Figure 3.3. Ant colony optimization.

Mathematically ACO for finding the best paths is represented by the following

equation:

25

𝑃(𝑖𝑗)
𝑘 (𝑡)=

𝜏𝑖𝑗(𝑡)
2[𝑛𝑖𝑗]

𝛽

𝛴𝑘𝜖𝐽𝑘 [([𝜏𝑖𝑗 (𝑡)]
𝛼
.[𝑛𝑖𝑗]

𝛽 (3.5)

where:

𝑃(𝑖𝑗)
𝑘 (𝑡) : the movement from node i to j node.

 𝜏𝑖𝑗(𝑡) : the array of nodes which agents allowed to travel to from node I visibility

between I and j.

𝑛𝑖𝑗 : amount of pheromone between i and j.

α and β: factors control the behavior of the colony, depending on their values.

The deposing of the pheromone is depended on the following formula:

𝛥𝜏𝑖𝑗
𝑘 (𝑡) = ∑ 𝑘(𝑡)

𝑄

𝐿
0

 (3.6)

where:

Q: constant

L: The length of the path

t: iteration number

K: ants

the amount of pheromone determines the behavior of the ants whether they will have

an exploration behavior or exploitation, too high pheromone amount will result in ants

getting lost and too low amount will lead to ants not finding the optimal path.

3.1.4. Artificial Bee Colony (ABC)

ABC was one of the most recent algorithms introduced in 2005 by Dervis Karaboga

[52]. ABC is very simple and easy to apply like PSO and DE, the algorithms inspired

by the natural behavior of the bee’s colony when it comes to find food sources and

share information of the sources between the bees. The algorithms depend on three

26

types of bees, every type has its own function in the algorithm. The three types are:

first, the employee which their job is to find the source of food and save the information

in their memories. The second type is the onlooker which to receive the information

from the employee and pass it to the scout bees to gather the food from the nectar.

The whole process of ABC can be summarized in the following steps [100]:

Step1. All the control parameters are set, the scout bees are initializing the food source,

which is represented by vector of the population xi, the vector xi has n variables and

been optimized by the higher value of the bound xi represented ui by and the lower

value of xi bound represented by li. the previous mentioned phase is represented by

the following formula.

𝑥𝑖 = 𝑙𝑖 + rand (0,1) ∗ (𝑢𝑖 − 𝑙𝑖) (3.7)

Step2. The searching phase by the employee bees which the value of the new food

source vi is increased for the purpose of having food around the near neighborhood of

the previous food source xi. the new source of food is defined by the following

formula:

𝑣𝑖 = 𝑥𝑖 + 𝜙𝑗(𝑥𝑖 − 𝑥𝑗) (3.8)

Where:

 xj: is a random selected food source

Øi: random number in [a, -a]

after the value of equation (7) and (8) is produced a greedy evaluation happened

between the two values. The behavior of exploration and exploitation happened

according to the value of xi- xJ. if the value if high then is exploration happening where

if the value is low the is exploitation happening. the fitness operation is conducted by

the following equation:

27

𝑓ⅈ𝑥(𝑥𝑖⃗⃗ ⃗) = {

1

1+𝑓𝑖(𝑥𝑖⃗⃗ ⃗)
 𝑖𝑓 𝑓𝑖(𝑥𝑖⃗⃗ ⃗) 𝑚𝑜𝑟𝑒 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0

1 + 𝑎𝑏𝑠 (𝑓𝑖(𝑥𝑖⃗⃗ ⃗)) 𝑖𝑓 𝑓𝑖(𝑥𝑖⃗⃗ ⃗)𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 0
 (3.9)

where:

fi(xi) is the objective function of the solution xi

Step3. The onlooker bee phase. Here the onlooker is waiting for the information from

the employee bees and fitness value calculation in equation (9) to calculate the

probability value based on the following equation:

𝑝𝑖 =
𝑓ⅈ𝑡𝑖(𝑥 𝑖)

𝛴ⅈ=1
𝑆𝑁 𝑓ⅈ𝑡𝑖(𝑥 𝑖)

 (3.10)

Step4. The scout bee phase which a certain food sources is terminated due to its

unimproved fitness value through the iteration, this called abandoned criteria.

Step5. All the information, positions and fitness value are saved and memorized.

Step6. The termination of the program in case the conditions are met, if not the process

continue from step2 to step6 until the condition are met.

3.1.5. Glowworm Swarm Optimization (GSO)

A relatively new proposed SI-algorithm by Krishnanad and Ghose in 2005 where

physical the agents in GSO are called glowworm[101] . this algorithm has three main

parameters changing over time [99]: position in the search space (xm(t)), luciferin

level (lm(t)) and a neighborhood range (rm(t)). Three phases are repeated according to

the three previously mentioned parameters until the condition and the program is

terminated [100].

The first parameter position in the search place calculated by the following formula:

28

𝑥𝑚(𝑡) = 𝑥𝑚(𝑡 − 1) + 𝑠(
𝑥𝑛(𝑥𝑛𝑙𝑡−1)−𝑥𝑚(𝑡−1)

𝑥𝑛(𝑥𝑛𝑙𝑡−1)−𝑥𝑚(𝑡−1)
) (3.11)

where s represents the step size. According to the difference value between xn and xm

the behavior is determined, if the value is high the exploration behavior occurs, in the

contrary the exploitation occurs.

After obtaining the xm(t) parameter the update luciferin[89]level lm(t) is calculated by

the following formula:

𝑙𝑚 = (1 − 𝑝) ⋅ Im(𝑡 − 1) + 𝛾𝐽(𝑥𝑚(𝑡)) (3.12)

Where:

 p: is the luciferin factor

γ: the luciferin constant

J: the objective function.

the glowworm m is considered a neighbor to glowworm n under the condition that the

distance between m and n is shorter than the neighborhood rm(t). but in case there are

multiple choice close to the glowworm m the probability is calculated via the following

equation:

𝑃𝑚(𝑡) =
Im(𝑡)−ln(𝑡)

𝛴𝑘∈𝑁𝑖(𝑡)
 𝑙𝑘(𝑡)−𝐼𝑛(𝑡)

 (3.13)

the glowworm with the highest probability is chosen.

The final step is to update the final parameter which is the range of the neighborhood

rm(t). this updates the range of the communication between the glowworm

community.

The following formula is used to calculate rm(t):

29

𝑟𝑚(𝑡 + 1) = mⅈn{𝑟𝑠,max [0, 𝑟𝑚(𝑡) + 𝛽(𝑛𝑑 − |𝑛𝑚(𝑡)|)]} (3.14)

where:

rs: the sensing range nd: number of neighborhoods. nm: number of neighborhoods.

3.1.6. Other Evolutionary Algorithms

While the previous sections focused on introducing and discussing well-known and

commonly used SI-based approaches, it is important to acknowledge the existence of

several other interesting evolutionary algorithms. These algorithms have unique

characteristics and applications that set them apart from the ones previously discussed.

In this section, we will provide a brief overview of some of these algorithms:

Like Genetic Algorithms (GA), GP follows a series of steps involving initial

population creation, fitness evaluation, selection, and reproduction. However, GP uses

the term "program" to represent the solution instead of "chromosome" used in GA.

The key distinction lies in the selection procedure. While GA selects predefined

percentages of the fittest population for reproduction, GP allows each program to

select one or a few programs from the population based on their fitness probabilities

[102].

EP shares some similarities with GA in terms of initialization, mutation, and evaluation

operations. However, the main difference lies in the absence of crossover operations

in EP. Instead, EP relies on stochastic selection, where solutions compete against a

predetermined number of other solutions, and the least-fit solutions are eliminated

[103].

ES is an optimization approach that shares methodology similarities with GA and

Differential Evolution (DE). However, ES introduces self-adaptive mutation rates,

which enhance its efficiency. There are three types of ES: (1+1)-ES, (1+λ)-ES, and

(μ/ρ +, λ)-ES. Each of these types involves specific rules for generating mutants and

selecting new parents for the next generation[104].

30

Inspired by the behavior of fireflies, the FA algorithm involves using flashing light to

attract each other. Fireflies' fitness determines the brightness of their flashes, which

decreases over distance. Fireflies move towards brighter ones, and if there are none,

they move randomly[105].

Introduced by Yang and Gandomi in 2012, the Bat Algorithm draws inspiration from

bats' foraging behavior. Similar to Particle Swarm Optimization (PSO), it consists of

velocity and position equations. The algorithm also incorporates echolocation

capabilities and a frequency equation to influence the velocity equation, determining

the search direction [55].

Inspired by the predatory behavior of grey wolves, the GWO algorithm organizes

agents (wolves) into a hierarchy of alpha, beta, delta, and omega categories. Each

hierarchy has distinct roles in finding solutions, resembling preys in this context [106].

It is worth noting that the above algorithms represent just a few examples of the vast

array of evolutionary algorithms available. There are many more techniques that have

not been discussed in this section.

3.2. SOFTWARE PLATFORM

3.2.1. Robotic Operation System (ROS)

Writing robotic software could be a very complex process especially in the modern

robotic application which demand a complex structure from the simple driving

software to the computer perception, logic, and reasoning. Therefore, a swarm of

experimentations and software has been introduced to meet the ever-growing

complexity of robotic applications.

Robotic Operation System (ROS) is not an operation system in the typical sense but

rather a framework for robotic programming which include a variety of tools and

liberties to simplify the complex robotic behavior for both programmers and users.

Dealing with real life robotic problems can be a very taunting task for induvial and

31

even institutes, therefore (ROS) provide the ground up solutions instead of from

scratch method of programming or problem solving [107].

Figure 3.4. ROS as a framework for all applications.

In summary the ROS framework provide the following:

• A structure commination field.

• Passing massages between the nodes and processes.

• The management of the packages.

• Low-level device control.

• Hardware abstraction.

• A variety of tools and libraries.

The communication protocol in ROS is a peer-to-peer communication combined with

the ROS communication infrastructure, therefore the process of data transportation

between the machines utilizes different mechanisms. The main concept of ROS is

presented in different mini concepts which are: nodes, massages, topics, and services

[112].

Nodes: the ROS node is basically a software with a computing power which increase

the ROS fault tolerance by dividing the bigger system into small, organized nodes

32

which are communicate with each other via peer-to-peer communications. different

nodes can utilize different technologies and software as long as they communicate via

ROS mechanisms. rosnode is the ROS command assigned to showing the information

about any nodes. Every node has a node type aligned with a class assigned to specific

function or task.

Massages: communicate the nodes with each other. The standard massage type

(integer, Boolean and float…etc.) are supported in ROS. Every massage is identified

in a simple massage type which show the type of the massage.

Topics: is just the name that identified the massage flow between the nodes, every

node in ROS either a publisher or subscribers. When a node needs a massage, it called

subscriber node and request information from the topic and subscribe to it and then

receive the massage from a publisher node. The publisher and subscriber nodes are not

aware of each other exitance but rather communicate via the topic. A node is either a

publisher or subscriber, although a single topic can be assigned to by different

subscriber and publisher. rostopic is the command in ROS to show all the information

about a certain topic like the massage periods, the number of the subscriber and

publishers and the size of the information traffic in Bytes. The previously stated flow

of information between nodes is shown in Figure 3.5.

Figure 3.5. the flow of the massages between nodes.

33

Services: in ROS services is a request/reply mechanism for the unidirectional

movement of the ROS massages between the nodes. ROS service is defined by two set

of massages one foe request and other for reply. Every node can offer a service under

the name of client. rossrv and rosservice are the ROS command line tool to display

information about services [108].

3.2.2. Gazebo

Gazebo is a 3D sensor-based simulator suitable for indoor or outdoor simulation and

compatible with the ROS nodes by utilizing plugin presentable as the same massages

interface in the ROS structure. The Gazebo simulator provides realistic sensor

feedback and physical interaction between the robots and their environment. The main

components of the Gazebos simulator explained simply as follow:

• World File: an SDF file (Simulation Description Format) Contains all the

elements in a simulation.

• Model File: also, SDF file used to describe a single model.

• Environment Variables: For storing environment, communication settings.

• Gazebo Server Client: The two main components of a simulation.

• Plugins: A simple mechanism to interface with the simulation world [109].

3.2.3. RVIZ

RVIZ which stand for ROS Visualization is a powerful 3D visualization tool in ROS

that allows users to view and interact with various types of sensor data and robot-

related information in a 3D environment. Here are some key points about Rviz and its

functionalities:

• Visualization of Sensor Data: Rviz allows to visualize sensor data, such as

camera images, laser scan data, and point clouds. For example, if you have a

robot model equipped with a Kinect sensor in Gazebo (a robotic simulator),

you can visualize the laser scan data generated by the Kinect sensor in Rviz.

34

• Mapping and Navigation: Laser scan data, when processed appropriately, can

be used to build a map of the environment. This map can be utilized for

autonomous navigation or other purposes.

• Frames: In Rviz, the concept of "frames" refers to coordinate frames used in

the robot's kinematic chain. Different components of the robot may have their

own coordinate frames, and RVIZ helps in visualizing data with respect to

these frames.

• Displays in RVIZ: RVIZ provides various display types, allowing users to view

data from different sensors. Some common display types include Grid Display,

Laser Scan Display, Point Cloud Display, Camera Display and Axes Display

• Adding Displays: Users can add displays to Rviz by clicking on the "Add"

button and selecting the type of data they want to visualize. For example, if

you want to visualize laser scan data, you can add a Laser Scan Display, and if

you want to see the camera feed, you can add a Camera Display.

Overall, RVIZ is a valuable tool for roboticists and developers working with ROS, as

it allows them to visually inspect and debug the robot's sensor data and other relevant

information in a 3D space [110].

35

PART 4

 METHDOLOGY

4.1. SYSTEM OVERVIEW

In response to the escalating demands within the realm of robotics applications at large,

and the intricate domain of multi-agent systems in particular, this thesis presents an

innovative proposition: a dynamic ROS2 multi-agent framework tailored explicitly for

fostering coordination and facilitating cooperative applications. Since its inaugural

introduction in 2007 by Willow Garage, Stanford Artificial Intelligence Laboratory,

and Open Robotics, the Robotic Operating System (ROS) has soared in popularity,

captivating the imagination of robotic researchers and developers alike. Its allure can

be attributed to a constellation of attributes: a meticulously crafted modular

architecture, seamless abstraction of hardware intricacies, a fabric of standardized

communication threads, a spirited and thriving community, immersive simulation

capabilities, pedagogical significance, programming dexterity, adeptness in distributed

computing environments, a suite of diagnostic aids, and an ethos of open-source

collaboration. This confluence of factors renders ROS an unrivaled choice, an

indispensable toolkit for the inception, trial, and coalescence of novel robotic systems.

Furthermore, as the sun sets on ROS and the dawn of ROS 2 emerges, the community

reaps even greater rewards. With amplified performance benchmarks, fortified

communication protocols, and a more streamlined development pipeline, ROS 2

epitomizes progress and ingenuity. Addressing the previous iteration's limitations,

ROS 2 unfurls as an even more tantalizing prospect for those intrepid researchers and

developers poised on the precipice of innovation, seeking a vehicle to architect the

next generation of advanced robotic systems.

36

While it is widely acknowledged fact that multi-robotic systems confer distinct

advantages over their single-robot counterparts, as elucidated in the preceding sections

of this thesis, it is imperative to acknowledge an intrinsic complexity hurdle that multi-

robot systems grapple with. This complexity stems from the dearth of comprehensive

data and computational resources requisite for tackling intricate control and

optimization conundrums. Notably, challenges such as formation control, task

allocation, and model predictive control (MPC) burgeon in complexity. The intricate

nature of these control paradigms is exacerbated by the absence of holistic knowledge,

localized computation, and effective communication channels. It is within this

contextual tapestry that the proposed peer-to-peer, non-centralized framework shines

forth—a beacon designed to emulate and meticulously experiment within a fleet of

robots, thus infusing much-needed insights into the intricate choreography of multi-

robot systems.

The proposed framework is fully written in Python and based on ROS2 platform.

Facilitates the creation of various multi-robot applications like the encoding of

distributed control algorithms, the establishing of agent-to-agent communication, the

devising and planning of control strategies, and visually conducting experiments on

robotic fleets by simulations using Gazebo while visualizing data through RVIZ.

4.2. ARCHITECTURE DESCRIPTION

To simplify the process, the framework is divided into three primary layers: The first

layer, known as TGL (High-Level Layer Multi-Agent Communication Framework),

manages peer-to-peer communication among agents and interfaces with the second

control layer. The second and third layer forms a low-level layer focused on individual

robot control. This layer comprises two key elements: Roboplanning and Robocontrol.

Seamless communication between these framework segments, depicted in Figure 4.1,

is essential for the overall functioning:

37

Figure 4.1. System overall flow-chart.

4.2.1. TGL

The Team Guidance Layer (TGL) stands as the central pillar within this software

platform. A comprehensive examination of this layer is slated for the upcoming

section; however, a brief preview is offered here. Primarily, the TGL revolves around

the "Guidance" class, designed to capture fundamental data from each agent. It's

important to note that this "Guidance" layer remains abstract, devoid of any reasoning

or control logic, necessitating further extensions for functionality. In our instance,

we've crafted two extension classes, each bearing distinct features and functions. The

two extension classes intertwined with the "Guidance" layer are as follows: the

"OptimizationGuidance" class, which encompasses optimization-oriented attributes,

laying the groundwork for optimization-driven distributed control strategies like task

allocation, optimal control, and model predictive control. On the other hand, the

"DistributedControlGuidance" class comes into play for more straightforward

applications like containment and formation control.

4.2.2. Robot Planning and Robot Control

Unlike the TGL layer, the trajectory and control layers operate in isolation. In other

words, agents within this layer do not communicate. Each robot maintains

independence in terms of planning and control, with communication responsibilities

High-level

Decision
TGL

RoboPlanning

RoboControl

Low-level

Control

Actions

38

resting upon the layer. The planning layer is overseen by the "Planner" class, primarily

functioning as a point-to-point planner within both 2D and 3D contexts. This "Planner"

class synergizes harmoniously with controllers, steering and guiding robots towards

designated points. Notably, this class suits both ground and aerial robots, ensuring

versatility. On the flip side, the "Controller" class caters specifically to unicycle ground

robots, laying the foundation for control strategies. Within the domain of mobile

ground robots, a pair of unicycle controllers offer alternatives for reaching designated

points or achieving specific velocities.To culminate this ecosystem, the platform

achieves seamless integration with the Gazebo and Rviz simulation environments.

Facilitated by the "RoboIntegration" class, this integration not only streamlines

visualizations of distributed control and optimization algorithms but also enhances the

overall experiential coherence. The overall ecosystem is graphically illustrated in

figure 4.2:

Figure 4.2. Framework architecture.

4.3. EXPLORING TGL

As highlighted earlier, the framework's foundation significantly hinges on the TGL,

which stands as a pivotal and comprehensive cornerstone housing the entirety of its

39

functionality. Therefore, this section endeavors to delve even deeper into this layer to

glean a more profound comprehension. The TGL, in essence, comprises three central

components: the first is graph-based communication, followed by the primary

applications embodied within the OptimizationGuidance and

DistributedControlGuidance classes. This exploration aims to offer a comprehensive

grasp of TGL's intricate workings.

Figure 4.3. TGL Architecture.

The foundation of this layer predominantly rests upon the "Guidance" class, previously

introduced as an abstract entity devoid of control logic and reasoning. The "Guidance"

class forms the bedrock for the guidance level in multi-robot scenarios. It establishes

the subsequent attributes:

• `agent_id`: Identification of the agent.

• `n_agents`: Total count of agents.

• `in_neighbors`: List of in-neighbors.

• `out_neighbors`: List of out-neighbors.

• `current_pose`: Present robot pose.

• `communicator`: Facilities for neighboring communication.

40

Extending from Guidance, the OptimizationGuidance surfaces as a subclass,

augmenting the framework with optimization-centric attributes. It introduces the

subsequent features: `optimizer` and `optimization_thread` classes.

4.3.1. Graph-based Communication

At the heart of distributed control and optimization lies Graph-Based Communication,

where robots exchange information within a network structured as a graph. Nodes

depict robots, while edges symbolize communication links, allowing decentralized

coordination and data sharing for enhanced autonomy and teamwork in intricate

settings.

The BestEffortCommunicator and TimeVaryingCommunicator classes are subclasses

of the CommInterface class. They implement distinct versions of the neighbors_send()

and neighbors_receive() methods.BestEffortCommunicator employs an asynchronous

communication approach. This means that neighbors_send() and neighbors_receive()

don't halt the calling thread; instead, they return immediately while messages are sent

and received asynchronously in the background.

Conversely, TimeVaryingCommunicator adopts a synchronous communication

mechanism. neighbors_send() and neighbors_receive() methods here pause the calling

thread until all messages have been sent and received. TimeVaryingCommunicator

also introduces neighbors_exchange(), synchronously exchanging information with

neighbors. It forwards the send_obj to in-neighbors, then awaits messages from all out-

neighbors before returning a dictionary of received messages keyed by the sender.

BestEffortCommunicator creates a publisher and subscription for each neighbor. The

publisher transmits messages, while the subscription receives them. neighbors_send()

serializes the send_obj and publishes it for each neighbor, while neighbors_receive()

repeatedly invokes spin_once() of the rclpy.node.Node object until a message is

received from each neighbor.

41

TimeVaryingCommunicator, akin to BestEffortCommunicator, differs in its QoS

profile, ensuring reliable message transmission. neighbors_exchange() follows the

pattern of sending send_obj to in-neighbors, then waiting for messages from out-

neighbors before returning the received messages in a dictionary. These classes offer

flexibility based on the context. They are beneficial for handling scenarios where

communication links dynamically change due to factors such as limited range or

energy consumption. Unlike standard ROS applications, explicit message type

declaration is not required for robot communication. The std_msgs/ByteMultiArray

message type, managed by the Communicator class and Python's dill package, allows

versatile message exchange including vectors, matrices, text, and images. Importantly,

changes can be made at runtime without predefined message types.

4.3.2. Distributed Optimization

This segment within the framework is devoted exclusively to the execution of

optimization tasks. The main entry point for this division is the OptimizationGuidance

class. It's widely acknowledged that achieving desired outcomes through optimization

requires multiple iterations. In this context, the OptimizationThread is introduced as

an iterative loop, separate from the main class. This design empowers users to

customize the optimization process according to specific tasks. Serving as a

foundational element for threads engaged in optimization tasks, the

OptimizationThread class encompasses attributes such as:

• `_halt_event`: An event that triggers the halt of optimization.

• `_begin_event`: An event that initiates the start of optimization.

• `_quit_event`: An event that signifies the termination of the thread.

• `_lock`: A lock to ensure concurrent access protection to `_is_optimizing`.

• `_is_optimizing`: A flag indicating the ongoing optimization status.

• `_gc_end`: A Guard Condition activated at the end of each optimization.

• `guidance`: A Guidance object.

• `optimizer`: An Optimizer object.

42

The run method of OptimizationThread constitutes a loop that awaits either the

`_begin_event` or the `_quit_event` to be set.

• If the `_begin_event` is triggered, the thread commences an optimization task.

• If the `_quit_event` is set, the thread discontinues.

The `do_optimize` method is abstract and must be implemented by subclasses. This is

where optimization algorithms need to be added, as demonstrated later with task

assignment and MPC implementation.

The framework facilitates modeling and problem-solving at two levels:

• Locally on the robot level.

• Globally on the network level.

On that note an integration between TGL and the DISTROP package [111] must be

implemented. The DISTROP is a Python package for distributed optimization over

peer-to-peer networks. The package allows users to define and solve optimization

problems through distributed optimization algorithms. It offers a range of pre-

implemented distributed optimization schemes and supports the semantic modeling of

optimization issues. The compatibility of the Communicator classes with DISROPT

streamlines the utilization of its distributed algorithms, requiring no additional

adjustments.

4.3.3. Distributed Control

In contrast to the previously mentioned OptimizationGuidance class, the

DistributedControlGuidance class is designed for simplicity and user-friendliness.

This class serves as a foundational framework for communication and control. It

commences by sharing the current position with neighboring robots, proceeds to

calculate a velocity profile based on exchanged data and chosen feedback strategies,

and ultimately publishes the control input to a designated topic. Despite its relative

simplicity compared to the optimization class, this class's structure is highly capable

43

of executing distributed control algorithms like formation control and containment.

These functionalities will be implemented within the Gazebo/Rviz simulation

environment.

The DistributedControlGuidance class inherits attributes from the Guidance class,

which underpins basic functionalities for guidance systems.Functionally, the

DistributedControlGuidance class implements a distributed control system. This

system involves a group of robots communicating to exchange their position data. The

robots then utilize this data to compute control inputs that maintain them in a desired

formation.

The "__init__" method of the DistributedControlGuidance class takes specific

arguments:

• "update_frequency": The rate at which the control law is evaluated.

• "pose_handler": The name of the ROS topic for publishing the robot's pose.

• "pose_topic": The ROS topic for subscribing to the robot's pose.

• "input_topic": The ROS topic for publishing the robot's control input.

The "control" method of this class is periodically invoked at the defined update

frequency. It checks if the robot's current position is available; if not, it returns.

Otherwise, it shares position information with neighboring robots, computes the

robot's control input, and conveys it to the planner/controller.The "send_input" method

broadcasts the control input to the specified ROS topic. The "evaluate_input" method

is a placeholder, requiring implementation by subclasses. This method's purpose is to

compute the control input for the robot.

In simple terms, the DistributedControlGuidance class establishes a distributed control

system that sustains a group of robots in a desired formation. This involves periodic

sharing of position information among the robots, which then use this information to

calculate a control input for maintaining the desired formation. The update frequency

dictates how often these processes occur.

44

4.4. THE IMPLEMENTATION OF DISTRIBUTED CONTROL AND

OPTIMIZATIONS

Following the comprehensive exploration of TGL along with the involved Python

classes detailed in the preceding sections, this segment will delve into the practical

implementation of a distributed robotics scenario. This scenario involves a mobile

ground robot platform named Turtlebot, simulated within the Gazebo environment and

visualized using Rviz. The forthcoming implementation will encompass four distinct

distributed scenarios, each having been predefined in academic papers and research:

• Containment in Leader-Follower Networks [112].

• Distributed formation control [113].

• Distributed Model Predictive Control (MPC) [114].

• Distributed dynamic task [115].

These scenarios are ranked by their level of complexity., with the initial

implementation being the simplest and the final one being the most intricate.

4.4.1. Containment in Leader-Follower Networks for Single-Integrator Systems

Math problem: we examine a group of N robots navigating within the (x, y) plane.

Each individual robot is represented as a single-integrator dynamical system,

characterized by the equation:

 ẋi(t)=ui(t) (4.1)

where for all i ∈ {1,…,N}, xi ∈ R2 denotes the i-th state (position), and ui∈ R2 is the

i-th input (velocity). Communication among robots handled by

TimeVaryingCommunicator as undirected graph G = (V, E), with V = {1…, N}

representing the robot set and E ⊂ V × V denoting the set of edges. If (i, j) ∈ E, then

(j, i) ∈ E as well, allowing robots i and j to exchange information. The neighbors of

agent i are denoted as Ni = {j ∈ V ∣ (i, j) ∈ E}.

45

The robots are categorized into leaders and followers. Followers aim to converge

towards the convex hull formed by the positions of leaders. Achieving this goal

involves implementing dynamics that drive the followers towards the desired

formation.

𝒙̇𝒊(𝒕) = 𝟎 (leaders) (4.2a)

 𝒙̇𝒊(𝒕) = ∑ 𝒙𝒊𝒋∈𝑵𝒊
(𝒕) − 𝒙𝒋(𝒕) (followers) (4.2b)

Implementation: as far as the software implementation can be achieve by

implementing two main classes which an extension from DistributedControlGuidance.

the classes are: ContainmentGuidance and TimeVaryingContainmentGuidance. Both

implement a distributed control law for robots to maintain a formation and use

parameters like update frequency, gain, and pose handling. The evaluate_input method

calculates control inputs using neighbor data. The implementation of the control law

in the software as follow:

ContainmentGuidance computes the error between robot positions and desired

positions, applying control inputs to minimize this error.

TimeVaryingContainmentGuidance allows dynamic neighbor changes based on

probabilities, useful in uncertain environments. ContainmentGuidance distinguishes

leaders and computes control inputs based on errors.

TimeVaryingContainmentGuidance selects active neighbors randomly and adapts

neighbor connections.

46

Next step is to implement the SignalIntegrator class which is an inherited class from

the main Integrator class. The class implement the Euler method for single-integrator

dynamics:

ẋ = u (4.3)

where ẋ is the state of the system and u is the control input.

The implantation on the code as follow:

4.4.2. Distributed Formation Control

 Math problem: similar to the previous implantation of containment in leader-follower

scenario, we assume that:

N robots navigate the 2D plain.

Every robot presented by single-integrator dynamic system.

Communication handles by graph-based communication.

The distributed control law must be applied for every robot as follow:

𝒖𝒊 = ∑ || (𝒙𝒊(𝒕) − 𝒙𝒋
𝒋∈𝑵𝒊

(𝒕))^𝟐|| − 𝒅𝒋𝒊^𝟐)(𝒙𝒊(𝒕) − 𝒙𝒋(𝒕)) (4.4)

Next, we assume that several N robots must form a desired geometric shape, so in that

light we must adjust the adjacency matrix for robot communication based on graph

theory, in addition of distance matrix to adjust the distance between the robot to form

the desired shape. Usually, the adjacency matrix used to represent direct and undirect

graph communication. Each entry in the adjacency matrix represents the connection

between two nodes. If there is an edge between two nodes, the corresponding entry in

47

the matrix is 1. If there is no edge between two nodes, the corresponding entry in the

matrix is 0.For example, consider the following graph:

A---B

| |

| |

C---D

The adjacency matrix for this graph would be:

[1 0 0 1]

[0 1 0 0]

[0 0 1 0]

[1 0 0 1]

The first row of the matrix represents the connections between node A and the other

nodes in the graph. The second row represents the connections between node B and

the other nodes in the graph, and so on.

Implementation: to implement the formation control into the software framework we

must consider the following two building blocks: firstly, a "Team Guidance" node

facilitates the exchange of current positions among neighboring robots, enabling

computation of the input ui(t) at a defined frequency. Secondly, a "Control" node

undertakes the task of converting the single-integrator input (vector velocity) into

appropriate unicycle inputs (angular and linear velocity).and finally visualize it

through a launch file in Gazebo simulation.

In more detail regarding the first block, a DistributedControlGuidance class must be

extended to a child class by the name of FormationControlGuidance to override the

velocity methods as shown in the main part of the code:

48

4.4.3. Distributed Model Predictive Control (MPC)

Model Predictive Control (MPC) in multi-robotic systems is a sophisticated control

strategy that involves predicting the future behavior of the robots and optimizing their

actions over a finite time horizon to achieve desired objectives. MPC considers a

mathematical model of the system dynamics and constraints to make informed

decisions about the robots' actions.

In the context of multi-robot systems, MPC operates by formulating an optimization

problem that considers various factors such as robot dynamics, environmental

conditions, task requirements, and constraints. It then computes a sequence of control

actions that each robot should follow to optimize a specified objective function. This

objective function could be related to tasks like formation control, collision avoidance,

path tracking, or any other cooperative behavior. Key characteristics of MPC in multi-

robot systems include:

• Prediction.

• Constraints.

• Optimization.

• Real-time Adaptation.

• Cooperative Behavior.

49

Math Problem: The linear dynamics of the N robots, along with the associated

constraints, outputs, and local cost functions.

Linear Dynamics: The dynamics of each robot i can be represented as:

 𝑥𝑖(𝑡 + 1) = 𝐴𝑖𝑥𝑖 + 𝐵𝑖𝑢𝑖 (4.5)

where is the state vector and is the control input vector for robot i.

Constraints: Each robot must adhere to local state and input constraints:

 𝑥𝑖(𝑡) = 𝑋𝑖 (4.6a)

𝑢𝑖(𝑡) = 𝑈𝑖 (4.6b)

where and are the state and input constraint set for robot i, respectively.

Outputs: For each robot i, the output is defined as:

𝑧𝑖(𝑡 + 1) = 𝐶𝑖𝑥𝑖(𝑡) + 𝐷𝑖𝑢𝑖(𝑡) (4.7)

Where 𝑧𝑖(𝑡 + 1) is the output for robot i.

Coupled Output Constraint: The outputs of all robots are constrained to satisfy:

 ∑ 𝑧𝑖(𝑡)𝜖𝑠
𝑁
𝑖=1 (4.8)

where S constraint set for the coupled outputs.

Local Cost Function: Each robot i has an associated local cost function that it aims to

minimize:

 𝑖 = (𝑥𝑖 , 𝑢𝑖) (4.9)

Overall Objective: Considering the above components, the overall objective can be

formulated as a multi-objective optimization problem is to minimize the sum of local

cost functions while adhering to constraints: subject to:

50

• linear dynamics

• Local state and input constraints:

• Coupled output constraint.

Solving this multi-objective optimization problem involves finding control inputs for

each robot i that minimize their respective local cost functions while satisfying the

dynamics, state/input constraints, and the coupled output constraint.This formulation

captures the interplay between the robots' dynamics, constraints, outputs, and local

objectives, aiming to achieve coordinated behavior that optimizes local cost functions

while adhering to overall constraints.

Implementation: to implement the MPC distributed algorithms we must apply the

following steps:

• Implement the TGL node to compute and communicate the MPC algorithms

through MPCGuidance class.

• The implantation of integrator node to override the MPCGuidance class

frequency.

• The visualization step to communicate the necessary data like robots’ position

to ROS topic.

The MPCGuidance class, which is a subclass of OptimizationGuidance. This class

employs a model predictive control (MPC) algorithm for optimizing robot motion

within a multi-agent system. Key methods include:

init__(): Initializes the class, taking parameters like sampling period, pose handler, and

topic name.

initialize(): Prepares the MPC problem with parameters like prediction horizon,

matrices, and constraints.

control (): Main control loop: initializes trajectories, gathers and receives data from

agents, solves local optimal control, and updates trajectories.

51

optimization_ended(): Handles post-optimization actions, updating trajectories and

sending data.

shift_horizon (): Extends output trajectory via trajectory_continuation() function.

collect_trajectories (): Aggregates trajectories from neighboring agents at agent 0.

52

After implementing the first main guidance class, the OptimizationThread loop come

in place which is a straightforward to start and stop the optimization when the required

number of the iterations is reached. Therefore, the entire optimization process is

relying on MPCOptimizer class. The MPCOptimizer class implements a model

predictive control algorithm that can be used to optimize the motion of a robot. The

MPC algorithm considers the system dynamics, cost functions, coupling constraints,

and local constraints of the robot to find the optimal control inputs for the next

prediction horizon.

The main body of the MPCOptimizer contain the following methods:

• The initialize_scenario() method first initializes the system matrices, cost

matrices, coupling constraints, and local constraints of the MPC problem. It then

creates a parametric optimal control problem that has the two parameters: the

initial condition of the robot and the output trajectories of the robot.

• The create_opt_control_problem() method creates the actual optimal control

problem. It takes in the initial condition and output trajectories as parameters,

and it uses the system matrices, cost matrices, coupling constraints, and local

constraints that were initialized in the initialize_scenario() method.

• The optimize() method solves the MPC problem using a numerical solver. It

keeps track of the solution in a dictionary, where the keys are the time steps, and

the values are the states, controls, and outputs of the robot.

• The get_result() method returns the solution of the MPC problem. It takes the

dictionary that was created in the optimize() method and returns the states,

controls, and outputs of the robot.

53

After implementing the TGL node the next step is to consider the integrator node to

override the TGL frequency similar to the previous implantation. The integrate()

method integrates the robot's motion for one-time step. It takes the current position and

velocity of the robot as input, and it returns the new position of the robot. The

integrate() method uses the following equation to integrate the robot's motion:

new_pos = old_pos + samp_time * u (4.10)

where:

• new_pos is the new position of the robot.

• old_pos is the old position of the robot.

• samp_time is the sampling time of the integrator.

• u is the robot's velocity.

54

Finally, the implantation is completed after the next two steps related mainly to ROS2

and further exploration will be done in the next chapter, but we briefly mentioned the

steps as follow:

We employ the utils.Visualizer class for the visualization node. This node's objective

is straightforward: it subscribes to the odom topic and transfers messages to the

visualization_marker topic. RVIZ then interprets data from this source, illustrating

circles denoting robots, accurately positioned. Finally, we write a launch file to launch

the distributed MPC algorithms through RVIZ.

4.4.4. Distributed Dynamic Task Assignment

Distributed dynamic task allocation involves a decentralized strategy for distributing

tasks among multiple agents or robots in a dynamic setting. The term "dynamic"

implies that tasks, agents, or the environment can change over time, necessitating

ongoing adjustment and reallocation of tasks. In scenarios of distributed dynamic task

assignment, multiple agents or robots cooperate to effectively distribute tasks among

themselves, factoring in evolving circumstances, preferences, and limitations. This

stands in contrast to centralized methods where a sole entity handles all task

assignments. In distributed systems, decision-making responsibility is shared across

55

agents, allowing them to make localized decisions while taking broader objectives into

account.

Math problem: Consider a set of N agents or robots, indexed by i = 1, 2, ..., N, and a

set of M tasks, indexed by j = 1, 2, ..., M. Each agent i has a set of possible tasks it can

perform, denoted as Ti, and each task j has a set of potential agents that can perform

it, denoted as Aj. Let xij be a binary decision variable representing whether agent i is

assigned to task j. The value of xij is 1 if agent i is assigned to task j, and 0 otherwise.

The goal is to optimize the assignment of agents to tasks while considering various

objectives or constraints. This can be formulated as an optimization problem, often

with the objective of maximizing or minimizing a certain metric. For example,

maximizing the overall efficiency, minimizing the total cost, or achieving a balanced

assignment.

Mathematically, a common formulation for the distributed dynamic task assignment

problem can be expressed as follows.

Maximize/Minimize ∑ⅈ,k cik xik

Solving this mathematical optimization problem involves finding the values of the

decision variables xij that optimize the specified objective while adhering to the

constraints. In a distributed setting, agents collaborate to make local decisions about

their task assignments, considering both their own preferences and the constraints

imposed by the problem. Communication and coordination between agents are crucial

to achieve a balanced and efficient task assignment.

In our scenario there is a M number of tasks send the mobile robot’s overtime through

a cloud, as soon as one task is completed, other tasks will be sent to be executed

through the optimization loop. To maintain the tasks, overflow a task table is implanted

through PositionTaskTable and the flow chart of the process is shown in 4.4:

56

Figure 4.4. Task assignment chart flow.

The implementation: the implantation of the task assignment is similar to the previous

implementation of MPC. The main guidance class TaskGuidance is responsible for the

distribution of the task optimization and communicate the information to the task table,

in addition solving the optimization problems is handled by TaskOptimizer and

TaskOptimizationThread similar to the previously mentioned MPCOptimizer and

MPCOptimizationThread. But in contrast to MPC implementation. The task

assignment needs more classes to communicate the information and algorithms to

gazebo through the Turtlebot unicycle robot platform, therefore:

PositionTaskExecutor class: this class notify TGL layer when the task completed by

controlling the navigation of the robot to the desired position.

TwoDimPointToPointPlanner class: a part of planner class, simply act as the bridge

between TGL and the controller class by forwarding the position target from the first

to the later.

Controller class: a class that implement the unicycle control explain in [116]

57

PART 5

SIMULATION AND RESULTS

The ROS2 platform served as the foundation for our comprehensive multi-layer

software framework, which was entirely realized using Python programming.

Leveraging various Python libraries, we successfully brought this framework to

fruition. The outcomes were effectively visualized through the Gazebo 9 simulator and

the data visualization tool RVIZ2.

Our approach involved implementing diverse control and optimization scenarios by

integrating the respective mathematical models into dedicated software classes. This

integration facilitated the execution of various control and optimization strategies

seamlessly.

Both hardware and software components played a pivotal role in the project:

• HP ProBook 650 (Intel Core i7)

• ROS2 Dashing Diademata

• Gazebo 9

• RVIZ2

• TurtleBot 3 ROS package

• Xterm – terminal emulator

The simulation was grounded in the visualization tools Gazebo and RVIZ, which

effectively illustrated the outcomes of four distinct distributed optimization and

control scenarios. These scenarios were built upon the team guidance layer (TGL) and

encompassed:

• Containment within a leader-follower network for a single-integrator system.

58

• Distributed geometrical formation control designed for unicycle ground robots.

• Implementation of a distributed model predictive control (MPC) strategy.

• Execution of distributed dynamic task assignment for unicycle robots.

• Through these meticulously developed scenarios, our framework demonstrated

its capabilities in addressing a spectrum of control and optimization challenges.

5.1. CONTAINMENT

The simplest approach among the various scenarios involved the combination of two

core components: the "ContainmentGuidance" and "SingleIntegrator" classes. The

outcomes of this particular implementation were visualized without the requirement

of external tools. Instead, the ROS2 toolbox RVIZ was employed. This tool effectively

showcased the robots as markers and acquired pose data from the "SingleIntegrator"

component.

To initiate the simulation, a ROS2 launch file was employed. This file encompassed

all the essential nodes responsible for both distributed control and visualization within

RVIZ. The culmination of these efforts is illustrated in Figure 13, providing a clear

visual representation of the achieved results.

Figure 5.1. RVIZ containment simulation.

The RVIZ simulation outcome vividly depicts a group of six robots, intelligently

categorized into leaders and followers. This division is balanced, with an equal number

of robots in each role. The simulation showcases a dynamic movement pattern among

59

the follower robots, as they efficiently transition from their initial positions to occupy

specific positions that collectively form a triangular configuration. This geometric

arrangement is strategically designed to align with the positions of the leader robots,

illustrating a successful containment and guidance strategy in action.

5.2. FORMATION CONTROL

The core objective of this implementation is to guide a cluster of robots from initially

scattered positions to adopt specific and discernable geometric formations within the

(x, y) plane. This objective is achieved by harnessing the potential of a distributed

control law. The results of this endeavor are expertly showcased through the Gazebo

simulator, which provides a visual representation of each distinct formation pattern.

For initiating the simulation, a ROS2 launch file takes center stage. This

comprehensive file harmoniously brings together all the essential nodes, orchestrating

their roles in enabling both the facilitation of distributed control and the generation of

visual representations within the Gazebo environment. This integrated approach

guarantees a seamless and coherent portrayal of the achieved outcomes. Moreover, the

simulation capitalizes on the utilization of the TurtleBot 3 Burger model and the

corresponding ROS2 package. These elements contribute to the physical simulation of

the formations, enhancing the authenticity of the outcomes.

Each unique formation pattern is meticulously demonstrated in isolation, offering a

clear insight into its specific geometric configuration. These demonstrations serve as

compelling evidence of the efficacy of the employed distributed control strategies. the

patterns are :

• Triangle formation

• Square formation

• Side-by-side tringles

• Pentagon formation

• Hexagon formation

60

5.2.1. Triangle Formation

Figure 5.2. Tringle formation with 3 robots.

61

5.2.2. Square Formation

Figure 5.3. Square formation with 4 robots.

62

5.2.3. Side-by-side Triangle

Figure 5.4. Side-by-side tringles with 5 robots.

63

5.2.4. Pentagon Formation

Figure 5.5. Pentagon formation with 5 robots.

64

5.2.5. Hexagon Formation

Figure 5.6. Hexagon formation with 6 robots.

65

5.3. MPC

The implementation of Model Predictive Control (MPC) introduces a sophisticated

optimization scenario integrated into the Distributed Optimization segment of the

Team Guidance Layer (TGL). This complex scenario employs a classical algorithm

designed for linear single-integrator systems, as exemplified through a numerical

instance. The overarching objective of this optimization framework is to guide a group

of N robots, each characterized by linear dynamics, towards the origin. Throughout

this process, it remains crucial to respect the coupling constraints inherent in the robots'

output interactions.

The resultant algorithmic approach was validated and assessed using simulation,

effectively leveraging the RVIZ data visualization tool as part of the software

integration. Upon initiating the simulation, an RVIZ window comes to life. Within a

brief span of time, a collection of circles, representing the individual robots, initiates

movement towards the origin point. Notably, these robots coordinate their motion to

ensure their mutual inter-distances remain within predefined limits, effectively

showcasing the control strategy's success in action.

Figure 5.7. Model Predictive Control (MPC) algorithm.

66

5.4. TASK ASSIGNMENT

The algorithm orchestrates the actions of a quartet of Turtlebot 3 Burger robots,

assigning them a collection of M tasks that manifest as positions within the Gazebo

simulator's (x, y) plane. This algorithm operates in a continuous optimization loop,

recalculating and determining fresh tasks promptly after each task completion.

Simultaneously, it updates the task information table, subsequently influencing the

trajectories of the robots. These recalibrations are relayed to the dedicated controller

class, which takes on the role of guiding the robots.

The framework for distributing task positions operates via a cloud service, employing

a task table that is visually represented through the xterm application. As the

simulation unfolds, the group of four Burger robots dynamically aligns itself with the

tasks stipulated in the task table. New tasks are computed and introduced, a sequence

that unfolds within the confines of the xterm terminal. These tasks are then

disseminated among the robots, with each robot's specific task distribution being

displayed within its corresponding xterm window.

Consequently, the robots adapt their trajectories to address the new set of tasks. This

adaptation involves the resolution of optimization challenges both at an individual

robot's scale and across the network level. As this synchronization occurs, the

algorithm manages tasks locally within each robot while simultaneously striving to

achieve global optimization across the network of robots. This dynamic interplay

serves to efficiently allocate tasks and guide the robots in a coordinated manner,

ensuring effective task execution and trajectory adjustment.

67

Figure 5.8. Turtlebot burger launch in the environment.

Figure 5.9. Xterm terminal showing the task table.

68

Figure 5.10. Xterm terminal launch in the simulation environment.

Figure 5.11. Several xterm launched for every agent.

69

PART 6

CONCLUSION

This study introduces a robust ROS2 framework for facilitating distributed multi-agent

cooperation behaviors. The framework operates as a peer-to-peer, non-centralized

layer that excels in executing distributed optimization and control algorithms without

requiring a central unit. The implementation was accomplished using Python and

leveraged the capabilities of ROS2 Dashing, Gazebo 9, and Rviz2 platforms. The

framework's design is based on a three-layer structure, with the Team Guidance Layer

(TGL) being the most pivotal. TGL incorporates three crucial components:

• Graph-based Communication: Facilitates direct, indirect, synchronous, and

asynchronous data exchange among agents.

• Distributed Optimization: Empowers complex optimization scenarios such as

task assignment and model predictive control (MPC).

• Distributed Feedback Control: A simplified yet fully functional version of

distributed optimization, supporting control algorithms like formation control

and leader-follower containment control.

Numerous scenarios were implemented to showcase the framework's capabilities. The

scenarios were categorized based on their complexity and the distributed algorithms

they employed. Containment and formation control scenarios utilized distributed

feedback control, while more intricate optimization scenarios like task assignment and

MPC were built on distributed optimization principles. The outcomes of the

implementations are as follows:

70

• A leader-follower containment scenario for a single integrator system was

executed using distributed feedback control algorithms. Visualized in RVIZ2

simulator, the results showcased a group of 6 robots, divided equally into

leaders and followers, forming a triangular arrangement as followers clustered

around leader robots.

• Formation control for unicycle TurtleBot robots was realized through

distributed control law implementation. Gazebo 9 simulator displayed various

geometrical formations achieved by a minimal number of robots for each

formation. Formations included triangle, square, pentagon, side-by-side

triangles, and hexagon.

• The implementation of a classical MPC algorithm for a linear system leveraged

distributed optimization algorithms on a single integrator system. The

outcomes were simulated and visualized via RVIZ2 integration.

• A dynamic task assignment scenario was demonstrated. Multiple TurtleBot

robots aimed to execute tasks defined by positions in the (x, y) plane. The task

execution was showcased through a cloud node and task table visualized in

xterm alongside the Gazebo simulation.

The combined results of experiments and simulations portrayed a heterogeneous fleet

of robots functioning seamlessly in a decentralized manner. These robots were guided

by distributed optimization and control algorithms, effectively tackling complex

scenarios through the proposed ROS2 framework. This architecture empowers

developers and programmers to seamlessly incorporate and execute intricate

optimization and control algorithms on a heterogeneous robot fleet without

necessitating a central unit. Importantly, this streamlined implementation process

allows for a focus on innovative optimization and problem-solving techniques.

71

REFERENCES

1. Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben, A. E. (Gusz), "Evolutionary

Robotics: What, Why, and Where to", Frontiers In Robotics And AI, 2: (2015).

2. Royakkers, L. and Van Est, R., "A Literature Review on New Robotics:

Automation from Love to War", International Journal Of Social Robotics, 7 (5):

549–570 (2015).

3. Garcia, E., Jimenez, M. A., De Santos, P. G., and Armada, M., "The evolution of

robotics research", IEEE Robotics & Automation Magazine, 14 (1): 90–103

(2007).

4. Darmanin, R. N. and Bugeja, M. K., "A review on multi-robot systems categorised

by application domain", 2017 25th Mediterranean Conference on Control and

Automation (MED), Valletta, Malta, (2017).

5. Gautam, A. and Mohan, S., "A review of research in multi-robot systems", 2012

IEEE 7th International Conference on Industrial and Information Systems

(ICIIS), Chennai, India, (2012).

6. Bayındır, L., "A review of swarm robotics tasks", Neurocomputing, 172: 292–

321 (2016).

7. Khamis, A., Hussein, A., and Elmogy, A., "Multi-robot Task Allocation: A

Review of the State-of-the-Art", Cooperative Robots and Sensor Networks 2015,

Springer International Publishing, Cham, 31–51 (2015).

8. Oh, H., Ramezan Shirazi, A., Sun, C., and Jin, Y., "Bio-inspired self-organising

multi-robot pattern formation: A review", Robotics And Autonomous Systems,

91: 83–100 (2017).

9. Verma, J. K. and Ranga, V., "Multi-Robot Coordination Analysis, Taxonomy,

Challenges and Future Scope", Journal Of Intelligent & Robotic Systems, 102

(1): 10 (2021).

10. Hur, Y., Alur, R., Lee, I., Grudic, G., and Southall, B., "Aveek Das John Spletzer

Joel Esposito Vijay Kumar James P. Ostrowski George Pappas Camillo J. Taylor",
.

11. Gielis, J., Shankar, A., and Prorok, A., "A Critical Review of Communications in

Multi-robot Systems", Current Robotics Reports, 3 (4): 213–225 (2022).

72

12. Doriya, R., Mishra, S., and Gupta, S., "A brief survey and analysis of multi-robot

communication and coordination", 2015 International Conference on

Computing, Communication & Automation (ICCCA), Greater Noida, India,

(2015).

13. Rekleitis, I., Lee-Shue, V., Ai Peng New, and Choset, H., "Limited

communication, multi-robot team based coverage", IEEE International

Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004,

New Orleans, LA, USA, (2004).

14. Balch, T. and Arkin, R. C., "Communication in reactive multiagent robotic

systems", Autonomous Robots, 1 (1): 27–52 (1994).

15. Unycao, Y., "Cooperative Mobile Robotics: Antecedents and Directions", .

16. Zhigang Wang, Zhou, M., and Ansari, N., "Ad-hoc robot wireless

communication", SMC ’03 Conference Proceedings. 2003 IEEE International

Conference on Systems, Man and Cybernetics, Washington, DC, USA, (2003).

17. Nett, E. and Schemmer, S., "Reliable real-time communication in cooperative

mobile applications", IEEE Transactions On Computers, 52 (2): 166–180

(2003).

18. Bayram, H. and Bozma, H. I., "Multi-robot navigation with limited

communication - deterministic vs game-theoretic networks", 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2010),

Taipei, (2010).

19. Jones, C. and Mataric, M. J., "Automatic synthesis of communication-based

coordinated multi-robot systems", 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai,

Japan, (2004).

20. Vicsek, T. and Zafeiris, A., "Collective motion", Physics Reports, 517 (3–4): 71–

140 (2012).

21. Schutte, J. F. and Groenwold, A. A., "A Study of Global Optimization Using

Particle Swarms", Journal Of Global Optimization, 31 (1): 93–108 (2005).

22. Mayya, S., Wilson, S., and Egerstedt, M., "Closed-loop task allocation in robot

swarms using inter-robot encounters", Swarm Intelligence, 13 (2): 115–143

(2019).

23. Nedjah, N. and Junior, L. S., "Review of methodologies and tasks in swarm

robotics towards standardization", Swarm And Evolutionary Computation, 50:

100565 (2019).

24. Warburton, K. and Lazarus, J., "Tendency-distance models of social cohesion in

animal groups", Journal Of Theoretical Biology, 150 (4): 473–488 (1991).

73

25. Bayindir, L. and Sahin, E., "Modeling self-organized aggregation in swarm

robotic systems", 2009 IEEE Swarm Intelligence Symposium (SIS), Nashville,

(2009).

26. Okubo, A., "Dynamical aspects of animal grouping: Swarms, schools, flocks, and

herds", Advances In Biophysics, 22: 1–94 (1986).

27. Nbaum, D. G., "Schooling as a strategy for taxis in a noisy environment", .

28. Gazi, V. and Passino, K. M., "Stability analysis of swarms", IEEE Transactions

On Automatic Control, 48 (4): 692–697 (2003).

29. Delboeuf, J., "Review", (1881).

30. Breder, C. M., "Equations Descriptive of Fish Schools and Other Animal

Aggregations", Ecology, 35 (3): 361 (1954).

31. Botelho, S. C. and Alami, R., "M+: a scheme for multi-robot cooperation through

negotiated task allocation and achievement", International Conference on

Robotics and Automation, Detroit, MI, USA, (1999).

32. Parker, L. E., "ALLIANCE: An Architecture for Fault Tolerant Multirobot

Cooperation", IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION,

14 (2): (1998).

33. Asama, H., Matsumoto, A., and Ishida, Y., "Design Of An Autonomous And

Distributed Robot System: Actress", IEEE/RSJ International Workshop on

Intelligent Robots and Systems ’. (IROS ’89) ’The Autonomous Mobile Robots

and Its Applications, Tsukuba, Japan, (1989).

34. Caloud, P., Choi, W., Latombe, J.-C., Pape, C. L., and Yim, M., "INDOOR

AUTOMATION WITH MANY MOBILE ROBOTS", .

35. Fukuda, T. and Kawauchi, Y., "Cellular robotic system (CEBOT) as one of the

realization of self-organizing intelligent universal manipulator", , IEEE

International Conference on Robotics and Automation Proceedings, (1990).

36. Gerkey, B. P. and Matarić, M. J., "Murdoch: publish/subscribe task allocation for

heterogeneous agents", Agents00: 4th International Conference on Autonomous

Agents, Barcelona Spain, (2000).

37. Jubin, J. and Tornow, J. D., "The DARPA packet radio network protocols",

Proceedings Of The IEEE, 75 (1): 21–32 (1987).

39. Murthy, S. and Garcia-Luna-Aceves, J. J., "An efficient routing protocol for

wireless networks", Mobile Networks And Applications, 1 (2): 183–197 (1996).

74

40. Tsu-Wei Chen and Gerla, M., "Global state routing: a new routing scheme for ad-

hoc wireless networks", ICC ’98 1998 IEEE International Conference on

Communications. Conference Record, Atlanta, GA, USA, (1998).

41. Chiang, C.-C., Wu, H.-K., Liu, W., and Gerla, M., "ROUTING IN CLUSTERED

MULTIHOP, MOBILE WIRELESS NETWORKS WITH FADING

CHANNEL", .

42. Johnson, D. B. and Maltz, D. A., "Dynamic Source Routing in Ad Hoc Wireless

Networks", Mobile Computing, Springer US, Boston, MA, 153–181 (1996).

43. Park, V. D. and Corson, M. S., "A highly adaptive distributed routing algorithm

for mobile wireless networks", INFOCOM ’97, Kobe, Japan, (1997).

44. Toh, C.-K., "Associativity-Based Routing for Ad Hoc Mobile Networks", .

46. Zapata, M. G., "Secure ad hoc on-demand distance vector routing", ACM

SIGMOBILE Mobile Computing And Communications Review, 6 (3): 106–107

(2002).

47. Ko, Y.-B. and Vaidya, N. H., "Location-aided routing (LAR) in mobile ad hoc

networks", MobiCom98: 4th Annual ACM International Conference on Mobile

Computing and Networking, Dallas Texas USA, (1998).

48. Yamashita, A., Fukuchi, M., Ota, J., Arai, T., and Asama, H., "Motion planning

for cooperative transportation of a large object by multiple mobile robots in a 3D

environment", 2000 ICRA. IEEE International Conference on Robotics and

Automation, San Francisco, CA, USA, (2000).

50. Arai, T., Ogata, H., and Suzuki, T., "Collision Avoidance Among Multiple Robots

Using Virtual Impedance", IEEE/RSJ International Workshop on Intelligent

Robots and Systems ’. (IROS ’89) ’The Autonomous Mobile Robots and Its

Applications, Tsukuba, Japan, (1989).

51. Matarić, M. J., "Reinforcement Learning in the Multi-Robot Domain", Robot

Colonies, Springer US, Boston, MA, 73–83 (1997).

52. Teodorović, D., "Bee Colony Optimization (BCO)", Innovations in Swarm

Intelligence, Springer Berlin Heidelberg, Berlin, Heidelberg, 39–60 (2009).

54. Johari, N. F., Zain, A. M., Noorfa, M. H., and Udin, A., "Firefly Algorithm for

Optimization Problem", Applied Mechanics And Materials, 421: 512–517

(2013).

55. Yang, X. and Hossein Gandomi, A., "Bat algorithm: a novel approach for global

engineering optimization", Engineering Computations, 29 (5): 464–483 (2012).

56. Rajabioun, R., "Cuckoo Optimization Algorithm", Applied Soft Computing, 11

(8): 5508–5518 (2011).

75

57. Kennedy’, J. and Eberhart, R., "Particle Swarm Optimization", .

58. Elloumi, W., El Abed, H., Abraham, A., and Alimi, A. M., "A comparative study

of the improvement of performance using a PSO modified by ACO applied to

TSP", Applied Soft Computing, 25: 234–241 (2014).

59. Nedjah, N., Mendonça, R. M. D., and Mourelle, L. D. M., "PSO-based Distributed

Algorithm for Dynamic Task Allocation in a Robotic Swarm", Procedia

Computer Science, 51: 326–335 (2015).

60. Alaliyat, S., Yndestad, H., and Sanfilippo, F., "Optimisation Of Boids Swarm

Model Based On Genetic Algorithm And Particle Swarm Optimisation Algorithm

(Comparative Study)", 28th Conference on Modelling and Simulation, (2014).

61. Honkote, V., Ghosh, D., Narayanan, K., Gupta, A., and Srinivasan, A., "Design

and Integration of a Distributed, Autonomous and Collaborative Multi-Robot

System for Exploration in Unknown Environments", 2020 IEEE/SICE

International Symposium on System Integration (SII), Honolulu, HI, USA,

(2020).

62. Wu, X., Wang, S., and Xing, M., "Observer-Based Leader-Following Formation

Control for Multi-Robot With Obstacle Avoidance", IEEE Access, 7: 14791–

14798 (2019).

63. Xia, Y., Chen, C., Shi, J., Liu, Y., and Li, G., "Two-Layer Path Planning for Multi-

Area Coverage by a Cooperated Ground Vehicle and Drone System", Preprint,

(2020).

64. Yi Guo and Parker, L. E., "A distributed and optimal motion planning approach

for multiple mobile robots", 2002 IEEE International Conference on Robotics

and Automation, Washington, DC, USA, (2002).

65. Yanyan Dai a, YoonGu Kim b, SungGil Wee b, DongHa Lee b, SukGyu Lee, "A

switching formation strategy for obstacle avoidance of a multi-robot system based

on robot priority model", 56: 123–134 (2016).

66. Niazi, M. A., Hussain, A., and Kolberg, M., "Verification &Validation of Agent

Based Simulations using the VOMAS (Virtual Overlay Multi-agent System)

approach", .

67. Gervasi, V. and Prencipe, G., "Coordination without communication: the case of

the flocking problem", Discrete Applied Mathematics, 144 (3): 324–344 (2004).

68. Saber, R. O. and Murray, R. M., "Flocking with obstacle avoidance: cooperation

with limited communication in mobile networks", 42nd IEEE International

Conference on Decision and Control (IEEE Cat. No.03CH37475), Maui,

Hawaii, USA, (2003).

76

69. Mataric, M. J., Nilsson, M., and Simsarin, K. T., "Cooperative multi-robot box-

pushing", 1995 IEEE/RSJ International Conference on Intelligent Robots and

Systems. Human Robot Interaction and Cooperative Robots, Pittsburgh, PA,

USA, (1995).

70. Brown, R. G. and Jennings, J. S., "A pusher/steerer model for strongly cooperative

mobile robot manipulation", 1995 IEEE/RSJ International Conference on

Intelligent Robots and Systems. Human Robot Interaction and Cooperative

Robots, Pittsburgh, PA, USA, (1995).

71. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Gálvez-López, D.,

Häussermann, K., Janssen, R., Montiel, J. M. M., Perzylo, A., Schießle, B.,

Tenorth, M., Zweigle, O., and De Molengraft, R., "RoboEarth", IEEE Robotics

& Automation Magazine, 18 (2): 69–82 (2011).

72. Moran, M. E., "The da Vinci Robot", Journal Of Endourology, 20 (12): 986–990

(2006).

73. Miswanto, M., "Formation Control of Multiple Dubin’s Car System with

Geometric Approach", IOSR Journal Of Mathematics, 1 (6): 16–20 (2012).

74. Kuhn, H. W., "The Hungarian method for the assignment problem", Naval

Research Logistics Quarterly, 2 (1–2): 83–97 (1955).

75. Turpin, M., Michael, N., and Kumar, V., "C APT : Concurrent assignment and

planning of trajectories for multiple robots", The International Journal Of

Robotics Research, 33 (1): 98–112 (2014).

76. Gazä, V. and Fä, Bariå., "Aggregation, Foraging, and Formation Control of

Swarms with Non-Holonomic Agents Using Potential Functions and Sliding

Mode Techniques", (2007).

77. Yao, J., Ordonez, R., and Gazi, V., "Swarm Tracking Using Artificial Potentials

and Sliding Mode Control", San Diego, (2006).

78. Tanner, H. G., Pappas, G. J., and Kumar, V., "Leader-to-Formation Stability",

IEEE Transactions On Robotics And Automation, 20 (3): 443–455 (2004).

79. Miswanto, M., Pranoto, I., Mhammad, H. M., and Mahayana, D., "The Control

Design of Ship Formation with the Presence of a Leader", IAES International

Journal Of Robotics And Automation (IJRA), 4 (1): 53 (2015).

80. Desai, J. P., Ostrowski, J. P., and Kumar, V., "Modeling and control of formations

of nonholonomic mobile robots", IEEE Transactions On Robotics And

Automation, 17 (6): 905–908 (2001).

81. Jiangzhou, L., Sakhavat, S., Ming, X., and Laugier, C., "Sliding Mode Control for

Nonholonomic Mobile Robot", .

77

82. Orlando, G., Frontoni, E., Mancini, A., and Zingaretti, P., "Sliding mode control

for vision-based leader following", .

83. Misir, O. and Gökrem, L., "Sürü Robotları için Esnek ve Ölçeklenebilir Toplanma

Davranışı Metodu", European Journal Of Science And Technology, 100–109

(2020).

84. M. B. Sial, S. Wang, X. Wang, J. Wyrwa, Z. Liao and W. Ding, "Mission Oriented

Flocking and Distributed Formation Control of UAVs", IEEE, 1507–1512

(2021).

85. Mechali, O., Iqbal, J., Wang, J., Xie, X., and Xu, L., "Distributed Leader-Follower

Formation Control of Quadrotors Swarm Subjected to Disturbances", 2021 IEEE

International Conference on Mechatronics and Automation (ICMA),

Takamatsu, Japan, (2021).

86. Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R., "Self-organized aggregation

without computation", The International Journal Of Robotics Research, 33 (8):

1145–1161 (2014).

87. Mısır, O., Gökrem, L., and Serhat Can, M., "Fuzzy-based self organizing

aggregation method for swarm robots", Biosystems, 196: 104187 (2020).

88. Parhizkar, M., Di Marzo Serugendo, G., Nitschke, J., Hellequin, L., Wade, A.,

and Soldati, T., "First-order agent-based models of emergent behaviour of

Dictyostelium discoideum and their inspiration for swarm robotics: A selection of

aggregation phase behaviour with biological illustrations", Artificial Life And

Robotics, 25 (4): 643–655 (2020).

89. Slowik, A. and Kwasnicka, H., "Nature Inspired Methods and Their Industry

Applications—Swarm Intelligence Algorithms", IEEE Transactions On

Industrial Informatics, 14 (3): 1004–1015 (2018).

90. Yang, X.-S., "Swarm intelligence-based algorithms: a critical analysis",

Evolutionary Intelligence, 7 (1): 17–28 (2014).

91. Chakraborty, A. and Kar, A. K., "Swarm Intelligence: A Review of Algorithms",

Nature-Inspired Computing and Optimization, Springer International

Publishing, Cham, 475–494 (2017).

92. "Evolutionary and Swarm Intelligence Algorithms", Springer International

Publishing, Cham, (2019).

93. Sumida, B. H., Houston, A. I., McNamara, J. M., and Hamilton, W. D., "Genetic

algorithms and evolution", Journal Of Theoretical Biology, 147 (1): 59–84

(1990).

94. Lambora, A., Gupta, K., and Chopra, K., "Genetic Algorithm- A Literature

Review", 2019 International Conference on Machine Learning, Big Data,

Cloud and Parallel Computing (COMITCon), Faridabad, India, (2019).

78

95. Wang, D., Tan, D., and Liu, L., "Particle swarm optimization algorithm: an

overview", Soft Computing, 22 (2): 387–408 (2018).

96. Venter, G. and Sobieszczanski-Sobieski, J., "Particle Swarm Optimization",

AIAA Journal, 41 (8): 1583–1589 (2003).

97. Yuhui Shi and Eberhart, R. C., "Fuzzy adaptive particle swarm optimization",

2001 Congress on Evolutionary Computation, Seoul, South Korea, (2001).

98. Hsieh, S.-T., Sun, T.-Y., Liu, C.-C., and Tsai, S.-J., "Efficient Population

Utilization Strategy for Particle Swarm Optimizer", IEEE Transactions On

Systems, Man, And Cybernetics, Part B (Cybernetics), 39 (2): 444–456 (2009).

99. Wenhua Han, Ping Yang, Haixia Ren, and Jianpeng Sun, "Comparison study of

several kinds of inertia weights for PSO", 2010 International Conference on

Progress in Informatics and Computing (PIC), Shanghai, China, (2010).

100. Nikolić, M. and Teodorović, D., "Empirical study of the Bee Colony

Optimization (BCO) algorithm", Expert Systems With Applications, 40 (11):

4609–4620 (2013).

101. Krishnanand, K. N. and Ghose, D., "Glowworm swarm optimisation: a new

method for optimising multi-modal functions", .

102. Smith, M. G. and Bull, L., "Genetic Programming with a Genetic Algorithm for

Feature Construction and Selection", Genetic Programming And Evolvable

Machines, 6 (3): 265–281 (2005).

103. Cao, Y. J. and Wu, Q. H., "Mechanical Design Optimization by Mixed-Variable

Evolutionary Programming", .

104. Dianati, M., Song, I., and Treiber, M., "An Introduction to Genetic Algorithms

and Evolution Strate…", .

105. Yang, X.-S., "Firefly Algorithms for Multimodal Optimization", Stochastic

Algorithms: Foundations and Applications, Springer Berlin Heidelberg, Berlin,

Heidelberg, 169–178 (2009).

106. Mirjalili, S., Mirjalili, S. M., and Lewis, A., "Grey Wolf Optimizer", Advances

In Engineering Software, 69: 46–61 (2014).

107. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,

Wheeler, R., and Ng, A., "ROS: an open-source Robot Operating System", .

108. "Robot Operating System (ROS)", Springer International Publishing, Cham,

(2016).

109. Okoli, F., Lang, Y., Kermorgant, O., and Caro, S., "Cable-Driven Parallel Robot

Simulation Using Gazebo and ROS", ROMANSY 22 – Robot Design, Dynamics

and Control, Springer International Publishing, Cham, 288–295 (2019).

79

110. Megalingam, R. K., Teja, C. R., Sreekanth, S., and Raj, A., "ROS based

Autonomous Indoor Navigation Simulation Using SLAM Algorithm", .

111. Farina, F., Camisa, A., Testa, A., Notarnicola, I., and Notarstefano, G.,

"DISROPT: a Python Framework for Distributed Optimization", IFAC-

PapersOnLine, 53 (2): 2666–2671 (2020).

112. Tauchnitz, S., "APPLICATION OF DISTRIBUTED CONTAINMENT

CONTROL TO MULTI-ROBOT SYSTEMS", University of Rhode Island,

Kingston, RI, (2021).

113. Mehran Mesbahi and Magnus Egerstedt, "Graph Theoretic Methods in

Multiagent Networks", Princeton University Press, 424 (2010).

114. Richards, A. and How, J. P., "Robust distributed model predictive control",

International Journal Of Control, 80 (9): 1517–1531 (2007).

115. Bürger, M., Notarstefano, G., Bullo, F., and Allgöwer, F., "A distributed simplex

algorithm for degenerate linear programs and multi-agent assignments",

Automatica, 48 (9): 2298–2304 (2012).

116. Park, J. J. and Kuipers, B., "A smooth control law for graceful motion of

differential wheeled mobile robots in 2D environment", 2011 IEEE

International Conference on Robotics and Automation (ICRA), Shanghai,

China, (2011).

80

RESUME

Mohammed SEDEG completed his primary, preparatory and secondary education in

Khartoum schools, Sudan, and obtained a bachelor’s degree in Electrical Engineering

from Sudan University of Science and Technology - Sudan in 2017. After graduation,

He worked as an electrical engineering in the renewable energy department at Africa

City of Technology (ACT) for one year while taking several automation and industrial

courses at Industrial Automation Center (IOC). Then, in 2019, he moved to Turkey to

study at Karabuk University to obtain a master's degree in mechatronic engineering.

