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ABSTRACT 

 

M. Sc. Thesis 

 

A HYBRID DEEP LEARNING ARCHITECTURE FOR VIDEO-BASED 

AUTOMATIC VEHICLE DETECTION 

 

Mohammed Abduljabbar ZAID 

 

Karabük University 

Institute of Graduate Programs  

Department of Computer Engineering 

 

Thesis Advisor: 

Assist. Prof. Dr. Muhammet ÇAKMAK 

October 2023, 72 pages 

 

Detecting vehicles in Intelligent Transportation Systems (ITS) is important to 

maintaining road safety, monitoring vehicle flow, identifying illegal vehicle types, 

detecting incidents, and estimating vehicle speeds. Despite the increasing prevalence 

of scholarly inquiry, the issue at hand continues to be a formidable obstacle that needs 

resolution. Proposed hardware-based alternatives, such as Radars and LIDAR (Light 

Detection and Ranging) remote sensing, have been deemed impractical due to their 

high cost of maintenance and limited provision of relevant information to human 

operators in Surveillance systems. 

 

To effectively monitor transportation systems, it is imperative to implement two 

crucial measures for surveillance: vehicle detection and license plate recognition. The 

current methodologies for vehicle detection utilize feed-forward convolutional neural 
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networks (CNNs) as backbone architectures. However, these are scale-sensitive and 

cannot handle variations in vehicles' scales in sequential video frames. 

 

To address these issues of vehicle detection in road surveillance, such as variations in 

illumination, vehicle scale variations, and occlusions. we introduce the Scale Invariant 

Hybrid Convolutional Neural Network (SIH-CNN) in conjunction with YOLO (You 

only look once) for real-time vehicle detection. The SIH-CNN is meticulously crafted 

to be resilient against size variations and adept at accommodating vehicles of varied 

sizes within sequential video frames, ensuring consistent performance regardless of 

the vehicle’s position relative to the camera. By leveraging YOLO's rapid and accurate 

object detection capabilities, our hybrid model excels in identifying and classifying 

vehicles of all shapes and sizes across a diverse range of scenarios, setting a new 

benchmark in adaptability and efficiency for vehicle detection systems in practical 

applications. 

 

Results show that the proposed SIH-CNN model achieved a mean average precision 

(mAP) of 77.76% on the UA-DETRAC benchmark, which is 3.94% higher than the 

baseline detector with real-time performance of 48.4 frames per seconds. 

 

Key Words : Intelligent Transportation Systems, Automated surveillance, Vehicle 

detection, Convolutional neural network, Scale invariant. 

Science Code :  92431 
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ÖZET 

 

Yüksek Lisans Tezi 

 

VİDEO TABANLI OTOMATİK ARAÇ TESPİTİ İÇİN HİBRİT BİR DERİN 

ÖĞRENME MİMARİSİ 

 

Mohammed Abduljabbar ZAID 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi Muhammet ÇAKMAK 

Ekim 2023, 72 sayfa 

 

Akıllı Ulaşım Sistemlerinde (ITS) araçların tespiti yol güvenliğinin sağlanmasında 

hayati öneme sahiptir. Araç akışının izlenmesi suça karışan araçların belirlenmesi, 

tehlike oluşturan olayların tespit edilmesi ve araç hızlarının tahmin edilmesi için 

kullanılmaktadır.  Her ne kadar araç akışlarının izlenmesi ile ilgili çalışmalar olmasına 

rağmen gerçek zamanlı ve data etkin tespit yapan sistemlere ihtiyaç duyulmaktadır.  

Diğer taraftan pratikte kullanılmakta olan Radar ve LIDAR gibi donanım tabanlı 

sistemler yüksek bakım maliyeti ve uzman personele ihtiyaç gerektirmektedir. 

 

Ulaşım sistemlerini etkili bir şekilde izlemek için araç tespiti ve plaka tanıma 

sistemlerinin beraber çalışması gerekir. Araç tespiti için uygulanan metodolojiler, 

ağırlıklı temel mimari çerçeve olarak ileri beslemeli evrişimli sinir ağlarını (CNN) 

kullanır. Ancak, bu yöntemler ölçek değişikliklerine duyarlı olduğu ve çeşitli 

boyutlardaki araçları birden fazla video karesi içinde etkili bir şekilde gösterme 
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sorunları yaşamaktadır. Bu tezde, gerçek zamanlı araç algılama sorunlarına çözüm 

olarak YOLO (You Only Look Once) (Yanlızca bir kere bakar) tabanlı SIH-CNN 

(Scale Invariant Hybrid Convolutional Neural Network Convolutional Neural 

Network) (Ölçek Değişmez Hibrit Evrişimli Sinir Ağı) altyapısını kullanan hibrit bir 

tespit sistemi önerilmiştir. SIH-CNN boyut değişikliklerine karşı hassastır. Ayrıca 

sıralı video karelerinde farklı boyutlardaki araçların görüntülerini daha iyi alır ve 

aracın kameraya göre konumundan bağımsız olarak tutarlı sonuçlar üretir. YOLO ve 

SIH-CNN’nin hızlı ve doğru nesne algılama özellikleri kullanan hibrit model, çeşitli 

senaryolarda tüm şekil ve boyutlardaki araçları tanımlama ve sınıflandırma konusunda 

üstünlük sağlamıştır. 

 

Bu tezde önerilen SIH-CNN modeli kamuya açık UA-DETRAC kıyaslama ölçütü 

kullanılarak değerlendirilmiştir. Deney sonuçları, sunulan SIH-CNN modelinin UA-

DETRAC kıyaslama veri kümesi üzerinde değerlendirildiğinde %77,76'lık bir 

ortalama hassasiyet (mAP) elde ettiğini göstermektedir. Performans ölçütü, temel 

dedektöre göre %3,94'lük bir üstünlük sergilemektedir. 

 

Anahtar Kelimeler  : Akıllı Ulaşım Sistemleri, Otomatik gözetim, Araç algılama, 

Evrişimsel sinir ağı, Ölçek değişmezliği. 

Bilim Kodu : 92431  
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PART 1 

 

INTRODUCTION 

 

1.1. CONTEXT AND MOTIVATION 

 

The aim of computer vision, a field within artificial intelligence, is to enable computers 

to comprehend visual stimuli like humans do. Specifically, this entails equipping 

computers to extract perceptible insights from visual data. By doing so, robots can 

accurately delineate the characteristics of objects, recognize them, and comprehend 

object motion patterns [1,2]. 

 

In recent years, there has been a significant increase in accessible visual data due to 

the proliferation of smart devices, cameras, and sensors [3]. As of 2021, the worldwide 

number of connected devices has reached 34 billion, which means an average of 

around 6 gadgets per person [4]. According to the cited source, visual data is being 

generated at around one million video minutes per second on the internet [5]. Relying 

on manual human efforts to comprehend and extract information from videos and 

pictures has become infeasible. Therefore, it is essential to prioritize the development 

of algorithms that allow computers to perceive and interpret the visual world. 

Integrating various computer vision methodologies with deep learning capabilities 

facilitates the advanced processing of visual data [6]. This approach simplifies 

depicting prominent objects and their movement in video footage. 

 

Computer vision is a cross-disciplinary field with multiple applications, including 

healthcare, engineering, and transportation. In contemporary traffic monitoring 

infrastructures, surveillance cameras are extensively utilized and available, serving as 

a crucial element of such systems [7]. The cameras provide significant data for various 

transportation applications, such as parking management, identifying and detecting 

vehicles, counting vehicles and pedestrians, and identifying license plates. The 
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inclination towards creating smarter cities is increasing, and with this goal, using 

multiple technologies to enhance transportation planning, optimize traffic flow, and 

improve road user safety is necessary [8]. 

 

Within the realm of computer vision, the primary purpose of object detection involves 

accurately identifying and localizing specific objects present in an image. In contrast 

to objectives such as object segmentation or semantic segmentation where the goal is 

to group pixels homogeneously based on semantic significance and other criteria [9], 

object detection often involves providing the coordinates of a bounding box around 

the object to localize it. 

 

The goal is to precisely identify and categorize objects in an image with a methodology 

miming human visual perception. Different techniques exist for creating a bounding 

box around an object in an image. It should be noted that the definition of a bounding 

box may differ in cases of vehicle occlusion. A bounding box may only encompass the 

visible segment of a vehicle when the vehicle is partially obscured. Differs from the 

conventional approach utilized by most datasets, which usually generates a bounding 

box that includes the entire vehicle, even its obscured sections [10]. 

 

1.2. AIMS 

 

This thesis aims to: 

 

• Develop a model capable of efficiently meeting the real-time performance 

demands of vehicle recognition applications. 

• This study aims to design a system that can analyze video frames captured by 

surveillance cameras situated in urban areas, such as parking lots and roads. 

This investigation focuses on various vehicle types, including cars, buses, 

vans, and trucks. The footage captured from these scenes presents numerous 

challenges, such as changes in light and sound due to varying weather 

conditions, obstructions that wholly or partially obstruct the view, and 

fluctuations in vehicle velocity. 
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1.3. IMPORTANCE AND CONTRIBUTION 

 

This study contributes to the fields of surveillance and automated vehicle recognition; 

the importance and contribution of this work can be summarized as follows:  

 

• The research supports the development of real-time surveillance systems 

essential for various applications, including security and law enforcement. 

• Enhancement of Vehicle Detection Precision: This study introduces a new 

technique that incorporates multi-level features and inter-frame information to 

advance the precision and effectiveness of vehicle detection, particularly for 

distant and compact cars. The presented method represents a significant 

improvement in the field of vehicle detection. 

• To tackle the problem of scale variation in moving vehicles, we've suggested a 

Scale Invariant Hybrid Convolutional Neural Network (SIH-CNN) design. This 

methodology enhances detection precision by competently handling the differing 

dimensions of vehicles in successive frames. The SIH-CNN model is created to 

be scale-invariant, enabling it to adjust to the fluctuating scales of vehicles, 

producing more dependable and precise vehicle detection. 

• We have introduced a multi-level feature extraction block to address the problem 

of gradient vanishing and improve the model's capability to handle class 

variation. This component plays a critical role in enhancing the overall 

robustness of the detection system by efficiently extracting hierarchical features 

from the input data and capturing essential information at various abstraction 

levels, ultimately resulting in better detection performance. 

• Our proposed scheme incorporates a multi-scale feature extraction block to 

improve the detection of small vehicles. That is crucial since traditional detection 

methods struggle with identifying small-sized vehicles. By extracting features at 

different scales, our model can more accurately detect and recognize these tiny 

vehicles, resulting in an overall enhancement in the performance of the vehicle 

detection system. 

• Our proposed SIH-CNN operates at an impressive 48.4 frames per second, 

making it highly efficient and well-suited for real-time surveillance applications.  
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1.4. PROBLEM STATEMENT 

 

• Vehicles come in various sizes, styles, colors, and shapes. Because of this 

variety, detection systems face a tremendous barrier in reliably and consistently 

identifying. 

• Changes in Geometry of Cars: The position and orientation of vehicles in 

successive video frames may affect their geometry. These changes can also lead 

to additional complexities in recognizing and detecting vehicles. 

• Environmental Variables: The vehicle detection and recognition process can be 

affected by environmental factors Such as dust, rain, and clouds, potentially 

compromising the accuracy of results. 

• Many object detectors in vehicle surveillance models are designed for single-

image detection, disregarding significant inter-frame information from video 

feeds. 

• Grid Size Limitations: Using grid cells for detection in specific systems has 

limitations. A large grid size can detect small objects but at a high computational 

cost. Meanwhile, smaller grid sizes are computationally efficient but often fail 

to detect vehicles. 

• Fixed-length grid cell systems may have difficulty predicting vehicles further 

away from the cameras. Some existing systems, like those that use DarkNet-19 

as their backbone architecture, overlook multi-level features crucial for handling 

variations in vehicle classes. 

 

1.5. HYPOTHESIS 

 

The current research introduces the recognition system with the following hypotheses:   

 

Hypothesis 1: A vehicle detection system utilizing the YOLO object detector in 

conjunction with the Scale Invariant Convolutional Neural Network (SICNN) 

backbone architecture will enhance vehicle localization and categorization accuracy. 

 

Hypothesis 2: The implementation of the Scale Invariant Hybrid Convolutional 

Neural Network (SIH-CNN) architecture, with the inclusion of the Dense Connection 
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Block (DCB) and Inception Block, can effectively alleviate the problem of gradient 

vanishing during backpropagation and improve feature extraction, resulting in 

enhanced vehicle detection capabilities. 

 

Hypothesis 3: Implementing the global pooling layer in (SIH-CNN) can decrease 

overfitting and reduce the number of parameters in the model, thus enhancing model 

performance when detecting vehicles. 
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1.6. BLOCK DIAGRAM FOR VEHICLE DETECTION PROCESS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Vehicle Detection Process. 
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PART 2 

 

LITERATURE REVIEW 

 

Surveillance systems detecting moving vehicles are crucial for intelligent 

transportation, traffic management, and autonomous vehicles. As innovative city 

development grows, various technologies are utilized to improve transportation 

planning, optimize traffic flow, and enhance road user safety. That necessitates using 

automated surveillance systems in these areas [11]. Due to the high cost and limited 

availability of human monitors, reliable and easily accessible automated surveillance 

systems are essential. In this review of the relevant literature, we examine and contrast 

various studies investigating vehicle detection methods' effectiveness in urban zones. 

 

Hu et al. established a framework for visual vehicle detection in [12]. Their suggested 

approach used Region-of-Interest (RoI) pooling that considered the surrounding 

context to generate precise feature maps. For car categorization, they used a multi-

branch decision network. The suggested system is trained using the VGG and 

PVANET CNN backbones. Their fundamental architectures are rudimentary feed-

forward neural networks, notorious for missing detections and ignoring a wealth of 

practical semantic context. 

 

A fast vehicle detection framework for traffic monitoring was proposed by Zhang et 

al. [13]. They introduced (connect and merge residual networks) to enhance 

classification accuracy. They developed a multi-scale prediction network to further 

fine-tune their vehicle-shape forecasting abilities. Redmon, Farhadi, and Darknet-19 

[14] adopted the Darknet-19 backbone architecture in YOLO V2. Darknet-19 fails to 

detect small-scale vehicles because it disregards multi-level characteristics and pools 

in descending tiers. 
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Overfitting problems were avoided in the technique proposed by Haritha and Kumar 

[15]. A method for detecting vehicles using a cascaded neural network was proposed 

by Wu et al. They worked together to merge two distinct CNNs. The first convolutional 

neural network only deals with a limited amount of variation data. The second 

convolutional neural network was created to pick and choose features. Each CNN was 

first implemented independently, and then they were joined for optimal performance. 

Vehicles with a large inter-class variation and those too tiny for their planned network 

to detect. 

 

Using Haar-like characteristics and the histogram of directed gradients, Alam et al. 

[16] offer a novel computer vision-based vehicle recognition system. The Gentle 

Adaptive Boosting algorithm handles hypothesis creation, while the support vector 

machine algorithm deals with false hypothesis screening. The approach successfully 

detects cars by using their outline and shape. However, Haar-like feature creation 

could identify erroneous vehicles. 

 

The method presented by Gomaa et al. [17] is a hybrid of YOLOv2 and the work of 

Redmon and Farhadi. [14] In addition, we utilize point motion analysis to identify and 

tally moving cars precisely. Several convolutional neural networks are studied to 

determine which yields the best detection results. Important multilevel and multiscale 

vehicle detection aspects are overlooked in the suggested approach. 

 

Deshmukh et al. [18] present a framework for unstructured traffic environment vehicle 

detection using Swin Transformers. The Swin transformer and a bidirectional feature 

pyramid network extract multi-scale feature effectively and robustly, respectively. 

With the STVD framework, detection accuracy is greatly improved over prior 

approaches. However, their suggested architecture does not consider the multilevel 

aspects crucial to mitigating the effects of the gradient vanishing problem in 

backpropagation. 

 

Fast R-CNN-based day/night vehicle detection and classification is the focus of [19], 

authored by Arora et al. 2022. The proposed approach is effective even in little light, 

lengthy shadows, and heavy foot activity. It shows promise in terms of memory recall, 
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data correctness, and processing speed. However, the suggested architecture does not 

account for the multiscale and multilayer aspects necessary to deal with the varying 

sizes of vehicles in different video frames. 

 

An enhanced version of the SSD [20] algorithm for rapid vehicle detection in traffic 

scenes is presented by Chen et al. in [21]. It uses MobileNet v2 as its central feature 

extraction network, which boosts the system's responsiveness in real-time. The 

technique achieves High average precision across multiple datasets, showcasing its 

enhanced inference speed and prediction accuracy. The trade-off between detection 

accuracy and computing resources is a weakness of their methodology.  

 

Field Programmable Gate Array (FPGA) with YOLO CNN (Redmon & Farhadi, 

2017) is proposed as a low-power, low-latency, high-precision, and adjustable vehicle 

detector (Zhai et al., 2023) [22]. The method can significantly shrink the model's size 

while maintaining accuracy by using dynamic threshold structured pruning and 

dynamic 16-bit fixed-point quantization for model compression. Their methods for 

optimizing hardware improve both efficiency and effectiveness in using available 

resources during computing. However, their proposed framework does not consider 

the multiscale properties essential for dealing with vehicle scale fluctuation in video 

frames. 

 

Mittal et al. [23] present a hybrid model of Faster R-CNN and YOLO [23] with a 

majority voting classifier for vehicle detection and traffic density estimates. Methods 

such as transfer learning and data augmentation improve the effectiveness of models. 

The suggested model provides superior detection accuracy and traffic density 

estimation compared to YOLO and Faster R-CNN. However, their ensemble approach 

does not consider multilevel features that are essential for managing vehicle class 

variance. 

 

An enhanced version of YOLO [14] for vehicle detection is presented by Ghosh. in 

[24]. It predicts class probabilities with a single pass and achieves great accuracy with 

a small number of convolutional layers. The proposed method achieves better results 

on publicly available datasets than competing methods. The key problems with this 
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technology for application in Transportation systems are its limited focus on 

identifying moving vehicles and its possible generalizability.  

 

However, their proposed network failed to detect extremely small vehicles and 

vehicles with a high inter-class variation. Table 2.1. critically analyses and briefly 

describes various vision-based detectors. 

 

Table 2.1. Analyses and briefly describes various vision-based detectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detection 

Algorithm 

 

 

Contribution 

 

 

            Limitations 

A
cc

u
ra

cy
 

m
A

P
 %

 

 
S

en
si

ti
v

it
y

 

 

C
o

m
p

le
x

it
y

 

(T
im

e 
/ 

F
P

S
) 

 

 

R-CNN [25] 

Bypass the issue of 

selecting large number of 

regions and utilize Selective 

Search Algorithm (SSA) for 

region proposal then apply 

CNN based classifier to 

classify these regions. 

Selective Search results in 

bottleneck. 

The detection speed is slow 

47 seconds per image. Not 

suitable for real time 

applications. 

 

 

 

 

Low 

66 

 

 

 

 

Low 

 

 

 

 

Medium 

 

 

Fast-RCNN 

[26] 

Introduce the convolutional 

feature map instead of SSA 

(i.e., used in R-CNN). 

Not appropriate for real time 

applications. The detection 

speed is time-consuming 

only 5-frames per seconds. 

 

 

Low 

66.9 

 

 

Low 

 

 

Medium 

 

Faster-

RCNN 

[27] 

Introduce Region-Proposal-

Network (RPN) that replace 

SSA for region proposal. 

Proposed detector is 

position sensitive and 

translation invariant. And 

detection speed not good as 

single stage detectors. 

 

Medium 

66.9 

 

Medium 

 

Medium 

 

R-FCN 

[28] 

Introduce the position-

sensitive score maps to 

overcome the problems of 

Faster -RCNN. 

Proposed detector is not 

suitable for real time 

detection problem. 

 

High 

82 

 

Low 

 

High 

 

 

YOLO 

[29] 

 

YOLO is first single stage 

detector, that introduced 

regression-based detection. 

Proposed detectors classify 

and localize objects 

simultaneously. 

The detection accuracy is 

very low. Large grid cells 

result in miss detection of 

small-scale vehicles. Poor 

localization. 

 

 

Low 

57.9 

 

 

Medium 

 

 

Low 

  

 

 

SSD 

[20] 

 

Introduced more anchor 

points to precise 

localization. Utilize multi 

scale features to enhance 

detection accuracy for small 

scale vehicles. 

Poor detection accuracy 

specially for small scales 

vehicles when vehicles are 

away from the cameras. 

Low 

70 

Medium Low 

 

 

YOLO V2 
[14] 

 

Introduced multi-scale 

training, adoptive anchor 

boxes and proposed 
Darknet19 a CNN based 

backbone architecture. 

 

Proposed model cannot 

handle scale variation of 
vehicles in consecutive 

video frames. 

 

 

Low 

76.8 

 

 

High 
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Retina-Net 

[30] 

Proposed a single stage 

detector with focal loss, to 

resolve the issue of class 

imbalance problem during 

training. 

Detection speed is slow as 

compared to other single 

stage detectors. 

 

 

Medium 

80.37 

 

 

Medium 

 

 

High 

 

The literature presents diverse techniques for vehicle detection in surveillance systems. 

Each paper proposes unique approaches with their strengths and limitations. Based on 

the literature's limitations, the proposed framework addresses the identified limitations 

to develop robust and efficient vehicle detection systems in urban zones. 
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PART 3 

 

THEORETICAL BACKGROUND 

 

3.1   MACHINE LEARNING DEFINITION 

 

Automatic learning or machine learning techniques are frequently employed in object 

recognition.  This computational discipline aims at developing autonomous systems 

capable of autonomous learning, ultimately leading towards the advancement of 

artificial intelligence. An inherent benefit is that complex tasks can be accomplished 

automatically, thereby minimizing human intervention. 

 

The system learns, meaning it can recognize a complex set of patterns from data. All 

of this is done using a learning algorithm because a set of data is input and hypotheses 

can be constructed using a learning algorithm, allowing it to make predictions when 

new inputs are presented [31]. 

 

There are different types of machine learning: 

 

• Supervised Learning: This type of learning involves feeding labelled training 

data into the system. Once training is complete, new data can be provided into 

the system in an unlabeled manner, as the system can recognize patterns during 

training to identify appropriate data. This type of learning is suitable for 

classification and regression problems [32,66]. 

• Unsupervised Learning: This machine learning form operates without 

needing labelled data as input. One prevalent challenge this method faces is 

grouping or clustering, whereby the system categories data into distinct groups 

based on similarities [32,66]. 

• Learning through reinforcement:  The focus is on the system learning from 

experience. When the system learns, it is penalized for its mistakes, 
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encouraging it to learn to maximize rewards. That is comparable to teaching 

concepts or behaviors to children, where they are rewarded rather than 

punished for getting things right. The idea of reinforcement learning is very 

similar [32,66]. 

 

In this instance, we will employ the method of supervised learning. We aim to capture 

images labelled with objects we wish to identify to permit the system to learn their 

properties. Following the completion of training, we will initiate the recognition 

process, which entails validating that the system has accurately assimilated the objects 

it trained on. 

 

3.2.  DEEP LEARNING 

 

3.2.1. Concept 

 

Deep learning is a subfield of machine learning that involves an automatic learning 

paradigm aiming to model the way humans learn specific data and tasks [33].  

Information processing in deep learning is executed through artificial neural networks, 

which are composed of numerous layers of simple processing units or neurons that 

transform information step by step. Technical jargon will be explained when first 

introduced. These layers include network input layers, hidden layers, and output 

layers. Later, we will explore the functionality of each layer, but for now, let us focus 

on the input layer, which serves as the neural network's information input. The hidden 

layer processes this information by breaking it down, while the output layer makes 

decisions based on the processing carried out by the previous layer [34,68].  

 

3.2.2. Application 

 

Deep learning is becoming ubiquitous in various industries. For instance, the medical 

field employs this technology to achieve more precise and definitive diagnoses [35], 

while finance utilizes models for predicting market behavior. Furthermore, deep 

learning is prevalent in self-driving cars, error detection, and computing [36]. 
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The number of applications harnessing this technology is constantly growing, even 

within our immediate surroundings. For example, automated translation programmed 

like Google Translate can acquire knowledge from written texts for future translations 

[37]. Another option is speech recognition, frequently used in mobile phones, 

computers, and vehicles. Siri on Apple products is one example [38].  

 

Additionally, some applications can recognize words or phrases with a mobile device's 

camera and automatically translate them [38]. Facial recognition can produce 

biometric security measures and allow users to apply filters to images captured by 

mobile phone cameras and add decorations such as masks or drawings to the human 

face [39]. 

 

These examples reflect only a few of the numerous applications currently being 

implemented and the expanding possibilities for utilizing this technology. 

 

3.3.   OBJECT DETECTION 

 

The most prevalent machine learning problems are classified as "classification 

problems." The ability to classify specific data appropriately, based on system 

configuration parameters, depends on several variables [40]. 

 

For instance, a prominent example is the classification of images. Assuming we use 

supervised learning, different images of objects can be fed into the machine learning 

system. At least designate a name for each object of interest to facilitate training of the 

system [41]. Following this, we may demonstrate the system's ability to identify 

objects like those it has been trained on.  

 

 However, object recognition poses an advanced machine learning challenge beyond 

mere classification.  This issue is more complex than simple classification as it 

involves determining the presence of an object in the image and its location within the 

image [41]. In image classification, it suffices for the object of interest to be present in 

the image merely.  
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 However, in the present case, we seek to ascertain the object's presence and location 

within the image. In our case, object detection involves utilizing a pre-existing system 

and leveraging its knowledge to detect other object types or variations that the system 

can identify. To achieve enhanced detection performance, some adjustments will be 

necessary, which we will address later. To enhance our intuition, we may examine the 

problem of object recognition as individuals perceive it. 

 

From a young age, pictures are visible to us and through repeated exposure to the 

objects depicted, we acquire knowledge about the items in our surroundings. Our 

brains can differentiate between various objects by recalling the learning instilled in 

us by our parents, either through object labelling or by observing the individuals within 

our environment. To successfully recognize an object, the eyes serve as the primary 

source of information, followed by the brain, which consists of neurons that process 

this information. Consistent repetition of this process allows for absorption and 

learning of the object's characteristics, ultimately facilitating future recognition of 

similar objects [42]. 

 

3.4.  DESCRIPTION OF OBJECT DETECTION 

 

In this section, we outline the components of an object detector and the training process 

necessary for it to function as intended. We meticulously explicate technical 

abbreviations upon their debut to guarantee clarity and avoid confusion. 

 

The neural network serves as the foundation of deep learning-based object detectors. 

It conducts the requisite operations to extract image attributes so that object-related 

attributes are obtained, ultimately facilitating object recognition in each image. 

 

3.4.1.   Neural network 

 

First, let us discuss the foundation of the object recognition system. It comprises a 

neural network that functions as its core.  
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Defining TLU (Threshold Logic Unit) or Threshold Logic Unit is imperative to 

comprehend neural networks.  

 

A TLU is an artificial neuron that consists of inputs and an output. Assigning weights 

to the input, the TLU computes the weighted sum of the inputs to produce the output, 

as demonstrated in Figure 3.1. [43]. 

 

 

Figure 3.1. Structure of a TLU or threshold logical unit [43]. 

 

A perceptron comprises layers of TLUs, with each one being linked to every input. 

Furthermore, as demonstrated in Figure 3.2., a sequence of TLUs belong to the output 

layer and are also fully connected to its input [43]. 

 

 

      Figure 3.2. Composition of a perceptron [43]. 
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Each Threshold Logic Unit (TLU) is triggered according to whether the weighted sum 

of inputs is higher or lower than a certain threshold. When the weighted sum surpasses 

the threshold, an output of value 1 is generated. In contrast, if it is lower than the 

threshold, the output is either zero or -1, depending on the type of activation function 

used [43]. Activation functions yield output values based on input values, which can 

range between 0 and 1 or -1 and 1, among other possibilities. 

 

Finally, the Multilayer Perceptron (MLP) consists of an input layer, one or more 

hidden layers, and an output layer. The layers closest to the input are known as lower 

layers, while those closer to the output are called upper layers. This is further illustrated 

in Figure 3.3 [43]. 

 

 

Figure 3.3. Structure of an MLP [43]. 

 

In Neural Networks for Object Detection, we will use Convolutional Neural Networks 

because the problem is with image processing. In this case, the network takes each 

image's pixels as input. In this case, in the first layer of the convolutional network, it 

is not connected to all the input image pixels, as we commented before, but to a part 

of it, the ones we see in Figure 3.4. [43]. 
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Figure 3.4. Scheme of how a convolutional neural network operates [43]. 

 

The figure 3.4. displays how the initial convolutional layer connects exclusively with 

a particular set of pixels enclosed by the bounding boxes in the input image. These 

bounding boxes correspond to the receptive field consisting of the pertinent pixels. As 

such, each neuron in the subsequent convolutional layer solely forms connections with 

neurons located inside the restricted rectangular area of the preceding layer.  

 

This procedure captures minor features in the first hidden level and combines them 

into more prominent, higher-level features in the following hidden level, and so forth. 

The frequent occurrence of a hierarchical structure in authentic images has been found 

to enhance the performance of Convolutional Neural Networks (CNNs) in image 

recognition [43]. 

 

3.4.2.   Filters 

 

The neurons' weights can be depicted as small images of their respective receptive 

field size. An examination of filters using the example in Figure 3.5 reveals how two 

types of filters are applied. A neuron employing left filters disregards all its receptive 

area except for the central vertical line, since everything except the center line is 

multiplied by one. The same is observed when a central horizontal line is present in 

other cases [44]. 
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Figure 3.5. Example of applying filters to get two feature map [44]. 

 

In the first instance, we can observe the outcomes when all neurons of a particular 

level implement the same filter. This layer produces the image in the top left corner, 

evidenced in Figure 3.5. We can discern that the vertical lines are more refined whilst 

the remaining sections appear blurry. The reverse effect is observed for horizontal line 

filters. If all neurons in a layer employ the filter on the right, it is evident that the output 

of that layer is the upper right image, where the horizontal lines are more accentuated, 

while the remaining lines are more blurred. The outcome of the filter application is a 

feature map, which is the output of its use in the previous stage of the image [44]. 

 

The abovementioned process occurs at every level of all layers in the network. 

Typically, each convolutional layer utilizes several filters to produce feature maps for 

each one. With these maps, information regarding the objects present within the image 

is extracted and used to determine their attributes, thus identifying their composition 

[44]. Notably, "pooling" layers are commonly incorporated in image-processing 

networks of this nature. 

 

3.4.3.   Training process 

 

We will describe the components of the training process, which is essential for 

comprehending how the detector functions and achieves object recognition through 

analyzing image content. Clarifying technical terms such as "detector" and 
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abbreviations such as "input" adds to the comprehension of the process. Training 

involves the system ingesting input data to gradually identify the constituent object 

within each input via iterative analysis of previously annotated images. It enables the 

system to identify the object it should recognize without human supervision 

automatically. 

 

3.4.3.1.   Input 

 

The first step in annotating is data preparation. It should be noted that specific object 

detection networks, such as YOLO, are tailored to specific image sizes. This requires 

resizing the input image to meet the system's size requirements, which reduces 

computational costs. 

 

Next, the following stage involves labeling the image to indicate the object's specific 

location in the picture. This step allows the system to learn and recognize the object 

accurately. Software can make the annotation of images easier; however, it remains 

time-consuming. Typically, a bounding box is necessary to locate an object within an 

image, with up to 500 boxes needed for a collection. Once labeled, each image is 

assigned an annotation file that includes the object's respective class, which is then 

utilized for training the system [45]. 

 

The dataset is initially divided into training, validation and testing, either by 

extensively labelling images or downloading a pre-prepared dataset. The training 

dataset provides the system with data during training, allowing the system to learn the 

properties of the objects to be recognized. The validation dataset allows us to monitor 

the training.  It allows us to evaluate the model's fit while tuning the hyperparameters. 

Finally, the test dataset helps us to determine the system's performance, as it allows us 

to understand the effects of training and object detection. It also allows us to obtain 

performance metrics to evaluate the system [46] effectively. 
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3.4.3.2.  Preprocessing 

 

Before submitting the input to the system, the image must be modified. The first step 

involved is the normalization of the size and pixel values of the image. This procedure 

ensures optimal training of the system.   This process adjusts the network to the picture 

size and computational performance. Subsequently, we eliminate the outliers and 

assign each pixel a value between zero and one. 

 

Our study of the YOLO architecture found that the anchor boxes are loaded alongside 

the images and transformations. These anchor boxes contain a standard set of widths 

and heights used to match the sizes of objects within the dataset accurately [47]. 

 

3.4.3.3   Load the model-involved parameters and generate training 

 

Parameters are needed to progress and implement training properly. First, we must 

identify training epochs. That represents the number of times we iterate through the 

entire dataset during training. For example, if we select 50 epochs, the training process 

will involve iterating through the training dataset 50 times. Additionally, we must 

consider the BatchSize, which denotes the quantity of images in each batch. 

 

It is necessary to transmit this information to the network before modifying weights. 

If the BatchSize is set to 1/100 of the complete dataset, the weights will be altered 10 

times during a single epoch. Another critical factor is the number of classes, or the 

variety of objects employed for training. 

 

It would help if you also were mindful of the learning rate, which determines the size 

of the steps taken to achieve the optimal solution and its interpretation in conjunction 

with the cost function. The cost function measures the discrepancy between the 

predicted value produced by the model and the actual value. Therefore, when training, 

we aim to minimize the cost function by searching for values. Here, the learning rate 

becomes necessary because a high value implies that the minimum cost cannot be 

achieved, and it may even diverge, leading to an unattainable optimal solution. 

However, if the value of the learning rate is too low, it results in an extended time to 
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reach the optimal solution. However, employing smaller steps increases the probability 

of obtaining a solution that minimizes the cost function [48]. 

 

Next, it is essential to determine the neural network for detection and training. That 

can be achieved using various programming methods, such as declaring each layer 

individually. However, in some cases, the default network model can be loaded. 

Resnet, GoogleNet, and VGG are some examples of such networks, which can be 

trained from scratch by feeding input data directly into them. However, it is possible 

to use the knowledge that an existing network has gained from identifying a set of 

objects to teach it how to recognize new objects. This process is known as transfer 

learning [49]. 

 

However, it is possible to use the knowledge that an existing network has gained from 

identifying a set of objects to teach it how to recognize new objects. Suppose an AI 

system has become proficient at identifying items within a particular category. Yet, 

certain factors must be considered if we were to create a new AI system and use it to 

recognize objects in a different category. Currently, two options exist for the training 

phase: randomly assigning initial values to the weights and biases of the first layer in 

the new neural network or initializing these values with the weights and biases from 

the lower layers of the first network.  

 

By adopting this approach, the network can avoid needing knowledge of all intricacies 

associated with the low level from the outset, thus diminishing the potential for 

extended training periods. The network only needs to acquire knowledge pertaining to 

the superstructure. Using this technique benefits the network by way of its expedited 

training process and reduced data requirements for effective training [46]. 
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Figure 3.6. Visual example of the explanation of the learning transfer process [50]. 

 

Figure 3.6 shows how a novel network can be employed to serve a distinct purpose. In 

order to achieve this objective, a previously trained layer of another network that was 

developed for a disparate task is utilized.  To achieve this, layers for the second task 

must be generated in the images and images of the trained network. Subsequently, the 

weights and biases of the trained network should be integrated into the new network. 

When the layers are trained with pre-trained weights, they become frozen, and the 

weights do not alter. The upper layers of the network are trained to make minor 

adjustments to enable recognition of other objects. 

 

Therefore, when performing transfer learning training, we must load the pre-trained 

weights into the network we wish to train from scratch. 

 

The subsequent step in configuring the training is to compile the model and define the 

loss function and optimizer to be used during the process. The optimizer enables 

adjustment of model parameters to reduce the cost function loss in the training dataset. 

In contrast, loss functions evaluate algorithm performance with the use of data. 

 

After compiling the model, we can establish multiple additional parameters to enhance 

training management. One such parameter is the management of checkpoints or 

training control points, which store the precise values of all parameters utilized by the 

model. After a training epoch, a checkpoint is generated with the parameter values 

used for that epoch, providing tremendous advantages for later detection purposes 

[51].  
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Another essential parameter is Early Stopping. This parameter enables automatic 

cessation of training if the loss fails to decrease after a specified period or period. We 

can set it to monitor validation losses attained since the aim is to reduce them to attain 

the cost function's minimum. Hence, if these losses fail to decrease for consecutive 

epochs, it is inferred that the cost function is considered minimal, albeit not always the 

case, resulting in halting the training process. 

 

Subsequently, after defining the prior parameters and performing the associated 

description task, we train to enable the neural network to learn the desired object 

properties [52]. 

 

3.4.3.4. Trained Object Detection 

 

Finally, the procedure for identifying trained objects within the network involves 

loading the neural network with the adjusted weights obtained during training. Finally, 

the procedure for identifying trained objects within the network involves loading the 

neural network with the adjusted weights obtained during training. Subsequently, data, 

in the form of images containing the object in question (or lack thereof), is fed to the 

network to be recognized. Using the processes detailed previously, the system can 

accurately pinpoint objects present within the image. Therefore, it can delineate the 

location of the objects by drawing bounding boxes around them. Additionally, in the 

architecture to be introduced later, we can retrieve exact coordinates for the detected 

objects as well as determine their type, specifically the class of the object [53]. 

 

3.4.4.  Performance Indicators 

 

It is paramount that the detection system can identify the desired object with precision 

and accuracy. Thus, the system's capability must be evaluated using various metrics to 

analyze its performance. 

 

Cross-validation is a fascinating method for assessing performance. The process 

involves dividing the training set into smaller training and validation sets. The model 

is then trained using each newly obtained training set, followed by application to the 
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validation set to assess resulting errors. Moreover, it provides an accuracy assessment 

to understand the functioning of indicators. This technique renders an estimation of 

model performance by averaging attained validation errors. For better comprehension, 

specific critical definitions need to be formulated [54]. 

 

• The Intersection over Union (IOU) is a metric used to determine the percentage of 

overlap between two bounding boxes. There are two types of bounding boxes: ground 

boxes, annotations used to train and validate object recognition systems on images, 

and frames obtained from recognition performed by the system, as shown in Figure 

3.7.  When the recognition and annotation bounding boxes match, the IOU equals 1. 

The lower the value, the less reliable the detection [55]. 

 

 

Figure 3.7. Graphical explanation of the intersection over the union [56]. 

 

Specifically, to know whether a recognition is good or not, we have the following 

concepts:- 

 

• True Positive (TP): Occurs when an object is detected and IOU>=threshold. 

That is a correct detection. 

• False Positive (FP): When the computer system detects an object, but when 

calculating IOU, it finds that IOU<Threshold. Therefore, this is a false 

detection. 

• False Negative (FN): This happens when a ground frame is present in the 

image but not detected. 
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• True Negative (TN): Not used since these are all possible bounding boxes that 

do not contain objects and where no objects are detected. In object detection, 

an infinite number of possible bounding boxes should not be seen in an image. 

• Threshold: The threshold set for object detection. Usually 50%, 75% or 95% 

[56]. 

 

3.4.4.1.  ROC Curve 

 

Receiver Operator Characteristic (ROC) curve: ROC is used to calculate the cost 

sensitivity in classification processes. This curve is generated by plotting the False 

Positive Rate (FPR) against the True Positive Rate (TPR) during anomaly detection. 

In this way, the performance of the algorithm used as a classifier is compared between 

error costs and class distributions. The area under the curve indicates the accuracy of 

the model estimation resulting from classification [67]. 

 

 

Figure 3.8. ROC Curve Example. 

 

As shown in figure 3.8. The orange line corresponds to the ideal system, while the blue 

line corresponds to the real system. A good system will be as close to the prediction 

line as possible. 

 

The orange line marks the ideal. If we look closely, we can see how to find a 

compromise. The higher the true positive rate (TPR), the false positive rate (FPR) 

appears in the system [57]. 



27 

 

Calculating the area under the curve (AUC) is the most effective method to compare 

different systems. An ideal system would have an AUC of 1, while a real system would 

be below this value. However, the closer it is to 1, the better the system because it is 

close to the ideal state [57]. 

 

3.4.4.2.  Precision and recall 

 

Accuracy provides us with a measure of the quality of the proposed model. It indicates 

the proportion of all boxes returned by the computer system (i.e., all objects it found) 

that contained the object to be recognized. The ideal value is one. In Equation 3.1 we 

saw how to calculate it [58]. 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

 all detections 
                                                                            (3.1)                                         

 

Recall or sensitivity is the proportion of objects that a detector finds that are present. 

We can say that a system is very sensitive if it can find all relevant cases, that is, if it 

finds all ground truths, i.e., all annotations present in the image [58]. In Equation 3.2 

we see how is calculated. 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

 all ground truths 
                                                                             (3.2)                                                             

 

3.4.4.3. Precision-Recall Curve 

 

The Precision-recall concepts are closely related. In general, if we configure the system 

to achieve higher precision, it will result in lower recall, i.e., lower recall. H. The 

system becomes less sensitive, so fewer objects are detected. On the other hand, if we 

configure the system to have a higher sensitivity, we will find that the system is less 

precise because the system makes more lenient decisions when it comes to detection. 

Everything is managed. 

 

From the threshold illustrated In Figure 3.9. we see graphically what is happening: as 

we increase the threshold, we see how the sensitivity decreases but the accuracy 
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increases. On the other hand, if we lower it, usually the opposite happens: higher 

sensitivity and worse accuracy [59]. 

 

 

Figure 3.9. Illustration of the operation of the confidence threshold in the curves of 

Precision-Recall 

 

If the precision remains high until the recall increases, we consider the detector to be 

good. We can see this in Figure 3.10. where we find a case for the ideal detector and 

another case for the real detector. The green line is an ideal line of how a perfect system 

should behave, while the blue line is an example of a real system [59]. 

 

 

Figure 3.10. Example of an object detection system curve (blue) and the ideal curve to 

look for (green) 

 

3.4.4.4. Mean Average Precision (mAP) 

 

mAP (mean average precision) is an average value often used as a detection accuracy 

indicator in target detection. The mAP indicator is calculated by using an average 
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target to detect different AP (average precision) values corresponding to multiple 

targets in the task. The value of AP is the area used to accurately draw a PR curve 

based on the precision and recall in the experimental results obtained through 

predictive analysis. The calculation formulas of precision, recall and mAP indicators 

are as follows. 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

𝑚𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑚𝐴𝑃) =
∑ 𝐴𝑃𝑖   𝑘

𝑖= 1

𝑘
 

 

In the formula, TP represents the number of both actual and detected positive; FP 

represents the number of detected positive, but actually negative; FN represents the 

number of detected negative, but actually positive. The accuracy is the ratio of the 

number of correct tests to the number of positive tests, that is, how many of the positive 

test results are correct. The recall rate represents the ratio of correct detections to the 

actual number of positive ones, that is, how many detections are correct during the 

detection process [60]. 

 

3.5. OBJECT DETECTION ARCHITECTURES 

 

In this section, we discuss various object detection architectures that currently exist. 

Knowing how it works is crucial because it tells us different ways to make detectors. 

 

3.5.1. R-CNN 

 

The latest advancement in object recognition is R-CNN, which incorporates the 

Region Proposal Network (RPN) principle. The model identifies an area of interest in 

the image, usually the object’s location. Once detected, a pre-trained network analyses 

the images and classifies the designated regions of interest (ROIs) [25]. 
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The procedure entails generating latent bounding boxes in the picture in the first step, 

then using a classifier to examine these boxes in the second stage. After classification, 

post-processing is employed to streamline bounding boxes, enhance accuracy, reassess 

objects against one another in the image, and eliminate duplicated bounding boxes. 

 

However, this model's major drawback is its sluggish speed. The initial algorithm 

operates on the regions, followed by classifier refinement and object detection, causing 

each stage to be time-consuming. 

 

We attempted to enhance the model to address this issue and developed two new 

algorithms. The initial algorithm is refined by Fast R-CNN, which utilizes 

convolutional neural networks to extract functions that lead to slightly improved 

training and recognition times. However, there is no significant difference. The initial 

algorithm is refined by Fast R-CNN, which utilizes convolutional neural networks to 

extract functions that lead to slightly improved training and recognition times. Another 

algorithm, Faster R-CNN, bolsters processing speeds by integrating the previously 

mentioned region proposal tool into a convolutional neural network. The system also 

implements anchor boxes with pre-assigned height and width measurements for 

estimating the size of the target object during detection (further discussed later) [25]. 

 

3.5.2. Single Shot Detector (SSD) 

 

The architecture of this detector follows a pyramidal structure in its convolutional 

neural network, enabling the detection of objects both large and small. Through multi-

layer detection, various feature maps are generated, each with a unique scale. 

 

Consequently, Convolutional Neural Networks decrease the spatial dimension and 

resolution of the map over time. Lower-resolution maps detect more prominent 

objects, while higher-resolution maps detect smaller objects. 

 

The structure of the SSD network is illustrated in Figure 3.11 below, employing the 

VGG16 network. The procedure comprises extracting characteristics and detecting 

through convolutional layers [20]. 
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Figure 3.11. SSD network architecture. 

 

Predictions consist of bounding boxes and N+1 class values, where N represents the 

number of identifiable classes, including classes that do not match any objects. It is 

worth noting that SSD does not depend on region proposals, unlike R-CNN. Instead, 

it obtains scores and locations by utilizing small convolutional filters after the 

extraction process of the feature map. Building upon the VGG16 architecture, this 

model incorporates six additional levels, with five specifically devoted to object 

detection. The precision of these multi-feature maps is significantly enhanced, which 

leads to a substantial improvement in speed. As a result, this model can be applied for 

real-time object detection [20]. 

 

3.5.3.   Retina Network 

 

This model is designed to identify objects of varying sizes, encompassing small and 

large objects. The development of this model was founded upon two significant 

advancements in the field of single-stage detectors, namely the feature pyramid 

network (FPN) and the focal loss. 

 

The utilization of focal loss has been seen to enhance the class imbalance issue in 

single-stage object detection models. The focal loss is a loss function that diminishes 

the impact of accurately predicted values within a neural network. Thus, the focus is 

directed on instances in which the predicted class is inaccurate. 
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Pyramid Network (FPN) features are derived from the problem of detecting objects at 

different scales. A first approximation is to take images at different scales and obtain 

a feature map called an image pyramid from each scale.  

 

It can be seen in Figure 3.12. on the left (a). However, it is computationally expensive 

and time-consuming [30]. 

 

 

Figure 3.12. Difference between image pyramid (left) and feature map pyramid (right) 

[30]. 

 

Therefore, the approach is usually changed to do what is shown on the right side (b) 

in Figure 3.12: build a feature pyramid and use it for object recognition. Feature maps 

near the input plane (image plane) usually consist of low-level, ineffective structures 

in detecting objects. FPN was born, a feature extractor designed with a pyramid shape, 

so it has good accuracy and speed. 

 

It has two workflows. Looking at it from the bottom up, this is the usual convolutional 

network we already know, applying filters to extract features. A top-down workflow 

creates layers with higher spatial resolution and helps to facilitate training and better 

predict locations [30]. 

 

In this way, we can better understand the RetinaNet architecture, which consists of 

four elements, as shown in Figure 3.13. 
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Figure 3.13. RetinaNet architecture [30]. 

 

In order from left to right, the first thing we find is the ascending path, that is, the 

backbone network that calculates feature maps of different scales. On the right, we see 

a descending path with lateral connections that sample feature maps that are spatially 

thicker than the top layers of the pyramid. In contrast, lateral connections merge layers 

from top to bottom and vice versa, with the same spatial size. Then, further to the right, 

we find the classification network, which predicts the probability that an object is or 

is not at a specific spatial location. Finally, we find the regression network, which 

returns the offset of the bounding box in the prediction relative to the ground truth 

[30]. 

 

3.6. YOLO  

 

The object detection architecture, developed by Joseph Redmond as the primary 

author, is known for its exceptional speed and accuracy. Indeed, the architecture under 

consideration exhibits an impressive rate, rendering it conducive for real-time video 

detection. The YOLO (You only look once) framework encompasses a convolutional 

neural network that performs simultaneous predictions of the probabilities associated 

with numerous bounding boxes and the classification of objects contained within such 

bounding boxes [29]. 

 

 

 

 



34 

 

3.6.1. Benefits 

 

• Yolo is a high-speed system because detection is reduced to a linear regression 

problem, so no complex pipeline is required in testing; the neural network was 

run on images to make predictions [29]. 

• To make predictions, the system uses the entire image rather than just 

individual regions of the image, which limits errors in identifying object classes 

in images [29]. 

• Learning a generic representation of objects is less likely to fail when new input 

data is introduced than the above techniques [29]. 

 

3.6.2.  Operation 

 

Bounding boxes are delineated using the entire image and a convolutional neural 

network, as previously detailed. That enables the neural network to process and detect 

all elements within the image. As shown in Figure 3.14, the image is segregated into 

a grid with a size of S x S, where the central cell of this grid identifies objects that 

appear within its confines [61]. 

 

Conversely, every grid cell projects B bounding areas based on its confidence value. 

The confidence values reflect the model's reliability and the prediction's precision 

when an object is in the cell. To define trust formally, we use the equation Pr (Object)* 

IOU (as illustrated in Equation 3). When no object is in the cell, the confidence level 

should be 0. In the presence of an object in the cell, the confidence value should be 

Intersection over Union (IOU) [61]. 

 

Each bounding box has five predictions: x, y, w, h, and confidence. The x and y 

coordinates indicate the center of the field for the grid cell boundaries. The center of 

the green marker at coordinates (220,190), as shown in Figure 3.14, represents this 

location. When calculating it with reference to the unit size of 149×149, we must 

normalize it relative to the unit and maintain its value between 0 and 1, as illustrated 

in the calculation. The identical principle applies to the y coordinate. 
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The dimensions are proportionate to the entire image, meaning that the normalization 

process is based on the image size and not on the cells. To achieve this, the width 

(indicated by the red box in Figure 3.14) and height of the detected object are 

normalized based on the image size (448x448 in this case). 

 

 

Figure 3.14. Example of how the coordinates of an image frame are calculated. The 

size is 448x448 pixels and S=3  

 

Finally, to get a detection confidence value, we need several parameters. First, we need 

the IOU intercept of the bounding box and the annotation (Groundtruth) on the image, 

as shown in Figure 3.15. As we can see, we calculate the IOU (intercept of union) as 

the quotient of intersection points between unions. As a result, we get the intersection 

point. 
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Figure 3.15. Graphic description of the intersection over the union [62]. 

 

A range of probabilities are utilized to determine a level of confidence. Each grid cell 

predicts the conditional class probability PR(class | object). The odds are reliant on the 

grid cell that holds the object. Furthermore, regardless of the number of bounding 

boxes, denoted as B, only one object is expected to be projected. When recognition is 

executed, the probabilities of each class conditional are multiplied by the probabilities 

linked to individual frames. As a result, specific class confidence ratings for each 

bounding box are obtained, enabling insights into the probability of an object's 

presence. The areas under scrutiny are the box's contents and how closely the expected 

box matches the object being investigated. 

 

𝑃𝑟 ( Class 𝑖 ∣ Object ) ∗ 𝑃𝑟 (Object ) ∗ 𝐼𝑂𝑈pred 
truth = 𝑃𝑟 (Class 𝑖) ∗ 𝐼𝑂𝑈pred 

truth     .... (3.3)        

 

3.6.3.  YOLO Network Architecture 

 

The convolutional neural network has been employed to implement the model, 

commonly known as FCN or fully convolutional network, due to its convolutional 

layers. The first layer of the network extracts image features, and the fully connected 

layer is responsible for predicting output probabilities and coordinates. The inspiration 

for this network comes from the Google Net model, which is employed for image 

classification. 
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The network has a total of 24 convolutional layers and 2 fully connected layers. To 

decrease the number of layers, developers employ 1x1 convolutions, which can 

decrease the depth of characteristic maps. A 3x3 convolutional layer is executed, with 

1x1 and 3x3 layers alternating, as depicted in Figure 3.16. In addition, the final 

convolutional layer produces a tensor of (7, 7, and 1024) dimensions. Two fully 

connected layers then reduce the tensor, resulting in a 7x7x30-sized tensor, as 

presented in Figure 3.16 [29]. 

 

 

Figure 3.16. Schematic of YOLO neural network architecture [29]. 

 

The activation function used is LeakyReLu, except in linear layers where linear 

activation layers are used. In this case, the LeakyReLu function transforms the input 

values by multiplying negative values by coefficients to correct them, while positive 

coefficients do not correct them but remain unchanged [29]. 

 

As with the loss function, each unit in YOLO predicts many bounding boxes. Only 

one of all possible bounding boxes is considered to compute the loss for true positives, 

i.e., the one that gives the highest result with the annotation box (ground truth) when 

computing the intersection via IOU union [29]. 
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To compute the loss, YOLO uses the sum of squared error (SSE) between the detected 

bounding box and the annotated ground box. Thus, the loss function consists of three 

elements [29]. 

 

 The ranking loss is the error squared of the class-dependent probabilities of each class. 

It depends on whether the cell contains an object or not. If the cell is empty, the loss is 

zero. The expression for ranking loss in equation 3.4 is pi(c), where c is the class-

dependent probability of c in cell i [29]. 

 

∑  𝑆2

𝑖=0 𝟙𝑖
obj ∑  𝑐∈ classes (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))2                                                                           (3.4)                                   

 

• Loss of position, the error between the measured position and the detected and 

annotated bounding box size. Compute when the bounding box of detection j is 

responsible for detecting the object in cell i. Otherwise zero. The expression for 

this loss is shown in Equation 3.5 [29]. 

 

𝜆coord ∑  𝑆2

𝑖=0 ∑  𝐵
𝑗=0 𝟙𝑖𝑗

obj [(𝑥𝑖 − �̂�𝑖)
2 + (𝑦𝑖 − �̂�𝑖)

2]

+𝜆coord ∑  𝑆2

𝑖=0 ∑  𝐵
𝑗=0 𝟙𝑖𝑗

obj 
[(√𝑤𝑖 − √�̂�𝑖)

2
+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]
                                 (3.5.) 

 

Notably, here, one would not want to weight the error in a large bounding box equally 

with the error in a small bounding box, because the error for a given number of pixels 

in a large bounding box is different from the error in a small bounding box, and the 

error difference depending on the size is significant [29]. 

 

To avoid this, it calculates the square root of the bounding box width and height instead 

of applying them directly (no square root). For more emphasis on accuracy, the 

bounding boxes are also multiplied by the loss λcoord, which defaults to 5 [29]. 

 

• The confidence loss when an object is detected in a bounding box is given in Equation 

3.6, where Ci is the confidence value for bounding box j in cell i. 
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∑  𝑆2

𝑖=0 ∑  𝐵
𝑗=0 𝟙𝑖𝑗

obj 
(𝐶𝑖 − �̂�𝑖)

2
                                                                                      (3.6)     

  

And if there is no detected object, it is the one we have in Equation 3.7. 

 

𝜆noobj ∑  𝑆2

𝑖=0 ∑  𝐵
𝑗=0 𝟙𝑖𝑗

noobj 
(𝐶𝑖 − �̂�𝑖)

2
                                                                         (3.7) 

 

λnoobj refers to a factor that is placed because most bounding boxes do not contain 

any objects. 

 

Finally, the final loss is the sum of all losses above, as shown in Equation 3.8. This 

feature to be minimized for training consists of the confidence drop indicated in the 

red box; the classification loss, shown in blue; and the site loss, shown in the green 

box. 

 

λcoord ∑  S2

i=0 ∑  B
j=0 1ij

obj [(xi − x̂i)
2 + (yi − ŷi)

2]

+λcoord ∑  S2

i=0 ∑  B
j=0 1ij

obj 
[(√wi − √ŵi)

2
+ (√hi − √ĥi)

2

]

+ ∑  S2

i=0 ∑  B
j=0 𝟙ij

obj 
(Ci − Ĉi)

2

+λnoobj ∑  S2

i=0 ∑  B
j=0 1ij

noobj 
(Ci − Ĉi)

2

+ ∑  S2

i=0 1i
obj ∑  c∈ classes (pi(c) − p̂i(c))2

                                   (3.8) 

 

3.6.4. Advantages of YOLO 

Among the advantages of this model, firstly, we must deal with a high-speed system 

and find the main alternative to detect objects over time. Additionally, the detection 

function is performed by a single red neural device, which is fundamentally designed 

for maximum accuracy. 

 

In contrast, YOLO's regional propaganda model takes the global view and finds almost 

no false positives [29]. 
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3.7. DEVELOPMENT OF YOLO SYSTEM 

 

We have roughly described the improved versions of the model that have emerged 

over the years since its inception in 2015. Along the way, we have shown the most 

exciting aspects of the system, or the most significant improvements made by each 

model revision. We have paid particular attention to the second optimized version 

(YOLOv2) because of our study baseline on this model. 

 

3.7.1. YOlOv2 

 

This release aims to enhance significantly accuracy and hasten detection. As for subtle 

enhancements, the inclusion of batch normalization in convolutional layers was 

executed [14]. 

 

Batch normalization is a process that includes supplementary operations into a model 

before or after the activation function of each hidden layer. As a result, each input 

undergoes normalization and is centered around the zero point. Ultimately, the results 

are modified by using two new sets of parameters for each step. This process enables 

the model to obtain the best dimensions and average values for each input level. Batch 

normalization is highly effective for deep neural networks as it can overcome the 

internal covariate shift problem. Normalizing the input process reduces the 

dependence of each layer on the previous ones, enabling faster and more consistent 

training. Additionally, batch normalization acts as a regularization method, reducing 

the need for other methods, such as dropout. 

 

It is also worth noting that the classifier was enhanced; the initial iteration was trained 

on 224x224 images, while the updated version recognizes 448x448 images. In the 

updated version, the classifier is additionally trained on images of the last size to 

enhance the mean accuracy (mAP). 

 

The use of anchor boxes is another noteworthy improvement, enabling the system to 

identify multiple objects per cell, instead of just one previously. This was problematic 
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before since it was believed that only one object could be detected in a cell with 

multiple objects. 

 

Using anchor boxes, YOLO can detect numerous bounding boxes. An anchor box 

simply refers to a specific width and height that predicts bounding boxes for detections. 

This methodology allows for detection in relation to anchor boxes instead of predicting 

bounding boxes relative to the entire image. The shapes of the anchor boxes are 

selected automatically by YOLO, simplifying the network's object recognition 

process.  

 

The K-Means algorithm is utilized in YOLO for unsupervised learning to determine 

the size [14].  

 

 The system is supplied with all available data, and we indicate the number of groups 

or "clusters" we wish to sort it into. Assuming we desire to divide our data into two 

groups or "clusters," we can first investigate the quantity of data in scenario a) 

displayed in Figure 3.17 for a more straightforward explanation. This algorithm assists 

in arranging data according to its properties. Assuming we desire to divide our data 

into two groups or "clusters," we can first investigate the quantity of data in scenario 

a) displayed in Figure 3.17 for a more straightforward explanation. Assuming we 

desire to divide our data into two groups or "clusters," we can first investigate the 

quantity of data in scenario a) displayed in Figure 3.17 for a more straightforward 

explanation. 
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Figure 3.17. Illustration of the operation of the K-Means algorithm. 

 

To partition the data into two clusters, the algorithm initializes two centroids randomly, 

as shown in case b) of Figure 3.17, and highlights them in blue. Subsequently, the 

algorithm calculates the mean of the points nearest to each centroid. In case c), we 

assume that the points closest to centroids 1 and 2 are highlighted by green and red 

boxes, respectively. After averaging the points closest to each centroid, the algorithm 

moves the centroid to that location, as demonstrated in case d. This is repeated for 

multiple iterations until reaching case e, whereby the algorithm identifies the point 

nearest to the first centroid as belonging to group number 1 (highlighted in orange) 

and the point closest to the second centroid as belonging to group number 2 (marked 

in purple), as illustrated in case f. The current methodology employs anchor boxes. 

However, the given scenario necessitates the execution of the described algorithm with 

multiple group values (k) to generate the average Intersection over Union (IOU) with 

the closest centroid. 

 

The current iteration of the YOLO algorithm integrates the grid cells into predicting 

position coordinates. The GroundTruths values fall within the interval of 0 to 1. For 



43 

 

each cell, the neural network generates a maximum of five bounding boxes and 

estimates five sets of coordinates for each of them, namely, tx, ty, tw, th, and to. 

Equation 3.9 presents the outcome when the cell's position is displaced by cx and cy 

about the image's top-left corner, and the dimensions of the anchor box are denoted by 

pw and ph, respectively. Technical term abbreviations are explained when first used. 

For improved clarity, refer to Figure 3.18. 

 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦

𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤

𝑏ℎ = 𝑝ℎ𝑒𝑡𝑥

Pr ( object ) ∗ IOU (𝑏, object ) = 𝜎(𝑡𝑜)

                                                             (3.9) 

                     

 

Figure 3.18. Intuitive explanation of the position of a bounding box [14]. 

 

YOLOv2 is more precise and intricate regarding network architecture because it 

introduces a novel classification model known as Darknet 19. The network comprises 

19 convolution layers and 5 max-pooling layers, resulting in a notable increase in 

accuracy that outperforms YOLOv1 [14]. 
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PART 4 

 

METHODOLOGY 

 

4.1. SCALE-INVARIANT CONVOLUTIONAL NEURAL NETWORK 

(SICNN) 

 

Despite achieving near-human performance in various computer vision tasks, 

convolutional neural networks (CNN) have limited ability to tolerate scale variations. 

The traditional approach involves initially building a larger model and training it with 

data augmentation, including extensive scale jittering. CNN handles shift-variance 

much more effectively than scale-invariance [63]. Not being able to handle scale 

invariance directly contradicts the design philosophy of CNN, as higher layers may 

capture features of specific simple patterns simply because they are visible. 

 

Filters are larger at the input, not because they are more complex. In other words, there 

is no alignment between the position of a filter and the complexity it captures. CNNs 

do not handle other invariances internally, such as rotations and flips, as they only 

capture certain features. Many natural objects are mostly symmetric, one solution to 

address scale variations of the same feature is to increase the network size by 

introducing more filters and apply scale-jittering to the input images, often by an order 

of magnitude. Such an approach is widely used today [63]. Proposals that directly deal 

with this problem include a method presented in [63], wherein crops of various sizes 

and positions drive the CNN at three distinct scales, followed using VLAD pooling to 

generate a feature summary of the patches. 

 

 In 2014, a group of researchers proposed a scale-invariant convolutional neural 

network (SiCNN) that extracts multi-scale features and classifies them into a network 

structure. SiCNN employs a multi-column architecture where each column is 

dedicated to a specific scale. Unlike previous multi-column techniques, the columns 
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share the same set of filter parameters through a scale transformation. This design 

effectively manages scale variation without inflating the model size. Experimental 

findings demonstrate that SiCNN identifies features at different scales and produces a 

classification outcome that provides significant robustness against object scale 

variations. Network (SiCNN) utilizes a multi-column framework, where each column 

concentrates on a specific scale. In contrast to the previous multi-column approach, 

these columns share the same collection of filter parameters using scale 

transformations among them. The model's dimensions remain constant despite 

changes in scale.  

 

4.1.1. Scale-Invariance CNN Architecture 

 

SiCNN employs multiple columns of convolutional stacks with fluctuating filter sizes 

to detect objects with unknown scales within input images. Figure 4.1 illustrates the 

architecture in which the input image is fed into all columns from bottom to top. Each 

column includes several convolutional layers with max pooling. The major distinction 

from traditional multi-column CNNs is that, despite utilizing different filter sizes, 

these columns still possess a standard set of parameters they share among their filters. 

Column 1 in Figure 4.1 maintains canonical filters within each layer. The remaining 

columns, called scale columns, convert these filters into their filters. Combined, a 

canonical filter and its transformed filters detect a pattern at various scales across 

multiple columns simultaneously. As a result, a unique pattern at different scales 

activates one or more columns [63]. 
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Figure 4.1. Architecture of SiCNN [63]. 

 

If the specification column I is obtained through input Ym the corresponding other 

columns S(I) are obtained through input S(Ym), which S refers to the scale operation. 
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Figure 4.2. Columns with multiple layers to capture patterns in different scales [63]. 

 

The SIH-CNN model enhances the outcomes of conventional Convolutional Neural 

Networks (CNNs) and is a valuable addition to existing optimization strategies. The 

author's findings from the study are that the model acquires knowledge of features of 

varying sizes across distinct columns. The generalizable idea can be applied in all 

aspects where CNN is employed, including supervised and unsupervised learning, 

recognition, detection, and localization tasks. The first findings of the authors' 

investigation suggest a favorable balance between performance and the expense 

associated with training. 

 

There are several unresolved issues. An alternative approach to summarize all the 

columns, rather than concatenation, is a distinct method. Additionally, the connectivity 

structure among the columns may be modified by implementing pair-wise connections 

between columns instead of a singular connection to the canonical column [63]. 

 

4.2. VEHICLE DETECTION MECHANISM 

 

The vehicle detection methodology utilizes the YOLO v2 object detector's capabilities. 

The YOLO v2 detector operates through a unified neural network framework that 

concurrently handles the responsibilities of vehicle categorization and localization. 

The localization concept involves approximating bounding boxes that determine a 
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vehicle's precise dimensions and location within a specific frame. In this task's context, 

categorization involves identifying the specific type of vehicle detected, which can 

vary between cars, buses, or vans.  

 

The initial stage of the process involves partitioning the supplied video frames into 

grid cells of dimensions 13x13. This phase aims to enhance the detection process by 

dividing the entire frame into more manageable portions. Every individual grid cell is 

tasked with detecting automobiles, contingent upon the need that the central point of 

the vehicle lies within the confines of that specific cell. 

 

Subsequently, each of the 169 cells comprising the 13x13 grid assesses two essential 

attributes: confidence ratings and bounding box parameters. The confidence score is a 

comprehensive statistic that indicates the likelihood of a vehicle being present within 

a specified bounding box. The score is determined by the product of the probability of 

a vehicle's presence within a cell and the Intersection over Union (IoU) value between 

the predicted bounding box and the ground truth. In the present context, "ground truth" 

refers to the precise and verifiable depiction of the vehicle's position and size within 

the image. A confidence score of 0 signifies the absence of a vehicle within the 

designated cell. 

 

In contrast, when the model identifies a vehicle within a bounding box, it assigns a 

confidence score based on the Intersection over Union (IoU) between the predicted 

bounding box and the ground truth. This procedure guarantees that the model's 

predictions closely align with actual observations. 

 

Each bounding box within the grid predicts five essential components to accomplish 

the vehicle detection task. The components encompass the x and y coordinates of the 

vehicle's center to the grid cell, the previously mentioned confidence score, and the 

predicted height and width of the vehicle. By making predictions on these five 

components, the model fully depicts the possible position and magnitude of the vehicle 

within each cell. 
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The graphical representation of the vehicle detection method is depicted in Figure 4.3, 

which showcases the sequential steps followed by the model to achieve accurate 

vehicle detection. The methodology offers a promising solution for real-time vehicle 

recognition in video frames by leveraging the strengths of the YOLO v2 detector and 

a distinctive grid-based approach. This combination ensures both efficiency and 

accuracy in the detection process. 

 

 

Figure 4.3. SIH Vehicle Detection Mechanism [69] 

 

4.3. SCALE INVARIANT HYBRID CONVOLUTIONAL NEURAL 

NETWORK VEHICLE DETECTION STEPS 

 

Step 1: Pre-processing the Input Video Frame 

 

• Capture a frame from the surveillance video feed. 

• Resize the frame to fit the input dimensions required by the YOLO model, 

maintaining the aspect ratio. 

 

Step 2: Grid Division 
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• Divide the processed frame into a 13x13 grid, following prior evidence 

supporting the effectiveness of this grid size for balancing granularity and 

computational efficiency [64]. 

Step 3: Feature Extraction 

 

• Pass the input frame through the SIH-CNN architecture, designed to be scale-

invariant. 

• Extract features and object descriptors that are useful for object localization 

and classification. 

 

Step 4: Bounding Box and Confidence Score Prediction 

 

• Predict bounding boxes and associated confidence scores for each cell in the 

13x13 grid. 

• The confidence score (Pr(Vehicle) * IoU_{Predicted}^{Ground_Truth}) 

serves as an indicator of the detection's reliability. 

 

Step 5: Object Centroid Identification 

 

• Determine whether the centroid of a detected vehicle falls within a given grid 

cell. 

• The grid cell containing the object's centroid becomes responsible for the 

detection of that vehicle. 

 

Step 6: Non-Maximum Suppression 

 

• Eliminate multiple bounding boxes around the same vehicle by applying non-

maximum suppression based on their confidence scores and overlap (IoU). 

 

Step 7: Final Detection 

 

• Retain bounding boxes with confidence scores above a certain threshold (e.g., 

0.5) as final detections. 
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• Each retained bounding box will predict the vehicle's center (x and y 

coordinates), height, and width, along with the confidence score. 

 

Step 8: Post-processing and Output 

 

• Convert the bounding box coordinates back to the dimensions of the original 

frame. 

• Overlay the bounding boxes and confidence scores on the original video frame 

for visual verification. 

 

Step 9: Continuous Monitoring 

 

• Move to the next video frame and repeat Steps 1 to 8 for continuous vehicle 

monitoring. 

 

Step 10: Real-Time Performance Measurement 

 

• Evaluate the model's performance in real-time, ensuring that it maintains the 

desired frame rate (e.g., 48.4 FPS as per our SIH-CNN architecture). 

 

The vehicle detection process is visually demonstrated in Fig 4.4., which provides an 

overview of the SIH vehicle detection mechanism. 
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Figure 4.4. Propsed Framework algorithm flowchart. 
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4.4. SCALE INVARIANT HYBRID CONVOLUTIONAL NEURAL 

NETWORK (SIH-CNN) ARCHITECTURE 

 

This work aims to rectify the deficiency in the existing Darknet-19 backbone design.  

To achieve this objective, a new SIH-CNN backbone architecture is proposed. As 

depicted in Figure 4.5, the SIH-CNN architecture initiates the process by reducing the 

size of the convolutional structure to extract features by utilizing numerous 

convolutional and max-pooling units. 

 

After receiving an input image with dimensions of 416x416, the architecture initially 

applies Convolution_1. This operation utilizes 32 filters of size 3x3, with a stride value 

of 1. Afterwards, a max-pooling layer is implemented, employing a 2x2 filter and a 

stride (S) value of 2, which yields feature maps with dimensions of 208x208x32. The 

subsequent units in the architecture adhere to the same max-pooling value. 

 

The second unit subsequently executes Convolution_2, employing 64 kernels with 

dimensions of 3x3. This results in feature maps measuring 104x104x64 after the 

second max-pooling process. The third unit utilizes three convolutional layers, namely 

Convolution_3 (3x3), Convolution_4 (1x1), and Convolution_5 (3x3), with 128, 64, 

and 128 kernels accordingly. After the third max-pooling process, the outcome is a 

total of 52x52x128 feature maps. 

 

Subsequently, the fourth unit of the model integrates three convolution layers, each 

utilizing 256, 128, and 256 kernels accordingly. The fourth max-pooling operation 

yields feature maps with dimensions of 26x26x256. Following the completion of this 

unit, the architectural design yields feature maps that exhibit enhanced robustness. 

 

To enhance the feature extraction process and address the issue of gradient vanishing 

during backpropagation, a Dense Connection Block (DCB) is proposed at this 

juncture. In this architectural arrangement, the feature maps originating from the L-1 

Layer are merged with the feature maps from the current Layer L and the subsequent 

Layer L+1. 
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Nevertheless, incorporating an excessive number of DC-convolution layers inside the 

convolutional neural network architecture can impede detection speed and introduce 

complexity to the model. Therefore, the SIH-CNN model integrates the DCB within 

the penultimate convolutional block to extract the most semantically meaningful 

features. The dense connection module of the proposed SIH-CNN architecture consists 

of four DC units, each comprising a 1x1 and a 3x3 Conv-layer. Each DC unit has a 

batch normalization (BN) layer before its 3x3 convolutional layer. 

 

By the Deep Convolutional Block (DCB), the Spatial Invariant Hierarchical 

Convolutional Neural Network (SIH-CNN) employs an inception block. To extract 

multi-scale features, the feature maps from the previous layer undergo processing 

using three different dimension filters (1x1, 3x3, and 5x5) and one initial max-pooling 

filter.  

 

The multi-scale feature maps are then integrated to create a robust framework ideal for 

identifying small vehicles. 

 

By utilizing a convolutional neural network (CNN) architecture that performs 

convolutions at a singular layer, the network displays greater width without a 

proportional increase in depth. This attribute enhances the feature extraction process 

across different scales. The last convolutional layer receives the feature maps 

generated by the inception block. 

 

To mitigate overfitting and reduce the number of parameters, a transition has been 

introduced from the flatten layer to the global pooling layer. This advanced SIH-CNN 

architecture aims to address the limitations of its precursor, Darknet-19, by improving 

the accuracy and effectiveness of object detection [69] 
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Figure 4.5. Proposed SIH-CNN Backbone Architecture [69] 
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PART 5 

 

EXPERIMENT STUDY  

 

5.1. SIMULATION FRAMEWORKS 

 

All experiments were run on a computer with on Intel(R) Core(TM) i7-7700K CPU, 

4.50 GHz Max Turbo Frequency, and NVIDIA Titan X GPU with 12.00 GB memory. 

 

5.1.1. Model Training 

 

The SIH-CNN model utilizes Stochastic Gradient Descent (SGD) as its optimization 

algorithm. Stochastic Gradient Descent (SGD) refines the weights of a model by 

utilizing the gradient of the loss function to those weights. The stochastic gradient 

descent (SGD) algorithm exhibits sensitivity to the initial learning rate configurations. 

Hence, a learning rate of 0.0001 has been chosen. The preference is for selecting a 

smaller number since it facilitates consistent convergence and reduces the likelihood 

of going beyond the optimal solution point.  

 

The SIH-CNN model incorporates the Leaky Rectified Linear Unit (Leaky ReLU) 

activation function. Leaky ReLU is like the traditional Rectified Linear Unit (ReLU) 

in terms of its functionality. However, it distinguishes itself by maintaining a small 

non-zero gradient for negative input values. This characteristic prevents any neuron 

from becoming inactive throughout the learning process. In addition to mitigating the 

issue of the vanishing gradient problem, incorporating this technique can enhance the 

model's capacity to acquire knowledge. The batch size chosen for training the SIH-

CNN model is 32. The quantity of training examples handled in each iteration is a 

determining factor that impacts the speed and stability of the training process. A 

greater batch size is associated with accelerated convergence rates, albeit at the 
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expense of increased memory requirements. Conversely, a smaller batch size promotes 

more stable convergence, albeit at a slower pace. 

 

5.1.2. Benchmark Acquisition 

 

To evaluate the efficacy of a computer vision-driven system for detecting vehicles. It 

is usual practice to employ a publicly available benchmark dataset. To conduct this 

investigation, the researchers used the UA-DETRAC benchmark [65] as it offers a 

diverse collection of real-world traffic video sequences that can effectively test and 

evaluate the capabilities of the proposed system. 

 

The UA-DETRAC benchmark dataset comprises a comprehensive collection of 1.21 

million bounding boxes derived from a diverse set of 8,250 unique cars. The scope of 

this study encompasses four distinct categories of vehicles, specifically automobiles, 

buses, vans, and a miscellaneous group that includes various sorts of vehicles [65]. 

 

To provide comprehensive and rigorous testing, the training phase of the system 

employed 80% of the benchmark, while the remaining 20% was allocated for testing 

purposes. 

 

This benchmark presents vehicles categorized into three distinct sizes: little (less than 

50 pixels), medium (50-150 pixels), and gigantic (more than 150 pixels). The 

performance of the proposed system may be assessed across a diverse variety of 

vehicle types and sizes due to the availability of this vast scale range. 

 

Providing ground truth data by the UA-DETRAC benchmark is of utmost importance. 

Based on the provided data, it is possible to compute performance metrics that 

effectively measure the system's efficiency to its real-world performance. Figures 5.1 

and 5.2 illustrate a subset of samples extracted from the UA-DETRAC benchmark 

dataset. These figures showcase a diverse variety of vehicle types and sizes and various 

environmental conditions represented within the dataset. 
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The evaluation of the system's capability to reliably detect cars in real-world 

circumstances is facilitated by testing the proposed system against a robust benchmark 

dataset. 

 

These situations represent a comprehensive evaluation of the system's effectiveness, 

and the ability to detect in such circumstances accurately serves as evidence of the 

potential of the suggested Convolutional Neural Network (CNN) structure in real-

world implementations [65]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Sample annotated frames in the UA-DETRAC [69]. 

 

 

Figure 5.2. UA-DETRAC detection sample In different environments [65]. 
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5.1.3. Evaluation Metrics 

 

The mean Average Precision (mAP) is an often-utilized metric in the evaluation of 

object detection systems, particularly those developed explicitly to detect vehicles. 

The detection algorithm's precision is evaluated by calculating the average precision 

over all categories of items and scales. In this work, the evaluation of the proposed 

vehicle detector was conducted by employing the mean average precision (mAP) 

metric. The performance evaluation was performed using the UA-DETRAC 

benchmark, which provided precise annotations for vehicle detection. Figure 5.3 

depicts a representative image sourced from the UA-DETRAC dataset, showcasing 

instances of False Positive (FP), False Negative (FN), and True Positive (TP) 

occurrences utilized in the evaluation of performance. 

 

 

Figure 5.3. UA-DETRAC detection sample. 

 

To calculate mAP, we used a set of performance evaluation matrices represented in 

equations (4.1.) - (4.4.). 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                             (4.1)     

                                                                                                  

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                              (4.2)                       

                                                                                                

Average precision (AP) :  = ∫ 𝑃(𝑟) ⅆ𝑟
1

0
 =  

1

11
∑ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑒𝑐)  

𝑟𝑒𝑐=0,0.1,0.2,....,1              (4.3)      

           

𝑚𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑚𝐴𝑃) =
∑ 𝐴𝑃𝑖  𝑘

𝑖= 1

𝑘
                                                     (4.4) 
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𝐹𝑟𝑎𝑚𝑒 𝑃𝑒𝑟 𝑆𝑒𝑐𝑜𝑛 ⅆ (𝐹𝑃𝑆) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛ⅆ𝑠                           (4.5.) 

 

5.2. RESULT AND DISCUSSION 

 

5.2.1. Comparative Evaluation of The Proposed SIH-CNN 

 

• Introduction to the comparative models: The performance evaluation of the 

proposed SIH-CNN model was conducted by comparing its results with other 

well-known detection models, including (Faster R-CNN ,  SSD , YOLO v2 ) 

[27,20,14]. 

• Figure 5.4. These figures visually demonstrate SIH-CNN's comparison against 

other models based on the AUC (area under the curve) derived from the 

Precision-Recall curve for different vehicle classes. 

 

 

Figure 5.4. a) AUC of Bus  Class, b) AUC of Car Class, c) AUC of Van Class, d) AUC 

of Others Class [69].                                                           

a) 

d) c) 

b) 
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5.2.2. Performance Metrics Across Various Models 

 

Table 6.1 comprehensively evaluates various vehicle identification algorithms using 

the UA-DETRAC dataset. The evaluation focuses on four specific vehicle categories: 

buses, cars, vans, and others.  

 

The SIH-CNN model, as proposed, demonstrates exceptional performance by 

achieving a mAP score of 77.76%, the highest among the models evaluated. The model 

has remarkable performance in terms of achieving the highest Average Precision (AP) 

scores for cars (86.03%), vans (77.25%), and the miscellaneous category (63.15%). 

The AP score for buses, 84.61%, shows a slight decrease compared to the Faster 

RCNN model. However, the Faster-RCNN model has a mean average precision (mAP) 

of 72.67%. The SSD300 model achieves a slightly higher mAP of 73.08%, while the 

SSD512 model achieves a higher mAP of 75.99%. In addition, the YOLO-V2 model 

achieves a mAP of 73.82%. 

 

Table 6.1. Model Performance comparison [69] 

Vehicle 

Detection 

Framework 

CNN 

Architecture 

Input 

Size 

Buses 

AP % 

Cars 

AP % 

Vans 

AP % 

Others 

Categor

y AP % 

mAP % FPS  

Faster-RCNN 

[27] 

VGG-16 600x600 85.49 84.4 70.49 50.29 72.67 12.7 

SSD300 

[20] 

VGG-16 300x300 81.56 84.05 71.85 54.86 73.08 25.2 

SSD512 

[20] 

VGG-16 512x512 84.32 84.46 76.64 58.55 75.99 19.6 

YOLO-V2 

[14] 
 

DarkNet-19 416x416 80.86 82.63 72.22 59.57 73.82 51.7 

Proposed 

Framework 

 

SIH-CNN 416x416 84.61 86.03 77.25 63.15 77.76 48.4 

 

5.2.3. Analysis of Detection Accuracy 

 

A spider graph shown in Figure 6.2 visually illustrates the average precision values for 

different types of vehicles, including cars, buses, vans, and others. The numbers in the 

graph were collected using various detectors. The data indicates that the SIH-CNN 

model described in this report has exhibited a higher performance level than all other 
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detectors concerning average precision across all classes. The most significant finding 

is that the SIH-CNN curve covers the largest area of the graph. The discovery suggests 

that the proposed model demonstrates superior precision and reliability in identifying 

various car categories in contrast to other advanced detectors currently available. 

 

 

Figure 5.5. Average precision of all vehicle classes [69]. 

 

5.2.4. Qualitative Results 

 

Figure 5.6 Displays SIH-CNN's vehicle detection performance on the UA-DETRAC 

benchmark, showing its ability to detect various vehicle sizes with appropriate class 

labels using video frames. 
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Figure 5.6. Vehicle detection for SIH-CNN Model [69]. 

 

5.2.5. Discussion 

 

• Synthesis of results and their implications: The findings underline the SIH-

CNN model's potential as a leading tool for accurate, real-time vehicular 

detection. 

• Significance in the context of vehicular detection: The SIH-CNN strikes a 

balance between accuracy and real-time performance, maintaining competitive 

detection accuracy while processing frames in real-time. 

• The AUC (area under the curve) on the PR (Precision-Recall) curve indicates 

a model's detection capability. A high AUC is indicative of superior model 

performance. 

• Overview of SIH-CNN's superior performance: The empirical findings 

unequivocally demonstrate that the SIH-CNN model has exceptional 

performance across all vehicle categories. The results show that the SIH-CNN 

model is highly effective and accurate in real-world vehicle detection. 
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PART 6 

 

CONCLUSION 

 

Vehicle detection in surveillance systems poses significant challenges due to the 

variety of vehicles' sizes, styles, colors and shapes. This diversity creates a daunting 

obstacle for detection systems, making identifying them reliably and consistently 

challenging. Additionally, the geometric transformations of cars over successive video 

frames, influenced by their position and orientation, introduce further complexities to 

the detection and recognition process. Environmental variables, like dust, rain and 

clouds, can significantly add to the situation's complexity, which may jeopardies the 

accuracy of the results. The existing object detectors tend to neglect the crucial inter-

frame information contained within the video feeds, as they are mainly developed for 

single-image detection purposes. Moreover, the application of grid cells for detection 

presents certain limitations. Although larger grid sizes prove effective for small object 

detection, they also result in high computational costs. 

 

Conversely, smaller grid sizes are computationally efficient but may not accurately 

detect vehicles. Moreover, fixed-length grid cells may struggle to predict vehicles far 

from cameras. Furthermore, some systems, such as those utilizing DarkNet-19 as their 

underlying framework, fail to recognize the importance of incorporating multi-level 

features, which are of utmost importance in efficiently handling variations in vehicle 

class. 

 

This thesis aims to attain multiple crucial goals in vehicle identification for 

surveillance systems that operate in real-time. To begin with, it concentrates on 

elevating the precision and effectiveness of car detection, specifically for distant or 

small vehicles, via an innovative technique that employs multi-level features and 

essential inter-frame details. This thesis puts forward a Scale Invariant Hybrid 

Convolutional Neural Network (SIH-CNN) model to tackle the issue of differing 
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scales in vehicles on the move. The SIH-CNN architecture adeptly adjusts to changing 

vehicle sizes across consecutive frames, enhancing vehicle detection accuracy and 

reliability. Moreover, incorporating a multi-level feature extraction block rectifies 

issues relating to gradient vanishing and improves the model's capacity to deal with 

class variation, thus contributing to the overall fortitude of the detection system. 

Additionally, a multi-scale feature extraction block is included to tackle the detection 

of diminutive vehicles, allowing for a more precise identification of small vehicles. 

Ultimately, the SIH-CNN proposed exhibits an impressive 48.4 frames per second, 

thus demonstrating its excellent efficiency and suitability for observing real-time 

activities. 

 

In future work, we will utilize the same multilevel and multiscale features to develop 

a vehicle license plate recognition procedure, representing the next phase of vehicle 

surveillance in river dredging areas. 
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