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Thesis Advisor: 

Assist. Prof. Dr. İsa AVCI  
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Ransomware is a special type of malware by which the attacker targets the victim's 

device using a link attached by an email, and once the victim opens the attachment, all 

his files are encrypted. The victim cannot retrieve his data without paying the attacker 

for the decryption key. Ransomware becomes very dangerous and affects all human 

facilities, including medical centers, military organizations, security platforms, 

financial facilities, etc. Ransomware detection and classification-based artificial 

intelligence applications are essential to limit the attacker's ability and prevent it from 

harming devices. The current study proposes a new ransomware detection and 

classification study. Besides, a novel feature selection algorithm is proposed to involve 

the essential information of network tasks and drop the redundant data that can slow 

the detection process. The study uses a challenging dataset of 392034 records, 84 

features, and 11 different types of ransomware. In the first step, the dataset is 

preprocessed by cleaning it, encoding all textual (categorical) features, and 
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normalizing them to ensure it fits all machine learning and deep learning models. In 

the second step, the dataset is split into the train (80%) and test (20%) for the machine 

learning models. Besides, another validation set is created with a percentage of (20%) 

of the training set for the deep learning models. The third step is feature selection, in 

which the redundant features are dropped using a novel hybrid feature selection 

method depending on both ANOVA and Random Forests to select the best subset of 

features. In the fourth step, many machine learning and deep learning models are 

trained using the training set. The experiment part includes applying the fusion of the 

individual models (for both machine learning and deep learning models) besides the 

ensemble learning of these individual models. In the evaluation step, the precision, 

recall, F1-score, and accuracy are used to assess the performance of the individual, the 

fusion, and the ensemble models. Besides this, three different feature selection 

scenarios are conducted to seek the best combination of features. The training time of 

all models is also computed to see the effect of the feature reduction on the 

computational costs. Results showed that the best models are the XGB, LGBM, and 

RF models. Besides that, the ML ensemble model achieves a good performance. The 

feature selection method minimized the training time significantly, especially for the 

high-computational models like XGB and LGBM, without any remarkable 

degradation in performance. The best-obtained accuracy is related to the XGB model 

with 99.87%. The study is also compared with the current state-of-art methodologies. 

The comparison proves that the current study outperforms all previous ones. Future 

work can focus on the idea of hyperparameter optimization to improve the 

performance. 

 

Key Words : Machine Learning, Deep Learning, Ransomware Detection, Multi-

Class Classification, Feature Selection, Security. 

Science Code : 92432 
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ÖZET 

 

Yüksek Lisans Tezi 

 

MAKİNE ÖĞRENMESİ VE DERİN ÖĞRENME TEKNİKLERİ 

KULLANARAK ÖZELLİK SEÇİMİ TABANLI FİDYE YAZILIMI TESPİTİ 

 

Elaf Talib Abduljabbar ABDULJABBAR  

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı:  

Dr. Öğr. Üyesi İsa AVCI 

Ekim 2023, 72 sayfa 

 

Fidye yazılımı, bilgisayar korsanının(dolandırıcı) kurbanın cihazını bir e-posta 

ekindeki bağlantı aracılığıyla hedef aldığı özel bir o kadar da  kötü amaçlı yazılım 

türüdür. Kurban seçilen şahıs ek dosyayı açtığında, tüm dosyaları şifrelenir. Tespit 

edilen kişi, verilerini korsana deşifre anahtarı için ödeme yapmadan geri alamaz. 

Günümüzde Fidye yazılımı son derece tehlikeli hale gelmiştir ve tıbbi merkezler, 

askeri organizasyonlar, güvenlik platformları,ve finans kuruluşları dahil olmak üzere 

tüm insan tesislerini etkilemektedir. Dolandırıcının  yeteneğini sınırlamak ve cihazlara 

zarar vermesini engellemek için fidye yazılımının tespiti ve sınıflandırılmasına dayalı 

yapay zeka uygulamaları hayati önem taşımaktadır  Bu çalışma, yeni bir fidye yazılımı 

tespiti ve sınıflandırma çalışması önermektedir. Ayrıca, ağ görevlerinin temel bilgisini 

içerecek ve tespit sürecini yavaşlatabilecek gereksiz verileri düşürecek yeni bir özellik 

seçim algoritması önermektedir. Çalışma, 392034 kayıt, 84 özellik ve 11 farklı fidye 

yazılım türünden oluşan zorlayıcı bir veri kümesini kullanmaktadır. İlk etapta veri 



vii 

kümesi temizlenir, tüm metinsel (kategorik) özellikler kodlanır ve tüm makine 

öğrenimi ve derin öğrenme modellerine uygun olması için normalize edilir.  

 

İkinci adımda ise, veri kümesi makine öğrenimi modelleri için eğitim (%80) ve test 

(%20) olarak bölünür. Ayrıca, derin öğrenme modelleri için eğitim kümesinin %20'si 

bir doğrulama kümesi olarak oluşturulur. Üçüncü adım ise özellik seçimidir. Bu 

adımda, en iyi özellik alt kümesini seçmek için hem ANOVA hem de Rastgele 

Ormanlara dayanan hibrit bir özellik seçim yöntemi kullanılarak gereksiz özellikler 

düşürülür. Dördüncü adımda, birçok makine öğrenimi ve derin öğrenme modeli eğitim 

kümesi kullanılarak eğitilir. Deney kısmında, bireysel modellerin (hem makine 

öğrenimi hem de derin öğrenme modelleri için) birleşiminin yanı sıra bu bireysel 

modellerin topluluğunun öğrenilmesini içerir. Değerlendirme aşamasında, bireysel, 

birleşim ve topluluk modellerinin performansını değerlendirmek için kesinlik, 

hatırlama, F1 puanı ve doğruluk kullanılır. Bunun yanı sıra en iyi özellik 

kombinasyonunu bulmak için üç ayrı özellik seçimi senaryosu gerçekleştirilir. Tüm 

modellerin eğitim süresi de, özellik azaltmanın hesaplama maliyetleri üzerindeki 

etkisini görmek için hesaplanır. Sonuçlar, en iyi modellerin XGB, LGBM ve RF 

modelleri olduğunu göstermektedir. Bunun yanı sıra, ML topluluk modeli iyi bir 

performans göstermektedir. Özellik seçim yöntemi, özellikle XGB ve LGBM gibi 

yüksek hesaplama modelleri için eğitim süresini önemli ölçüde azaltırken, 

performansta ciddi bir düşüş olmaksızın gerçekleştirmiştir. En iyi elde edilen 

doğruluk, %99,87 ile XGB modeline aittir. Çalışma ayrıca güncel en iyi 

metodolojilerle kıyaslanmıştır. Kıyaslama, mevcut çalışmanın tüm önceki 

çalışmalardan daha üstün olduğunu kanıtlamaktadır. Gelecekteki çalışmalar, 

performansı iyileştirmek için hiperparametre optimizasyonu düşüncesine 

odaklanabilir. 

 

Anahtar Kelimeler: Makine Öğrenmesi, Derin Öğrenme, Fidye Yazılımı Tespiti, 

Çok Sınıflı Sınıflandırma, Öznitelik Seçimi, Güvenlik. 

Bilim Kodu :  92432 



viii 

 

 

ACKNOWLEDGMENT 

 

First and foremost, I wish to express my heartfelt gratitude to Allah Almighty for his 

divine guidance and blessings throughout my educational journey. Additionally, I 

extend my thanks to Karbuk University for affording me this opportunity to undertake 

my graduate studies. A special acknowledgment goes to my supervisor, Assist. Prof. 

Dr. İsa AVCI, and the dedicated professionals at this renowned institution. I sincerely 

appreciate my husband, a steadfast pillar of support whose consistent encouragement 

and faith have been instrumental in my academic pursuits. My thanks are also extended 

to my colleague, Mr. Abbadullah H. SALEH, for his valuable advice and generous 

knowledge sharing. 

 

Lastly, I wish to convey my thanks and my enduring love for Turkey and my 

homeland, Iraq.



ix 

 

 

CONTENTS 

Page 
APPROVAL ................................................................................................................. ii 

ABSTRACT ................................................................................................................ iv 

ÖZET........................................................................................................................... vi 

ACKNOWLEDGMENT ........................................................................................... viii 

CONTENTS ................................................................................................................ ix 

LIST OF FIGURES ................................................................................................... xii 

LIST OF TABLES .................................................................................................... xiv 

ABBREVIATIONS ................................................................................................... xv 

 

PART 1 ........................................................................................................................ 1 

INTRODUCTION ....................................................................................................... 1 

1.1. SYSTEM AIMS ............................................................................................... 1 

1.2. SYSTEM IMPORTANCE ............................................................................... 2 

1.3. SYSTEM OBJECTIVES .................................................................................. 2 

1.4. SCOPE OF THE STUDY ................................................................................ 3 

1.5. STUDY CONTRIBUTION .............................................................................. 3 

1.6. STUDY PROBLEM AND PROPOSED SOLUTION ..................................... 3 

1.7. SYSTEM HYPOTHESES ................................................................................ 4 

1.8. SYSTEM BLOCK DIAGRAM........................................................................ 4 

 

PART 2 ........................................................................................................................ 6 

LITERATURE REVIEW............................................................................................. 6 

2.1. RANSOMWARE TAXONOMY ..................................................................... 7 

2.2. RANSOMWARE ANALYSIS ........................................................................ 9 

2.3. ARTIFICIAL INTELLIGENCE RULE IN RANSOMWARE DETECTION 9 

2.4. RELATED WORK ......................................................................................... 10 

2.4.1. Ransomware Detection Studies .............................................................. 11 

2.4.2. Ransomware Prevention Studies ............................................................ 15 

2.4.3. Ransomware Datasets ............................................................................. 16 



x 

Page 
PART 3 ...................................................................................................................... 18 

MATERIALS AND METHODS ............................................................................... 18 

3.1. THE PROPOSED METHODS ...................................................................... 18 

3.2. MATERIALS ................................................................................................. 20 

3.2.1. Dataset .................................................................................................... 20 

3.2.2 Software ................................................................................................... 20 

3.3. PERFORMANCE EVALUATION ............................................................... 21 

3.4. PROPOSED ML METHODOLOGIES ......................................................... 22 

3.4.1. Decision Trees ........................................................................................ 22 

3.4.2. Random Forests ...................................................................................... 24 

3.4.3. k-Nearest Neighbors (k-NN) .................................................................. 24 

3.4.4. Extreme Gradient Boosting (XGBoost) ................................................. 25 

3.4.5. Adaptive Boosting (AdaBoost) .............................................................. 26 

3.4.6. Light Gradient Boosting Machine (LGBM) ........................................... 26 

3.5. FEATURE SELECTION ............................................................................... 28 

 

PART 4 ...................................................................................................................... 31 

RESULTS AND DISCUSSIONS .............................................................................. 31 

4.1. DATASET PREPROCESSING RESULTS ................................................... 31 

4.3. EVALUATION RESULTS OF ML MODELS WITHOUT FEATURE 

SELECTION .................................................................................................. 34 

4.4. EVALUATION RESULTS OF ML MODELS WITH FEATURE 

SELECTION .................................................................................................. 44 

4.4.1. Different Feature Selection Scenarios Comparison ................................ 54 

4.5. DISCUSSION ................................................................................................ 58 

4.5.1. Discussion of the Effect of Feature Selection Algorithm on The 

Performance of Ransomware Detection Models ............................................ 58 

4.5.2. Discussion of the Fusion/Ensemble Dl/Ml Models Results ................... 62 

4.5.2.1. ML Fusion and Ensemble Discussion............................................. 62 

4.5.2.2. DL Fusion and Ensemble Discussion ............................................. 63 

4.6. COMPARISON WITH THE CURRENT STATE-OF-ART ......................... 64 

 

PART 5 ...................................................................................................................... 65 

CONCLUSION .......................................................................................................... 65 



xi 

Page 
REFERENCES ........................................................................................................... 67 

 

RESUME ................................................................................................................... 72 

 

  



xii 

 

 

LIST OF FIGURES 

Page 

Figure 1.1.  Block diagram of the ransomware detection model .................................. 5 

Figure 2.1  Costs of damage caused by ransomware attacks according to .................. 6 

Figure 2.2  Crypto-type ransomware attack steps ....................................................... 8 

Figure 2.3  locker -type ransomware attack steps........................................................ 8 

Figure 2.4  Ransomware analysis types ....................................................................... 9 

Figure 2.5.  ML/DL ransomware detection steps ....................................................... 10 

Figure 2.6.  Ransomware datasets comparison ........................................................... 17 

Figure 3.1.  The proposed ransomware detection method .......................................... 20 

Figure 3.2.  Part of DT model architecture ................................................................. 23 

Figure 3.3.  RF model architecture ............................................................................. 24 

Figure 3.4.  K-NN concept ......................................................................................... 25 

Figure 3.5.  Boosting ensemble concept ..................................................................... 26 

Figure 3.6.  LGBM growth ......................................................................................... 27 

Figure 4.1.  Part of the dataset before and after encoding .......................................... 34 

Figure 4.2.  Confusion matrixes and ROC plots with AUC values of the individual 

ML and DL models achieved by evaluating trained models ................... 36 

Figure 4.3.  Confusion matrixes and ROC plots with AUC values of the 

fused/ensemble ML and DL models achieved by evaluating trained 

models ..................................................................................................... 38 

Figure 4.4.  Loss and accuracy of the individual and fused DL models..................... 39 

Figure 4.5.  Confusion matrixes and ROC plots with AUC values of the individual 

ML and DL models achieved by evaluating trained models (with feature 

selection, Number of features=20) .......................................................... 46 

Figure 4.6.  Confusion matrixes and ROC plots with AUC values of the 

fused/ensemble ML and DL models achieved by evaluating trained 

models (with feature selection, Number of features=20) ........................ 48 

Figure 4.7.  Loss and accuracy of the individual and fused DL models (with feature 

selection, Number of features=20) .......................................................... 49 

Figure 5.1.  Training time comparison before and after applying the proposed feature 

selection algorithm .................................................................................. 58 

Figure 5.2.  Performance metrics of all models with and without feature selection. . 61 

 



xiii 

Page 

Figure 5.3.  Performance metrics of Fusion/Ensemble ML models with and without 

feature selection....................................................................................... 62 

Figure 5.4.  Performance metrics of Fusion/Ensemble DL models with and without 

feature selection....................................................................................... 63 



xiv 

 

 

LIST OF TABLES 

Page 

Table 2.1.  Number of ransomware attacks corresponding to each country according 

to statistics of 2022 .................................................................................... 7 

Table 4.1.  Description of the used ransomware dataset ........................................... 31 

Table 4.2.  Individual models accuracy, precision, recall and F1-score metrics. ...... 40 

Table 4.3.  Fused/Ensemble models accuracy, precision, recall and F1-score   

metrics. .................................................................................................... 43 

Table 4.4.  Individual models accuracy, precision, recall and F1-score metrics    

(with feature selection, Number of features=20). ................................... 50 

Table 4.5.  Fused/Ensemble models accuracy, precision, recall and F1-score   

metrics (with feature selection, Number of features=20). ....................... 53 

Table 4.6  Precision, recall, F1-score and accuracy of all scenarios (original and 

feature selection) for all individual ML and DL models. ........................ 55 

Table 4.7.  Precision, recall, F1-score and accuracy of all scenarios (original and 

feature selection) for all fusion/ensemble ML and DL models. .............. 57 

Table 5.1.  A comprehensive comparison between the current study and the  

previous state-of-art ransomware detection and classification 

methodologies. ........................................................................................ 64 

 



xv 

ABBREVIATIONS 

 

ML : Machine Learning 

DL : Deep Learning 

EL : Ensemble Learning 

DT : Decision Trees 

CNN : Convolutional Neural Networks 

RF : Random Forests 

SVM : Support Vector Machines 

IoT : Internet of Things 

K-NN : K-Nearest Neighbor 

LR : Logistic Regression 

CSPE-R : Cost-Sensitive Pareto Ensemble strategy 

CAE : Contractive Auto Encoder 

ELM : Extreme Learning Machine 

SDN : Software Defined Network 

LSTM : Long-Short Term Memory 

TP : True Positives 

TN : True Negatives 

FP : False Positives 

FN : False Negatives 

XGBoost : Extreme Gradient Boosting 

AdaBoost : Adaptive Boosting 

LGBM : Light Gradient Boosting Machine 

HFSBAR : Hybrid Feature Selection Based ANOVA and RF 

ROC : Receiver Operating Characteristic 

AUC : Area Under Curve 

 



1 

 

 

PART 1 

 

INTRODUCTION 

 

Ransomware is a type of malware that can cause damage to information by encrypting 

it or preventing users from getting their files [1], [2]. Ransomware types are 

developing and increasing which makes the need to detect and classify them an 

essential network security topic [3], [4].  Feature selection along with the ransomware 

detection process can provide much more accurate models [5], [6]. This study will try 

to detect and classify the network ransomware types based on a new method 

combining feature selection with the efficiency of fused Machine Learning (ML) and 

Deep Learning (DL) best models. 

 

1.1. SYSTEM AIMS 

 

1- Detect ransomware through the network before it encrypts files and valuable 

used information. 

2- Classify many types of ransomware depending on the feature selection of the 

best features. 

3- Select the most appropriate features (predictors) that can precisely identify the 

ransomware and avoid redundant features, leading to a faster and more efficient 

detection rate. 

4- Utilize the efficiency of machine learning and deep learning algorithms for 

ransomware detection. 

5- Using large datasets (with a large number of features and records) to evaluate 

the proposed methods effectively. 
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1.2. SYSTEM IMPORTANCE 

 

Most ML and DL studies in the field of network security are guided to malware and 

intrusion detection [7]. Few studies were introduced in the field of ransomware 

detection and fewer ones were developed to deal with ransomware classification.  The 

current study will deal with the problem of ransomware detection and type 

classification. The development in ransomware types makes the importance of such 

studies very critical. Using new technologies in ML and DL, especially fusion and 

ensemble learning along with the feature selection for redundant data elimination, will 

help improve the performance of ransomware detection and classification (our study's 

main importance). 

 

1.3. SYSTEM OBJECTIVES 

 

1- Improve the traditional methods of ransomware detection by using more 

efficient models and applying enhancement techniques like fusion and 

ensemble learning. 

2- Analyze a ransomware dataset consisting of 203,556 rows, 85 features, and 10 

types of ransomware. 

3- Devolve and compare multiple machine learning (decision trees DT, random 

forests RF, support vector machines SVM, XGBoost, etc.) and deep learning 

algorithms (1D convolutional neural networks 1D-CNN, Dense, long-short 

term memory LSTM, etc.) for ransomware detection. 

4- Evaluate and compare performance using different feature selection scenarios. 

5- Apply many experiments to analyze the effect of different hyperparameters 

(learning rate, preprocessing, layers architectures, etc.) on the performance of 

the models. 

6- Compare the current proposed methods with the state-of-the-art related works 

in the field of ransomware detection to define the efficiency and limitations of 

the current study. 
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1.4. SCOPE OF THE STUDY 

 

This study focuses on the development of many ML and DL models for the aim of 

ransomware detection and classification. The study will build a hybrid feature 

selection algorithm based on both filter and wrapper feature selection methods to make 

a powerful feature selection method (which was not introduced before) that will select 

the best subset for ML and DL training steps. The study will evaluate the trained 

models using an open-source big dataset with high dimensionality complexity. The 

study will use the fusion techniques to ensure the best performance. 

 

1.5. STUDY CONTRIBUTION 

 

The main contribution of the current study can be concluded as follows: Build a 

comprehensive ransomware detection system based on the efficient ransomware 

feature selection, fusion, and ensemble learning of the best ML and DL models. The 

system will be based on a big dataset (a large number of records and high 

dimensionality). The system will improve the security of network processes by 

detecting potential ransomware before encrypting files or damaging data. 

 

1.6. STUDY PROBLEM AND PROPOSED SOLUTION 

 

The main problem of the current research is that ransomware attackers can encrypt 

valuable data, leading to data loss. This problem could be essential, especially for 

financial and military applications. The existing ransomware detection methods are 

good in detecting some types of ransomware, but to build a comprehensive 

ransomware detection system, the traditional methods failed. In the current research, a 

hybrid feature selection algorithm and fusion and ensemble deep learning models will 

be used to detect and classify ransomware types. 

 

The current study will solve many problems of the existing systems: 

 

1. Many existing systems didn't take into account different types of ransomware, 

rather, they classified actions into ransomware of benign. In the current study, 
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the multi-class classification of 10 types of ransomware will be used to build a 

more efficient ransomware detection system. 

2. Most existing systems used small or moderate datasets, leading to a lack in 

many cases of ransomware actions. In the current study, a big dataset will be 

used. 

3. Most existing systems used a dataset with a small number of predictors (low 

dimensionality complexity). In the current study, 85 features (predictors) will 

be used (which is considered a high-level dimensionality complexity). The 

efficient feature selection algorithms will be used (fusion of two different 

fusions can be used to get the best combination of features). 

4. Many existing systems used specific types of deep learning models, which 

were good for detecting but not classifying all potential types of ransomware. 

In the current study, fusion, and ensemble learning are proposed to build the 

most effective ransomware detection and classification system. 

 

1.7. SYSTEM HYPOTHESES 

 

The current system introduces the following hypotheses: 

 

1- The hybrid feature selection algorithm will enhance the performance by 

reducing the training time for all trained models and preserving high 

performance. 

2- Machine learning and deep learning models can be used for the aim of 

ransomware detection and classification. 

3- The fusion of the best-trained models will enhance the performance of the 

ransomware detection and classification process. 

 

1.8. SYSTEM BLOCK DIAGRAM 

 

The proposed ransomware detection model is described in Figure 1.1. In the first step, 

the ransomware dataset is acquired. In this study, the "Android Ransomware 

Detection" dataset is suggested. This dataset is available for free on Kaggle  [8]. Then, 

the preprocessing steps are applied to transform the dataset into a better form. The 
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preprocessing steps include cleaning, encoding, normalization, etc. In the third step, 

the dataset is split into train, validation, and test sets. The training and validation sets 

will be used in the training process, while the test set will be used in the evaluation 

step. The fourth step is the feature selection process in which the most significant 

features of the pre-processed dataset will be chosen, and the redundant features will be 

dropped. The training of the machine learning and deep learning models is the next 

step in which many models will be used. The best models will be used in the fusion 

step to enhance the performance. The final step is the evaluation step by which the 

individual and fused models will be evaluated using many performance evaluation 

metrics. 

 

 

Figure 1.1. Block diagram of the ransomware detection model. 

 

The rest of the thesis will be organized as follows: The literature review and related 

work will be introduced in Chapter 2, while Chapter 3 will include a description of the 

proposed methodologies and tools. Chapter 4, on the other hand, will show the 

experiments and results, while the discussion and conclusion will be listed in Chapter 

5. 
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PART 2 

 

LITERATURE REVIEW 

 

Malware, known as ransomware, can harm data by encrypting it or prohibiting users 

from accessing their files [1, 2, 9]. Locker ransomware and cryptography ransomware 

are the two basic categories under which ransomware is typically divided. The user's 

files are encrypted in the second case, whereas in the first, just the critical computer 

files are [10]. According to [11], the cost of ransomware attacks is increasing 

significantly and will be very big by 2030. Figure (2-1) shows the expected damage 

costs caused by ransomware attacks from 2015 to 2030 [11]. 

 

 

Figure 2.1. Costs of damage caused by ransomware attacks [11]. 

 

Most of the world's countries are affected by ransomware attacks every day. However, 

the USA is considered the most affected country by ransomware attacks. Table 2. 

shows the number of ransomware attacks related to each country according to statistics 

for 2022 [12].
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Table 2.1. Number of ransomware attacks corresponding to each country according to 

statistics of 2022 [12]. 

C
o

u
n

tr
y

 

U
S

A
 

U
K

 

S
p

a
in

 

B
ra

zi
l 

G
er

m
a

n
y

 

C
o

lo
m

b
ia

 

N
et

h
er

la
n

d
s 

It
a

ly
 

N
o

rw
a

y
 

A
u

st
ra

li
a

 

N
u

m
. 

A
tt

a
ck

s  

217.49 

 

71.35 

 

52.68 

 

21.81 

 

20.17 

 

15.52 

 

13.64 

 

12.47 

 

8.36 

 

7.62 

 

After attacking devices, the attacker requests ransomware from the victim to send the 

decryption key of the encrypted files. According to statistics, 58% of victims agree 

with the attacker's will and pay the payment. However, only 10% of those who decide 

to pay can't restore their files even after paying [13]. In some cases, victims pay double 

payments to decrypt their files. 

 

The bad issue about ransomware attacks is that they are the most frequent malware 

attacks since they can attack all life fields, including financial companies, banks, 

insurance systems, government facilities, healthcare facilities, etc. [14], [15], [16]. 

 

2.1. RANSOMWARE TAXONOMY 

 

Ransomware is commonly classified into two main categories: crypto and locker [17]. 

Each one of those two types includes several sub-types. Both varieties of ransomware 

target a victim's device, exploiting operating system weaknesses as soon as the victim 

opens the attachment or clicks the link in the email. In the crypto kind Figure 2.2, the 

ransomware targets and encrypts just particular user files based on their extensions. 

The adoption of a 24-bit encryption method, which prevents users from decrypting the 

encrypted data without obtaining the key, is the fundamental issue that this 

ransomware-type creates [18].  Infected websites and other exploit kits can be used to 

disseminate ransomware. To avoid being apprehended, the assailant in this instance, 

demands a Bitcoin ransom. Occasionally, ransomware uses network propagation 

weaknesses in the operating system to its advantage [18].  
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Figure 2.2 Crypto-type ransomware attack steps. 

 

Locker ransomware, on the other hand, works in different ways. As soon as the victim 

receives an email with an attachment or link and opens these materials, his device is 

locked, and gives him instructions to follow to unlock it. In some cases, after paying 

the ransom, user devices are still locked [19]. Figure 2.3 illustrates the main processes 

of the locker ransomware type. 

 

 

Figure 2.3. Locker -type ransomware attack steps. 
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2.2. RANSOMWARE ANALYSIS 

 

There are three types of ransomware analysis: static, dynamic, and hybrid. Figure 2.4 

shows these types [20, 21].  Static analysis: With this type, it is possible to 

determine whether a file is infected by looking at features like hashes, opcodes, byte 

sequences, etc. Without having to execute it, the binary file is checked. With this 

method, a lot of information may be extracted, including malware commands, targets, 

control infrastructure, etc. The most popular static analysis programs are regarded as 

PeStudio, ExeInfo PE, HxD, CyberChef, and IDA Pro. This method is quick, but it 

can't find ransomware that uses code obfuscation techniques. As part of the dynamic 

analysis, a sample of the ransomware is run in a controlled environment, such as a 

virtual environment (sandbox), which allows the researcher to observe the ransomware 

behavior without endangering the system. 

 

 

Figure 2.4. Ransomware analysis types. 

 

2.3. ARTIFICIAL INTELLIGENCE RULE IN RANSOMWARE DETECTION 

 

Artificial Intelligence AI plays an essential role in detecting malware and ransomware 

in mobile devices, IoT infrastructures, and network devices. Machine learning ML and 
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deep learning DL-based methods are the most used AI techniques to detect 

ransomware. However, ML is limited to the scanning process only. Not only detection 

but also prevention techniques are also essential to protect users' files and devices. ML 

and DL can both be used to do these missions with a transcendence of the DL 

techniques against the ML models, especially when training models with vast data [22, 

23].  Figure 2.5 shows the general steps used in ML/DL models to detect ransomware. 

First, the dataset is collected and pre-processed to remove undesired data (data 

cleaning) and transform data into a suitable form (encoding). Then, the feature 

selection and extraction methods are used to define the most appropriate features to be 

included in the training process. Later, the dataset is split into train, validation, and 

testing. The training and validation set is used in the training process, while the test set 

is used in the evaluation process [24-26]. 

 

 

 

Figure 2.5. ML/DL ransomware detection steps. 

 

2.4. RELATED WORK 

 

In this section, the related work will be classified into two subcategories: the 

ransomware detection studies and the ransomware prevention studies. 
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2.4.1. Ransomware Detection Studies 

 

Sgandurra et al. [27] introduced the EldeRan-based ML model to detect ransomware 

on a dataset consisting of 582 ransomware and 942 normal cases (too small dataset).  

They used the feature selection methods and obtained an accuracy of 96.34%. Their 

study utilized a small dataset. In 2017, Vinayakumar et al. [28] implemented shallow 

and deep models for ransomware detection purposes. They applied the dynamic 

analysis of seven different ransomware types, and Application Programming Interface 

(API) calls were collected as features for their AI models (support vector machines 

SVM and multi-layer perceptron MLP).  

 

Cohen and Nissim [29] introduced an ML-based ransomware detection model based 

on random forests. Their method detected anomalous virtual machine states besides 

the other ransomware. They achieved an accuracy of 96.6% using Virus Total, open 

malware, VXVault, and Zelster datasets. They detected five types of ransomware. 

 

Shaukat et al. [30] proposed a ransomware detection system based on ML algorithms 

and gradient boosting algorithms. They utilized a dataset consisting of 475 

ransomware and 442 benign records. They achieved an accuracy of 98.25%. They used 

a small dataset and the binary classification method. 

 

Maniath et al. [31] used the LSTM deep model for the aim of ransomware detection. 

They applied no feature selection algorithm. They utilized a dataset of 157 ransomware 

only. The results showed that the test accuracy was 96.67%. Their used dataset was 

too small besides the fact that they performed the binary classification problem 

(ransomware or normal). 

 

In a study by Takeuchi et al. [32], researchers used the SVM model for ransomware 

detection. There were no feature selection methods. Their study used a dataset of 276 

ransomware and 312 benign. The results indicated an accuracy of 97.18%, recall of 

97.13%, and precision of 98.34%, respectively. The dataset used was too small, and 

they used only 4 types of ransomware. 
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Hwang et al. [33] introduced a two-stage ML model for ransomware detection based 

on RF and Markov models. Their experiments were conducted on a dataset of 2507 

ransomware and 3886 normal cases. They applied no feature selection methods and 

achieved an accuracy of 97.3%. Although their dataset was not too small it had only 

6063 records. They used the binary classification of only two types (ransomware and 

benign). 

 

Zuhair et al. [34] proposed a hybrid ML model consisting of Naïve Bayes (NB) and 

DT classifiers for the aim of multi-class classification ransomware detection. Their 

dataset consisted of 35000 ransomware and 500 benign files. No feature selection 

methods were applied. The experiments showed that the ransomware classification 

accuracy was 97%. 

 

Manavi and Hamzeh [35] proposed a ransomware detection approach using features 

extracted from the PE headers of the executable files. They used the convolutional 

neural network CNN as a classifier and achieved an accuracy of 93.33% on a subset 

of the Virus Share dataset consisting of 1000 ransomware and 1000 benign records. 

They detected only four types of ransomware. Almousa et al. [36] introduced a new 

approach to ransomware detection using API calls and machine learning algorithms. 

They used the dynamic analysis method and sandbox platform. They trained many ML 

models, including RF, K-NN, and SVM, on 58 ransomware and 66 benign files. They 

achieved an accuracy of 99.18%. Their method detected 12 ransomware types. 

 

A study by Masum et al. [37] proposed a feature-selection-related method by adopting 

various ML methods to classify the security level for the prevention and detection of 

ransomware. Their study used many machine learning algorithms, including DT, RF, 

Logistic Regression (LR), and Neural Networks (NN). The researchers showed that 

their method outperformed the existing ones. However, their used dataset contained 

only three types of ransomware. The results indicated an accuracy of 96.78%. 

 

Zahoora et al. [1] introduced a Cost-Sensitive Pareto Ensemble strategy (CSPE-R) to 

detect Ransomware attacks. The proposed framework exploited the unsupervised deep 

Contractive Auto Encoder (CAE) to transform the underlying varying feature space to 
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a more uniform and core semantic feature space. The experimental results showed that 

the proposed CSPE-R framework performed well against zero-day ransomware 

attacks. Their dataset consisted of 582 ransomware and 942 (very small dataset). Their 

approach achieved a recall of 99%. 

 

Alissa et al. [38] suggested a ransomware detection model based on dwarf mongoose 

optimization and ML algorithms. The enhanced krill herd optimization algorithms 

were used for the feature selection step. An Extreme Learning Machine (ELM) 

classifier was used as an ML model. The used dataset consisted of only 840 samples 

(420 normal and 420 ransomware). Their results indicated accuracies between 98.69% 

and 99.4%. They applied the binary classification (ransomware or normal) without any 

classification of ransomware types. 

 

Fernando et al. [6] proposed a new feature selection algorithm for a ransomware 

detection system called FeSA. The functional technique was compared to other 

systems, such as evolutionary search and harmony search, to measure the degree of 

ransomware exposure, recall, false negative rate, and accuracy. However, the proposed 

mechanism did not adequately account for the impact on the victim node's boot record. 

Additionally, the study did not investigate the ransomware identification and 

prevention paradigm at the gateway, which is a critical location for effective anomaly 

detection and response. Their study used many ML algorithms, including SVM, DT, 

K-NN, and RF. They achieved an accuracy of 98.4% on a CIC-IDS2017 dataset (78 

columns).  

 

Bold et al. [39] introduced a ransomware detection system based on machine learning 

algorithms, including SVM, K-NN, LR, RF, and neural networks. They achieved 

accuracies between 95.56% to 97.61% on a dataset of 730 ransomware and 735 benign. 

Their dataset was small, they didn't use any feature selection methods, and they applied 

binary classification (ransomware or normal). 

 

Rani and Dhavale [40] used many machine-learning algorithms for ransomware 

detection. They used DT, RF, K-NN, SVM, XGBoost, and Logistic Regression LR. 

The best and worst models were XGBoost and K-NN, with accuracies of 98.21% and 
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93.64%, respectively. Their models were trained using a dataset consisting of 582 

ransomware and 942 benign files with 12 different ransomware categories. 

A weighted minimum redundancy maximum relevance WmRmR technique was 

proposed by Ahmed et al. [41]. Their approach decreased the number of selected 

features in order to minimize the computational time. Their methodology detected the 

most essential system calls. They collected a dataset of 1,500 ransomware and benign 

samples. They used different ML classifiers in the classification phase, including K-

NN, SVM, DT, LR, and K-NN. The best-obtained accuracy was 99.3%. 

 

Yassen [42] studied the effect of dataset ages on the performance of ransomware 

detection systems. He collected a dataset of 6545 ransomware from 2008 to 2020 and 

investigated many ML models, including SVM, DT, LR, K-NN, and RF. The study 

extracted 161 features of the old ransomware and 274 features of the new ransomware. 

The results indicated the best accuracy of 97.5% of the RF model. His study utilized a 

moderate dataset without any fusion of the ML models. His study focused on the binary 

classification. 

Herrera-Silva et al. [43] used machine learning algorithms for ransomware detection 

on a very small dataset consisting of 20 ransomware and 20 benign files. They used 

DT, RF, and neural network models. Their approach achieved 99% accuracy. 

However, their dataset was too small, and the binary classification was used. Besides 

that, no feature selection algorithms were used. 

 

A new deep learning model titled "Spline Interpolation envisioned neural networks for 

ransomware detection (SINN-RD) model was proposed by a study by Singh et al. [4]. 

They applied the normalization step to produce new features of the log records. The 

experiments showed that the obtained accuracy was 99.83%. 

 

Silva and Alvarez [43] introduced a dynamic analysis and machine learning-based 

ransomware detection study. They performed the feature selection mechanism to 

identify the best subset of features for the aim of the ransomware detection process. 

They utilized a public common dataset consisting of only 2000 records of both 

ransomware and benign records. They used well-known ML models, including Naïve 
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Bayes, boosted trees, RF, and neural networks. They used a small dataset. 

 

The Minerva ransomware detection method was suggested by a study by Hitaj et al. 

[44]. Their method was file-based in which they used a time window to build the 

behavioral profiles of the benign and ransomware files. They utilized two ransomware 

datasets: the ShieldFs and Cerberus, and the RF algorithm. Their results indicated that 

their method achieved an accuracy of 99.45%. They applied the binary classification 

without defining any ransomware type. 

 

2.4.2. Ransomware Prevention Studies 

 

Prevention is the process of protecting resources from ransomware attacks by studying 

many resource properties. However, few researchers have studied the prevention idea 

[45]. 

 

Song et al. [46] proposed a ransomware prevention method in Android systems based 

on a statistical analysis of the I/O rates, memory consumption, and CPU usage. Their 

method depended on resource monitoring to define any possible processes with 

undesired performance. 

 

Lee et al. [56] designed a ransomware prevention system to monitor networks, files, 

logs, and servers in real time to define any possible undesired processes. Their method 

was based on abnormal behavior analysis in a cloud environment called CloudRPS. 

Results showed that the detection process could be enhanced, and the damage might 

be reduced using the proposed CoudRPS system. 

 

In their study, AlSabeh et al.[47] checked specific actions that ransomware performs 

to identify its execution environment. Their proposed methodology includes 

intercepting Windows API calls to detect if a process attempts to identify its 

surroundings. The approach terminates the process when such activity is detected, 

preventing a potential attack. They achieved an accuracy of 91%. 
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Research by Wani and Revathi [48] focused on the threat of ransomware to IoT 

devices. They introduced a detection model for detecting ransomware attacks on IoT 

systems. Their proposed solution involves using a Software Defined Network (SDN) 

gateway to monitor incoming traffic to IoT networks actively. Additionally, 

ransomware attacks are identified and mitigated through policies created in the SDN 

controller. Their method achieved an accuracy of 97.9%. 

 

Ibrahim et al. [49] proposed a ransomware prevention system in the cloud –Enabled 

PureOS. They developed a parameterized categorization strategy for functional 

classes and proposed features based on real-world ransomware samples. They also 

introduced a set of criteria that specified the most frequently observed attributes and 

analyzed both behavior and insights. They utilized a distinct operating system and 

specific cloud platform to enable remote access and file collaboration throughout the 

experimental infrastructure. They successfully detected and prevented both state-of-

the-art and modified ransomware attacks. The combined logs revealed a consistent and 

satisfactory detection rate of 89%. 

 

A hidden decoy file was used by Lin and Lee [50] to prevent ransomware from 

destroying users' files. The technique was based on placing a decoy file in the computer 

and letting a monitoring process track its status. Once the decoy file is changed or 

damaged by ransomware, the computer is shut down immediately as a prevention act. 

The proposed method achieved a protection rate of 98.82%. 

 

2.4.3. Ransomware Datasets 

 

There are many ransomware datasets. Some of them contain samples of ransomware 

and normal tasks without any classification of the ransomware types, while a few of 

them contain different types of ransomware and can be used for classification 

purposes. 

 

Some of these datasets are small, while others contain a large number of records that 

are more dependable and universal. Figure 2.6 contains a comparison between the most 

commonly used ransomware datasets in the literature [51]. 
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Figure 2.6. Ransomware datasets comparison. 

 

The main limitations of the previous studies can be concluded in the following: 

 

1. Most of the previous studies used binary classification (ransomware or normal) 

without any type of classification. 

2. Most of the previous studies used small datasets which reduced the universality 

of these systems. 

3. Some of the studies didn't use the feature selection technique (this led to high 

computational training time). 

4. Only too few studies used some form of fusion or ensemble learning. 

5. Although small datasets, some studies recorded low or moderate accuracies. 
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PART 3 

 

MATERIALS AND METHODS 

 

3.1. THE PROPOSED METHODS 

 

The proposed methods of the current study consist of the following steps that are 

illustrated in Figure 3.1: 

 

1- Obtain dataset: The main part of the study is the dataset since every next step 

is based on the selection of the dataset. For this study, the "Android 

Ransomware Detection" dataset is suggested. This dataset is available for free 

on Kaggle  [8]. It includes 10 different ransomware types and the normal 

condition so it's a very good choice for the current mession.  

2- Preprocessing: In this step, many tasks will be applied to the dataset to 

transform it into the most suitable case. The preprocessing steps include data 

cleaning, label encoding, feature encoding, and balancing. 

3- Dataset split: Into training, validation, and test sets. Training and validation 

sections are used through the training process, while the test set is used for 

model evaluation after training is ended. 

4- Feature selection: This step is essential in this system since it will select the 

most promised features to serve as predictors for the next ML and DL training 

process. In this study, a hybrid method of wrapper and filter methods to get a 

robust, efficient feature selection algorithm. The output of this step will be the 

selected subset of features that will be used for the next training steps. 

5- Model training and validation: After getting the best subset of features, many 

ML and DL models will be trained using this subset of features. Further, the 

same ML and DL models will be trained using the original entire features to 

compare the two scenarios in terms of time and accuracy to identify the 

efficiency of the proposed feature selection method. 
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For this step, we suggest using the following models:  

 

A- RF, DT, SVM, XGBoost, Adaboost 

B- Ensemble of ML models 

C- Fusion of ML models using score-level fusion by which the matching score 

of the individual ML models will be computed then the final fused score 

will be conducted using equation (3.1): 

 

𝑆𝑐𝑜𝑟𝑒𝐹 =
1

∑𝑤
(∑ 𝑤𝑖 ∗ 𝑠𝑐𝑜𝑟𝑒𝑖

𝑚
𝑖=1 )               (3.1) 

 

Where ScoreF is the final fused score, m is the number of individual models, wi is the 

weight of individual model i, and the score is the score of the individual model score. 

Weight is a scalar value that is used to give the most attention to the best individual 

model so that the model with a high score has a better performance than the model 

with a low score. 

 

D- 1D-CNN model 

E- LSTM model  

F- Ensemble of DL models  

G- Fusion of DL models using score-level fusion. 

 

6- Model evaluation: in this step, the evaluation metrics are used to assess the 

trained model using the test set. This step is essential to ensure that the best 

model is built. 
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Figure 3.1. The proposed ransomware detection method. 

 

3.2. MATERIALS  

 

3.2.1. Dataset 

 

In the current study, the "Android Ransomware Detection" dataset [8]. This dataset 

contains information about Android devices, including the monitoring records of the 

network. This information is used to define the type of network processes (normal or 

ransomware). The dataset consists of 392034 records and 84 features (predictors). The 

target of the dataset is the "label" column, which includes 11 different ransomware 

types and the normal condition. This dataset is the best choice for the current study 

since it includes a large number of samples and 11 various types of ransomware. 

 

3.2.2 Software 

 

The current study will be implemented in Python programming language. Many 

libraries will be used, including the following: 

 

1- Numpy: matrix processing library. 

2- Sklearn: sickit learn library which is used to build, train, and evaluate machine 

learning models. 

3- Opendatsets: To load CSV files. 
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4- ipython-autotime: used to compute training time. 

5- Tensorflow and Keras: to build and train deep learning models. 

6- Matplotlib: for plotting options. 

 

3.3. PERFORMANCE EVALUATION 

 

Performance evaluation is the last step of any ML model since it contains the 

evaluation of the trained models using many performance metrics to assess the 

performance and suggest modifications. 

In the current study, the following evaluation metrics are used [52]: 

 

1- Accuracy: this metric calculates the general accuracy of the model and is 

given as Equation (3.2) shows. 

 

ACC= (TP+TN)/(TP+TN+FP+FN)   (3.2) 

 

2- Precision: precision computes the percentage (ratio) of the true predictions 

that are made by the ML model.  

 

Precision= TP/(TP+FP)   (3.3) 

 

3- Recall: recall calculates the percentage of samples that are correctly 

classified by the ML model (among all true and false samples) as shown in 

Equation (3.4).  

 

Recall= TP/(TP+FN)  (3.4) 

 

4- F1-score: is a mixed measure of precision and recall and is given as 

Equation (3.5) illustrates. 

 

F1-score= (2*Precision*Recall)/(precision+recall)       (3.5) 
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Where, TP: true positives; the number of correctly accepted samples of a specific class 

of the dataset. 

 

TN: True Negatives; the number of correctly rejected samples of a specific class of the 

dataset. 

FP: False Positives; the number of incorrectly accepted samples of a specific class of 

the dataset. 

 

FN: False Negatives; the number of incorrectly rejected samples of a specific class of 

the dataset. 

 

Training Time: The detailed confusion matrix of the partial classes will also be drawn 

to define the individual evaluation metrics for each class of the dataset.  

 

The accuracy, precision, and F1 score will also be computed for all individual classes 

using the classification report. In the end, we will define the best training scenario 

which has the best performance. 

 

3.4. PROPOSED ML METHODOLOGIES 

 

In this study, many individual and fused ML and DL models are proposed. In this 

section, a detailed explanation of the used algorithms and methodologies will be 

introduced. 

 

3.4.1. Decision Trees 

 

Decision trees are one of the most commonly used machine learning algorithms that 

divide the feature space into regions (splits) based on the feature values (gain). DT 

makes predictions by following a path from the root node (initially chosen feature) to 

a leaf node, making a tree-like shape, where each internal node represents a decision 

based on a specific feature. Two main concepts are used in the branching operation of 

a decision tree (Gini Impurity and information gain).  The former calculates the degree 

of uncertainty among a set of samples [53]. The Gini impurity is measured using the 



23 

distribution of class labels in a specific node of the DT. It's calculated as Equation (3.6) 

shows.  

 

Gini Index = 1 - (sum of squared proportions of each class label in the node)           (3.6) 

 

Information gain, on the other hand, can also be used to select the best feature for 

branching decisions. It computes the entropy reduction (degree of loss in information) 

which happens due to splitting data based on a selected feature.  

 

Information Gain = Entropy(parent) - [weighted average of entropies of child nodes]      (3.7) 

 

Figure 3.2 shows the DT model [54]. 

 

 

Figure 3.2. Part of DT model architecture. 

 

The main advantages of DT are the ease of use, low training time, handling of both 

numerical and categorical values, the ability to capture the nonlinear relationships 

among features, and the ability to handle missing values and outliers of datasets. 

 

The main limitations of the DT model are the prone to overfitting when going too deep 

in trees, the sensitivity to small variations in data, the lack of smoothness, and the 

tendency to bias when dealing with imbalanced datasets. 
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3.4.2. Random Forests 

 

Random Forests are an ensemble learning model combining many decision trees in a 

unified model called an ensemble. Each tree is built on a random subset of features; 

besides, it uses bootstrapping to produce different training sets. The final prediction is 

made by fusing the predictions of the individual trees. Figure 3.3 shows the 

architecture of the random forest model [54]. 

 

 

Figure 3.3. RF model architecture. 

 

The main advantages of an RF classifier are that it reduces overfitting compared to the 

single DT, it can handle high-dimensional datasets, it's also robust to outliers, it can be 

used to select the best combination of features, and can be used for both classification 

and regression problems. However, it requires a higher computational time than DT, 

it also requires tuning of hyperparameters, and it may not perform well on datasets 

with very correlated features. 

 

3.4.3. k-Nearest Neighbors (k-NN) 

  

K-Nearest Neighbors is a non-parametric model classifying samples based on the 

majority class of their k-nearest neighbors in the feature space of a given dataset [55]. 

The main advantages of the K-NN model are easy implementation and training, it can 

also handle multi-class classification problems, it has good robustness against noise in 
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data, it has no training phase, and fits only small datasets. However, K-NN doesn't fit 

the large dataset, it also requires a good choice of K parameter, and it lacks 

interpretability and requires scaling of features. Figure 3.4 explains how the K-NN 

model works. 

 

 

Figure 3.4. K-NN concept. 

 

3.4.4. Extreme Gradient Boosting (XGBoost) 

 

XGBoost is an enhanced implementation of the gradient boosting (GB) model by 

which an optimization process is applied. XGBoost consists of an ensemble of weak 

prediction models sequentially, optimizing a differentiable loss function. The main 

advantage of this model is that it has high accuracy, it can handle complex and non-

linear relationships of data, it supports different objective functions and evaluation 

metrics, it's scalable and fits large datasets, and it provides a feature selection and 

estimation method. Although these are good attributes, XGBoost is computationally 

expensive, requires hyperparameter tuning, and lacks interpretability compared to 

other simple models.  

 

Figure 3.5 illustrates the boosting ensemble concept that the XGBoost applies. In the 

boosting algorithm, many weak models are used in sequential order so that each model 

learns from the previous model's error to minimize the entire error, and in the end, the 

last model produces the least error rate and the best performance. 
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Figure 3.5. Boosting ensemble concept. 

 

3.4.5. Adaptive Boosting (AdaBoost) 

 

AdaBoost is another ensemble boosting model that combines multiple weak classifiers 

to create a powerful classifier [56]. It specifies weights for each instance in the training 

set, focusing more on misclassified samples in the next iterations. The main advantages 

of this classifier are its ability to handle both numerical and categorical data, good 

performance, less prone to overfitting than individual models, and ability to handle 

imbalanced datasets. However, this model is sensitive to noise and outliers, it is also 

computationally expensive, it requires hyperparameters tuning, and it suffers from 

overfitting in case of choosing bad, weak classifiers. 

 

3.4.6. Light Gradient Boosting Machine (LGBM) 

 

LightGBM (Light Gradient Boosting Machine) is one of the best ML models used for 

classification and regression tasks [57]. It is mainly based on the gradient boosting 

algorithm but it is more efficient and scalable. LGBM is very suitable for large-scale 

datasets. As in the AdaBoost model, LGBM creates an ensemble of weak models 

(decision trees as default) sequentially. LGBM uses gradient-based learning to 

optimize the ensemble of individual models. First, the model is initialized with the 
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mean value of the target column as an initial result. Then, the gradient and Hessian of 

the loss function are computed concerning the prediction of the current individual 

model in the ensemble. After that, a decision tree is built to fit the negative gradient. 

This tree structure is grown using a leaf-wise methodology by which the split with the 

biggest reduction in loss value is chosen as the candidate split in each step. 

 

For the next step, the model is updated and a new tree is added with a decreased 

learning rate. Next, the operation of creating new trees is repeated either for a specific 

number of epochs or when we reach a stopping criterion (minimize the loss function 

to the desired value). Finally, the ensemble of all created trees is constituted and 

weighted by the learning rate. 

 

The main advantages of this model are high performance, the ability to handle large-

scale datasets with a high number of features, low computational time, and flexibility 

since it supports different objective functions and performance evaluation metrics. The 

main limitations of LGBM are: it requires hyperparameters tuning, it's prone to 

overfitting in case of choosing bad values for hyperparameters, difficult to interpret 

compared to individual decision tree model, and the feature importance estimator 

generated by LGBM is based on the number of times a feature is used by the decision 

tree model. 

 

Figure 3.6 shows the LGBM model growth step by step. 

 

 
Figure 3.6. LGBM growth. 
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3.5. FEATURE SELECTION 

 

Feature selection is a part of any pattern recognition task. It performs a selection on 

the entire features (columns or predictors) of the dataset to get the most beneficial 

features and drop the redundant ones. 

 

Feature selection is optional but essential in the case of a huge dimensional dataset 

(dataset with large number of features), since it minimizes the training time, may 

improve the performance, and even improves the interpretability of the model by 

simplifying it. 

 

Some ML models get a little benefit in performance by removing the redundant 

features, while other models' performance can be increased exponentially. However, 

at least, the feature selection methods minimize the training time of the ML model, 

especially for those with high computational time like XGBoost and AdaBoost. 

 

In this study, a new hybrid feature selection algorithm is proposed by combining both 

wrapper and filter-based feature selection methodologies. The algorithm is titled 

"Hybrid Feature Selection Based ANOVA and RF. 

 

Algorithm 1: Hybrid Feature Selection Based ANOVA and RF (HFSBAR) 

Input: 

- X: a feature matrix of shape (n_samples, n_features) 

- y: a target variable of length n_samples 

- k: the initial number of top features to select, default = 10 

- n_estimators: the number of trees for the random forest classifier, default = 100 

 

Output: 

- Selected_features: the selected features 

- Selected_indices: the indices of the selected features in the original feature matrix 
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Steps: 

1: Initialize k, n_estimators 

2: Apply SelectKBest(f_classif, k=k) on X, y -> get X_sel, selected_indices 

3: Initialize RandomForestClassifier with n_estimators=n_estimators 

4: Calculate cross-validation scores of RandomForestClassifier on X_sel, y -> get 

scores 

5: while scores.mean() < 0.9 AND k < X.shape[1] do 

6: Set k = min(k + 10, X.shape[1]) 

7: Apply SelectKBest(f_classif, k=k) on X, y -> get X_sel, selected_indices 

8: Calculate cross-validation scores of RandomForestClassifier on X_sel, y -> get 

scores 

9: end while 

10: Set Selected_features = X[:, selected_indices] 

11: return Selected_features, Selected_indices 

 

 

This algorithm is a hybrid approach to feature selection, combining filter methods 

(ANOVA F-value) and wrapper methods (Random Forest Classifier performance) to 

choose the best features from a given dataset. 

 

1. Function Definition: The function, hybrid_feature_selection, takes four 

parameters: 

• X: the feature matrix 

• y: the target variable 

• k: the initial number of top features to select based on ANOVA F-value, 

default is 10 

• n_estimators: the number of trees in the random forest classifier, default is 

100 

2. Initial Feature Selection: It first selects k top features based on ANOVA F-

value. This is a filter-based method, where features are selected based on their 

relationship with the dependent variable. This is done using the SelectKBest 

class with f_classif method from sklearn, which computes the ANOVA F-value 
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between each feature and the target variable. The top k features with the highest 

F-values are selected. 

3. Performance Evaluation: It then evaluates the performance of the selected 

features using a Random Forest Classifier (a machine learning model) with 

n_estimators trees. The performance is evaluated using 5-fold cross-validation. 

4. Iterative Selection: If the mean cross-validation score is less than 0.9 

(indicating that the model performance is not satisfactory) and k is less than 

the total number of features, it increments k by 10 (or up to the total number of 

features, whichever is smaller), selects the top k features again, and re-

evaluates the performance. This process is repeated until the performance is 

satisfactory (i.e., the mean cross-validation score is at least 0.9) or all features 

are selected. 

5. Return Values: Finally, it returns the selected features and their indices in the 

original feature matrix. 
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PART 4 

 

RESULTS AND DISCUSSIONS 

 

This chapter will contain the experimental part of the current study, including the 

training scenarios and their corresponding results. The experiments will be applied to 

the dataset without and with feature selection. For the feature selection, three different 

scenarios will be applied (5 selected features, 15 selected features, and 20 selected 

features). 

 

4.1. DATASET PREPROCESSING RESULTS 

 

The used ransomware dataset consists of 84 predictors (features) so it's considered a 

high-dimensional dataset and needs a feature selection step to get the best features and 

drop the redundant ones. Table 4.1 includes detailed information on the used dataset's 

features. 

 

Table 4.1. Description of the used ransomware dataset. 

Column Non-Null Count Dtype 

Flow ID 392034 object 

Source IP 392034 object 

Source Port 392034 int64 

Destination IP 392034 object 

Destination Port 392034 int64 

Protocol 392034 int64 

Timestamp 392034 object 

Flow Duration 392034 int64 

Total Fwd Packets 392034 int64 

Total Backward Packets 392034 int64 

Total Length of Fwd Packets 392034 float64 

Total Length of Bwd Packets 392034 float64 

Fwd Packet Length Max 392034 float64 

Fwd Packet Length Min 392034 float64 
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Column Non-Null Count Dtype 

Fwd Packet Length Mean 392034 float64 

Fwd Packet Length Std 392034 float64 

Bwd Packet Length Max 392034 float64 

Bwd Packet Length Min 392034 float64 

Bwd Packet Length Mean 392034 float64 

Bwd Packet Length Std 392034 float64 

Flow Bytes/s 392034 float64 

Flow Packets/s 392034 float64 

Flow IAT Mean 392034 float64 

Flow IAT Std 392034 float64 

Flow IAT Max 392034 float64 

Flow IAT Min 392034 float64 

Fwd IAT Total 392034 float64 

Fwd IAT Mean 392034 float64 

Fwd IAT Std 392034 float64 

Fwd IAT Max 392034 float64 

Fwd IAT Min 392034 float64 

Bwd IAT Total 392034 float64 

Bwd IAT Mean 392034 float64 

Bwd IAT Std 392034 float64 

Bwd IAT Max 392034 float64 

Bwd IAT Min 392034 float64 

Fwd PSH Flags 392034 int64 

Bwd PSH Flags 392034 int64 

Fwd URG Flags 392034 int64 

Bwd URG Flags 392034 int64 

Fwd Header Length 392034 int64 

Bwd Header Length 392034 int64 

Fwd Packets/s 392034 float64 

Bwd Packets/s 392034 float64 

Min Packet Length 392034 float64 

Max Packet Length 392034 float64 

Packet Length Mean 392034 float64 

Packet Length Std 392034 float64 

Packet Length Variance 392034 float64 

FIN Flag Count 392034 int64 

SYN Flag Count 392034 int64 

RST Flag Count 392034 int64 

PSH Flag Count 392034 int64 

ACK Flag Count 392034 int64 
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Column Non-Null Count Dtype 

URG Flag Count 392034 int64 

CWE Flag Count 392034 int64 

ECE Flag Count 392034 int64 

Down/Up Ratio 392034 float64 

Average Packet Size 392034 float64 

Avg Fwd Segment Size 392034 float64 

Avg Bwd Segment Size 392034 float64 

Fwd Header Length.1 392034 int64  

Fwd Avg Bytes/Bulk 392034 int64 

Fwd Avg Packets/Bulk 392034 int64 

Fwd Avg Bulk Rate 392034 int64 

Bwd Avg Bytes/Bulk 392034 int64 

Bwd Avg Packets/Bulk 392034 int64 

Bwd Avg Bulk Rate 392034 int64 

Subflow Fwd Packets 392034 int64 

Subflow Fwd Bytes 392034 int64 

Subflow Bwd Packets 392034 int64 

Subflow Bwd Bytes 392034 int64 

Init_Win_bytes_forward 392034 int64 

Init_Win_bytes_backward 392034 int64 

act_data_pkt_fwd 392034 int64 

min_seg_size_forward 392034 int64 

Active Mean 392034 float64 

Active Std 392034 float64 

Active Max 392034 float64 

Active Min 392034 float64 

Idle Mean 392034 float64 

Idle Std 392034 float64 

Idle Max 392034 float64 

Idle Min 392034 float64 

 

After applying the encoding, the textual columns will be transformed into a numerical 

form as Figure 4.1. 
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(a) 

 

(b) 

Figure 4.1. Part of the dataset (a) before and (b) after encoding. 

 

After that, the normalization process is applied to ensure that all column values have 

standard values and no one can bias the learning process. 

 

In the next step, the dataset is split into train and test sets so that the training size is 

313627 samples, while the test size is 78407 samples. Now the training and test sets 

are ready for the training step. 

 

4.3. EVALUATION RESULTS OF ML MODELS WITHOUT FEATURE 

SELECTION 

 

In this scenario, the ML models will be trained using the entire dataset without any 

feature selection. Figure 4.2 shows the confusion matrixes and ROC plots with AUC 

values of the individual ML and DL models achieved by evaluating trained models 

using the test set. In the ROC plot, the AUC of each class of the target column 

(ransomware type) is also provided. 
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K-NN ROC 

 
DT CM 

 
DT ROC 
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AB CM 

 
AB ROC 

 
XGB CM 

 
XGB ROC 

 
1D-CNN CM 

 
1D-CNN ROC 

 
LSTM CM 

 
LSTM ROC 

 

Figure 4.2. Confusion matrixes and ROC plots with AUC values of the individual ML 

and DL models achieved by evaluating trained models 
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Figure 4.2. shows that the best individual model is the XGB model, and the second 

best model is the LGBM model in terms of confusion matrix and ROC. The registered 

AUC of the XGB model is almost 1 (100%) in all ransomware types. The worst models 

are the AdaBoost and K-NN models, which is normal since the K-NN model doesn't 

fit the large datasets, and the AdaBoost model needs a hyperparameters tuning step to 

get a good accuracy. Figure (4-2) shows that DL models achieved a lower performance 

than the ML models. However, the LSTM model outperforms the 1D-CNN, K-NN, 

and AdaBoost models. For the DL models, a percentage of 20% of the training set is 

considered a validation set for the training process. 

 

Figure 4.3. includes the confusion matrixes and ROC plots for the fusion models and 

ensemble models. 

 

 

ML-based Fusion CM 

 

ML-based Fusion ROC 

 

ML-based Ensemble CM 

 

ML-based Ensemble ROC 
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DL-based Fusion CM 

 

DL-based Fusion ROC 

 

DL-based Ensemble CM DL-based Ensemble ROC 

Figure 4.3. Confusion matrixes and ROC plots with AUC values of the fused/ensemble    

ML and DL models achieved by evaluating trained models. 

 

Figure 4.3 shows that the ML-based fusion model has a better performance than the 

DL-based model. The best ROC score corresponds to the ML-Ensemble model with 

almost 1 (100%). Figure 4.4. includes the training and validation accuracy and loss of 

the individual and fused DL models. 
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1D-CNN Model Loss 

 
1D-CNN Model Accuracy 

 
LSTM Loss 

 
LSTM Accuracy 

 
DL Ensemble Loss 

 
DL Ensemble Accuracy 

 

Figure 4.4. Loss and accuracy of the individual and fused DL models. 

 

The precision, recall, F1-score, and accuracy scores are also computed for all 

individual, fused, and ensemble models to define the best model. Table (4-2) illustrates 

these metrics for individual models. 
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Table 4.2. Individual models accuracy, precision, recall, and F1-score metrics. 

Model LGBM 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 100 100 100 8636 

Charger 100 100 100 7924 

Jisut 99 99 99 5070 

Koler 99 99 99 8854 

Lockerpin 100 100 100 4984 

Pletor 99 97 98 961 

PornDroid 100 100 100 9259 

RansomBO 100 100 100 8023 

SVpeng 100 100 100 10922 

Simplocker 100 100 100 7325 

WannaLocker 100 100 100 6449 

Average Value 100 99 99 78407 

Accuracy % 99.65 78407 

Model K-NN 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 43 59 50 8636 

Charger 30 44 36 7924 

Jisut 32 32 32 5070 

Koler 42 44 43 8854 

Lockerpin 28 22 25 4984 

Pletor 60 47 53 961 

PornDroid 52 45 48 9259 

RansomBO 49 47 48 8023 

SVpeng 69 62 65 10922 

Simplocker 41 34 37 7325 

WannaLocker 47 35 40 6449 

Average Value 45 43 43 78407 

Accuracy % 45 78407 

Model DT 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 100 100 100 8636 

Charger 99.72 99.98 99.76 7924 

Jisut 99.7 99.8 99.75 5070 

Koler 99.88 99.85 99.86 8854 

Lockerpin 99.78 99.76 99.77 4984 

Pletor 99.43 98.02 98.23 961 

PornDroid 99.71 99.76 99.74 9259 

RansomBO 99.85 99.74 99.79 8023 

SVpeng 99.86 99.87 99.87 10922 

Simplocker 99.75 99.78 99.77 7325 

WannaLocker 99.69 99.64 99.67 6449 

Average Value 99.67 99.64 99.66 78407 

Accuracy % 99.79 78407 

Model RF 
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Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 99.99 100 99.99 8636 

Charger 89.55 89.29 89.42 7924 

Jisut 91.86 93.27 92.56 5070 

Koler 93.53 94.85 94.18 8854 

Lockerpin 92.27 80.7 86.1 4984 

Pletor 95.95 81.27 88 961 

PornDroid 94.03 98.65 96.28 9259 

RansomBO 96.74 98.9 97.8 8023 

SVpeng 98.92 99.75 99.33 10922 

Simplocker 98.74 97.01 97.87 7325 

WannaLocker 99.61 99.5 99.56 6449 

Average Value 95.56 93.93 94.65 78407 

Accuracy % 95.82 78407 

 

Model AdaBoost 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 100 100 100 8636 

Charger 0 0 0 7924 

Jisut 0 0 0 5070 

Koler 55.95 81.16 66.24 8854 

Lockerpin 0 0 0 4984 

Pletor 0 0 0 961 

PornDroid 0 0 0 9259 

RansomBO 64.96 89.13 75.15 8023 

SVpeng 31.16 99.59 47.47 10922 

Simplocker 65.07 48.21 55.39 7325 

WannaLocker 96.93 89.28 92.95 6449 

Average Value 37.64 46.12 39.74 78407 

Accuracy % 54.96 78407 

Model XGB 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 100 100 100 8636 

Charger 99.83 99.81 99.82 7924 

Jisut 99.86 99.86 99.86 5070 

Koler 99.83 99.93 99.88 8854 

Lockerpin 99.84 99.86 99.85 4984 

Pletor 99.79 99.06 99.43 961 

PornDroid 99.86 99.92 99.89 9259 

RansomBO 99.81 99.81 99.81 8023 

SVpeng 99.95 99.98 99.97 10922 

Simplocker 99.88 99.82 99.85 7325 

WannaLocker 99.8 99.81 99.76 6449 

Average Value 99.86 99.8 99.83 78407 

Accuracy % 99.87 78407 

Model 1D-CNN 

Metrics Precision % Recall % F1-score % No. Test 

samples 
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Benign 81.14 76.89 78.96 8636 

Charger 65.85 43.83 52.63 7924 

Jisut 74.38 49.24 59.25 5070 

Koler 83.88 63.97 72.59 8854 

Lockerpin 64.39 45.88 53.58 4984 

Pletor 76.21 38.76 51.38 961 

PornDroid 68.97 68.37 68.67 9259 

RansomBO 77.37 65.34 70.85 8023 

SVpeng 38.22 91.17 53.86 10922 

Simplocker 88.02 52.32 65.63 7325 

WannaLocker 87.84 63.39 73.64 6449 

Average Value 73.3 59.92 63.73 78407 

Accuracy % 64.17 78407 

Model LSTM 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 93.21 96.66 94.9 8636 

Charger 86.5 73.85 79.67 7924 

Jisut 76.82 85.37 80.87 5070 

Koler 90.89 82.95 86.74 8854 

Lockerpin 88.24 77.08 82.28 4984 

Pletor 79.6 54.71 64.85 961 

PornDroid 83.63 93.57 88.32 9259 

RansomBO 85.25 86.14 85.69 8023 

SVpeng 85.46 95.77 90.33 10922 

Simplocker 85.65 78.63 81.99 7325 

WannaLocker 88.1 89.68 88.88 6449 

Average Value 85.76 83.13 84.05 78407 

Accuracy % 86.46 78407 

 

Table 4.2 proves the same conclusion as Figure (4-3) since the precision, recall, and 

F1-score of the XGB and LGBM models are the best values. Precision, recall, F1-

score, and accuracy of the LGBM model are 100%, 99%, 99%, and 99.65%, 

respectively. The same metrics of the XGB model are 99.86%, 99.8%, 99.83%, and 

99.87%, respectively. 

 

Table 4.3 shows the results of the fused/ensemble ML and DL models, and it's obvious 

that the ensemble ML model is the best one with precision, recall, F1-score, and 

accuracy values of 99.7%, 99.59%, 99.67%, and 99.79%, respectively. As seen in 

Table 4.3, the ML-based fusion or ML-based Ensemble has no enhancement compared 

to the individual models. In contrast, the DL-based fusion and ensemble models 

improved the performance of the individual DL model significantly. The DL ensemble 

model accuracy increased by 3.12% compared to the best individual DL model 

(LSTM). 
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Table 4.3. Fused/Ensemble models accuracy, precision, recall, and F1-score metrics. 

Model ML-Based Fusion 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 99.98 100 99.99 8636 

Charger 99.79 99.77 99.78 7924 

Jisut 99.18 99.59 99.38 5070 

Koler 99.74 99.53 99.63 8854 

Lockerpin 99.82 99.76 99.79 4984 

Pletor 99.36 97.19 98.26 961 

PornDroid 99.73 99.87 99.8 9259 

RansomBO 99.61 99.7 999.66 8023 

SVpeng 99.89 99.97 99.93 10922 

Simplocker 99.86 99.78 99.82 7325 

WannaLocker 99.78 99.75 99.77 6449 

Average Value 99.7 99.54 99.62 78407 

Accuracy % 99.76 78407 

Model ML-Based Ensemble 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 99.99 100 99.99 8636 

Charger 99.77 99.81 99.79 7924 

Jisut 99.29 99.8 99.55 5070 

Koler 99.84 99.59 99.72 8854 

Lockerpin 99.82 99.8 99.81 4984 

Pletor 99.47 97.29 98.37 961 

PornDroid 99.75 99.89 99.82 9259 

RansomBO 99.69 99.73 99.71 8023 

SVpeng 99.92 99.96 99.94 10922 

Simplocker 99.88 99.81 99.84 7325 

WannaLocker 99.8 99.77 99.79 6449 

Average Value 99.7 99.59 99.67 78407 

Accuracy % 99.79 78407 

Model DL-Based Fusion 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 92.65 97.29 94.91 8636 

Charger 85.69 74.5 79.7 7924 

Jisut 77.32 83.32 80.21 5070 

Koler 91.47 83.75 87.44 8854 

Lockerpin 88.31 76.56 82.02 4984 

Pletor 82.57 53.75 65.11 961 

PornDroid 83.98 93.39 88.43 9259 

RansomBO 84.69 86.61 85.64 8023 

SVpeng 84.63 96.31 90.1 10922 

Simplocker 87.48 77.48 82.18 7325 

WannaLocker 88.93 90.26 89.59 6449 

Average Value 86.15 83.02 84.12 78407 

Accuracy % 86.55 78407 

Model DL-Based Ensemble 
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Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 96.63 98.8 97.71 8636 

Charger 86.41 85.4 85.9 7924 

Jisut 79.58 84.62 82.02 5070 

Koler 87.93 89.32 88.62 8854 

Lockerpin 88.53 82.1 85.19 4984 

Pletor 87.87 62.85 73.28 961 

PornDroid 92.07 94.94 88.69 9259 

RansomBO 86.58 90.92 88.69 8023 

SVpeng 93.33 91.61 92.47 10922 

Simplocker 89.31 82.86 85.69 7325 

WannaLocker 89.95 91.36 90.65 6449 

Average Value 88.93 86.8 87.63 78407 

Accuracy % 89.58 78407 

 

4.4. EVALUATION RESULTS OF ML MODELS WITH FEATURE 

SELECTION 

 

In this scenario, the ML models will be trained using the selected features of the 

original ransomware dataset. For this case, three different scenarios are performed (20 

selected features, 10 selected features, and 5 selected features). Figure 4.5 shows the 

confusion matrixes and ROC plots with AUC values of the individual ML and DL 

models achieved by evaluating trained models using the test set (in the case of feature 

selection with only 20 features out of 84 features). 
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Figure 4.5. Confusion matrixes and ROC plots with AUC values of the individual ML 

and DL models achieved by evaluating trained models (with feature 

selection, Number of features=20). 

 



47 

Figure 4.5 shows that the best individual models are the XGB and the LGBM models 

in terms of confusion matrix and ROC. The registered AUCs of the XGB and LGBM 

models are almost 1 (99.99%-100%) in all ransomware types. The worst models are 

the AdaBoost and K-NN models, which is normal since the K-NN model doesn't fit 

the large datasets, and the AdaBoost model needs a hyperparameters tuning step to get 

a good accuracy. Figure 4.5 shows that DL models achieved a lower performance than 

the ML models. However, the LSTM model outperforms the 1D-CNN, K-NN, and 

AdaBoost models. Figure 4.6 includes the confusion matrixes and ROC plots for the 

fusion models and ensemble models. 

 

 
ML-based Fusion CM 
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ML-based Ensemble ROC 
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DL-based Fusion CM DL-based Fusion ROC 

 
DL-based Ensemble CM 

 
DL-based Ensemble ROC 

 

Figure 4.6. Confusion matrixes and ROC plots with AUC values of the fused/ensemble 

ML and DL models achieved by evaluating trained models (with feature 

selection, Number of features=20). 

 

Figure 4.6 shows that the ML-based fusion model has a better performance than the 

DL-Based model. The best ROC score corresponds to the ML-Ensemble model with 

almost 1 (100%). In this scenario, the ensemble and fusion models improved the 

performance of the individual ML and DL models. 

 

Figure 4.7. includes the training and validation accuracy and loss of the individual and 

fused DL models. 
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1D-CNN Model Loss 

 
1D-CNN Model Accuracy 

 
LSTM Loss 

 
LSTM Accuracy 

 
DL Ensemble Loss 

 
DL Ensemble Accuracy 

 

Figure 4.7. Loss and accuracy of the individual and fused DL models (with feature 

selection, number of features=20). 

 

The precision, recall, F1-score, and accuracy scores are also computed for all 

individual, fused, and ensemble models to define the best model. Table 4.4 illustrates 

these metrics for individual models in the case of feature selection (20 selected 

features). 
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Table 4.4. Individual models accuracy, precision, recall, and F1-score metrics (with 

feature selection, number of features=20). 

Model LGBM 

Metrics Precision % Recall % F1-score % No. Test samples 

Benign 100 100 100 8636 

Charger 98 98 98 7924 

Jisut 99 98 98 5070 

Koler 99 99 99 8854 

Lockerpin 99 99 99 4984 

Pletor 98 95 97 961 

PornDroid 99 99 99 9259 

RansomBO 98 98 98 8023 

SVpeng 98 99 99 10922 

Simplocker 99 99 99 7325 

WannaLocker 99 99 99 6449 

Average Value 99 98 99 78407 

Accuracy % 98.7 78407 

Model K-NN 

Metrics Precision % Recall % F1-score % No. Test samples 

Benign 68 80 73 8636 

Charger 61 68 64 7924 

Jisut 62 64 63 5070 

Koler 71 73 72 8854 

Lockerpin 65 58 62 4984 

Pletor 70 56 62 961 

PornDroid 78 77 78 9259 

RansomBO 76 75 75 8023 

SVpeng 84 81 82 10922 

Simplocker 71 65 67 7325 

WannaLocker 78 68 73 6449 

Average Value 71 69 70 78407 

Accuracy % 72.01% 78407 

Model DT 

Metrics Precision % Recall % F1-score % No. Test samples 

Benign 100 100 100 8636 

Charger 97.7 97.6 97.83 7924 

Jisut 99.51 99.23 99.37 5070 

Koler 99.46 99.46 99.46 8854 

Lockerpin 99.07 99.29 99.18 4984 

Pletor 96.54 95.76 96.5 961 

PornDroid 99.3 99.32 99.31 9259 

RansomBO 97.96 97.58 97.77 8023 

SVpeng 98.42 98.54 98.48 10922 

Simplocker 98.81 98.76 98.79 7325 

WannaLocker 98.84 98.99 98.91 6449 

Average Value 98.69 98.63 98.66 78407 

Accuracy % 98.58 78407 

Model RF 

Metrics Precision % Recall % F1-score % No. Test samples 

Benign 99.99 100 99.99 8636 

Charger 95.08 94.68 94.88 7924 
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Jisut 96.91 98.2 97.55 5070 

Koler 97.87 98.33 98.1 8854 

Lockerpin 97.55 94.29 95.89 4984 

Pletor 96.12 87.39 91.54 961 

PornDroid 97.32 99.06 98.18 9259 

RansomBO 96.59 96.49 96.54 8023 

SVpeng 96 97.21 96.6 10922 

Simplocker 97.58 96.81 97.19 7325 

WannaLocker 98.21 97.36 97.78 6449 

Average Value 97.2 96.35 96.75 78407 

Accuracy % 97.26 78407 

Model AdaBoost 

Metrics Precision % Recall % F1-score % No. Test samples 

Benign 100 100 100 8636 

Charger 0 0 0 7924 

Jisut 0 0 0 5070 

Koler 55.95 81.77 66.44 8854 

Lockerpin 0 0 0 4984 

Pletor 0 0 0 961 

PornDroid 0 0 0 9259 

RansomBO 65.58 89.14 75.57 8023 

SVpeng 31.38 99.59 47.72 10922 

Simplocker 64.86 48.16 55.28 7325 

WannaLocker 96.96 89.29 92.96 6449 

Average Value 37.7 46.18 39.81 78407 

Accuracy % 55.077 78407 

Model XGB 

Metrics Precision % Recall % F1-score % No. Test samples 

Benign 100 100 100 8636 

Charger 98.65 98.68 98.66 7924 

Jisut 99.57 99.4 99.49 5070 

Koler 99.53 99.78 99.65 8854 

Lockerpin 99.53 99.59 99.56 4984 

Pletor 99.17 96.87 98.01 961 

PornDroid 99.42 99.68 99.55 9259 

RansomBO 98.83 98.41 9.62 8023 

SVpeng 98.87 99.36 99.11 10922 

Simplocker 99.38 99.02 99.2 7325 

WannaLocker 99.29 99.11 99.2 6449 

Average Value 99.3 99.08 99.19 78407 

Accuracy % 99.28 78407 

 

Model 1D-CNN 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 99.81 86.87 92.9 8636 

Charger 76.89 69.16 72.82 7924 

Jisut 83.96 77.46 80.58 5070 

Koler 90.68 78.56 84.18 8854 

Lockerpin 84.84 69.57 76.45 4984 
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Pletor 76.23 60.85 67.68 961 

PornDroid 84.58 82.82 83.6 9259 

RansomBO 94.61 73.95 83.01 8023 

SVpeng 51.35 93.66 66.34 10922 

Simplocker 91.6 75.89 83.01 7325 

WannaLocker 94.35 77.77 85.26 6449 

Average 

Value 

84.45 76.96 79.63 78407 

Accuracy % 79.45 78407 

Model LSTM 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 73.73 94.75 82.93 8636 

Charger 51.85 64.91 57.65 7924 

Jisut 50.93 48.82 49.85 5070 

Koler 72.56 71.83 72.19 8854 

Lockerpin 41.45 29.32 34.35 4984 

Pletor 61.87 38.65 47.58 961 

PornDroid 88.81 56.51 69.07 9259 

RansomBO 81.51 79.41 80.45 8023 

SVpeng 82.99 96.23 89.12 10922 

Simplocker 71.88 55.72 62.78 7325 

WannaLocker 65.6 77.18 70.92 6449 

Average 

Value 

67.56 64.85 65.17 78407 

Accuracy % 70.306 78407 

 

Table 4.4 proves the same conclusion of Figure 4.5 since the precision, recall, and F1-

score of the XGB and LGBM models are the best values. Precision, recall, F1-score, 

and accuracy of the LGBM model are 99%, 98%, 99%, and 98.7%, respectively. The 

same metrics of the XGB model are 99.3%, 99.08%, 99.19%, and 99.28%, 

respectively. 

 

Table 4.5 shows the results of the fused/ensemble ML and DL models, and it's obvious 

that the ensemble ML model is the best one with precision, recall, F1-score, and 

accuracy values of 99.27%, 99.1%, 99.18%, and 99.28%, respectively. Results of 

Table 4.5 and the confusion matrixes along with the ROC plot prove that the best 

model is the ML-based ensemble model with 99.28% accuracy. In contrast, the DL-

based fusion and ensemble models improved the performance of the individual DL 

model significantly. The DL ensemble model accuracy increased by 13.33% compared 

to the best individual DL model. 
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Table 4.5. Fused/Ensemble models accuracy, precision, recall, and F1-score metrics 

(with feature selection, Number of features=20). 

Model ML-Based Fusion 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 100 100 100 8636 

Charger 98.55 98.6 98.58 7924 

Jisut 99.59 99.34 99.47 5070 

Koler 99.56 99.77 99.66 8854 

Lockerpin 99.49 99.51 99.5 4984 

Pletor 99.0 97.58 98.32 961 

PornDroid 99.47 99.65 99.56 9259 

RansomBO 98.67 98.35 98.51 8023 

SVpeng 98.95 99.25 99.1 10922 

Simplocker 99.2 99.02 99.11 7325 

WannaLocker 99.26 99.17 99.22 6449 

Average 

Value 

99.26 99.11 99.18 78407 

Accuracy % 99.255 78407 

Model ML-Based Ensemble 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 100 100 100 8636 

Charger 98.74 98.68 98.71 7924 

Jisut 99.61 99.34 99.48 5070 

Koler 99.53 99.77 99.65 8854 

Lockerpin 99.53 99.51 99.52 4984 

Pletor 98.97 97.17 98.07 961 

PornDroid 99.44 99.63 99.54 9259 

RansomBO 98.72 98.39 98.55 8023 

SVpeng 98.94 99.32 99.13 10922 

Simplocker 99.23 99.12 99.18 7325 

WannaLocker 99.26 99.16 99.21 6449 

Average 

Value 

99.27 99.1 99.18 78407 

Accuracy % 99.28 78407 

 

Model DL-Based Fusion 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 94.53 96.32 95.42 8636 

Charger 65.19 75.38 69.91 7924 

Jisut 77.92 85.08 81.34 5070 

Koler 88.22 86.24 87.22 8854 

Lockerpin 80.7 67.44 73.48 4984 

Pletor 79.21 64.98 71.4 961 

PornDroid 83.12 75.35 79.05 9259 
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RansomBO 91.31 85.81 88.47 8023 

SVpeng 85.45 96.02 90.42 10922 

Simplocker 90.87 83.31 86.93 7325 

WannaLocker 89.66 88.84 89.25 6449 

Average 

Value 

84.2 82.25 82.99 78407 

Accuracy % 84.68 78407 

Model DL-Based Ensemble 

Metrics Precision % Recall % F1-score % No. Test 

samples 

Benign 99.15 99.21 99.18 8636 

Charger 95.53 86.12 90.58 7924 

Jisut 90.8 90.09 90.44 5070 

Koler 95.48 92.07 93.74 8854 

Lockerpin 91.65 91.03 91.34 4984 

Pletor 89.57 79.72 84.36 961 

PornDroid 94.1 94.77 94.43 9259 

RansomBO 89.74 88.51 89.12 8023 

SVpeng 89.68 95.77 92.63 10922 

Simplocker 90.11 92.92 91.49 7325 

WannaLocker 91.14 96.12 93.56 6449 

Average 

Value 

92.45 91.48 91.9 78407 

Accuracy % 92.78 78407 

 

4.4.1. Different Feature Selection Scenarios Comparison 

 

As mentioned in previous sections, three different feature selection scenarios are 

proposed with 20, 15, and 5 selected features. Table 4.6 includes the precision, recall, 

F1-score, and accuracy of all three scenarios. 
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Table 4.6. Precision, recall, F1-score, and accuracy of all scenarios (original and 

feature selection) for all individual ML and DL models. 

Model LGBM 

Metrics Precision % Recall % F1-score % Accuracy % Training 

time  

Original 100 99 99 99.65 23min 17s 

20 selected 

features 

99 98 99 98.7 6min 53s 

15 selected 

features 

99 98 98 98.67 6min 9s 

5 selected 

features 

94 94 94 93.31 5min 18s 

Model K-NN 

Metrics Precision % Recall % F1-score % Accuracy % Training 

time  

Original 45 43 43 45 2min 25s 

20 selected 

features 

71 69 70 72.01 1min 56s 

15 selected 

features 

72 70 71 72.8 18.1 s 

5 selected 

features 

75 75 75 74.8 9.69 s 

Model DT 

Metrics Precision % Recall % F1-score % Accuracy % Training 

time 

Original 99.67 99.64 99.66 99.79 10.9 s 

20 selected 

features 

98.69 98.63 98.66 98.58 2.59 s 

15 selected 

features 

98.75 98.62 98.69 98.9 1.75 s 

5 selected 

features 

97.82 97.77 97.8 97.59 1.24 s 

Model RF 

Metrics Precision % Recall % F1-score % Accuracy % Training 

time  

Original 95.56 93.93 94.65 95.82 3min 57s 

20 selected 

features 

97.2 96.35 96.75 97.26 1min 27s 

15 selected 

features 

97.58 96.84 97.19 97.65 1min 15s 

5 selected 

features 

96.51 96.5 96.5 96.27 1min 12s 

Model AdaBoost 

Metrics Precision % Recall % F1-score % Accuracy % Training 

time 

Original 37.64 46.12 39.74 54.96 1min 32s 

20 selected 

features 

37.7 46.18 39.81 55.077 31 s 

15 selected 

features 

37.7 46.18 39.81 55.7 22.2 s 

5 selected 

features 

23.35 32.88 25.77 41.5 30.4 s 
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Model XGB 

Metrics Precision % Recall % F1-score % Accuracy % Training 

time 

Original 99.86 99.8 99.83 99.87 18min 16s 

20 selected 

features 

99.3 99.08 99.19 99.28 8min 45s 

15 selected 

features 

99.26 99.03 99.15 99.26 6min 24s 

5 selected 

features 

97.47 97.42 97.44 97.13 3min 39s 

Model 1D-CNN 

Metrics Precision % Recall % F1-score % Accuracy % Training 

time 

Original 73.3 59.92 63.73 64.17 6min 23s 

20 selected 

features 

84.45 76.96 79.63 79.45 6min 8s 

 

15 selected 

features 

80.61 73.65 75.76 75.98 5min 22s 

5 selected 

features 

26.31 27.31 23.35 33.17 5min 28s 

Model LSTM 

Metrics Precision % Recall % F1-score % Accuracy % Training 

time 

Original 85.76 83.13 84.05 86.46 4min 35s 

20 selected 

features 

67.56 64.85 65.17 70.3 3min 3s 

15 selected 

features 

83.2 80.67 81.47 84.94 2min 23s 

5 selected 

features 

30.94 30.06 25.41 35.32 2min 25s 

 

Table 4.6 shows that the LGBM and XGB models (the best models in case of no feature 

selection) are also the best in all feature selection scenarios. For the XGB model, 

although the feature selection method minimizes the number of features by more than 

4 times, the precision, recall, F1-score, and accuracy are reduced by only 0.56%, 

0.72%, 0.64%, and 0.59, respectively. This means that the percentage of features 

which is only (20/84) 23.8% of the entire features achieved almost the same 

performance as the entire dataset's features (100%), and this clarifies the importance 

and efficiency of the feature selection algorithm proposed in this study. Table 4.7 

includes the precision, recall, F1-score, and accuracy of all three scenarios. 
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Table 4.7. Precision, recall, F1-score, and accuracy of all scenarios (original and 

feature selection) for all fusion/ensemble ML and DL models. 

Model ML-Based Fusion 

Metrics Precision % Recall % F1-score % Accuracy % 

Original 99.7 99.54 99.62 99.76 

20 selected 

features 

99.26 99.11 99.18 99.255 

15 selected 

features 

99.29 99.07 99.18 99.3 

5 selected 

features 

97.37 99.37 97.37 97.12 

Model ML-Based Ensemble 

Metrics Precision % Recall % F1-score % Accuracy % 

Original 99.7 99.59 99.67 99.79 

20 selected 

features 

99.27 99.1 99.18 99.28 

15 selected 

features 

99.24 99.04 99.14 99.27 

5 selected 

features 

97.36 97.35 97.35 97.08 

Model DL-Based Fusion 

Metrics Precision % Recall % F1-score % Accuracy % 

Original 86.15 83.02 84.12 86.55 

20 selected 

features 

84.2 82.25 82.99 84.68 

15 selected 

features 

85.77 83.27 84.16 86.7 

5 selected 

features 

28.63 28.87 23.57 34.41 

Model DL-Based Ensemble 

Metrics Precision % Recall % F1-score % Accuracy % 

Original 88.93 86.8 87.63 89.58 

20 selected 

features 

92.45 91.48 91.9 92.78 

15 selected 

features 

93.77 93.02 93.37 94.34 

5 selected 

features 

38.66 29.48 23.76 35.32 
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4.5. DISCUSSION  

 

4.5.1. Discussion of the Effect of Feature Selection Algorithm on The Performance 

of Ransomware Detection Models 

 

Table  4.5 and Table 4.6 include detailed performance metrics (precision, recall, F1-

score, accuracy, and training time). The training time is decreasing with more feature 

reduction rates. Using only 20 features (23.8% of the entire features) reduced the 

training time 3.38 times (23 min 17s / 6 min 53 s) for the LGBM model. Similarly, 

training time is decreased 3.78 times. For a more detailed comparison, Figure 4.8 

includes a complete comparison of training time with and without feature selection for 

all individual ML/DL models. For all models, the training time is decreased by 

applying the feature selection algorithm. Figure 4.9 shows the performance metrics of 

all models to compare the performance. 

 

 

Figure 4.8. Training time comparison before and after applying the proposed feature 

selection algorithm. 
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Figure 4.9. Performance metrics of all models with and without feature selection. 

 

Figure 4.9 illustrates many results: First, the robust models like XGB, LGBM, DT, and 

RF have almost similar performance in the four scenarios (without feature selection, 

with 20 selected features, with 15 selected features, with 5 selected features). The 

performance of the K-NN model has been increased by minimizing the number of 

features. In some cases, the best performance corresponds to the case of 15 selected 

features. Results show that with 5 selected features, the performance degrades again. 
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4.5.2. Discussion of the Fusion/Ensemble Dl/Ml Models Results 

 

4.5.2.1. ML Fusion and Ensemble Discussion 

 

For the ML fusion and ensemble model, results show that the fusion enhanced the low-

performance models but it preserves the performance of robust models and in some 

cases of feature selection, it improves the performance. Figure 4.10 shows a 

performance comparison between the ML fusion and ensemble models in the case of 

different feature selection scenarios. 

 

  
 

 

Figure 4.10. Performance metrics of Fusion/Ensemble ML models with and without 

feature selection. 

 

0

20

40

60

80

100

120

Original 20 selected features 15 selected features 5 selected features

ML-Based Fusion

Precision % Recall % F1-score % Accuracy %

0

20

40

60

80

100

120

Original 20 selected features 15 selected features 5 selected features

ML-Based Ensemble

Precision % Recall % F1-score % Accuracy %



63 

In the case of ML fusion and ensemble models, the feature selection method decreased 

the performance a little bit (for example, the precision in the case of a 20-feature-

selected scenario decreased by only 0.11% compared to the original 84 features).  

 

4.5.2.2. DL Fusion and Ensemble Discussion 

 

Figure 4.11 includes a performance comparison between the DL fusion and ensemble 

models in case of different feature selection scenarios. However, the ML fusion and 

ensemble models achieved a better performance compared to the DL fusion and 

ensemble models. 

 

  
 

 

Figure 4.11. Performance metrics of Fusion/Ensemble DL models with and without 

feature selection. 
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The main remark in these two scenarios is that the 20-selected-features and 15- 15-

selected-feature scenarios improved the performance compared to the original 84-

feature scenario. However, with less than 10 features, performance starts to degrade. 

 

4.6. COMPARISON WITH THE CURRENT STATE-OF-ART 

 

Table 4.8 includes a comprehensive comparison between the current study and the 

previous state-of-the-art ransomware detection and classification methodologies. 

 

Table 4.8. A comprehensive comparison between the current study and the previous 

state-of-art ransomware detection and classification methodologies. 

Study ML/DL 

Methods 

Dataset Results Notes 

Takeuchi et al. 

[32] 

SVM 276 ransomware, 

312 benign 

Accuracy: 

97.5% 

Small dataset 

Qin et al. [58] TextCNN 1000 ransomware, 

1000 benign 

Accuracy: 

95.9% 

Small dataset 

Homayoun et 

al. [59] 

Sequential 

pattern mining 

1624 ransomware, 

220 benign 

Accuracy: 

99.4% 

Small number of 

ransomware types 

Khammas [60] Random Forests 840 ransomware, 

840 benign 

Accuracy: 

97.7% 

The small number 

of ransomware 

types 

Manavi and 

Hamzeh [35] 

CNN 1000 ransomware, 

1000 benign 

Accuracy: 

93.33% 

Small number of 

ransomware types 

Almousa et al. 

[36] 

RF, K-NN, 

SVM 

500 ransomware, 

500 benign 

Accuracy: 

99.18% 

Small dataset 

Rani and 

Dhavale [40] 

DT, RF, K-NN, 

SVM, 

XGBoost, LR 

582 ransomware, 

942 benign 

Best 

Accuracy: 

98.21% 

Small dataset 

Silva and 

Alvarez [43] 

Boosted Trees, 

Naïve Bayes, 

RF, NN 

2000 ransomware, 

benign 

Accuracy: 

~99% 

Small dataset 

Hitaj et al. [44] RF ShieldFS, 

Cerberus 

Accuracy: 

99.45% 

Detects 

ransomware 

occurrence, not its 

type 

Current Study LGBM, XBG, 

K-NN, DT, RF, 

AB, Fusion, 

Ensemble, 

1DCNN, LSTM 

+ Feature 

Selection 

392034 records 

and 84 features, 11 

types of 

ransomware 

Best 

Accuracy: 

99.87% 

Detects 11 types 

of ransomware, 

Applies feature 

selection 

 



65 

Table 4.8 proves that the current study outperforms all previous state-of-the-art 

methodologies. 

 

 

PART 5 

 

CONCLUSION  

 

This study proposes a new ransomware detection and classification methodology, 

including a main feature selection algorithm that combines wrapper and filter-based 

feature selection methods at the same algorithm to get the best efficiency and 

performance. The study used a ransomware dataset containing many challenges; the 

dataset contains 84 predictors (high dimensionality) and 392034 records (huge size). 

First, the dataset is preprocessed using the data-cleaning operations. The encoding 

operations and the normalization are also performed to prepare the dataset for the ML 

and DL models. The following steps included the dataset split into training and test 

sets. The feature selection algorithm was also applied to the preprocessed dataset to 

get the most essential predictors (features) and remove the redundant ones. The feature 

selection algorithm was based on two main approaches: the ANOVA feature selection 

method and the RF estimator. The feature selection method is adaptive so that the 

number of selected features can vary based on the parameters of the algorithm. In our 

implementation, the results showed three different cases of the feature selection 

algorithm with 20 selected features, 15 selected features, and 5 selected features with 

23.8%, 17.85%, and 5.9% selection percentages, respectively. In the next step, many 

ML and DL models were trained using the training set (once without feature selection 

and once with feature selection). The results are categorized into four scenarios: one 

without feature selection and three with feature selection. The fusion and ensemble of 

the ML models were also performed to improve the performance. The same fusion and 

ensemble were also applied to the DL models. Results showed that the best ML models 

are the XGB and LGBM in all scenarios. 
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The results also indicated that the worst models were the AdaBoost and K-NN. 

However, K-NN performance enhanced in the case of feature selection. Results also 

indicated that the feature selection preserves the high performance of the robust models 

(like XGB and LGBM) with a very high feature reduction rate, resulting in a low 

computational time compared to the original dataset (84 features). The LGBM model's 

training time was minimized from 23 minutes and 17 seconds to only 6 minutes and 

53 seconds using the 20 selected features and minimized more with 15 and 5 selected 

features without any remarkable performance degradation. Results also indicated 

enhancement in the performance of ML and DL models in the case of ensemble 

learning. The DL model's performance was improved significantly using ensemble 

learning. The comparison of the current study with the previous state-of-art studies 

proved that this study outperformed all previous studies' performance. According to 

previous results, the best choice of feature selection is the 15-feature selection scenario 

(since it reduces time and preserves or improves performance). 

 

Next, studies can focus on enhancing deep learning models by using hyperparameter 

optimizations for better performance. Other studies can try different ransomware 

datasets and evaluate the performance under different conditions. Other studies can try 

different feature selection algorithms and compare their results with current ones. 
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