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The continuous proliferation and diversification of Internet of Things (IoT) devices 

have led to the emergence of computationally intensive and time-sensitive 

applications, including but not limited to object detection, smart homes, and smart 

grids. To address the computational limitations of IoT devices, the edge computing 

paradigm offers a solution by offloading resource-intensive tasks from IoT devices to 

more powerful edge nodes. Despite this, the edge computing architecture may 

introduce high latency, which proves unsuitable for IoT devices with constrained 

computing and storage capacities. Efforts have been made to enhance this scenario by 

deploying edge devices in proximity to IoT devices, providing low-latency computing 

resources. However, challenges persist, particularly when the edge server is inundated 

with offloading requests, potentially leading to incomplete task processing within the 

required timeframe. 
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This paper seeks to minimize the average task completion time in an IoT edge-

computing environment by optimizing the task offloading ratio from IoT devices to 

the edge. This optimization is achieved through the utilization of Deep Deterministic 

Policy Gradient (DDPG), a form of Reinforcement Learning (RL) approach. Our 

approach involves implementing a dynamic task offloading decision mechanism on 

the edge, capable of determining the appropriate computational resources and resource 

allocation needed to complete a task. Additionally, we enhance the load-balancing 

process, ensuring fair distribution of resources among tasks, thereby reducing 

processing time and, consequently, response time. The results of our study illustrate 

that our dynamic task offloading decision mechanism significantly improves the 

overall completion time of tasks compared to conventional approaches. 

 

Key Words : Edge computing, Task offloading, Reinforcement learning, Deep 

reinforcement learning, Offloading deviation, Load balancing. 

Science Code : 92517 
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UÇ BİLGİ İŞLEM İÇİN BİR HESAPLAMA BOŞALTMA: DDPG'YE 

DAYALI BİR TAKVİYE ÖĞRENME YAKLAŞIMI 

 

Fatimah Najeh Abdullateef Al ZUABAIDI 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr Üyesi. Nehad T. A. RAMAHA 

Ekim 2023, 74 pages 

 

Nesne algılama, akıllı evler ve akıllı şebekeler gibi hesaplama açısından yoğun ve 

gecikmeye duyarlı uygulamalar, Nesnelerin İnterneti (IoT) cihazlarının üstel büyümesi 

ve çeşitliliği ile sürekli olarak ortaya çıkmaktadır. Hesaplama ağırlıklı görevleri IoT 

cihazlarından uç düğümlere aktarmak için uç bilişim paradigmasını uyarlayabiliriz, bu 

da IoT cihazlarının sınırlamasını daha güçlü kaynaklarla aşabilir. Bununla birlikte, uç 

bilişim mimarisi, sınırlı bilgi işlem ve depolama yeteneklerine sahip IoT cihazları için 

uygun olmayan yüksek gecikmeye neden olabilir. Uç bilişim, IoT cihazlarına düşük 

gecikmeyle bilgi işlem kaynakları sağlayabilen IoT cihazlarının yakınında bir uç cihaz 

dağıtarak bu durumu iyileştirmek için sunulmuştur. Bununla birlikte, uç sunucu, 

talepler yoğun şekilde geldiğinde cihazlardan yüklenen tüm görevleri gereken sürede 

tamamlayamayabilir. Bu makalede, bir tür Takviyeli Öğrenme (RL) yaklaşımı olan 

Derin Belirleyici Politika Gradyanı'na (DDPG) dayalı olarak IOT cihazlarından uca 

görev boşaltma oranını optimize ederek bir IoT uç bilişim ortamında görevlerin 
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ortalama tamamlanma süresini en aza indirmeyi amaçlıyoruz. Bir görevi tamamlamak 

için birden fazla faktörü göz önünde bulundurarak işlenecek hesaplama kaynaklarının 

miktarını ve kaynak tahsisini belirleyebilen, uçta konuşlandırılmış dinamik bir görev 

boşaltma karar mekanizması öneriyoruz. Ayrıca, bu çalışmada, yük dengeleme 

sürecini iyileştiriyor ve kaynakları görevlere adil bir şekilde dağıtıyoruz; bu da işlem 

süresini ve dolayısıyla yanıt süresini azaltacaktır. Sonuçlar, dinamik görev boşaltma 

karar mekanizmamızın görevlerin genel tamamlanma süresini naif yaklaşımlara göre 

iyileştirebileceğini göstermektedir. 

 

Anahtar Kelimeler : Kenar hesaplama, Görev devretme, Pekiştirmeli öğrenme, Derin 

pekiştirmeli öğrenme, Devretme sapması, Yük dengeleme. 

Bilim Kodu  :92517 
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PART 1 

 

RESEARCH OVERVIEW 

   

1.1. INTRODUCTION 

 

It's no secret that the Internet of Things (IoT) is on the rise, resulting in the generation 

of vast amounts of data for various purposes. The inception of IoT dates back to 1999 

[2]. With the increasing demand for lower response times and better reliability, more 

services are being shifted from cloud computing to edge. Data is processed at the edge 

of networks with edge computing, thereby reducing response time and improving 

reliability[3]. In essence, IoT refers to a network of billions of devices that can detect, 

transmit, and transform data into a centralized system. Today, IoT devices and 

applications are deployed in various fields such as healthcare, smart city networks, 

intelligent transportation, and disaster management providing diverse forms of user 

assistance [4].   

 

A vast number of distributed edge nodes with underutilized resources can be leveraged 

to reduce latency and bandwidth in IoT networks. Consequently, the application of IoT 

devices has gained considerable attention in recent years [5]. The purpose of IoT is to 

leverage edge processing to minimize latency. While IoT devices can collect large 

amounts of data, their capacities are limited. Cloud computing is commonly used for 

data analysis, but it results in longer delays than edge computing (EC). Edge 

processing, on the other hand, is an innovation that offers several advantages and can 

solve a wide range of issues[6]. 

 

The edge infrastructure of an organization offers a highly dynamic environment to 

numerous devices providing enhanced flexibility to users and supporting 
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heterogeneous applications. Applications with sporadic traffic patterns necessitate 

significant battery life, memory capacity, computational resources, and prompt task 

execution [7]. Recently, edge computing has gained traction to achieve low-latency 

data processing by offloading computational resources from cloud data centers to edge 

devices. Additionally, the availability of reliable high-speed internet and 

communication technologies has fostered the proliferation of complex and 

computationally intensive (IoT) applications resulting in generating and processing 

massive amounts of data [8]. Typically, edge devices are more powerful than 

conventional IoT devices. This is because IoT devices are constrained by their limited 

resources making local processing and storage of large volumes of multimodal sensory 

data infeasible. 

 

The proximity of (EC) services to (IoT) devices and data sources is crucial to reduce 

data transfer delay and minimize bandwidth consumption [9]. The proliferation of 

data-intensive applications in the (IoT) edge exacerbates the challenge of limited data 

speed [10]. The (IoT)  can sense, actuate, and transmit information to a central system 

[11]. Currently, (IoT) devices and applications are utilized in a range of fields 

including logistics, retail, healthcare, smart city networks, intelligent transportation, 

and disaster management. The potential of (IoT) devices must be harnessed to provide 

sophisticated services [12]. Meanwhile, The number of (IoT) systems is growing 

exponentially [13]. 

 

They have already surpassed the world's population and are projected to reach 80 

billion by 2030 [14]. This enormous growth necessitates platforms that can support the 

burgeoning number of IoT devices, organize and process the generated data effectively 

[15]. 

 

Considering devices that belong to the IoT, it is essential to handle data with short 

delays to guarantee fast user feedback. However, due to the limited power and 

computational capabilities of these devices, processing data at the edge is necessary. 

These requirements put constraints on the latency of edge processing [16]. 

 



3 

To process this challenge, (EC) has emerged as a critical enabler for IoT. It brings 

cloud resources closer to the edge, supports real-time applications, and reduces the 

computing and network resources required for data processing in the cloud. By 

avoiding the delay of transferring data to distant clouds, EC can offer shorter latency 

to applications that require real-time processing. [17]. The process of edge registering 

is inherent as it involves a distinct convergence of EC target planning, wherein a 

multitude of cooperative edge devices and IoT devices collaborate to manage the 

information generated within the vicinity of the edge. The objective of this research is 

to utilize EC for processing IoT devices on the Internet or on a device situated at the 

edge of the network, which is closer to the data source . 

 

Compared to cloud computing, EC has greater potential to accommodate more devices 

and facilitate IoT scenarios. Given these advantages, EC is considered a pivotal enabler 

for achieving ubiquity. 

 

According to recent research, EC has demonstrated greater potential than cloud 

computing in accommodating an increasing number of devices and enabling the 

implementation of IoT scenarios. Consequently, EC represents a pivotal catalyst for 

the widespread adoption of ubiquitous computing . 

 

1.2. PROBLEM STATEMENT 

 

IoT refers to a network that connects devices and systems allowing users to access 

them from anywhere and, at any time [18]. IoT has been applied in fields such as home 

networks, home automation, manufacturing, security systems, healthcare, data 

management, analysis of military transportation systems, and sensor technology [19]. 

A frequent challenge in this context often involves data loading and unresponsive 

applications, which can negatively impact the user experience. 

 

However, one significant challenge that arises with these applications is the delay, in 

transferring data, between devices and distant servers. This problem often leads to slow 

data loading and unresponsive application performance negatively impacting the user 
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experience. To overcome these obstacles faced by IoT devices, the implementation of 

edge computing has emerged as a solution. 

 

This computing pattern enhances the capabilities of user devices when it comes to 

running applications. Additionally, it provides security and faster performance 

compared to cloud computing [20, 21]. Consequently, processing happens with delay 

and lower power consumption leading to network performance [22]. This approach 

allows IoT devices to offload computing tasks to edge nodes that have stronger 

computing and storage skills. The proximity of an edge node to devices significantly 

reduces latency compared to cloud centric, where its processing nodes are central and 

far away from the IoT devices [18]. However, when edge nodes are faced with a 

volume of requests, an edge node might be challenged to complete tasks from IoT 

devices within the expected timeframe. Hence, it becomes crucial to deploy a cluster 

of edge nodes near users with priority given to selecting the node that's closest to 

achieve faster tasks first. 

 

When it comes to edge computing, achieving network performance requires a dynamic 

smart, and fast resource allocation strategy. In edge networks using reinforcement 

learning techniques can greatly improve resource allocation. It goes beyond analyzing 

network data and also optimizes network operations while providing instructions to 

devices. This helps in making decisions about resource allocation precise and faster. 

Moreover, training reinforcement learning can significantly enhance the quality of 

services [20]. 

 

When relying solely on edge computing to perform tasks during peak loads on the edge 

server, the limited resources of the edge server can cause delays in completing tasks 

for devices. This is mainly because there are requests for offloading making it difficult 

to achieve tasks in efficient time. To tackle this challenge, the edge centric can 

intelligently allocate a portion of tasks to be managed directly on the edge centric itself 

which helps speed up the offloading procedure. As a result, we suggest a mechanism 

for making decisions about task offloading that optimizes the ratio of tasks being 

offloaded from the edge. This mechanism uses a customized approach based on Deep 
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Deterministic Policy Gradient (DDPG) that is tailored for different scenarios rather 

than adopting a one-size- strategy that fits all offloading tasks. 

 

Currently, two primary resource allocation approaches in edge computing don't rely 

on a central cloud center [23]. One perspective revolves around users aiming to achieve 

optimal resource allocation by selecting suitable edge nodes for computational 

migration. This method assumes that all users are located within an area that 

encompasses edge computing networks and has access to nearby edge nodes. Users 

utilize game theory and operational research to determine the node and develop 

resource scheduling strategies [24]. The other perspective focuses on edge nodes 

highlighting the importance of organizing clusters of these nodes to optimize system 

performance. This approach suggests that collaboration among edge nodes is the key 

to master allocating resources efficiently [25] [26]. 

 

Dealing with control tasks that involve a range of possible actions poses a significant 

challenge when it comes to learning the most effective approach. This is true in (RL) 

where you have a large number of actions that can hinder performance. Known 

algorithms like DQN and Q learning among others have difficulty handling extensive 

action spaces. Unfortunately, encountering these action spaces is quite common. 

Moreover, DQN can face issues like training variability, and instability. Moreover, it 

struggles with handling continuous action spaces. In contrast, the DDPG algorithm 

proves to be efficient in addressing control tasks that involve continuous action spaces. 

 

1.3. SIGNIFICANCE 

 

Within the IoT environment, latency reduction is fundamental. In cloud-centric 

Internet of Things framework, data is handled on central servers which results in 

significant delay and latency within the IoT applications. Edge addresses this issue in 

the below style. Edge computing assigns computation, storage, and communication 

services from the cloud server to the network edge triggering increased availability 

and low latency [27]. IoT gadgets are resource-constrained and incapable of handling 

compute-intensive services. Incorporating edge computing, IoT and computation 

offloading offers an attainable solution concerning performance [27]. This 
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combination guarantees faster response time, making real-time control and precise 

monitoring. Businesses that rely on instant decision-making, such as telemedicine and 

autonomous vehicles stand to benefit immensely from this progression. 

 

Besides the above, data security is a vital concern to prioritize within the IoT 

environment. Centralized cloud centers have been the target of high-profile 

cyberattacks. Moreover, the presence of all the data in central servers increases data 

insecurity and breaches [28]. On the other hand, Edge computing progresses data 

security by decreasing the amount of data transmitted and handled in the cloud keeping 

sensitive data on client devices, and decreasing the risk of data compromise as posited 

by research[29]. This approach provides data processing, exchange in real time and 

minimizes the chance of data leaking amid the transit phase of information exchange 

between devices. 

 

In addition to the above, efficiency is vital for the innovative progression of the 

Internet of Things and subsequently, the requirement for resource optimization. A 

study conducted by [30] on edge-centric IoT design highlights the centrality of 

resource allocation models especially, those utilizing reinforcement learning. These 

models aim to enhance the utility of edge nodes and users and so, optimizing the 

utilization of network resources and eventually progressing system performance. Such 

optimization becomes pivotal for guaranteeing the seamless operation of IoT 

frameworks mainly when resource limitations are a concern. The research underscores 

the significance of proficient resource allocation in edge-centric IoT systems 

associated with the prior study by [30], which divides the complex issue into 

reasonable components to enhance IoT network survivability. 

 

The IoT ecosystem is extending phenomenally, as documented by a report from [31]. 

With an ever-growing number of connected devices, versatility is necessary for any 

IoT design making scalability a vital process. Research conducted by [27] asserts the 

characteristic scalability of our proposed edge-centric approach. This approach has 

been designed to consistently adjust the increasing number of IoT devices making it a 

feasible solution that addresses the network and advanced demands. This versatility is 

achieved through the use of the DDPG algorithm which is a computational resource 
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offloading algorithm, and efficient resource allocation. All of these collectively 

contribute to the framework's ability to accommodate the growing IoT ecosystem, 

guarantee an ideal performance that can consistently accommodate the surge in IoT 

gadgets, and offer a feasible mitigation for the ceaselessly advancing digital scene. 

 

1.4. RESEARCH OBJECETIVE 

 

The goal of this research is to make edge-IoT user environments more productive in 

the IoT through optimal resource allocation. This can be accomplished by strategically 

delegating a portion of the assigned tasks to edge servers benefiting the end devices. 

To achieve this objective, our research focuses on enhancing the efficiency of task 

offloading from IoT devices to the edge. 

 

Several vital objectives drive this research project: 

 

1.4.1. To Optimize User Utility 

 

Our essential objective is to plan a resource allotment demonstration that places client 

involvement at the forefront. We aim to maximize the utility and fulfillment of end-

users inside the IoT environment. This involves advancing an advanced resource 

allocation component that minimizes latency and guarantees that clients can get the 

resources they require effectively without delay. We proposed to improve the general 

IoT encounter by centering on user-centric optimization. 

 

1.4.2. To Minimize Latency 

 

Decreasing latency could be a pivotal angle of our extension. We focus on a significant 

decrease in information transmission and handling delays inside IoT applications. To 

attain this, we arrange to handle information as near as possible to its source 

minimizing the time it takes for data to navigate the organization. Typically, it is 

especially basic for applications requesting real-time information and for those of a 

critical nature mission. Our endeavors will include accomplishing low-latency 

communication to meet these requested necessities successfully. 
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1.4.3. To Enhance Data Security 

 

Security is fundamental within the IoT ecosystem, particularly when managing 

sensitive information. Our objective is to improve information security by receiving 

edge computing standards. This approach decreases the introduction of delicate 

information through its travel to centralized node centers. By actualizing security 

measures at the edge, we aim to invigorate data security, guaranteeing its secrecy and 

judgment through its travel inside the IoT framework. 

 

1.4.4. To Utilize Reinforcement Learning 

 

we aim to optimize resource allocation powerfully guaranteeing that resources are 

designated effectively and viably. IoT environment and fine-tuned calculations are 

adjusted and advanced intelligently to the changing network conditions using RL by 

utilizing the DDPG algorithm as an energetic resource allocation methodology. 

 

1.5. CONTRIBUTION 

 

The anticipated contributions of this research encompass a comprehensive 

transformation in the IoT ecosystem. It envisions a future where IoT devices 

predominantly rely on edge computing and challenge the conventional cloud-centric 

architecture resulting in substantial performance improvements, reduced latency, and 

enhanced data security. 

 

A key element of this research is the introduction of a resource allocation model for 

latency reduction, which will strategically distribute processing power, bandwidth, and 

other critical network resources among edge nodes and users [27]. This model 

prioritizes real-time data processing and low-latency communication making it 

particularly valuable for applications requiring instantaneous responses such as 

industrial automation and autonomous vehicles. 

 

Additionally, this research plans to leverage the DDPG algorithm which is a form of 

reinforcement learning that addresses IoT resource allocation challenges [27]. This 
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innovative approach will enable dynamic and adaptive resource allocation. 

Furthermore, it enhances IoT technology towards intelligent and self-optimizing 

networks. 

 

To validate the proposed edge-centric IoT architecture and resource allocation model, 

the research will conduct extensive empirical experiments with varying configurations 

of nodes and users [32]. This empirical validation aims to provide actionable insights 

into feasibility, scalability, and practical applicability. 

 

Another significant aspect is the emphasis on enhancing Data Security and Privacy 

within IoT ecosystems [32]. The proposed edge-centric approach minimizes data 

exposure during transit to centralized cloud centers, mitigates potential vulnerabilities 

associated with data breaches or cyberattacks, and addresses growing data privacy, 

concerns or regulatory requirements. 

 

Furthermore, the research promotes Environmental Sustainability within the IoT 

landscape. By favoring energy-efficient edge computing over traditional cloud-centric 

approaches, it aligns with global efforts to reduce technology's carbon footprint 

making IoT more eco-friendly [32]. Adopting an edge-centric IoT architecture will 

diversify IoT Applications significantly enabling real-time applications across various 

domains including autonomous vehicles, healthcare, augmented reality, and industrial 

automation. This diversification creates new opportunities for innovation and 

economic growth. 

 

Also, the research aims to set the stage for future directions and innovation within the 

IoT and edge computing domains. It will highlight potential research avenues such as 

optimizing edge node deployment strategies, enhancing security measures, and 

integrating emerging technologies like 5G and edge AI ensuring continuous 

progressive innovation in the field. 

 

In conclusion, this research seeks to revolutionize the IoT landscape by introducing an 

edge-centric paradigm shift, optimizing resource allocation, leveraging reinforcement 

learning, conducting empirical validation, enhancing data security, promoting 
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sustainability, diversifying applications, and paving the way for future innovations. 

These contributions collectively address the challenges within the IoT ecosystem 

while fostering a more efficient, secure, and sustainable future for IoT technology or 

applications. 

 

1.6. RESEARCH SCOPE AND LIMITATIONS 

 

In this section, the research investigates the transformative potential of edge-centric 

IoT engineering. Examining IoT gadget composition, asserting assignment models, 

fortification learning with DDPG, and adaptability contemplations survey idleness 

decrease and security suggestions. These all compare to edge-centric approaches 

making the way clearer for a maintainable IoT future as detailed below.  

 

1.6.1. IoT Device Composition 

 

Our study builds upon the assumption that all IoT devices include two essential 

components—edge nodes and users. These components are essential in forming the 

IoT landscape. Edge nodes, either physical gadgets or virtual substances, are 

deliberately conveyed inside the network [13]. Physical nodes act as basic data 

handling centers, whereas virtual nodes offer adaptability by powerfully optimizing 

resource allocation. This compositional understanding supports investigating resource 

allocation, latency reduction, security, and versatility in edge-centric IoT design.  

 

1.6.2. Resource Allocation Model 

 

This model is fastidiously created to prioritize client utility augmentation while 

minimizing latency considered as an essential concern in IoT engineering. The 

resource assignment model is integral and is the allotment of basic resources for the 

consistent operation of the IoT environment. It comprehensively addresses handling 

control, transmission capacity, and other arranged resource dissemination. 

 

The allocation of processing control is central to optimizing information handling and 

decision-making at the edge hubs guaranteeing proficient real-time responses to client 
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demands. Compelling transmission capacity allocation empowers quick and 

dependable information exchange between clients and edge hubs improving the 

overall client encounter [33]. Moreover, the model considers distributing other 

network resources such as memory and capacity to guarantee the all-encompassing 

optimization of the IoT environment. By adjusting these key resource allocations, the 

research points to attaining an ideal trade-off between client fulfillment and network 

efficiency which consists of 10 edge nodes and several users taking into account the 

priority of choosing the appropriate node that is close to the users which leads to the 

effectiveness and efficiency of the network. 

 

1.6.3. Reinforcement Learning with DDPG 

 

Central to our approach is the application of support learning and particularly saddling 

on the capabilities of the profound DDPG algorithm. This advanced learning strategy 

leads our research and empowers us to analyze its transformative potential in IoT 

environments methodically. The DDPG calculation enables the resource allocation 

framework with versatility and intelligence. Through a process of learning from 

intuition and input, it permits the model to dynamically refine its resource 

allocation strategies based on real-time conditions and client needs [34]. This versatile 

approach improves the effectiveness and responsiveness of the IoT environment. 

Eventually, this contributes to the optimization of asset utilization, latency decline, and 

generally framework performance.  

 

1.6.4. Experimental Configurations 

 

Inside our research, a significant aspect spins around conducting a series of tests. Each 

test is designed to shed light on the capabilities and performance of our proposed edge-

centric IoT design plus resource allocation show. These tests envelop three particular 

setups: 

 

10 Nodes and 10 Users: In this introductory situation, we make a generally small-scale 

IoT environment to set up a pattern for our system's execution. We pick up bits of 

knowledge into their essential productivity and idleness decrease capabilities by 
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analyzing how the design and resource allotment handle this humble number of nodes 

and clients. 

 

10 Nodes with 20 Users: Building upon the primary arrangement, we present a broader 

client base while keeping up the same number of hubs. This setup permits us to 

investigate how the framework adapts to expanded client requests and gives profitable 

experiences to its versatility plus resource allocation adaptability. 

 

10 Nodes with 30 Users: Within the third setup, we assisted in heightening the client 

number to 30 while keeping the hub check steady. This setup reveals a more complex 

and requesting environment with challenging the system's capacity to preserve 

compelling resource assignments. This setup results in inactivity diminishment within 

the confront of increased client action. 
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PART 2 

 

LITERUTURE REVIEW  

 

Reinforcement learning has recently become a popular research area in edge 

computing for offloading reflecting the growing interest in edge computing. This 

distributed computing paradigm enables computation to be performed closer to the 

data source or end-users thus, reducing network latency and enhancing application 

performance. One technique employed in this context is offloading which allows tasks 

or components of tasks to be executed remotely, in either the cloud or edge, to improve 

overall system performance. The present chapter seeks to reinforce the problem 

statement and research objectives of this project by offering a comprehensive review 

of pertinent literature on three key topics: the Internet of Things (IoT), reinforcement 

learning (RL) and task offloading. Commencing with a concise overview of IoT, this 

section lays the groundwork for the ensuing discussion. 

 

2.1. OVERVIEW OF INTERNET OF THINGS (IOT)  

 

IoT, also known as a "global internet," constitutes a network of countless device 

connections and marks a groundbreaking stride in the domain of internet technology. 

Essentially, it involves an expansion of the internet beyond the digital realm 

integrating the physical world with unprecedented efficiency and ease. In practical 

terms, this means that everyday objects can engage in complex data exchange and 

communication. Thus, facilitating the creation of a truly interconnected world. [35]. 

Using IoT, connected physical objects are capable of collecting and exchanging 

information with other devices without requiring human intervention. Furthermore, 

these devices can be remotely controlled and leverage their internet connectivity. The 

diversity of IoT devices is extensive encompassing various applications such as smart 

electricity meters, televisions, appliances, homes, cities, healthcare, transportation, 

agriculture, security systems, and more, all of which hold significant potential [36]. 



14 

Data transfer has been essential due to the  increase in IoT devices, highlighting the 

importance of secure and efficient communication channels. 

 

The advent of IoT technologies has propelled the widespread adoption of smart devices 

leading to a surge in computation-intense and latency-sensitive requests that require 

real-time reply capabilities [37]. The volume of data generated by IoT devices has 

increased significantly leading to challenges in processing this data due to the limited 

battery life of these devices, despite the availability of state-of-the-art computational 

and storage facilities. Consequently, efficient processing of the high demands of such 

applications has become a pressing concern for researchers and practitioners alike [38-

40]. 

 

Furthermore, the scope of IoT devices extends beyond traditional electronic devices 

like sensors, smartphones, and other smart devices to encompass living beings such as 

animals, food, and plants. [41]. In their work, emphasize the importance of the needs 

of different objects within the IoT ecosystem including living beings like animals, 

food, and plants providing specialized features such as wireless, wired technology, or 

computational resources. There are several devices with varying capabilities and needs 

within the IoT ecosystem. Moreover, the priority of a task can differ across devices 

even within the same IoT application. This presents a significant hurdle in meeting the 

Quality of Service (QoS) benchmarks of the application.  

 

2.2. EDGE COMPUTING  

 

The ever-increasing demand for time-sensitive applications and the rapidly growing 

data volume have made the proximity of cloud resources to end devices a critical 

factor. To address this challenge, edge computing has emerged as a feasible solution 

to augment user experience by providing cloud centric resources nearer to the 

network's edge and the end devices. The fundamental process of offloading gadget 

tasks to a close edge has the potential to reduce the need for transmission to and from 

the cloud thus,  mitigating bandwidth consumption in backhaul and cloud networks 

[42]. Edge processing offers multiple advantages over traditional cloud computing 
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paradigms including lesser latency, enhanced energy effectiveness, and flexible 

computing for computation-intense requirements [43].  

 

The advent of edge computing has proven to be a pivotal technology in augmenting 

the effectiveness of resource-intensive operations. This technology encompasses a 

multitude of methods including Fog, Mobile-Edge, and Cloudlet Computing. All of 

these function as intermediaries between endpoint devices and cloud servers, thereby 

furnishing computational and storage resources with negligible latency [44]. 

Nonetheless, devising effective task-offloading strategies in edge environments with 

limited resources remains a significant challenge that current research seeks to 

overcome [45]. 

 

Recently, there has been a growing interest in leveraging edge offloading for 

applications requiring low latency. This paper proposed a three-layer offloading 

architecture to optimize processing delays by distributing tasks across various layers 

based on communication and computing costs [46]. In a comparable vein, the task 

offloading quandary was tackled by a stochastic optimization lens, whereby they 

adeptly employed techniques of stochastic optimization to convert an unpredictable 

issue into a deterministic optimization issue. This approach reduces of energy 

consumption in transmission and guarantees low queueing latency [47]. 

 

To facilitate task offloading and resource allocation, we developed a blockchain-based 

framework known as Edge ABS, which utilizes smart contracts for task offloading and 

resource allocation. The Edge User Allocation (EUA) problem was also explored 

by[48], which aims to minimize latency and energy consumption in edge computing 

environments. 

 

In recent years, the issue of time-sensitive applications exceeds the processing 

capabilities of IoT devices and poses a significant challenge. In response, researchers 

have explored the use of edge computing as a potential solution[49]. Researchers 

proposed an edge-computing architecture that aims to alleviate the congestion and 

delay experience by traditional multimedia IoT systems which are often limited by 

bandwidth constraints. To achieve this goal, their framework employs group formation 
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and video group matching techniques to enhance the accurateness of human detection 

within a specified timeframe. 

 

Likewise, Researchers investigated a mobile edge computing (MEC) framework 

tailored for unmanned aerial vehicles (UAVs) to facilitate the execution of computing 

tasks that are time-critical for terminal IoT devices within a restricted period [50]. 

Additionally, a UAV-assisted MEC system leverages differential evolution (DE) to 

determine near optimal locations of UAVs for task offloading in IoT devices[51]. 

Furthermore, edge computing has the potential to revolutionize industrial IoT (IIoT) 

applications, particularly in intelligent manufacturing[52]. Researchers conducted a 

thorough analysis and implementation of an edge computing framework for smart 

factories highlighting the assistances of fast processing, network agility, and autonomy 

[53]. The deployment of edge computing in IIoT can significantly improve operational 

efficiency and decision-making processes, thus increasing productivity. 

 

To enhance the efficacy of edge computing, effective task scheduling mechanisms are 

imperative. however, conventional offloading techniques at the edge may not be 

adequate to manage a diverse range of task requirements, as highlighted by [54]. In 

response to this challenge, [55] proposed a joint decision-making approach that takes 

into account uncertain computing resources and heterogeneous task requirements. 

Similarly, [56] introduced a semi-distributed offloading technique featured with a 

multi-user scheduling mechanism to minimize average delay and power consumption 

for Narrowband Internet of Things (NBIoT) devices. This method utilizes an auction-

based scheduling approach where the end devices submit bids to mobile base-stations 

which determine the scheduling. [57] proposed an energy aware optimization 

framework that prioritizes each demanded task and formulates a stochastic-aware 

offloading issue using the Lyapunov optimization method. Although edge centric can 

effectively tackle the problems of network congestion and prolonged latency that often 

plague cloud computing, it still has its own set of challenges. These challenges are 

primarily attributed to the early stages of IoT technology as observed by both [58] and 

[59]. Unlike cloud computing, edge computing follows a centralized architecture 

where all nearby IoT device requests are transmitted to an essential edge server. 

Additionally, edge-centric servers have restricted resources compared to cloud-centric 
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servers and an excessive number of offloading requirements which can increase the 

overall task completion time for IoT devices. 

 

2.3. EDGE COMPUTING WITH IOT 

 

In IoT environments, sharing heterogeneous networks and sensing resources among 

multiple applications are common requirements [60]. Load balancing is a critical factor 

in meeting the ultralow latency demands of IoT applications and ensuring QoS 

guarantees in cloud computing [61]. Standard data mining methods that analyze two-

dimensional vector data are unsuitable for managing vast data sets that feature inherent 

relational interdependencies, varying weights, directed edges, and heterogeneity 

across system elements. [62]. These limitations necessitate the use of more advanced 

data mining techniques that can handle complex data structures and relationships in 

IoT environments [63]. In cloud computing systems, a lower value results in a more 

balanced distribution of load which leads to improve system performance. Failure to 

meet a request deadline can occur if the response time surpasses the deadline or if any 

of the IoT devices or the user is unable to access any instance of a service. Thus, 

minimizing these aspects is a crucial way of load balancing in cloud computing 

systems and their impact on system performance cannot be overstated. [64, 65]. In the 

context of IoT, fog nodes may offload requests to other fog nodes to balance their 

workload and reduce response delays [66]. To obtain accurate results, the authors 

conducted multiple repetitions of experiments to calculate the average and deviation 

of the outcomes[67]. In their study, the authors presented a novel approach to achieve 

seamless load balancing within a virtual machine which consequently led to improve 

the throughput. This technique takes into account the job order processed by the virtual 

machine[68]. In cloud computing systems, round-robin load-balancing algorithms 

have been traditionally employed [69]. However, recent research has highlighted the 

potential impact of inaccuracies in expert-based weight rebalancing estimation when 

imperfections occur in the framework, especially in load distribution balancing 

between edge and cloud [70]. In the quest to improve service latency and alleviate 

offloading exhaustion in the emerging field of edge computing for IoT, researchers 

have suggested novel approaches [68]. For instance, the authors proposed a QoS- and 

connection-aware cloud service structure process that accounts for end-to-end QoS 
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requirements in the cloud [69]. Furthermore, in [70], the authors introduced a load-

balancing strategy that integrates data-center power consumption with diverse 

workloads in the cloud. This approach can ensure efficient resource allocation and 

enhance the overall performance of the system without compromising the accuracy of 

application results. Moreover, balancing the task frequency across edge nodes, as 

suggested in [71] can further optimize the performance of edge computing systems 

without sacrificing the quality of service. In addition, [72] suggests optimal policies 

for managing resources in edge computing systems. These policies encompass 

capacity allocation, load balancing, energy optimization, and quality of service 

assurance. All of which can be effectively implemented to enhance the efficiency and 

efficacy of edge computing systems 

 

Table 2.1. Previous studies related to edge computing 

citation year techniques limitations 

Long, C., 

et al.[49] 

2017 Their framework technique 

employs group formation and 

video group matching 

techniques to enhance the 

accurateness of human 

detection within a specified 

timeframe 

Alleviate the congestion and delays 

experience by traditional multimedia IoT 

systems, which are often limited by 

bandwidth constraints, however, the study did 

not consider latency between edge and IoT 

devices. 

Wang, 

H., et 

al.[54] 

2017 In this work, the HealthEdge 

task scheduling method is 

proposed. 

The proposed algorithm evaluates whether a 

job should be executed in a local device or a 

remote cloud based on the acquired data on 

the human health state and attempts to 

decrease the overall processing time of each 

task as much as feasible. However, data 

security is not considered in the HealthEdge 

framework. 

He, Q., et 

al.[48] 

2019 EUAGame, a game-theoretic 

approach that formulates the 

(EUA) problem as a potential  

game 

This study proposes the EUAGame approach 

to solve the Edge User Allocation (EUA) 

issue from the perspective of application 

sellers in the edge environment but this 

methodology faces reliability problems. 

Zhang, 

T., et 

al.[50] 

2019 (MEC) framework tailored 

for unmanned aerial vehicles 

(UAVs) 

Aimed at facilitating the execution of 

computing tasks that are time-critical for 

terminal IoT devices within a restricted 

period. However, Higher tasks execution time 

Chen, M. 

and Y. 

Hao [53] 

2020 Mixed integer non-linear 

program 

Propose for work offloading to an edge cloud 

or local processing. However, the mixed 

integer non-linear program continued from 

the old traditional methods 

Yang, L., 

et al.[51] 

2020 UAV-assisted MEC system 

that controls differential 

evolution (DE) 

To determine close-optimal positions of 

UAVs for task offloading in IoT devices But 

the system was more costly. 
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Chen, Z. 

and X. 

Wang [1] 

2020 DDPG algorithm This study reduced the long-run average 

computational cost in terms of cache delay 

per user and power consumption by using the 

MEC system. However, the system did not 

allocate resources to solve the high latency 

issue. 

Naouri, 

A., et 

al.[46] 

2021 Framework named DCC , 

which consists of the device 

layer, cloud layer and 

cloudlet layer 

In this study, task dependencies and user 

mobility were taken into account as they 

assessed the issue of distributing tasks and 

resources to several tasks of a single 

application inside a DCC context. However, 

Higher task execution time. 

Liao, L., 

et al.[71] 

2023 The double reinforcement 

learning computation 

offloading (DRLCO) 

algorithm 

They took power consumption and task 

execution delay as optimization goals for 

mobile users in the (MEC) system, but The 

study did not take into account the latency 

delay between edge devices and IoT devices. 

Jin, et 

al.[20] 

 

2023 Q-learning This study introduces a network framework 

that incorporates a resource allocation 

algorithm taking into account factors such, as 

(user energy consumption and delay). 

However, when it comes to learning tasks that 

require several actions, the storage and 

computational resources at hand may not be 

sufficient which could ultimately result in 

ineffective learning results. 

Cui, et 

al.[72] 

2023 DQN This study proposed designing a strategy in 

environments to reduce latency by saving 

computing, storage, and resource allocation, 

However, the strategy was applicable only 

when discrete, low-dimensional work 

environments were provided. The edge 

computing environment is considered a 

continuous, high-dimensional environment 

that requires continuous actions. 

 

To provide an overview of the related studies and the proposed work, we present Table 

2, which summarizes the key offerings and evaluations of these studies. 

 

2.4. RESOURCE ALLOCATION FOR EDGE COMPUTING 

  

As the economy continues to thrive and technology advances, the number of devices 

is being seamlessly incorporated into people's lives. These gadgets have attracted 

attention from sectors, such as academia, industry, and government sparking a great 

deal of research interest. Al Ali and his team developed a solution, for managing 

energy in homes[73]. Their goal was to improve customer satisfaction by using data 
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analytics and business intelligence. On the other hand, Wang and his colleagues 

proposed a method for scheduling tasks in smart homes and healthcare settings 

specifically focusing on critical situations involving elderly individuals or patients. 

Their approach relies on edge computing strategies that prioritize real-time 

considerations. Procopiou and his team developed a detection algorithm that is 

specifically designed for devices[74]. This algorithm uses chaos prediction and chaos 

theory where the Chaos Algorithm (CA) detects Flooding and distributed denial of 

service (DDoS) attacks. Its motivation is to establish an organization climate for home 

frameworks driven by IoT innovation. His associates proposed an IoT-based home 

security checking framework to further develop execution by lessening both the bogus 

positive rate and organization dormancy contrasted with customary security 

frameworks [75]. Two exploration strategies are presently being investigated to 

resolve the issue of asset assignment for edge computing without dependence on cloud 

communities. For example: In their work, they exhibited the significance of sifting 

through edge hubs to accomplish ideal asset portion and work with relocation. They 

expected that all clients approach edge servers situated close to figuring areas of 

interest and afterward, presented a Markov decision process structure to disseminate 

errands and assets. They likewise proposed an index-based allocation method to work 

on intricacy and limit correspondence above. At last, this approach permits every client 

to find the edge server bringing about diminished energy utilization and idleness. From 

the perspective of the edge node, a review was directed to look at how the size of a 

cluster (which alludes to the quantity of edge hubs completing errands) influences both 

help dormancy and energy utilization of these hubs. Their discoveries uncovered that 

essentially; expanding the quantity of edge hubs doesn't be guaranteed to prompt a 

reduction in execution idleness. In situations where the time it takes for information 

transmission is longer than the handling time, the help dormancy can increment at 

these edge hubs greatly. Subsequently, how well the framework performs depends 

altogether on the techniques utilized in building clusters of edge hubs and choosing 

the suitable hubs. To evaluate the effect of cluster techniques on the properties of edge 

hub groups (like size, idleness, and energy utilization), Queis and collaborators 

acquainted three methodologies to clustering. These techniques based on upgrading 

administration dormancy, limiting energy utilization in the clusters, and lessening 

energy use in hubs inside those groups. Li and his group fostered a heap adjusting 



21 

framework called self-similarity-based load balancing (SSLB) explicitly intended for 

fog registering environments [76]. They zeroed in on upgrading applications running 

on fog foundation. They likewise presented an edge strategy and algorithm to 

guarantee the proficiency of SSLB. In another review, they proposed a two-stage way 

to deal with oversee client task planning and asset portion for nodes [77]. The 

underlying stage involves allocating resources locally where each edge node assigns 

its resources to users nearby following predefined scheduling guidelines. The ensuing 

stage involves framing bunches of edge hubs for clients who didn't get figure assets in 

the underlying designation. This study [78] introduced a two-tier resource scheduling 

framework, including asset coordination among different fog clusters as well as asset 

the executives among fog hubs inside a similar fog cluster. Furthermore, they 

recommended that there is a convergence between the edge layer and the terminal layer 

that the cell phones in these covering regions demand fog assets as well as give assets. 

His group [79] introduced a cloud asset algorithm that uses a Markov expectation 

model. The motivation behind this algorithm is to handle issues connected with task 

planning and burden adjusting when cloud administration hubs experience 

disappointments. It includes assessing hub responsibility, choosing missions in 

addition to hubs for relocation, and settling on the migration way. The primary 

objective is to work on the reliability of cloud administrations. In their study, they 

spotted on enhancing energy effectiveness while likewise considering dormancy 

execution [80]. Their model considered energy utilization and inactivity during the 

execution in addition to information transmission stages including gadgets, fog hubs, 

and cloud servers’ frameworks. A review, by [81] fostered a model that considered 

variables like utilization, idleness, and installment costs in different fog registering 

networks. They utilized queueing hypothesis and activities examination to address the 

objective enhancement issue connected with hubs and clients. In their exploration, they 

fostered a real-time traffic management unloading system within an Internet of 

Vehicles (IoV) framework that utilizes fog nodes [82]. This advancement extends 

distributed computing by utilizing moving vehicles as fog hubs. In the field of 

organization asset designation research, they used a cloud resource optimization model 

for clients [83]. They utilized a two-stage enhancement way to deal with propose an 

asset distribution methodology for clients in a mobile cloud climate. During this stage 

the primary goal is to assist mobile cloud clients with making the most advantage of 
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their assets while thinking about cost and energy limitations. In this stage, mobile 

cloud suppliers need to oversee servers while guaranteeing they manage energy use 

cutoff points to satisfy the necessities of portable cloud clients. This study [84] 

proposed a resource allocation model explicitly intended for administrations with an 

emphasis on improving utility. Ultimately, the aim is to maximize network utility by 

prioritizing user satisfaction. When it comes to assigning resources for moving 

enterprise applications to the cloud this study [85], they developed a function to 

optimize transmission time. Their approach focuses on reducing the duration of cloud 

migration which ultimately improves user satisfaction and utility. On a note, [86] they 

outlined an approach to edge computing resource allocation based on pricing. This 

approach primarily discusses how competitive service processes arise from edge nodes 

with networking capabilities within a resource allocation framework. Throughout their 

explanation, they demonstrate that their framework ensures a distribution of resources 

while also achieving Pareto optimization. This aligns with expectations of fairness, 

proportionality, and incentives for sharing in the allocation process. 

 

Resource allocations are different for each node and they usually change dynamically 

depending on the resources booked by the tasks assigned to that node and the resources 

released at the end of the task. The capability of each node is calculated by considering 

the resources available to each of them as follows: 

 

𝜏𝐶𝑃𝑈 =
𝑃𝐶𝑃𝑈

𝑃𝑀𝑎𝑥
  ×  100% 𝐶𝑃𝑈                                           (2.1) 

 

𝜏𝑚𝑖 =
𝑚𝑖

𝑚𝑖𝑀𝑎𝑥
  ×  100% Internal  Storage                                 (2.2) 

 

𝜏𝑚𝑒 =
𝑚𝑒

𝑚𝑒𝑀𝑎𝑥
  × 100% External Storage                               (2.3) 

 

𝜏𝑗 = (𝜑1 × 𝜏𝐶𝑃𝑈) + (𝜑2 × 𝜏𝑚𝑖) + (𝜑3 × 𝜏𝑚𝑒): ∑ 𝜑 = 1                     (2.4) 

 

Where; 

 

𝜏𝑗: capability of a node, 
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PCPU: processing power available within a node, 

mi: internal storage available within a node, 

me: external storage available within a node, 

PMAX: total processing power of a node, 

MiMax: total internal storage of a node, 

MeMax: total external storage of a node, 

 

ϕ: weight parameter for adjusting the impact degree of resources. Each node's 

capabilities change depending on a bunch of stuff. Nodes lose their capability when 

they're assigned new tasks. The amount of decrease (1−μ) is based on the ratio of the 

resources consumed to the total resources allocated to this node. 

 

𝜏𝑗(𝑡 + 1) = (1 − 𝜇) × 𝜏𝑗(𝑡)                                          (2.5) 

 

where μ is a coefficient for determining the ratio of consumed resources to the total 

amount of resources. 

 

The capability of node 𝜏𝑗 increases upon completion of a certain task. The amount of 

increase is based on the ratio of released resources that are dedicated to that task. 

 

𝜏𝑗(𝑡 + 1) = (1 + 𝑣) × 𝜏𝑗(𝑡)                                           (2.6) 

 

where v is a coefficient for determining the ratio of the released resources to the total 

amount of resources. The measurement of time (from the instant a request is 

transmitted to the point at which the first reply to the request is received) is referred to 

as response time. This period is comprised of three distinct components: propagation 

time, waiting time, and execution time. The maximum deadline serves as a constraint 

necessitating that response time remain within this threshold. Hence, the anticipated 

duration for a task response time on a node should be shorter than the deadline. 

 

The estimated task execution time (ET) on each node is calculated using the following 

equation: 
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𝐸𝑇 =  
𝑇𝐿

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦×𝑐𝑜𝑟𝑒𝑠(𝑇)
                                               (2.7) 

 

Where, 

 

 TL (task length): length of task T, 

Capacity: The rate at which a core can process (MIPS), 

Cores(T): Task T's core count        

                                                                                                                                               

Therefore, the estimated response time in cloud 𝑅𝑇𝑖,𝑗 is defined as the sum of waiting 

time and estimated task execution. 

𝑅𝑇𝑖,𝑗 = 𝑊𝑇𝑖 + 𝐸𝑇𝑖,𝑗                                                  (2.8) 

 

Where, 

 

 𝑊𝑇𝑖 : represents the waiting time for the task to be allocated, 

𝐸𝑇𝑖,𝑗: represents the estimated execution time. 

The processing procedure uses the M/M/1 queuing system. In that system, if the access 

rate (MIPS) to the fj node is equal to 𝑧𝑓,𝑗 and the processing capacity of the fj node is 

equal to  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑓,𝑗, then the expected delay is given as a probability ratio in the 

following equation: 

 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑗 =
1

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑓,𝑗−𝑧𝑓,𝑗
                                           (2.9) 

 

2.5. TASK OFFLOADING  

 

By exploiting parallel computing, An offloading-based algorithm named DDLO for 

MEC networks was proposed for Edge computing networks in a previous study [87]. 

Additionally, it [88] presented another offloading method based on Deep Q-network 

(DQN) that aimed to optimize network performance in energy-harvesting mobile edge 

computing scenarios. In a similar system configuration, [89] explored an online-based 

offloading strategy utilizing DQN for arbitrary task assignment. Numerous 

investigations that make use of DQN techniques utilize discretized channel gains as 
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the input state vector. This practice. However, presents difficulties that pertain to the 

complexity of the data and the sluggishness of the learning process. The intricacies 

become more apparent when high channel quantization accuracy is a prerequisite, 

particularly in the context of MEC applications. In addition, the exploratory nature of 

DQN in selecting actions at each iteration makes it ill-suited for addressing problems 

that involve high-dimensional state spaces [90].  

 

2.6. REINFORCEMENT LEARNING 

 

2.6.1. Key Concepts Reinforcement Learning (RL)  

 

Reinforcement learning (RL) has emerged as a prominent domain within the larger 

field of machine learning. Its objective is to explore the mechanisms by which an 

independent agent can acquire knowledge and enhance its decision-making abilities in 

a specific environment such as the realm of edge computing. The underlying 

mechanism behind RL involves a trial-and-error approach, as depicted in Figure 2.1, 

whereby the agent executes actions and evaluates their corresponding outcomes. The 

RL framework is predicated on the agent's ability to leverage its current state 

observations to make informed decisions. In edge computing, an agent's engagement 

with the environment yields a corresponding reward that can either be affirmative or 

adverse. Moreover, the agent obtains updated data concerning the current state of the 

environment. As a result, the agent proceeds to make incremental decisions with the 

primary aim of maximizing the cumulative rewards. The framework which accounts 

for the non-deterministic qualities of the environment, as well as the fundamental 

principle of causality, makes it relevant to a diverse array of artificial intelligence (AI) 

predicaments [91]. One of the most significant aspects of RL is that the agent can learn 

without any prior knowledge of optimal behavior. This permits the agent to learn using 

a trial-and-error approach which facilitates effective and efficient learning. 
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Figure 2.1. framework of reinforcement learning [92]. 

 

In contrast to dynamic programming, the optimal behavior in RL necessitates a 

thorough comprehension of the environment. The agent learns suitable behaviors 

through iterative interactions with the environment. One of the main obstacles in RL 

is the exploration/exploitation tradeoff which necessitates a balance between utilizing 

experience and exploring novel possibilities while maximizing rewards [91]. 

 

The stochastic control process can be used to model RL as a discrete-time event. A 

constantly analyzing agent in edge computing determines whether the environment is 

perceived as s(t) at every time step t.  The agent selects the state of the environment 

from the variety of possible states after evaluating S. After contemplating the variety 

of possible actions, A the agent selects a(t) the appropriate action. The system confers 

a reward based on the agent's decision r(t). This is illustrated in Figure 2.1, where the 

agent perceives the new state of the environment. 

 

2.6.2. Markov Decision Process 

 

In RL, a mathematical framework referred to as Markov Decision Process (MDP) 

underpins the process. The MDP incorporates probabilistic control algorithms with 

discrete temporal context as shown by a 5-tuple.  The MDP is composed of five 

elements: state space, action space, transition probability function, reward function, 

and discount factor. 
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• S: This set encompasses all conceivable states that the environment can take. 

• A: This set represents the actions that the agent can execute. 

• T: S × A × S → [0, 1]. The transition probability matrix maps every state-action 

pair at a given time “t” to a probability distribution over the subsequent states 

at time “t+1” in the context of edge computing. 

• R: S × A × S → R. The reward function denoted as R, generates a numerical 

value r(t) that depends on the present state s(t) at time t, the action taken at that 

time and the subsequent state s(t+1). 

• γ: γ ∈ [0, 1]. Closer to 1 γ is the future rewards which are of higher value does 

the agent. A value of γ closer to 1 implies that the agent values future rewards 

more highly. 

 

It provides a comprehensive model for understanding the complex process of decision-

making through the use of the MDP. An MDP calculates the resulting reward for an 

agent involved in edge computing by taking the current environment and action into 

account. It is crucial to note that MDPs adhere to the Markov property which simplifies 

the calculation of transition distributions between states. As a result of the application 

of this property, the future state of the system is solely governed by the current state 

of the system whereas any past states are either ignored or considered irrelevant [93]. 

 

Policy Definition: In the realm of decision-making, policy represents a set of principles 

or guidelines that a governing entity employs to ascertain its course of action. At each 

juncture of this decision-making process, an agent relies upon its established policy to 

determine the appropriate actions to take. From a mathematical standpoint, a policy is 

denoted as a function. It is often symbolized as “π” which maps the various states 

encountered to corresponding actions. There are two principal types of policies: 

 

• A deterministic policy denoted by π: S → A, maps every state S to a 

corresponding step or action. 

• On the other hand, a stochastic policy is denoted by π: S × A → [0, 1]. It 

describes the probability of selecting a particular action in a given state which 

is S. 
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A big part of the edge computing decision-making process is the policy π which acts 

as a roadmap that connects possible states to the probability distribution of viable 

actions. By interacting with the environment, the agent adheres to the policy which 

leads to a series of states, actions, and rewards (τ). As it corresponds to the policy π, 

the trajectory shows how the agent interacts with the environment.  

 

2.6.3. Reward and Return 

 

The reward function specified in the MDP section holds paramount significance in 

assessing desirable behavior. The way edge computing determines advantageous 

results is by generating a numerical output based on the current state, the chosen course 

of action, and the result. A discount is applied to the cumulative reward from a given 

trajectory to figure out the value. 

 

𝐺(𝑡)  =  ∑  + ∞ 𝑘 = 0 𝛾 𝑘 𝑟(𝑡 +  𝑘 +  1)                               (2.10) 

 

In previous research [91], RL methods have been extensively used to identify policies 

(π ∗) that maximize expected returns.  Value functions are utilized in RL to assign a 

value to states, actions, or combinations to determine the agent's interest in such states, 

actions, or combinations. It is important to note that state-action pairs are valued in 

edge computing based on what agents’ predictions will occur from a particular state.  

In addition, the agent's future benefits are dependent on the decisions it makes as 

discussed in [94]. Consequently, value functions are established based on a particular 

policy. Precisely, the state-value function “V π (s)” signifies the value of states under 

a given policy π.  

 

This function is approximated by computing the anticipated return that arises from 

commencing in state S and persistently pursuing policy π. Formally, this can be 

expressed as:  

 

V π (s)  =  Eπ[G(t)|s(t)  =  s]                                         (2.11) 
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In the domain of edge computing, evaluating a policy π at a particular point in time t 

involves using the indispensable metric of expected return denoted as Eπ. In this 

metric, agents are estimated to earn multiple rewards during an episode according to a 

given policy π. The Q-function (or action-value function) can also be used in assessing 

the value of a state-action pair, in addition to the state-value function. Represented as 

Qπ(s, a), the Q-function approximates the anticipated reward for taking action a from 

state s and subsequently adhering to policy π: 

 

Formally, this can be expressed as:  

 

𝑄 𝜋 (𝑠, 𝑎)  =  𝐸𝜋[𝐺(𝑡)|𝑠(𝑡)  =  𝑠, 𝑎(𝑡)  =  𝑎]                            (2.12) 

 

2.6.4. Optimal Value Functions 

 

In the domain of policies dictating value functions, the paramount function that attains 

the highest value for all states is acknowledged as the optimal value function and 

denoted as V ∗ (s). This function epitomizes the utmost value of V π (s) among all 

policies π: 

 

𝑉 ∗  (𝑠)  =  𝑚𝑎𝑥 𝜋 𝑉 𝜋 (𝑠)                                           (2.13) 

 

In edge computing, the Q ∗ (s, a) function denotes the action value that yields the 

maximum expected reward achievable by the agent when it starts from a given state 

“s” and performs a specific action “a” regardless of the policy employed. 

 

𝑄 ∗  (𝑠, 𝑎)  =  𝑚𝑎𝑥 𝜋 𝑄 𝜋 (𝑠, 𝑎)                                        (2.14) 

 

Acknowledging that V ∗ (s) represents the maximum anticipated total reward at the 

beginning of a state. It is of utmost importance in the context of edge computing. 

Accordingly, the greatest value of Q∗ (s, a) available among all feasible actions 

corresponds to V ∗ (s). The precise mathematical connection between V ∗ (s) and Q∗ 

(s, a) can be succinctly expressed as follows: 
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 V ∗  (s)  =  max a Q ∗  (s, a)                                          (2.15) 

 

2.6.5. Optimal Policy  

 

In edge computing, the association between Q∗ (s, a) and π ∗ is of critical importance. 

Specifically, Q∗ (s, a) indicates the expected rewards that an agent would receive when 

selecting an action while always following the optimal policy [95]. A policy designed 

to maximize the expected reward from states, on the other hand, selects an action that 

maximizes the current reward.  

 

Therefore, if the optimal Q-function Q∗ (s, a) is available, the optimal policy π ∗ (s) 

can be computed directly utilizing the equation provided below: 

 

𝜋 ∗  (𝑠)  =  𝑎𝑟𝑔𝑚𝑎𝑥 𝑎 𝑄 ∗  (𝑠, 𝑎)                                      (2.16) 

 

2.6.6. Advantage Functions 

 

In the field of edge computing, the Advantage function holds significant importance 

in reinforcement learning (RL) as it aids in assessing the effectiveness of a chosen 

action compared to other potential alternatives. The Advantage function is represented 

as Aπ(s, a) which is closely associated with a policy π and measures the incremental 

progress achieved by selecting action a in state s as opposed to opting for a random 

action and adhering to policy π for an extended duration [95]. The mathematical 

definition of the Advantage function entails the difference between the Q-function and 

the V-function: 

 

𝐴𝜋 (𝑠, 𝑎)  =  𝑄𝜋 (𝑠, 𝑎)  −  𝑉𝜋 (𝑠)                                      (2.17) 

 

In algorithms such as the Proximal Policy Optimization algorithm, the Advantage 

function is of paramount importance. In our research, we aim to tackle the challenging 

issue of computation offloading by employing this technique. By employing this 

approach, we enhance system performance by optimizing computation resource 

allocation between mobile devices and cloud servers. However, it is pertinent to note 
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that our study will only concentrate on resource management aspects and other factors 

associated with edge computing will be outside the scope of our research. 

 

2.6.7. Bellman Equations  

 

The Bellman equation constitutes a pivotal component of RL algorithms and holds a 

prominent position in the RL literature. Its importance stems from the fact that it 

defines the association among the value function of a specific state and that of the 

subsequent state. The dissection of the value function into two distinct components 

specifically, the instant gratification and the reduced value of the upcoming state has 

proven to be an essential building block for the creation of RL algorithms. This 

equation not only serves as a fundamental cornerstone for RL algorithm design but 

also theatres a critical role in the determination of optimal decision-making policies.  

 

Mathematically: 

 

 𝑉 𝜋 (𝑠)  =  𝐸[𝑟(𝑡 +  1)  +  𝛾𝑉 𝜋 (𝑠(𝑡 +  1))|𝑠(𝑡)  =  𝑠]                   (2.18) 

 

Similarly for the Q-function: 

 

𝑄 𝜋 (𝑠, 𝑎)  =  𝐸[𝑟(𝑡 +  1)  +  𝛾𝐸𝑎 ′𝑄 𝜋 (𝑠(𝑡 +  1), 𝑎′ )|𝑠(𝑡)  =  𝑠, 𝑎(𝑡)  =  𝑎 (2.19) 

 

As part of edge computing, optimal value functions can be derived using the Bellman 

equation. In this scenario, the approach involves identifying the action that maximizes 

the value as opposed to computing the expectation based on a particular policy [95]. 

 

𝑉 ∗  (𝑠)  =  𝑚𝑎𝑥 𝑎 𝐸[𝑟(𝑡 +  1)  +  𝛾𝑉 ∗  (𝑠(𝑡 +  1))|𝑠(𝑡)  =  𝑠]           (2.20) 

 

 

𝑄 ∗  (𝑠, 𝑎)  =  𝐸[𝑟(𝑡 +  1)  +  𝛾 𝑚𝑎𝑥 𝑎 ′ 𝑄 ∗  (𝑠(𝑡 +  1), 𝑎′ )|𝑠(𝑡)  =  𝑠, 𝑎(𝑡)  =

 𝑎]                                                                  (2.21) 
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The Bellman equation possesses a unique attribute that simplifies the calculation of 

the value function. It transforms the value function's computation into a dynamic 

programming problem, thereby facilitating the recursive determination of optimal 

solutions from less complicated sub-problems in the field of edge computing. This 

attribute significantly streamlines the value function computation process, thereby 

boosting solution efficiency. 

 

 2.6.8. Off-Policy vs On-Policy Learning 

 

To address the issue of optimizing offloading decisions in edge computing, RL 

algorithms have been categorized according to the learning policy employed by the 

agent. Off-policy methods permit the agent to use a behavior policy that differs from 

the target policy through which the algorithm aims to identify. This approach enables 

the agent to behave randomly in the environment, while off-policy methods utilize 

experience replay from previous samples collected using various policies to determine 

the optimal policy. 

 

Utilizing off-policy methods such as the Q-learning algorithm offers significant 

advantages as they promote exploration and enhance sample efficiency without the 

necessity of collecting new experiences every time as the policy is always updated. 

[91, 96]. 

 

Unlike off-policy techniques, on-policy methods aim to improve the agent's policy for 

interacting with the environment by aligning the behavior policy with the target policy. 

The agent generates samples using its existing policy and then enhances it by 

leveraging the collected experience resulting in an updated policy that is used to gather 

new data while disregarding previous experience. The same policy is refined 

iteratively until it attains an optimal policy in a process referred to as convergence 

[96]. An exemplary illustration of an on-policy-based methodology encompasses the 

proximal policy optimization algorithm. 
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2.6.9. Model-Based vs Model-Free RL 

 

To facilitate RL, the function representing the environment model predicts state 

transitions and associated rewards [95]. MDPs serve as a fundamental framework for 

edge computing systems where the environmental model is composed of two integral 

components: the transition probability matrix T and the reward function R. These key 

elements hold significant importance in the optimal decision-making process within 

the realm of edge computing. 

 

Using an environment model for planning purposes enables the agent to anticipate 

possible future actions and make informed decisions. This approach falls under the 

category of Model-based methods [95]. A notable example of such methods is MuZero 

[97] which is a derivative of the renowned AlphaZero [98] algorithm. 

 

Although model-based learning has several advantages, it is primarily challenged by 

the fact that the agent must learn the environment model through trial and error. During 

interactions with the environment, approximations of the state transition and reward 

functions are made. However, when a model is learned to approximate the actual 

model, the learned policy can become biased and exhibit suboptimal performance 

when applied to the actual model. As a result, discovering the optimal policy can be 

hindered.  Attaining model-based learning still presents an inherent challenge [95]. On 

the other hand, model-free approaches do not depend on a model for policy inference. 

Rather, they aim to approximate the policy while neglecting the estimation of 

environmental dynamics such as state transitions and reward functions. This 

fundamental dichotomy highlights the trade-offs and considerations that underpin the 

design of effective machine-learning algorithms. 

 

When considering the potential of leveraging experiences gained from interactions 

with the environment, agents have the option to estimate V-functions and deduce a 

policy or they may choose to directly estimate the policy. Notably, the latter approach 

offers a significant advantage that it can learn an optimal policy without relying on a 

model of the environment. As a result, this technique is versatile and can be effectively 

employed across a range of environments including novel or unforeseen scenarios 
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[99]. This particular trait has led to the widespread adoption of model-free 

reinforcement learning algorithms which have undergone extensive enhancement and 

validation in comparison to model-based approaches [95, 99]. Furthermore, 

consolidating its position as a reliable and adaptable solution for edge computing 

applications. 

 

2.7. DEEP REINFORCEMENT LEARNING  

 

Artificial Deep Neural Networks (DNNs) are used in deep learning (DL) to replicate 

the human brain's learning process. With the advantage of DL, the field of machine 

learning has achieved unprecedented outcomes and outperformed conventional 

machine learning approaches including computer vision, speech recognition, and 

language translation [100]. DNNs have demonstrated exceptional performance 

surpassing human performance in some cases. The exceptional aptitude of deep neural 

networks to comprehend and recognized intricate patterns of features within 

voluminous and complex input data especially visual imagery is a remarkable 

achievement. The complexity of these networks is inherent in their multiple layers of 

abstraction where intricate operations are executed to extract meaningful information 

from the data. 

 

 DRL is a variant of reinforcement learning that unifies the methodologies of RL and 

Deep Learning (DL). DRL has facilitated remarkable breakthroughs in artificial 

intelligence (AI) as demonstrated by the impressive performance of DeepMind's 

MuZero algorithm. MuZero has achieved superhuman performance in Chess, Go, 

Shogi, and Atari games. Thus, highlighting the potential of DRL algorithms in 

enhancing AI capabilities [97]. 

 

The utilization of deep learning (DL) techniques has enabled the scalability of (RL) to 

previously an unattainable decision-making situation especially those involving high-

dimensional state and action spaces such as raw sensor data from robots, sounds, or 

images [101]. RL in edge computing employs deep learning (DL) to model policies or 

other value functions as deep neural networks (DNNs) for identifying the optimal 

policy. DNNs excel in handling high-dimensional data that is typical of real-world 
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edge computing problems making them well-suited for estimating learned functions. 

Additionally, DNNs can learn incrementally as the agent acquires more experience in 

the environment. Furthermore, it enhances their effectiveness in edge computing 

applications. 

 

 DRL has been effectively implemented to tackle a multitude of problems across 

diverse domains. In the realm of robotics, DRL has enabled robots to learn optimal 

policies using camera inputs as evidenced [102].  

 

DRL has garnered substantial attention in diverse domains including but not limited to 

self-driving vehicles, natural language processing, and healthcare. One notable 

application of DRL is in training agents for critical driving skills such as object and 

lane detection, trajectory optimization, and control of steering, acceleration, and 

braking among other essential tasks [103]. RL techniques have also been applied to 

natural language processing (NLP) tasks such as text summarization and question 

answering with notable success [104, 105]. In the healthcare sector, RL agents have 

been implemented for diverse purposes including but not limited to automated medical 

diagnoses, dynamic treatment regimens for chronic diseases, drug discovery, and more 

[106]. 

 

In addition, there has been a growing trend of utilizing DRL in various engineering 

applications including energy optimization [107] and industrial process control [108]. 

The focus of this study is on multi-access edge computing and aims to investigate the 

potential of DRL for resource management within this specific domain. 

 

 2.7.1. Deep Deterministic Policy Gradient (DDPG) 

 

The issue of efficiently managing large, continuous state and action spaces in edge 

computing while utilizing a deterministic policy has been addressed through the 

introduction of the Deep Deterministic Policy Gradient (DDPG) algorithm. This 

innovative algorithm was first presented in [90]. Instead of using probability 

distribution for actions, the deterministic nature of DDPG enables the actors to directly 

compute actions [109]. This approach builds on the actor-critic technique used in DQN 
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which helps avoid iterative optimization at every step and determines optimal Q-values 

in continuous action space cases. DDPG consists of two neural networks: the actor 

network π𝜓, also known as the policy network, and the critic network Qθ. Both of 

which have specific network parameters represented by 𝜓 and θ [110]. 

 

The π𝜓 actor-network is responsible for planning a state to an action. The actor is 

deterministic taking the state as an input and providing the action as an output. An 

action's Q-value is calculated by mapping the state with the action (a pair of states and 

actions) of the critic network. To ensure stable learning, DDPG employs a replay 

buffer and target network similar to DQN. However, it updates the target networks 

gradually and softly by adjusting the soft target network weights to match the learned 

network weights [111]. In conclusion, DDPG combines two approaches DQN and 

deterministic policy gradient to enable the effective learning of continuous actions. 

  

2.8. CHALLENGES 

 

Employing RL to facilitate offloading decisions in edge computing holds immense 

potential for optimizing the allocation of computing resources and enhancing system 

performance. The reviewed studies in this literature survey have exhibited the efficacy 

of RL algorithms in optimizing offloading decisions leading to substantial 

improvements in system performance. 

 

 

 

 

 

 

 

 

 

 

 



37 

 

 

PART 3 

 

METHODOLOGY 

 

This research introduces an innovative methodology for dynamic task offloading 

decisions with the primary objective of minimizing the average task completion time. 

The proposed approach is designed to ascertain the optimal allocation of 

computational resources within the edge computing environment for specific 

scenarios. The chapter commences by elucidating the system model, delineating 

various factors influencing task completion duration. Each factor is systematically 

expounded upon, and the decision-making process is meticulously formulated. 

Aligned with the system model, the recommended decision mechanism employs the 

Deep Deterministic Policy Gradient (DDPG) algorithm. To assess the effectiveness of 

the proposed approach, a series of experiments are conducted through the simulation 

of the system model. 

 

3.1. RESEARCH MODEL  

 

This study centers on a system architecture encompassing an Internet of Things (IoT) 

edge-IoT user framework, characterized by multiple IoT devices and edge servers, as 

illustrated in Figure 3.1. The system is organized into three tiers, with IoT devices 

occupying the lower layer and edge servers positioned at the upper layer, functioning 

within a Wi-Fi network. In the context of a fixed-location IoT device, the set of devices 

is denoted as I = [1, 2, ... I], where each device is assigned a fixed position. Our 

research hypothesis posits that inherent limitations in resources such as computational 

power, storage, and battery capacity impede IoT devices from autonomously executing 

computational tasks. Moreover, even if executed, these tasks may incur significant 

latency due to the limited resources, thereby presenting critical issues in time-sensitive 

communication scenarios [112]. To address this concern, the current research proposes 

offloading all tasks generated by IoT devices to multiple edge servers with superior 
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performance. This research overlooks the concept of local processing on IoT devices 

and presupposes that every device has the capacity to produce tasks solicitation 

simultaneously. 

 

Figure 3.1. System Architecture [113]. 

 

Upon initiation, the assignment is structured and programmed for processing at the 

edge server, employing the offloading resolution algorithm executed at the edge. 

Following the execution of the mission, IoT devices can retrieve the results from the 

edge server.  

 

3.1.1. Environment of IoT-Edge Computing 

 

• Navigation data, sourced from the CRAWDAD dataset, has been amassed by 

users of IoT devices, which subsequently offload tasks to avail computational 

services from the edge server. Subsequent to the processing of the requested 

task, users receive the processed task from the edge server and proceed to 

offload another new task to the edge server. 

• When an IoT device submits a task request from the edge, the edge allocates 

computational resources to process the task, functioning at a rate of (6.3 * 1e7 

bytes/sec). This allocation encompasses computing power, including CPUs, 
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memory, GPUs, and storage within the system. These resources are 

instrumental in executing computations, performing tasks, and processing data. 

The system edge server accommodates a maximum number of concurrent 

users, ensuring an equitable and efficient distribution of computing resources 

such as processing power and memory. 

• Task migration to an alternative edge server becomes viable under specific 

circumstances, such as when a designated edge server faces impediments in 

task completion or if relocation proves to be more efficient on another server. 

The migration speed is, however, capped at 1e9 bytes per second, constrained 

by available bandwidth. Dynamic adjustments in job distribution among edge 

servers, constrained by bandwidth limitations, are implemented to optimize 

resource utilization and enhance overall system performance. 

• The task offloading process, initiated when a task is requested from an IoT 

device or a mobile user, involves sequential steps: 

a. Step 1: Commence the offloading of a task to an edge server. 

b. Step 2: The edge server receives the requested task (2.7 * 1e4 bytes), where 

the value "2.7 * 1e4 bytes" denotes the size of the data being transmitted. 

c. Step 3: The requested task is processed (1.08 * 1e6 bytes), with "1.08 * 1e6 

bytes" representing the size of the data produced as a result of task 

processing. 

d. Step 4: The mobile user or IoT device imminently receives the requested 

task (96 bytes), with "96" indicating the size of the data being transmitted 

back. 

e. Step 5: Disconnect (default). 

f. Step 6: The requested task has been transferred or migrated to another edge 

server, signifying the relocation of the initially offloaded task for 

processing. This may occur if the initial edge server encounters difficulties 

in successful task completion or if load balancing techniques necessitate 

task redistribution. 
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3.1.2. Task Offloading Model  

 

This section delves into the assessment of the task offloading model from the 

perspective of an edge server, considering processing, queueing, and transmission 

delays. Consistent with the model proposed by Mao et al. (2017), the computation task 

requested by the i-th IoT device is represented as a tuple, Ai = [Li , Li ′ , Ci], where Li 

denotes the bits required to specify the size of the input-data, Li′ represents the bits 

needed to describe the task's output, and Ci indicates the number of CPU cycles 

necessary to execute the task. The definitions of the terms utilized in this study are 

elucidated in Table 3.1. 

 

Table 3.1. Definitions of Terms. 

 

3.1.2.1. Edge Server  

 

Assuming that we are addressing an Internet of Things (IoT) device denoted as "i," it 

can be observed that the edge server assigns a computation task to it with a specific 

capacity expressed in terms of "𝑓𝑖
𝑒𝑠" cycles per second. The delay incurred during the 

execution of this task at the edge server can be calculated by aggregating the total 

computation delay, which can be mathematically expressed as follows:  

 

Terms Definition 

�̅� 𝑡 𝑒𝑠                               The capacity required by the edge to process all tasks queued at the 

edge in time 𝑡 

𝐹𝑡 𝑒𝑠                                               At time t, the current edge capacity is available 

Fi 𝑒𝑠 Allocation of computing capacity at the edge to IoT devices 

𝐿𝑖                          Input-data size for IoT device 𝑖 task definition  

𝐶𝑖 IoT device 𝑖 𝑓𝑖 compute task required number of CPU cycle 

  𝐼                         Defining the task of an IoT device based on its input data size in bits 

𝑁𝑡 ′𝑒𝑠                 

 

Currently, there are no unfinished tasks on the edge 𝑡 

 

𝐿𝑖 ′                      
IoT device 𝑖 output-data size is defined by the number of bits in the 

task 

𝑁𝑡 𝑒𝑠                  At the time, how many tasks have been completed in the edge 𝑡 

𝑇𝑖 𝑒𝑠                      IoT device 𝑖 processing task at edge - computation delay 

𝑊𝑖 𝑒𝑠              There is a queueing delay until a task is retrieved at the edge for IoT 

device 𝑖 
𝑄 𝑒𝑠                     Processing queue at edge 



41 

𝑇𝑖
𝑒𝑠  =   

𝐶𝑖

𝑓𝑖
𝑒𝑠 .                                                                (3.1) 

 

Upon arrival at the edge server, the designated task is placed in the edge processing 

queue, denoted as 𝑄𝑒𝑠. Operating on a first-in, first-out processing model, this queue 

employs a discernment mechanism to identify the suitable processing destination. It is 

presumed, in accordance with this premise, that the queue consistently monitors the 

number of outstanding requests. In accordance with [37] proposed model, the retrieval 

time for task i in the edge queue 𝑄𝑒𝑠 can be determined by calculating 𝑊𝑖
𝑒𝑠, where 

there are i tasks in the queue. This can be achieved using the following equation:  

 

𝑊𝑖
𝑒𝑠 = ∑ 𝑇𝑛

𝑒𝑠𝑖−1
𝑛=1                                                                     (3.2) 

 

The total delay for an IoT device i at the edge server is a combination of the processing 

delay and the queuing delay, represented by {𝑇𝑖
𝑒𝑠 , 𝑊𝑖

𝑒𝑠}.  

 

3.1.3 Problem Formulation 

 

The focal point of this investigation revolves around the intricate challenge of 

minimizing task completion time when employing IoT devices with edge computing 

capabilities. A notable constraint emerges when the singular edge server is congested, 

impeding the attainment of minimal completion times for IoT devices. This challenge 

emanates from the inherent limitation of the solitary edge server, which possesses 

finite resources, and the surge in offloading requests adversely affects task completion 

time, consequently depriving IoT devices of achieving minimal completion durations. 

 

To surmount this extant obstacle, a pragmatic strategy involves the distribution of a 

subset of designated tasks, allocating them for processing across both the singular and 

multiple edge servers. This strategic allocation aims to streamline the offloading 

process, thereby enhancing overall system performance. The principal objective of this 

study is to devise a judicious decision-making mechanism for offloading, underpinned 

by the Deep Deterministic Policy Gradient (DDPG) algorithm. This mechanism 

optimizes the task offloading ratio from IoT devices to the multitude of edge servers. 
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The proposed approach constitutes an innovative departure from conventional 

computation offloading techniques. The paramount goal is the reduction of the average 

total duration of task completion. 

 

3.2. OFFLOADING DECISION MECHANISM 

 

In this segment, we present our approach to addressing the issue delineated in the 

preceding section, utilizing the DDPG algorithm as our offloading decision 

mechanism. In this study, we introduce our method that incorporates different factors 

with the aim of achieving peak efficiency, including computation delay, transmission 

delay, and queueing delay. Our approach employs a decision-making mechanism, 

which is developed using the conventional framework of RL as expounded by [114] 

and relies on a MDP as the underlying model. 

 

3.2.1. Deep Deterministic Policy Gradient (DDPG) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2. Dynamic task offloading mechanism based on DDPG [1]. 

 

The DDPG algorithm, introduced in this study [90], represents an evolved iteration of 

the Deep Q-Network (DQN), incorporating an actor-critic methodology. Addressing 

the intricacies associated with expansive state and action spaces in RL, the (DDPG) 

algorithm emerges as a strategic solution by employing a deterministic policy. This 

obviates the need for iterative optimization to acquire optimal Q-values at each time 
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step, as the algorithm progressively refines the values of state-action pairs, 

consequently enhancing the learning agent's behavior. The discrete nature of 

ascertaining the feasibility of task migration from IoT devices to the edge is distinct 

from the continuous resource allocation problem. For the optimization of (IoT) tasks, 

our approach leverages the DDPG algorithm, facilitating the offloading decision-

making process from IoT gadgets to multiple edge servers. Notably, the algorithm's 

capacity to update model weights at each step facilitates rapid adaptation to a dynamic 

environment, rendering the DDPG algorithm instrumental in efficiently allocating 

computational resources. 

 

Each time slot necessitates a decision on whether to offload tasks in chronological 

order, given the chronological ordering of task arrivals. According to the DDPG 

algorithm, the action at, state St, and reward Rt are all determined based on time t, 

accomplished through the deployment of (RL) agent on the edge server. The DDPG 

algorithm, as depicted in Figure 3.2, guides the decision-making process for task 

offloading. As discussed in Chapter 2.3.2, the DDPG algorithm employs both actor 

and critic neural networks. The actor network receives state information, and the actor 

network outputs action information. The critic network, utilizing the state and action 

as inputs, estimates their values. Subsequently, the environment acquires the new state 

St+1 and reward Rt from the actor network when the actor network initiates an action 

At (specific task offloading decision). The state St+1 is updated through this process, 

serving as the environment's environmental state. In the critic network, the reward 

function imparts the optimal state value to the agent, influencing its behavior. The 

actor network, informed by feedback from the critic network, enhances its 

performance in the realm of policy improvement. This feedback is contingent upon the 

Q-value or reward associated with a specific action. Our study contributes to this 

enhancement by introducing a novel policy gradient and a fresh Temporal Difference 

(TD) metric, quantifying the discrepancy between projected and realized rewards. The 

intricacies of the state space, action space, and reward function are comprehensively 

elucidated in this report, along with a detailed exposition of the mechanisms 

underlying our proposed methodology. 
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3.2.1.1. State Space  

 

The state space St at a given time t is intricately determined by the present state of both 

IoT gadgets and the edge server. The edge server state encompasses various factors, 

including the available computing resources for each edge server, the migration 

bandwidth between edge servers, the offloading goal of each mobile user or IoT 

device, and the location of each mobile user. Formalizing this, the state space St at a 

given time t is defined as: 

 

𝑆𝑡 =  [𝐹𝑡
𝑒𝑠, F̅𝑡

𝑒𝑠
, 𝑁𝑡

𝑒𝑠 , N′𝑡
𝑒𝑠 ] .                                                                         (3.3) 

 

where the server's available capacity at time 𝐹𝑡
𝑒𝑠, the required capacity to process all 

tasks in the edge queue at time F̅𝑡
𝑒𝑠

, the number of tasks completed on the edge server 

at time 𝑁𝑡
𝑒𝑠, and the number of tasks that remain unfinished at time N′𝑡

𝑒𝑠. 

 

3.2.1.2. Action Space 

 

Within the decision-making framework for agents, a critical decision arises at time t 

within the action space At. This encompasses the execution of all computations at the 

edge, with the following components: 

  

𝐴𝑡 = [∑ 𝑇𝑛
𝑒𝑠𝑖

𝑛=1 , 𝛼]                                                               (3.4) 

 

The indicator α within the action space represents the computational power required 

for tasks offloaded from IoT gadgets to edge servers. 

 

3.2.1.3. Reward Function 

 

The reward function, formulated to quantify the immediate reward for undertaking an 

action, is expressed as: 

 

Rt = R(St, At, S{t+1})                                                                                            (3.5) 
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The 'Reward (Rt)' is a function denoted as 'Reward function (R(St, At, S{t+1}))' 

measuring the immediate benefit or cost associated with taking action At while in state 

St and transitioning to state S{t+1}. This metric serves as an evaluative tool to gauge 

the desirability of an action within a specific state. 

 

3.3. EXPLORATION AND EXPLOITATION 

 

Exploration and exploitation are pivotal concepts in the realm of (RL). The DDPG 

algorithm adeptly combines both exploration and exploitation to acquire optimal 

policies within continuous action spaces. The algorithm integrates exploration by 

introducing noise to the actor's policy during action selection, promoting the 

exploration of diverse actions and preventing fixation on suboptimal solutions. 

Exploitation, on the other hand, involves utilizing learned knowledge to maximize 

expected cumulative rewards. In DDPG, exploitation transpires when the actor selects 

actions based on the learned deterministic policy, refined through training to maximize 

expected rewards. The actor-critic architecture of DDPG amalgamates both these 

facets, with the actor network learning action-selection policies and the critic network 

estimating value functions for evaluating actions. This feedback loop informs the actor 

about expected rewards, facilitating iterative improvements. 

 

3.4. PROPOSED MODEL ALGORITHM 

 

This study scrutinizes the offloading of tasks and the allocation of computing resources 

in the context of (IoT) and edge computing. The selection of the optimal node, 

prioritized based on proximity to the user network, and the offloading of tasks, as well 

as the allocation of resources, are conducted through the DDPG deep reinforcement 

learning algorithm. The proposed model for resource allocation and task offloading, 

utilizing the DDPG algorithm, is depicted in Figure 3.3. The procedural steps include 

the initialization of networks, prioritizing nodes for IoT users, and iterative updates of 

network parameters. The algorithm ensures convergence through continual adaptation 

to the dynamic environment and the fulfillment of specific conditions. The 

comprehensive elucidation of the proposed model encompasses considerations of state 
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spaces, action spaces, and reward functions, providing a robust foundation for 

understanding the intricacies of our innovative methodology. 

 

 

Figure 0.3. Dynamic decision-making mechanism flowchart for resource allocation 

and dynamic task offloading. 

 

3.5. EXPERIMENTS 

 

This section evaluates the effectiveness of the proposed task offloading mechanism in 

addressing the previously outlined challenges. Throughout our analysis, we delve into 

the intricacies of the system model, the decision-making process for offloading, and 
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pertinent simulations. The implementation utilizes the Python programming language 

on an HP ZBook laptop, tailored for (RL) training. 

 

3.5.1. Simulation Settings 

 

 The subject matter revolves around an (IoT) system operating at the edge-user 

interface. The network encompasses 10 IoT devices initially, progressively increasing 

to 20 and 30, with tasks offloaded to 10 edge servers. Computational resources for 

each edge server are capped at (6.3 * 1e7 bytes/sec), indicating a processing capacity 

of 63 Mbps. The edge server responsible for providing computational resources to 

mobile consumers operates at (6.3 * 1e7 bytes/sec). Tasks can be transferred between 

edge servers with a bandwidth constraint of (1e9 byte/sec). The code utilizes the 

CRAWDAD dataset hosted by IEEE Dat-aPort to provide relevant information about 

the environment, including user navigation patterns. 

 

Table 0.2. The simulation parameters. 

 

 

 

 

 

 

 

 

 

 

3.5.2. Simulation Process 

 

The study employs a training routine with 100 episodes, each mandating 3000 steps 

for every task sequence. The environmental conditions reset at the outset of each 

episode. At each step, the agent selects an action in accordance with a pre-determined 

policy π, updating the environmental status using an array of IoT devices, an edge 

server, and multiple edge servers. Post-action selection, the edge server either handles 

Parameter Value 

Number of IoT devices 10, 20, 30 

Number of edges 10 

Capacity of the edge server 63 Mbps 

Number of episodes 100 

Number of steps per episode 3000 

Actor network rate 0.001 

Critic network rate 0.002 

reward discount 0.99 

Replay buffer size (memory capacity) 10000 

Batch size 64 
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the requests or delegates them to other edge servers if it cannot process the request. 

The edge server updates its computation capability and records the number of 

completed tasks. The ensuing step involves generating a numerical reward, a new 

action is selected, and the cycle resumes. 
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PART 4 

 

RESULTS AND DISCUSSION  

 

In this chapter, we presented a dynamic task offloading decision mechanism based on 

the DDPG for optimizing edge tasks and resource allocation in an IoT edge system. 

 

4.1. DISCUSSION 

 

Our simulation results underscore the efficacy of the proposed DDPG-based task 

offloading mechanism in optimizing edge computing tasks and resource allocation 

within an IoT edge system. The mechanism surpasses baseline strategies, showcasing 

more stable convergence, reduced average task completion times, and a heightened 

count of successfully completed tasks across various scenarios. 

 

The adaptability and dynamic decision-making process inherent in the DDPG 

algorithm render it particularly well-suited for addressing the challenges posed by IoT 

edge computing. In environments characterized by resource constraints and dynamic 

workloads, our mechanism utilizes the continuous action space of DDPG to 

dynamically adjust the task offloading ratio. This adaptive approach optimizes task 

completion time and resource utilization. 

 

Furthermore, our mechanism demonstrates a capacity to adapt to evolving conditions, 

such as an increasing number of IoT users. It achieves this by intelligently distributing 

tasks among edge servers, a crucial aspect for ensuring efficient resource utilization 

and minimizing latency in IoT edge computing environments. Our research 

significantly contributes to advancing edge computing in IoT, presenting a dynamic 

and efficient task offloading mechanism that enhances the responsiveness and 

capability of edge systems in handling diverse workloads effectively. 
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4.2. REWARD VARIATION 

 

This segment of the research investigates reward value changes, reflecting an 

increasing number of completed tasks during specific intervals in the training process, 

each interval representing one episode. The dependent variable, measured on the x-

axis by the number of episodes, and on the y-axis by the cumulative reward obtained 

by the agent across all episodes, demonstrates the average reward obtained through 

multiple runs of the training process. During initial training stages, the agent explores 

various actions to comprehend associated rewards. 

.   

That is, at each iteration, the average execution time for each task is calculated, so: 

 

• If the average execution time during the current iteration is higher than the 

average execution time in the previous iteration, then: 

 

Reward= Reward – N 

 

Where N is the number of tasks in current iteration. 

 

• If the average execution time during the current iteration is less than the 

average execution time in the previous iteration, then: 

 

Reward= Reward + N 

 

This analysis focuses on specific scenarios, including 10 user 10 edge, 20 user 10 edge, 

30 user 10 edge, and 60 user 10 edge. With increasing training processes, a noticeable 

rise in the reward's value is observed in Figures 4.1, 4.2, 4.3, 4.4 and 4.5. 

 

4.3. EVALUATION 

 

We conducted a comprehensive simulation study, comparing our DDPG-based 

mechanism to two baseline strategies: QL and DQN algorithms. The results 

demonstrated the superiority of our mechanism in terms of stability, average task 
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completion time, and the average count of successfully completed tasks across various 

scenarios with varying numbers of IoT users. Illustration and evaluation of algorithm 

performance in order to demonstrate the advantages of the proposed algorithm, we 

compare its performance with some reinforcement learning algorithms. Each 

algorithm encountered the same network change in the simulation. Between every two 

changes, the network model was trained or replicated a certain number of times. In the 

following figures, orange represents the DDPG algorithm considering user 

cooperation, respectively. Blue and green indicate DQN and QL respectively. These 

algorithms from deep reinforcement learning are taken for comparison because they 

are typical and efficient. After continuous research and promotion, these algorithms 

have shown high efficiency and good performance in solving dynamic optimization 

problems [20] [72]. 

 

the following figures shows the reward curve of the DDPG algorithm. The abscissa 

represents the episode turn, and the ordinate is the average reward of the current turn. 

It can be seen that DDPG can realize a rapid increase in rewards and eventually 

converge on a stable result; thus, this algorithm is effective. 

 

In addition, the results showed the effectiveness of DDPG as the number of users 

increased. 

 

 

Figure 4.1. 10 edge 10 users. 
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In this changing number of users, DDPG has excelled and demonstrated efficiency by 

achieving an average of 560 units while QL and DQN lag behind at 500 units each. 

The reason DDPG excels in this scenario is because it returns to handling effective 

control and policies. With fewer users, DDPG was able to adjust and release it as a 

higher system requirement, reducing it. 

 

Figure 0.2. 10 edge 20 users. 

 

As the number of users increased to 20, the complexity of continuous control 

increased. But DDPG continued to shine, recording around 1,050 units, while QL and 

DQN struggled slightly and recorded around 1,000 units each. 

 

DDPG's ability to adapt and fine-tune policies remains its main advantage. He was 

able to navigate increasing complexity and fine-tune its policy, achieving superior 

performance compared to other algorithms. 
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Figure 0.3. 10 edge 30 users. 

 

As the number of users increased to 30, the challenges in continuous control escalated. 

But DDPG once again managed to shine, recording an average delay of around 1,540 

units. Conversely, QL and DQN had difficulty keeping up with the increase and 

recorded around 1,500 units each. 

 

DDPG's ability to adapt to increasing complexity and fine-tune policies ensures that it 

can withstand challenging edge computing environments. Its continued 

outperformance has demonstrated its ability to achieve outstanding performance in 

scenarios that require precise and constant control. 
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Figure 4.4. 10 edge 40 users. 

 

 

Figure 4.5. 10 edge 70 users. 

 

In the subsequent figures 4.4 and 4.5, we increase the number of IoT users in our 

network to 40 and 70 respectively. Notably, our proposed algorithm consistently 

outperforms QL and DQN algorithms under these conditions. 
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Table 4.1 shows the use of a number of Internet of Things users in order to observe 

the extent of the superiority of our proposed algorithm in terms of obtaining 

cumulative reward units in the shortest time compared to the QL and DQN algorithms. 

 

Table 4.1. Effectiveness Between Three Algorithms. 

Number of users DDPG QL DQN 

10 56 units 500 units 500 units 

20 1050 units 1000 units 1000 units 

30 1450 units 1500 units 1500 units 

40 2060 units 2000 units 2000 units 

70 3575 units 3500 units 3500 units 

TIME 23% 10% 20% 

 

4.4. TASKS OFFLOADING RESULTS 

 

To gain insight into our DDPG-based mechanism's decision-making process, we 

analysed the task offloading ratio employed in different scenarios. Our analysis reveals 

that our DDPG-based mechanism dynamically adjusts the task offloading ratio based 

on the number of IoT users and system conditions. In scenarios with a higher number 

of IoT users, the mechanism tends to allocate a greater proportion of tasks to the server, 

optimizing task completion time. Conversely, in scenarios with fewer IoT users, the 

mechanism relies more on edge processing, minimizing latency. This adaptive 

approach ensures optimal task offloading under varying circumstances, enhancing the 

overall efficiency of the IoT edge system. 
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Figure 4.6. 10 user 10 edge. 

 

We note from Figure 4. the increase in the value of the reward with the progression of 

the number of iterations, and this means that the average execution time for the tasks 

arrived during this period decreases, and we also note that this improvement in the 

value of the reward is during a period of only100 iterations, and this indicates that the 

proposed methodology learns very quickly and during the number of iterations Little 

compared to other reinforcement learning methods that need a large number of 

iterations during the training phase until reaching the optimal solution for the desired 

goal. Reducing the number of iterations in the training phase is very beneficial for 

CPUs as it avoids CPU fatigue and exhaustion. 

 

 
Figure 4.7. 20 user 10 edge. 
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We note from Figure 4.7 that with increasing the number of users to 20, the proposed 

methodology maintained its ability in terms of learning and maximizing the value of 

the reward during a few iterations, as in Figure 4.6, but here the value of the reward 

decreases compared to the previous Figure 4.6, and the reason for this is due to the fact 

that increasing the number of users leads to an increase in the load and therefore an 

increase in the number of tasks to be performed. 

 

 

Figure 4.8. 30 user 10 edge. 

 

The same applies to Figure 4.8, where the number of users was increased to 30 while 

maintaining the number of iterations during the training phase. We also notice the 

increase in the value of the reward, but with a lower value than Figure 4.7, due to the 

increase in the number of tasks to be performed. 

 

4.5. VARIANCE IN EXPLORATION  

 

Within the realm of reinforcement learning (RL), specifically concerning (DDPG) 

algorithm, the concept of "variance in exploration" involves the deliberate introduction 

of randomness or uncertainty into the exploration process. This strategic incorporation 

aims to motivate the RL agent to explore diverse actions and states within its 

environment. Exploration holds significant importance in RL, serving as a means for 
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the agent to uncover near-optimal strategies by experimenting with various actions and 

assimilating knowledge from their outcomes. The relevance of variance in exploration 

becomes pronounced when confronted with action spaces housing a multitude of 

potential actions. 

 

In RL algorithms, including DDPG, a policy is employed, indicating that for a given 

state, the objective is to produce a specific action without introducing variability. 

However, effective exploration of the action space demands the introduction of a 

certain degree of randomness. In the case of DDPG, this exploration is often achieved 

by introducing noise to the actor network's action output. This injected noise 

introduces variability in the selected actions, enabling the agent to traverse diverse 

regions within the action space. Various methods exist to introduce exploration 

variance in DDPG, with one common approach involving the utilization of an 

Ornstein-Uhlenbeck Process. This process generates correlated noise, aiding the 

agent's exploration while maintaining a certain level of consistency over time. 

 

The introduction of noise to the action output serves as a method to introduce 

randomness, and the degree of noise can be regulated by adjusting its deviation. The 

level of variance during exploration plays a pivotal role in determining the balance 

between exploring possibilities and exploiting known ones. Striking an optimal 

balance in the amount of variance utilized for exploration is crucial for the agent to 

effectively learn a policy. Excessive variance may impede exploration, making it 

challenging for the agent to identify optimal solutions. Conversely, insufficient 

variance may lead to exploration causing the agent to become entrenched in 

suboptimal policies. Achieving this balance becomes a critical aspect in fine-tuning 

DDPG and similar reinforcement learning algorithms, as it significantly influences the 

agent's ability to learn and discover optimal policies, especially within continuous 

action spaces. 
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Figure 4.9. 10 user 10 edge. 

 

We note from the figure 4.9 that the value of the variance decreases with the increase 

in the number of iterations. Therefore, the system learns and adjusts its parameters 

until a stable load is reached at iteration 40, and then maintains the stability of the load 

during the remaining period. Therefore, the proposed methodology was able to achieve 

fairness in the distribution of resources to tasks over a period of time. Ideally, very few 

repetitions. 

Figure 0.10. 20 user 10 edge. 
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We note from the figure 4.10 that the value of the variance decreases with the increase 

in the number of iterations. Therefore, the system learns and adjusts its parameters 

until a stable load. As we mentioned earlier, the increase in the number of users leads 

to an increase in the number of tasks. Therefore, we notice an increase in the variance 

value compared to the previous case when the number of 10 users . 

 

 

Figure 4.11. 30 user 10 edge. 

 

We notice from the figure 4.11 that the value of the variance decreases with the 

increase in the number of iterations. Therefore, the system learns and adjusts its 

parameters until a stable load is reached at iteration 40. As we mentioned earlier, the 

increase in the number of users leads to an increase in the number of tasks, and 

therefore we notice an increase in the value of the contrast compared to the previous 

two cases. But we note here that despite the increase in the number of tasks, the 

proposed methodology has reached the stage of stability of the load for iteration 40. 

The reason for this is that the process of generating tasks is done randomly and 

balancing the load is related to the size of the incoming tasks and the requirements of 

each task. Therefore, the requirements of the tasks in this scenario are less than In the 

previous two scenarios, therefore, the stability stage was reached at iteration 40, and 

this confirms the flexibility of the proposed methodology and its ability to deal with 

the incoming tasks according to the requirements of each task. 
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We conclude from previous figures 4.9 and 4.10 and 4.11 the reward remains relatively 

stable, with the variance remaining around 1.0 for the first few episodes. As training 

progresses, the reward variance decreases, indicating that the algorithm is becoming 

more stable. The baseline variance also decreases over time, which is a good sign that 

the predicted reward is becoming more accurate. Overall, these results suggest that the 

RL algorithm is working well and the agent is successfully learning to perform the 

task. 

 

4.6. LATENCY 

 

 

Figure 4.12. Comparison of Three Algorithms for Reducing Response Time in Edge 

Computing and User Interaction. 

 

This section provides a comparative examination of the algorithm introduced in this 

paper alongside those in references [72] and [20] all under identical conditions, with a 

focus on the completion time of the resource allocation strategy task. The initial step 

involves the calculation of task completion times for various algorithmic resource 

allocation strategies. Figure 4.12 illustrates the average task completion times for 

different algorithms across varying numbers of tasks. Upon close inspection of Figure 

4.12, it becomes evident that, irrespective of the number of tasks, the algorithm 

proposed in this paper exhibits the shortest average task completion time in 

comparison to the algorithms presented in references [20] and [72]. Notably, as the 
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number of tasks increases, the growth rate of the average task completion time remains 

relatively modest. This observed trend can be attributed to the efficacy of the 

computing resource allocation strategy outlined in this paper, which adeptly prioritizes 

task migration to IoT devices with the swiftest response times. Contrastingly, reference 

[72], utilizing (DQN), introduced edge computing and a comprehensive architecture 

in Mobile Edge Computing (MEC). However, it did not yield improvements in the 

objective function solution process, resulting in extended solution times. Reference 

[20], employing (QL), a deep reinforcement learning algorithm, delved into the general 

optimization of computation efficiency. Nevertheless, detailed analyses and 

optimizations of time consumption calculation models for local tasks and user tasks 

were lacking. 

 

This comparative analysis sheds light on the superior performance of the proposed 

algorithm in minimizing average task completion times across diverse task quantities, 

emphasizing the effectiveness of the computing resource allocation strategy 

introduced in this research. 
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PART 5 

 

CONCLUSION AND FUTURE WORK  

  

In the context of edge-IoT environments, effective task offloading management is 

paramount for ensuring timely and optimal task completion. While existing research 

has primarily explored individual task offloading strategies, our study introduces a 

dynamic mechanism that facilitates collaborative task offloading between IoT users 

and edge servers. Our proposed mechanism employs the Deterministic Deep Policy 

Gradient (DDPG) algorithm to optimize offloading ratios, minimizing the average task 

completion time. 

 

Our experiments, encompassing training iterations and performance metrics, including 

reward variation, average task completion time, and the average amount of completed 

work, demonstrate the efficacy of our decision mechanism. Utilizing object detection 

tasks and distinct neural networks, our comprehensive decision mechanism scheme 

exhibits remarkable convergence during training, resulting in significant 

improvements in task completion time and the ability to process a greater number of 

tasks per second. 

 

As part of future research endeavors, our focus is on further enhancing the efficiency 

of our task offloading decision mechanism. This enhancement will involve 

considerations such as task prioritization, energy consumption, and the mobility 

patterns of IoT devices within our system model. Additionally, expansion of our 

system model to accommodate multiple edge servers is planned, as our current model 

assumes a configuration of 10 servers. 
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