

A COMPUTATION OFFLOADING FOR IOT OF

EDGE COMPUTING: A REINFORCEMENT
LEARNING APPROACH BASED ON DDPG

2023
MASTER THESIS

COMPUTER ENGINEERING

Fatimah Najeh Abdullateef Al ZUABAIDI

Thesis Advisor
Assist. Prof. Dr. Nehad T. A. RAMAHA

A COMPUTATION OFFLOADING FOR IOT OF EDGE COMPUTING: A

REINFORCEMENT LEARNING APPROACH BASED ON DDPG

Fatimah Najeh Abdullateef Al ZUABAIDI

Thesis Advisor

Assist. Prof. Dr. Nehad T. A. RAMAHA

T.C.

Karabuk University

Institute of Graduate Programs

Department of Computer Engineering

Prepared as

Master Thesis

KARABUK

October 2023

ii

I certify that in my opinion the thesis submitted by Fatimah Najeh Abdullateef Al

ZUABAIDI titled “A COMPUTATION OFFLOADING FOR IOT OF EDGE

COMPUTING: A REINFORCEMENT LEARNING APPROACH BASED ON

DDPG” is fully adequate in scope and quality as a thesis for the degree of Master of

Science.

APPROVAL

Assist. Prof. Dr. Nehad T.A. RAMAHA

Thesis Advisor, Department of Computer Engineering

This thesis is accepted by the examining committee with a unanimous vote in the

Department of Computer Engineering as a Master of Science thesis. 19/10/2023

Examining Committee Members (Institutions) Signature

Chairman : Assist. Prof. Dr. Nehad T. A. RAMAHA (KBU)

Member : Assist. Prof. Dr. İsa AVCI (KBU)

Member : Assist. Prof. Dr. Muhammet ÇAKMAK (SU)

The degree of Master of Science by the thesis submitted is approved by the

Administrative Board of the Institute of Graduate Programs, Karabuk University.

Assoc. Prof. Dr. Zeynep ÖZCAN

Director of the Institute of Graduate Programs

iii

“I declare that all the information within this thesis has been gathered and presented

in accordance with academic regulations and ethical principles and I have according

to the requirements of these regulations and principles cited all those which do not

originate in this work as well.”

Fatimah Najeh Abdullateef Al ZUABAIDI

iv

ABSTRACT

M. Sc. Thesis

A COMPUTATION OFFLOADING FOR IOT OF EDGE COMPUTING: A

REINFORCEMENT LEARNING APPROACH BASED ON DDPG

Fatimah Najeh Abdullateef Al ZUABAIDI

Karabuk University

Institute of Graduate Programs

The Department of Computer Engineering

Thesis Advisor:

Assist. Prof. Dr. Nehad T. A. RAMAHA

October 2023, 74 pages

The continuous proliferation and diversification of Internet of Things (IoT) devices

have led to the emergence of computationally intensive and time-sensitive

applications, including but not limited to object detection, smart homes, and smart

grids. To address the computational limitations of IoT devices, the edge computing

paradigm offers a solution by offloading resource-intensive tasks from IoT devices to

more powerful edge nodes. Despite this, the edge computing architecture may

introduce high latency, which proves unsuitable for IoT devices with constrained

computing and storage capacities. Efforts have been made to enhance this scenario by

deploying edge devices in proximity to IoT devices, providing low-latency computing

resources. However, challenges persist, particularly when the edge server is inundated

with offloading requests, potentially leading to incomplete task processing within the

required timeframe.

v

This paper seeks to minimize the average task completion time in an IoT edge-

computing environment by optimizing the task offloading ratio from IoT devices to

the edge. This optimization is achieved through the utilization of Deep Deterministic

Policy Gradient (DDPG), a form of Reinforcement Learning (RL) approach. Our

approach involves implementing a dynamic task offloading decision mechanism on

the edge, capable of determining the appropriate computational resources and resource

allocation needed to complete a task. Additionally, we enhance the load-balancing

process, ensuring fair distribution of resources among tasks, thereby reducing

processing time and, consequently, response time. The results of our study illustrate

that our dynamic task offloading decision mechanism significantly improves the

overall completion time of tasks compared to conventional approaches.

Key Words : Edge computing, Task offloading, Reinforcement learning, Deep

reinforcement learning, Offloading deviation, Load balancing.

Science Code : 92517

vi

ÖZET

Yüksek Lisans Tezi

UÇ BİLGİ İŞLEM İÇİN BİR HESAPLAMA BOŞALTMA: DDPG'YE

DAYALI BİR TAKVİYE ÖĞRENME YAKLAŞIMI

Fatimah Najeh Abdullateef Al ZUABAIDI

Karabük Üniversitesi

Lisansüstü Eğitim Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Tez Danışmanı:

Dr. Öğr Üyesi. Nehad T. A. RAMAHA

Ekim 2023, 74 pages

Nesne algılama, akıllı evler ve akıllı şebekeler gibi hesaplama açısından yoğun ve

gecikmeye duyarlı uygulamalar, Nesnelerin İnterneti (IoT) cihazlarının üstel büyümesi

ve çeşitliliği ile sürekli olarak ortaya çıkmaktadır. Hesaplama ağırlıklı görevleri IoT

cihazlarından uç düğümlere aktarmak için uç bilişim paradigmasını uyarlayabiliriz, bu

da IoT cihazlarının sınırlamasını daha güçlü kaynaklarla aşabilir. Bununla birlikte, uç

bilişim mimarisi, sınırlı bilgi işlem ve depolama yeteneklerine sahip IoT cihazları için

uygun olmayan yüksek gecikmeye neden olabilir. Uç bilişim, IoT cihazlarına düşük

gecikmeyle bilgi işlem kaynakları sağlayabilen IoT cihazlarının yakınında bir uç cihaz

dağıtarak bu durumu iyileştirmek için sunulmuştur. Bununla birlikte, uç sunucu,

talepler yoğun şekilde geldiğinde cihazlardan yüklenen tüm görevleri gereken sürede

tamamlayamayabilir. Bu makalede, bir tür Takviyeli Öğrenme (RL) yaklaşımı olan

Derin Belirleyici Politika Gradyanı'na (DDPG) dayalı olarak IOT cihazlarından uca

görev boşaltma oranını optimize ederek bir IoT uç bilişim ortamında görevlerin

vii

ortalama tamamlanma süresini en aza indirmeyi amaçlıyoruz. Bir görevi tamamlamak

için birden fazla faktörü göz önünde bulundurarak işlenecek hesaplama kaynaklarının

miktarını ve kaynak tahsisini belirleyebilen, uçta konuşlandırılmış dinamik bir görev

boşaltma karar mekanizması öneriyoruz. Ayrıca, bu çalışmada, yük dengeleme

sürecini iyileştiriyor ve kaynakları görevlere adil bir şekilde dağıtıyoruz; bu da işlem

süresini ve dolayısıyla yanıt süresini azaltacaktır. Sonuçlar, dinamik görev boşaltma

karar mekanizmamızın görevlerin genel tamamlanma süresini naif yaklaşımlara göre

iyileştirebileceğini göstermektedir.

Anahtar Kelimeler : Kenar hesaplama, Görev devretme, Pekiştirmeli öğrenme, Derin

pekiştirmeli öğrenme, Devretme sapması, Yük dengeleme.

Bilim Kodu :92517

viii

ACKNOWLEDGMENT

Thanks, Allah, the Most Merciful, has granted me the opportunity to pursue a master's

degree and conclude my thesis period. I am also grateful to my advisor, Assist. Prof.

Dr. Nehad T.A. RAMAHA, for his assistance and direction in completing this thesis.

I also sincerely thank the Karabuk University doctors, members, and colleagues; they

played a crucial role in my academic journey. Finally, I am also grateful for the support

of my family.

I respectfully present my thesis to Iraq, a country I adore, and Turkey, which has

generously provided a home for our scholarly endeavours .

ix

CONTENTS

Page

APPROVAL ... ii

ABSTRACT .. iv

ÖZET... vi

ACKNOWLEDGMENT ... viii

CONTENTS .. ix

LIST OF FIGURES ... xii

LIST OF TABLES .. xiii

ABBREVIATIONS .. xiv

PART 1 .. 1

RESEARCH OVERVIEW... 1

1.1. INTRODUCTION .. 1

1.2. PROBLEM STATEMENT .. 3

1.3. SIGNIFICANCE .. 5

1.4. RESEARCH OBJECETIVE .. 7

1.4.1. To Optimize User Utility... 7

1.4.2. To Minimize Latency .. 7

1.4.3. To Enhance Data Security ... 8

1.4.4. To Utilize Reinforcement Learning .. 8

1.5. CONTRIBUTION .. 8

1.6. RESEARCH SCOPE AND LIMITATIONS ... 10

1.6.1. IoT Device Composition... 10

1.6.2. Resource Allocation Model .. 10

1.6.3. Reinforcement Learning with DDPG ... 11

1.6.4. Experimental Configurations .. 11

PART 2 .. 13

LITERUTURE REVIEW... 13

2.1. OVERVIEW OF INTERNET OF THINGS (IOT) .. 13

x

Page

2.2. EDGE COMPUTING ... 14

2.3. EDGE COMPUTING WITH IOT ... 17

2.4. RESOURCE ALLOCATION FOR EDGE COMPUTING 19

2.5. TASK OFFLOADING ... 24

2.6. REINFORCEMENT LEARNING ... 25

2.6.1. Key Concepts Reinforcement Learning (RL) ... 25

2.6.2. Markov Decision Process ... 26

2.6.3. Reward and Return ... 28

2.6.4. Optimal Value Functions .. 29

2.6.5. Optimal Policy .. 30

2.6.6. Advantage Functions .. 30

2.6.7. Bellman Equations .. 31

2.6.8. Off-Policy vs On-Policy Learning .. 32

2.6.9. Model-Based vs Model-Free RL .. 33

2.7. DEEP REINFORCEMENT LEARNING .. 34

2.7.1. Deep Deterministic Policy Gradient (DDPG) .. 35

2.8. CHALLENGES .. 36

PART 3 .. 37

METHODOLOGY ... 37

3.1. RESEARCH MODEL .. 37

3.1.1. Environment of IoT-Edge Computing .. 38

3.1.2. Task Offloading Model... 40

3.1.2.1. Edge Server .. 40

3.1.3 Problem Formulation ... 41

3.2. OFFLOADING DECISION MECHANISM ... 42

3.2.1. Deep Deterministic Policy Gradient (DDPG) .. 42

3.2.1.1. State Space .. 44

3.2.1.2. Action Space .. 44

3.2.1.3. Reward Function ... 44

3.3. EXPLORATION AND EXPLOITATION .. 45

3.4. PROPOSED MODEL ALGORITHM ... 45

3.5. EXPERIMENTS .. 46

xi

Page

3.5.1. Simulation Settings ... 47

3.5.2. Simulation Process ... 47

PART 4 .. 49

RESULTS AND DISCUSSION .. 49

4.1. DISCUSSION .. 49

4.2. REWARD VARIATION ... 50

4.3. EVALUATION .. 50

4.4. TASKS OFFLOADING RESULTS .. 55

4.5. VARIANCE IN EXPLORATION ... 57

4.6. LATENCY ... 61

PART 5 .. 63

CONCLUSION AND FUTURE WORK .. 63

REFERENCES ... 64

RESUME ... 74

xii

LIST OF FIGURES

Page

Figure 2.1. Framework of reinforcement learning ... 26

Figure 3.1. System Architecture .. 38

Figure 3. 2 . Dynamic task offloading mechanism based on DDPG 42

Figure 3.3. Dynamic decision-making mechanism flowchart for resource allocation

and dynamic task offloading. .. 46

Figure 4.1. 10 edge 10 users. ... 51

Figure 4.2. 10 edge 20 users. ... 52

Figure 4.3. 10 edge 30 users. ... 53

Figure 4.4. 10 edge 40 users. ... 54

Figure 4.5. 10 edge 70 users. ... 54

Figure 4.6. 10 user 10 edge. ... 56

Figure 4.7. 20 user 10 edge. ... 56

Figure 4.8. 30 user 10 edge. ... 57

Figure 4.9. 10 user 10 edge. ... 59

Figure 4.10. 20 user 10 edge. ... 59

Figure 4.11. 30 user 10 edge. ... 60

Figure 4.12. Comparison of Three Algorithms for Reducing Response Time in Edge

Computing and User Interaction. .. 61

xiii

LIST OF TABLES

Page

Table 1.1. Previous studies related to edge computing .. 18

Table 3.1. Definitions of Terms. .. 40

Table 3.2. The simulation parameters. ... 47

Table 4.1. Effectiveness Between Three Algorithms... 55

xiv

ABBREVIATIONS

EC : Edge computing

DRL : Deep Reinforcement Learning

NN : Neural Network

IoT : İnternet of Things

DDPG : Deep Deterministic Policy Gradient

MDP : Markov Decision Process

DQN : Deep Q-Network

MEC : Mobile Edge Computing

QL : Q-learning

1

PART 1

RESEARCH OVERVIEW

1.1. INTRODUCTION

It's no secret that the Internet of Things (IoT) is on the rise, resulting in the generation

of vast amounts of data for various purposes. The inception of IoT dates back to 1999

[2]. With the increasing demand for lower response times and better reliability, more

services are being shifted from cloud computing to edge. Data is processed at the edge

of networks with edge computing, thereby reducing response time and improving

reliability[3]. In essence, IoT refers to a network of billions of devices that can detect,

transmit, and transform data into a centralized system. Today, IoT devices and

applications are deployed in various fields such as healthcare, smart city networks,

intelligent transportation, and disaster management providing diverse forms of user

assistance [4].

A vast number of distributed edge nodes with underutilized resources can be leveraged

to reduce latency and bandwidth in IoT networks. Consequently, the application of IoT

devices has gained considerable attention in recent years [5]. The purpose of IoT is to

leverage edge processing to minimize latency. While IoT devices can collect large

amounts of data, their capacities are limited. Cloud computing is commonly used for

data analysis, but it results in longer delays than edge computing (EC). Edge

processing, on the other hand, is an innovation that offers several advantages and can

solve a wide range of issues[6].

The edge infrastructure of an organization offers a highly dynamic environment to

numerous devices providing enhanced flexibility to users and supporting

2

heterogeneous applications. Applications with sporadic traffic patterns necessitate

significant battery life, memory capacity, computational resources, and prompt task

execution [7]. Recently, edge computing has gained traction to achieve low-latency

data processing by offloading computational resources from cloud data centers to edge

devices. Additionally, the availability of reliable high-speed internet and

communication technologies has fostered the proliferation of complex and

computationally intensive (IoT) applications resulting in generating and processing

massive amounts of data [8]. Typically, edge devices are more powerful than

conventional IoT devices. This is because IoT devices are constrained by their limited

resources making local processing and storage of large volumes of multimodal sensory

data infeasible.

The proximity of (EC) services to (IoT) devices and data sources is crucial to reduce

data transfer delay and minimize bandwidth consumption [9]. The proliferation of

data-intensive applications in the (IoT) edge exacerbates the challenge of limited data

speed [10]. The (IoT) can sense, actuate, and transmit information to a central system

[11]. Currently, (IoT) devices and applications are utilized in a range of fields

including logistics, retail, healthcare, smart city networks, intelligent transportation,

and disaster management. The potential of (IoT) devices must be harnessed to provide

sophisticated services [12]. Meanwhile, The number of (IoT) systems is growing

exponentially [13].

They have already surpassed the world's population and are projected to reach 80

billion by 2030 [14]. This enormous growth necessitates platforms that can support the

burgeoning number of IoT devices, organize and process the generated data effectively

[15].

Considering devices that belong to the IoT, it is essential to handle data with short

delays to guarantee fast user feedback. However, due to the limited power and

computational capabilities of these devices, processing data at the edge is necessary.

These requirements put constraints on the latency of edge processing [16].

3

To process this challenge, (EC) has emerged as a critical enabler for IoT. It brings

cloud resources closer to the edge, supports real-time applications, and reduces the

computing and network resources required for data processing in the cloud. By

avoiding the delay of transferring data to distant clouds, EC can offer shorter latency

to applications that require real-time processing. [17]. The process of edge registering

is inherent as it involves a distinct convergence of EC target planning, wherein a

multitude of cooperative edge devices and IoT devices collaborate to manage the

information generated within the vicinity of the edge. The objective of this research is

to utilize EC for processing IoT devices on the Internet or on a device situated at the

edge of the network, which is closer to the data source .

Compared to cloud computing, EC has greater potential to accommodate more devices

and facilitate IoT scenarios. Given these advantages, EC is considered a pivotal enabler

for achieving ubiquity.

According to recent research, EC has demonstrated greater potential than cloud

computing in accommodating an increasing number of devices and enabling the

implementation of IoT scenarios. Consequently, EC represents a pivotal catalyst for

the widespread adoption of ubiquitous computing .

1.2. PROBLEM STATEMENT

IoT refers to a network that connects devices and systems allowing users to access

them from anywhere and, at any time [18]. IoT has been applied in fields such as home

networks, home automation, manufacturing, security systems, healthcare, data

management, analysis of military transportation systems, and sensor technology [19].

A frequent challenge in this context often involves data loading and unresponsive

applications, which can negatively impact the user experience.

However, one significant challenge that arises with these applications is the delay, in

transferring data, between devices and distant servers. This problem often leads to slow

data loading and unresponsive application performance negatively impacting the user

4

experience. To overcome these obstacles faced by IoT devices, the implementation of

edge computing has emerged as a solution.

This computing pattern enhances the capabilities of user devices when it comes to

running applications. Additionally, it provides security and faster performance

compared to cloud computing [20, 21]. Consequently, processing happens with delay

and lower power consumption leading to network performance [22]. This approach

allows IoT devices to offload computing tasks to edge nodes that have stronger

computing and storage skills. The proximity of an edge node to devices significantly

reduces latency compared to cloud centric, where its processing nodes are central and

far away from the IoT devices [18]. However, when edge nodes are faced with a

volume of requests, an edge node might be challenged to complete tasks from IoT

devices within the expected timeframe. Hence, it becomes crucial to deploy a cluster

of edge nodes near users with priority given to selecting the node that's closest to

achieve faster tasks first.

When it comes to edge computing, achieving network performance requires a dynamic

smart, and fast resource allocation strategy. In edge networks using reinforcement

learning techniques can greatly improve resource allocation. It goes beyond analyzing

network data and also optimizes network operations while providing instructions to

devices. This helps in making decisions about resource allocation precise and faster.

Moreover, training reinforcement learning can significantly enhance the quality of

services [20].

When relying solely on edge computing to perform tasks during peak loads on the edge

server, the limited resources of the edge server can cause delays in completing tasks

for devices. This is mainly because there are requests for offloading making it difficult

to achieve tasks in efficient time. To tackle this challenge, the edge centric can

intelligently allocate a portion of tasks to be managed directly on the edge centric itself

which helps speed up the offloading procedure. As a result, we suggest a mechanism

for making decisions about task offloading that optimizes the ratio of tasks being

offloaded from the edge. This mechanism uses a customized approach based on Deep

5

Deterministic Policy Gradient (DDPG) that is tailored for different scenarios rather

than adopting a one-size- strategy that fits all offloading tasks.

Currently, two primary resource allocation approaches in edge computing don't rely

on a central cloud center [23]. One perspective revolves around users aiming to achieve

optimal resource allocation by selecting suitable edge nodes for computational

migration. This method assumes that all users are located within an area that

encompasses edge computing networks and has access to nearby edge nodes. Users

utilize game theory and operational research to determine the node and develop

resource scheduling strategies [24]. The other perspective focuses on edge nodes

highlighting the importance of organizing clusters of these nodes to optimize system

performance. This approach suggests that collaboration among edge nodes is the key

to master allocating resources efficiently [25] [26].

Dealing with control tasks that involve a range of possible actions poses a significant

challenge when it comes to learning the most effective approach. This is true in (RL)

where you have a large number of actions that can hinder performance. Known

algorithms like DQN and Q learning among others have difficulty handling extensive

action spaces. Unfortunately, encountering these action spaces is quite common.

Moreover, DQN can face issues like training variability, and instability. Moreover, it

struggles with handling continuous action spaces. In contrast, the DDPG algorithm

proves to be efficient in addressing control tasks that involve continuous action spaces.

1.3. SIGNIFICANCE

Within the IoT environment, latency reduction is fundamental. In cloud-centric

Internet of Things framework, data is handled on central servers which results in

significant delay and latency within the IoT applications. Edge addresses this issue in

the below style. Edge computing assigns computation, storage, and communication

services from the cloud server to the network edge triggering increased availability

and low latency [27]. IoT gadgets are resource-constrained and incapable of handling

compute-intensive services. Incorporating edge computing, IoT and computation

offloading offers an attainable solution concerning performance [27]. This

6

combination guarantees faster response time, making real-time control and precise

monitoring. Businesses that rely on instant decision-making, such as telemedicine and

autonomous vehicles stand to benefit immensely from this progression.

Besides the above, data security is a vital concern to prioritize within the IoT

environment. Centralized cloud centers have been the target of high-profile

cyberattacks. Moreover, the presence of all the data in central servers increases data

insecurity and breaches [28]. On the other hand, Edge computing progresses data

security by decreasing the amount of data transmitted and handled in the cloud keeping

sensitive data on client devices, and decreasing the risk of data compromise as posited

by research[29]. This approach provides data processing, exchange in real time and

minimizes the chance of data leaking amid the transit phase of information exchange

between devices.

In addition to the above, efficiency is vital for the innovative progression of the

Internet of Things and subsequently, the requirement for resource optimization. A

study conducted by [30] on edge-centric IoT design highlights the centrality of

resource allocation models especially, those utilizing reinforcement learning. These

models aim to enhance the utility of edge nodes and users and so, optimizing the

utilization of network resources and eventually progressing system performance. Such

optimization becomes pivotal for guaranteeing the seamless operation of IoT

frameworks mainly when resource limitations are a concern. The research underscores

the significance of proficient resource allocation in edge-centric IoT systems

associated with the prior study by [30], which divides the complex issue into

reasonable components to enhance IoT network survivability.

The IoT ecosystem is extending phenomenally, as documented by a report from [31].

With an ever-growing number of connected devices, versatility is necessary for any

IoT design making scalability a vital process. Research conducted by [27] asserts the

characteristic scalability of our proposed edge-centric approach. This approach has

been designed to consistently adjust the increasing number of IoT devices making it a

feasible solution that addresses the network and advanced demands. This versatility is

achieved through the use of the DDPG algorithm which is a computational resource

7

offloading algorithm, and efficient resource allocation. All of these collectively

contribute to the framework's ability to accommodate the growing IoT ecosystem,

guarantee an ideal performance that can consistently accommodate the surge in IoT

gadgets, and offer a feasible mitigation for the ceaselessly advancing digital scene.

1.4. RESEARCH OBJECETIVE

The goal of this research is to make edge-IoT user environments more productive in

the IoT through optimal resource allocation. This can be accomplished by strategically

delegating a portion of the assigned tasks to edge servers benefiting the end devices.

To achieve this objective, our research focuses on enhancing the efficiency of task

offloading from IoT devices to the edge.

Several vital objectives drive this research project:

1.4.1. To Optimize User Utility

Our essential objective is to plan a resource allotment demonstration that places client

involvement at the forefront. We aim to maximize the utility and fulfillment of end-

users inside the IoT environment. This involves advancing an advanced resource

allocation component that minimizes latency and guarantees that clients can get the

resources they require effectively without delay. We proposed to improve the general

IoT encounter by centering on user-centric optimization.

1.4.2. To Minimize Latency

Decreasing latency could be a pivotal angle of our extension. We focus on a significant

decrease in information transmission and handling delays inside IoT applications. To

attain this, we arrange to handle information as near as possible to its source

minimizing the time it takes for data to navigate the organization. Typically, it is

especially basic for applications requesting real-time information and for those of a

critical nature mission. Our endeavors will include accomplishing low-latency

communication to meet these requested necessities successfully.

8

1.4.3. To Enhance Data Security

Security is fundamental within the IoT ecosystem, particularly when managing

sensitive information. Our objective is to improve information security by receiving

edge computing standards. This approach decreases the introduction of delicate

information through its travel to centralized node centers. By actualizing security

measures at the edge, we aim to invigorate data security, guaranteeing its secrecy and

judgment through its travel inside the IoT framework.

1.4.4. To Utilize Reinforcement Learning

we aim to optimize resource allocation powerfully guaranteeing that resources are

designated effectively and viably. IoT environment and fine-tuned calculations are

adjusted and advanced intelligently to the changing network conditions using RL by

utilizing the DDPG algorithm as an energetic resource allocation methodology.

1.5. CONTRIBUTION

The anticipated contributions of this research encompass a comprehensive

transformation in the IoT ecosystem. It envisions a future where IoT devices

predominantly rely on edge computing and challenge the conventional cloud-centric

architecture resulting in substantial performance improvements, reduced latency, and

enhanced data security.

A key element of this research is the introduction of a resource allocation model for

latency reduction, which will strategically distribute processing power, bandwidth, and

other critical network resources among edge nodes and users [27]. This model

prioritizes real-time data processing and low-latency communication making it

particularly valuable for applications requiring instantaneous responses such as

industrial automation and autonomous vehicles.

Additionally, this research plans to leverage the DDPG algorithm which is a form of

reinforcement learning that addresses IoT resource allocation challenges [27]. This

9

innovative approach will enable dynamic and adaptive resource allocation.

Furthermore, it enhances IoT technology towards intelligent and self-optimizing

networks.

To validate the proposed edge-centric IoT architecture and resource allocation model,

the research will conduct extensive empirical experiments with varying configurations

of nodes and users [32]. This empirical validation aims to provide actionable insights

into feasibility, scalability, and practical applicability.

Another significant aspect is the emphasis on enhancing Data Security and Privacy

within IoT ecosystems [32]. The proposed edge-centric approach minimizes data

exposure during transit to centralized cloud centers, mitigates potential vulnerabilities

associated with data breaches or cyberattacks, and addresses growing data privacy,

concerns or regulatory requirements.

Furthermore, the research promotes Environmental Sustainability within the IoT

landscape. By favoring energy-efficient edge computing over traditional cloud-centric

approaches, it aligns with global efforts to reduce technology's carbon footprint

making IoT more eco-friendly [32]. Adopting an edge-centric IoT architecture will

diversify IoT Applications significantly enabling real-time applications across various

domains including autonomous vehicles, healthcare, augmented reality, and industrial

automation. This diversification creates new opportunities for innovation and

economic growth.

Also, the research aims to set the stage for future directions and innovation within the

IoT and edge computing domains. It will highlight potential research avenues such as

optimizing edge node deployment strategies, enhancing security measures, and

integrating emerging technologies like 5G and edge AI ensuring continuous

progressive innovation in the field.

In conclusion, this research seeks to revolutionize the IoT landscape by introducing an

edge-centric paradigm shift, optimizing resource allocation, leveraging reinforcement

learning, conducting empirical validation, enhancing data security, promoting

10

sustainability, diversifying applications, and paving the way for future innovations.

These contributions collectively address the challenges within the IoT ecosystem

while fostering a more efficient, secure, and sustainable future for IoT technology or

applications.

1.6. RESEARCH SCOPE AND LIMITATIONS

In this section, the research investigates the transformative potential of edge-centric

IoT engineering. Examining IoT gadget composition, asserting assignment models,

fortification learning with DDPG, and adaptability contemplations survey idleness

decrease and security suggestions. These all compare to edge-centric approaches

making the way clearer for a maintainable IoT future as detailed below.

1.6.1. IoT Device Composition

Our study builds upon the assumption that all IoT devices include two essential

components—edge nodes and users. These components are essential in forming the

IoT landscape. Edge nodes, either physical gadgets or virtual substances, are

deliberately conveyed inside the network [13]. Physical nodes act as basic data

handling centers, whereas virtual nodes offer adaptability by powerfully optimizing

resource allocation. This compositional understanding supports investigating resource

allocation, latency reduction, security, and versatility in edge-centric IoT design.

1.6.2. Resource Allocation Model

This model is fastidiously created to prioritize client utility augmentation while

minimizing latency considered as an essential concern in IoT engineering. The

resource assignment model is integral and is the allotment of basic resources for the

consistent operation of the IoT environment. It comprehensively addresses handling

control, transmission capacity, and other arranged resource dissemination.

The allocation of processing control is central to optimizing information handling and

decision-making at the edge hubs guaranteeing proficient real-time responses to client

11

demands. Compelling transmission capacity allocation empowers quick and

dependable information exchange between clients and edge hubs improving the

overall client encounter [33]. Moreover, the model considers distributing other

network resources such as memory and capacity to guarantee the all-encompassing

optimization of the IoT environment. By adjusting these key resource allocations, the

research points to attaining an ideal trade-off between client fulfillment and network

efficiency which consists of 10 edge nodes and several users taking into account the

priority of choosing the appropriate node that is close to the users which leads to the

effectiveness and efficiency of the network.

1.6.3. Reinforcement Learning with DDPG

Central to our approach is the application of support learning and particularly saddling

on the capabilities of the profound DDPG algorithm. This advanced learning strategy

leads our research and empowers us to analyze its transformative potential in IoT

environments methodically. The DDPG calculation enables the resource allocation

framework with versatility and intelligence. Through a process of learning from

intuition and input, it permits the model to dynamically refine its resource

allocation strategies based on real-time conditions and client needs [34]. This versatile

approach improves the effectiveness and responsiveness of the IoT environment.

Eventually, this contributes to the optimization of asset utilization, latency decline, and

generally framework performance.

1.6.4. Experimental Configurations

Inside our research, a significant aspect spins around conducting a series of tests. Each

test is designed to shed light on the capabilities and performance of our proposed edge-

centric IoT design plus resource allocation show. These tests envelop three particular

setups:

10 Nodes and 10 Users: In this introductory situation, we make a generally small-scale

IoT environment to set up a pattern for our system's execution. We pick up bits of

knowledge into their essential productivity and idleness decrease capabilities by

12

analyzing how the design and resource allotment handle this humble number of nodes

and clients.

10 Nodes with 20 Users: Building upon the primary arrangement, we present a broader

client base while keeping up the same number of hubs. This setup permits us to

investigate how the framework adapts to expanded client requests and gives profitable

experiences to its versatility plus resource allocation adaptability.

10 Nodes with 30 Users: Within the third setup, we assisted in heightening the client

number to 30 while keeping the hub check steady. This setup reveals a more complex

and requesting environment with challenging the system's capacity to preserve

compelling resource assignments. This setup results in inactivity diminishment within

the confront of increased client action.

13

PART 2

LITERUTURE REVIEW

Reinforcement learning has recently become a popular research area in edge

computing for offloading reflecting the growing interest in edge computing. This

distributed computing paradigm enables computation to be performed closer to the

data source or end-users thus, reducing network latency and enhancing application

performance. One technique employed in this context is offloading which allows tasks

or components of tasks to be executed remotely, in either the cloud or edge, to improve

overall system performance. The present chapter seeks to reinforce the problem

statement and research objectives of this project by offering a comprehensive review

of pertinent literature on three key topics: the Internet of Things (IoT), reinforcement

learning (RL) and task offloading. Commencing with a concise overview of IoT, this

section lays the groundwork for the ensuing discussion.

2.1. OVERVIEW OF INTERNET OF THINGS (IOT)

IoT, also known as a "global internet," constitutes a network of countless device

connections and marks a groundbreaking stride in the domain of internet technology.

Essentially, it involves an expansion of the internet beyond the digital realm

integrating the physical world with unprecedented efficiency and ease. In practical

terms, this means that everyday objects can engage in complex data exchange and

communication. Thus, facilitating the creation of a truly interconnected world. [35].

Using IoT, connected physical objects are capable of collecting and exchanging

information with other devices without requiring human intervention. Furthermore,

these devices can be remotely controlled and leverage their internet connectivity. The

diversity of IoT devices is extensive encompassing various applications such as smart

electricity meters, televisions, appliances, homes, cities, healthcare, transportation,

agriculture, security systems, and more, all of which hold significant potential [36].

14

Data transfer has been essential due to the increase in IoT devices, highlighting the

importance of secure and efficient communication channels.

The advent of IoT technologies has propelled the widespread adoption of smart devices

leading to a surge in computation-intense and latency-sensitive requests that require

real-time reply capabilities [37]. The volume of data generated by IoT devices has

increased significantly leading to challenges in processing this data due to the limited

battery life of these devices, despite the availability of state-of-the-art computational

and storage facilities. Consequently, efficient processing of the high demands of such

applications has become a pressing concern for researchers and practitioners alike [38-

40].

Furthermore, the scope of IoT devices extends beyond traditional electronic devices

like sensors, smartphones, and other smart devices to encompass living beings such as

animals, food, and plants. [41]. In their work, emphasize the importance of the needs

of different objects within the IoT ecosystem including living beings like animals,

food, and plants providing specialized features such as wireless, wired technology, or

computational resources. There are several devices with varying capabilities and needs

within the IoT ecosystem. Moreover, the priority of a task can differ across devices

even within the same IoT application. This presents a significant hurdle in meeting the

Quality of Service (QoS) benchmarks of the application.

2.2. EDGE COMPUTING

The ever-increasing demand for time-sensitive applications and the rapidly growing

data volume have made the proximity of cloud resources to end devices a critical

factor. To address this challenge, edge computing has emerged as a feasible solution

to augment user experience by providing cloud centric resources nearer to the

network's edge and the end devices. The fundamental process of offloading gadget

tasks to a close edge has the potential to reduce the need for transmission to and from

the cloud thus, mitigating bandwidth consumption in backhaul and cloud networks

[42]. Edge processing offers multiple advantages over traditional cloud computing

15

paradigms including lesser latency, enhanced energy effectiveness, and flexible

computing for computation-intense requirements [43].

The advent of edge computing has proven to be a pivotal technology in augmenting

the effectiveness of resource-intensive operations. This technology encompasses a

multitude of methods including Fog, Mobile-Edge, and Cloudlet Computing. All of

these function as intermediaries between endpoint devices and cloud servers, thereby

furnishing computational and storage resources with negligible latency [44].

Nonetheless, devising effective task-offloading strategies in edge environments with

limited resources remains a significant challenge that current research seeks to

overcome [45].

Recently, there has been a growing interest in leveraging edge offloading for

applications requiring low latency. This paper proposed a three-layer offloading

architecture to optimize processing delays by distributing tasks across various layers

based on communication and computing costs [46]. In a comparable vein, the task

offloading quandary was tackled by a stochastic optimization lens, whereby they

adeptly employed techniques of stochastic optimization to convert an unpredictable

issue into a deterministic optimization issue. This approach reduces of energy

consumption in transmission and guarantees low queueing latency [47].

To facilitate task offloading and resource allocation, we developed a blockchain-based

framework known as Edge ABS, which utilizes smart contracts for task offloading and

resource allocation. The Edge User Allocation (EUA) problem was also explored

by[48], which aims to minimize latency and energy consumption in edge computing

environments.

In recent years, the issue of time-sensitive applications exceeds the processing

capabilities of IoT devices and poses a significant challenge. In response, researchers

have explored the use of edge computing as a potential solution[49]. Researchers

proposed an edge-computing architecture that aims to alleviate the congestion and

delay experience by traditional multimedia IoT systems which are often limited by

bandwidth constraints. To achieve this goal, their framework employs group formation

16

and video group matching techniques to enhance the accurateness of human detection

within a specified timeframe.

Likewise, Researchers investigated a mobile edge computing (MEC) framework

tailored for unmanned aerial vehicles (UAVs) to facilitate the execution of computing

tasks that are time-critical for terminal IoT devices within a restricted period [50].

Additionally, a UAV-assisted MEC system leverages differential evolution (DE) to

determine near optimal locations of UAVs for task offloading in IoT devices[51].

Furthermore, edge computing has the potential to revolutionize industrial IoT (IIoT)

applications, particularly in intelligent manufacturing[52]. Researchers conducted a

thorough analysis and implementation of an edge computing framework for smart

factories highlighting the assistances of fast processing, network agility, and autonomy

[53]. The deployment of edge computing in IIoT can significantly improve operational

efficiency and decision-making processes, thus increasing productivity.

To enhance the efficacy of edge computing, effective task scheduling mechanisms are

imperative. however, conventional offloading techniques at the edge may not be

adequate to manage a diverse range of task requirements, as highlighted by [54]. In

response to this challenge, [55] proposed a joint decision-making approach that takes

into account uncertain computing resources and heterogeneous task requirements.

Similarly, [56] introduced a semi-distributed offloading technique featured with a

multi-user scheduling mechanism to minimize average delay and power consumption

for Narrowband Internet of Things (NBIoT) devices. This method utilizes an auction-

based scheduling approach where the end devices submit bids to mobile base-stations

which determine the scheduling. [57] proposed an energy aware optimization

framework that prioritizes each demanded task and formulates a stochastic-aware

offloading issue using the Lyapunov optimization method. Although edge centric can

effectively tackle the problems of network congestion and prolonged latency that often

plague cloud computing, it still has its own set of challenges. These challenges are

primarily attributed to the early stages of IoT technology as observed by both [58] and

[59]. Unlike cloud computing, edge computing follows a centralized architecture

where all nearby IoT device requests are transmitted to an essential edge server.

Additionally, edge-centric servers have restricted resources compared to cloud-centric

17

servers and an excessive number of offloading requirements which can increase the

overall task completion time for IoT devices.

2.3. EDGE COMPUTING WITH IOT

In IoT environments, sharing heterogeneous networks and sensing resources among

multiple applications are common requirements [60]. Load balancing is a critical factor

in meeting the ultralow latency demands of IoT applications and ensuring QoS

guarantees in cloud computing [61]. Standard data mining methods that analyze two-

dimensional vector data are unsuitable for managing vast data sets that feature inherent

relational interdependencies, varying weights, directed edges, and heterogeneity

across system elements. [62]. These limitations necessitate the use of more advanced

data mining techniques that can handle complex data structures and relationships in

IoT environments [63]. In cloud computing systems, a lower value results in a more

balanced distribution of load which leads to improve system performance. Failure to

meet a request deadline can occur if the response time surpasses the deadline or if any

of the IoT devices or the user is unable to access any instance of a service. Thus,

minimizing these aspects is a crucial way of load balancing in cloud computing

systems and their impact on system performance cannot be overstated. [64, 65]. In the

context of IoT, fog nodes may offload requests to other fog nodes to balance their

workload and reduce response delays [66]. To obtain accurate results, the authors

conducted multiple repetitions of experiments to calculate the average and deviation

of the outcomes[67]. In their study, the authors presented a novel approach to achieve

seamless load balancing within a virtual machine which consequently led to improve

the throughput. This technique takes into account the job order processed by the virtual

machine[68]. In cloud computing systems, round-robin load-balancing algorithms

have been traditionally employed [69]. However, recent research has highlighted the

potential impact of inaccuracies in expert-based weight rebalancing estimation when

imperfections occur in the framework, especially in load distribution balancing

between edge and cloud [70]. In the quest to improve service latency and alleviate

offloading exhaustion in the emerging field of edge computing for IoT, researchers

have suggested novel approaches [68]. For instance, the authors proposed a QoS- and

connection-aware cloud service structure process that accounts for end-to-end QoS

18

requirements in the cloud [69]. Furthermore, in [70], the authors introduced a load-

balancing strategy that integrates data-center power consumption with diverse

workloads in the cloud. This approach can ensure efficient resource allocation and

enhance the overall performance of the system without compromising the accuracy of

application results. Moreover, balancing the task frequency across edge nodes, as

suggested in [71] can further optimize the performance of edge computing systems

without sacrificing the quality of service. In addition, [72] suggests optimal policies

for managing resources in edge computing systems. These policies encompass

capacity allocation, load balancing, energy optimization, and quality of service

assurance. All of which can be effectively implemented to enhance the efficiency and

efficacy of edge computing systems

Table 2.1. Previous studies related to edge computing

citation year techniques limitations

Long, C.,

et al.[49]

2017 Their framework technique

employs group formation and

video group matching

techniques to enhance the

accurateness of human

detection within a specified

timeframe

Alleviate the congestion and delays

experience by traditional multimedia IoT

systems, which are often limited by

bandwidth constraints, however, the study did

not consider latency between edge and IoT

devices.

Wang,

H., et

al.[54]

2017 In this work, the HealthEdge

task scheduling method is

proposed.

The proposed algorithm evaluates whether a

job should be executed in a local device or a

remote cloud based on the acquired data on

the human health state and attempts to

decrease the overall processing time of each

task as much as feasible. However, data

security is not considered in the HealthEdge

framework.

He, Q., et

al.[48]

2019 EUAGame, a game-theoretic

approach that formulates the

(EUA) problem as a potential

game

This study proposes the EUAGame approach

to solve the Edge User Allocation (EUA)

issue from the perspective of application

sellers in the edge environment but this

methodology faces reliability problems.

Zhang,

T., et

al.[50]

2019 (MEC) framework tailored

for unmanned aerial vehicles

(UAVs)

Aimed at facilitating the execution of

computing tasks that are time-critical for

terminal IoT devices within a restricted

period. However, Higher tasks execution time

Chen, M.

and Y.

Hao [53]

2020 Mixed integer non-linear

program

Propose for work offloading to an edge cloud

or local processing. However, the mixed

integer non-linear program continued from

the old traditional methods

Yang, L.,

et al.[51]

2020 UAV-assisted MEC system

that controls differential

evolution (DE)

To determine close-optimal positions of

UAVs for task offloading in IoT devices But

the system was more costly.

19

Chen, Z.

and X.

Wang [1]

2020 DDPG algorithm This study reduced the long-run average

computational cost in terms of cache delay

per user and power consumption by using the

MEC system. However, the system did not

allocate resources to solve the high latency

issue.

Naouri,

A., et

al.[46]

2021 Framework named DCC ,

which consists of the device

layer, cloud layer and

cloudlet layer

In this study, task dependencies and user

mobility were taken into account as they

assessed the issue of distributing tasks and

resources to several tasks of a single

application inside a DCC context. However,

Higher task execution time.

Liao, L.,

et al.[71]

2023 The double reinforcement

learning computation

offloading (DRLCO)

algorithm

They took power consumption and task

execution delay as optimization goals for

mobile users in the (MEC) system, but The

study did not take into account the latency

delay between edge devices and IoT devices.

Jin, et

al.[20]

2023 Q-learning This study introduces a network framework

that incorporates a resource allocation

algorithm taking into account factors such, as

(user energy consumption and delay).

However, when it comes to learning tasks that

require several actions, the storage and

computational resources at hand may not be

sufficient which could ultimately result in

ineffective learning results.

Cui, et

al.[72]

2023 DQN This study proposed designing a strategy in

environments to reduce latency by saving

computing, storage, and resource allocation,

However, the strategy was applicable only

when discrete, low-dimensional work

environments were provided. The edge

computing environment is considered a

continuous, high-dimensional environment

that requires continuous actions.

To provide an overview of the related studies and the proposed work, we present Table

2, which summarizes the key offerings and evaluations of these studies.

2.4. RESOURCE ALLOCATION FOR EDGE COMPUTING

As the economy continues to thrive and technology advances, the number of devices

is being seamlessly incorporated into people's lives. These gadgets have attracted

attention from sectors, such as academia, industry, and government sparking a great

deal of research interest. Al Ali and his team developed a solution, for managing

energy in homes[73]. Their goal was to improve customer satisfaction by using data

20

analytics and business intelligence. On the other hand, Wang and his colleagues

proposed a method for scheduling tasks in smart homes and healthcare settings

specifically focusing on critical situations involving elderly individuals or patients.

Their approach relies on edge computing strategies that prioritize real-time

considerations. Procopiou and his team developed a detection algorithm that is

specifically designed for devices[74]. This algorithm uses chaos prediction and chaos

theory where the Chaos Algorithm (CA) detects Flooding and distributed denial of

service (DDoS) attacks. Its motivation is to establish an organization climate for home

frameworks driven by IoT innovation. His associates proposed an IoT-based home

security checking framework to further develop execution by lessening both the bogus

positive rate and organization dormancy contrasted with customary security

frameworks [75]. Two exploration strategies are presently being investigated to

resolve the issue of asset assignment for edge computing without dependence on cloud

communities. For example: In their work, they exhibited the significance of sifting

through edge hubs to accomplish ideal asset portion and work with relocation. They

expected that all clients approach edge servers situated close to figuring areas of

interest and afterward, presented a Markov decision process structure to disseminate

errands and assets. They likewise proposed an index-based allocation method to work

on intricacy and limit correspondence above. At last, this approach permits every client

to find the edge server bringing about diminished energy utilization and idleness. From

the perspective of the edge node, a review was directed to look at how the size of a

cluster (which alludes to the quantity of edge hubs completing errands) influences both

help dormancy and energy utilization of these hubs. Their discoveries uncovered that

essentially; expanding the quantity of edge hubs doesn't be guaranteed to prompt a

reduction in execution idleness. In situations where the time it takes for information

transmission is longer than the handling time, the help dormancy can increment at

these edge hubs greatly. Subsequently, how well the framework performs depends

altogether on the techniques utilized in building clusters of edge hubs and choosing

the suitable hubs. To evaluate the effect of cluster techniques on the properties of edge

hub groups (like size, idleness, and energy utilization), Queis and collaborators

acquainted three methodologies to clustering. These techniques based on upgrading

administration dormancy, limiting energy utilization in the clusters, and lessening

energy use in hubs inside those groups. Li and his group fostered a heap adjusting

21

framework called self-similarity-based load balancing (SSLB) explicitly intended for

fog registering environments [76]. They zeroed in on upgrading applications running

on fog foundation. They likewise presented an edge strategy and algorithm to

guarantee the proficiency of SSLB. In another review, they proposed a two-stage way

to deal with oversee client task planning and asset portion for nodes [77]. The

underlying stage involves allocating resources locally where each edge node assigns

its resources to users nearby following predefined scheduling guidelines. The ensuing

stage involves framing bunches of edge hubs for clients who didn't get figure assets in

the underlying designation. This study [78] introduced a two-tier resource scheduling

framework, including asset coordination among different fog clusters as well as asset

the executives among fog hubs inside a similar fog cluster. Furthermore, they

recommended that there is a convergence between the edge layer and the terminal layer

that the cell phones in these covering regions demand fog assets as well as give assets.

His group [79] introduced a cloud asset algorithm that uses a Markov expectation

model. The motivation behind this algorithm is to handle issues connected with task

planning and burden adjusting when cloud administration hubs experience

disappointments. It includes assessing hub responsibility, choosing missions in

addition to hubs for relocation, and settling on the migration way. The primary

objective is to work on the reliability of cloud administrations. In their study, they

spotted on enhancing energy effectiveness while likewise considering dormancy

execution [80]. Their model considered energy utilization and inactivity during the

execution in addition to information transmission stages including gadgets, fog hubs,

and cloud servers’ frameworks. A review, by [81] fostered a model that considered

variables like utilization, idleness, and installment costs in different fog registering

networks. They utilized queueing hypothesis and activities examination to address the

objective enhancement issue connected with hubs and clients. In their exploration, they

fostered a real-time traffic management unloading system within an Internet of

Vehicles (IoV) framework that utilizes fog nodes [82]. This advancement extends

distributed computing by utilizing moving vehicles as fog hubs. In the field of

organization asset designation research, they used a cloud resource optimization model

for clients [83]. They utilized a two-stage enhancement way to deal with propose an

asset distribution methodology for clients in a mobile cloud climate. During this stage

the primary goal is to assist mobile cloud clients with making the most advantage of

22

their assets while thinking about cost and energy limitations. In this stage, mobile

cloud suppliers need to oversee servers while guaranteeing they manage energy use

cutoff points to satisfy the necessities of portable cloud clients. This study [84]

proposed a resource allocation model explicitly intended for administrations with an

emphasis on improving utility. Ultimately, the aim is to maximize network utility by

prioritizing user satisfaction. When it comes to assigning resources for moving

enterprise applications to the cloud this study [85], they developed a function to

optimize transmission time. Their approach focuses on reducing the duration of cloud

migration which ultimately improves user satisfaction and utility. On a note, [86] they

outlined an approach to edge computing resource allocation based on pricing. This

approach primarily discusses how competitive service processes arise from edge nodes

with networking capabilities within a resource allocation framework. Throughout their

explanation, they demonstrate that their framework ensures a distribution of resources

while also achieving Pareto optimization. This aligns with expectations of fairness,

proportionality, and incentives for sharing in the allocation process.

Resource allocations are different for each node and they usually change dynamically

depending on the resources booked by the tasks assigned to that node and the resources

released at the end of the task. The capability of each node is calculated by considering

the resources available to each of them as follows:

𝜏𝐶𝑃𝑈 =
𝑃𝐶𝑃𝑈

𝑃𝑀𝑎𝑥
  ×  100% 𝐶𝑃𝑈 (2.1)

𝜏𝑚𝑖 =
𝑚𝑖

𝑚𝑖𝑀𝑎𝑥
  ×  100% Internal  Storage (2.2)

𝜏𝑚𝑒 =
𝑚𝑒

𝑚𝑒𝑀𝑎𝑥
  × 100% External Storage (2.3)

𝜏𝑗 = (𝜑1 × 𝜏𝐶𝑃𝑈) + (𝜑2 × 𝜏𝑚𝑖) + (𝜑3 × 𝜏𝑚𝑒): ∑ 𝜑 = 1 (2.4)

Where;

𝜏𝑗: capability of a node,

23

PCPU: processing power available within a node,

mi: internal storage available within a node,

me: external storage available within a node,

PMAX: total processing power of a node,

MiMax: total internal storage of a node,

MeMax: total external storage of a node,

ϕ: weight parameter for adjusting the impact degree of resources. Each node's

capabilities change depending on a bunch of stuff. Nodes lose their capability when

they're assigned new tasks. The amount of decrease (1−μ) is based on the ratio of the

resources consumed to the total resources allocated to this node.

𝜏𝑗(𝑡 + 1) = (1 − 𝜇) × 𝜏𝑗(𝑡) (2.5)

where μ is a coefficient for determining the ratio of consumed resources to the total

amount of resources.

The capability of node 𝜏𝑗 increases upon completion of a certain task. The amount of

increase is based on the ratio of released resources that are dedicated to that task.

𝜏𝑗(𝑡 + 1) = (1 + 𝑣) × 𝜏𝑗(𝑡) (2.6)

where v is a coefficient for determining the ratio of the released resources to the total

amount of resources. The measurement of time (from the instant a request is

transmitted to the point at which the first reply to the request is received) is referred to

as response time. This period is comprised of three distinct components: propagation

time, waiting time, and execution time. The maximum deadline serves as a constraint

necessitating that response time remain within this threshold. Hence, the anticipated

duration for a task response time on a node should be shorter than the deadline.

The estimated task execution time (ET) on each node is calculated using the following

equation:

24

𝐸𝑇 =  
𝑇𝐿

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦×𝑐𝑜𝑟𝑒𝑠(𝑇)
 (2.7)

Where,

 TL (task length): length of task T,

Capacity: The rate at which a core can process (MIPS),

Cores(T): Task T's core count

Therefore, the estimated response time in cloud 𝑅𝑇𝑖,𝑗 is defined as the sum of waiting

time and estimated task execution.

𝑅𝑇𝑖,𝑗 = 𝑊𝑇𝑖 + 𝐸𝑇𝑖,𝑗 (2.8)

Where,

 𝑊𝑇𝑖 : represents the waiting time for the task to be allocated,

𝐸𝑇𝑖,𝑗: represents the estimated execution time.

The processing procedure uses the M/M/1 queuing system. In that system, if the access

rate (MIPS) to the fj node is equal to 𝑧𝑓,𝑗 and the processing capacity of the fj node is

equal to 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑓,𝑗, then the expected delay is given as a probability ratio in the

following equation:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑗 =
1

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑓,𝑗−𝑧𝑓,𝑗
 (2.9)

2.5. TASK OFFLOADING

By exploiting parallel computing, An offloading-based algorithm named DDLO for

MEC networks was proposed for Edge computing networks in a previous study [87].

Additionally, it [88] presented another offloading method based on Deep Q-network

(DQN) that aimed to optimize network performance in energy-harvesting mobile edge

computing scenarios. In a similar system configuration, [89] explored an online-based

offloading strategy utilizing DQN for arbitrary task assignment. Numerous

investigations that make use of DQN techniques utilize discretized channel gains as

25

the input state vector. This practice. However, presents difficulties that pertain to the

complexity of the data and the sluggishness of the learning process. The intricacies

become more apparent when high channel quantization accuracy is a prerequisite,

particularly in the context of MEC applications. In addition, the exploratory nature of

DQN in selecting actions at each iteration makes it ill-suited for addressing problems

that involve high-dimensional state spaces [90].

2.6. REINFORCEMENT LEARNING

2.6.1. Key Concepts Reinforcement Learning (RL)

Reinforcement learning (RL) has emerged as a prominent domain within the larger

field of machine learning. Its objective is to explore the mechanisms by which an

independent agent can acquire knowledge and enhance its decision-making abilities in

a specific environment such as the realm of edge computing. The underlying

mechanism behind RL involves a trial-and-error approach, as depicted in Figure 2.1,

whereby the agent executes actions and evaluates their corresponding outcomes. The

RL framework is predicated on the agent's ability to leverage its current state

observations to make informed decisions. In edge computing, an agent's engagement

with the environment yields a corresponding reward that can either be affirmative or

adverse. Moreover, the agent obtains updated data concerning the current state of the

environment. As a result, the agent proceeds to make incremental decisions with the

primary aim of maximizing the cumulative rewards. The framework which accounts

for the non-deterministic qualities of the environment, as well as the fundamental

principle of causality, makes it relevant to a diverse array of artificial intelligence (AI)

predicaments [91]. One of the most significant aspects of RL is that the agent can learn

without any prior knowledge of optimal behavior. This permits the agent to learn using

a trial-and-error approach which facilitates effective and efficient learning.

26

Figure 2.1. framework of reinforcement learning [92].

In contrast to dynamic programming, the optimal behavior in RL necessitates a

thorough comprehension of the environment. The agent learns suitable behaviors

through iterative interactions with the environment. One of the main obstacles in RL

is the exploration/exploitation tradeoff which necessitates a balance between utilizing

experience and exploring novel possibilities while maximizing rewards [91].

The stochastic control process can be used to model RL as a discrete-time event. A

constantly analyzing agent in edge computing determines whether the environment is

perceived as s(t) at every time step t. The agent selects the state of the environment

from the variety of possible states after evaluating S. After contemplating the variety

of possible actions, A the agent selects a(t) the appropriate action. The system confers

a reward based on the agent's decision r(t). This is illustrated in Figure 2.1, where the

agent perceives the new state of the environment.

2.6.2. Markov Decision Process

In RL, a mathematical framework referred to as Markov Decision Process (MDP)

underpins the process. The MDP incorporates probabilistic control algorithms with

discrete temporal context as shown by a 5-tuple. The MDP is composed of five

elements: state space, action space, transition probability function, reward function,

and discount factor.

27

• S: This set encompasses all conceivable states that the environment can take.

• A: This set represents the actions that the agent can execute.

• T: S × A × S → [0, 1]. The transition probability matrix maps every state-action

pair at a given time “t” to a probability distribution over the subsequent states

at time “t+1” in the context of edge computing.

• R: S × A × S → R. The reward function denoted as R, generates a numerical

value r(t) that depends on the present state s(t) at time t, the action taken at that

time and the subsequent state s(t+1).

• γ: γ ∈ [0, 1]. Closer to 1 γ is the future rewards which are of higher value does

the agent. A value of γ closer to 1 implies that the agent values future rewards

more highly.

It provides a comprehensive model for understanding the complex process of decision-

making through the use of the MDP. An MDP calculates the resulting reward for an

agent involved in edge computing by taking the current environment and action into

account. It is crucial to note that MDPs adhere to the Markov property which simplifies

the calculation of transition distributions between states. As a result of the application

of this property, the future state of the system is solely governed by the current state

of the system whereas any past states are either ignored or considered irrelevant [93].

Policy Definition: In the realm of decision-making, policy represents a set of principles

or guidelines that a governing entity employs to ascertain its course of action. At each

juncture of this decision-making process, an agent relies upon its established policy to

determine the appropriate actions to take. From a mathematical standpoint, a policy is

denoted as a function. It is often symbolized as “π” which maps the various states

encountered to corresponding actions. There are two principal types of policies:

• A deterministic policy denoted by π: S → A, maps every state S to a

corresponding step or action.

• On the other hand, a stochastic policy is denoted by π: S × A → [0, 1]. It

describes the probability of selecting a particular action in a given state which

is S.

28

A big part of the edge computing decision-making process is the policy π which acts

as a roadmap that connects possible states to the probability distribution of viable

actions. By interacting with the environment, the agent adheres to the policy which

leads to a series of states, actions, and rewards (τ). As it corresponds to the policy π,

the trajectory shows how the agent interacts with the environment.

2.6.3. Reward and Return

The reward function specified in the MDP section holds paramount significance in

assessing desirable behavior. The way edge computing determines advantageous

results is by generating a numerical output based on the current state, the chosen course

of action, and the result. A discount is applied to the cumulative reward from a given

trajectory to figure out the value.

𝐺(𝑡) = ∑ + ∞ 𝑘 = 0 𝛾 𝑘 𝑟(𝑡 + 𝑘 + 1) (2.10)

In previous research [91], RL methods have been extensively used to identify policies

(π ∗) that maximize expected returns. Value functions are utilized in RL to assign a

value to states, actions, or combinations to determine the agent's interest in such states,

actions, or combinations. It is important to note that state-action pairs are valued in

edge computing based on what agents’ predictions will occur from a particular state.

In addition, the agent's future benefits are dependent on the decisions it makes as

discussed in [94]. Consequently, value functions are established based on a particular

policy. Precisely, the state-value function “V π (s)” signifies the value of states under

a given policy π.

This function is approximated by computing the anticipated return that arises from

commencing in state S and persistently pursuing policy π. Formally, this can be

expressed as:

V π (s) = Eπ[G(t)|s(t) = s] (2.11)

29

In the domain of edge computing, evaluating a policy π at a particular point in time t

involves using the indispensable metric of expected return denoted as Eπ. In this

metric, agents are estimated to earn multiple rewards during an episode according to a

given policy π. The Q-function (or action-value function) can also be used in assessing

the value of a state-action pair, in addition to the state-value function. Represented as

Qπ(s, a), the Q-function approximates the anticipated reward for taking action a from

state s and subsequently adhering to policy π:

Formally, this can be expressed as:

𝑄 𝜋 (𝑠, 𝑎) = 𝐸𝜋[𝐺(𝑡)|𝑠(𝑡) = 𝑠, 𝑎(𝑡) = 𝑎] (2.12)

2.6.4. Optimal Value Functions

In the domain of policies dictating value functions, the paramount function that attains

the highest value for all states is acknowledged as the optimal value function and

denoted as V ∗ (s). This function epitomizes the utmost value of V π (s) among all

policies π:

𝑉 ∗ (𝑠) = 𝑚𝑎𝑥 𝜋 𝑉 𝜋 (𝑠) (2.13)

In edge computing, the Q ∗ (s, a) function denotes the action value that yields the

maximum expected reward achievable by the agent when it starts from a given state

“s” and performs a specific action “a” regardless of the policy employed.

𝑄 ∗ (𝑠, 𝑎) = 𝑚𝑎𝑥 𝜋 𝑄 𝜋 (𝑠, 𝑎) (2.14)

Acknowledging that V ∗ (s) represents the maximum anticipated total reward at the

beginning of a state. It is of utmost importance in the context of edge computing.

Accordingly, the greatest value of Q∗ (s, a) available among all feasible actions

corresponds to V ∗ (s). The precise mathematical connection between V ∗ (s) and Q∗

(s, a) can be succinctly expressed as follows:

30

 V ∗ (s) = max a Q ∗ (s, a) (2.15)

2.6.5. Optimal Policy

In edge computing, the association between Q∗ (s, a) and π ∗ is of critical importance.

Specifically, Q∗ (s, a) indicates the expected rewards that an agent would receive when

selecting an action while always following the optimal policy [95]. A policy designed

to maximize the expected reward from states, on the other hand, selects an action that

maximizes the current reward.

Therefore, if the optimal Q-function Q∗ (s, a) is available, the optimal policy π ∗ (s)

can be computed directly utilizing the equation provided below:

𝜋 ∗ (𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑎 𝑄 ∗ (𝑠, 𝑎) (2.16)

2.6.6. Advantage Functions

In the field of edge computing, the Advantage function holds significant importance

in reinforcement learning (RL) as it aids in assessing the effectiveness of a chosen

action compared to other potential alternatives. The Advantage function is represented

as Aπ(s, a) which is closely associated with a policy π and measures the incremental

progress achieved by selecting action a in state s as opposed to opting for a random

action and adhering to policy π for an extended duration [95]. The mathematical

definition of the Advantage function entails the difference between the Q-function and

the V-function:

𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) − 𝑉𝜋 (𝑠) (2.17)

In algorithms such as the Proximal Policy Optimization algorithm, the Advantage

function is of paramount importance. In our research, we aim to tackle the challenging

issue of computation offloading by employing this technique. By employing this

approach, we enhance system performance by optimizing computation resource

allocation between mobile devices and cloud servers. However, it is pertinent to note

31

that our study will only concentrate on resource management aspects and other factors

associated with edge computing will be outside the scope of our research.

2.6.7. Bellman Equations

The Bellman equation constitutes a pivotal component of RL algorithms and holds a

prominent position in the RL literature. Its importance stems from the fact that it

defines the association among the value function of a specific state and that of the

subsequent state. The dissection of the value function into two distinct components

specifically, the instant gratification and the reduced value of the upcoming state has

proven to be an essential building block for the creation of RL algorithms. This

equation not only serves as a fundamental cornerstone for RL algorithm design but

also theatres a critical role in the determination of optimal decision-making policies.

Mathematically:

 𝑉 𝜋 (𝑠) = 𝐸[𝑟(𝑡 + 1) + 𝛾𝑉 𝜋 (𝑠(𝑡 + 1))|𝑠(𝑡) = 𝑠] (2.18)

Similarly for the Q-function:

𝑄 𝜋 (𝑠, 𝑎) = 𝐸[𝑟(𝑡 + 1) + 𝛾𝐸𝑎 ′𝑄 𝜋 (𝑠(𝑡 + 1), 𝑎′)|𝑠(𝑡) = 𝑠, 𝑎(𝑡) = 𝑎 (2.19)

As part of edge computing, optimal value functions can be derived using the Bellman

equation. In this scenario, the approach involves identifying the action that maximizes

the value as opposed to computing the expectation based on a particular policy [95].

𝑉 ∗ (𝑠) = 𝑚𝑎𝑥 𝑎 𝐸[𝑟(𝑡 + 1) + 𝛾𝑉 ∗ (𝑠(𝑡 + 1))|𝑠(𝑡) = 𝑠] (2.20)

𝑄 ∗ (𝑠, 𝑎) = 𝐸[𝑟(𝑡 + 1) + 𝛾 𝑚𝑎𝑥 𝑎 ′ 𝑄 ∗ (𝑠(𝑡 + 1), 𝑎′)|𝑠(𝑡) = 𝑠, 𝑎(𝑡) =

 𝑎] (2.21)

32

The Bellman equation possesses a unique attribute that simplifies the calculation of

the value function. It transforms the value function's computation into a dynamic

programming problem, thereby facilitating the recursive determination of optimal

solutions from less complicated sub-problems in the field of edge computing. This

attribute significantly streamlines the value function computation process, thereby

boosting solution efficiency.

 2.6.8. Off-Policy vs On-Policy Learning

To address the issue of optimizing offloading decisions in edge computing, RL

algorithms have been categorized according to the learning policy employed by the

agent. Off-policy methods permit the agent to use a behavior policy that differs from

the target policy through which the algorithm aims to identify. This approach enables

the agent to behave randomly in the environment, while off-policy methods utilize

experience replay from previous samples collected using various policies to determine

the optimal policy.

Utilizing off-policy methods such as the Q-learning algorithm offers significant

advantages as they promote exploration and enhance sample efficiency without the

necessity of collecting new experiences every time as the policy is always updated.

[91, 96].

Unlike off-policy techniques, on-policy methods aim to improve the agent's policy for

interacting with the environment by aligning the behavior policy with the target policy.

The agent generates samples using its existing policy and then enhances it by

leveraging the collected experience resulting in an updated policy that is used to gather

new data while disregarding previous experience. The same policy is refined

iteratively until it attains an optimal policy in a process referred to as convergence

[96]. An exemplary illustration of an on-policy-based methodology encompasses the

proximal policy optimization algorithm.

33

2.6.9. Model-Based vs Model-Free RL

To facilitate RL, the function representing the environment model predicts state

transitions and associated rewards [95]. MDPs serve as a fundamental framework for

edge computing systems where the environmental model is composed of two integral

components: the transition probability matrix T and the reward function R. These key

elements hold significant importance in the optimal decision-making process within

the realm of edge computing.

Using an environment model for planning purposes enables the agent to anticipate

possible future actions and make informed decisions. This approach falls under the

category of Model-based methods [95]. A notable example of such methods is MuZero

[97] which is a derivative of the renowned AlphaZero [98] algorithm.

Although model-based learning has several advantages, it is primarily challenged by

the fact that the agent must learn the environment model through trial and error. During

interactions with the environment, approximations of the state transition and reward

functions are made. However, when a model is learned to approximate the actual

model, the learned policy can become biased and exhibit suboptimal performance

when applied to the actual model. As a result, discovering the optimal policy can be

hindered. Attaining model-based learning still presents an inherent challenge [95]. On

the other hand, model-free approaches do not depend on a model for policy inference.

Rather, they aim to approximate the policy while neglecting the estimation of

environmental dynamics such as state transitions and reward functions. This

fundamental dichotomy highlights the trade-offs and considerations that underpin the

design of effective machine-learning algorithms.

When considering the potential of leveraging experiences gained from interactions

with the environment, agents have the option to estimate V-functions and deduce a

policy or they may choose to directly estimate the policy. Notably, the latter approach

offers a significant advantage that it can learn an optimal policy without relying on a

model of the environment. As a result, this technique is versatile and can be effectively

employed across a range of environments including novel or unforeseen scenarios

34

[99]. This particular trait has led to the widespread adoption of model-free

reinforcement learning algorithms which have undergone extensive enhancement and

validation in comparison to model-based approaches [95, 99]. Furthermore,

consolidating its position as a reliable and adaptable solution for edge computing

applications.

2.7. DEEP REINFORCEMENT LEARNING

Artificial Deep Neural Networks (DNNs) are used in deep learning (DL) to replicate

the human brain's learning process. With the advantage of DL, the field of machine

learning has achieved unprecedented outcomes and outperformed conventional

machine learning approaches including computer vision, speech recognition, and

language translation [100]. DNNs have demonstrated exceptional performance

surpassing human performance in some cases. The exceptional aptitude of deep neural

networks to comprehend and recognized intricate patterns of features within

voluminous and complex input data especially visual imagery is a remarkable

achievement. The complexity of these networks is inherent in their multiple layers of

abstraction where intricate operations are executed to extract meaningful information

from the data.

 DRL is a variant of reinforcement learning that unifies the methodologies of RL and

Deep Learning (DL). DRL has facilitated remarkable breakthroughs in artificial

intelligence (AI) as demonstrated by the impressive performance of DeepMind's

MuZero algorithm. MuZero has achieved superhuman performance in Chess, Go,

Shogi, and Atari games. Thus, highlighting the potential of DRL algorithms in

enhancing AI capabilities [97].

The utilization of deep learning (DL) techniques has enabled the scalability of (RL) to

previously an unattainable decision-making situation especially those involving high-

dimensional state and action spaces such as raw sensor data from robots, sounds, or

images [101]. RL in edge computing employs deep learning (DL) to model policies or

other value functions as deep neural networks (DNNs) for identifying the optimal

policy. DNNs excel in handling high-dimensional data that is typical of real-world

35

edge computing problems making them well-suited for estimating learned functions.

Additionally, DNNs can learn incrementally as the agent acquires more experience in

the environment. Furthermore, it enhances their effectiveness in edge computing

applications.

 DRL has been effectively implemented to tackle a multitude of problems across

diverse domains. In the realm of robotics, DRL has enabled robots to learn optimal

policies using camera inputs as evidenced [102].

DRL has garnered substantial attention in diverse domains including but not limited to

self-driving vehicles, natural language processing, and healthcare. One notable

application of DRL is in training agents for critical driving skills such as object and

lane detection, trajectory optimization, and control of steering, acceleration, and

braking among other essential tasks [103]. RL techniques have also been applied to

natural language processing (NLP) tasks such as text summarization and question

answering with notable success [104, 105]. In the healthcare sector, RL agents have

been implemented for diverse purposes including but not limited to automated medical

diagnoses, dynamic treatment regimens for chronic diseases, drug discovery, and more

[106].

In addition, there has been a growing trend of utilizing DRL in various engineering

applications including energy optimization [107] and industrial process control [108].

The focus of this study is on multi-access edge computing and aims to investigate the

potential of DRL for resource management within this specific domain.

 2.7.1. Deep Deterministic Policy Gradient (DDPG)

The issue of efficiently managing large, continuous state and action spaces in edge

computing while utilizing a deterministic policy has been addressed through the

introduction of the Deep Deterministic Policy Gradient (DDPG) algorithm. This

innovative algorithm was first presented in [90]. Instead of using probability

distribution for actions, the deterministic nature of DDPG enables the actors to directly

compute actions [109]. This approach builds on the actor-critic technique used in DQN

36

which helps avoid iterative optimization at every step and determines optimal Q-values

in continuous action space cases. DDPG consists of two neural networks: the actor

network π𝜓, also known as the policy network, and the critic network Qθ. Both of

which have specific network parameters represented by 𝜓 and θ [110].

The π𝜓 actor-network is responsible for planning a state to an action. The actor is

deterministic taking the state as an input and providing the action as an output. An

action's Q-value is calculated by mapping the state with the action (a pair of states and

actions) of the critic network. To ensure stable learning, DDPG employs a replay

buffer and target network similar to DQN. However, it updates the target networks

gradually and softly by adjusting the soft target network weights to match the learned

network weights [111]. In conclusion, DDPG combines two approaches DQN and

deterministic policy gradient to enable the effective learning of continuous actions.

2.8. CHALLENGES

Employing RL to facilitate offloading decisions in edge computing holds immense

potential for optimizing the allocation of computing resources and enhancing system

performance. The reviewed studies in this literature survey have exhibited the efficacy

of RL algorithms in optimizing offloading decisions leading to substantial

improvements in system performance.

37

PART 3

METHODOLOGY

This research introduces an innovative methodology for dynamic task offloading

decisions with the primary objective of minimizing the average task completion time.

The proposed approach is designed to ascertain the optimal allocation of

computational resources within the edge computing environment for specific

scenarios. The chapter commences by elucidating the system model, delineating

various factors influencing task completion duration. Each factor is systematically

expounded upon, and the decision-making process is meticulously formulated.

Aligned with the system model, the recommended decision mechanism employs the

Deep Deterministic Policy Gradient (DDPG) algorithm. To assess the effectiveness of

the proposed approach, a series of experiments are conducted through the simulation

of the system model.

3.1. RESEARCH MODEL

This study centers on a system architecture encompassing an Internet of Things (IoT)

edge-IoT user framework, characterized by multiple IoT devices and edge servers, as

illustrated in Figure 3.1. The system is organized into three tiers, with IoT devices

occupying the lower layer and edge servers positioned at the upper layer, functioning

within a Wi-Fi network. In the context of a fixed-location IoT device, the set of devices

is denoted as I = [1, 2, ... I], where each device is assigned a fixed position. Our

research hypothesis posits that inherent limitations in resources such as computational

power, storage, and battery capacity impede IoT devices from autonomously executing

computational tasks. Moreover, even if executed, these tasks may incur significant

latency due to the limited resources, thereby presenting critical issues in time-sensitive

communication scenarios [112]. To address this concern, the current research proposes

offloading all tasks generated by IoT devices to multiple edge servers with superior

38

performance. This research overlooks the concept of local processing on IoT devices

and presupposes that every device has the capacity to produce tasks solicitation

simultaneously.

Figure 3.1. System Architecture [113].

Upon initiation, the assignment is structured and programmed for processing at the

edge server, employing the offloading resolution algorithm executed at the edge.

Following the execution of the mission, IoT devices can retrieve the results from the

edge server.

3.1.1. Environment of IoT-Edge Computing

• Navigation data, sourced from the CRAWDAD dataset, has been amassed by

users of IoT devices, which subsequently offload tasks to avail computational

services from the edge server. Subsequent to the processing of the requested

task, users receive the processed task from the edge server and proceed to

offload another new task to the edge server.

• When an IoT device submits a task request from the edge, the edge allocates

computational resources to process the task, functioning at a rate of (6.3 * 1e7

bytes/sec). This allocation encompasses computing power, including CPUs,

39

memory, GPUs, and storage within the system. These resources are

instrumental in executing computations, performing tasks, and processing data.

The system edge server accommodates a maximum number of concurrent

users, ensuring an equitable and efficient distribution of computing resources

such as processing power and memory.

• Task migration to an alternative edge server becomes viable under specific

circumstances, such as when a designated edge server faces impediments in

task completion or if relocation proves to be more efficient on another server.

The migration speed is, however, capped at 1e9 bytes per second, constrained

by available bandwidth. Dynamic adjustments in job distribution among edge

servers, constrained by bandwidth limitations, are implemented to optimize

resource utilization and enhance overall system performance.

• The task offloading process, initiated when a task is requested from an IoT

device or a mobile user, involves sequential steps:

a. Step 1: Commence the offloading of a task to an edge server.

b. Step 2: The edge server receives the requested task (2.7 * 1e4 bytes), where

the value "2.7 * 1e4 bytes" denotes the size of the data being transmitted.

c. Step 3: The requested task is processed (1.08 * 1e6 bytes), with "1.08 * 1e6

bytes" representing the size of the data produced as a result of task

processing.

d. Step 4: The mobile user or IoT device imminently receives the requested

task (96 bytes), with "96" indicating the size of the data being transmitted

back.

e. Step 5: Disconnect (default).

f. Step 6: The requested task has been transferred or migrated to another edge

server, signifying the relocation of the initially offloaded task for

processing. This may occur if the initial edge server encounters difficulties

in successful task completion or if load balancing techniques necessitate

task redistribution.

40

3.1.2. Task Offloading Model

This section delves into the assessment of the task offloading model from the

perspective of an edge server, considering processing, queueing, and transmission

delays. Consistent with the model proposed by Mao et al. (2017), the computation task

requested by the i-th IoT device is represented as a tuple, Ai = [Li , Li ′ , Ci], where Li

denotes the bits required to specify the size of the input-data, Li′ represents the bits

needed to describe the task's output, and Ci indicates the number of CPU cycles

necessary to execute the task. The definitions of the terms utilized in this study are

elucidated in Table 3.1.

Table 3.1. Definitions of Terms.

3.1.2.1. Edge Server

Assuming that we are addressing an Internet of Things (IoT) device denoted as "i," it

can be observed that the edge server assigns a computation task to it with a specific

capacity expressed in terms of "𝑓𝑖
𝑒𝑠" cycles per second. The delay incurred during the

execution of this task at the edge server can be calculated by aggregating the total

computation delay, which can be mathematically expressed as follows:

Terms Definition

�̅� 𝑡 𝑒𝑠 The capacity required by the edge to process all tasks queued at the

edge in time 𝑡

𝐹𝑡 𝑒𝑠 At time t, the current edge capacity is available

Fi 𝑒𝑠 Allocation of computing capacity at the edge to IoT devices

𝐿𝑖 Input-data size for IoT device 𝑖 task definition

𝐶𝑖 IoT device 𝑖 𝑓𝑖 compute task required number of CPU cycle

 𝐼 Defining the task of an IoT device based on its input data size in bits

𝑁𝑡 ′𝑒𝑠

Currently, there are no unfinished tasks on the edge 𝑡

𝐿𝑖 ′
IoT device 𝑖 output-data size is defined by the number of bits in the

task

𝑁𝑡 𝑒𝑠 At the time, how many tasks have been completed in the edge 𝑡

𝑇𝑖 𝑒𝑠 IoT device 𝑖 processing task at edge - computation delay

𝑊𝑖 𝑒𝑠 There is a queueing delay until a task is retrieved at the edge for IoT

device 𝑖
𝑄 𝑒𝑠 Processing queue at edge

41

𝑇𝑖
𝑒𝑠 =

𝐶𝑖

𝑓𝑖
𝑒𝑠 . (3.1)

Upon arrival at the edge server, the designated task is placed in the edge processing

queue, denoted as 𝑄𝑒𝑠. Operating on a first-in, first-out processing model, this queue

employs a discernment mechanism to identify the suitable processing destination. It is

presumed, in accordance with this premise, that the queue consistently monitors the

number of outstanding requests. In accordance with [37] proposed model, the retrieval

time for task i in the edge queue 𝑄𝑒𝑠 can be determined by calculating 𝑊𝑖
𝑒𝑠, where

there are i tasks in the queue. This can be achieved using the following equation:

𝑊𝑖
𝑒𝑠 = ∑ 𝑇𝑛

𝑒𝑠𝑖−1
𝑛=1 (3.2)

The total delay for an IoT device i at the edge server is a combination of the processing

delay and the queuing delay, represented by {𝑇𝑖
𝑒𝑠 , 𝑊𝑖

𝑒𝑠}.

3.1.3 Problem Formulation

The focal point of this investigation revolves around the intricate challenge of

minimizing task completion time when employing IoT devices with edge computing

capabilities. A notable constraint emerges when the singular edge server is congested,

impeding the attainment of minimal completion times for IoT devices. This challenge

emanates from the inherent limitation of the solitary edge server, which possesses

finite resources, and the surge in offloading requests adversely affects task completion

time, consequently depriving IoT devices of achieving minimal completion durations.

To surmount this extant obstacle, a pragmatic strategy involves the distribution of a

subset of designated tasks, allocating them for processing across both the singular and

multiple edge servers. This strategic allocation aims to streamline the offloading

process, thereby enhancing overall system performance. The principal objective of this

study is to devise a judicious decision-making mechanism for offloading, underpinned

by the Deep Deterministic Policy Gradient (DDPG) algorithm. This mechanism

optimizes the task offloading ratio from IoT devices to the multitude of edge servers.

42

The proposed approach constitutes an innovative departure from conventional

computation offloading techniques. The paramount goal is the reduction of the average

total duration of task completion.

3.2. OFFLOADING DECISION MECHANISM

In this segment, we present our approach to addressing the issue delineated in the

preceding section, utilizing the DDPG algorithm as our offloading decision

mechanism. In this study, we introduce our method that incorporates different factors

with the aim of achieving peak efficiency, including computation delay, transmission

delay, and queueing delay. Our approach employs a decision-making mechanism,

which is developed using the conventional framework of RL as expounded by [114]

and relies on a MDP as the underlying model.

3.2.1. Deep Deterministic Policy Gradient (DDPG)

Figure 3. 2. Dynamic task offloading mechanism based on DDPG [1].

The DDPG algorithm, introduced in this study [90], represents an evolved iteration of

the Deep Q-Network (DQN), incorporating an actor-critic methodology. Addressing

the intricacies associated with expansive state and action spaces in RL, the (DDPG)

algorithm emerges as a strategic solution by employing a deterministic policy. This

obviates the need for iterative optimization to acquire optimal Q-values at each time

43

step, as the algorithm progressively refines the values of state-action pairs,

consequently enhancing the learning agent's behavior. The discrete nature of

ascertaining the feasibility of task migration from IoT devices to the edge is distinct

from the continuous resource allocation problem. For the optimization of (IoT) tasks,

our approach leverages the DDPG algorithm, facilitating the offloading decision-

making process from IoT gadgets to multiple edge servers. Notably, the algorithm's

capacity to update model weights at each step facilitates rapid adaptation to a dynamic

environment, rendering the DDPG algorithm instrumental in efficiently allocating

computational resources.

Each time slot necessitates a decision on whether to offload tasks in chronological

order, given the chronological ordering of task arrivals. According to the DDPG

algorithm, the action at, state St, and reward Rt are all determined based on time t,

accomplished through the deployment of (RL) agent on the edge server. The DDPG

algorithm, as depicted in Figure 3.2, guides the decision-making process for task

offloading. As discussed in Chapter 2.3.2, the DDPG algorithm employs both actor

and critic neural networks. The actor network receives state information, and the actor

network outputs action information. The critic network, utilizing the state and action

as inputs, estimates their values. Subsequently, the environment acquires the new state

St+1 and reward Rt from the actor network when the actor network initiates an action

At (specific task offloading decision). The state St+1 is updated through this process,

serving as the environment's environmental state. In the critic network, the reward

function imparts the optimal state value to the agent, influencing its behavior. The

actor network, informed by feedback from the critic network, enhances its

performance in the realm of policy improvement. This feedback is contingent upon the

Q-value or reward associated with a specific action. Our study contributes to this

enhancement by introducing a novel policy gradient and a fresh Temporal Difference

(TD) metric, quantifying the discrepancy between projected and realized rewards. The

intricacies of the state space, action space, and reward function are comprehensively

elucidated in this report, along with a detailed exposition of the mechanisms

underlying our proposed methodology.

44

3.2.1.1. State Space

The state space St at a given time t is intricately determined by the present state of both

IoT gadgets and the edge server. The edge server state encompasses various factors,

including the available computing resources for each edge server, the migration

bandwidth between edge servers, the offloading goal of each mobile user or IoT

device, and the location of each mobile user. Formalizing this, the state space St at a

given time t is defined as:

𝑆𝑡 = [𝐹𝑡
𝑒𝑠, F̅𝑡

𝑒𝑠
, 𝑁𝑡

𝑒𝑠 , N′𝑡
𝑒𝑠] . (3.3)

where the server's available capacity at time 𝐹𝑡
𝑒𝑠, the required capacity to process all

tasks in the edge queue at time F̅𝑡
𝑒𝑠

, the number of tasks completed on the edge server

at time 𝑁𝑡
𝑒𝑠, and the number of tasks that remain unfinished at time N′𝑡

𝑒𝑠.

3.2.1.2. Action Space

Within the decision-making framework for agents, a critical decision arises at time t

within the action space At. This encompasses the execution of all computations at the

edge, with the following components:

𝐴𝑡 = [∑ 𝑇𝑛
𝑒𝑠𝑖

𝑛=1 , 𝛼] (3.4)

The indicator α within the action space represents the computational power required

for tasks offloaded from IoT gadgets to edge servers.

3.2.1.3. Reward Function

The reward function, formulated to quantify the immediate reward for undertaking an

action, is expressed as:

Rt = R(St, At, S{t+1}) (3.5)

45

The 'Reward (Rt)' is a function denoted as 'Reward function (R(St, At, S{t+1}))'

measuring the immediate benefit or cost associated with taking action At while in state

St and transitioning to state S{t+1}. This metric serves as an evaluative tool to gauge

the desirability of an action within a specific state.

3.3. EXPLORATION AND EXPLOITATION

Exploration and exploitation are pivotal concepts in the realm of (RL). The DDPG

algorithm adeptly combines both exploration and exploitation to acquire optimal

policies within continuous action spaces. The algorithm integrates exploration by

introducing noise to the actor's policy during action selection, promoting the

exploration of diverse actions and preventing fixation on suboptimal solutions.

Exploitation, on the other hand, involves utilizing learned knowledge to maximize

expected cumulative rewards. In DDPG, exploitation transpires when the actor selects

actions based on the learned deterministic policy, refined through training to maximize

expected rewards. The actor-critic architecture of DDPG amalgamates both these

facets, with the actor network learning action-selection policies and the critic network

estimating value functions for evaluating actions. This feedback loop informs the actor

about expected rewards, facilitating iterative improvements.

3.4. PROPOSED MODEL ALGORITHM

This study scrutinizes the offloading of tasks and the allocation of computing resources

in the context of (IoT) and edge computing. The selection of the optimal node,

prioritized based on proximity to the user network, and the offloading of tasks, as well

as the allocation of resources, are conducted through the DDPG deep reinforcement

learning algorithm. The proposed model for resource allocation and task offloading,

utilizing the DDPG algorithm, is depicted in Figure 3.3. The procedural steps include

the initialization of networks, prioritizing nodes for IoT users, and iterative updates of

network parameters. The algorithm ensures convergence through continual adaptation

to the dynamic environment and the fulfillment of specific conditions. The

comprehensive elucidation of the proposed model encompasses considerations of state

46

spaces, action spaces, and reward functions, providing a robust foundation for

understanding the intricacies of our innovative methodology.

Figure 0.3. Dynamic decision-making mechanism flowchart for resource allocation

and dynamic task offloading.

3.5. EXPERIMENTS

This section evaluates the effectiveness of the proposed task offloading mechanism in

addressing the previously outlined challenges. Throughout our analysis, we delve into

the intricacies of the system model, the decision-making process for offloading, and

47

pertinent simulations. The implementation utilizes the Python programming language

on an HP ZBook laptop, tailored for (RL) training.

3.5.1. Simulation Settings

 The subject matter revolves around an (IoT) system operating at the edge-user

interface. The network encompasses 10 IoT devices initially, progressively increasing

to 20 and 30, with tasks offloaded to 10 edge servers. Computational resources for

each edge server are capped at (6.3 * 1e7 bytes/sec), indicating a processing capacity

of 63 Mbps. The edge server responsible for providing computational resources to

mobile consumers operates at (6.3 * 1e7 bytes/sec). Tasks can be transferred between

edge servers with a bandwidth constraint of (1e9 byte/sec). The code utilizes the

CRAWDAD dataset hosted by IEEE Dat-aPort to provide relevant information about

the environment, including user navigation patterns.

Table 0.2. The simulation parameters.

3.5.2. Simulation Process

The study employs a training routine with 100 episodes, each mandating 3000 steps

for every task sequence. The environmental conditions reset at the outset of each

episode. At each step, the agent selects an action in accordance with a pre-determined

policy π, updating the environmental status using an array of IoT devices, an edge

server, and multiple edge servers. Post-action selection, the edge server either handles

Parameter Value

Number of IoT devices 10, 20, 30

Number of edges 10

Capacity of the edge server 63 Mbps

Number of episodes 100

Number of steps per episode 3000

Actor network rate 0.001

Critic network rate 0.002

reward discount 0.99

Replay buffer size (memory capacity) 10000

Batch size 64

48

the requests or delegates them to other edge servers if it cannot process the request.

The edge server updates its computation capability and records the number of

completed tasks. The ensuing step involves generating a numerical reward, a new

action is selected, and the cycle resumes.

49

PART 4

RESULTS AND DISCUSSION

In this chapter, we presented a dynamic task offloading decision mechanism based on

the DDPG for optimizing edge tasks and resource allocation in an IoT edge system.

4.1. DISCUSSION

Our simulation results underscore the efficacy of the proposed DDPG-based task

offloading mechanism in optimizing edge computing tasks and resource allocation

within an IoT edge system. The mechanism surpasses baseline strategies, showcasing

more stable convergence, reduced average task completion times, and a heightened

count of successfully completed tasks across various scenarios.

The adaptability and dynamic decision-making process inherent in the DDPG

algorithm render it particularly well-suited for addressing the challenges posed by IoT

edge computing. In environments characterized by resource constraints and dynamic

workloads, our mechanism utilizes the continuous action space of DDPG to

dynamically adjust the task offloading ratio. This adaptive approach optimizes task

completion time and resource utilization.

Furthermore, our mechanism demonstrates a capacity to adapt to evolving conditions,

such as an increasing number of IoT users. It achieves this by intelligently distributing

tasks among edge servers, a crucial aspect for ensuring efficient resource utilization

and minimizing latency in IoT edge computing environments. Our research

significantly contributes to advancing edge computing in IoT, presenting a dynamic

and efficient task offloading mechanism that enhances the responsiveness and

capability of edge systems in handling diverse workloads effectively.

50

4.2. REWARD VARIATION

This segment of the research investigates reward value changes, reflecting an

increasing number of completed tasks during specific intervals in the training process,

each interval representing one episode. The dependent variable, measured on the x-

axis by the number of episodes, and on the y-axis by the cumulative reward obtained

by the agent across all episodes, demonstrates the average reward obtained through

multiple runs of the training process. During initial training stages, the agent explores

various actions to comprehend associated rewards.

.

That is, at each iteration, the average execution time for each task is calculated, so:

• If the average execution time during the current iteration is higher than the

average execution time in the previous iteration, then:

Reward= Reward – N

Where N is the number of tasks in current iteration.

• If the average execution time during the current iteration is less than the

average execution time in the previous iteration, then:

Reward= Reward + N

This analysis focuses on specific scenarios, including 10 user 10 edge, 20 user 10 edge,

30 user 10 edge, and 60 user 10 edge. With increasing training processes, a noticeable

rise in the reward's value is observed in Figures 4.1, 4.2, 4.3, 4.4 and 4.5.

4.3. EVALUATION

We conducted a comprehensive simulation study, comparing our DDPG-based

mechanism to two baseline strategies: QL and DQN algorithms. The results

demonstrated the superiority of our mechanism in terms of stability, average task

51

completion time, and the average count of successfully completed tasks across various

scenarios with varying numbers of IoT users. Illustration and evaluation of algorithm

performance in order to demonstrate the advantages of the proposed algorithm, we

compare its performance with some reinforcement learning algorithms. Each

algorithm encountered the same network change in the simulation. Between every two

changes, the network model was trained or replicated a certain number of times. In the

following figures, orange represents the DDPG algorithm considering user

cooperation, respectively. Blue and green indicate DQN and QL respectively. These

algorithms from deep reinforcement learning are taken for comparison because they

are typical and efficient. After continuous research and promotion, these algorithms

have shown high efficiency and good performance in solving dynamic optimization

problems [20] [72].

the following figures shows the reward curve of the DDPG algorithm. The abscissa

represents the episode turn, and the ordinate is the average reward of the current turn.

It can be seen that DDPG can realize a rapid increase in rewards and eventually

converge on a stable result; thus, this algorithm is effective.

In addition, the results showed the effectiveness of DDPG as the number of users

increased.

Figure 4.1. 10 edge 10 users.

52

In this changing number of users, DDPG has excelled and demonstrated efficiency by

achieving an average of 560 units while QL and DQN lag behind at 500 units each.

The reason DDPG excels in this scenario is because it returns to handling effective

control and policies. With fewer users, DDPG was able to adjust and release it as a

higher system requirement, reducing it.

Figure 0.2. 10 edge 20 users.

As the number of users increased to 20, the complexity of continuous control

increased. But DDPG continued to shine, recording around 1,050 units, while QL and

DQN struggled slightly and recorded around 1,000 units each.

DDPG's ability to adapt and fine-tune policies remains its main advantage. He was

able to navigate increasing complexity and fine-tune its policy, achieving superior

performance compared to other algorithms.

53

Figure 0.3. 10 edge 30 users.

As the number of users increased to 30, the challenges in continuous control escalated.

But DDPG once again managed to shine, recording an average delay of around 1,540

units. Conversely, QL and DQN had difficulty keeping up with the increase and

recorded around 1,500 units each.

DDPG's ability to adapt to increasing complexity and fine-tune policies ensures that it

can withstand challenging edge computing environments. Its continued

outperformance has demonstrated its ability to achieve outstanding performance in

scenarios that require precise and constant control.

54

Figure 4.4. 10 edge 40 users.

Figure 4.5. 10 edge 70 users.

In the subsequent figures 4.4 and 4.5, we increase the number of IoT users in our

network to 40 and 70 respectively. Notably, our proposed algorithm consistently

outperforms QL and DQN algorithms under these conditions.

55

Table 4.1 shows the use of a number of Internet of Things users in order to observe

the extent of the superiority of our proposed algorithm in terms of obtaining

cumulative reward units in the shortest time compared to the QL and DQN algorithms.

Table 4.1. Effectiveness Between Three Algorithms.

Number of users DDPG QL DQN

10 56 units 500 units 500 units

20 1050 units 1000 units 1000 units

30 1450 units 1500 units 1500 units

40 2060 units 2000 units 2000 units

70 3575 units 3500 units 3500 units

TIME 23% 10% 20%

4.4. TASKS OFFLOADING RESULTS

To gain insight into our DDPG-based mechanism's decision-making process, we

analysed the task offloading ratio employed in different scenarios. Our analysis reveals

that our DDPG-based mechanism dynamically adjusts the task offloading ratio based

on the number of IoT users and system conditions. In scenarios with a higher number

of IoT users, the mechanism tends to allocate a greater proportion of tasks to the server,

optimizing task completion time. Conversely, in scenarios with fewer IoT users, the

mechanism relies more on edge processing, minimizing latency. This adaptive

approach ensures optimal task offloading under varying circumstances, enhancing the

overall efficiency of the IoT edge system.

56

Figure 4.6. 10 user 10 edge.

We note from Figure 4. the increase in the value of the reward with the progression of

the number of iterations, and this means that the average execution time for the tasks

arrived during this period decreases, and we also note that this improvement in the

value of the reward is during a period of only100 iterations, and this indicates that the

proposed methodology learns very quickly and during the number of iterations Little

compared to other reinforcement learning methods that need a large number of

iterations during the training phase until reaching the optimal solution for the desired

goal. Reducing the number of iterations in the training phase is very beneficial for

CPUs as it avoids CPU fatigue and exhaustion.

Figure 4.7. 20 user 10 edge.

57

We note from Figure 4.7 that with increasing the number of users to 20, the proposed

methodology maintained its ability in terms of learning and maximizing the value of

the reward during a few iterations, as in Figure 4.6, but here the value of the reward

decreases compared to the previous Figure 4.6, and the reason for this is due to the fact

that increasing the number of users leads to an increase in the load and therefore an

increase in the number of tasks to be performed.

Figure 4.8. 30 user 10 edge.

The same applies to Figure 4.8, where the number of users was increased to 30 while

maintaining the number of iterations during the training phase. We also notice the

increase in the value of the reward, but with a lower value than Figure 4.7, due to the

increase in the number of tasks to be performed.

4.5. VARIANCE IN EXPLORATION

Within the realm of reinforcement learning (RL), specifically concerning (DDPG)

algorithm, the concept of "variance in exploration" involves the deliberate introduction

of randomness or uncertainty into the exploration process. This strategic incorporation

aims to motivate the RL agent to explore diverse actions and states within its

environment. Exploration holds significant importance in RL, serving as a means for

58

the agent to uncover near-optimal strategies by experimenting with various actions and

assimilating knowledge from their outcomes. The relevance of variance in exploration

becomes pronounced when confronted with action spaces housing a multitude of

potential actions.

In RL algorithms, including DDPG, a policy is employed, indicating that for a given

state, the objective is to produce a specific action without introducing variability.

However, effective exploration of the action space demands the introduction of a

certain degree of randomness. In the case of DDPG, this exploration is often achieved

by introducing noise to the actor network's action output. This injected noise

introduces variability in the selected actions, enabling the agent to traverse diverse

regions within the action space. Various methods exist to introduce exploration

variance in DDPG, with one common approach involving the utilization of an

Ornstein-Uhlenbeck Process. This process generates correlated noise, aiding the

agent's exploration while maintaining a certain level of consistency over time.

The introduction of noise to the action output serves as a method to introduce

randomness, and the degree of noise can be regulated by adjusting its deviation. The

level of variance during exploration plays a pivotal role in determining the balance

between exploring possibilities and exploiting known ones. Striking an optimal

balance in the amount of variance utilized for exploration is crucial for the agent to

effectively learn a policy. Excessive variance may impede exploration, making it

challenging for the agent to identify optimal solutions. Conversely, insufficient

variance may lead to exploration causing the agent to become entrenched in

suboptimal policies. Achieving this balance becomes a critical aspect in fine-tuning

DDPG and similar reinforcement learning algorithms, as it significantly influences the

agent's ability to learn and discover optimal policies, especially within continuous

action spaces.

59

Figure 4.9. 10 user 10 edge.

We note from the figure 4.9 that the value of the variance decreases with the increase

in the number of iterations. Therefore, the system learns and adjusts its parameters

until a stable load is reached at iteration 40, and then maintains the stability of the load

during the remaining period. Therefore, the proposed methodology was able to achieve

fairness in the distribution of resources to tasks over a period of time. Ideally, very few

repetitions.

Figure 0.10. 20 user 10 edge.

60

We note from the figure 4.10 that the value of the variance decreases with the increase

in the number of iterations. Therefore, the system learns and adjusts its parameters

until a stable load. As we mentioned earlier, the increase in the number of users leads

to an increase in the number of tasks. Therefore, we notice an increase in the variance

value compared to the previous case when the number of 10 users .

Figure 4.11. 30 user 10 edge.

We notice from the figure 4.11 that the value of the variance decreases with the

increase in the number of iterations. Therefore, the system learns and adjusts its

parameters until a stable load is reached at iteration 40. As we mentioned earlier, the

increase in the number of users leads to an increase in the number of tasks, and

therefore we notice an increase in the value of the contrast compared to the previous

two cases. But we note here that despite the increase in the number of tasks, the

proposed methodology has reached the stage of stability of the load for iteration 40.

The reason for this is that the process of generating tasks is done randomly and

balancing the load is related to the size of the incoming tasks and the requirements of

each task. Therefore, the requirements of the tasks in this scenario are less than In the

previous two scenarios, therefore, the stability stage was reached at iteration 40, and

this confirms the flexibility of the proposed methodology and its ability to deal with

the incoming tasks according to the requirements of each task.

61

We conclude from previous figures 4.9 and 4.10 and 4.11 the reward remains relatively

stable, with the variance remaining around 1.0 for the first few episodes. As training

progresses, the reward variance decreases, indicating that the algorithm is becoming

more stable. The baseline variance also decreases over time, which is a good sign that

the predicted reward is becoming more accurate. Overall, these results suggest that the

RL algorithm is working well and the agent is successfully learning to perform the

task.

4.6. LATENCY

Figure 4.12. Comparison of Three Algorithms for Reducing Response Time in Edge

Computing and User Interaction.

This section provides a comparative examination of the algorithm introduced in this

paper alongside those in references [72] and [20] all under identical conditions, with a

focus on the completion time of the resource allocation strategy task. The initial step

involves the calculation of task completion times for various algorithmic resource

allocation strategies. Figure 4.12 illustrates the average task completion times for

different algorithms across varying numbers of tasks. Upon close inspection of Figure

4.12, it becomes evident that, irrespective of the number of tasks, the algorithm

proposed in this paper exhibits the shortest average task completion time in

comparison to the algorithms presented in references [20] and [72]. Notably, as the

62

number of tasks increases, the growth rate of the average task completion time remains

relatively modest. This observed trend can be attributed to the efficacy of the

computing resource allocation strategy outlined in this paper, which adeptly prioritizes

task migration to IoT devices with the swiftest response times. Contrastingly, reference

[72], utilizing (DQN), introduced edge computing and a comprehensive architecture

in Mobile Edge Computing (MEC). However, it did not yield improvements in the

objective function solution process, resulting in extended solution times. Reference

[20], employing (QL), a deep reinforcement learning algorithm, delved into the general

optimization of computation efficiency. Nevertheless, detailed analyses and

optimizations of time consumption calculation models for local tasks and user tasks

were lacking.

This comparative analysis sheds light on the superior performance of the proposed

algorithm in minimizing average task completion times across diverse task quantities,

emphasizing the effectiveness of the computing resource allocation strategy

introduced in this research.

63

PART 5

CONCLUSION AND FUTURE WORK

In the context of edge-IoT environments, effective task offloading management is

paramount for ensuring timely and optimal task completion. While existing research

has primarily explored individual task offloading strategies, our study introduces a

dynamic mechanism that facilitates collaborative task offloading between IoT users

and edge servers. Our proposed mechanism employs the Deterministic Deep Policy

Gradient (DDPG) algorithm to optimize offloading ratios, minimizing the average task

completion time.

Our experiments, encompassing training iterations and performance metrics, including

reward variation, average task completion time, and the average amount of completed

work, demonstrate the efficacy of our decision mechanism. Utilizing object detection

tasks and distinct neural networks, our comprehensive decision mechanism scheme

exhibits remarkable convergence during training, resulting in significant

improvements in task completion time and the ability to process a greater number of

tasks per second.

As part of future research endeavors, our focus is on further enhancing the efficiency

of our task offloading decision mechanism. This enhancement will involve

considerations such as task prioritization, energy consumption, and the mobility

patterns of IoT devices within our system model. Additionally, expansion of our

system model to accommodate multiple edge servers is planned, as our current model

assumes a configuration of 10 servers.

64

REFERENCES

[1] Z. Chen and X. Wang, "Decentralized computation offloading for multi-user

mobile edge computing: A deep reinforcement learning approach," EURASIP

Journal on Wireless Communications and Networking, vol. 2020, pp. 1-21,

2020.

[2] K. Ashton, "That ‘internet of things’ thing," RFID journal, vol. 22, pp. 97-114,

2009.

[3] K. Xiao, Z. Gao, W. Shi, X. Qiu, Y. Yang, and L. Rui, "EdgeABC: An

architecture for task offloading and resource allocation in the Internet of Things,"

Future Generation Computer Systems, vol. 107, pp. 498-508, 2020.

[4] M. Aazam, S. Zeadally, and K. A. Harras, "Offloading in fog computing for IoT:

Review, enabling technologies, and research opportunities," Future Generation

Computer Systems, vol. 87, pp. 278-289, 2018.

[5] K. Matsui and H. Nishi, "Error correction method considering fog and edge

computing environment," in 2019 IEEE International Conference on Industrial

Cyber Physical Systems (ICPS), 2019, pp. 517-521.

[6] T. Zheng, J. Wan, J. Zhang, and C. Jiang, "Deep reinforcement learning-based

workload scheduling for edge computing," Journal of Cloud Computing, vol. 11,

p. 3, 2022.

[7] K. Sadatdiynov, L. Cui, L. Zhang, J. Z. Huang, S. Salloum, and M. S. Mahmud,

"A review of optimization methods for computation offloading in edge

computing networks," Digital Communications and Networks, 2022.

[8] B. Rababah, T. Alam, and R. Eskicioglu, "The next generation internet of things

architecture towards distributed intelligence: Reviews, applications, and

research challenges," Journal of Telecommunication, Electronic and Computer

Engineering (JTEC), vol. 12, 2020.

[9] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, "Edge intelligence:

Paving the last mile of artificial intelligence with edge computing," Proceedings

of the IEEE, vol. 107, pp. 1738-1762, 2019.

[10] S. Safavat, N. N. Sapavath, and D. B. Rawat, "Recent advances in mobile edge

computing and content caching," Digital Communications and Networks, vol. 6,

pp. 189-194, 2020.

[11] R. U. Rasool, H. F. Ahmad, W. Rafique, A. Qayyum, and J. Qadir, "Security and

privacy of internet of medical things: A contemporary review in the age of

65

surveillance, botnets, and adversarial ML," Journal of Network and Computer

Applications, p. 103332, 2022.

[12] I. T. Christou, N. Kefalakis, J. K. Soldatos, and A.-M. Despotopoulou, "End-to-

end industrial IoT platform for Quality 4.0 applications," Computers in Industry,

vol. 137, p. 103591, 2022.

[13] O. Ali, M. K. Ishak, M. K. L. Bhatti, I. Khan, and K.-I. Kim, "A Comprehensive

Review of Internet of Things: Technology Stack, Middlewares, and Fog/Edge

Computing Interface," Sensors, vol. 22, p. 995, 2022.

[14] P. Chakraborty, R. N. Dizon-Paradis, and S. Bhunia, "ARTS: A Framework for

AI-Rooted IoT System Design Automation," IEEE Embedded Systems Letters,

vol. 14, pp. 151-154, 2022.

[15] N. Sarrafzade, R. Entezari-Maleki, and L. Sousa, "A genetic-based approach for

service placement in fog computing," The Journal of Supercomputing, vol. 78,

pp. 10854-10875, 2022.

[16] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl, et

al., "Videoedge: Processing camera streams using hierarchical clusters," in 2018

IEEE/ACM Symposium on Edge Computing (SEC), 2018, pp. 115-131.

[17] Q. Liang, W. A. Hanafy, A. Ali-Eldin, and P. Shenoy, "Model-driven cluster

resource management for AI workloads in edge clouds," ACM Transactions on

Autonomous and Adaptive Systems, vol. 18, pp. 1-26, 2023.

[18] P. P. Gaikwad, J. P. Gabhane, and S. S. Golait, "A survey based on Smart Homes

system using Internet-of-Things," in 2015 International Conference on

Computation of Power, Energy, Information and Communication (ICCPEIC),

2015, pp. 0330-0335.

[19] K. Moser, J. Harder, and S. G. Koo, "Internet of things in home automation and

energy efficient smart home technologies," in 2014 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), 2014, pp. 1260-1265.

[20] Y. Jin and Z. Chen, "A Fast Resource Allocation Algorithm Based on

Reinforcement Learning in Edge Computing Networks Considering User

Cooperation," Electronics, vol. 12, p. 1459, 2023.

[21] D. C. Nguyen, S. Hosseinalipour, D. J. Love, P. N. Pathirana, and C. G. Brinton,

"Latency optimization for blockchain-empowered federated learning in multi-

server edge computing," IEEE Journal on Selected Areas in Communications,

vol. 40, pp. 3373-3390, 2022.

[22] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, "When deep reinforcement

learning meets federated learning: Intelligent multitimescale resource

management for multiaccess edge computing in 5G ultradense network," IEEE

Internet of Things Journal, vol. 8, pp. 2238-2251, 2020.

66

[23] W.-C. Chiang, Y. Li, J. Shang, and T. L. Urban, "Impact of drone delivery on

sustainability and cost: Realizing the UAV potential through vehicle routing

optimization," Applied energy, vol. 242, pp. 1164-1175, 2019.

[24] F. Song, Z. Ai, H. Zhang, I. You, and S. Li, "Smart collaborative balancing for

dependable network components in cyber-physical systems," IEEE Transactions

on Industrial Informatics, vol. 17, pp. 6916-6924, 2020.

[25] J. Oueis, E. C. Strinati, and S. Barbarossa, "Small cell clustering for efficient

distributed cloud computing," in 2014 IEEE 25th Annual International

Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC),

2014, pp. 1474-1479.

[26] X. Guo, R. Singh, T. Zhao, and Z. Niu, "An index based task assignment policy

for achieving optimal power-delay tradeoff in edge cloud systems," in 2016

IEEE International Conference on Communications (ICC), 2016, pp. 1-7.

[27] M. Babar and M. Sohail Khan, "ScalEdge: A framework for scalable edge

computing in Internet of things–based smart systems," International Journal of

Distributed Sensor Networks, vol. 17, p. 15501477211035332, 2021.

[28] W. Ahmad, A. Rasool, A. R. Javed, T. Baker, and Z. Jalil, "Cyber security in

IoT-based cloud computing: A comprehensive survey," Electronics, vol. 11, p.

16, 2021.

[29] N. Almusallam, A. Alabdulatif, and F. Alarfaj, "Analysis of privacy-preserving

edge computing and Internet of Things models in healthcare domain,"

Computational and Mathematical Methods in Medicine, vol. 2021, 2021.

[30] X. Li, L. Zhao, K. Yu, M. Aloqaily, and Y. Jararweh, "A cooperative resource

allocation model for IoT applications in mobile edge computing," Computer

Communications, vol. 173, pp. 183-191, 2021.

[31] T. A. S. Srinivas, A. D. Donald, I. D. Srihith, D. Anjali, and A. Chandana, "The

Rise of Secure IoT: How Blockchain is Enhancing IoT Security."

[32] Y. He, Y. Wang, C. Qiu, Q. Lin, J. Li, and Z. Ming, "Blockchain-based edge

computing resource allocation in IoT: A deep reinforcement learning approach,"

IEEE Internet of Things Journal, vol. 8, pp. 2226-2237, 2020.

[33] A. Sarah, G. Nencioni, and M. M. I. Khan, "Resource Allocation in Multi-access

Edge Computing for 5G-and-beyond networks," Computer Networks, vol. 227,

p. 109720, 2023.

[34] J. Chen, T. Wu, M. Shi, and W. Jiang, "Porf-ddpg: Learning personalized

autonomous driving behavior with progressively optimized reward function,"

Sensors, vol. 20, p. 5626, 2020.

[35] F. Mattern and C. Floerkemeier, "From the Internet of Computers to the Internet

of Things," From active data management to event-based systems and more:

67

Papers in honor of Alejandro Buchmann on the occasion of his 60th birthday,

pp. 242-259, 2010.

[36] S. Nižetić, P. Šolić, D. L.-d.-I. González-De, and L. Patrono, "Internet of Things

(IoT): Opportunities, issues and challenges towards a smart and sustainable

future," Journal of Cleaner Production, vol. 274, p. 122877, 2020.

[37] A. Jaddoa, G. Sakellari, E. Panaousis, G. Loukas, and P. G. Sarigiannidis,

"Dynamic decision support for resource offloading in heterogeneous Internet of

Things environments," Simulation Modelling Practice and Theory, vol. 101, p.

102019, 2020.

[38] P. Mach and Z. Becvar, "Mobile edge computing: A survey on architecture and

computation offloading," IEEE communications surveys & tutorials, vol. 19, pp.

1628-1656, 2017.

[39] G. Premsankar, M. Di Francesco, and T. Taleb, "Edge computing for the Internet

of Things: A case study," IEEE Internet of Things Journal, vol. 5, pp. 1275-

1284, 2018.

[40] T. X. Tran and D. Pompili, "Joint task offloading and resource allocation for

multi-server mobile-edge computing networks," IEEE Transactions on

Vehicular Technology, vol. 68, pp. 856-868, 2018.

[41] B. Pourghebleh, V. Hayyolalam, and A. Aghaei Anvigh, "Service discovery in

the Internet of Things: review of current trends and research challenges,"

Wireless Networks, vol. 26, pp. 5371-5391, 2020.

[42] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos, et al.,

"Task offloading in Edge and Cloud Computing: A survey on mathematical,

artificial intelligence and control theory solutions," Computer Networks, vol.

195, p. 108177, 2021.

[43] S. Hu and G. Li, "Dynamic request scheduling optimization in mobile edge

computing for IoT applications," IEEE Internet of Things Journal, vol. 7, pp.

1426-1437, 2019.

[44] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, "Potentials, trends, and prospects

in edge technologies: Fog, cloudlet, mobile edge, and micro data centers,"

Computer Networks, vol. 130, pp. 94-120, 2018.

[45] Q. You and B. Tang, "Efficient task offloading using particle swarm

optimization algorithm in edge computing for industrial internet of things,"

Journal of Cloud Computing, vol. 10, pp. 1-11, 2021.

[46] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, "A novel framework

for mobile-edge computing by optimizing task offloading," IEEE Internet of

Things Journal, vol. 8, pp. 13065-13076, 2021.

68

[47] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. Shen, "Energy efficient

dynamic offloading in mobile edge computing for internet of things," IEEE

Transactions on Cloud Computing, vol. 9, pp. 1050-1060, 2019.

[48] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, et al., "A game-theoretical

approach for user allocation in edge computing environment," IEEE

Transactions on Parallel and Distributed Systems, vol. 31, pp. 515-529, 2019.

[49] C. Long, Y. Cao, T. Jiang, and Q. Zhang, "Edge computing framework for

cooperative video processing in multimedia IoT systems," IEEE Transactions

on Multimedia, vol. 20, pp. 1126-1139, 2017.

[50] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, "Joint computation and

communication design for UAV-assisted mobile edge computing in IoT," IEEE

Transactions on Industrial Informatics, vol. 16, pp. 5505-5516, 2019.

[51] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, "Multi-UAV-

enabled load-balance mobile-edge computing for IoT networks," IEEE Internet

of Things Journal, vol. 7, pp. 6898-6908, 2020.

[52] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang, "Edge computing

in IoT-based manufacturing," IEEE Communications Magazine, vol. 56, pp.

103-109, 2018.

[53] M. Chen and Y. Hao, "Task offloading for mobile edge computing in software

defined ultra-dense network," IEEE Journal on Selected Areas in

Communications, vol. 36, pp. 587-597, 2018.

[54] H. Wang, J. Gong, Y. Zhuang, H. Shen, and J. Lach, "Healthedge: Task

scheduling for edge computing with health emergency and human behavior

consideration in smart homes," in 2017 IEEE International Conference on Big

Data (Big Data), 2017, pp. 1213-1222.

[55] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,

"Dynamic task offloading and scheduling for low-latency IoT services in multi-

access edge computing," IEEE Journal on Selected Areas in Communications,

vol. 37, pp. 668-682, 2019.

[56] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang, "Joint computation offloading

and multiuser scheduling using approximate dynamic programming in NB-IoT

edge computing system," IEEE Internet of Things Journal, vol. 6, pp. 5345-

5362, 2019.

[57] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, "Joint computation

offloading and scheduling optimization of IoT applications in fog networks,"

IEEE Transactions on Network Science and Engineering, vol. 7, pp. 3266-3278,

2020.

[58] J. Jiang, Z. Li, Y. Tian, and N. Al-Nabhan, "A review of techniques and methods

for IoT applications in collaborative cloud-fog environment," Security and

Communication Networks, vol. 2020, pp. 1-15, 2020.

69

[59] J. Ren, G. Yu, Y. He, and G. Y. Li, "Collaborative cloud and edge computing

for latency minimization," IEEE Transactions on Vehicular Technology, vol. 68,

pp. 5031-5044, 2019.

[60] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, "iFogSim: A toolkit

for modeling and simulation of resource management techniques in the Internet

of Things, Edge and Fog computing environments," Software: Practice and

Experience, vol. 47, pp. 1275-1296, 2017.

[61] M. Sharma, R. Kumar, and A. Jain, "A QoS-Enabled Load Balancing Approach

for Cloud Computing Environment Join Minimum Loaded Queue (JMLQ),"

International Journal of Grid and High Performance Computing (IJGHPC), vol.

14, pp. 1-19, 2022.

[62] D. Bacciu, A. Micheli, and M. Podda, "Edge-based sequential graph generation

with recurrent neural networks," Neurocomputing, vol. 416, pp. 177-189, 2020.

[63] W. Yu, G. Hou, and J. Li, "Supply chain joint inventory management and cost

optimization based on ant colony algorithm and fuzzy model," Tehnički vjesnik,

vol. 26, pp. 1729-1737, 2019.

[64] X. Xu, R. Mo, F. Dai, W. Lin, S. Wan, and W. Dou, "Dynamic resource

provisioning with fault tolerance for data-intensive meteorological workflows in

cloud," IEEE Transactions on Industrial Informatics, vol. 16, pp. 6172-6181,

2019.

[65] I. Lera, C. Guerrero, and C. Juiz, "Availability-aware service placement policy

in fog computing based on graph partitions," IEEE Internet of Things Journal,

vol. 6, pp. 3641-3651, 2018.

[66] S. Mohmmad, R. Dadi, S. N. Pasha, D. Kothandaraman, Shabana, and R.

Kanakam, "Cost function for energy (CFE) in Fog based IoT networks," in AIP

Conference Proceedings, 2022, p. 020066.

[67] O. Skarlat, V. Karagiannis, T. Rausch, K. Bachmann, and S. Schulte, "A

framework for optimization, service placement, and runtime operation in the

fog," in 2018 IEEE/ACM 11th International Conference on Utility and Cloud

Computing (UCC), 2018, pp. 164-173.

[68] D. B. LD and P. V. Krishna, "Honey bee behavior inspired load balancing of

tasks in cloud computing environments," Applied soft computing, vol. 13, pp.

2292-2303, 2013.

[69] K. Mishra and S. K. Majhi, "A binary Bird Swarm Optimization based load

balancing algorithm for cloud computing environment," Open Computer

Science, vol. 11, pp. 146-160, 2021.

[70] A. Jagannath, J. Jagannath, and T. Melodia, "Redefining wireless

communication for 6G: Signal processing meets deep learning with deep

unfolding," IEEE Transactions on Artificial Intelligence, vol. 2, pp. 528-536,

2021.

70

[71] L. Liao, Y. Lai, F. Yang, and W. Zeng, "Online computation offloading with

double reinforcement learning algorithm in mobile edge computing," Journal of

Parallel and Distributed Computing, vol. 171, pp. 28-39, 2023.

[72] T. Cui, R. Yang, C. Fang, and S. Yu, "Deep Reinforcement Learning-Based

Resource Allocation for Content Distribution in IoT-Edge-Cloud Computing

Environments," Symmetry, vol. 15, p. 217, 2023.

[73] A.-R. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta, and M. AliKarar, "A smart

home energy management system using IoT and big data analytics approach,"

IEEE Transactions on Consumer Electronics, vol. 63, pp. 426-434, 2017.

[74] A. Procopiou, N. Komninos, and C. Douligeris, "ForChaos: Real time

application DDoS detection using forecasting and chaos theory in smart home

IoT network," Wireless Communications and Mobile Computing, vol. 2019,

2019.

[75] X. Wang and J. Li, "Design of Intelligent Home Security Monitoring System

Based on Android," in 2018 2nd IEEE Advanced Information Management,

Communicates, Electronic and Automation Control Conference (IMCEC), 2018,

pp. 2621-2624.

[76] C. Li, H. Zhuang, Q. Wang, and X. Zhou, "SSLB: self-similarity-based load

balancing for large-scale fog computing," Arabian Journal for Science and

Engineering, vol. 43, pp. 7487-7498, 2018.

[77] J. Oueis, E. C. Strinati, and S. Barbarossa, "The fog balancing: Load distribution

for small cell cloud computing," in 2015 IEEE 81st vehicular technology

conference (VTC spring), 2015, pp. 1-6.

[78] Y. Sun, F. Lin, and H. Xu, "Multi-objective optimization of resource scheduling

in fog computing using an improved NSGA-II," Wireless Personal

Communications, vol. 102, pp. 1369-1385, 2018.

[79] P. ZHOU, B. YIN, X.-s. QIU, S.-y. GUO, and L.-m. MENG, "Service reliability

oriented cloud resource scheduling method," ACTA ELECTONICA SINICA, vol.

47, p. 1036, 2019.

[80] Z. Chang, Z. Zhou, T. Ristaniemi, and Z. Niu, "Energy efficient optimization for

computation offloading in fog computing system," in GLOBECOM 2017-2017

IEEE Global Communications Conference, 2017, pp. 1-6.

[81] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, "Multiobjective

optimization for computation offloading in fog computing," IEEE Internet of

Things Journal, vol. 5, pp. 283-294, 2017.

[82] X. Wang, Z. Ning, and L. Wang, "Offloading in Internet of vehicles: A fog-

enabled real-time traffic management system," IEEE Transactions on Industrial

Informatics, vol. 14, pp. 4568-4578, 2018.

71

[83] L. Chunlin and L. LaYuan, "Cost and energy aware service provisioning for

mobile client in cloud computing environment," The Journal of Supercomputing,

vol. 71, pp. 1196-1223, 2015.

[84] S. Li and W. Sun, "A mechanism for resource pricing and fairness in peer-to-

peer networks," Electronic Commerce Research, vol. 16, pp. 425-451, 2016.

[85] S. Li, Y. Zhang, and W. Sun, "Optimal resource allocation model and algorithm

for elastic enterprise applications migration to the cloud," Mathematics, vol. 7,

p. 909, 2019.

[86] D. T. Nguyen, L. B. Le, and V. Bhargava, "Price-based resource allocation for

edge computing: A market equilibrium approach," IEEE Transactions on Cloud

Computing, vol. 9, pp. 302-317, 2018.

[87] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, "Distributed deep

learning-based offloading for mobile edge computing networks," Mobile

networks and applications, pp. 1-8, 2018.

[88] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, "Learning-based

computation offloading for IoT devices with energy harvesting," IEEE

Transactions on Vehicular Technology, vol. 68, pp. 1930-1941, 2019.

[89] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, "Performance

optimization in mobile-edge computing via deep reinforcement learning," in

2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), 2018, pp. 1-6.

[90] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al.,

"Continuous control with deep reinforcement learning," arXiv preprint

arXiv:1509.02971, 2015.

[91] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, "An

introduction to deep reinforcement learning," Foundations and Trends® in

Machine Learning, vol. 11, pp. 219-354, 2018.

[92] https://theaisummer.com/Reinforcement_learning/, "The secrets behind

Reinforcement Learning," accessed 13-6-2023.

[93] A. O. Castaneda, "Deep reinforcement learning variants of multi-agent learning

algorithms," Edinburgh: School of Informatics, University of Edinburgh, 2016.

[94] N. Goyal, G. Tsivgoulis, J. J. Chang, K. Malhotra, A. Pandhi, M. F. Ishfaq, et

al., "Admission neutrophil-to-lymphocyte ratio as a prognostic biomarker of

outcomes in large vessel occlusion strokes," Stroke, vol. 49, pp. 1985-1987,

2018.

[95] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,

"Reinforcement learning with augmented data," Advances in neural information

processing systems, vol. 33, pp. 19884-19895, 2020.

72

[96] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction: MIT

press, 2018.

[97] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, et

al., "Mastering atari, go, chess and shogi by planning with a learned model,"

Nature, vol. 588, pp. 604-609, 2020.

[98] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, et al.,

"Mastering chess and shogi by self-play with a general reinforcement learning

algorithm," arXiv preprint arXiv:1712.01815, 2017.

[99] P. Swazinna, S. Udluft, D. Hein, and T. Runkler, "Comparing model-free and

model-based algorithms for offline reinforcement learning," IFAC-

PapersOnLine, vol. 55, pp. 19-26, 2022.

[100] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, pp. 436-

444, 2015.

[101] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, "A brief

survey of deep reinforcement learning," arXiv preprint arXiv:1708.05866, 2017.

[102] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, "Learning hand-

eye coordination for robotic grasping with deep learning and large-scale data

collection," The International journal of robotics research, vol. 37, pp. 421-436,

2018.

[103] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, et

al., "Deep reinforcement learning for autonomous driving: A survey," IEEE

Transactions on Intelligent Transportation Systems, vol. 23, pp. 4909-4926,

2021.

[104] E. Choi, D. Hewlett, J. Uszkoreit, I. Polosukhin, A. Lacoste, and J. Berant,

"Coarse-to-fine question answering for long documents," in Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), 2017, pp. 209-220.

[105] R. Paulus, C. Xiong, and R. Socher, "A deep reinforced model for abstractive

summarization," arXiv preprint arXiv:1705.04304, 2017.

[106] C. Yu, J. Liu, S. Nemati, and G. Yin, "Reinforcement learning in healthcare: A

survey," ACM Computing Surveys (CSUR), vol. 55, pp. 1-36, 2021.

[107] E. Mocanu, D. C. Mocanu, P. H. Nguyen, A. Liotta, M. E. Webber, M. Gibescu,

et al., "On-line building energy optimization using deep reinforcement learning,"

IEEE transactions on smart grid, vol. 10, pp. 3698-3708, 2018.

[108] R. Nian, J. Liu, and B. Huang, "A review on reinforcement learning: Introduction

and applications in industrial process control," Computers & Chemical

Engineering, vol. 139, p. 106886, 2020.

73

[109] S. Guha, "“Deep Deterministic Policy Gradient(DDPG): Theory and

Implementation," Towar. Data Sci, pp. 1-10, 2020.

[110] G. Matheron, N. Perrin, and O. Sigaud, "The problem with DDPG:

understanding failures in deterministic environments with sparse rewards,"

arXiv preprint arXiv:1911.11679, 2019.

[111] Y. Li, "Deep reinforcement learning: An overview," arXiv preprint

arXiv:1701.07274, 2017.

[112] S. Park, D. Kwon, J. Kim, Y. K. Lee, and S. Cho, "Adaptive real-time offloading

decision-making for mobile edges: deep reinforcement learning framework and

simulation results," Applied Sciences, vol. 10, p. 1663, 2020.

[113] M. Kadhum, S. Manaseer, and A. L. A. Dalhoum, "Cloud-edge network data

processing based on user requirements using modify mapreduce algorithm and

machine learning techniques," International Journal of Advanced Computer

Science and Applications, vol. 10, 2019.

[114] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning vol. 135:

MIT press Cambridge, 1998.

74

RESUME

Fatimah Najeh Abulateef Al-ZUABIDI, her primary and elementary education in Iraq.

She completed her undergraduate studies at Dijlah University College in 2010-2011

Baghdad – Iraq. Then she started her master’s degree in Department of Computer

Engineering at Karabuk University.

