

OBTAINING RENEWABLE ENERGY BY OPTIMIZATION OF THE PERFORMANCE AND EMISSION RESPONSES OF THE DIESEL ENGINE WITH RSM USING ENVIRONMENTALLY FRIENDLY FUEL BLENDS

2023 MASTER THESIS MECHANICAL ENGINEERING

Haider Nashaat Hassen TAHA

Thesis Advisors Assoc. Prof. Dr. Samet USLU

OBTAINING RENEWABLE ENERGY BY OPTIMIZATION OF THE PERFORMANCE AND EMISSION RESPONSES OF THE DIESEL ENGINE WITH RSM USING ENVIRONMENTALLY FRIENDLY FUEL BLENDS

Haider Nashaat Hassen TAHA

Thesis Advisors Assoc. Prof. Dr. Samet USLU

T.C.

Karabuk University Institute of Graduate Programs Department of Mechanical Engineering Prepared as Master Thesis

> KARABÜK November 2023

I certify that in my opinion the thesis submitted by Haider Nashaat Hassen TAHA titled "OBTAINING RENEWABLE ENERGY BY OPTIMIZATION OF THE PERFORMANCE AND EMISSION RESPONSES OF THE DIESEL ENGINE WITH RSM USING ENVIRONMENTALLY FRIENDLY FUEL BLENDS" is fully adequate in scope and in quality as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Samet USLU Thesis Advisor, Department of Mechanical Engineering

This thesis is accepted by the examining committee with a unanimous vote in the Department of Mechanical Engineering as a Master of Science thesis. November 15, 2023.

<u>Examining</u>	<u>Signature</u>	
Chairman	: Assoc. Prof. Dr. Mehmet ÇELİK (KBU)	
Member	: Assoc. Prof. Dr. Samet USLU (KBU)	
Member	: Assist. Prof. Dr. Süleyman ŞİMŞEK (IAU)	

The degree of Master of Science by the thesis submitted is approved by the Administrative Board of the Institute of Graduate Programs, Karabuk University.

Assoc. Prof. Dr. Zeynep ÖZCAN Director of the Institute of Graduate Programs

Haider Nashaat Hassen TAHA

[&]quot;"I declare that all the information within this thesis has been gathered and presented in accordance with academic regulations and ethical principles and I have according to the requirements of these regulations and principles cited all those which do not originate in this work as well."

ABSTRACT

M. Sc. Thesis

OBTAINING RENEWABLE ENERGY BY OPTIMIZATION OF THE PERFORMANCE AND EMISSION RESPONSES OF THE DIESEL ENGINE WITH RSM USING ENVIRONMENTALLY FRIENDLY FUEL BLENDS

Haider Nashaat Hassen TAHA

Karabük University Institute of Graduate Programs The Department of Mechanical Engineering

> Thesis Advisors: Assoc. Prof. Dr. Samet USLU November 2023, 109 pages

In this study, the effects of using biodiesel produced from waste frying oil in a diesel engine on engine responses were examined and an optimization study was carried out with response surface methodology (RSM) so that it can be used under the best conditions. First, experimental studies were carried out with fuel mixtures containing different amounts of biodiesel (10, 20, 30, and 40% by vol.) at different engine electrical loads (500, 1000, 1500, 2000, 2500, and 3000 W) using a single-cylinder diesel generator. According to the test results, the best biodiesel ratio, especially in terms of emissions, was determined to be 30%. The lowest carbon monoxide (CO), hydrocarbon (HC) and smoke emissions were obtained with a fuel mixture containing 30% biodiesel. Then, optimization was made based on the experimental data obtained. While biodiesel ratio and engine load were selected as factors in the optimization study, CO, HC, carbon dioxide (CO₂), nitrogen oxides (NO_x), smoke

and brake specific fuel consumption (BSFC) were selected as responses affected by the factors. According to the optimization results, the optimum factor levels were 26% and 1080 W for biodiesel ratio and engine load, respectively. The optimum responses obtained depending on the optimum factors are 500.1059 g/kWh BSFC, 0.4175% smoke, 375.1013 ppm NO_x, 3.9134% CO₂, 13.6162 ppm HC, 0.0404% CO. In addition, according to the verification study conducted to prove the reliability and accuracy of the optimization results, the lowest error rate between the optimum results and the experimental results was found in CO emission with 2.51%, while the highest error rate was obtained in HC emission with 7.83%. Accordingly, the fact that the maximum error is lower than 10% indicates that the optimization application can be trusted.

As a result, it was concluded that waste frying oil biodiesel can be an alternative fuel for diesel engines and can be used efficiently in diesel engines with RSM optimization.

Key Words	: Waste frying oil biodiesel, response surface methodology,
	diesel engine, emissions.
Science code	: 91413

V

ÖZET

Yüksek Lisans Tezi

ÇEVRE DOSTU YAKIT KARIŞIMLARI KULLANILARAK DİZEL MOTORUN PERFORMANS VE EMİSYON YANITLARININ RSM İLE OPTİMİZE EDİLMESİYLE YENİLENEBİLİR ENERJİ ELDE EDİLMESİ

Haider Nashaat Hassen TAHA

Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü Makine Mühendisliği Bölümü

> Tez Danışmanı: Doç. Dr. Samet USLU Kasım 2023, 109 sayfa

Bu çalışmada atık kızartma yağlarından üretilmiş biyodizelin dizel motorda kullanımının motor yanıtlarına etkileri incelenmiş ve en iyi şartlarda kullanılabilmesi için RSM ile optimizasyon çalışması gerçekleştirilmiştir. Öncelikle tek silindirli dizel jeneratör kullanılarak farklı motor yüklerinde (500, 1000, 1500, 2000, 2500 ve 3000 W) farklı oranlarda (10, 20, 30 ve %40) biyodizel içeren yakıt karışımları ile deneysel çalışmalar gerçekleştirilmiştir. Deney sonuçlarına göre özellikle emisyonlar açısından en iyi biyodizel oranı %30 olarak tespit edilmiştir. En düşük karbonmonoksit (CO), hidrokarbon (HC) ve is emisyonu %30 biyodizel içerikli yakıt karışımı ile elde edilmiştir. Daha sonra elde edilen deneysel verilere dayanarak optimizasyon yapılmıştır. Optimizasyon çalışmasında biyodizel oranı ve motor yükü faktör olarak seçilirken, CO, HC, karbondioksit (CO₂), azot oksit (NO_x), is ve fren

özgül yakıt tüketimi (BSFC) faktörlerden etkilenen yanıtlar olarak seçilmiştir. Optimizasyon sonuçlarına göre optimum faktör seviyeleri biyodizel oranı ve motor yükü için sırasıyla %26 ve 1080 W olarak ortaya çıkmıştır. Optimum faktörlere bağlı olarak elde edilen optimum yanıtlar ise 500.1059 g/kWh BSFC, 0.4175% is, 375.1013 ppm NO_x, 3.9134% CO₂, 13.6162 ppm HC, 0.0404% CO'dur. Ayrıca, optimizasyon sonuçlarının güvenilirliğini ve doğruluğunu kanıtlamak amacıyla yapılan doğrulama çalışmasına göre optimum sonuçlar ile deney sonuçları arasındaki en düşük hata oranı %2,51 ile CO emisyonunda bulunurken en yüksek hata oranı %7,83 ile HC emisyonunda elde edilmiştir. Buna göre, en yüksek hatanın %10'dan daha düşük olması optimizasyon uygulamasına güvenilebileceğini göstermektedir.

Sonuç olarak, atık kızartma yağı biyodizelinin dizel motorlar için alternatif bir yakıt olabileceği ve RSM optimizasyonu ile verimli bir şekilde dizel motorlarda kullanılabileceği sonucuna varılmıştır.

Anahtar Sözcükler	: Atık kızartma yağı biyodizeli, yanıt yüzey metodolojisi, dizel
	motor, emisyonlar.

Bilim Kodu : 91413

ACKNOWLEDGEMENT

- We thank God very much and praise Him for His blessings and success first and last.
- To the first people who taught me about life, my mother and father, may God have mercy on them.
- To my companion and inspiration, my beloved wife.
- To my family, friends, colleagues, and everyone who supported me.
- To the source of knowledge, my distinguished teachers ...
- To those who gave me their knowledge, effort, time and support, my dear and respected supervisor Assoc. Prof. Dr. Samet USLU.

CONTENTS

Pages
APPROVALii
ABSTRACTiv
ÖZETvi
ACKNOWLEDGEMENTviii
CONTENTSix
LIST OF FIGURESxii
LIST OF TABLESxiv
SYMBOLS AND ABBREVITIONS INDEXxv
PART 11
INTRODUCTION1
PART 2
LITERATURE REVIEW
PART 3
PARTS OF COMBUSTION AND EMISSIONS IN DIESEL ENGINES
3.1. PARTS OF COMBUSTION IN DIESEL ENGINES
3.1.1. Ignition Delay Period
3.1.2. Rapid Combustion Period
3.1.3. Controlled Combustion Period
3.1.4. Afterburning Period
3.2. EXHAUST EMISSIONS IN DIESEL ENGINES
3.2.1. Hydrocarbon (HC) Emission
3.2.2. Carbon Monoxide (CO) Emission
3.2.3. Carbon Dioxide (CO ₂) Emission
3.2.4. Nitrogen Oxide (NO _x) Emission
3.2.5. Particulate Matter

	Pages
PART 4	
ALTERNATIVE FUELS FOR DIESEL ENGINE	
	5 4
MATERIAL AND METHOD	
5.1. PREPARATION OF BIOFUELS FROM USED COOKING	
5.2. EXPERIMENTAL SETUP	
5.2.1. Diesel Generator	
5.2.2. Gas Analyzer	
5.2.3. Smoke meter	61
5.2.4. Laptop	
5.2.5. Electrical load panel with control unit	
5.2.6. Small laptop cameras	
5.2.7. Magnetic Stirrer	64
5.2.8. Accessories	64
5.3. CONDUCTING THE EXPERIMENTS	
5.4. RESPONSE SURFACE METHODOLOGY	
5.4.1. RSM application	
ΡΑΡΤ 6	75
RESULTS AND DISCUSSIONS	75
6.1 ENGINE PERFORMANCE	75
6.1.1 Brake Specific Evel Consumption	75
6.2 ENGINE EMISSIONS	
6.2.1 Carbon amissions	
6.2.1.1 CO amissions	
6.2.1.2 CO emissions	
0.2.1.2. CO ₂ emissions	
6.2.1.3. HC emissions	
6.2.2. Nitrogen oxides (NO _x) emissions	
6.2.3. Smoke emissions	

PART 7	
OPTIMIZATION RESULTS	
CONCLUSIONS	
REFERENCES	

RESUME

LIST OF FIGURES

Figure 1.1. Types of energy sources	1
Figure 3. 1. Combustion periods in compression ignition engines	. 43
Figure 4. 1. The four distinct generations of biofuels' development	. 50
Figure 5. 1. Waste cooking oil biodiesel production	. 54
Figure 5. 2. Photos of biodiesel production stages	. 57
Figure 5. 3. More photos of biodiesel production stages	. 58
Figure 5. 4. Diesel generator	. 59
Figure 5. 5. Gaz analyser	. 61
Figure 5. 6. Smoke meter	. 62
Figure 5. 7. Laptop	. 62
Figure 5. 8. Electrical load panel with control unit	. 63
Figure 5. 9. Laptop camera	. 63
Figure 5. 10. Magnetic stirrer	. 64
Figure 5. 11. Accessories	. 65
Figure 5. 12. Experimental setup	. 66
Figure 5. 13. Interface for Response Surface Design	. 68
Figure 5. 14. Selection of design type	. 69
Figure 5. 15. Central composite design with two factors and 14 experiments	. 69
Figure 5. 16. Response surface design definition	.71
Figure 5. 17. Selection of factors and responses	.71
Figure 5. 18. Overview of analysis results for each response	.72
Figure 5. 19. Response Optimizer	.73
Figure 5. 20. Optimization Plot	.74
Figure 6. 1. Change of BSFC for different test fuel	.76
Figure 6. 2. 3D version of the variation of BSFC for different test fuels	.76
Figure 6. 3. Change of CO for different test fuel	. 78
Figure 6. 4. 3D version of the variation of CO for different test fuels	.78
Figure 6. 5. Change of CO ₂ for different test fuel	. 79
Figure 6. 6. 3D version of the variation of CO ₂ for different test fuels	. 80

Figure 6. 7. Change of HC for different test fuel	81
Figure 6. 8. 3D version of the variation of HC for different test fuels	81
Figure 6. 9. Change of NO _x for different test fuel	82
Figure 6. 10. 3D version of the variation of NO _x for different test fuels	83
Figure 6. 11. Change of smoke for different test fuel	84
Figure 6. 12. 3D version of the variation of smoke for different test fuels	84
Figure 7. 1. Pareto chart for BSFC	86
Figure 7. 2. Pareto chart for CO	87
Figure 7. 3. Pareto chart for CO ₂	88
Figure 7. 4. Pareto chart for HC	89
Figure 7. 5. Pareto chart for NO _x	90
Figure 7. 6. Pareto chart for Smoke	91
Figure 7. 7. Optimization	92

LIST OF TABLES

Table 4. 1. Biofuel classification	
Table 5. 1. Properties of diesel and waste frying oil biodiesel	
Table 5. 2. Specifications of diesel engine	
Table 5. 3. Specifications of generator	
Table 5. 4. Measuring ranges and sensitivities of gas analyser	61
Table 5. 5. Experimental data	
Table 7. 1. ANOVA table of BSFC	
Table 7. 2. ANOVA table of CO	
Table 7. 3. ANOVA table of CO ₂	
Table 7. 4. ANOVA table of HC	
Table 7. 5. ANOVA table of NO _x	
Table 7. 6. ANOVA table of Smoke	
Table 7. 7. Validation of RSM results with an error percentage	

SYMBOLS AND ABBREVITIONS INDEX

SYMBOLS

NaOh: Sodium hydroxide salt

KOh : Potassium hydroxide salt

O : Oxygen

OH : Hydroxide

ABBREVITIONS

ANOVA	: Analysis of variance		
BSFC	: Brake specific fuel consumption		
СО	: Carbon monoxide		
CO ₂	: Carbon dioxide		
DoE	: Design of experiments		
D100	: Fossil diesel fuel		
HC	: Hydrocarbon		
NO	: Nitrogen oxide		
NO _x	: Nitrogen oxides		
PM	: Particle matter		
RSM	: Response surface methodology		
3D	: three dimensions		

PART 1

INTRODUCTION

As a result of the increasing demand for energy due to the increase in humanity and the continuous development of the requirements of life, the consumption of fossil fuels that are destined for depletion has increased, with the resulting harmful effects on the environment due to the processes of oil extraction and its uses [1]. The need arose to find available alternatives that are less costly and sustainable for energy production. Figure 1.1 shows energy sources and types. Renewable energy Biomass is the largest and cheapest option for obtaining clean energy, including biofuels [2-5].

Figure 1.1. Types of energy sources

The efficiency of diesel engines has made them widespread and versatile, which has made them one of the sources of harmful emissions and environmental pollution [6].

The possibility of using biofuel to operate internal combustion diesel engines has been researched due to its specifications being close to those of fossil fuels without the need to bear the costs of making modifications to the engine, which facilitates the production of sufficient energy at a lower cost. Reducing emissions harmful to the environment [7,8].

Biofuel is a term consisting of two words: fuel, which means an energy substance that can be transported and used according to need, and bio, which means the product of plant or animal (biomass) ,Where plants store the energy of sunlight in chemical bonds, where they release their stored energy when breaking the bonds of molecules through physical or chemical processes such as combustion, digestion, decomposition, and others . The use of biomass for energy production represents a carbon dioxide recycling process, while the use of fossil fuels produces additional new carbon dioxide for the environment [9]. It is considered one of the most important sources of renewable energy due to its abundance, diversity, and cheapness. There are four generations of biofuel [10,11];

- First generation: fuel produced from edible plants.
- Second generation: fuel produced from inedible plants.
- Third generation: fuel produced from algae and some microorganisms.
- Fourth generation: converting vegetable oil and biodiesel into gasoline.

(Biodiesel) A liquid fuel produced from vegetable oils or animal fats by the transesterification method using alcohol (methanol or ethanol) with a base salt (NaOH or KOH) and, as a by-product, producing glycerides. Biodiesel is an environmentally friendly fuel with properties like conventional diesel fuel [12,13].

Biofuel is a clean and renewable fuel produced from plants and its derivatives. The energy of sunlight is stored through the leaves of plants in chemical bonds. When the bonds of molecules are broken by digestion, combustion or decomposition, their stored energy is released. It is environmentally friendly, being non-toxic, does not contain sulfur and aromatics, its properties vary according to the raw material and method. used in biodegradable production and its use reduces carbon monoxide,

hydrogen carbonate and smoke emissions and the use of waste frying oil as a raw material in production reduces costs and secures the environment and local sources of energy and creates new job opportunities [14].

The advantages of biodiesel are high cetane number with the property of increasing engine lubrication with the presence of the oxygen molecule and its characteristics are close to fossil diesel fuel and it is biodegradable. The disadvantages of biodiesel are its higher viscosity and low calorific value with low thermal efficiency of the brakes and increased braking energy consumption [15,16].

God Almighty said in the Holy Qur'an: And We have revealed to you the Book explaining everything (Surat An-Nahl, verse 89). Fuel has already been mentioned in the Holy Qur'an (the holy book of Muslims) in eleven verses, five of which are about biofuels, and as indicated (10- Al-Imran, 17- Al-Baqarah, 24 Al-Baqarah, 64 Al-Ma'idah, 17- Al-Ra'd, 35- Al-Nur, 38- Al-Qasas, 80- Yasin, 6- Al-Tahrim, 5- Al-Buruj, 6- Al-Humazah) [17,18].

In this study, we investigate to obtain clean energy by improving the performance, emissions, and responses of a diesel engine (using the Response Surface Methodology (RSM)) using a mixture of fossil diesel and environmentally friendly fuel extracted in (home laboratory) by recycling waste vegetable frying oil through transesterification. Where the used frying oil goes through several processes (primary filtration, heating and secondary filtration to get rid of impurities and water and heating and then adding a mixture of methanol alcohol and (potassium or sodium) hydroxide salt (KOh or NaOh) with a certain rotating and moving mechanism and a very slow speed and washing with distilled basic water and then left for a certain period will produce a liquid consisting of two layers 96% of the primary biofuel is relatively transparent and 4% of the crude glycerine is dark in colour, then the biofuel is separated and reheated for a specific period of time to get rid of excess water and alcohol, and the result is 100% biofuel obtained in a simple and low-cost way (which will be explained in detail in this research. It is worth noting that the first use of biodiesel fuel of vegetable origin was documented by the inventor of the

engine, the German scientist Rudolf Diesel in 1900 at the Paris International Exhibition.) [19,20].

A computer program was used to study the engine performance because its results are faster and less expensive, and its results are of close accuracy than the traditional methods that are very expensive and very slow (using the RSM) [21] by making a laboratory model consisting of a single-cylinder four-stroke diesel engine with Direct injection and air cooling Through the use of several models of a mixture of diesel and bio-fuel with different proportions to run a model A laboratory consisting of a single-cylinder, four-stroke, direct-injection, air-cooled diesel engine linked to an electric generator to deliver different electrical loads with the use of performance measurement devices and emissions analysis of the model under standard working conditions (70% diesel + 30% biodiesel).

PART 2

LITERATURE REVIEW

Sheinbaum and others studied the effect of using biofuels made from vegetable frying oil at a rate between 1.5% and 3.3% of diesel fuel used in public transportation in Mexico on reducing CO_2 emissions by 1.0% to 2.7%. Governments should set policies that support the recycling of waste, including waste frying oil, to increase economic, security, and environmental feasibility and raise awareness of the harms of used and expired cooking oil waste and the benefits of collecting and recycling [22].

By studying the results reached by the researchers, whose research was reviewed in this chapter, it was found that the performance of the diesel engine is affected by the use of biofuel mixtures, with a 74% increase in BSFC, while in terms of emissions coming out with the exhaust gas of the engine, it was found that there was a 77% increase in CO_2 and 75% increase in NO_x and 87% decrease in CO and 86% decrease in HC and 86% decrease in smoke, which means that the results reached in this research are close to what others have achieved as shown below .

No.	Authors	Fuel	Engine Specifications	Engine Performance	Emissions
1	searched by (M.S.Gad) et al. [23]	(WCO)Biodiesel + Gasoline BD92%+G8%	Diesel	BSFC (g/kWh) was increase BTE was decreases EGT (°C) was increases	CO: decreases, NO _x : increases, HC: decreases, Spot: decreases
2	Searched by (Murat Kadir Yesilyurt) et al. [24]	biodiesel from peanut oil by transesterification technique (catalyst (KOH)+Methanol)	Diesel (3.5 kW) single cylinder, four-stroke, direct- injection, water-cooled 1500 rpm	Energy efficiency values: decreases Fuel consumption due to lower calorific value: increases	Mentioned gas emissions as values without comparison
3	Searched by (H. Sanli) et al. [25]	waste frying oil-based methyl and ethyl ester biodiesel fuels 20% MEBD+80% diesel & 20%EEBD+80% diesel& MEB & EEB & PbD	Diesel, 6 cylinders, 4 stroke, Direct injection, turbocharged, intercooled water cooled.	BSFC (g/kWh): increases BTE:(MEB or EEB): increases	CO: decreases CO ₂ : increases HC: decreases NO _x : increases
4	Searched by (Suleyman Simsek) et al. [26]	biodiesel obtained from Canola, safflower oils and waste oils	Diesel engine single cylinder, four-stroke direct injection, air-cooled fixed speed 3000 rpm	BSFC (g/kWh): increases BTE: increased for BD10, BD20 and BD30 blends. Decreased for BD50, BD75 and BD100 blends	CO: decreases CO ₂ : increases HC: decreases NO _x : increases

5	searched by (Medhat Elkelawy) et al. [27]	Biodiesel production from sunflower and soybean oils homogeneous transesterification method 70%BD30%D	Diesel engine single cylinder, four-stroke direct injection naturally aspirated, water cooled	BSFC (g/kwh): increases BTE: decreases	CO: decreases CO ₂ : increases HC: decreases NO _x : increases
6	Searched by (Suleyman Simsek) et al. [21]	Canola, Safflower and Waste Vegetable Oil Based Biodiesel RSM	diesel engine a single cylinder, four-stroke, direct- injection with a 3000-rpm constant speed naturally aspirated, air-cooled	BTE: decreased EGT (°C): decreases	CO ₂ : increases NO _x : increases Smoke: decreases
7	Searched by (S. Chandra Sekhar) et al. [28]	Biodiesel from Pithecellobium dulce seed oil	Diesel engine four stroke, single cylinder, constant speed (1500 rpm), water cooled, vertical, naturally aspirated, and DI engine	BTE: decreased BSFC (g/kWh): increases EGT (°C): decreases	CO ₂ : increases CO: decreases HC: decreases NO _x : decreases Smoke: increases
8	Searched by (Suleyman Simsek) et al. [2]	waste vegetable oil and waste animal oil-based biodiesel	diesel engine a 3000-rpm constant speed air cooled, naturally aspirated, four- stroke, single cylinder, and	BTE: decreased BSFC (g/kWh): increases	CO: decreases CO ₂ : increases HC: decreases

			direct injection		Smoke: decreases
9	Searched by (Suleyman Simsek) et al. [29]	biodiesel/2-ethylhexyl nitrate B97.5E2.5, B98.5E1.5, B99.5E0.5 Taguchi	internal combustion, compression ignition diesel engine (2000, 2500, 3000 watt)	BTE: increased BSFC (g/kWh): decreases Due to loads and B.D. ratio	NOx: increasesCO: increases with B.D ratio decreases with load,HC: increases with B.D ratio decreases with load,NOx: increases with B.D ratio decreases with load,Smoke: increasesDue to loads and B.D. ratio
10	Searched by (Suleyman Simsek) et al. [30]	animal waste fat-derived biodiesel ANN and RSM technique	single cylinder diesel engine makes by Katana KM 178 FE, power 6.7 hp, 3000 rpm engine loads (500, 1000, 2000, 2500 and 3000 Watt).	BTE (%): decreases BSFC (g/kWh): increases Due to loads	NO _x (ppm): increases HC (ppm): increased CO (%): decreases CO ₂ (%): increases Smoke (%): increases Due to loads
11	Searched by (Samet Uslu) et al. [31]	cerium dioxide/diesel blends using 4 amounts of CeO ₂	diesel engine, single-cylinder Antor 3LD510 compression ignition engine, 1800 rpm	BTHE: increases EGT: increases	HC (ppm): decreased CO (%): decreases

		(25,50,75 and 100 ppm)	engine loads (8, 12, 16, 20,		NO _x : increases
		nanoparticles to the diesel fuel	and 25 Nm)		Smoke (%): decreases
12	Searched by (Samet Uslu) et al. [32]	diethyl ether	in a single cylinder diesel engine	BTE: increases BSFC (g/kWh): increases EGT: decreases	HC (ppm): decreased CO (%): decreases NO _x : increases Smoke (%): decreases
13	Searched by (Suleyman Simsek) et al. [33]	graphene oxide (GO) dosed sesame oil (SO)/diesel fuel blend GO (25, 50, 75 and 100 ppm) to the fuel blend (30% SO/70% diesel) RSM	single-cylinder diesel engine engine loads (500, 1000, 1500, 2000, 2500 and 3000 W)	BSFC (g/kWh): decreases BTE (%); EGT: decreases due to increasing (GO) ratio	CO: decreases HC: decreases NO _x : decreases due to increasing (GO) ratio
14	Searched by (Jagannath B. Hirkude) et al. [34]	waste fried oil methyl ester-diesel blend using RSM	Direct injection CI diesel engine, 4 Stroke, 1 cylinder, power: 3.78kW (5 HP)	BTE (%): increases Due to (IP, IT) BSFC: decreases when CR (16-18) and increasing of IP. EGT (°C); increases due to CR, IP increases and IT decreases	Smoke: decreases Due to CR, IT, IP, and biodiesel ratio

				Due to compression ratio (CR), injection time (IT) and injection pressure (IP)	
15	Searched by (R. Rohith Renish) et al. [35]	neem oil biodiesel-diesel blends B5, B10, B15, B20 and B25 (%vol.)	Diesel engine, Compression ignition, 4-stroke, multifuel, VCR-engine, 1- cylinder, 1500 rpm, Compression ratio: 12:1–18:1	BTE (%): decreases close to diesel at CR 18:1 and increases according to CR increasing BSFC (kg/kWh): increases except B25 at CR 18:1 and close to diesel. EGT (°C): increases Due to engine load (%)	CO (%): decreases at CR 18:1 HC (ppm): decreases at CR 18:1 NO _x (ppm): increases at CR 18:1 Due to engine load (%)
16	Searched by(Suleyman Simsek) et al. [36]	biodiesel/2-ethylhexyl nitrate (EHN) fuel blends by RSM	Diesel compression ignition engine with single cylinder power: 6.7hp speed: 3000 rpm	BTE: increases BSFC (g/kWh): decreases	HC: increased CO: decreases CO ₂ : increases NO _x : increases Smoke: increases
17	Searched by (Abhishek Sharma) et al. [37]	tobacco (Nicotiana Tabaccum) for biodiesel using (RSM)	4-stroke, DI diesel engine (Single Cylinder)	BTE decreases EGT slight increase	HC: decreases

			diesel engine	BTE decreases	
18	Searched by (Abhishek Sharma) et al. [38]	biodiesel/diesel blends raw biogas–diesel dual	Single cylinder, four stroke, CI, air cooled, naturally aspirated direct injection	BSFC (g/kWh): increases	Smoke: decreases
			constant speed 1500rpm		
			DI, CI diesel engine,		CO: decreases
			Single cylinder,	EGT increases	CO ₂ : increases
19	Searched by (Medhat Elkelawy)	acetone organic additives	Cooling system water- evaporative	BTE decreases	NO _x : increases
17	et al. [39]	mixture	1600 rpm	BSFC (g/kWh): increases	HC: decreases
			four stroke, horizontal, and		O ₂ : increases
			swirl chamber		Smoke decreases
	Searched by (Shiv		single cylinder diesel engine,	$BSEC(\alpha/kWh)$; increases	CO: decreases
20	Kumar Ray) et al.	Waste Vegetable Oil	make Kirlosker TV1	DSI C (g/kwii). Increases	NO _x : increases
	[40]	biodeser	1500 rpm.		CO ₂ : increases
	Searched by (Murat	waste cooking oil	single cylinder diesel engine	BSFC (g/kWh): increases	CO: decreases
21	Kadir Yesilyurt) et	biodiesel-diesel blends	the fuel injection pressure	BTE: decreases at (210 bar) increases.	CO ₂ : increases
	al. [41]	(B5 ·B10 ·B20· B30)	(170–220 bars)		

				Engine torque: decreased at	HC: decreases
				EGT(C): increases	NO _x : increases
22	Searched by (Saravanan Subramani) et al. [42]	diesel-biodiesel-higher alcohol blends percentage of biodiesel blend, percentage of Butanol, pentanol and propanol, RSM	Single cylinder 4.4 kW Direct Injection 1500 rpm	BSFC (g/kWh): decreases	NO _x : decreases Smoke: decreases CO: decreases
23	Searched by (Osama Khan) et al. [43]	blends of biodiesel, hydrogen, and cerium oxide nanoparticles	PETTER -AV1DI, 4-stroke, DI, water cooled.5 BHP at 1500 rpm	BTE: increases BSEC: increases	NO _x : increases HC decreases
24	Searched by (Md. Nurun Nabi) et al. [44]	Biodiesel from cotton seed oil	Diesel engine. single cylinder, water-cooled, 4- stroke, DI	BTE: decreases BSEC: increases	CO: decreases CO ₂ : increases NO _x : increases Smoke: decreases
25	Searched by (Bhupendra	Jatropha biodiesel oil and its blends	A Kirloskar diesel engine, single cylinder, air cooled, direct injection,	BTE: decreases BSEC: increases	CO: decreases CO ₂ : increases

	SinghChauhan) et		1500 rpm	EGT: decreases	HC: decreases
	al. [45]				NO _x : increases
					Smoke: decreases
				Torque (Nm): decreases	NO _x : increases
	Searched by	soybean biodiesel	Diesel engine direct	BSFC (g/kWh): increases	CO ₂ (%): increases
26	(Orkun Özener) et	D2, B10, B20, B50 and	injection, 4 stroke, 1-	ignition delay (sec.):	CO (%): decreases
	al. [46]	B100	8.1 kW at 3000 rpm	decreased	HC: decreases
				Due to engine speed	Due to engine speed
				BTE: decreases	CO: decreases
27	Searched by (Cengiz Öner) et al.	earched by Cengiz Öner) et al. ⁷] Biodiesel production from inedible animal tallow	Rainbow LA186, direct injection diesel engine, single	BSEC: increases	NO _x : decreases when speeds were more than 2500 rpm
	[47]		cylinder, four-stroke, force air-cooling, naturally aspired.	decreases	SO ₂ (ppm): decreases
					Smoke: decreases
28	Searched by	Karania biodiesel blends	DI diesel engine, single	BSEC: increases BTE: increases	CO: decreases except KOME50 increases
20	Agarwal) et al. [48]		1500 rpm	(with respect to fuel injection press. and start of injection	HC: decreases except KOME50 increases

				deg.)	NO _x : increases
					(with respect to fuel injection press. and start of injection deg.)
29	Searched by (Luka Lešnik) et al. [49]	diesel, biodiesel, and their blends biodiesel from rapeseed oil at Biogoriva, Rače, Slovenia, and mineral diesel fuel D2	DI diesel engine, 4 stroke, 6 cylinders, Natural aspirated	BSFC: increases	CO: decreases except B25 NO _x : decreases except B25
30	Searched by (A.S.Silitongaab) et al. [50]	Ceiba pentandra biodiesel blends	the single cylinder four stroke diesel engines	BSFC (g/kWh): increases except B10 Torque (Nm): decreases except B10 Break Power (kW): decreases except B10 EGT (°C): increases (with respect to speed)	 NO_x (ppm vol.): increases HC (ppm vol.): decreases CO (% vol.): increases except B10 CO₂ (% vol.): increases except B50 decreases Smoke (% HSU): decreases (with respect to speed)
31	Searched by (Paramvir Singh) et al. [51]	Biodiesel from Aamla oil (Phyllanthus Emblica L.) extracted from seeds of	Kirloskar make diesel engine, Direct injection, single cylinder, naturally	BTE: decreases except B50 BSFC (g/kWh): increases except B50	CO (% vol.): decreases when loads were more than 45% HC (ppm vol.): decreases

		aamla	aspirated, water cooled and 4-stroke	EGT (°C): decreases except B50, B60 (with respect to load)	except B100, B90 Smoke (%): decreases NO _x : decreases except B50, B60 (with respect to load)
32	Searched by (Ahmed Sanjid) et al. [52]	A blend of kapok and moringa biodiesel	diesel engine, 4-cylinder, Water cooled	BSFC (g/kWh): increases (with respect to speed-rpm)	 NO_x (ppm vol.): increases HC (ppm vol.): decreases CO (% vol.): decreases CO₂ (% vol.): increases (with respect to speed-rpm)
33	Searched by (M.Mohamed Musthafa) [53]	Bio diesel from the refined palm oil blends (LPG)	diesel engine, Single cylinder 4-stroke engine, power 2.6, KW /3.5 HP, 1500 rpm, direct injection, Water cooling	BTE: increases BSFC (g/kWh): decreases EGT (°C): increases except LPG-Biodiesel with DTBP (with respect to load-%)	CO (% vol.): increases except LPG-Biodiesel with DTBP HC (ppm vol.): increases NO _x (ppm vol.): increases (with respect to load-%)
34	Searched by (Pankaj Dubey) et al. [54]	dual bio-fuel (Jatropha biodiesel and turpentine oil)	5 HP at 1800 rpm diesel engine	BTE (%): decreases (with respect to compression	CO (g/kWh): decreases CO2 (g/kWh): increases

				ratio)	HC (g/kWh): decreases
					NO _x (g/kWh): increases except B50
					Smoke (%): decreases
					(with respect to compression
					ratio)
					CO (g/kWh): decreases except B100, B80
	Searched by (T. Senthil Kumar) et al. [55]	arched by (T. Biodiesel of Kapok nthil Kumar) et methyl ester and its [55] blends	Single cylinder four strokes, direct injection, water cooled, compression ignition, 4 kW 1500 rpm	BTE: decreases except B20	NO _x (g/kWh): increases
25				BSFC (g/kWh): increases	HC (g/kWh): decreases
55				EGT (°C): increases	except B100, B80
				(with respect to load-%)	Smoke (%): decreases except B100, B80
					(with respect to load-%)
					CO (% vol.): decreases
	Searched by (A. Sanjid) et al. [56]	earched by (A. anjid) et al. [56] combined palm and jatropha biodiesel blends	single-cylinder diesel engine,	BSFC (g/kWh): increases	CO ₂ (% vol.): increases
36			4 – stroke DI, 7.7 kW,		HC (ppm): decreases
			Kadiator cooling	(with respect to speed-rpm)	NO _x (ppm): increases

					Sound (db): decreases
					(with respect to speed-rpm)
37	Searched by (Hwai Chyuan Ong) et al. [57]	Bio diesel from high free fatty acid Calophyllum inophyllum oil	CI, Direct injection diesel engine, 1- Cylinder, Water cooling, Maximum power 7.7 kW , 2400rpm	BSFC (g/kWh): increases except B10 BTE (%): decreases except B10 EGT (°C): increases except B10 (with respect to speed-rpm)	CO (% vol.): increases except B10 NO _x (ppm vol.): increases Smoke (%): decreases (with respect to speed-rpm)
38	Searched by (Yaser Noorollahi) et al. [58]	different diesterol (diesel– waste oil biodiesel– ethanol) blends (D100, D97B2E1, D94B4E2, D91B6E3)	small air-cooled diesel engine, 1- Cylinder, Direct Injection, Compression Ignition,	Torque (Nm) increases BSFC (g/kWh): increases except D97B2E1 (with respect to speed-rpm)	CO (% vol.): decreases CO ₂ (% vol.): decreases except D91B6E3 HC (ppm): decreases NO _x (ppm): decreases except D91B6E3 (with respect to speed-rpm)
39	Searched by (Mohamad A. Hasan Altaie) et al.	Enriched palm oil biodiesel	diesel engine, 1-Cylinder, 4- cycle, Direct injection, Air cooled	Brake Torque (Nm): decreases Brake power (kW): decreases	CO (% vol.): decreases HC (% vol.): decreases

	[59]			BSFC (g/kWh): increases	NO _x : increases
				EGT (°C):decreases	(with respect to speed-rpm)
				(with respect to speed-rpm)	
40	Searched by (Sachin Muralee Krishna) et al. [60]	optimally blended biodiesel-diesel-ethanol	diesel engine, 4- strokes, 4- cylinders, 3- phases	BSFC (g/kWh): increases	CO (% vol.): decreases except at full load BDE 7, BDE 8 and DBE 9 blends were higher CO ₂ (% vol.): increases NO _x : increases
41	Searched by (E.A. El Shenawy) et al. [61]	water-diesel emulsion	DEUTZ FL 511/W" which is a single-cylinder, four-stroke, Water cooling, power; 5.7 kW, 1500 rpm using partially premixed charge compression ignition (PPCCI) combustion at premixed ratio (PR = 30%).	BSFC (g/kWh): decreases BTE (%) : increases Due to engine loads	CO: decreases, UHC: decreases smoke: decreases NO _x : decreases Due to engine loads
42	Searched by (E.A.	pure diesel fuel.	1 cylinder, 5.7 kW, Water cooling, direct injection,	BSFC (g/kWh): decreases	CO: decreases,

	El Shenawy) et al. [62]		compression ignition diesel engines using partially premixed charge compression ignition (PPCCI) combustion fuelled with (100% and 30%) pure diesel fuel on the combustion	BTE (%): increases at (PPCCI) 30% premixed ration. Due to engine loads	UHC: decreases smoke: decreases NO _x : decreases Due to engine loads
43	Searched by (Mustafa Aydın) et al. [63]	biodiesel-diesel 4-blends (100D,20B,40B, 60B) ANN and RSM methods The optimized values 32% biodiesel ratio	compression ignition diesel engine I.P. 200–400–600 bar engine loads (500, 750, 1000, 1250, 1500 W). ANN and RSM methods The optimized values 816-W engine load and 470 bar injection pressure	BTE: 14.54%, BSFC (g/kWh): 783.95 EGT: 184.14 °C Due to optimized values engine load, biodiesel ratio, injection pressure optimum operating	NO _x (ppm): 120.05 CO (%): 0.079% HC (ppm): 120.30 Smoke (%): 9.95% Due to optimized values engine load, biodiesel ratio, injection pressure
44	Searched by (K. Sivaramakrishnan) et al [64]	biodiesel	diesel engine	BTE: decreases BSFC: increases due to CR increasing When decreasing the fuel	CO: decreases, HC: decreases when CR from 17.5 to 18.1
				blend ratios	
----	-------------------	---	--	---	----------------------------------
					CO (%): decreases
		different percentages of		injection duration (sec.): increases	HC: decreases
45	(Subhash Lahane)	biodiesei-diesei biends	direct injection diesel engine	Torque (Nm): decreases	smoke: decreases
	et al. [65]	(B5 ·B10 ·B15 ·B20 · B25 ·B50 ·B100)	speed :(1500 rpm)	except at B20	NO _x : increases
				BSFC (g/kWh): increases	Best biodiesel-diesel blends:
					B15-B20
				Power (kW): decreases	NO _x : increases
				Torque (Nm): decreases	CO: decreases,
		neat rapeseed oil biodiesel (5%, 20% and 70%)	Discologica Coulindars 4	BSFC (g/kWh): increases	HC: decreases
16	Searched by		stroke, turbocharged direct	BTE (%): increases at B20	smoke: decreases
40	Buyukkaya) [66]	its blends with diesel fuel.	injection, power 164kW at	Due to engine speed (rpm)	Due to engine speed
			2100rpm.	The preferred percentage of	biodiesel blend is friendly to
				biodiesel in environmentally	environment when used with
				friendly fuel is	diesel engine without
				approximately (20%).	changing
47	Searched by (I.M.	antioxidant + palm biodiesel blends	diesel engine turbocharged four-cylinder, water cooled,	BTE (%): increases	NO _x (ppm): increases

	Rizwanul Fattah) et al. [67]		4 stroke, Indirect injection, power: 42kW at 4000rpm adding separate tanks with (2-way valves)	EGT(K):increases Power(kW): decreases BSFC (g/kWh): increases Due to engine speed (rpm)	CO (%): decreases HC (ppm): decreases Due to engine speed (rpm)
48	Searched by (Hwai Chyuan Ong) et al. [68]	Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel blends 10%, 20%, 30% and 50%	CI diesel engine single cylinder, four stroke, water cooling, Maxpower 7.7 kW at 2400 rpm and direct injection engine	Torque (Nm): decreases BTE (%): decreases except (JCB 10) Brake power (kW): decreases except (JCB 10) J. curcas BSFC (g/kWh): increases except (B10 at all types) EGT (°C): increases Due to engine speed (rpm)	 NO_x (ppm vol.): increases HC (ppm vol.): increases except (B10 at all types) CO₂ (% vol.): decreases except (JCB 10) CO (% vol.): increases except (JCB 10) Smoke (%): decreases Due to engine speed (rpm) Diesel engine working by using biodiesel
49	Searched by (Nadir Yilmaz) et al. [69]	biodiesel–butanol fuel blends (5%, 10%, and 20%)	diesel engine: 2-cylinders, 4- stroke, water-cooled, naturally aspirated, indirect injected, Rated power (6.5	BSFC (g/kWh): increases EGT (°C): decreases	NO _x (ppm.): decreases CO (%): increases

		butanol in volume basis (B95Bu5, B90Bu10, B80Bu20).	kW)	Due to engine load (kW)	HC (ppm): decreases Due to engine load (kW)
50	Searched by (Alpaslan Atmanli) [70]	diesel–waste oil biodiesel and propanol, n-butanol or 1-pentanol blends	diesel engine: 4- cylinders, 4-Cycle, naturally aspirated, indirect injected , Air cooled	BSFC (g/kWh): increases BTE (%): increases EGT (°C): increases Due to engine load (kW)	NO _x (ppm.): decreases, CO (%): increases except at (9kW) load HC (ppm): increases at mostly Due to engine load (kW)
51	Searched by (Li Li) et al. [71]	diesel/biodiesel/pentanol fuel blends D70P30 (70% diesel, 30% pentanol), D70B30 (70% diesel, 30% biodiesel) and D40B30P30 (40% diesel, 30% biodiesel and 30% pentanol)	diesel engine: 1- cylinder, 4-stroke diesel engine retrofitted from a four-cylinder engine	BTE (%): increases except at B30 BSFC (g/kWh): decreases except at B30	NO _x (ppm.): increases, Smoke: decreases CO: decreases HC: decreases
52	Searched by (Erkan Öztürk) et al. [72]	canola oil–hazelnut soap stock biodiesel mixture diesel (D100) and biodiesel blends (B5 and B10).	DI-diesel engine, natural aspirated, air cooled, 1- Cylinder, power 5.4 (kW) at 3000rpm engine loads (25, 50, 75 and 100%)	BTE (%): decreases close to B5 BSFC(g/kWh): increases close to B5 EGT (°C): increases	CO (%): decreases with B5 at full load HC (ppm): increases except with B5 at full load Smoke: increases except with B5 at full load

				Due to engine load (%)	Due to engine load (%)
				EGT (°C): decreases	NO _x (ppm.): decreases,
52	Searched by	Roselle and Karanja	CI diesel engine 4-stroke, 1-	BSFC(g/kWh): increases	CO ₂ (%): increases
55	a) et al. [73]	biodiesel	water cooling	BTE (%): decreases	Smoke: decreases
			elle and Karanja lieselCI diesel engine 4-stroke, 1- cylinder, direct injection and water coolingdieseldiesel engine 2-cylinder, 4- stroke, liquid cooled, naturally aspirated, indirect injected Kubota GL7000and C5 alcohol treated sel-biodiesel blendsdiesel engine 1- cylinder, 4-stroke, water- cooled, naturally aspirated- direct injection	Due to engine load	Due to engine load
				BSFC(g/kWh): increases	NO _x (ppm.): increases at load90% except B80,
	Searched by (Nadir by Yilmaz) et al. [74] by	r (Nadir biodiesel–butanol fuel Il. [74] blends	diesel engine 2-cylinder, 4- stroke, liquid cooled, naturally aspirated, indirect injected Kubota GL7000	EGT (°C): decreases	CO (%): decreases except B80
54				compared to neat biodiesel.	HC (ppm): decreases except B80, B95
				Due to engine load	compared to neat biodiesel.
					Due to engine load
					NO _x (ppm.): increases
			diesel engine	DSEC (all-Wh); increases	CO (%): decreases
55	Searched by (H.K.	C4 and C5 alcohol treated diesel-biodiesel blends	1- cylinder, 4-stroke, water-	BSFC (g/Kwn). Increases	$CO_2(\%)$: increases
			cooled, naturally aspirated- direct injection	Due to engine speed(rpm)	HC (ppm): decreases
					Due to engine speed(rpm)

56	Searched by (Hüseyin Aydin) et al. [76]	cottonseed oil methyl ester B5, B20, B50 and B75 blends	diesel engine 1- cylinder, 4- strokes, air cooled	Power (kW): decreases Torque (Nm): decreases except B5 BSFC (g/kWh): increases except B20 at low speed Due to engine speed (rpm)	 NO_x (ppm): decreases except B5 SO₂ (ppm): decreases CO (% vol.): decreases Smoke (%): increases except B20 Due to engine speed (rpm)
57	Searched by (M.S. Shehata) et al. [77]	Corn and soybean biodiesel blends 20% biodiesel (C20 and S20)	diesel engine 4-stroke, 1- cylinder, air cooled direct injection (DI) diesel engine at different engine speeds, loads and IP (180, 190 and 200 bar)	 Power (kW): increases at S20 and 83%load BSFC (g/kWh): decreases at S20 and 83%load BTE (%): increases at S20 and 83%load with high speeds EGT (°C):decreases at S20 and 83%load with high speeds Due to engine speed (rpm)at IP (200 bar) engine performance 	Effect of fuel injection pressure on the injection, combustion and performance characteristics of a DI diesel engine fueled with canola oil methyl esters-diesel fuel blends

				parameters were better when	
				injection pressure increased	
-		Moringa oleifera biodiesel	diesel engine indirect injection Radiator cooling	Brake power(kW): decreases	CO (%): decreases
58	Searched by (M.	and diesel fuel blends	4-Cylinder.	BSFC (g/kWh): increases	HC (ppm): decreases
	Mofijur) et al. [78]	(B10 and B20) ASTM	Power (78 kW) at Speed 4200 rpm	BTE (%): decreases	NO _x (ppm): increases
		D6751		Due to engine speed (rpm)	Due to engine speed (rpm)
		coconut biodiesel blended fuels		Torque (Nm): decreases	CO (%): decreases
		DF (100% diesel fuel),		Brake power (kW): decreases	CO_2 (%): increases
59	Searched by (A.M.	CB5 (5% coconut	diesel engine 1-cylinder, 4-	BSFC (g/kWh): increases	HC (ppm): decreases
		biodiesel and 95% DF),	stroke	EGT (°C): increases	NO _x (ppm): increases
		85% DF)		Due to engine speed	Due to engine speed (rpm)
				Torque (Nm): decreases	CO (%): decreases
	Searched by (Y.H.	Searched by (Y H biodiesel-diesel blends	a common-rail diesel engine injection pressure 140 MPa	Brake power (kW): decreases	NO _x (ppm): increases
60	Teoh) et al. [80]	(MOB10, MOB20,	injection pressure i to till u	BSFC (g/kWh): increases	Smoke (%): decreases
		MOB30 and MOB50)	4-Cylinder	BTE (%): increases except at speed 1500 rpm	Due to engine speed (rpm)

				Due to engine speed (rpm)	
61	Searched by (Ahmet Necati Ozsezen) et al. [81]	canola and waste palm oil methyl esters	Diesel engine Water-cooled, direct injection, naturally aspirated, 4- stroke, 6- cylinders and 81 kW at 2600 rpm	Brake power (kW): decreases BSFC (g/kWh): increases Due to engine speed (rpm)	CO (%): decreases CO ₂ (%): decreases HC (ppm): decreases NO _x (ppm): increases Smoke (%): decreases Due to engine speed (rpm)
62	Searched by (Alpaslan Atmanli) et al [82]	diesel-vegetable oil-n- butanol ternary blends n -butanol (nB), crude canola (Cn), soybean (Sb), sunflower (Sf), corn (Cr), olive (Ol), and hazelnut oil (Hn), diesel fuel (D)-vegetable oil (D70nB10Cn20, D70nB10Sb20, D70nB10Sb20, D70nB10Sf20, D70nB10Cr20, D70nB10Cr20, D70nB10Ol20 and D70nB10Hn20) blends.	Land Rover 110 diesel engine 4-cylinder, 4-stroke, turbocharged, direct injection	BTE (%): decreases BSFC (g/kWh): increases EGT (°C): decreases Due to engine speed (rpm)	CO (%): increases CO_2 (%): decreases HC (ppm): decreases except in 1800 rpm NO_x (ppm): increases Due to engine speed (rpm)
63	Searched by	carbon nanotubes additives to diesohol-B2	diesel engines	Torque (Nm): increases	CO (%): decreases

	(Khadijeh Heydari-	fuels	1-cylinder, 4-stroke, direct	except B2	HC (ppm): decreases
	Maleney) et al. [83]	D100, B2, B2E2, B2E4, and B2E6	power at 2300rpm, max. speed 3000 rpm	power(kW): increases except B2	NO _x (ppm): increases
			engine speed (1700, 2300,	EGT (°C): decreases	Smoke (%): decreases
			and 2900 rpm)	BSEC (a/kWh): decreases	Due to engine speed (rpm)
				except B2	
				BTE (%): increases at except B2	
				Due to engine speed (rpm)	
		Millettia pinnata and Croton megalocarpus		Brake power(kW): decreases	CO (%): decreases
		biodiesel blends	diesel engine	BSFC (g/kWh): increases	CO ₂ (%): decreases
64	Searched by (A.M. Ruhul) et al. [84]	(MP20, MP15CM5, MP10CM10, MP5CM15 and CM20)	4 Stroke DI, 1-cylinder, Radiator cooling	BTE (%): decreases	HC (ppm): decreases
				EGT (°C): increases	NO _x (ppm): increases
		ASTM D975 (diesel) and ASTM D6751-08 (biodiesel) specification.		Due to engine speed (rpm)	Due to engine speed (rpm)
	Searched by	biodiasal from Posalla ail	CLangina	BSEC (g/kWh): increases	$CO_{2}(\%)$; increases
65	(Pankaj	biodiesei fiolii Rosene oli	Crengine	DSI C (g/KWII). Increases	CO ₂ (70). mercases
05	Shrivastava) et al.	(B20, B40 and B100)	1- cylinder compression	BTE (%): decreases	NO _x (ppm): decreases
	[85]	blends	ignition engine at a constant		

			engine speed of 1500 rpm	EGT (°C): increases	Smoke (%): decreases
			injection pressure (180, 200, 220, 240 and 260 bars), loading (25%, 50%, 75%, 100%)	Due to engine load (%)	Due to engine load (%)
66	Searched by (Mustafa Atakan Akar) et al. [86]	Hydrogen enriched waste oil biodiesel (D, B10 and B20) of waste oil biodiesels	Diesel engine compression ignition naturally aspirated, water cooled, 4- stroke and 1- cylinder	BSFC (g/kWh): increases but decreases with Hydrogen. BTE (%): decreases but increases with Hydrogen Due to engine speed (1500 rpm)	CO (%): decreases and more decreases with Hydrogen CO ₂ (%): increases but decreases with Hydrogen NO _x (ppm): increases and more increases with Hydrogen Due to engine speed (1500 rpm)
67	Searched by (Narendra Krishania) et al. [87]	spirulina, waste cooking and animal fats blended biodiesel fuel	auto-ignition diesel engine rail 1 cylinder, 4-stroke, and direct injection diesel engine.	EGT (°C): decreases BSFC (g/kWh): increases BTE (%): decreases Due to engine speed (1500 rpm)	NO _x (ppm): increases at mostly Smoke (%): decreases Due to engine speed (1500 rpm)

68	Searched by (GökhanTüccar) et al. [88]	microalgae biodiesel– butanol blends D70B20But10, D60B20But20, D80B20 and 100% diesel fuel	diesel engine 4- stroke, 4-cylinder. Water cooled	Torque (Nm): decreases Brake power (kW): decreases BSFC (g/kWh): increases Due to engine speed (rpm)	CO (%): decreases except engine speed more than 2600 rpm NO _x (ppm): decreases except B20 Smoke (%): decreases Due to engine speed (rpm)
69	Searched by (Jagannath Hirkude) et al. [89]	waste fried oil methyl ester blend (B0 ق50 B70)	CI, 1- cylinder diesel engine	EGT (°C): increases BSFC (g/kWh): increases BTE (%): increases Due to brake load (kW)	CO (%): decreases NO _x (ppm): increases Due to brake load (kW)
70	Searched by (Upendra Rajak) et al. [90]	hydrogen enriched n- butanol, diethyl ester and Spirulina microalgae biodiesel	diesel engine The 4-stroke, 1-cylinder, direct injection, water cooled, naturally aspirated,	BSFC (g/kWh): decreases with Hydrogen BTE (%):increases with Hydrogen Due to engine load (%)	Smoke (%): decreases with HydrogenCO2: decreases with HydrogenNOx (ppm): increases with HydrogenDue to engine load (%)
71	Searched by (Mostafa M. El-	Ethanol biofuel extracted from jatropha oil using a heterogeneous catalyst	diesel engine 1- cylinder	EGT (°C) : decreases	CO (%): increases

	Sheekh) et al. [91]	(CaO) and soybean and sunflower oils with wheat	air-cooled direct injection.	BSFC (g/kWh): decreases	HC (ppm): increases
		straw hydrolysate blends	speed 1500 rpm	BTE (%): increases	CO ₂ (%): increases
		(D50B50, BE10D45B45, BE20D40B40)		Due to engine brake power (kW)	NO _x (ppm): decreases Due to engine brake power (kW)
72	Searched by (Phobkrit Kanokkhanarat) et al. [92]	ethanol biodiesel blends	Isuzu 4JJ1-TC make direct Injection diesel engine	BSFC (g/kWh): increases BTE (%): increases Due to engine speed (rpm)	NO _x (ppm): increases Smoke (%): decreases Due to engine speed (rpm)
73	Searched by (M. Ghanbari) et al. [93]	nano particles additives in biodiesel-diesel blends	CI diesel engine	Torque (Nm): increases Brake power(kW): increases BSFC (g/kWh): decreases BTE (%): increases Due to engine speed (rpm)	CO (%): decreases HC (ppm): decreases CO ₂ (%): increases NO _x (ppm): increases Due to engine speed (rpm)
74	Searched by (AbhishekPaul) et al. [94]	Diesel-ethanol-biodiesel blends D100, D45E5B50, D40E10B50, D35E15B50, D30E20B50	CI diesel engine 1- cylinder, 4- stroke, water cooled, naturally aspirated, stationary DI engine	BSFC (g/kWh): decreases at D35E15B50 BTE (%): increases at D35E15B50	CO (%): decreases HC (ppm): decreases NO _x (ppm): increases

			maximum power of 3.6 kW	Due to engine load (%)	Due to engine load (%)
			at 1500 rpm.		
75	Searched by (AnkurNalgundwar) et al. [95]	dual biodiesel blends of palm and jatropha Pure diesel, D90JB5PB5, D80JB10PB10, D70JB15PB15, D60JB20PB20, D50JB25PB25, D40JB30PB30, D20JB40PB40, D0JB50PB50	CI diesel engine 1-cylinder, 4-stroke, naturally aspirated, air cooled, direct injection	Brake power(kW): increases at D90JB5PB5. EGT (°C): decreases except at high biodiesel blends with high loads. BSFC (g/kWh): decreases at D60JB20PB20 and D90JB5PB5 BTE (%): increases at except for higher biodiesel blends at higher loads. Due to engine load (watts)	CO (%): decreases at (D90JB5PB5, D80JB10PB10) CO ₂ (%): decreases except at (D90JB5PB5 and D80JB10PB10 at 500,1500 Watts engine load) NO _x (ppm): increases Due to engine load (watts)
76	Searched by (B. Ashok) et al. [96]	zinc oxide and ethanox as additives with biodiesel	CI diesel engine, Direct injection (DI) 2- cylinder, 4- stroke, Water cooled ,	BSFC (g/kWh): decreases BTE (%): increases Due to engine loads (%)	CO (%): decreases HC (ppm): decreases Smoke (%): decreases NO _x (ppm): increases except at Ethanox Due to engine loads (%)

					CO (%): decreases
	Searched by (M	ceria nanoparticle blended	Kirloskar diesel engine	BSEC (MJ/kWh): increases	HC (ppm): decreases
77	Annamalai) et al.	diesel, LGO, LGO	, 4- stroke, 1- cylinder, Water	BTE (%): decreases	NO _x (ppm): increases except at LGO Nano Emulsion
	[97]	Emulsion , LGO Nano Emulsion	cooling compression ignition	Due to brake power (kW)	Smoke (%): decreases
					Due to brake power (kW)
				Torque (Nm): decreases	
	Searched by	thed by	direct injection diesel engine 1- cylinder, 4- stroke, water cooled and power 3.7 kW	EGT(K): decreases	CO ₂ (%): decreases
78	(UpendraRajaka) et				NO _x (ppm): increases
	al. [98]	D100, D80B20, AB100		BSFC (g/kWh): increases	Due to compression ratio (%)
				Due to compression ratio (%)	
		hydrocarbon fuel derived			CO (%): decreases
	0 1 11 (0	waste transformer oil	compression ignition diesel	BSFC (g/kWh): decreases	HC (ppm): decreases
70	Searched by (S.	standard diesel B25 (25%	engine, single cylinder, four	$\mathbf{PTE}(0/)$; increases	Smoke (%): decreases
19	Yaday) et al [99]	HCF $+$ 75% diesel by	vertical water cooled and	BIE (%). Increases	SHIOKE (%). decreases
		volume) and B100 (100%	direct injection	Due to brake power (kW)	NO _x (ppm): increases
		HCF by volume)		r r r r r r r r r r	Due to brake power (kW)

80	Searched by (G. Najafi) [100]	nanoparticles in biodiesel- diesel blends D, BD, BDAG40, BDAG80, BDAG120, BD+CNT40, BD+CNT80	Diesel engine CI engine, 6- Cylinder, 4 - stroke, water cooled	Torque (Nm): increases power(kW): increases BSFC (g/kWh): decreases BTE (%): increases	CO (%): decreases CO ₂ (%): increases HC (ppm): decreases with AG nanoparticles. NO _x (ppm): increases
		and BD+CNT120		Due to engine speed (rpm)	Due to engine speed (rpm)
				EGT (°C): decreases	
81	Searched by (PankaiShriyastaya	blends of diesel, karanja and roselle biodiesel B1 (D50KB45RB5) •B2 (D50KB40RB10) and B3 (D50KB30RB20)	diesel engine 1- cylinder, 4-stroke, water cooled and direct injection compression ignition engine.	BSFC (g/kWh): increases	CO ₂ (%): increases Smoke (%): decreases
	a) et al. [101]			BTE (%): decreases	NO_x (ppm): decreases
				Due to engine load (%)	Due to engine toau (%)
	Searched by (M. Arunkumar) et al. (B20, B40, B60, B	aastar biodiasal blands	CI diesel engine, single cylinder, four-stroke and direct injection	EGT (°C) : decreases	CO (%): decreases
82		(B20, B40, B60, B80 and		BSFC (g/kWh): increases	HC (ppm): decreases
		B100) of biodiesel		BTE (%): decreases	Smoke (%): decreases at B20

					NO _x (ppm): increases
				Due to Brake power (kW)	Due to Brake power (kW)
					CO (%): increases
	Searched by	biodiesel, higher alcohols,		EGT (°C) : increases	HC (ppm): increases
83	(NadirYilmaza) et	and vegetable oil DB, DBVOPro and	compression ignition diesel engine	BSFC (g/kWh): increases	NO _x (ppm): decreases at
	ai. [105]	DBVOPen		Due to engine load (kW)	propanol and pentanol
					Due to engine load (kW)
	Searched by	microalgae fuel components		BSFC (g/kWh): increases BTE (%): decreases Due to engine load (%)	Smoke (%): decreases
84	(Farnad M. Hossain) et al.	100D, 75D5×5B and	turbocharged		NO _x (ppm): increases
	[104]	50D5×10B			Due to engine load (%)
					CO (%): decreases
	Searched by			BSFC (g/kWh): decreases at	HC (ppm): decreases at A20
85	(R.Senthil) et al.	Annona methyl ester and its blends	Vertical, 4-stroke, 1- cylinder	A20 BTE (%): decreases	Smoke (%): decreases
				Due to engine load (kg)	NO _x (ppm): close
					Due to engine speed (rpm)

86	Searched by (Gvidonas Labeckas) et al. [106]	ethanol–diesel–biodiesel blends (DF), (E5), (E10), (E15) blends with anhydrous (99.8%) ethanol (E).	direct injection diesel engine 4-stroke, 4-cylinder, naturally aspirated and 60 kW diesel engine three ranges of speed.1400, 1800 and 2200 rpm	BSFC (g/kWh): increases at E15, E15B BTE (%): =E15B , decreases Due to engine speed (rpm)	NO _x : decreases HC: decreases CO: decreases Smoke: decreases Due to engine speed (rpm)
87	Searched by (Md. Nurun Nabi) et al. [107]	diesel- waste cooking oil biodiesel blends D100, B2(20B80D2+2%O ₂), B4(40B60D+4%O ₂), B6(40D60B+6%O ₂)	diesel engine 4-stroke, High- pressure common rail fuel injection, 6-cylinder, Turbocharged, three ranges of speed at loads of 0, 25, 50, 75 and 100%.	Brake power(kW): increases BSFC (g/kWh): decreases at B2 Due to engine load (%) and speed (rpm)	CO (%): decreases HC (ppm): decreases Smoke (%): decreases NO _x (ppm): increases closed to B6 Due to engine load (%) and speed (rpm)
88	Searched by (M. Krishnamoorthi) et al. [108]	diesel/aegle marmelos oil/diethyl ether blends neat diesel (F0), diesel+bael oil +diethyl ether (DEE) in the (% vol.) 80:15:5 (F1) and 60:30:10 (F2)	KIRLOSKAR DI compression ignition diesel engine, VCR multi fuel, vertical, water cooled, direct injection, 4-stroke, 1- cylinder and naturally	BTE: increases F (1) at IP of 230 bar, CR18 and IT of 23 ° bTDC IT. BSFC (g/kWh): decreases Due to engine CR, IP, IT	CO and HC: decreases at compression ratio ranges (16.5 - 17.5). NO _x : decreases (with DEE) Smoke: decreases (with DEE)

		RSM	aspirated engine		Due to engine CR, IP, IT
		diesel-biodiesel-alcohol blends		Torque (Nm): decreases	CO (%): decreases
89	Searched by (Ümit Ağbulut) et al.	D: neat diesel C:cottonseed methyl ester	diesel engine at engine speeds (1750, 2250,	power(kW): decreases	HC (ppm): decreases Smoke (%): decreases
	[109]	E: ethanol	2750 and 3250) rpm under full load.	EGT (°C): decreases	NO _x (ppm): decreases
		(D100), (D80C20), (D90E10) and (D70C20E10)		Due to engine speed (rpm)	Due to engine speed (rpm)
90	Searched by (E. A. Elsharkawy) et al. [110]	Biodiesel (castor oil methyl-ester) –Diesel (CD10, CD20, CD30) and Biodiesel –Kerosene Blends (CK10, CK20, CK30)	CI diesel engine direct injection, 4-stroke, 1- cylinder, air cooling engine power/load (0%, 20%, 40%, 60%, and 80% load) with engine speed of 2000 rpm.	BSFC (g/kWh): increases at mostly BTE (%): decreases at mostly Due to engine loads (%)	NO _x (ppm): decreases at CK blends CO (ppm): decreases at CD blends Due to engine loads (%)
91	Searched by (Márcio A. S. de Carvalho) et al. [111]	 biodiesel, ethanol, and diethyl ether blends fossil diesel (D100), B20 (20% biodiesel + 80% diesel) B20E (90% B20 + 10% 	MWM 229.4 diesel engine power: 54 kW, mechanical fuel injection, 4- cylinder, in line; aspirated , Max. power 54 kW at 2500 rpm and Mechanical direct injection	Torque (Nm): decreases BSFC (g/kWh): increases BTE (%): increases with	CO (%): decreases with engine load increasing. HC (ppm): decreases with engine load increasing. Smoke (%): decreases at

		ethanol)	with (25%, 50% and 75%) of	engine load increasing	mostly
		B20E + DEE (95% B20E and 5% DEE)	engine brake power	Due to engine loads (kW)	NO _x (ppm): increases with engine load increasing Due to engine loads (kW)
92	Searched by (Yuvarajan Devarajan) et al [112]	(BD100) and different proportions of cyclohexanol blends (BD90COH10, BD80COH20, BD70COH30) and diesel D100	(AVL 5402). diesel engine 4- stroke, 1-cylinder, air cooled type, naturally aspirated, Direct Injection (DI)	EGT (°C) : decreases Due to engine loads (kW)	 CO₂ (%): increases CO (ppm): decreases at same speed and increases with engine load increasing HC (ppm): decreases at same speed and increases with engine load increasing Smoke (%): decreases at same speed and increases with engine load increases with engine load increases NO_x (ppm): increases Due to engine loads (kW)
93	Searched by (M.A. Asokan) et al [113]	Juli flora biodiesel and its diesel blends (B20, B30, B40, and B100) compared with diesel (D100).	4- stroke, 1- cylinder diesel engine	BSFC (g/kWh): increases BTE (%): decreases	CO (%): increases except B100 at load more than 60% HC (ppm): decreases Smoke (%): increases
				Due to engine loads (%)	

					NO _x (ppm): increases close to D100
					Due to engine loads (%)
94	Searched by (ChandraKishore) et al. [114]	Karanja Kusum and Mahua methyl esters karanja methyl esters, kusum methyl esters and mahua methyl (10%, 20% and 40%) blending.	DI diesel engine 4- stroke, Water cooled	BSFC (g/kWh): increases except at low load BTE (%): decreases except at low load Due to engine loads (kW)	Studied the performances
95	Searched by (Abhishek Sharma) et al. [115]	Raw Pongamia seed oil biodiesel-diesel blends (B10, B20, B30, and B40). Taguchi and utility theory	diesel engine 4-stroke, 1- Cylinder, power 5.2 kW at 1500 rpm and CI engine	BTE (%): decreases Best blending of Pongamia (biodiesel 10%) at fuel injection timing 23°bTDC, and injection pressure 22 MPa.	HC (ppm): decreases NO _x (ppm): increases Smoke (%): decreases
96	Searched by (K.A. Abed) et al. [116]	Biodiesel from Jatropha, palm, algae, and waste cooking oils blends (B10, B20)	diesel engine 4-stroke, 1- cylinder, Direct injection, air cooling	Studied the emissions	CO (%): decreases at (B20, 20kW) load the most decreasing. CO ₂ (%): decreases except at (WCOB) load the most decreasing

					HC (ppm): decreases
					Smoke (%): decreases
					NO _x (ppm): increases
					Due to engine loads (kW)
97	Searched by (Murari MohonRoya) et al. [117]	canola oil biodiesel– diesel, biodiesel–diesel- additive (A) Wintron XC 30 (2 vol.%) and kerosene (K)–biodiesel blends volume percent of biodiesel(B) (B0,B5,B10,B20,B50,B10 0) Additive Wintron XC 30 (2 vol.% of B): (A) (B5A,B10A,B20A,B50A, B100A) kerosene (K) (K0,K5,K10,K20,K50,K1 00)	diesel engine direct injection (DI), 4- stroke, 2- cylinder and power 11.2kW at 1800rpm engine loads (5%, 50% and 95% of rated load) at the rated speed of 1800 rpm	BSFC (g/kWh): increases at low load except at (K blends) with medium and high loads Due to engine loads (%)	CO(g/kWh): decreases except at (K blends) HC(g/kWh): decreases except at (K blends); At high loads all blends decreases NOx(g/kWh): decreases at all (K blends) with all loads, except NO ₂ at med load Due to engine loads (%)
98	Searched by (K.V. Yatish) et al. [118]	bauhinia variegata biodiesel and diesel blends B10, B20, B30, B40 and	Kirloskar make diesel engine. 1- cylinder , 4-stroke , water cooled , direct injection CI	EGT (°C): decreases BTE (%): decreases	CO ₂ (%): increases CO (%): decreases

		B100 RSM	engine , power 4.4kW at 1500 rpm (0%, 25%, 50%, 75% and 100%). of engine load	BSFC (g/kWh): increases Due to engine loads (%)	HC (ppm): decreases NO _x (ppm): increases Due to engine loads (%)
99	Searched by (M.Krishnamoorthi a) et al. [119]	diesel - aegle marmelos oil - diethyl ether (DEE) blends 100:0:0 (D), 70:20:10 (B1), 60:30:10 (B2), 50:40:10 (B3)	Kirloskar VCR diesel engine, 1- cylinder, 4-stroke, direct injection, variable, water cooled, and naturally aspirated engine compression ratio (CR14, CR15, CR16, CR17.5) 0%, 25%, 50%, 75% and 100% engine load at constant speed	BTE (%): increases at B2 Due to engine loads (%)	CO (%): decreases best at B2 HC (ppm): increases less than CR14 best at B2 Smoke (%): increases less than CR14 NO _x (ppm): increases at more than CR18 best at B2 Due to engine loads (100%) B2 (60% diesel: 30% bael oil: 10% DEE)
100	Searched by (Abhishek Paul) et al. [120]	diethyl ether (DEE) and ethanol(E) blends DEE and ethanol together with Diesel(D).	Kirloskar, Model TV-1 VCR diesel engine, Direct injection, CI engine, 1- cylinder, 4- stroke, max. power 3.6 kW and water	BTE (%): increases at DEE (5%) except D90DEE10 BSFC (g/kWh): decreases at DEE (5%) except	CO (%): decreases at D90DEE10 HC (ppm): decreases

6- blends	cooled.	D90DEE10	Smoke (%): decreases
D95DEE5 and D90DEE10 blends. D90DEE5E5 D85DEE5E10 D85DEE10E5 and D80DEE10E10	At 6 - different loads engine (kW) speed of 1500 rpm	Due to engine load (kW) D80DEE10E10 blend was the best BTE increases, BSFC , NO _x , HC, CO at high loads and smoke decreases	NO _x (ppm): decreases at D85DEE5E10 D85DEE10E5 and D80DEE10E10 Due to engine load (kW)

PART 3

PARTS OF COMBUSTION AND EMISSIONS IN DIESEL ENGINES

In this section, the parts of combustion in a diesel engine and post-combustion emissions will be discussed.

3.1. PARTS OF COMBUSTION IN DIESEL ENGINES

3.1.1. Ignition Delay Period

The fuel line pressure or the amount of injector needle lift is used to calculate when fuel is injected into the cylinders. The rate of heat release or the second derivative of the in-cylinder pressure curve can be used to predict when ignition will start. The ignition delay is the period that passes between the injection of fuel into the combustion chamber and the beginning of its ignition. In Figure 3.1, the region I located in between regions a and b expresses this portion. In this area, a denotes the start of the injection process, while b denotes the initial point of ignition. Figure 3.1 provides a clearer picture of the conditions in the area between these two scenarios. The physical elements influencing the production of the fuel jet and conditions in the engine's suction line (pressure, temperature, and speed) also have an impact on the ignition delay. These elements change based on the engine's operating conditions, the architecture of the combustion chamber and fuel injection system, and other factors.

Figure 3. 1. Combustion periods in compression ignition engines

The timing (advance) of the injection, injector spray pressure, volume of fuel sprayed from the injector, velocity of fuel spray, shape of the spray jet, and droplet diameter are fuel system variables that have a significant impact on the creation of the fuel jet. The combustion design, intake pressure and temperature, compression ratio, injection advance, cooling water and lubrication temperature, engine speed, and waste gas conditions in the cylinder all affect the engine's suction or charging conditions. There are two types of ignition delay: chemical and physical. The period between the injection of fuel and the time it takes for the fuel to reach conditions favourable for the initiation of chemical reactions is known as the physical ignition delay. The sprayed fuel atomizes, evaporates, mixes with the air, and achieves the auto-ignition temperature in the physical ignition delay section.

The type and physical characteristics of the fuel affect the physical ignition delay. In heavy fuels, the physical igniting delay is greater than in light fuels. Increasing spray pressure, high end-combustion temperatures, strong turbulence, and atomization can all help shorten the physical ignition delay. Reactions begin slowly during the chemical ignition delay and pick up speed until ignition or ignition happens. Usually, a chemical reaction takes longer to ignite than a physical one does. However, incylinder temperatures have a significant impact on the delay in chemical ignition. The chemical ignition delay gets shorter as in-cylinder temperature rises, and the physical ignition delay might also get shorter.

3.1.2. Rapid Combustion Period

The instantaneous combustion time is the interval from the beginning of ignition in the combustion chamber to the first trough after the heat release rate reaches its highest value. The fuel-air mixture burns quickly during the instantaneous combustion period, creating a mixture that is combustible during the ignition delay interval. Region II in Figure 3.1 is the region that explains the sudden combustion period. The section between regions b and c is referred to as this segment. The beginning of combustion is in region b. The pressure and temperature immediately rise, and the initial spark instantly ignites the entire mixture in the cylinder, signalling the conclusion of this section. The sudden combustion period is when the heat release rate is at its highest. The ignition delay has a significant impact on the maximum in-cylinder pressure and heat release rate during the flash combustion period. The amount of fuel injected into the cylinder before to the instantaneous combustion period builds up throughout the lengthy ignition delay period and burns quickly during the instantaneous combustion period, raising the cylinder pressure and heat release rate. The end-combustion temperatures and pressures rise together with the pressure increase rates in this circumstance.

3.1.3. Controlled Combustion Period

This section, shown in region III in Figure 3.1, starts with section c. The flash combustion phase is completed in section c. The pressure drops in the d portion,

which is where it happens. The fuel-air mixture quickly burns during the instantaneous combustion period after forming a mixture in the flammable range during the ignition delay interval. The unburned fuel-air combination left over from the flash combustion period or the fuel that is still being pumped control the diffusion-controlled combustion period. The conclusion of the instantaneous combustion period marks the beginning of the diffusion-controlled combustion period, which lasts until the heat release rate reaches 90–95 percent or, more generally, until the end-combustion temperatures are at their highest.

3.1.4. Afterburning Period

The termination of the injection phase does not immediately bring an end to combustion. Fuel particles that are still unburned or only partially burned in the combustion chamber encounter oxygen and start to burn. The maximum end-of-combustion temperature and the beginning of the diffusion-controlled combustion period mark the beginning of the afterburning period, which lasts until a portion of the expansion time. As expansion time approaches, the afterburning period's heat release rate slows down. Because rich combustion products or soot particles from a very little amount of unburned fuel produce heat during the afterburning process. The cylinder's typical gas temperatures drop during this time. Nitrogen oxide (NO) emissions typically happen during the rapid combustion phase, whereas soot emissions generally happen during the diffusion-controlled combustion phase. Pollutant emissions that are created and may be observed in engine exhaust are directly proportional to the duration of combustion.

3.2. EXHAUST EMISSIONS IN DIESEL ENGINES

3.2.1. Hydrocarbon (HC) Emission

Fuel evaporation or insufficient combustion result in HC emissions. Complete combustion needs enough oxygen, and HC emissions rise when this requirement is not met. There are several causes for HC emissions. HC emissions may be brought on by incomplete combustion, carbon particles in the cylinder, flame extinction in

the cylinder, issues with the injection system, or liquid fuel that is still present in the cylinder. HC emissions are those brought on by insufficient fuel combustion. Insufficient oxygen levels or insufficient temperature are the main contributors to this emission. Although unburned fuel-air mixtures are the main source of HC emissions, there are other ones as well. These sources include incompletely burnt lubricants, engine oil mixing into the cylinder, and prolonged ignition delay. Lean fuel/air combinations might result from malfunctions like vacuum leaks and seal leaks, which will boost HC emissions once more. A fuel with hydrocarbon components is diesel fuel. The fuel doesn't burn entirely due to issues including flame extinguishment brought on by heat losses in the cylinder and the mixture failing to ignite, which results in hydrocarbon emissions from the exhaust [121]. Increased hydrocarbon emissions are caused by fuel particles that have accumulated on the cylinder walls [122].

3.2.2. Carbon Monoxide (CO) Emission

Diesel engines need higher compression ratios than petrol engines because they need more air to operate than the latter. Diesel engines produce fewer CO emissions than other types of engines because of the high amount of oxygen in the combustion chamber. The air excess coefficient is one of the most crucial factors in CO production [123]. It is possible for deposits to accumulate because carbon monoxide is an odourless gas that is heavier than air. The main cause of CO formation in the cylinder because of combustion is a lack of oxygen during combustion. Uneven fuel-air mixing can result in a lack of oxygen in a particular region of the cylinder, which can result in the creation of CO. If the extra air coefficient is high, CO production in diesel engines is minimal [124].

3.2.3. Carbon Dioxide (CO₂) Emission

 CO_2 , which is a component of the entire combustion products produced by diesel engines, is not regarded as a polluting fuel at levels of reasonable concentration. The impact of global warming is growing when CO_2 , the most significant greenhouse gas, reaches higher quantities. It is one of the primary elements of any fuel with a hydrocarbon base that is burned to produce emissions. The number of things that contribute to CO_2 production, such as the number of industries and cars, must be decreased or at the very least made more efficient if major reductions in CO_2 are to be achieved [125].

3.2.4. Nitrogen Oxide (NO_x) Emission

Nearly 90% of NO_x produced by diesel engines is NO, 5% is NO₂, and the remaining 20% is made up of various nitrogen oxides [126].The nitrogen molecule in the air disintegrates and mixes with oxygen to generate NO_x when the local temperatures in the combustion chamber are higher than 1800 K. Oxygen concentration and high temperature are the primary causes of NO_x emissions. The fuel also contains nitrogen, which oxidises during combustion to produce nitrogen oxides. Regardless of the flame's temperature, the air's N₂ bonds can easily break the carbon-nitrogen bonds in the fuel. As a result, when compared to thermal creation, NO_x formation is easier and more often when the amount of nitrogen in the fuel is high. Additionally, during combustion, a fuel-rich mixture and a flame zone abruptly form NO. Nearby oxygen (O) and hydroxide (OH) produce NO_x emissions. This is why temperature has less of an impact on the abrupt production of NO_x [127].

The extended burning of quickly flammable fuels causes an increase in NO_x emissions. Due to the oxygen, they contain, biodiesel fuels may result in higher nitrogen oxide emissions when compared to diesel fuel. The addition of oxygen improves combustion efficiency, raises the temperature at which combustion ends, and triggers the oxidation of nitrogen gas into nitrogen oxide emissions [128].Additionally, because of the high viscosity of biodiesel fuel, it has poor atomization quality and produces more NO_x emissions at high temperatures due to uncontrolled combustion brought on by the buildup of fuel in cold areas [129].

3.2.5. Particulate Matter

Carbonaceous soot particles, volatile organic compounds, and trace amounts of carbonaceous ash make up most of the particulate matter (PM) released by diesel

engines [130].PM has a wide range of detrimental consequences, including those on visibility, the environment, and human health. Numerous studies show a weak but enduring link between human health and the amount of PM (mainly microscopic carbon particles) in the environment. Additionally listed are much more severe complications include breathing problems, lung cancer, heart failure, and stroke [131].The EURO emission regulations for diesel engines have had the greatest requests to be lowered in the past ten years, along with NO_x and PM emissions.

The three main causes of PM emissions are rich combustion, lubricating oil, and fuel composition. According to their chemical makeup, PM emissions can be categorised as organic or inorganic, or according to their physical states, as solid, volatile, or semi-volatile PM [132]. The type of fuel utilised, and the combustion procedure must be modified to lower these emissions. Additionally, technology for exhaust aftertreatment like diesel particulate filters and EGR must be developed. Fuel must have the right viscosity and surface tension levels in addition to having a high cetane number, a high oxygen content, a low aromatic content, and a low sulphur content to limit PM emissions [133].

Direct fuel injection into the cylinder or pre-combustion chamber of a diesel engine causes high particle emissions. Because of the relatively sluggish mixing, some fuel is left in contact with the hot, fuel-rich gases for long enough to make high molecular weight HCs, which eventually form soot. Despite the substantial amount of air that is generally present in a diesel engine, subsequent mixing is slow enough for many particles to avoid oxidation.

PART 4

ALTERNATIVE FUELS FOR DIESEL ENGINE

Fossil fuels are the most prevalent type of energy in use today [134]. Fossils are the remains of extinct animals that have endured for a very long time without degrading. Energy sources known as fossil fuels are created when dead animals and plants decompose under high pressure. Additionally, they endure millions of years underground in an oxygen-poor environment. It can be used in a wide variety of industrial settings. Fossil fuels can be utilized for a variety of purposes, including running factories, producing electricity, powering internal combustion engines, and providing heat [135]. Fossil fuel consumption has constantly increased, especially since the early 20th century, because of rising population and technological advancements worldwide [136]. This increased usage of fossil fuels depletes reserves and harms the environment. Because burning fossil fuels releases CO₂, which hastens climate change [137]. Fossil fuels are the main source of these emissions, which are what primarily contribute to climate change by releasing greenhouse gases like CO₂ into the atmosphere [138]. Climate change is the biggest hazard to human health in the twenty-first century, according to the World Health Organization. To find solutions to these problems related to global warming and dependence on fossil diesel, a green and sustainable fuel needs to be discovered [139-141]. There are many different alternative fuels used for this purpose. The most preferred fuel type, on which research continues, is biofuels. The development process for biofuels shown in Figure 4.1 has gone through four generations based on various production methods as detailed in Table 4.1.

Figure 4. 1. The four distinct generations of biofuels' development.

	First	Second	Third	Fourth
	Generation	Generation	Generation	Generation
Raw materia ls	 Corn Sugarcane Animal fats Vegetable oils Grain 	 Wood Grass Straw Waste Inedible plants 	• Algae • Food waste	• Genetically engineered algae
Product s	 Bio-alcohol Biodiesel Biogas Solid biofuels 	CellulosicEthanolMethanolBiodiesel	 Biodiesel Gasoline Butanol Jet fuel Methane 	• Biodiesel • Bio-alcohol
Process es	 Transesterification Anaerobic digestion Biodegradation Fermentation 	 Gasification Pyrolysis Biochemical conversion 	 Biochemical transformation Thermochemical transformation Chemical reaction 	• Metabolic engineering technology

Table 4. 1. Biofuel classification.

Typically made from plant or animal fats, biodiesel is a type of biofuel that can be used in place of conventional diesel fuel that is based on petroleum. Because it is made from renewable resources and has the potential to lower greenhouse gas emissions and reliance on fossil fuels, it is regarded as an environmentally beneficial substitute for conventional diesel.

The choice of suitable feedstocks, or the initial supply of the raw ingredients used to make the fuel, is the first step in the manufacture of biodiesel. Vegetable oils (like soybean, canola, or palm oil), animal fats (like tallow or poultry fat), and waste products are frequently used as feedstocks for the manufacturing of biodiesel. The characteristics of the biodiesel produced can vary depending on the feedstock used. Transesterification is the main chemical procedure used to turn these feedstocks into biodiesel. This process involves combining the triglycerides (fats and oils) in the feedstock with an alcohol, commonly methanol or ethanol, in the presence of a catalyst (often sodium or potassium hydroxide). The major constituents of biodiesel are glycerol and fatty acid methyl or ethyl esters, which are produced by this method from triglycerides. The mixture usually goes through separation after transesterification to separate the biodiesel from glycerol and other byproducts. This is frequently accomplished using techniques like centrifugation, decanting, or settling. The resulting biodiesel is next cleaned and refined to get rid of any contaminants, catalyst residues, or water that may have remained.

Once refined, biodiesel has traits that are comparable to those of diesel fuel made from petroleum. It burns cleanly and has a high cetane rating, a sign of strong ignition quality. Because biodiesel contains less sulphur, it emits less sulphur compounds when burned. Additionally, it possesses effective lubricating qualities that can increase the lifespan of engine parts and fuel system components. It is possible to mix biodiesel with conventional diesel fuel. B5 (5% biodiesel and 95% diesel) and B20 (20% biodiesel and 80% diesel) are examples of common blends. The specific mix ratio may differ by location and be governed by legal requirements.

Compared to petroleum-based diesel, biodiesel is frequently thought to be more environmentally benign. It can be produced domestically and is renewable, which lessens reliance on foreign oil. Because the carbon absorbed by the plants that provide the feedstock balances out the carbon released during burning, it often results in lower levels of CO_2 emissions. While biodiesel has many benefits, it also has drawbacks, including limited feedstock supply, rivalry with food production, and worries about shifting land usage. Additionally, biodiesel and petroleum diesel may have distinct cold flow characteristics, which may be a factor in colder climates.

In conclusion, biodiesel, which is created through the transesterification of vegetable or animal fats, is a renewable and cleaner-burning substitute for conventional diesel fuel. Environmental issues, energy security, and initiatives to cut greenhouse gas emissions in the transportation sector are the driving forces behind its development.

After biodiesel, another preferred alternative fuel is alcohols. Alcohols, especially ethanol and methanol, can be utilized in a variety of ways in diesel engines, mostly as additives or as blends with diesel fuel. As oxygenate additives, alcohols like ethanol and methanol can be added to diesel fuel. These oxygenates raise the fuel's oxygen content, which aids in improving combustion efficiency. Reduced emissions of some pollutants, such as CO and PM, may result from improved combustion. Additionally, oxygenates can raise the fuel's cetane number, which impacts how well it ignites. Alcohols like ethanol and methanol are being researched and developed as potential replacement fuels for compression-ignition (diesel) engines. These alcohols, which have higher octane ratings, can be utilized in dual-fuel engines or adapted diesel engines, which can run on both alcohol and diesel fuel. Diesel fuel can be supplemented with methanol to reduce gelling and enhance cold-weather performance. Diesel fuel can gel or become overly viscous in colder regions, which can cause problems with engine starting and performance. Diesel fuel can have its freezing point lowered by methanol, making it more appropriate for usage in colder climates.

It's significant to highlight that using alcohols in diesel engines may present certain difficulties and issues. Corrosion problems, fuel compatibility problems, and the requirement for engine modifications or unique fuel formulations to accommodate alcohol-blended fuels are a few of these. Additionally, different regions and nations may have different laws restricting the usage of diesel fuels combined with alcohol. Considering local conditions and requirements, the usage of alcohols in diesel engines should be carefully assessed.

PART 5

MATERIAL AND METHOD

5.1. PREPARATION OF BIOFUELS FROM USED COOKING OIL OR WASTE

The preparation process was carried out in several stages (collection, filtration, separation, chemical treatments, separation, washing, separation, heating, filling) as shown in Figure 5.1 below:

Figure 5. 1. Waste cooking oil biodiesel production

 Collecting used oil from kitchens, restaurants, potato gypsum factories, and shops that use cheap vegetable oils to fry vegetable or animal materials, such as oils expired or unfit for human consumption due to poor storage or rejected by laboratory tests of the Central Agency for Standardization and Quality Control approved in the Republic of Iraq or other similar examination centres in each country, and others in plastic or metal containers.

- 2. Keep the waste cooking oil used in other plastic or glass containers in a quiet place for more than a day to deposit suspended substances from frying vegetables, foods, etc. Leave the precipitates at the bottom of the bowl and collect the top layer of used oil in other plastic or glass containers.
- 3. Filter what is collected from the above paragraph with a metal mesh filter to remove coarse plankton from other foods and collect the resulting oil after filtering in transparent glass containers that can be heated.
- Heat the filtered oil from the above paragraph to a temperature of more than 70 centigrade degrees to make the fluid light.
- 5. Use a paper filter to get rid of fine impurities and collect the resulting oil in a flask of a heated glass vessel listed in a standard fixed and even volume scale.
- 6. Calculate the amount collected after filtration to prepare the reducing substance of the waxy substance (glycerol) from one litter of oil produced by exchange esterification.
- 7. Prepare the auxiliary material according to the following steps:
 - A glass jar divided in equal degrees is used for the unit of volume measurement of millilitres, where 250 millilitres of laboratory methanol of purity (99.95%) are used per 1 litter of waste oil extracted.
 - We use an electronic balance for weighing (5 g of potassium hydroxide per 250 ml of methanol alcohol) and mix them in a transparent glass jar and dissolve well in methanol using a recycling device and for a period of time (hour) to form the auxiliary solution potassium hydroxide is stored in a closed container as the material is fluidized and absorbs moisture, which prefers mixing quickly to avoid absorption of water vapor from ambient air.
- 8. The total oil is reheated in a glass container that can be heated to 110 degrees Celsius using a heating and mixing device and a glass heater to get rid of the water contained in the oil obtained after paper filtration.
- 9. Monitoring the temperature of the fluid until it reaches a temperature of 60 degrees Celsius using a mercury thermometer to measure the temperature.
- 10. Adding the auxiliary substance above the measured amount of oil depending on the amount of sample to be prepared.
- 11. The prepared quantity is rotated and mixed in a transparent glass container that can be heated for up to 30 minutes to ensure the mixing of the mixture using a device.
- 12. The mixture is left in a conical transparent glass container with a lock at its lower end for a period of up to 4 hours or more to ensure the process of separation of the waxy substance from the prepared oil.
- 13. After the liquid in the pot has become composed of two semi-transparent upper layers and a dark lower one, a smaller amount represents the waxy substance, where a separation flask or other tool is used to collect the upper oil in the separation flask by extracting all the dark-coloured wax with a high density.
- 14. The product is left in a transparent glass container for more than another hour to make sure that there is no waxy substance that may precipitate again.
- 15. The prepared product is washed with the addition of salt-free base water using 1 litter of water per 1 litter of the product in a transparent plastic package and shaken with the technique of light and very slow rotation and in a cylindrical shape to extract insoluble alcohol in the second process and for a period until the colour of the product change.
- 16. The product mixed with water is placed in the glass separation flask again and waited for the process of separation of water from the fuel where it becomes softer for a while.
- 17. The upper part is separated from the coloured low-density fuel about denser water.
- 18. The product is heated in a transparent glass container that can be heated to 102 degrees Celsius with rotation using a device to get rid of water until the colour of the product changes to a visible transparent shape .
- 19. Biofuels are filled with packages for physical and chemical laboratory tests to identify the properties of the prepared fuel and are considered ready for use in mixing operations with diesel fuel or the use of a unit in the operation of diesel engines as an alternative fuel.
- 20. After conducting laboratory tests on samples of the extracted fuel, the results were obtained in comparison with the characteristics of conventional oil fuel, the standard standards or specifications that were adopted.

Figure 5. 2. Photos of biodiesel production stages

Figure 5. 3. More photos of biodiesel production stages

Some fuel properties of produced biodiesel and diesel are tabulated in Table 5.1.

	Diesel	Biodiesel
Flash point (°C)	175	179-184
Density (g/cm ³)	0.883	0.898
Oxygen content (wt. %)	56	64
Calorific value (kJ/kg)	43199	35236
Sulphur (ppm)	5.5	< 15
Kinematic viscosity (mm ² /s)	4.24	5.421

Table 5. 1. Properties of diesel and waste frying oil biodiesel

5.2. EXPERIMENTAL SETUP

Experiments have been performed in Engine Research Laboratory, Karabuk University. to evaluate the performance and emission of diesel and biodiesel fuels blends.

5.2.1. Diesel Generator

Experimental studies were carried out using the Lutian 3GF-ME brand diesel generator shown in Figure 5.4. The characteristics of the diesel engine and generator are shown in Table 5.2 and Table 5.3 respectively.

Figure 5. 4. Diesel generator Table 5. 2. Specifications of diesel engine

Model	LT-178F/FA						
Engine Type	single cylinder,4 stroke, Air Cooled diesel engine						
Combustion system	Direct injection						
Bore x Stroke	78x62/78x64 mm						
Displacement	296/305 cc						
Engine Speed	3000 rpm	3600 rpm					
Max. Output	5.7 HP	7HP					
Continuous Output	5.2 HP	6HP					
Power Take Off	Crankshaft or camshaft (camshaft PTO rmp is1/2)						
Starting System	Recoil or Electric						

Frequency (Hz)	50
Max. AC Output (Kva)	3
Rated AC Output (Kva)	2.8
DC Output (V-A)	12.7A
Rated Voltage (V)	230
Rated Current (A)	7.8 / 15.6
Rated Speed (rpm)	3000
Phase	Single Phase
Start Type	Recoil/Battery Start
Dimensions (L x W x H)	695 x 470 x 540
Weight (kg)	56
Engine Type	Single-cylinder, Vertical, 4-Stroke
Displacement	211
Engine Power	7HP
Fuel Tank Capacity (lt)	12.5

Table 5. 3. Specifications of generator

5.2.2. Gas Analyzer

In this study, the BİLSA MOD 2210 WINXP-K gas analyser was used for emission measurements. BİLSA MOD 2210 WINXP-K is following TS ISO 3930 standards for gasoline, LPG, and CNG-powered vehicles with a positive ignition engine, and with TS ISO 11614 standards for diesel-powered vehicles. BİLSA MOD 2210 WINXP –K is with Type Approval Certification from the Republic of Turkey Ministry of Industry and Technology Compliance with ISO 3930 and OIML Class Standards. For gasoline-powered vehicles, this device is used to measure the values of (CO, CO₂, HC, O₂, NO_x, Lambda, and AFR,) using a Non-dispersive Infrared System. For diesel-powered vehicles, this device functions with an Opacity method. The Opacity of Exhaust Gas is measured in K, %, gr/m³. Figure 5.5 shows the gas analyser. The technical specifications of the gas analyser are tabulated in Table 5.4.

Figure 5. 5. Gaz analyser

Variable	Measuring Range	Accuracy
СО	0-10.0 %vol.	0.001%
Lambda	0.5 - 2.00	0.001
NO _x	0-5000	1 ppm
O ₂	0-10 % vol.	0.01%
HC	0-10.000 ppm vol.	1 ppm
CO ₂	0-20.0 % vol.	0.001%
Speed	0 – 9990 rpm.	10 rpm.

Table 5. 4. Measuring ranges and sensitivities of gas analyser

5.2.3. Smoke meter

Through it, the density of smoke coming out of the internal combustion engine as a result of its operation, its extent and opacity is measured, and through it shows the efficiency of combustion of the fuel used to operate the engine to ensure the engine is working well and contributes to improving fuel economy and protecting the environment (the device used is from the Turkish company Bilsa). Figure 5.6 shows the smoke meter.

Figure 5. 6. Smoke meter

5.2.4. Laptop

For monitoring and controlling, collecting the results of laboratory experiments, and performing mathematical calculations and graphs to facilitate discussing the results and arriving at the conclusions of the research study. Figure 5.7 shows the laptop.

Figure 5. 7. Laptop

5.2.5. Electrical load panel with control unit

It requires conducting experiments on a single-cylinder, four-stroke, direct injection, air-cooled diesel engine and operating it using fossil fuel diesel and fuel mixtures with biodiesel to place different electrical loads that include ten halogen lamps arranged in two rows, each row consisting of five halogen lamps, each lamp in first row with a capacity of (500 watts), and the second row also consists of five halogen

lamps, each lamp with a capacity of (1000 watts), all of which are connected to circuit breakers (10) and connected to a small control unit to control the loads placed on the engine by connecting it to the laptop, as shown. With pictures and illustrative diagrams. Figure 5.8 shows the electrical load panel with control unit.

Figure 5. 8. Electrical load panel with control unit

5.2.6. Small laptop cameras

We use two small cameras for monitoring, the first to monitor the electronic weighing scale for fuel weight and the second camera to monitor the gas analyser and connect the two cameras to the laptop to control, collect and record the results of the experiments. Figure 5.9 presents the laptop camera.

Figure 5. 9. Laptop camera

5.2.7. Magnetic Stirrer

Weightlab Instruments offers fast and smooth mixing in its analog-controlled Desktop WF-MIA1 Magnetic Stirrer model. It can perform mixing simultaneously or separately while heating the samples with its aluminium alloy and 115x115 mm sized heating plate. The speed range is 100 - 2000 rpm in the WF MIA1 Magnetic Stirrer, where the temperature and mixing speed can be adjusted sleeplessly with only two buttons. The temperature setting of the device can be adjusted in ambient temperature to 380 °C temperature conditions, thus meeting the mixing needs in the best way, the magnetic stirrer device with heater realizes a suitable power consumption of 180 W, which provides energy efficiency. The IP21 protection of the device provides long-lasting use to the user. Figure 5.10 presents the magnetic stirrer.

Figure 5. 10. Magnetic stirrer

5.2.8. Accessories

Laboratory glassware included in various sizes are shown in Figure 5.11.

Figure 5. 11. Accessories

5.3. CONDUCTING THE EXPERIMENTS

To conduct laboratory experiments, we built a network of devices and equipment as shown in Figure 5.12, connected them, checked the connection, calibrated the measuring devices and sensors, and ensured that they worked correctly in standard weather conditions. We carried out the following procedures:

5. Camera (1)	17. Electrical generator
6. M. stirrer	18. Control unit
7. Fuel tank	19. Load board
8. Weight scale	20. Circuit breaker
9. Camera (1)	21. Halogen lamp (500 W)
10. Data wire	22. Halogen lamp (1000 W)
11. Thermo couple (1) for fuel temp.	23. Smoke meter beam
12. Thermo couple (2) for air temp.	24. Gas analyser beam

Figure 5. 12. Experimental setup

Biofuel mixtures were prepared from waste cooking oils and conventional diesel in different proportions (100% diesel, 90% diesel + 10% biodiesel, 80% diesel + 20% biodiesel + 70% diesel + 30% + 60% diesel + 40% Biodiesel) and all packaged in plastic containers. We put traditional diesel fuel (100% diesel) in the fuel tank after cleaning it and place it on a weighing scale to operate the diesel engine connected to the dynamo to generate electricity, which feeds the electrical load board. After (15 minutes) and the engine operation and temperature stabilize (52 degrees Celsius), the engine is loaded with a load (500 watts) and after (15 minutes) the temperatures sensed by thermocouples placed to measure the temperatures of (fuel, engine, air entering the engine, etc.) are recorded. Exhaust gas coming out of the engine. All the above steps are repeated for each type of biodiesel fuel mixture from waste cooking oil and conventional diesel (90% diesel + 10% biodiesel, 80% diesel + 20% biodiesel, 70% diesel + 30%, 60% diesel + 40% diesel) blends. All readings and results are recorded on the laptop computer connected to the laboratory testing network.

5.4. RESPONSE SURFACE METHODOLOGY

The field of experimental design and optimization use the statistical and mathematical technique known as RSM. It is especially helpful when attempting to optimize systems or processes whose performance is influenced by numerous variables or causes. The following are the main elements and ideas of the RSM:

- **Designing an experiment**: RSM begins with the design of experiments (DOE), in which various input factors or variables are systematically changed to understand their effects on an interest-precise response or output variable. The response variable is the dependent variable, whereas these input components are frequently referred to as independent variables or factors.
- **Modelling:** In RSM, the link between the input variables and the response variable is modelled mathematically. Usually, these models are polynomial equations that simulate the behaviour of the system under investigation. Higher-order models can also be employed if necessary, however second-order models are the most frequently utilized form.
- **Optimization:** RSM seeks to identify the ideal set of input factor values that maximizes or minimizes the response variable after the mathematical model has been built. The settings that produce the desired result are found using optimization approaches like gradient ascent or descent.
- **Response surfaces and contour plots:** RSM frequently uses response surface plots and contour plots to display its results. These graphical depictions make it easier to understand how adjustments to the input variables impact the response variable. Response surface plots offer a three-dimensional perspective of the relationship whereas contour plots display regions of equal response values.
- Validation: In order to confirm that the anticipated optimum is actually possible and that the model adequately represents the system, it is crucial to validate the results with additional experiments after determining the ideal circumstances.
- Applications: In many different industries, including engineering, manufacturing, chemistry, pharmaceuticals, agriculture, and more, RSM has a wide range of applications. By methodically analysing and enhancing complicated systems, it is utilized to optimize operations, raise product quality, lower costs, and increase efficiency.

Overall, RSM is an effective method for experimental optimization, enabling scientists and engineers to quickly investigate and improve systems or processes with numerous variables and intricate interconnections. It is especially helpful when conducting trials is expensive or time-consuming because it lowers the quantity of experiments needed to find the best solution.

5.4.1. RSM application

In order to perform RSM application, a certain number of experimental data is required. The number of experiments is determined by the number of factors. In this study, there are two factors: biodiesel ratio (%) and engine load (watt). Accordingly, RSM application is started by clicking "Stat \rightarrow Doe \rightarrow Response Surface \rightarrow Create Response Surface Design". When the specified commands are selected respectively, the interface shown in Figure 5.13 below appears.

Create Response Surface Design							
Type of Design Central composite (2 to 10 continuous factors) Box-Behnken (3,4,5,6,7,9, or 10 continuous factors)							
Number of continuous factors: 2 💌	Display Availa	ble Designs					
Number of categorical factors: 0 💌	Designs	Factors					
	Options	Results					
Help	ОК	Cancel					

Figure 5. 13. Interface for Response Surface Design

Then, by clicking "Design" in the opened interface, the new interface shown in Figure 5.14 opens, where the design type will be selected. Here, the design type that represents 14 experiments is selected.

Create Re	sponse Su	irface Des	sign: Des	igns			×
Designs	Runs	Blocks	Cer Total	nter Poi Cube	nts Axial	Default Alpha	
Full	13	1	5	0	0	1,414	
Full	14	2	6	3	3	1,414	
Number of Default Custon Cube bl Value of Al C Default	Center Po t n lock: pha t	ints	Axial blo	ock: [icates:	1	
C Face C	entered		I Ble	ock on I	replicate	s	
C Custon	n:						
Help				OK	:	Cancel	

Figure 5. 14. Selection of design type

Once the design type is approved, a central composite design with two factors and 14 experiments shown in Figure 5.15 is created.

+	C1	C2	C3	C4	C5	C6
	StdOrder	RunOrder	PtType	Blocks	Α	В
1	14	1	0	2	0,00000	0,00000
2	10	2	-1	2	0,00000	-1,41421
3	13	3	0	2	0,00000	0,00000
4	9	4	-1	2	1,41421	0,00000
5	11	5	-1	2	0,00000	1,41421
6	12	6	0	2	0,00000	0,00000
7	8	7	-1	2	-1,41421	0,00000
8	4	8	1	1	1,00000	1,00000
9	5	9	0	1	0,00000	0,00000
10	1	10	1	1	-1,00000	-1,00000
11	3	11	1	1	-1,00000	1,00000
12	6	12	0	1	0,00000	0,00000
13	7	13	0	1	0,00000	0,00000
14	2	14	1	1	1,00000	-1,00000

Figure 5. 15. Central composite design with two factors and 14 experiments

After the design is created, we can now move on to the analysis phase. To do this, first of all, a new "worksheet" is opened on Minitab and the experiment data containing all factors and answers is copied here. Data transcribed for this study are shown in Table 5.5.

Number of Run	Biodiesel Percentage (%)	Engine Load (W)	co (%)	HC (ppm)	CO ₂ (%)	(mqq) xON	Smoke (%)	BSFC (g/kWh)	
1	0	1000	0.090	20.03	3.33	293.53	0.59	383.35	
2	0	1500	0.075	27.25	3.94	389.40	0.59	307.01	
3	0	2000	0.060	38.74	4.69	498.08	0.60	293.46	
4	40	500	0.065	9.85 2.58 232.46		232.46	0.45	886.50	
5	40	1000	0.049	17.73	3.55	332.27	0.45	506.57	
6	40	1500	0.042	19.70	4.23	434.06	0.46	403.61	
7	30	2000	0.029	21.67	6.37	652.73	0.41	344.75	
8	30	2500	0.030	25.28	7.34	750.24	0.43	322.36	
9	30	3000	0.038	32.83	8.73	782.42	0.46	315.20	
10	20	1000	0.044	16.09	3.78	336.21	0.42	466.58	
11	20	1500	0.034	17.73	4.47	444.24	0.44	354.60	
12	20	2000	0.032	23.64	5.52	568.67	0.45	329.86	
13	10	2500	0.047	37.43	5.68	633.68	0.51	295.50	
14	10	3000	0.064	42.36	6.79	721.02	0.55	332.44	

Table 5. 5. Experimental data

Then, the "Stat \rightarrow Doe \rightarrow Response Surface \rightarrow Analyze Response Surface Design" commands are selected, and the analysis begins. After these commands are selected respectively, the interface in Figure 5.16 opens.

Define Custom Response Surface Design						
C1 Biodiesel Percentage C2 Engine Load (W) C3 CO (%) C4 HC (ppm) C5 CO2 (%) C6 NOx (ppm) C7 Smoke (%) C8 BSFC (g/kWh)	Continuous Factors:					
Select	Low/High Designs					
Help	OK Cancel					

Figure 5. 16. Response surface design definition

In this interface, first the factors "biodiesel rate and engine load" are selected and confirmed, as shown in Figure 5.17. Then, the responses "from CO to BSFC" are selected and confirmed, again as shown in Figure 5.17.

Define Custom Response Surface Design		× Analyze Response Surface Design
C1 Biodiesel Percentage C2 Engine Load (W) C3 CO (%) C4 HC (ppm) C5 CO2 (%) C6 NOX (ppm) C7 Smoke (%) C8 BSFC (g/kWh) Categorical Factors:	< > < >	C3 C0 (%) Responses: C4 HC (ppm) C5 C02 (%) C5 C02 (%) [*C0 (%)*BSFC (g/kWh)] [*C0 (%)*BSFC (g/kWh)] C6 NOx (pm) [*C0 (%)*BSFC (g/kWh)] [*C0 (%)*BSFC (g/kWh)] C8 BSFC (g/kWh) [*C0 (%)*BSFC (g/kWh)] [*C0 (%)*BSFC (g/kWh)]
Select Low/High Designs.		Terms Options Stepwise Select Graphs Results Storage
Help OK Cancel		Help OK Cancel

Figure 5. 17. Selection of factors and responses

Then click on the "Terms" option and select the "full quadratic" expression, where all conditions are taken into account. On the other hand, "Pareto" is selected from the

"Graphs" option to shape the degree of influence of factors on the responses. Analysis starts once all selections are confirmed.

As a result of the analysis, individual results for each response are listed in tabs as shown in Figure 5.18. With the analysis, the following results are obtained for each answer.

- Coded Coefficients
- Model Summary
- Analysis of Variance
- Regression Equation in Uncoded Units
- Fits and Diagnostics for Unusual Observations
- Pareto Chart

The analysis results in this study will be mentioned in the following parts.

File Edit Data Calc Stat Graph View Help Assistant Predictive An	alytics Module Additional Tools									
🔓 🖯 👷 🔏 🐚 🏠 ちぐ 🗂 👭 🦓 🖉 🚺 🎼 🌾	금 - 피뷰 📅 😥 🎜 🧶									
Navigator 👻	Response Surface Regressi × ×									
Remonre Surface Regerizion: CO (%) versus Rindiarel Percentage (%): Engin	WORKSHEET 1									
Paranasa Surface Responsion, HC (norm) userus Rindianal Descentera (%): En	Perpanse Surface Pegression: BSE	$C(\alpha/k)/h$	reus Bior	diasal Dara	ontago	(%): Engin	beload	(140)		
Response surface Regression: HC (ppm) versus biodieser Percentage (70); ch	Response surface Regression. DSP	C (g/KWII) Ve	I SUS DIO	uleser reit	entage	(<i>7</i> 0), Engli	le Loau	(•••)		
Response Surface Regression: CO2 (%) versus Biodiesel Percentage (%); Engi										
Response Surface Regression: NOx (ppm) versus Biodiesel Percentage (%); E										
Response Surface Regression: Smoke (%) versus Biodiesel Percentage (%); E	Coded Coefficients									
Response Surface Regression: BSFC (g/kWh) versus Biodiesel Percentage (%)	Term	Coef SE Coef	95% CI	T-Value						
	Constant	327,6 25,7	(268,4; 386,8) 12,76						
	Biodiesel Percentage (%)	43,3 20,1	(-3,1; 89,7)	2,15						
	Engine Load (W)	-170,0 27,2	(-232,8; -107,2	2) -6,24						
	Biodiesel Percentage (%)"Biodiesel Percentage (%)	-7,5 35,8	(-90,1; 75,1)	-0,21						
	Engine Load (W)*Engine Load (W)	189,8 40,0	(97,4; 282,1)) 4,/4) 2,49						
	biodiesel Percentage (x) Engine Load (w)	-50,4 50,5	(-174,0; -0,2)) -2,40						
	Term	P-Value VIF								
	Constant	0,000								
	Biodiesel Percentage (%)	0,063 1,24								
	Engine Load (W) Riodiaral Percentage (%)*Riodiaral Percentage (%)	0,000 1,58								
	Engine Load (WI*Engine Load (W)	0,001 1,05								
	Biodiesel Percentage (%)*Engine Load (W)	0.038 1.38								
	S R-sq R-sq(adj) PRESS R-sq(adj) 48,5366 93,95% 90,16% 97619,5 6	(pred) AICc B 88,64% 173,27 159,0	IC 07							
	Source	DF Seq SS C	Contribution	Adj SS						
	Model	5 292408	93,95%	292408						
	Rindiecel Percentane (%)	2 198827	03,88%	10027						
	Engine Load (W)	1 112068	36.01%	91794						
	Square	2 79124	25,42%	52931						
	Biodiesel Percentage (%)*Biodiesel Percentage (%	6) 1 1756	0,56%	103						
	Engine Load (W)*Engine Load (W)	1 77368	24,86%	52895						
	+ C1 C2	C3 👷 C4 👦	C5 👦	C6 👦	C7 📩	C8 👦	C9	C10	C11	C12
	Biodiesel Percentage (%) Engine Load (W)	CO (%) HC (ppm)	CO2 (%)	NOx (ppm) S	moke (%) B	SFC (g/kWh)	StdOrder	RunOrder	Blocks	PtType
	1 0 1000 0	0896350 20.0283	3.32930	293,530	0.59100	383,351	1	1	1	1
	2 0 1500 0	,0749585 27,2517	3,93606	389,403	0,59100	307,013	2	2	1	1
	3 0 2000 0	.0600850 38.7433	4.68860	498.082	0.60085	293,462	3	3	1	1
	4 40 500.0	0650100 9,8500	2.57939	232,460	0.45310	886,500	4	4	1	1
	5 40 1000 0	.0492500 17,7300	3.55388	332.273	0.45310	506,571	5	5	1	1
	TH 4 D H + Worksheet 1		-,		,		4	5		
	- · · · · · · · · · · · · · · · · · · ·									

Figure 5. 18. Overview of analysis results for each response

After the analysis, an optimization study is carried out to determine the optimum factor levels and the optimum responses depending on these levels. "Stat \rightarrow Doe \rightarrow Response Surface \rightarrow Response Optimizer" is selected respectively and the interface in Figure 5.19 appears. Here it is necessary to choose the purpose of optimization for each response. The "Minimize" option was selected for all of the selected responses in this study. Once the selections are confirmed, optimization takes place and the optimization graph shown in Figure 5.20 is obtained.

Response		Goal	Target	
BSFC (g/kWh)	Minimize	•		
Smoke (%)	Minimize	•		
NOx (ppm)	Minimize	•		
CO2 (%)	Minimize	•		
HC (ppm)	Minimize	•		
CO (%)	Minimize	-		
		<u>S</u> etup	Options	<u>G</u> raphs
		Results	Storage	View Model

Figure 5. 19. Response Optimizer

Figure 5. 20. Optimization Plot

PART 6

RESULTS AND DISCUSSIONS

6.1. ENGINE PERFORMANCE

6.1.1. Brake Specific Fuel Consumption

Through laboratory experiments on the performance of a diesel engine at a speed of (3000 rpm) using five types of fuel, blends of fossil diesel fuel with waste cooking oil biodiesel compared to diesel fuel, and different loads were applied to the engine. Graphic curves were drawn showing the results of the tests, which indicate the following:

Increasing of BSFC because of increasing in fuel consumption for all biodiesel blends compared to fossil diesel fuel (D100) as shown in Figure 6.1 and Figure 6.2, due to the low calorific value of biodiesel, which requires burning more fuel to produce the necessary energy. Increasing of BSFC due to an increase in the viscosity and density of the fuel with an increase in the percentage of biodiesel in the fuel mixture used in relation to D100. Decreasing of BSFC in all curves as the engine continues to operate and loads increase, due to rise of pressure and temperature of the combustion chamber, which increases the efficiency of fuel combustion and reduces combustion results with all types of fuel at loads (2000-3000) watts. This is evidence of the good quality of biodiesel produced from waste cooking oils. Increasing rates of BSFC for a diesel engine using all types of biofuel blends produced from waste cooking oil (B40, B30, B20, B10) compared to D100 with all loads imposed on the engine and in full, in percentages, respectively (27%, 19%, 16%, 5%).

Figure 6. 1. Change of BSFC for different test fuel

Figure 6. 2. 3D version of the variation of BSFC for different test fuels

6.2. ENGINE EMISSIONS

The process of operating a diesel engine is through injecting fuel consisting of (carbon, hydrogen, and in the presence of biodiesel, oxygen is added) into the combustion chamber in the presence of air consisting of (a large percentage of Nitrogen and Oxygen) and applying high pressure by the cylinder piston, which leads

to the combustion of the fuel inside the engine. In operation, the incorrect combustion process of fuel in the combustion chamber releases the above unburned elements in varying proportions into the exhaust gas in the form of emissions.

6.2.1. Carbon emissions

Carbon is one of the components of fossil diesel fuel or biodiesel (in larger proportions), and its particles are emitted in the exhaust gas as a result of not being burned when operating the diesel engine using biofuel mixtures (B10, B20, B30, B40) compared to fossil D100 and applying different loads. Unburned carbon is produced with the exhaust gas in three forms: HC, CO, and CO_2 , in different proportions. The results were converted and graphed in the form of curves to facilitate their study.

6.2.1.1. CO emissions

A clear decrease in CO emissions with using biodiesel fuel blends compared to fossil diesel as shown in Figure 6.3 and Figure 6.4 due to the increase in oxygen cetane in the biodiesel formula.

A continued decrease in CO levels for all types of fuel with increasing engine loads up to (2000 and 2500) watts due to the increase in combustion efficiency due to the increase in combustion chamber temperature and pressure with increasing loads. The engine operates at its best with all types of fuel at a load ranging between (2000 and 2500) watts. Then, CO emissions gradually increase at maximum engine load to increase the amount of fuel inside the combustion chamber at maximum load, which leads to the carbon fuel elements not burning properly. Decreasing rates of emissions of CO from the diesel engine using all types of biofuel blends produced from waste cooking oil (B40, B30, B20, B10) compared to D100 with all loads imposed on the engine and in full percentages on respectively (40%, 52%, 50%, 32%).

Figure 6. 3. Change of CO for different test fuel

Figure 6. 4. 3D version of the variation of CO for different test fuels

6.2.1.2. CO₂ emissions

An increase in CO_2 emissions compared to using biodiesel fuel mixtures compared to fossil diesel due to the increase in the percentage of oxygen in the biodiesel composition, which led to a decrease in CO to be converted to CO_2 and a percentage increase in emissions of all proportions of biodiesel compared to D100.

CO₂ emissions continue to increase for all types of fuel with increased engine loads as shown in Figure 6.5 and Figure 6.6, due to the carbon elements not burning properly in the combustion chamber. We note the relative closeness of the engine CO₂ emissions results with (B10, B40 and D100) at loads (500-2000) watts. This is evidence of the good quality of biodiesel produced from waste cooking oils. Increasing rates of carbon dioxide emissions from a diesel engine using all types of biofuel blends produced from waste cooking oil (B40, B30, B20, B10) compared to D100 with all loads imposed on the engine and in full percentages on respectively (8%, 36%, 18%, 6%).

Figure 6. 5. Change of CO₂ for different test fuel

Figure 6. 6. 3D version of the variation of CO₂ for different test fuels

6.2.1.3. HC emissions

Hydrogen is one of the elements of fuel, and because of combustion, its elements are emitted in the exhaust gas in the form of hydrocarbon (HC), where carbon is bonded to hydrogen due to the lack of oxygen in the combustion chamber. In general, HC emissions are greatly reduced using all types of biodiesel mixtures compared to fossil diesel fuel and for all loads due to the high number cetane in biodiesel.

The results of HC emissions (B10, B20, B30, B40) are close to each other to increase the percentage of biodiesel as shown in Figure 6.7 and Figure 6.8. Increased HC emissions for all types of fuel with increasing loads placed on the engine because of incorrect combustion of hydrogen in the combustion chamber as the amount of fuel increases because of its density and viscosity, which affects the spraying and injection of fuel inside the combustion chamber and the decrease in the time required for combustion. Decreasing rates of HC emissions from a diesel engine using all types of biofuel blends produced from waste cooking oil (B40, B30, B20, B10) compared to D100 with all loads imposed on the engine and in full, in percentages, respectively (34%, 43%, 38%, 25%).

Figure 6. 7. Change of HC for different test fuel

Figure 6. 8. 3D version of the variation of HC for different test fuels

6.2.2. Nitrogen oxides (NO_x) emissions

We have previously shown that nitrogen and oxygen are the largest components of the air, and it is known that nitrogen does not combust and is expelled from the combustion chamber of the engine with the exhaust gas in the form NO_x .

 NO_x emission increases using all biodiesel mixtures compared to D100 as presented in Figure 6.9 and Figure 6.10 due to the increased density and viscosity of biodiesel relative to fossil diesel, which improves its quality in the combustion chamber and because of biodiesel containing a high percentage of unsaturated fatty acids and double bonds that increase the temperature of the chemical reaction with High aromatic content. NO_x emission increases for all types of fuel as the load on the engine increases due to the increase in pressure and temperature of the engine room as the load increases. We note the relative closeness of the engine NO_x emissions results with (B10, B20, B40 and D100) at loads (500-2000) watts. This is evidence of the good quality of biodiesel produced from waste cooking oils. Increased emissions rates of (nitrogen oxides) from a diesel engine using all types of biofuel blends produced from waste cooking oil (B40, B30, B20, B10) compared to D100 with all loads imposed on the engine and in full, in percentages, respectively (13%, 30%, 16%, 9).

Figure 6. 9. Change of NO_x for different test fuel

Figure 6. 10. 3D version of the variation of NO_x for different test fuels

6.2.3. Smoke emissions

Black smoke or soot is one of the forms of unburned carbon in the combustion chamber and is emitted with the exhaust gas along with a group of combustion impurities, and through the graph of the results it is evident.

The smoke emitted from the engine was reduced using biodiesel blends as revealed in Figure 6.11 and Figure 6.12, with a significant difference compared to fossil diesel, at all loads, due to the high cetane and oxygen numbers in the biodiesel blends. Convergence between the results of the combustion of biodiesel fuel from each other due to the similarity of its properties and their differences from the results of the combustion of fossil diesel. A slight increase in smoke for all types of fuel as the load on the engine increases. Decreasing rates (smoke emissions from the diesel engine using all types of biofuel blends produced from waste cooking oil (B40, B30, B20, B10) compared to D100 with all loads imposed on the engine and in the specified percentages, respectively (21%, 32%, 26%, 17%).

Figure 6. 11. Change of smoke for different test fuel

Figure 6. 12. 3D version of the variation of smoke for different test fuels

PART 7

OPTIMIZATION RESULTS

In this section, it is aimed to determine the optimum conditions of the selected factors and the responses that arise depending on these factors. In this study, biodiesel ratio and engine load were selected as operating parameters, while BSFC, CO, CO_2 , HC, NO_x , and smoke were selected as the responses resulting from these parameters.

In this section, analysis of variance (ANOVA) table, Pareto chart and regression equation were created for each response. The important columns in the ANOVA table are contribution and p-value. Since this study was conducted with a 95% confidence level, it can be said that factors with a p-value lower than 0.05 are effective on the response. In the Pareto chart, which factor is effective is shown as a figure.

ANOVA table and Pareto chart for BSFC are given in Table 7.1 and Figure 7.1, respectively. According to the ANOVA table, the individual effect of biodiesel percentage on BSFC is 27.87%, while the individual effect of engine load is 36.01%. According to the Pareto chart, the effect of engine load appears to be more significant.

Source	DF	Seq SS	Contribution	Adj SS	Adj	F-	P-
		-		0	MS	Value	Value
Model	5	292408	93.95%	292408	58481.6	24.82	0.000
Linear	2	198827	63.88%	122114	61056.8	25.92	0.000
Biodiesel Percentage (%)	1	86759	27.87%	10927	10927.5	4.64	0.063
Engine Load (W)	1	112068	36.01%	91794	91793.6	38.96	0.000
Square	2	79124	25.42%	52931	26465.6	11.23	0.005
Biodiesel Percentage (%) * Biodiesel Percentage (%)	1	1756	0.56%	103	103.4	0.04	0.839
Engine Load (W)*Engine Load (W)	1	77368	24.86%	52895	52894.5	22.45	0.001
2-Way Interaction	1	14457	4.64%	14457	14456.9	6.14	0.038
Biodiesel Percentage (%) * Engine Load (W)	1	14457	4.64%	14457	14456.9	6.14	0.038
Error	8	18846	6.05%	18846	2355.8		
Total	13	311254	100.00%				

Table 7. 1. ANOVA table of BSFC

Figure 7. 1. Pareto chart for BSFC

ANOVA and pareto for CO emissions are shown in Table 7.2 and Figure 7.2. According to the ANOVA table, the highest effect level was linear. Among the individual factors, the highest impact on CO emissions was determined to be the biodiesel ratio. It can be seen that the effect level of biodiesel ratio is 31.57% while the engine load is 21.80%. The situation where the effect on CO emissions is not significant is the joint effect of the factors. The ratio of the joint effect of the factors was 0.18%. P-value and Pareto support this data.

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F- Value	P- Value
Model	5	0.004181	95.91%	0.004181	0.000836	37.53	0.000
Linear	2	0.002327	53.38%	0.001798	0.000899	40.33	0.000
Biodiesel Percentage (%)	1	0.001376	31.57%	0.001705	0.001705	76.53	0.000
Engine Load (W)	1	0.000951	21.80%	0.000335	0.000335	15.02	0.005
Square	2	0.001847	42.36%	0.001723	0.000862	38.67	0.000
Biodiesel Percentage (%) * Biodiesel Percentage (%)	1	0.001031	23.65%	0.000813	0.000813	36.46	0.000
Engine Load (W)*Engine Load (W)	1	0.000815	18.71%	0.000789	0.000789	35.42	0.000
2-Way Interaction	1	0.000008	0.18%	0.000008	0.000008	0.35	0.573
Biodiesel Percentage (%) * Engine Load (W)	1	0.000008	0.18%	0.000008	0.000008	0.35	0.573
Error	8	0.000178	4.09%	0.000178	0.000022		
Total	13	0.004360	100.00%				

Table 7. 2. ANOVA table of CO

Figure 7. 2. Pareto chart for CO

The ANOVA table and Pareto chart of CO_2 emissions are presented in Table 7.3 and Figure 7.3, respectively. Contrary to what was revealed for CO emissions, the effect of engine load on CO_2 emissions was much higher compared to the biodiesel ratio. While the engine load effect is 91.53%, the effect of the biodiesel ratio is negligible (0.26%). The p-value shows that both engine load and biodiesel rate have an impact (even slightly) on CO_2 emissions. The Pareto chart also supports these statements. According to Pareto, it is understood that all situations influence CO_2 , except the square effect of both factors.

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F-	P- Volue
	~	-	00.110/	-		value	value
Model	5	38.7205	98.11%	38.7205	7.7441	83.23	0.000
Linear	2	36.2258	91.79%	18.3424	9.1712	98.57	0.000
Biodiesel Percentage (%)	1	0.1030	0.26%	2.5108	2.5108	26.99	0.001
Engine Load (W)	1	36.1227	91.53%	17.8701	17.8701	192.07	0.000
Square	2	0.4014	1.02%	0.4343	0.2172	2.33	0.159
Biodiesel Percentage (%) * Biodiesel Percentage (%)	1	0.3869	0.98%	0.1676	0.1676	1.80	0.216
Engine Load (W)*Engine Load (W)	1	0.0145	0.04%	0.2960	0.2960	3.18	0.112
2-Way Interaction	1	2.0934	5.30%	2.0934	2.0934	22.50	0.001
Biodiesel Percentage (%) * Engine Load (W)	1	2.0934	5.30%	2.0934	2.0934	22.50	0.001
Error	8	0.7443	1.89%	0.7443	0.0930		
Total	13	39.4648	100.00%				

Table 7. 3. ANOVA table of CO₂

Figure 7. 3. Pareto chart for CO₂

According to Table 7.4, the factor that has the highest impact on HC emissions is engine load with 55.41%. The effect of the biodiesel ratio is 30.49%. According to the Pareto chart shown in Figure 7.4, the square effect of engine load does not have a

significant effect on HC emissions. The fact that the p-value in the ANOVA table is higher than 0.05 proves the accuracy of this situation. Other situations need to be taken into account in the HC emission change.

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F- Value	P- Value
Model	5	1157.27	97.13%	1157.27	231.454	54.14	0.000
Linear	2	1023.43	85.90%	1084.74	542.368	126.86	0.000
Biodiesel Percentage (%)	1	363.25	30.49%	204.42	204.423	47.81	0.000
Engine Load (W)	1	660.18	55.41%	669.72	669.723	156.65	0.000
Square	2	73.34	6.16%	46.78	23.388	5.47	0.032
Biodiesel Percentage (%) * Biodiesel Percentage (%)	1	70.05	5.88%	46.77	46.767	10.94	0.011
Engine Load (W)*Engine Load (W)	1	3.29	0.28%	0.33	0.330	0.08	0.788
2-Way Interaction	1	60.50	5.08%	60.50	60.503	14.15	0.006
Biodiesel Percentage (%) * Engine Load (W)	1	60.50	5.08%	60.50	60.503	14.15	0.006
Error	8	34.20	2.87%	34.20	4.275		
Total	13	1191.47	100.00%				

Table 7. 4. ANOVA table of HC

Figure 7. 4. Pareto chart for HC

According to the NO_x results tabulated in Table 7.5, the main factor affecting NO_x emissions is engine load with a rate of 96.11%. It is expected that NO_x emission, which occurs due to temperature, will be affected so much by the engine load, which

has an increasing effect on the temperature. According to Pareto shown in Figure 7.5, the highest effect is due to engine load. It is understood from the Pareto chart that although the effect of the biodiesel ratio is much less than the engine load, it should not be ignored.

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F- Value	P- Value
Model	5	416394	97.82%	416394	83279	71.88	0.000
Linear	2	409114	96.11%	242643	121321	104.71	0.000
Biodiesel Percentage (%)	1	52	0.01%	13906	13906	12.00	0.009
Engine Load (W)	1	409062	96.10%	242504	242504	209.30	0.000
Square	2	5284	1.24%	3046	1523	1.31	0.321
Biodiesel Percentage (%) * Biodiesel Percentage (%)	1	3388	0.80%	2048	2048	1.77	0.220
Engine Load (W)*Engine Load (W)	1	1896	0.45%	803	803	0.69	0.429
2-Way Interaction	1	1996	0.47%	1996	1996	1.72	0.226
Biodiesel Percentage (%) * Engine Load (W)	1	1996	0.47%	1996	1996	1.72	0.226
Error	8	9269	2.18%	9269	1159		
Total	13	425663	100.00%				

Table 7. 5. ANOVA table of NO_x

Figure 7. 5. Pareto chart for NO_x

ANOVA table and Pareto chart for smoke emission are shown in Table 7.6 and Figure 7.6 respectively. It can be clearly understood from both the table and Pareto that the highest impact on smoke emission is caused by the biodiesel ratio (68.09%) and the square effect of the biodiesel ratio (28.40%), respectively. The effect of engine load emerged, which should be taken into account, but at a low level (0.45%).

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F- Value	P- Value
Model	5	0.057281	98.53%	0.057281	0.011456	107.02	0.000
Linear	2	0.039849	68.54%	0.037468	0.018734	175.01	0.000
Biodiesel Percentage (%)	1	0.039587	68.09%	0.030713	0.030713	286.92	0.000
Engine Load (W)	1	0.000263	0.45%	0.001795	0.001795	16.77	0.003
Square	2	0.017292	29.74%	0.015654	0.007827	73.12	0.000
Biodiesel Percentage (%) * Biodiesel Percentage (%)	1	0.016514	28.40%	0.014646	0.014646	136.82	0.000
Engine Load (W)*Engine Load (W)	1	0.000778	1.34%	0.000535	0.000535	5.00	0.056
2-Way Interaction	1	0.000140	0.24%	0.000140	0.000140	1.31	0.286
Biodiesel Percentage (%) * Engine Load (W)	1	0.000140	0.24%	0.000140	0.000140	1.31	0.286
Error	8	0.000856	1.47%	0.000856	0.000107		
Total	13	0.058137	100.00%				

Table 7. 6. ANOVA table of Smoke

Figure 7. 6. Pareto chart for Smoke
Figure 7.7 shows the optimum factor values and the resulting optimum motor responses. The optimum biodiesel ratio was determined as 26% and the optimum engine load was 1080 W. The ideal engine responses resulting from these conditions are 500.1059 g/kWh BSFC, 0.4175% smoke, 375.1013 ppm NO_x , 3.9134% CO₂, 13.6162 ppm HC and 0.0404% CO, respectively.

Figure 7. 7. Optimization

In Table 7.7, the results of the validation study conducted for the reliability of the optimum results are tabulated. If the error rates are within acceptable limits (below 10%), it means that the optimization results can be trusted. According to the verification study conducted to prove the reliability and accuracy of the optimization results, the lowest error rate between the optimum results and the experimental results was found in CO emission with 2.51%, while the highest error rate was obtained in HC emission with 7.83%. Accordingly, the fact that the maximum error is lower than 10% indicates that the optimization application can be trusted.

Load (W)	BP (%)		BSFC (g/kWh)	CO (%)	CO ₂ (%)	HC (ppm)	NO _x (ppm)	Smoke (%)
1080	26	Optimum	500.11	0.0404	3.91	13.62	375.10	0.4175
		Test	480.16	0.0414	4.23	14.77	357.52	0.4031
		Error (%)	4.15	2.51	7.48	7.83	4.92	3.58

Table 7. 7. Validation of RSM results with an error percentage.

CONCLUSIONS

In this study, the effects of using biodiesel produced from waste frying oil in a diesel engine on engine responses were examined at different engine loads and mixture ratios, and an optimization study was carried out with RSM so that it can be used under the best conditions. Findings from experimental studies and RSM are as follows;

- BSFC increased with the use of biodiesel-containing fuel mixtures compared to D100. The highest increase was found to be 27% in the fuel mixture containing 40% biodiesel, and the lowest increase was 5% in the fuel mixture containing 10% biodiesel.
- Addition of biodiesel to diesel fuel had a positive effect on CO emissions. While the increasing rate of biodiesel up to 30% provided a further decrease in CO, after 30% CO started to increase. Therefore, the lowest CO emission was achieved with a fuel mixture containing 30% biodiesel, and a reduction of approximately 52% was recorded compared to D100.
- As a result of the addition of biodiesel increasing the combustion quality, CO₂, which is the product of complete combustion, increased. With the addition of 30% biodiesel, the highest CO₂ was reached, and a 36% increase was observed compared to D100. The increase in CO₂ emissions was limited to 6% with the addition of 10% biodiesel.
- Just like CO emission, HC emission also achieved a similar trend with the addition of biodiesel. In general, all biodiesel rates reduced HC emissions. The highest reduction was again achieved with 30% biodiesel. A 43% reduction was noted compared to D100.
- NO_x emissions increased with all biodiesel-containing fuel mixtures. The highest NO_x level was reached with 30% biodiesel, which improved the combustion quality the most. With the improvement of combustion, the incylinder temperature increased (because NO_x depends more on temperature).

- With 30% biodiesel content, NO_x increased by approximately 30% compared to D100.
- The addition of biodiesel had a positive effect on smoke emission and reduced it compared to D100. With 30% biodiesel, this reduction reached its maximum at 32%.
- According to the optimization results, the optimum factor levels were 26% and 1080 W for biodiesel ratio and engine load, respectively.
- The optimum responses obtained depending on the optimum factors are 500.1059 g/kWh BSFC, 0.4175% soot, 375.1013 ppm NO_x, 3.9134% CO₂, 13.6162 ppm HC, 0.0404% CO.
- According to the verification study, the lowest error rate between the optimum results and the experimental results was found in CO emission with 2.51%, while the highest error rate was obtained in HC emission with 7.83%.

As a result, according to the experimental results, it can be said that waste frying oil biodiesel will be successful in diesel engines, especially in reducing emissions, and can be an alternative fuel for diesel engines. In addition, according to the results of the verification study, it was concluded that the optimization application can be trusted as the maximum error is lower than 10% and waste frying oil biodiesel can be used efficiently in diesel engines with RSM optimization. Finally, a more precise optimization study by increasing the number of factors and responses should be included in future studies.

REFERENCES

- 1. Rehman, A., Rauf, A., Ahmad, & M., Abbas, &, Chandio, A., Deyuan, Z., Ahmad, M., and Chandio, A. A., "The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: evidence from Pakistan".
- 2. Simsek, S. and Uslu, S., "Comparative evaluation of the influence of waste vegetable oil and waste animal oil-based biodiesel on diesel engine performance and emissions", *Fuel*, 280: (2020).
- Anuar, M. R. and Abdullah, A. Z., "Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review", *Renewable And Sustainable Energy Reviews*, 58: 208–223 (2016).
- 4. van Duren, I., Voinov, A., Arodudu, O., and Firrisa, M. T., "Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency", *Renewable Energy*, 74: 49–59 (2015).
- Ashnani, M. H. M., Johari, A., Hashim, H., and Hasani, E., "A source of renewable energy in Malaysia, why biodiesel?", *Renewable And Sustainable Energy Reviews*, 35: 244–257 (2014).
- Kozina, A., Radica, G., and Nižetić, S., "Analysis of methods towards reduction of harmful pollutants from diesel engines", *Journal Of Cleaner Production*, 262: 121105 (2020).
- Chuah, L. F., Bokhari, A., Asif, S., Klemeš, J. J., Dailin, D. J., Enshasy, H. El, and Yusof, A. H. M., "A Review of Performance and Emission Characteristic of Engine Diesel Fuelled by Biodiesel", *Chemical Engineering Transactions*, 94: 1099–1104 (2022).
- 8. Van Der Voet, E., Lifset, R. J., and Luo, L., "Life-cycle assessment of biofuels, convergence and divergence", *Biofuels*, 1 (3): 435–449 (2010).
- 9. McKendry, P., "Energy production from biomass (part 1): overview of biomass", *Bioresource Technology*, 83 (1): 37–46 (2002).
- 10.Saladini, F., Patrizi, N., Pulselli, F. M., Marchettini, N., and Bastianoni, S., "Guidelines for emergy evaluation of first, second and third generation biofuels", *Renewable And Sustainable Energy Reviews*, 66: 221–227 (2016).
- 11.Ashfaque, A., Ramana Murty Naidu, S. C. V., Kumar, M., Kumar Yadav, R., Kaur Sohal, J., Hidayatulla Shariff, S., Singh Yadav, A., and Sharma, A., "Impact of biodiesel on engine performance and emission", *Materials Today:*

Proceedings, (2023).

- 12.Haaf, M., Ohlemüller, P., Ströhle, J., and Epple, B., "Techno-economic assessment of alternative fuels in second-generation carbon capture and storage processes", *Mitigation And Adaptation Strategies For Global Change*, 25 (2): 149–164 (2020).
- 13.Li, P., Sakuragi, K., and Makino, H., "Extraction techniques in sustainable biofuel production: A concise review", *Fuel Processing Technology*, 193: 295–303 (2019).
- 14.Akcay, M., Yilmaz, I. T., and Feyzioglu, A., "Effect of hydrogen addition on performance and emission characteristics of a common-rail CI engine fueled with diesel/waste cooking oil biodiesel blends", *Energy*, 212: (2020).
- 15.Torkashvand, M., Hasan-Zadeh, A., and Torkashvand, A., "Mini Review on Importance, Application, Advantages and Disadvantages of Biofuels", J. Mater. Environ. Sci, 2022 (6): 6 (2022).
- 16.Firoz, S., "A review: Advantages and Disadvantages of Biodiesel", *International Research Journal Of Engineering And Technology*, 9001: (2008).
- 17.Ramli, S., Murad, S. Z. A., and Husin, A. F. H., "Biodiesel in Holy Quran: Among the review of the Arabic lexicography and modern science", *Mediterranean Journal Of Social Sciences*, 5 (19): 336–342 (2014).
- 18."The Holy Qur'an Google Books", https://books.google.iq/books?hl=en&lr=&id=VajhssX_uP4C&oi=fnd&pg=PP11 &dq=Fuel+has+already+been+mentioned+in+the+Holy+Qur'an+&ots=suAu6r7I nm&sig=LafFz_PeEkqxg57yWu9zmT1qrg&redir_esc=y#v=onepage&q=Fuel has already been mentioned in the Holy Qur'an&f=false (2023).
- 19.Miyuranga, V., Arachchige, U., Weerasekara, N. A., Thilakarathne, D., Miyuranga, K. A. V., Arachchige, U. S. P. R., Weerasekara, N. A., and Jayasinghe, R. A., "Production of Biodiesel from Waste Cooking Oil in Laboratory Scale: A Review Plastic Consumption, Plastic Waste Generation and Recommendations of Reducing Plastic Consumption in Sri Lanka View project Plastic Recycling View project Production of Biodiesel from Waste Cooking Oil in Laboratory Scale: A Review", Article In International Journal Of Scientific And Engineering Research, 5 (6): 28–34 (2021).
- 20.Knothe, G., "Biodiesel and renewable diesel: A comparison", *Progress In Energy And Combustion Science*, 36 (3): 364–373 (2010).
- 21.Simsek, S. and Uslu, S., "Determination of a Diesel Engine Operating Parameters Powered with Canola, Safflower and Waste Vegetable Oil Based Biodiesel Combination Using Response Surface Methodology (RSM)", *Fuel*, 117496 (2020).

- 22.Sheinbaum-Pardo, C., Calderón-Irazoque, A., and Ramírez-Suárez, M., "Potential of biodiesel from waste cooking oil in Mexico", *Biomass and Bioenergy*, 56: 230–238 (2013).
- 23.Gad, M. S., EL-Seesy, A. I., Radwan, A., and He, Z., "Enhancing the combustion and emission parameters of a diesel engine fueled by waste cooking oil biodiesel and gasoline additives", *Fuel*, 269: 117466 (2020).
- 24. Yesilyurt, M. K., "The examination of a compression-ignition engine powered by peanut oil biodiesel and diesel fuel in terms of energetic and exergetic performance parameters", *Fuel*, 278: 118319 (2020).
- 25.Sanli, H., Canakci, M., Alptekin, E., Turkcan, A., and Ozsezen, A. N., "Effects of waste frying oil based methyl and ethyl ester biodiesel fuels on the performance, combustion and emission characteristics of a DI diesel engine", *Fuel*, 159: 179– 187 (2015).
- 26.Simsek, S., "Effects of biodiesel obtained from Canola, sefflower oils and waste oils on the engine performance and exhaust emissions", *Fuel*, 265: 117026 (2020).
- 27.Elkelawy, M., Bastawissi, H. A. E., Esmaeil, K. K., Radwan, A. M., Panchal, H., Sadasivuni, K. K., Suresh, M., and Israr, M., "Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology", *Fuel*, 266: 117072 (2020).
- 28.Chandra Sekhar, S., Karuppasamy, K., Vedaraman, N., Kabeel, A. E., Sathyamurthy, R., Elkelawy, M., and Alm ElDin Bastawissi, H., "Biodiesel production process optimization from Pithecellobium dulce seed oil: Performance, combustion, and emission analysis on compression ignition engine fuelled with diesel/biodiesel blends", *Energy Conversion And Management*, 161: 141–154 (2018).
- 29.Simsek, S., Uslu, S., Simsek, H., and Uslu, G., "Multi-objective-optimization of process parameters of diesel engine fueled with biodiesel/2-ethylhexyl nitrate by using Taguchi method", *Energy*, 231: 120866 (2021).
- 30.Simsek, S., Uslu, S., and Simsek, H., "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine", *Energy*, 239: 122389 (2022).
- 31.Uslu, S. and Celik, M., "Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends", *Energy*, 266: 126403 (2023).
- 32.Uslu, S. and Celik, M. B., "Prediction of engine emissions and performance with artificial neural networks in a single cylinder diesel engine using diethyl ether",

Engineering Science And Technology, An International Journal, 21 (6): 1194–1201 (2018).

- 33.Simsek, S., Uslu, S., and Simsek, H., "Response surface methodology-based parameter optimization of single-cylinder diesel engine fueled with graphene oxide dosed sesame oil/diesel fuel blend", *Energy And AI*, 10: 100200 (2022).
- 34.Hirkude, J. B. and Padalkar, A. S., "Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology", *Fuel*, 119: 266–273 (2014).
- 35.Rohith Renish, R., Maneesha, G., Jeyaraman, P., and Niruban Projoth, T., "Experimental investigation on performance and emissions of a VCR engine fuelled by biodiesel/diesel blends", *Materials Today: Proceedings*, 62: 3689– 3698 (2022).
- 36.Simsek, S. and Uslu, S., "Investigation of the effects of biodiesel/2-ethylhexyl nitrate (EHN) fuel blends on diesel engine performance and emissions by response surface methodology (RSM)", *Fuel*, 275: 118005 (2020).
- 37.Sharma, A., Singh, Y., Kumar Singh, N., Singla, A., Chyuan Ong, H., and Chen, W. H., "Effective utilization of tobacco (Nicotiana Tabaccum) for biodiesel production and its application on diesel engine using response surface methodology approach", *Fuel*, 273: 117793 (2020).
- 38.Sharma, A., Singh, Y., Ahmad Ansari, N., Pal, A., and Lalhriatpuia, S., "Experimental investigation of the behaviour of a DI diesel engine fuelled with biodiesel/diesel blends having effect of raw biogas at different operating responses", *Fuel*, 279: 118460 (2020).
- 39.Elkelawy, M., Kabeel, A. E., El Shenawy, E. A., Panchal, H., Elbanna, A., Bastawissi, H. A. E., and Sadasivuni, K. K., "Experimental investigation on the influences of acetone organic compound additives into the diesel/biodiesel mixture in CI engine", *Sustainable Energy Technologies And Assessments*, 37: 100614 (2020).
- 40.Ray, S. K. and Prakash, O., "Biodiesel Extracted from Waste Vegetable Oil as an Alternative Fuel for Diesel Engine: Performance Evaluation of Kirlosker 5 kW Engine", *Renewable Energy And Its Innovative Technologies*, 219–229 (2019).
- 41."The Effects of the Fuel Injection Pressure on the Performance and Emission Characteristics of a Diesel Engine Fuelled with Waste Cooking Oil Biodiesel-Diesel Blends - ScienceDirect", https://www.sciencedirect.com/science/article/abs/pii/S0960148118309753?via% 3Dihub (2023).
- 42.Subramani, S., Govindasamy, R., and Rao, G. L. N., "Predictive correlations for NOx and smoke emission of DI CI engine fuelled with diesel-biodiesel-higher alcohol blends-response surface methodology approach", *Fuel*, 269: 117304

(2020).

- 43.Khan, O., Khan, M. Z., Bhatt, B. K., Alam, M. T., and Tripathi, M., "Multiobjective optimization of diesel engine performance, vibration and emission parameters employing blends of biodiesel, hydrogen and cerium oxide nanoparticles with the aid of response surface methodology approach", *International Journal Of Hydrogen Energy*, 48 (56): 21513–21529 (2023).
- 44.Nabi, M. N., Rahman, M. M., and Akhter, M. S., "Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions", *Applied Thermal Engineering*, 29 (11–12): 2265–2270 (2009).
- 45.Chauhan, B. S., Kumar, N., and Cho, H. M., "A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends", *Energy*, 37 (1): 616–622 (2012).
- 46.Özener, O., Yüksek, L., Ergenç, A. T., and Özkan, M., "Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics", *Fuel*, 115: 875–883 (2014).
- 47.Öner, C. and Altun, Ş., "Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine", *Applied Energy*, 86 (10): 2114–2120 (2009).
- 48.Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. II, Choi, K., Lee, C. S., and Park, S., "Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics", *Energy Conversion And Management*, 91: 302–314 (2015).
- 49.Lešnik, L., Iljaž, J., Hribernik, A., and Kegl, B., "Numerical and experimental study of combustion, performance and emission characteristics of a heavy-duty di diesel engine running on diesel, biodiesel and their blends", *Energy Conversion And Management*, 81: 534–546 (2014).
- 50.Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., and Chong, W. T., "Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends", *Energy Conversion And Management*, 76: 828–836 (2013).
- 51.Singh, P., Chauhan, S. R., and Goel, V., "Assessment of diesel engine combustion, performance and emission characteristics fuelled with dual fuel blends", *Renewable Energy*, 125: 501–510 (2018).
- 52.Sanjid, A., Kalam, M. A., Masjuki, H. H., Varman, M., Zulkifli, N. W. B. M., and Abedin, M. J., "Performance and emission of multi-cylinder diesel engine using biodiesel blends obtained from mixed inedible feedstocks", *Journal Of Cleaner Production*, 112: 4114–4122 (2016).
- 53.Musthafa, M. M., "A comparative study on coated and uncoated diesel engine

performance and emissions running on dual fuel (LPG – biodiesel) with and without additive", *Industrial Crops And Products*, 128: 194–198 (2019).

- 54.Dubey, P. and Gupta, R., "Influences of dual bio-fuel (Jatropha biodiesel and turpentine oil) on single cylinder variable compression ratio diesel engine", *Renewable Energy*, 115: 1294–1302 (2018).
- 55.Senthil Kumar, T., Senthil Kumar, P., and Annamalai, K., "Experimental study on the performance and emission measures of direct injection diesel engine with Kapok methyl ester and its blends", *Renewable Energy*, 74: 903–909 (2015).
- 56.Sanjid, A., Masjuki, H. H., Kalam, M. A., Rahman, S. M. A., Abedin, M. J., and Palash, S. M., "Production of palm and jatropha based biodiesel and investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine", *Journal Of Cleaner Production*, 65: 295– 303 (2014).
- 57.Ong, H. C., Masjuki, H. H., Mahlia, T. M. I., Silitonga, A. S., Chong, W. T., and Leong, K. Y., "Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine", (2014).
- 58.Noorollahi, Y., Azadbakht, M., and Ghobadian, B., "The effect of different diesterol (diesel-biodiesel-ethanol) blends on small, air-cooled diesel engine performance and its exhaust gases", *Energy*, 142: 196–200 (2018).
- 59.Altaie, M. A. H., Janius, R. B., Rashid, U., Taufiq-Yap, Y. H., Yunus, R., Zakaria, R., and Adam, N. M., "Performance and exhaust emission characteristics of direct-injection diesel engine fueled with enriched biodiesel", *Energy Conversion And Management*, 106: 365–372 (2015).
- 60.Krishna, S. M., Abdul Salam, P., Tongroon, M., and Chollacoop, N., "Performance and emission assessment of optimally blended biodiesel-dieselethanol in diesel engine generator", *Applied Thermal Engineering*, 155: 525–533 (2019).
- 61.El Shenawy, E. A., Elkelawy, M., Bastawissi, H. A. E., Shams, M. M., Panchal, H., Sadasivuni, K., and Thakar, N., "Investigation and performance analysis of water-diesel emulsion for improvement of performance and emission characteristics of partially premixed charge compression ignition (PPCCI) diesel engines", *Sustainable Energy Technologies And Assessments*, 36: 100546 (2019).
- 62.El Shenawy, E. A., Elkelawy, M., Bastawissi, H. A. E., Panchal, H., and Shams, M. M., "Comparative study of the combustion, performance, and emission characteristics of a direct injection diesel engine with a partially premixed lean charge compression ignition diesel engines", *Fuel*, 249: 277–285 (2019).
- 63.Aydın, M., Uslu, S., and Bahattin Çelik, M., "Performance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: A

combined application of ANN and RSM based optimization", *Fuel*, 269: 117472 (2020).

- 64.Sivaramakrishnan, K. and Ravikumar, P, "Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel".
- 65.Lahane, S. and Subramanian, K. A., "Effect of different percentages of biodieseldiesel blends on injection, spray, combustion, performance, and emission characteristics of a diesel engine", *Fuel*, 139: 537–545 (2015).
- 66.Buyukkaya, E., "Effects of biodiesel on a di diesel engine performance, emission and combustion characteristics", *Fuel*, 89 (10): 3099–3105 (2010).
- 67.Rizwanul Fattah, I. M., Masjuki, H. H., Kalam, M. A., Mofijur, M., and Abedin, M. J., "Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends", *Energy Conversion And Management*, 79: 265–272 (2014).
- 68.Ong, H. C., Masjuki, H. H., Mahlia, T. M. I., Silitonga, A. S., Chong, W. T., and Yusaf, T., "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine", *Energy*, 69: 427–445 (2014).
- 69. Yilmaz, N., Vigil, F. M., Benalil, K., Davis, S. M., and Calva, A., "Effect of biodiesel-butanol fuel blends on emissions and performance characteristics of a diesel engine", *Fuel*, 135: 46–50 (2014).
- 70.Atmanli, A., "Comparative analyses of diesel-waste oil biodiesel and propanol, nbutanol or 1-pentanol blends in a diesel engine", *Fuel*, 176: 209–215 (2016).
- 71.Li, L., Wang, J., Wang, Z., and Xiao, J., "Combustion and emission characteristics of diesel engine fueled with diesel/biodiesel/pentanol fuel blends", *Fuel*, 156: 211–218 (2015).
- 72.Öztürk, E., "Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil-hazelnut soapstock biodiesel mixture", *Fuel Processing Technology*, 129: 183–191 (2015).
- 73.Shrivastava, P., Verma, T. N., and Pugazhendhi, A., "An experimental evaluation of engine performance and emission characteristics of CI engine operated with Roselle and Karanja biodiesel", *Fuel*, 254: 115652 (2019).
- 74.Yilmaz, N., Vigil, F. M., Benalil, K., Davis, S. M., and Calva, A., "Effect of biodiesel–butanol fuel blends on emissions and performance characteristics of a diesel engine", *Fuel*, 135: 46–50 (2014).
- 75.Imdadul, H. K., Masjuki, H. H., Kalam, M. A., Zulkifli, N. W. M., Alabdulkarem, A., Kamruzzaman, M., and Rashed, M. M., "A comparative study of C4 and C5 alcohol treated diesel–biodiesel blends in terms of diesel engine performance and

exhaust emission", Fuel, 179: 281-288 (2016).

- 76.Aydin, H. and Bayindir, H., "Performance and emission analysis of cottonseed oil methyl ester in a diesel engine", Renewable Energy, 35 (3): 588–592 (2010).
- 77.Shehata, M. S., Attia, A. M. A., and Abdel Razek, S. M., "Corn and soybean biodiesel blends as alternative fuels for diesel engine at different injection pressures", *Fuel*, 161: 49–58 (2015).
- 78.Mofijur, M., Masjuki, H. H., Kalam, M. A., Atabani, A. E., Arbab, M. I., Cheng, S. F., and Gouk, S. W., "Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine", *Energy Conversion And Management*, 82: 169–176 (2014).
- 79.Liaquat, A. M., Masjuki, H. H., Kalam, M. A., Fattah, I. M. R., Hazrat, M. A., Varman, M., Mofijur, M., and Shahabuddin, M., "Effect of Coconut Biodiesel Blended Fuels on Engine Performance and Emission Characteristics", *Procedia Engineering*, 56: 583–590 (2013).
- 80.Teoh, Y. H., How, H. G., Masjuki, H. H., Nguyen, H. T., Kalam, M. A., and Alabdulkarem, A., "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends", *Renewable Energy*, 136: 521–534 (2019).
- 81.Ozsezen, A. N. and Canakci, M., "Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters", *Energy Conversion And Management*, 52 (1): 108–116 (2011).
- 82.Atmanli, A., Ileri, E., Yuksel, B., and Yilmaz, N., "Extensive analyses of dieselvegetable oil-n-butanol ternary blends in a diesel engine", *Applied Energy*, 145: 155–162 (2015).
- 83.Heydari-Maleney, K., Taghizadeh-Alisaraei, A., Ghobadian, B., and Abbaszadeh-Mayvan, A., "Analyzing and evaluation of carbon nanotubes additives to diesohol-B2 fuels on performance and emission of diesel engines", *Fuel*, 196: 110–123 (2017).
- 84.Ruhul, A. M., Kalam, M. A., Masjuki, H. H., Shahir, S. A., Alabdulkarem, A., Teoh, Y. H., How, H. G., and Reham, S. S., "Evaluating combustion, performance and emission characteristics of Millettia pinnata and Croton megalocarpus biodiesel blends in a diesel engine", *Energy*, 141: 2362–2376 (2017).
- 85.Shrivastava, P. and Verma, T. N., "Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil", *Fuel*, 265: 117005 (2020).
- 86.Akar, M. A., Kekilli, E., Bas, O., Yildizhan, S., Serin, H., and Ozcanli, M., "Hydrogen enriched waste oil biodiesel usage in compression ignition engine", *International Journal Of Hydrogen Energy*, 43 (38): 18046–18052 (2018).

- 87.Krishania, N., Rajak, U., Chaurasiya, P. K., Singh, T. S., Birru, A. K., and Verma, T. N., "Investigations of spirulina, waste cooking and animal fats blended biodiesel fuel on auto-ignition diesel engine performance, emission characteristics", *Fuel*, 276: 118123 (2020).
- 88.Tüccar, G., Özgür, T., and Aydin, K., "Effect of diesel-microalgae biodieselbutanol blends on performance and emissions of diesel engine", *Fuel*, 132: 47–52 (2014).
- 89.Hirkude, J. and Padalkar, A. S., "Experimental investigation of the effect of compression ratio on performance and emissions of CI engine operated with waste fried oil methyl ester blend", *Fuel Processing Technology*, 128: 367–375 (2014).
- 90.Rajak, U., Nashine, P., Verma, T. N., and Pugazhendhi, A., "Performance and emission analysis of a diesel engine using hydrogen enriched n-butanol, diethyl ester and Spirulina microalgae biodiesel", *Fuel*, 271: 117645 (2020).
- 91.El-Sheekh, M. M., Bedaiwy, M. Y., El-Nagar, A. A., ElKelawy, M., and Alm-Eldin Bastawissi, H., "Ethanol biofuel production and characteristics optimization from wheat straw hydrolysate: Performance and emission study of DI-diesel engine fueled with diesel/biodiesel/ethanol blends", *Renewable Energy*, 191: 591–607 (2022).
- 92.Kanokkhanarat, P., Karin, P., Depaiwa, N., Wongpattharaworakul, V., Srisurangkul, C., and Yamakita, M., "Influence of ethanol biodiesel blends on a diesel engine's efficiency and exhaust emission characteristics", *Materials Today: Proceedings*, 66: 2862–2867 (2022).
- 93.Ghanbari, M., Najafi, G., Ghobadian, B., Yusaf, T., Carlucci, A. P., and Kiani Deh Kiani, M., "Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach", *Fuel*, 202: 699–716 (2017).
- 94.Paul, A., Panua, R., and Debroy, D., "An experimental study of combustion, performance, exergy and emission characteristics of a CI engine fueled by Dieselethanol-biodiesel blends", *Energy*, 141: 839–852 (2017).
- 95.Nalgundwar, A., Paul, B., and Sharma, S. K., "Comparison of performance and emissions characteristics of DI CI engine fueled with dual biodiesel blends of palm and jatropha", *Fuel*, 173: 172–179 (2016).
- 96.Ashok, B., Nanthagopal, K., Mohan, A., Johny, A., and Tamilarasu, A., "Comparative analysis on the effect of zinc oxide and ethanox as additives with biodiesel in CI engine", *Energy*, 140: 352–364 (2017).
- 97.Annamalai, M., Dhinesh, B., Nanthagopal, K., SivaramaKrishnan, P., Isaac JoshuaRamesh Lalvani, J., Parthasarathy, M., and Annamalai, K., "An assessment on performance, combustion and emission behavior of a diesel engine powered by

ceria nanoparticle blended emulsified biofuel", *Energy Conversion And Management*, 123: 372–380 (2016).

- 98.Rajak, U., Nashine, P., Verma, T. N., and Pugazhendhi, A., "Performance, combustion and emission analysis of microalgae Spirulina in a common rail direct injection diesel engine", *Fuel*, 255: 115855 (2019).
- 99.Raj Yadav, S. P. and Saravanan, C. G., "Engine characterization study of hydrocarbon fuel derived through recycling of waste transformer oil", *Journal Of The Energy Institute*, 88 (4): 386–397 (2015).
- 100.Najafi, G., "Diesel engine combustion characteristics using nano-particles in biodiesel-diesel blends", *Fuel*, 212: 668–678 (2018).
- 101.Shrivastava, P., Salam, S., Verma, T. N., and Samuel, O. D., "Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel", *Fuel*, 262: 116608 (2020).
- 102. Arunkumar, M., Kannan, M., and Murali, G., "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine", *Renewable Energy*, 131: 737–744 (2019).
- 103.Yilmaz, N., Atmanli, A., and Vigil, F. M., "Quaternary blends of diesel, biodiesel, higher alcohols and vegetable oil in a compression ignition engine", *Fuel*, 212: 462–469 (2018).
- 104.Hossain, F. M., Nurun Nabi, M., and Brown, R. J., "Investigation of diesel engine performance and exhaust emissions of microalgae fuel components in a turbocharged diesel engine", *Energy Conversion And Management*, 186: 220–228 (2019).
- 105.Senthil, R. and Silambarasan, R., "Annona: A new biodiesel for diesel engine: A comparative experimental investigation", *Journal Of The Energy Institute*, 88 (4): 459–469 (2015).
- 106.Labeckas, G., Slavinskas, S., and Mažeika, M., "The effect of ethanol-dieselbiodiesel blends on combustion, performance and emissions of a direct injection diesel engine", *Energy Conversion And Management*, 79: 698–720 (2014).
- 107.Nabi, M. N., Zare, A., Hossain, F. M., Ristovski, Z. D., and Brown, R. J., "Reductions in diesel emissions including PM and PN emissions with dieselbiodiesel blends", *Journal Of Cleaner Production*, 166: 860–868 (2017).
- 108.Krishnamoorthi, M., Malayalamurthi, R., and Mohamed Shameer, P., "RSM based optimization of performance and emission characteristics of DI compression ignition engine fuelled with diesel/aegle marmelos oil/diethyl ether blends at varying compression ratio, injection pressure and injection timing", *Fuel*, 221: 283–297 (2018).

- 109.Ağbulut, Ü., Sarıdemir, S., and Albayrak, Serdar, "Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel-biodiesel-alcohol blends", *Journal Of The Brazilian Society Of Mechanical Sciences And Engineering*, 41 (3): 389 (2019).
- 110.Elsharkawy, E. A., Abou Al-sood, M. M., El-Fakharany, M. K., and Ahmed, M., "Assessing and Comparing the Characteristics of CI Engine Powered by Biodiesel-Diesel and Biodiesel-Kerosene Blends", *Arabian Journal For Science And Engineering*, 46 (3): 11771–11782 (2021).
- 111.De Carvalho, M. A. S., Acbal, •, Achy, R. A., Luiz, •, Junior, C. S. S., Vitor, •, Ferreira, P., Da Silva, J. A. M., Pepe, I. M., and Torres, E. A., "Mechanical and emissions performance of a diesel engine fueled with biodiesel, ethanol and diethyl ether blends", *Journal Of The Brazilian Society Of Mechanical Sciences And Engineering*, 42 (3): 182 (2020).
- 112.Devarajan, Y., Mahalingam, A., Babu Munuswamy, D., and Nagappan, B., "Emission and combustion profile study of unmodified research engine propelled with neat biofuels", *Environmental Science And Pollution Research*, 25: 19643– 19656 (2018).
- 113.Asokan, M. A., Senthur Prabu, S., Bade, P. K. K., Nekkanti, V. M., and Gutta, S. S. G., "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine", *Energy*, 173: 883–892 (2019).
- 114.Kishore, C., Singh, Y., and Negi, P., "Comparative performance analysis on the DI diesel engine running on Karanja Kusum and Mahua methyl esters", *Materials Today: Proceedings*, 46: 10496–10502 (2021).
- 115.Sharma, A., Maurya, N. K., Singh, Y., Singh, N. K., and Gupta, S. K., "Effect of design parameters on performance and emissions of DI diesel engine running on biodiesel-diesel blends: Taguchi and utility theory", *Fuel*, 281: 118765 (2020).
- 116.Abed, K. A., Gad, M. S., El Morsi, A. K., Sayed, M. M., and Elyazeed, S. A., "Effect of biodiesel fuels on diesel engine emissions", *Egyptian Journal Of Petroleum*, 28 (2): 183–188 (2019).
- 117.Roy, M. M., Wang, W., and Alawi, M., "Performance and emissions of a diesel engine fueled by biodiesel-diesel, biodiesel-diesel-additive and kerosene-biodiesel blends", *Energy Conversion And Management*, 84: 164–173 (2014).
- 118.Yatish, K. V., Lalithamba, H. S., Suresh, R., and Harsha Hebbar, H. R., "Optimization of bauhinia variegata biodiesel production and its performance, combustion and emission study on diesel engine", *Renewable Energy*, 122: 561– 575 (2018).
- 119.Krishnamoorthi, M. and Malayalamurthi, R., "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel aegle marmelos oil diethyl ether blends",

Energy, 128: 312–328 (2017).

- 120.Paul, A., Bose, P. K., Panua, R., and Debroy, D., "Study of performance and emission characteristics of a single cylinder CI engine using diethyl ether and ethanol blends", *Journal Of The Energy Institute*, 88 (1): 1–10 (2015).
- 121.Özcumalı, R. U., "Biyodizelin Bir Gemi Dizel Motorunun Egzoz Emisyon Karakteristiklerine Olan Etkisinin Deneysel Olarak İncelenmesi", Yüksek Lisans Tezi, **İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü**, İstanbul (2007).
- 122.Özer, S., "Bütanol kullanımın dizel motor performansı ve egzoz emisyonlarına etkilerinin deneysel olarak araştırılması", Yüksek Lisans Tezi, *Karabük* Üniversitesi Fen Bilimleri Enstitüsü, Karabük, (2010).
- 123.Atmanlı, A., "Dizel Motorunda Dizel Yakıtı-Alkol-Bitkisel Yağ Karışımları Kullanımının Motor Karakteristiklerine Etkilerinin İncelenmesi", Yüksek Lisans Tezi, *Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir*, (2013).
- 124.Coşkun, N. Y., "Dizel Motorlarda Kirletici Emisyonların Düşürülmesi İçin Egzoz Sisteminin Tasarımı ve Analizi", Yüksek Lisans Tezi, *Fırat Üniversitesi Fen Bilimleri Enstitüsü*, Elazığ, (2017).
- 125.Yılbaşı, Z., "Kenevir (cannabis sativa l.) yaği biyodizeli-dizel yakit karişimina farkli ağır alkol ve atik eps ilavelerinin bir dizel motorun karakteristikleri üzerine etkileri ile termodinamik, ekonomik ve çevresel analizleri", Doktora Tezi, *Yozgat Bozok Üniversitesi Fen Bilimleri Enstitüsü*, Yozgat, (2022).
- 126.Aydın, B., "Nano yakit katki maddesi ilave edilen biyodizel dizel karişiminin motor performans ve emisyon üzerindeki etkisinin incelenmesi", Yüksek Lisans Tezi, *Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü*, Karabük, (2022).
- 127.Şahin, Z., "Turbo Şarjlı dizel motorlarda giriş havası sıcaklığının motor performans ve emisyonlara etkilerinin incelenmesi", Yüksek Lisans Tezi, *Pamukkale Üniversitesi Fen Bilimleri Enstitüsü*, Denizli, (2019).
- 128.Yüksel, S. M., "Aspir yağı metil ve etil esterlerinin dizel motorlarda performans, yanma ve egzoz emisyonları üzerindeki etkilerinin araştırılması", Yüksek Lisans Tezi, *Batman Üniversitesi Fen Bilimleri Enstitüsü*, Batman, (2017).
- 129.Yıldırım, B., "Aşırı doldurmalı kısmi yalıtımlı bir dizel motorunda biyodizel ve EGR kullanımının performans ve emisyonlara etkilerinin incelenmesi", Yüksek Lisans Tezi, *Sakarya Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü*, Sakarya, (2019).
- 130.Pinzi, S., Rounce, P., Herreros, J. M., Tsolakis, A., & Dorado, M. P., "The Effect of Biodiesel Fatty Acid Composition on Combustion and Diesel Engine Exhaust Emissions", *Fuel*, 104: 170-182 (2013).
- 131.Kontses, A., Dimaratos, A., Keramidas, C., Williams, R., Hamje, H.,

Ntziachristos, L., & Samaras, Z., "Effects of Fuel Properties on Particulate Emissions of Diesel Cars Equipped with Diesel Particulate Filters", *Fuel*, 255: 115879 (2019).

- 132.Awad, O. I., Ma, X., Kamil, M., Ali, O. M., Zhang, Z., & Shuai, S., "Particulate Emissions from Gasoline Direct Injection Engines: A Review of How Current Emission Regulations are Being Met by Automobile Manufacturers", Science of the Total Environment, 718: 137302 (2020).
- 133.Wang, J., Wu, F., Xiao, J., & Shuai, S., "Oxygenated Blend Design and Its Effects on Reducing Diesel Particulate Emissions", *Fuel*, 88(10): 2037-2045 (2009).
- 134.Sarma, C.J., Sharma, P., Bora, B.J., Bora, D.K., Senthilkumar, N., Balakrishnan, D., Ayesh, A.I., "Improving the combustion and emission performance of a diesel engine powered with mahua biodiesel and TiO2 nanoparticles additive", *Alexandria Eng J*, 72: 387–398 (2023).
- 135.Simsek, S., Uslu, S., Sahin, M., Arlı, F., Bilgic, G., "Impact of a novel fuel additive containing boron and hydrogen on diesel engine performance and emissions", *Energy Sources, Part A Recover Util Environ Eff.*, (2021).
- 136.Jeyakumar, N., Balasubramanian, D., Sankaranarayanan, M., Karuppasamy, K., Wae-Hayee, M., Le, V.V., Tran, V.D., Hoang, A.T., "Using Pithecellobium Dulce seed-derived biodiesel combined with Groundnut shell nanoparticles for diesel engines as a well-advised approach toward sustainable waste-to-energy management", *Fuel*, 337: (2023).
- 137.Rajpoot, A.S., Choudhary, T., Chelladurai, H., Verma, T.N., Pugazhendhi, A., "Sustainability analysis of spirulina biodiesel and their blends on a diesel engine with energy, exergy and emission (3E's) parameters", *Fuel*, 349:128637 (2023).
- 138.Dey S, Reang NM, Das PK, Deb M., "A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel", *J Clean Prod*, 286:124981 (2021).
- 139.Awogbemi, O., Kallon, D.V.V., Owoputi, A.O., "Biofuel Generation from Potato Peel Waste: Current State and Prospects", *Recycling*, 7:23 (2022).
- 140.Santos, N.D.S.A., Roso, V.R., Malaquias, A.C.T., Baeta, J.G.C., "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation", *Renew Sustain Energy Rev*, 148:111292 (2021).
- 141.Uysal, C., Uslu, S., Aydin, M., "Exergetic and exergoeconomic analyses of a diesel engine fueled with binary and ternary blends of diesel-palm oil biodieseldiethyl ether for various injection timings", *J Therm Anal Calorim*, 147:12641– 12659 (2022).

RESUME

Haider Nashaat Hassen TAHA completed primary and central secondary studies in Baghdad in 1996, then joined the College of Mechanical Engineering at Al-Mustansiriya University, specializing in energy, after graduated in 2000. Worked in the College of Engineering as a daily lecturer for the mechanical drawing course and the descriptive engineering course, and worked in the consulting office for the same college. In 2002 and 2003, worked in the Central Bank of Iraq and worked in the field of assembling precision devices and several engineering, commercial and administrative works and projects in the field of generating electric power through traditional methods and renewable energy systems that have a positive impact on health and the environment for the future of coming generations, God willing.