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ABSTRACT 

 

M. Sc. Thesis 

 

PREDICTION OF METROPT APU PERFORMANCE THROUGH IOT-

ENABLED PREDICTIVE MAINTENANCE WITH CNN-LSTM 
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Institute of Graduate Programs  

The Department of Computer Engineering 

 

Thesis Advisor: 

Prof. Dr. Oğuz FINDIK 

 January 2024, 80 pages 

 

This study represents a pioneering leap in predictive maintenance by harnessing the 

power of deep learning. Focused on the MetroPT dataset and its intricate APU (Air 

Production Unit) metrics from a train vehicle, the research meticulously processed and 

engineered features for binary and multi-class analysis. The centerpiece of this work 

is the groundbreaking CNN-LSTM algorithm, meticulously crafted to excel in both 

classification paradigms. The empirical findings are nothing short of exceptional: an 

impressive 92% accuracy for binary classification and an outstanding 99.5% accuracy 

for multi-class prediction. Beyond its immediate impact on predictive maintenance, 

this research serves as a beacon, showcasing the transformative potential of deep 

learning methodologies in fortifying the reliability and efficiency of critical 

infrastructure maintenance systems, marking a substantial stride in the fusion of 

artificial intelligence and industrial upkeep.
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ÖZET 

 

Yüksek Lisans Tezi 

 

METROPT APU PERFORMANSININ CNN-LSTM TEKNİKLERİYLE IOT-

ETKİN ÖNGÖRÜCÜ BAKIM YOLUYLA TAHMİNİ 

 

Shahad Jameel Farhan ALSAID  

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Prof. Dr. Oğuz FINDIK 

Ocak 2024, 80 sayfa 

 

Bu çalışma, derin öğrenmenin gücünü kullanarak tahminsel bakım konusunda çığır 

açan bir adımı temsil ediyor. MetroPT veri kümesine odaklanan ve tren aracındaki 

karmaşık Hava Üretim Ünitesi (APU) ölçümlerini inceleyen araştırma, özellikleri ikili 

ve çoklu sınıflı analiz için özenle işlendi ve mühendislikle şekillendirmiştir. Bu 

çalışmanın odağında, her iki sınıflandırma paradigmasında da başarılı olacak şekilde 

özenle oluşturulmuş çığır açan CNN-LSTM algoritması bulunmaktadır. Deneysel 

bulgular sonucunda ikili sınıflandırma için %92 doğruluk ve çoklu sınıf tahminleri için 

%99.5 doğruluk elde edilmiştir. Bu araştırmanın tahminsel bakım üzerindeki doğrudan 

etkisinin ötesinde, bu çalışma, derin öğrenme metodolojilerinin kritik altyapı bakım 

sistemlerinin güvenilirliğini ve verimliliğini sağlamlaştırmada yapabileceği 

dönüştürücü potansiyeli sergileyen bir işaret olarak hizmet ediyor, yapay zeka ile 

endüstriyel bakımın birleşiminde önemli bir adımı temsil ediyor.
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PART 1 

 

INTRODUCTION 

 

1.1. BACKGROUND  

  

The Internet of Vehicles (IoV) is a beacon of transformative technology in 

transportation. IoV data enhances traffic management and road safety through machine 

learning and deep learning. Challenges exist in centralized machine learning methods, 

limiting their scalability in IoT deployment. IoV's intelligent vehicles, connected to 

sensors, establish wireless links with infrastructure, cars, and devices, ensuring safer 

roads [1]. Integrating the IoV within the Cyber-Physical System (CPS) framework 

represents a groundbreaking evolution in transportation technology. Integrating 

sensors, computation, control, and networking into vehicles and infrastructure, IoV 

facilitates intelligent decision-making through analytical algorithms, enhancing safety, 

traffic management, and cost efficiency [2]. This amalgamation optimizes delivery 

routes and vehicle maintenance for companies and revolutionizes the passenger 

experience, providing in-car entertainment, information access, and Internet 

connectivity. Moreover, IoV holds the potential to significantly reduce emissions and 

environmental impact by fostering more efficient transportation systems. 

Concurrently, the rise of the Internet of Things (IoT) has revolutionized 

interconnectivity across diverse fields, such as manufacturing and transportation [3], 

[4]. However, deploying Industrial Internet of Things (IIoT) frameworks presents 

multifaceted challenges, encompassing cybersecurity, scalability, interoperability, and 

energy efficiency [5,6]. 

 

In the contemporary industrial landscape, manufacturing systems have transformed 

remarkably, integrating capabilities to monitor, control, and communicate within their 

environment. This evolution has facilitated seamless.  
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Machine-to-machine and human-to-machine communication while also fortifying 

industrial machinery against potential failures. Through these advancements, a 

paradigm of intelligent manufacturing has emerged, significantly driven by machine 

learning models [7]. One particularly noteworthy application in this domain is 

predictive maintenance, a strategic approach widely embraced across diverse 

industries. Despite challenges in integrating Predictive Maintenance (PdM) with the 

IIoT, its adoption remains prevalent due to its effectiveness in mitigating uncertainties 

within industrial settings, enhancing operational efficiency, and reducing downtime 

[8]. 

 

The primary objective of PdM is to systematically monitor machinery conditions to 

avert costly breakdowns and execute maintenance only when genuinely warranted. 

The evolution of PdM traces its roots to the era of manual visual inspections of 

machines. [9], [10]. Typically, IoT-enabled PdM systems encompass several integral 

stages, including data collection, pre-processing, and constructing models for fault 

diagnosis and prognosis, culminating in providing decision support for maintaining 

industrial machinery. The imperative for implementing predictive maintenance models 

in the industry is now fundamentally underscored [11]. PdM, positioned as a forward-

looking strategy to identify machinery failures preemptively, holds substantial 

potential in curtailing industrial expenditures and extending the operational lifespan of 

equipment. As a proactive diagnostic approach, PdM encourages diverse industrial 

facilities to monitor their systems in real-time actively, thereby augmenting overall 

operational efficiency [12]. Concurrently, diagnostic methods play a cornerstone in 

discerning fault types through comprehensive assessments of machinery's current 

status [13]. Furthermore, PdM assumes a crucial role in elevating prediction accuracy, 

aligning with the precision of predictions to enhance efficiency in industry-specific 

applications [14]. In a concerted effort toward sustainable asset preservation, 

industries adopt diverse machine-learning techniques to achieve precise predictions 

for safeguarding industrial assets [15].  

 

Deep Learning (DL), a subset of artificial intelligence, has emerged as a powerful 

instrument for crafting intelligent algorithms across diverse applications. Rooted in its 

inspiration from the human nervous system and brain structure, DL can effectively 
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manage high-dimensional and multivariate datasets, rendering it an appealing 

methodology for practitioners in PdM applications. The augmentation of layers and 

neurons within DL models enhances their proficiency in unsupervised learning, 

particularly in tackling more intricate problems. Prominent examples of DL algorithms 

encompass Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), 

Deep Belief Networks (DBN), and Recurrent Neural Networks (RNN). However, it is 

imperative to note that the efficacy of DL algorithms hinges on the judicious selection 

of the appropriate DL technique tailored to the intricacies of a given problem [16], 

[17]. 

 

The predictive capacity to anticipate machinery failures confers substantial benefits by 

mitigating costs linked to unscheduled maintenance and minimizing consequential 

downtime, exerting a noteworthy financial impact on businesses. Consequently, 

researchers and developers have a dedicated commitment to augment prediction 

models, aiming to elevate accuracy and performance in anticipation of device errors 

prior to manifestation. This proactive approach facilitates preemptive replacement or 

repair, thereby ensuring continuous operations and minimizing disruptions. 

 

1.2. PROBLEM STATEMENT 

 

The industrial and transportation services sector, particularly vehicle fleets, grapples 

with significant challenges in maintaining its equipment and assets. These difficulties 

arise from the high costs and disruptions caused by unforeseen breakdowns, leading 

to increased downtime and subsequent material and human losses. The conventional 

preventive and corrective maintenance approaches pose financial strains on 

companies, diminishing productivity. Leveraging the advancements in technology and 

the growing influence of the IoT, PdM emerges as an enticing solution for businesses, 

industrial entities, and vehicle fleets. This research aims to improve maintenance 

efficiency while reducing costs by developing accurate predictive models to detect 

equipment and asset malfunctions early. These models empower companies to perform 

timely maintenance, optimizing the utilization of their valuable assets. 
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1.3. THESIS OBJECTIVE 

 

The pursuit of PdM in the anticipation of failures within industrial vehicles and 

equipment is underscored by a set of overarching objectives: 

 

• Cost Reduction and Enhanced Efficiency: The foremost objective resides in 

reducing expenses associated with preventive and corrective maintenance 

through the attenuation of scheduled and unwarranted equipment maintenance. 

By proactively forecasting potential breakdowns, companies can optimize the 

allocation of maintenance resources, thereby yielding cost savings and 

diminishing the risk exposure for maintenance personnel. 

• Increased Productivity and Enhanced Production Efficiency: Through the 

minimization of unplanned downtime attributed to breakdowns, companies can 

fortify productivity and enhance the operational efficiency of their products, 

thereby ensuring alignment with customer demands. 

• Enhanced Safety: The capacity to preemptively detect malfunctions constitutes 

a pivotal factor in enhancing safety within work environments, concurrently 

diminishing the risks of accidents associated with industrial assets and 

equipment. Additionally, this capability extends to ensuring occupant safety in 

the context of vehicular operations. 

• Reputation Enhancement: By avoiding unscheduled disruptions and delays, 

companies can uphold their reputation and cultivate heightened customer trust, 

particularly in enterprises heavily reliant on vehicle fleets for service delivery. 

• Advancing Sustainability: The prevention of breakdowns and interruptions 

assumes a pivotal role in the diminution of waste and the extension of asset 

lifespans. This, in turn, contributes substantially to heightened sustainability and 

a concomitant reduction in environmental footprint. 

 

1.4. THESIS SIGNIFICANCE 

 

In the context of PdM leveraging deep learning models, this study makes several 

notable contributions:  
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• Meticulous analysis and pre-processing steps applied to the MetroPT dataset 

[18].  

• Adept execution of feature extraction and selection procedures is demonstrated.  

• Involves the construction of a deep learning model employing the CNN-LSTM 

algorithm.  

• The research attains commendable outcomes, exhibiting a level of satisfaction 

in comparison to findings by preceding researchers.  

 

1.5. THESIS SCOPE 

 

The present study intricately explores the application of deep learning algorithms in 

predictive maintenance, concentrating specifically on the MetroPT dataset utilized 

within the context of an Air Production Unit (APU) in a train vehicle. The 

methodological framework centers on the application of feature engineering to 

construct binary-class and multi-class categories, employing the CNN-LSTM 

algorithm for comprehensive analysis and prediction. 

 

1.6. THESIS OUTLINES 

 

This thesis is organized as follows: PART 2. provides an exhaustive review of PdM, 

elucidating its implications of the Industrial Revolution and delineating the various 

stages of its development. PART 3. explains the proposed model and its associated 

algorithms, concurrently exploring the dataset employed and detailing the 

methodologies applied for its analysis and processing. In PART 4, insights into the 

hyperparameters used are provided, accompanied by the presentation of experimental 

results based on the dataset, featuring a comparative analysis against prior research. 

This section also underscores the current study's limitations and outlines potential 

directions for future research. Finally, PART 5. encapsulates a comprehensive 

summary of the user data analysis, outlines future perspectives, draws conclusive 

findings, and furnishes a concluding overview of the thesis. 
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PART 2 

 

LITERATURE REVIEW 

 

2.1. INDUSTRY 4.0 AND PREDICTIVE MAINTENANCE  

 

Industrial enterprises have undergone transformative phases across various industrial 

revolutions, from the advent of steam engines in the 18th century to the current era of 

digitalization technology. The inauguration of steam engines heralded the onset of 

"Industry 1.0," also known as the mechanical revolution, entailing the transition from 

manual production to the adoption of steam and water-powered machinery. 

Subsequently, "Industry 2.0," or the electric process, emerged in the 19th century, 

coinciding with the discovery of electricity and the introduction of assembly lines. The 

Third Industrial Revolution, denoted as "Industry 3.0" or the "Digital Revolution," 

transformed mechanical and analog systems into digital frameworks. This era 

witnessed notable advancements in computers, microprocessors, digital cellular 

phones, and the Internet, ultimately automating production processes without human 

intervention. Industrial production is at the threshold of a new revolution, often called 

"Industry 4.0." This revolution integrates Internet technologies into industrial 

manufacturing processes, management, and strategies. Industry 4.0 introduces 

flexibility and adaptability to manufacturing systems, departing from traditional 

production methods. Fundamental concepts such as the IIoT play a base core in 

industrial environments, enhancing process performance, safety, reliability, and 

efficiency. This involves the collection of sensor data and its transformation into 

actionable information through the utilization of cost-effective big data analytics tools 

[19], [20]. 

 

Moreover, Industry 4.0 integrates CPS to oversee and regulate operations through 

feedback loops. The architecture of CPS comprises five distinct levels, encompassing 

intelligent communication, the conversion of data to information, the Internet, 
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Perception, and formation [21]. Cloud computing assumes a pivotal role in the ongoing 

evolution of Industry 4.0 by facilitating data storage and access through the Internet 

[22]. Industry 4.0 extends numerous advantages to manufacturing enterprises, 

encompassing cost savings on initial Information and Communication Technology 

(ICT) infrastructure, accelerated application speeds, enhanced management 

capabilities, diminished maintenance requirements, and heightened adaptability of 

ICT resources. Figure 2.1 presents the evolution of the industry [23] . 

 

 

Figure 2.1. Evolution of the maintenance paradigm within the context of industrial 

revolutions [23]. 

 

In addition to traditional concepts, Artificial Intelligence (AI) techniques, including 

Machine Learning (ML) and Deep Learning (DL), are employed to enable computers 

to learn from data patterns, eliminating the need for explicit programming. These 

techniques enhance various aspects of manufacturing processes, such as maintenance, 

scheduling, and quality control, improving decision support and forecasting methods. 

Particularly impactful in Condition-Based Maintenance (CBM), these AI methods 

utilize real-time sensor data to recommend maintenance actions only when 
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performance degradation or impending failures are detected, departing from 

predetermined maintenance intervals. Amid recent technological advancements, 

manufacturing systems have evolved through four industrial revolutions, bringing 

about changes in maintenance functions. Maintenance, as a strategic approach, 

involves technical, administrative, and organizational procedures to preserve or restore 

an item's intended function throughout its lifecycle [24]. Maintenance procedures are 

designed not only to mitigate breakdowns and prolong the lifespan of components but 

also to decrease operating costs associated with maintenance, allocate resources 

efficiently, and minimize downtime. Maintenance strategies are typically categorized 

into three distinct types [25]: 

 

• Corrective Maintenance (CrM): is commonly applied solely in equipment 

malfunction or failure, to restore the equipment to a functional state. It is 

implemented after the breakdown of the entire device or any components. 

Representing the most straightforward maintenance strategy, it is well-suited for 

non-critical assets. This strategy may be employed in scenarios where unplanned 

equipment malfunctions result in additional costs and production delays. 

• Preventive Maintenance (PvM): is a scheduled or pre-planned maintenance 

strategy designed to prevent equipment failures proactively. While generally 

more cost-effective than corrective maintenance, it may sometimes lead to 

unnecessary maintenance or part replacements, incurring additional costs for the 

plant. 

• Predictive Maintenance (PdM): The proliferation of sensor-generated data and 

advancements in the industrial sector have rendered machine and deep learning 

algorithms valuable tools for analyzing extensive datasets and identifying hidden 

patterns. Research on condition-based predictive maintenance has gained 

prominence in recent years, with machine and deep learning models extensively 

utilized in the PdM and demonstrating satisfactory performance [26]. Using 

predictive tools, precisely machine, and deep learning techniques, this strategy 

anticipates optimal maintenance timing by leveraging historical equipment or 

component data [27]. Precise failure predictions mitigate challenges such as 

wasted time and additional costs, ensuring operational safety and minimizing 

unexpected downtimes.  
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PdM stands as one of the most potent and widely adopted maintenance strategies. 

Operating on a condition-based paradigm, it relies on assessing the operational status 

of production machinery. In industrial settings, PdM has been the preferred 

maintenance approach in 89% of cases, with other time-based maintenance policies 

accounting for only 11% of patients [26]. The emergence of Industry 4.0 has ushered 

in a wave of advanced technologies, including sophisticated sensors, computing 

advancements, the Internet of Things, and data-driven modeling. These technologies 

have facilitated the identification of equipment degradation and impending failures, 

resulting in a decreased necessity for routine maintenance procedures such as periodic 

and preventive maintenance [29]. In crafting a PdM model for a multi-component 

production system, carefully considering established condition and degradation 

thresholds for each component is paramount [27]. Figure 2.2 illustrates the overarching 

maintenance strategies and objectives [28]. 

 

 
 

Figure 2.2. Illustrates maintenance strategies and their functions [28]. 

 

Each maintenance strategy serves a crucial role in the context of manufacturing 

operations. The maintenance process is of paramount significance to industries, and a 
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well-crafted strategy should yield notable benefits, encompassing improved equipment 

operating conditions, reduced failures, minimized maintenance costs, and prolonged 

equipment life [29]. 

 

2.2. DATA-DRIVEN APPROACHES IN PREDICTIVE MAINTENANCE  

 

The data-driven approach harnesses data collected from Industrial Internet of Things 

sources to analyze the damage characteristics of industrial equipment and formulate 

models for predicting future trends [30]. This method entails the daily analysis of 

condition monitoring data acquired from device metrics. It employs machine learning, 

deep learning, and pattern analysis techniques to predict potential malfunctions based 

on the collected data [31]. Data-driven approaches encompass neural networks, 

Random Forest (RF), Support Vector Machine (SVM), Relevance Vector Machine 

(RVM), Bayesian methods, fuzzy logic, regression analysis, and Genetic Algorithms 

(GA). The defining characteristics of data-driven technology lie in its rapidity and ease 

of implementation, coupled with the ability to discern previously unnoticed 

relationships [32]. 

 

Nonetheless, data-driven approaches necessitate substantial datasets and a balanced 

approach to mitigate the risk of overfitting and overgeneralization. Various machine 

learning and deep learning methods have been employed, relying on data to monitor 

machine states and predict failures. Notably, the application of deep learning 

techniques, recognized for their proficiency in handling high-dimensional, non-linear, 

and diverse data without manual intervention, has demonstrated considerable success 

in predictive maintenance. Researchers have proposed models based on RNN to 

address prognostic challenges. However, it is essential to note that RNNs face 

challenges such as vanishing gradient and exploding gradient issues when processing 

long sequences, limiting their capacity to retain prior information [33]. Figure 2.3 

illustrates a detailed description of the data-driven predictive maintenance 

implementation process [34]. 
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Figure 2.3. Depicts the implementation process of data-driven predictive maintenance 

[34]. 

 

To surmount these challenges, an enhanced version of RNN, known as LSTM, has 

been applied to formulate diverse predictive models for anticipating future failures 

[35]. LSTM has proven effective in predicting the failure location of aircraft engines. 

Moreover, an innovative Bidirectional-LSTM (BLSTM) model has been introduced, 

demonstrating the capability to simultaneously capture long-term information in both 

forward and backward contexts of input sequences. This BLSTM model has been 

employed for predicting system performance degradation. It is noteworthy that 

recurrent networks can impose higher computational demands. Additionally, CNNs, 

initially designed for image processing, have found application in predicting failures 
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in time series data by extracting pertinent features and patterns. CNN architectures, 

with weight-sharing filters, have led to significant enhancements in prediction 

accuracy. Notably, in the literature, hybrid deep neural network models have been 

devised to leverage the strengths of different algorithms concurrently, enabling the 

extraction of both temporal and spatial features for precise failure prediction [36]. 

 

2.3. DEEP LEARNING IN PREDICTIVE MAINTENANCE 

 

Deep learning, a subfield of machine learning, is characterized by its ability to 

automatically unearth concealed patterns within data by utilizing multiple layers of 

non-linear processing [37]. The literature has undertaken a comparative analysis 

between deep learning and traditional machine learning concerning the modeling 

process. This scrutiny reveals that data preprocessing is crucial for deep and traditional 

machine learning. The fundamental distinction lies in the feature processing approach. 

Traditional machine learning methods require significant effort in feature extraction 

and selection, whereas deep learning excels indirectly and automatically learning these 

hidden patterns. This characteristic renders deep learning methods more efficient and 

effective for the modeling process. However, a notable drawback is apparent—deep 

learning is often perceived as a 'black box,' wherein the abstracted features are not 

readily understandable or interpretable [38]. 

 

Deep learning techniques have been effectively employed in analyzing data obtained 

through continuous industrial equipment monitoring using smart electrical sensors. 

These methods aim to predict the equipment's health status by analyzing the collected 

data and extracting relevant features and patterns. In response to the escalating demand 

for minimizing downtime and mitigating economic losses associated with equipment 

failures, researchers have been dedicated to developing models for equipment 

condition prediction and proactive maintenance before failures occur. Deep learning 

networks, in particular, have demonstrated heightened accuracy when applied to 

systems such as aircraft maintenance systems [39],[40], delta robots [41], wind 

turbines [42], building management systems [43], air compressor systems[44], and 

wind generators [45]. Autoencoders and LSTMs are particularly effective when 

handling streaming data from manufacturing processes. LSTMs and recurrent neural 
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networks are well-suited for detecting errors stemming from sensors in the automotive 

industry [46],[47]. In Ref [48], the A2-LSTM model was employed, utilizing a series 

of electrical records as input. Features were extracted from the data and incorporated 

into a feature attention network, where each part was automatically adjusted based on 

its significance. The model introduced time dependence into the manufacturing system 

by integrating these re-weighted features into the health prediction component. The 

proposed model demonstrated its efficacy in guiding equipment maintenance efforts, 

and the A2-LSTM model exhibited promising results compared to real-world cases. 

 

Research has demonstrated the effectiveness of multi-layer network architectures 

across diverse data types [49]. For instance, Convolutional Neural Networks excel at 

processing image data and prove valuable in identifying anomalies in structural 

analyses of roads or railways [50]. Multilayer neural networks, encompassing Elman 

Neural Network (ENN), Back Propagation Neural Network (BPNN), Probabilistic 

Neural Network (PNN), Fuzzy Neural Network (FNN), and Wavelet Neural Network 

(WNN), have demonstrated successful diagnoses of mechanical faults in industrial 

equipment. 

 

In Ref [51], A Predictive Maintenance model was introduced that harnessed the IoT in 

tandem with deep neural networks, specifically Long Short-Term Memory and 

Recurrent Neural Networks. This model was specifically designed for predicting light 

bulb failures. The study's results illustrated the effectiveness of their hybrid model, 

revealing a minimal error rate of 0.79%. This development holds relevance in 

maintenance planning within cyber-physical production systems; At the same time, 

Ref [52], LSTM autoencoders were employed to facilitate automatic decoding to 

classify the real-world condition of machines based on sensor data. The model 

exhibited an impressive average accuracy rate of 94.2%, evaluated using data collected 

from a steelmaking production process. Furthermore, Ref [53] introduced a hybrid 

model that integrated GUR-ELM (Extreme Learning Machine) for predicting bearing 

failures, with a specific emphasis on vibration signals using locomotive bearing 

datasets. The model achieved an impressive accuracy rate of 94%. To gauge the 

performance of their proposed model, it was benchmarked against CNN, Denoising 

Autoencoders (DAE), and Deep Belief Networks (DBN). Ref [54], A hybrid model 
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was devised to predict bearing failures based on vibration signals, amalgamating 

Adversarial Conditional Generative Adversarial Networks (ACGAN) with CNN. The 

outcomes revealed a notable accuracy rate of 98%. 

 

2.4. CONVOLUTION NEURAL NETWORKS AND LONG SHORT–TERM 

MEMORY   

 

In computer vision, CNNs are foundational techniques for classification and 

regression. Specifically designed to process network-like structured data, such as 

images, CNNs share similarities with feed-forward neural networks. They utilize 

neurons to adjust weights through a learning process guided by a loss function. CNNs 

have found extensive application in pattern recognition tasks, primarily about image 

data, although not exclusively. The history of CNNs dates to the 1990s, when they 

were initially explored for tasks like speech recognition and document reading. 

However, it was the introduction of ImageNet and its deep CNN architecture in 2012 

that propelled CNNs to the forefront of computer vision. They showcased their 

effectiveness by adeptly processing extensive image datasets containing over a 

thousand categories [55]. Recently, CNN variants, such as ResNet-50 [56] and VGG 

16 [57], have demonstrated impressive performance and widespread adoption. The 

significant ascent of CNNs can be attributed to the substantial computational demands 

of ANNs. Color images, typically represented by an MxNx3 matrix, necessitate ANNs 

to possess MxNx3 weights, each of which must be updated in every learning iteration. 

This process becomes impractical due to computational constraints and extended 

training times. Additionally, ANNs often grapple with overfitting due to their fully 

connected nature. To process network-like structured data in Fully Connected Neural 

Networks (FCNN), data must be flattened into a one-dimensional format, resulting in 

the loss of specific data patterns. In contrast, CNNs employ convolution operations to 

process 2D data, providing advantages such as sparse interaction, parameter sharing, 

and consistent representation. Sparse interaction implies lower connectivity in the 

convolutional layer than fully connected layers of the same neuron size. Parameter 

sharing allows a kernel in a convolutional layer to process data at various input 

positions, differing from fully connected layers that process only one input position. 

Consistent representation ensures that any transformation applied to the input of the 
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convolutional layer results in a corresponding transformation in the output [58]. 

Pooling is another crucial component of CNNs, involving partitioning the 2D matrix 

into different grids during the aggregation process. Aggregation functions facilitate the 

downsampling of network data through summary statistics. Standard pooling functions 

include max pooling, which selects the maximum values in the network, and mean 

pooling, which computes the average values. Convolution and pooling operations 

work in tandem to abstract information within the data. Typically, CNNs consist of 

multiple convolutional and pooling layers. The large 2D array is divided into smaller 

2D arrays following data abstraction and downsampling. These matrices are then 

normalized and fed into a fully connected layer for further processing [58].  

 

The LSTM network is another type of deep learning architecture structured based on 

the principles of recurrent neural networks. LSTMs are particularly well-suited for 

handling time series applications due to their utilization of feedback connections. One 

of their key advantages is their ability to address the 'vanishing gradient' problem, 

enabling the gradients to flow consistently. The vanishing gradient problem is a 

common issue in computational solutions and arises when the eigenvalue spectrum of 

a matrix is less than 1. In an LSTM network, the fundamental unit is called a 'cell,' 

which comprises an input gate 'i,' an output gate 'o,' and a forget gate 'f.' The number 

of cells within each LSTM network corresponds to the number of hidden layers. The 

concept of Long Short-Term Memory was initially introduced by Hochreiter and 

Schmidhuber in 1997 [60]. They identified a significant challenge with recurrent 

neural networks, particularly the computational cost of backpropagation when 

attempting to store information over extended periods. To address this, they eliminated 

unnecessary scaling and introduced a constant error flow through the 'Constant Error 

Carrousel' (CEC). CEC maintains a constant cell state with a weight equal to 1. LSTM 

was initially tested with combined Rebbel rules, sequence data, and electrical signals. 

This approach proved capable of solving problems that were hitherto deemed 

unsolvable. The computational complexity of each time step and weight in LSTM is 

O (1). 

 

Deep learning techniques, exemplified by the LSTM, have demonstrated their efficacy 

in various time series classification applications characterized by long-term 
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dependencies facilitated by memory mechanisms. Conversely, CNN finds its primary 

utility in image classification tasks. CNN's notable feature lies in its multi-layer 

stacked architecture, which efficiently extracts and represents input data features, thus 

enhancing feature extraction capabilities. As a result, CNN has the advantage of 

capturing and extracting data features more effectively. In predictive applications for 

proactive maintenance, there is a growing interest in combining various deep learning 

methods in hybrid forms to harness the strengths of each approach. These mixed deep 

learning methods leverage historical sensor data and machine health information to 

perform predictive maintenance on production equipment. 

 

Refs [61], [62], The authors proposed a hybrid approach combining CNN-LSTM for 

predictive maintenance. This CNN-LSTM model not only enhances accuracy but also 

reduces complexity. Evaluation against regular LSTM and Gradient Boosted Decision 

Tree (GBDT) methods, using a predictive maintenance dataset from Microsoft's 

GitHub repository, revealed the superiority of the CNN-LSTM hybrid approach, 

increasing the average F-Score from 93.34% to 97.48%. Additionally, they introduced 

the PPO-LSTM model, merging Deep Reinforcement Learning and Long-Term 

Memory, which demonstrated optimal decision-making in a stochastic environment. 

Experimental results showcased its superior performance, surpassing other DRL 

approaches by 53% in resource management and 65% against human participants, 

confirming its efficiency, adaptability, and convergence in simulation. At the same 

time, Ref [63] proposed an early detection method for rolling bearing faults using a 

multi-scale CNN and Gated Recurrent Unit network with an attention mechanism 

(MCNN-AGRU). This model was trained using average data. Another algorithm for 

multiple fault diagnosis in rotating machinery, referred to as the local-wise response 

CNN-based Naïve Bayes (WCNN-NB) algorithm, was introduced by [64]. The results 

indicated classification accuracies of 99.68%, 92.5%, and 97.5% for three datasets, 

with acceptable misclassification rates under the examined operational conditions.  

 

Ref [65], proposed an HPC model for fault diagnosis that combines Hierarchical 

Symbolic Analysis (HSA) and Particle Swarm Optimization (PSO) with a 

Convolutional Neural Network (PSO-CNN). This model, evaluated on two distinct 

datasets, achieved a maximum classification accuracy of 98.97% and 99.09%. To 
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identify tolerance errors, [66] introduced a model that employs CNN and gcForest. 

This model converts raw bearing vibration signals into time-frequency images using 

Continuous Wavelet Transform (CWT). The results demonstrated a high classification 

accuracy for bearing faults, with a fault detection rate exceeding 98% across datasets 

of varying sizes. Kumar [67] employed an adaptive gradient optimizer in conjunction 

with a deep CNN to detect bearing and rotor faults in Squirrel Cage Induction Motors 

(SCIM), achieving an average accuracy of 99.70%. Another Ref [68], introduced a 

model based on Motor Current Signature Analysis (MCSA) and a novel 2D CNN to 

eliminate the need for manual feature extraction. Ref [69] utilized CNNs to identify 

stator short turns and broken rotor bars via the axial flux signal, and deep neural 

networks were employed to detect stator and rotor faults. Authors in Ref [70] proposed 

an approach based on a CNN model with a small kernel size, adaptive gradient 

optimizer, and batch normalization. This CNN model, featuring a larger number of 

computational layers, achieved commendable classification accuracy across different 

health states of SCIM, exceeding 99.50% on the Case Western Reserve University 

(CWRU) dataset.  

 

Ref [71] adopted a traditional feature engineering rendering approach called Dilator-

CNN (D-CNN) for fault diagnosis. This approach eliminates the need for raw vibration 

signals. CNN was employed to create a model for diagnosing bearing faults in 

embedded devices using acoustic emission signals, as undertaken by authors in Ref 

[72]. The model exhibited a classification accuracy of up to 99.58% while maintaining 

lower computational costs compared to other DL-based methods. A Predictive 

Maintenance model utilizing CNN (PdM-CNN) has been proposed for classifying 

faults in rotating equipment and guiding maintenance timing, as presented by Ref [73]. 

Data were collected from a vibration sensor mounted on the motor drive end bearing, 

with classification accuracy reaching 99.58% and 97.3% when the method was applied 

to publicly available MaFaulDa and CWRU databases, respectively. Ref [74], a dual-

path RNN-based method was presented, incorporating a wide primary kernel and a 

deep path CNN (RNN-WDCNN) for diagnosing rolling element bearing faults in 

electromechanical systems, using raw temporal signals such as vibration data. This 

method excels in swiftly classifying input sequences compared to traditional fast 
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transform (FFT)--based approaches. While Ref [75] introduced a technique utilizing 

LSTM networks and the engine's no-load testing acoustic signal.  

 

To evaluate the effectiveness of the suggested multi-domain features across diverse 

DL architectures, Ref [24] conducted sensitivity analyses on input channels, revealing 

that Convolutional LSTM (CLSTM) exhibited superior performance. The method's 

effectiveness was compared with twelve other algorithms, and the findings indicated 

that the proposed model achieved 100% accuracy with shorter inputs compared to 

other models. CNN and LSTM were employed to capture real-time current and 

vibration signals, facilitating a combined representation and temporal coding of raw 

data streams. In Ref [76], the Attention Dense Convolutional Neural Network 

(ADCNN) was introduced, integrating dense convolutional blocks with an attention 

mechanism. Simulation results showcased that the proposed method required fewer 

unknown learning parameters and achieved an accuracy of 99.51%. Subsequent 

enhancements to this model by Ref [77] further improved accuracies to 99.57% and 

99.6%, respectively. 

 

2.5. SUMMARY OF RELATED WORK   

 

In the dynamic landscape of Prognostics and Health Management (PHM), deep 

learning emerges as a beacon of innovation with diverse applications in fault diagnosis 

and failure prediction, especially within industrial equipment and systems. With a 

remarkable track record in domains like computer vision and medical image analysis, 

deep learning techniques have proven their mettle in decoding complex condition 

monitoring signals, such as vibrations, acoustic emissions, and pressure. Their 

unparalleled ability to unravel intricate representations from raw data forms the crux 

of their effectiveness. This chapter unfolds a comprehensive exploration of the 

foundational elements for grasping deep learning, encompassing architectures tailored 

explicitly for this purpose. Moreover, critical challenges and data-driven intricacies 

are carefully addressed. In the context of Industry 4.0, where Predictive Maintenance 

holds paramount importance, sensor-generated data undergoes meticulous processing, 

facilitating informed decision-making. The recent years have witnessed the 

ascendancy of machine and deep learning techniques in real-time error monitoring and 
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detection, proving highly efficient. Undeniably, deep learning has entrenched itself in 

the realm of industrial big data analytics, empowering decision-makers in proactive 

equipment maintenance, thereby averting breakdowns, minimizing losses, and 

elevating overall system reliability. 
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PART 3 

 

RESEARCH METHODOLOGY 

 

3.1. ARTIFICIAL INTELLIGENCE 

 

The interdisciplinary domain of AI is positioned at the intersection of computer 

science, mathematics, engineering, and cognitive science. At its core, the overarching 

aim is the generation of intelligent machines or programs equipped with the capacity 

to simulate cognitive functions reminiscent of human cognition. Tasks traditionally 

reliant on human intelligence, such as natural language comprehension, pattern 

recognition, decision-making, and experiential learning, are systematically addressed 

and executed by engineered AI systems. Within this expansive scope, AI has 

manifested as a formidable tool facilitating the advancement of intelligence predictive 

algorithms across a myriad of applications  [78].  The adeptness of artificial intelligence 

approaches is displayed in their proficiency in managing multidimensional and 

multivariable data and discerning concealed relationships within intricate and dynamic 

environments  [79]. Inextricably entwined with big data, AI demonstrates exceptional 

suitability for addressing vital inquiries, rectifying deficiencies, and elucidating key 

procedural issues, particularly in substantial data sets' analysis and processing stages. 

AI is pivotal in the transition to Industry 4.0, providing a potent technological 

alternative to alleviate the inherent limitations and inefficiencies associated with 

conventional industrial techniques and practices.  As a subfield of artificial 

intelligence, ML has evolved from its origins in pattern recognition to include the 

analysis of data structures and their integration into models that can be comprehended 

and reconstructed by end-users [80].  

 

Furthermore, machine learning is delineated into four primary subtypes: supervised 

learning, unsupervised learning, reinforcement learning, and deep learning, as 

Illustrated in Figure 3.1, encapsulating all AI categories. Supervised and unsupervised  
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learning find application in scenarios where the objective involves predicting or 

discerning the presence of labels in datasets. The presence of a dependent variable 

characterizes supervised learning, while unsupervised learning lacks such explicit 

labels. In contrast, reinforcement learning constitutes a computational paradigm 

wherein learning unfolds through interactions with the environment, emphasizing the 

facilitation of systems to execute actions within their surroundings to maximize 

cumulative rewards intelligently. The ultimate objective is to endow systems with the 

capability to adeptly perform tasks and make informed decisions grounded in data 

[81]. 

 

 

Figure 3.1. Artificial intelligence state of the art [81]. 

 

In the context of Industry 4.0, which strives to fulfill the requisites of intelligent 

technology-driven manufacturing systems, diverse maintenance methodologies have 

been devised, encompassing reactive, preventive, and predictive maintenance 

approaches [82]. Reactive maintenance is enacted in response to equipment failure, 

whereas preventive and predictive maintenance are implemented during routine 

machine operation. While essential, preventative maintenance may entail costs and 

disrupt machine uptime, given its requirement for scheduled downtime [83]. It lacks 

continuous machine condition monitoring and fails to construct a comprehensive 

machine health profile. The integration of AI-based methodologies has significantly 
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enhanced the reliability and efficacy of PdM, incorporating machine and deep learning 

techniques. Machine learning approaches have been widely applied in machinery for 

failure prediction. More recently, various deep learning methodologies have surfaced, 

propelled by advancements in the field, to implement predictive maintenance for 

industrial equipment and augment the reliability of PdM [84]. Deep learning leverages 

extended chains of neural network layers [85], each nonlinearly transforming the 

network to achieve progressively abstract and higher-level representations, drawing 

inspiration from computational models of intricate real-world systems. Moreover, 

data-driven manufacturing, facilitated by Industry 4.0 technologies such as CPS, the 

IoT, and Big Data Analytics, catalyzes advancements in predictive maintenance [86]. 

This evolution enables continuous machine monitoring and utilizes health status data 

analysis for early fault detection [87]. AI is pivotal in supporting Predictive 

Maintenance (PdM) by scrutinizing extensive sensory data to identify patterns and 

anomalies, thereby preempting production disruptions [88]. In conclusion, machine 

and deep learning have been pivotal in Machine Health Management (MHM) [89], 

and artificial intelligence methodologies hold substantial significance in the context of 

Industry 4.0. These methodologies significantly contribute to formulating maintenance 

strategies, particularly in predictive maintenance for industrial equipment and 

machinery. The overarching objective is to implement proactive maintenance 

measures and forestall material and human disasters. 

 

3.2. THESIS MODEL  

 

3.2.1. Convolutional Neural Network 

 

The acronym "CNN" denotes Convolutional Neural Network, a category of deep 

neural networks distinguished by its terminology derived from the convolutional 

process inherent in linear mathematics. LeCun, the progenitor, introduced this 

paradigm with the pioneering LeNet-5 architecture in the formative years of the 1980s. 

The genesis of CNN finds its roots in LeCun's seminal contributions in 1989, 

manifesting as a structured framework designed to adeptly analyze data through a 

network-centric topology, with a pronounced focus on image and time series data [90]. 
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Conventional CNNs have garnered widespread utility in the realm of image data 

processing. Termed 2D CNNs due to their distinctive operation in two dimensions 

within the data space, these networks stand in contrast to their one-dimensional 

counterparts, aptly named 1D CNNs. The kernel, integral to the convolutional process, 

traverses the data in two dimensions in the case of 2D CNNs, emphasizing their 

proficiency in handling intricate spatial information inherent in images. Conversely, 

1D CNNs engage in convolution along a singular dimension, rendering them 

particularly adept at processing time series data, where the sequential nature of 

information is paramount [91]. The fundamental disparity distinguishing 1D from 2D 

CNNs lies in the representation of kernels and feature maps. While 1D CNNs employ 

one-dimensional matrices for these components, 2D CNNs utilize two-dimensional 

matrices. The computational complexity associated with 1D and 2D convolutions 

exhibits a noteworthy contrast. When an image of dimensions M × M undergoes 

convolution with a kernel of size T × T, the computational cost for a 2D CNN is 

denoted as O(M²T²). In contrast, a 1D convolution applied to data with analogous 

dimensions (M and T) incurs a computational cost of O(MT). This discrepancy 

underscores the substantially reduced computational burden imposed by 1D CNNs 

relative to their 2D counterparts under comparable circumstances, rendering them a 

preferred choice for researchers across diverse domains, particularly in signal 

processing, owing to their commendable performance. Furthermore, the versatility of 

one-dimensional CNNs extends to their capacity to adeptly handle multimodal data, 

encompassing images, audio, and video domains. 

 

The hierarchical configuration inherent in deep CNNs is distinguished by its aptitude 

for learning intricate representations across diverse levels of abstraction. The pivotal 

divergence between CNNs and shallower architectures lies in the strategic 

employment of parameter sharing, allowing the network to discern specific features 

across varied spatial locations. A prototypical CNN architecture typically manifests as 

amalgamating three foundational neural layers or building blocks, wherein 

convolutional layers interleave with pooling layers, culminating in fully connected 

layers. The augmentation of these architectures is accomplished through the 

incorporation of assorted organizational modules, such as batch normalization and 

dropout, thereby fortifying the overall performance of CNNs. The strategic 
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arrangement of CNN layers assumes paramount significance, exerting a tangible 

influence on generating novel architectures and consequent enhancements in 

performance. In the ensuing sections, a concise overview and discourse on the 

functionality and role of each layer will be presented [92]. 

 

3.2.1.1. Architecture 

 

A conventional CNN architecture comprises a sequential arrangement of 

convolutional and pooling layers, succeeded by fully connected layers. To gain a 

deeper understanding of this architecture, Figure 3.2 serves as a visual representation, 

elucidating the inherent structure of the CNN: 

 

 

Figure 3.2. Convolutional layer structure . 

 

• The Convolutional Layer employs trainable filters, commonly referred to as 

kernels, to process input data through a continuous or windowed sliding 

technique. The resultant output consists of a set of feature maps, each delineating 

the activations generated by corresponding filters. This mechanism enables the 

network to discern and highlight distinctive patterns and features within the input 

data [93]. Every filter within a convolutional layer provides a distinct perspective 

on the input data, thereby rendering the selection and quantity of filters pivotal 

determinants for network performance. Each convolutional layer plays a 

significant role in the feature extraction process, thereby introducing a 

successive level of abstraction to the input data representation. The cumulative 

effect of these layers is to progressively distill and emphasize salient features 

essential for the network's overall understanding and subsequent decision-

making processes [89]. In the standard configuration, a convolutional layer 

operates linearly, and an activation function is subsequently applied to yield a 

non-linear output. The fundamental essence of the CNN architecture resides in 
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the convolution operation, applicable to one-dimensional or two-dimensional 

data. This process is executed by deploying sliding convolutional filters that 

traverse vertically and horizontally, capturing crucial input data features [94]. 

Figure 3.3 visually illustrates the structural intricacies of the convolutional layer 

within the CNN architecture,  

 

 

Figure 3.3. CNN structure. 

 

Convolution within a neural network encompasses three notable properties. Firstly, 

weight sharing is employed, entailing the utilization of the same weights across 

multiple locations. This practice effectively diminishes the overall number of 

parameters, contributing to a more efficient and streamlined model. Secondly, the 

concept of sparse interactions or connectivity comes into play. By incorporating 

sparsity in weights, the network adeptly learns associations between adjacent pixels, 

thereby reducing the demand for parameter storage and computational resources. 

Lastly, convolutional operations exhibit the property of invariant representations, 

wherein the output remains steadfast and consistent despite variations in the input. 

These properties collectively enhance the network's capacity for effective feature 

extraction and contribute to the overall efficiency of the convolutional layer. Figure 

3.4 presents the pseudocode of CNN, 
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Algorithm 1: CNN model                                                                                           

Input: x input features vector, F filter with size k x d                                          

Output: c' output features vector

For i = 1 to N

    w_i = [x_i, x_i+1, ..., x_i+k-1]

    c_i = ReLU(w_i  F)

End

c' = MaxPool(c)                                                                                         

Figure 3.4. CNN pseudocode. 

 

• The Pooling Layer, strategically situated following the convolutional layer, 

consolidates the feature maps generated by the preceding convolutional layer 

into singular values. Its function involves discerning the most pivotal features 

extracted by each filter, irrespective of their relevance in other filters. This 

crucial process mitigates the feature maps' dimensionality and concurrently 

reduces the number of parameters, thereby fortifying the model's resilience 

against noise. Analogous to convolutional layers, pooling layers actively 

contribute to cultivating displacement-invariant features by incorporating 

neighboring pixels in their computations. Their operational essence is 

summarizing information within the receptive field, ultimately outputting the 

predominant response within that local region. This mechanism enhances the 

network's proficiency in capturing essential features while promoting 

computational efficiency [95]. 

• Fully Connected Layers (FC), a customary inclusion in most CNN architectures, 

bear semblance to traditional Multilayer Perceptrons (MLP) layers. FC layers 

1Qfunction as a traditional neural network that is sequentially positioned after 

the convolutional and pooling layers. Their primary objective lies in converting 

multi-dimensional features into a singular one-dimensional (1D) feature vector, 

subsequently utilized by a classifier or predictor. This strategic transformation 

facilitates the extraction of comprehensive high-level representations from the 

preceding layers. Conclusively, a softmax layer is frequently integrated as the 

probabilistic classifier, adding a final layer of refinement to the CNN 
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architecture. This collective arrangement effectively utilizes learned features for 

accurate predictions and classifications. 

• Dropout: is incorporated into the network to impart regularization, a mechanism 

essential for preventing overfitting and improving overall model performance. 

A predetermined dropout probability is applied in this process, leading to the 

random deactivation of specific neurons or connections during the training 

phase. By introducing this stochastic element, dropout effectively diversifies the 

network's learning process, reducing reliance on particular pathways and 

features. This regularization technique fosters a more robust and generalizable 

model by preventing overemphasizing individual neurons or connections, thus 

enhancing the network's capacity to generalize well to unseen data [91]. 

 

The CNN architecture undergoes fine-tuning to minimize error margins and optimize 

performance by applying a backpropagation algorithm. This iterative approach 

systematically adjusts the learning weights of the network, facilitating continuous 

refinement and adaptation of the model throughout the training process. As a result, 

CNN has proven to be a formidable tool for automated pattern recognition, adept at 

extracting global features from images. This proficiency obviates the necessity for 

manual feature engineering, underscoring the network's capacity to autonomously 

discern and leverage relevant patterns in the data, thus contributing to its efficacy in 

diverse image-processing applications [96]. CNNs have showcased their effectiveness 

across various domains, extending their utility to analyzing and classifying time series 

data. Their notable impact is especially pronounced within the purview of Industry 4.0, 

where they excel in proactively predicting failures in industrial equipment and 

machinery. Leveraging their adept feature extraction capabilities, CNNs facilitate the 

timely identification of potential issues, enabling proactive maintenance interventions. 

This forward-looking strategy unequivocally contributes to cost savings in 

maintenance operations and concurrently minimizes downtime, thereby solidifying 

CNN's pivotal role in enhancing operational efficiency within industrial contexts [97]. 
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3.2.2. Long Short-Term Memory 

 

LSTM, an abbreviation for Long Short-Term Memory, is a member of the deep 

learning models associated with the RNN family. Tailored for analyzing and 

processing sequential data, LSTM is specifically designed to excel in tasks involving 

time series data, with a primary emphasis on predictive modeling. Its notable 

suitability for time series applications stems from incorporating feedback mechanisms, 

enabling it to retain and recall information over prolonged periods effectively. This 

aligns seamlessly with the inherent sequential nature of sensor data, making LSTM a 

particularly potent and well-adapted model for tasks demanding temporal 

dependencies and nuanced contextual understanding [98]. LSTM manifests as a 

recurrent neural network algorithm recognized for its aptitude in assimilating 

extensive temporal dependencies. In contrast to conventional recursive algorithms, 

including traditional neural networks, wherein the persistence of prolonged 

information and the resolution of dependency concerns across temporal epochs prove 

challenging, LSTM introduces a pioneering solution. Demonstrating proficiency in 

mitigating the predicament of vanishing gradients, it orchestrates an adept intervention 

to sustain a seamless progression of gradient flows. The ubiquitous challenge of the 

vanishing gradient problem arises in mathematical solutions, mainly when the singular 

value spectrum of the matrix falls below unity. As the complexity of the learning 

network escalates throughout the training regimen and the inverse weight values of the 

network approach diminutive or proximate-to-zero magnitudes, the viability of 

updates diminishes, potentially leading to the cessation of the training process.  

 

LSTM strategically confronts the vanishing gradient obstacle by integrating a memory 

cell into its architectural framework. This inclusion alleviates the complexities 

associated with long-range dependencies, fostering the seamless amalgamation of 

antecedent information with contemporaneously acquired data. Data The inception of 

LSTM dates back to the seminal work of Hochreiter and Schmidhuber in 1997 [99]. 

Their discerning perspective was rooted in recognizing that backpropagation in 

recurrent neural networks, intended to retain information across prolonged intervals, 

incurred substantial computational costs, predominantly stemming from the 

inadequate backpropagation of error. In response to this challenge, they introduced the 
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innovative concept of maintaining a constant error flow through Constant Error 

Carousels (CEC). The CEC encapsulates an unvarying cell state featuring a stable 

weight set at 1. LSTM's inaugural assessments encompassed succinct Rebbel rules, 

sequential data, and electrical signals. Significantly, it showcased an unprecedented 

capability to surmount previously intractable problems. Notably, LSTM emerged as 

an exemplary learning algorithm, proficient in prediction tasks and excelling in 

scenarios characterized by extensive datasets exhibiting sequential dependencies.  

 

An LSTM network comprises units denominated as cells, each featuring four 

intricately interconnected gates, meticulously crafted to address the challenges 

inherent in managing long-range dependencies and seamlessly integrating prior 

information with novel data. These four gates, namely the input gate, output gate, 

forget gate, and memory unit, collectively facilitate the retention and transmission of 

information from preceding time steps to subsequent ones. The values encapsulated 

within these units persistently endure, remaining impervious to external influences, 

thereby ensuring their enduring relevance.  

 

The quantity of cells within each LSTM aligns with the count of hidden layers, and 

the computational complexity at each time step is consistently maintained at O (1). 

With its resilient architectural design, LSTM substantiates heightened accuracy and 

superior decision-making capabilities, empowering the predictive modeling of future 

values predicated upon historical time series data. Remarkably, LSTM distinguishes 

itself through its remarkable efficacy. Within the illustrated LSTM module structure, 

the symbol X(t) corresponds to the current input value, h(t-1) signifies the preceding 

hidden state, and c(t-1) represents the antecedent memory state. The output denoted as 

h(t) gives rise to the present latent state, while c(t) mirrors the contemporary memory 

state [100]. 

 

3.2.2.1. Architecture 

 

An LSTM network comprises several vital components collaborating to process time 

series data and maintain information over time. The main components of the LSTM 

network are as follows [101]: 
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• Cell Unit: At the core of the LSTM network, the cell unit serves as the 

foundational entity responsible for storing and processing information across 

temporal intervals. Comprising indispensable components such as inner and 

outer gates and a memory module, the cell unit plays a pivotal role in 

orchestrating the intricate mechanisms that underlie the network's ability to 

capture, retain, and manipulate information over time. 

• Gates: Integral to the functioning of LSTM, gates meticulously govern the 

ingress and egress of information within the cell unit. The three principal gates 

in LSTM are as follows: 

 

1. Input Gate: This gate discerns the degree to which new information is 

permitted to enter the cell, playing a crucial role in regulating the 

assimilation of fresh data into the network.  

2. Output Gate: Responsible for modulating the extent to which information 

residing within the cell can emanate and impact the ultimate output, the 

output gate is a critical determinant of the network's external influence.  

3. Forget Gate: Functioning as a pivotal component, the forget gate 

determines the extent to which prior information within the cell is subject 

to abandonment or removal, crucial for managing the retention and discard 

of historical data within the LSTM framework. 

 

• Memory Unit: As a crucial repository, the memory unit adeptly stores 

information across temporal epochs. Its functions encompass not only the 

storage of data but also its continual updating, thereby facilitating the 

perpetuation of the network's internal state.  

• Memory Gate: Within the LSTM architecture, the memory gate assumes a 

pivotal role in facilitating updates to the memory, dynamically incorporating 

both new and past information. This gate operates as a critical mechanism for 

regulating data flow into the memory unit, ensuring that the network can 

adaptively integrate relevant details while preserving the continuity of its 

internal representation.  
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Figure 3.5 intricately elucidates the architectural framework of the LSTM, offering a 

visual representation of its integral components and their interplay in effecting 

temporal information retention and processing. 

 

 

Figure 3.5. LSTM structure. 

 

The inherent capability of the LSTM network to adeptly navigate long-term 

dependency challenges and regulate information flow substantiates its considerable 

value, particularly in the analysis of sequential data, exemplified by time series 

datasets. Its proficiency resides in its ability to process sequential data methodically, 

thereby proving instrumental in tasks such as failure prediction, where the nuanced 

understanding and retention of temporal dependencies are paramount for accurate and 

reliable predictions [102]. Figure 3.6 depicts the pseudocode delineating the 

operational logic of the LSTM algorithm. 
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Algorithm 2: LSTM model                                                                       

# Input: features vector c'

# Output: h vector

For j = 1 to t

    i_j = σ(W_i * [h_t-1 + b_i])

    f_j = σ(W_f * [h_t-1, x_t] + b_f)

    q_j = tanh(W_q * [h_t-1, x_t] + b_q)

    o_j = σ(W_o * [h_t-1, x_t] + b_o)

    c_j = f_j  c_j-1 + i_j  q_j

    h_j = tanh(c_j)

End    

Figure 3.6. LSTM pseudocode. 

 

3.2.3. Hybrid CNN-LSTM Model 

 

Colloquially called fusion-based technology, hybrid-based technology represents an 

amalgamation of model-based and data-driven technologies. This innovative paradigm 

harnesses the power of data to acquire insights into model parameters while 

concurrently integrating knowledge of underlying physical processes. By doing so, it 

discerns the optimal type of regression analysis—linear, polynomial, exponential, etc. 

This approach finds application in predicting machine failures and executing proactive 

equipment maintenance. The incorporation of data-driven methods in this hybrid 

framework facilitates the seamless integration of multiple techniques, culminating in 

precise and reliable forecasting results [103]. The hybrid strategy strategically 

capitalizes on the inherent strengths of model-based and data-driven approaches, 

seamlessly integrating physics principles when data is unavailable. This adaptability 

renders the hybrid method incredibly potent in scenarios characterized by incomplete 

system knowledge, effectively addressing the limitations of individual methodologies. 

Through this symbiotic fusion, the hybrid technique emerges as a robust solution 

capable of providing accurate insights and predictions even in circumstances where 

one approach alone may fall short. 
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The suggested hybrid model capitalizes on the collective capabilities of CNN and 

LSTM deep learning algorithms, seamlessly integrating their distinct strengths. CNN 

is esteemed for its adeptness in feature extraction, while LSTM excels in handling time 

series data. This algorithm has been meticulously employed to craft a specialized 

hybrid model designed for PdM, with a principal emphasis on predicting failures. 

Notably, the model leverages the MetroPT dataset as a foundation for training and 

validation [104]. 

 

The architectural configuration of the hybrid CNN-LSTM model is elucidated in 

Figure 3.7 (A), and Figure 3.7 (B) detailing the model structure.  

 

 

 

Figure 3.7. A) present CNN-LSTM structure, B) CNN-LSTM model. 
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The algorithm employed in this study, briefly described in Algorithm 3, embodies the 

fusion of CNN and LSTM methodologies. Specifically designed for the prediction of 

the failure state of an APU component, the model accommodates a total of 13 input 

and output resolution features. These features are systematically organized to predict 

distinct targets, thereby encapsulating a comprehensive approach to failure prediction 

within the specified domain. 

 

The failure prediction within the proposed model is categorized into two distinct 

groups. The first category involves a binary rating system, where '1' indicates 

component failure and '0' signifies non-failure. The second category extends to 

multiple ratings, delineating specific failure types (Failure 1 - air leak on the customer, 

Failure 2 - air leak in the air dryer, Failure 3 - oil leak on the customer's compressor, 

and 4 indicating no failure). Table 3.1 comprehensively outlines the classified failures 

within these categories. 

 

Table 3.1. Failure properties and classified. 

No. Failure Type Component Start End 

1 Air leak Clients 28-02-2022 21:53 01-03-2022 02:00 

2 Air leak Air Dryer 23-03-2022 14:54 23-03-2022 15:24 

3 Oil leak Compressor 30-05-2022 12:00 30-05-2022 12:00 

 

The overarching architecture of the proposed model is founded upon the CNN-LSTM 

framework, strategically designed to ensure the precise prediction of component 

failures. The structural representation of the model is visually depicted in the model 

chart presented in Figure 3.5. 
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Algorithm3: Hybrid CNN-LSTM model                                         

# Input: X (a set of input features)

# Output: Y (predictions)

# Initialize an empty list to store predictions

Y = []

# For each x in X

For each x in X:

    # Apply CNN to feature x and store the result in Cx

    Cx = CNN(x)

    # Apply LSTM to Cx and store the result in Ox

    Ox = LSTM(Cx)

    # Apply sigmoid activation to Ox and store the result in Yx

    Yx = sigmoid(Ox)

    # Append Yx to the list of predictions Y

    Append Yx to Y

# End of loop

# Return the list of predictions Y

Return Y
 

Figure 3.8. Pseudocode of the CNN-LSTM model. 

 

3.3. DATASET EXPLORATION 

 

Compiled to position itself as a benchmark for predictive maintenance in 2022, the 

MetroPT dataset constitutes a crucial element within the Explainable Predictive 

Maintenance (XPM) initiative. Tailored specifically for an urban metro transmission 

line located in Porto, Portugal [104], and accessible on Zenodo [105], the dataset 

encompasses observations procured from Air Production units installed on the 

rooftops of metro vehicles, each serving diverse functionalities. Among these units, 

the secondary suspension system is responsible for sustaining the car's level, 

irrespective of the passenger load. The Air Production units play indispensable roles 

in the functionality of these vehicles, particularly during daytime operations. 

 

The MetroPT dataset stands as a real-world repository with documented ground truth 

anomalies extracted from the maintenance reports of the relevant company. Its primary 

objective is to serve as a definitive reference dataset for predictive maintenance, 

facilitating impartial comparisons among diverse machine and deep learning 
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algorithms employed to identify faults and anomalies. This, in turn, fosters the 

implementation of preventative maintenance strategies based on continuously 

monitoring sensor data streams. In recent years, many studies have concentrated on 

predictive maintenance, harnessing the advancements in machine and deep learning 

methodologies. PdM's overarching aim is to promptly forecast evolving and 

unforeseen failures through sustained monitoring of equipment conditions. Dynamic 

scheduling of maintenance plans is executed to minimize unplanned downtime and the 

associated financial ramifications. Moreover, identifying affected components and 

assessing failure severity contribute to the formulation of more efficient recovery 

plans. The absence of redundancy often precipitates an immediate withdrawal of trains 

for repair, with failures of this nature eluding traditional condition-based maintenance 

criteria defined by rigid thresholds [106]. 

 

A myriad of scholarly endeavors has delved into the realm of predictive maintenance, 

leveraging sophisticated deep learning methodologies. Recent literature encompasses 

a comprehensive survey elucidating critical facets of data-driven public distribution 

management within the domain of predictive maintenance. Furthermore, another 

survey illuminates advancements in the application of both machine learning and deep 

learning techniques for holistic traffic management within the railway industry [107].  

 

A third manuscript delineates three pivotal research trajectories within the PdM 

domain: namely, failure prediction, Remaining Useful Life (RUL) estimation, and 

Root Cause Analysis (RCA). Operationally, the principal objective of predictive 

maintenance is to ameliorate operational challenges, curtail unforeseen interruptions 

and downtimes, and transition the maintenance paradigm from reactive to predictive. 

Within this framework, the early identification of such challenges holds the potential 

to avert trip cancellations and service disruptions, thereby conferring substantial 

advantages to both the operating company and passengers. To realize this objective, a 

monitoring system has been deployed within the APU, capturing both analog and 

digital signals and providing precise location coordinates for track and train waiting 

areas. These collected signals are transmitted to a remote server at five-minute 

intervals via the GSM network, operating at a frequency of 1 Hz. Over the period from 

January to June 2022, an average of 26 trips per day were recorded. This 
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comprehensive dataset encompasses 21 features, encompassing analog sensor readings 

(pressure, temperature, and current consumption), as detailed in Table 3.2, which 

presents analog sensor data on the APU. Additionally, digital signals (control and 

discrete signals) are outlined in Table 3.3, representing digital sensor data on the APU. 

Furthermore, GPS information, including latitude, longitude, and speed, is presented 

in Table 3.4, encapsulating GPS data on the APU. 

 

Table 3.2. MetroPT analog sensors. 

Analog Sensors 

(These sensors measure pressure, temperature, and electrical current related 

to the APU) 

Num. Sensor Symbol Description Units 

1 Compressor 

Pressure 

TP2 Measures the pressure in the 

compressor 

bar 

2 Pneumatic 

Plate Pressure 

TP3 Records the pressure generated 

at the pneumatic plate 

bar 

3 Command 

Pressure 

Switch Valve 

H1 This valve is activated when 

the pressure reading exceeds 

the operational threshold of 

10.2 bar 

bar 

4 Air Dryer 

Pressure Drop 

DV_pressure Detects the pressure drop 

resulting from the air dryer 

towers discharging water. 

When the reading is zero, it 

indicates that the compressor is 

operating under load. 

bar 

5 Reservoirs Reservoirs Records the pressure inside the 

air tanks installed on the trains 

bar 

6 Compressor 

Oil 

Temperature 

Oil_Temperature 

 

Measures the temperature of 

the oil in the compressor 

°C 

7 Air Flow Flowmeter Sensor calculates the airflow at 

the pneumatic control panel 

m3/h 

8 Motor Current Motor _Current Monitors the motor's current, 

with expected values of (i) 

close to 0A when the 

compressor is running, (ii) 

close to 4A when the 

compressor is operating, and 

(iii) close to 7A when the 

compressor is under load 

A 
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Table 3.3. MetroPT Digital sensors. 

Digital Sensors 

The APU incorporates eight digital sensors that provide binary data, indicating 

either a value of zero when they are inactive or one when a specific event activates 

them. 

Num. Sensor Symbol Description Units 

1 Compressor Air 

Intake Valve 

COMP Generates an electrical signal 

representing the air intake valve's 

status on the compressor. It 

registers a value of one when 

there is no air entering the 

compressor 

Binary 

2 Compressor Outlet 

Valve 

DV_electric Controls the electrical signal for 

the compressor's outlet valve. 

When active, it indicates that the 

compressor is operating under 

load, while inactivity suggests 

that the compressor is loaded or 

overloaded. 

 

Binary 

3 Towers Towers Signal identifies which tower is 

currently drying the air and 

which one is engaged in draining 

the moisture extracted from the 

air. An active signal indicates 

that the second tower is in 

operation, while inactivity 

indicates that the first tower is 

functioning 

Binary 

4 Intake Valve 

Activation 

MPG Responsible for triggering the 

intake valve to initiate 

compressor operation under load 

when the APU's pressure falls 

below 8.2 bar. Consequently, it 

activates the COMP sensor, 

functioning similarly to the MPG 

sensor. 

Binary 

5 Low Pressure 

Signal 

LPS Signal activates when the 

pressure within the APU falls 

below 7 bar. 

Binary 

6 Pressure Switch Pressure 

Switch  

Activates when pressure is 

detected on the pilot control 

valve. 

Binary 

7 Oil Level Oil Level Indicates the oil level in the 

compressor. A reading of one 

signifies that the oil level is 

below the expected values. 

Binary 

8 Caudal_impulses Caudal_imp

ulses 

Signal is generated by the 

altimeter and indicates the 

presence of airflow per second. 

Binary 
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Table 3.4. MetroPT GPS Signals sensors. 

GPS Signals 

The train is outfitted with a secondary GPS antenna designed to capture data 

pertaining to signal strength, speed, latitude, and longitude. When the train 

enters a tunnel and loses satellite connectivity, the acquisition system resets the 

GPS signal to zero. 

Num. Sensor Symbol Description Units 

1 Longitude 

Position 

gpsLong This feature provides the 

longitude position in degrees 

° 

2 Latitude 

Position 

gpsLat It offers the latitude position in 

degrees 

° 

3 Speed GPSSpeed This feature records the speed in 

kilometers per hour 

(km/h) 

4 Signal Quality GPSQuality It signifies the quality of the GPS 

signal 

 

 

The APU of the train integrates a signal capture system, with the acquisition system 

adhering rigorously to established standards and guidelines governing railway 

equipment usage. The selection of sensors was meticulously grounded in the principles 

of Failure Mode and Effects Analysis (FMEA) and Failure Mode and Effects and 

Criticality Analysis (FMECA) specific to the APU. Notably, the dataset under 

consideration comprises an extensive total of 10,979,547 data points, each devoid of 

any missing values. Over a duration of six months, three instances of catastrophic 

failures were discerned, with two attributable to air leakage within the system and the 

third associated with an oil leak.  

 

A stringent framework of protocols and standards has been meticulously devised to 

safeguard the safety, reliability, and efficiency of systems and equipment integral to 

metro transportation. These protocols and standards constitute an exhaustive 

compendium of regulations and requisites that the signal acquisition system 

incorporated into the APU of the train is obliged to adhere to. These encompass: 

 

• TS EN 45545 - Railway applications - Fire protection in railway vehicles: 

These standard addresses fire protection measures in railway vehicles to 

safeguard passengers and railway assets. 

•  EN 50121 - Railway applications - Electromagnetic compatibility: This 

standard focuses on ensuring electromagnetic compatibility in railway 
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applications to prevent interference and ensure proper functioning of electronic 

systems. 

•  EN 50125 - Railway applications - Environmental conditions of equipment: 

This standard specifies environmental conditions that railway equipment must 

withstand, including temperature, humidity, and vibration. 

•  EN 50128 - Railway applications - Communications, signaling, and 

processing systems - Railway Software Control and protection systems: This 

standard deals with software used in railway control and protection systems, 

emphasizing safety and reliability. 

•  EN 50129 – Railway applications – Communication, signaling, and processing 

systems – Safety-related electronic systems for signals: This standard addresses 

the safety-related electronic systems used in railway signaling, ensuring 

integrity and safety. 

• EN 50153 - Rolling Equipment - Protection provisions relating to electrical 

risks: This standard is concerned with safeguarding electrical systems in rolling 

stock. 

• EN 50155 – Railway applications – Electronic equipment used in railway 

vehicles: It outlines requirements for electronic equipment used in railway 

vehicles to ensure durability and safety. 

•  EN 60529 - Specifications for degrees of protection provided by enclosures 

(IP code): This standard defines IP (Ingress Protection) codes, indicating the 

level of protection provided by enclosures against solid objects, dust, water, 

and other environmental factors. 

•  EN 61373 - Railway applications - Rolling stock - Shock and vibration tests: 

This standard provides testing procedures to evaluate the ability of railway 

equipment to withstand shocks and vibrations. 

•  IEC 60068 – Environmental tests: This standard outline testing method for 

assessing the durability of electronic equipment under various environmental 

conditions. 

•  IEC 60571 - Electronic equipment used in railway vehicles: It addresses 

electronic equipment used in rail vehicles, focusing on safety and reliability. 

• IEC 61375-1 - Railway electronic equipment - Train communications network 

(TCN) - Part 1: General architecture: This standard defines the general 
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architecture of train communication networks, ensuring interoperability and 

efficiency. 

•  IEC 61375-2-1 - Electronic railway equipment - Train communications 

network (TCN) - Part 2-1: Wired train bus (WTB): This standard pertains to 

wired train bus systems, a critical part of train communication networks. 

•  IEC 61375-3-1 - Electronic railway equipment - Train communications 

network (TCN) - Part 3-1: Multi-function vehicle bus (MVB): This standard 

deals with multi-function vehicle bus systems within train communication 

networks, enabling multiple functions and data exchange. 

 

Derived from maintenance reports and substantiated by the company's provided 

ground truth, the dataset encompasses three instances of catastrophic failures. Among 

these, two were precipitated by a system air leak, while the third was attributed to an 

oil leak. 

 

• Air Leak on Air Dryer: This malfunction is ascribed to a flaw in the air pilot 

valve responsible for unsealing the drainpipes during compressor operation. 

• Air Leakage on Customers: This complication arose due to air leakage in the 

pipe that supplies various system customers, encompassing spacers, suspension 

components, and others. 

• Oil Leakage on the Compressor: Owing to the equipment's design, the absence 

of an oil signaling system to alert the train driver led to this issue. The resultant 

oil leak caused substantial damage to the compressor engine. With the 

compressor rendered inoperative, a decline in air pressure ensued, necessitating 

the suspension of the train. 

 

As per the entity tasked with curating this dataset, two principal objectives are served: 

firstly, Failure Prediction, and secondly, the Identification of Components Associated 

with Failures. Concerning the inaugural undertaking of failure prediction, the aim is to 

discern an impending failure a minimum of two hours prior to the cessation of train 

operation, thereby facilitating its secure extraction from the tracks and enabling 

proactive maintenance measures. This necessitates the precise delineation of the 

failure type and the localization of the specific component implicated in the occurrence 
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of the failure. Recent scholarly endeavors have leveraged the MetroPT dataset to 

proffer methodologies addressing the challenge of failure prediction. In the initial 

scholarly endeavor, a comprehensive analysis was undertaken to elucidate the 

intricacies of this predictive framework [108], A rule-based system was devised to 

orchestrate the generation of alerts concerning the compressor's status. In the 

subsequent investigation outlined in the second work [109], a deep learning paradigm 

centered on autoencoders was employed for the purpose of alert generation. Although 

both methodologies have yielded commendable outcomes, a notable space for 

enhancement persists, particularly in the realms of accuracy and interpretability. 

 

• True Positive (TP): This occurs when the predicted failure interval overlaps 

with the observed failure interval. 

• False Positive (FP): This happens when the expected failure interval does not 

overlap with the observed failure interval. 

• True Negative (TN): This is the case when there is neither an expected failure 

nor an observed failure. 

• False Negative (FN): This takes place when there is no expected failure, but an 

observed failure occurs. 

 

The paramount objective is the reduction of both False Alarms (FP) and Missed 

Failures (FN) to mitigate the occurrence of failures during operational activities and 

circumvent unwarranted maintenance procedures. Furthermore, an essential facet 

involves the computation of the remaining useful life of components, facilitating 

informed decision-making by the management team regarding train removal without 

incurring service interruptions. Figure 3.9 illustrates the envisaged evaluation protocol 

for the anticipation of failures. 
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Figure 3.9. Evaluation protocol for predicting failures. 

 

3.4. DATASET VISUALIZATION 

 

The MetroPT dataset underwent a sequence of data preprocessing procedures. 

Initially, a comprehensive visualization and descriptive analysis were employed to 

adeptly portray its inherent characteristics.  

 

An in-depth examination of the data structure yielded valuable insights, encompassing 

the enumeration and categorization of features into integer (INT), floating-point 

(float), or object data types. Memory consumption was scrutinized, and the presence 

of any missing values within the data frame was ascertained through the utilization of 

the info () function. The outcomes revealed that the 'timestamp' feature was 

categorized as 'object,' while the remaining attributes comprised ten 'int64' and ten 

'float64' features. Notably, the dataset occupied a memory footprint of 1.7 gigabytes. 

Figure 3.10 present info details. 
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Figure 3.10. MetroPT features info details. 

 

Building upon a foundational comprehension of the dataset, a meticulous statistical 

analysis was conducted utilizing the describe () function. This approach facilitated an 

in-depth portrayal of the data through essential statistical metrics, including maximum 

and minimum values, mean, and standard deviation. Additionally, quartile values were 

computed, partitioning the data into 25% increments, delineating the first and third 

quarters, and the median representing the midpoint. These statistical insights are 

indispensable for elucidating the distribution of the data and fostering exploratory data 

analysis. Moreover, they play a pivotal role in discerning the range between maximum 

and minimum values, providing valuable perspectives on the variance among data 

points. Figure 3.11. presents feature descriptions. 
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Figure 3.11. MetroPT features Describe () details. 

 

Following this, the existence of null and missing values within each feature of the data 

frame was discerned through the implementation of the isnull () function, disclosing 

that the dataset was devoid of any vacant or missing values. To gauge the diversity 

inherent in each feature, the unique () function was employed to ascertain the count of 

distinct values within each feature. Figure 3.12 A and B present features missing and 

unique values. 
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Figure 3.12 . A) MetroPT features isnull () details. B) MetroPT features Unique () 

details. 

 

 

Figure 3.13. A) MetroPT features “timestamp” type details. B) MetroPT features 

“timestamp” type details. 

 

Upon confirming the feature types, it was observed that the 'timestamp' feature was 

categorized as 'object.' Subsequently, a prudent adjustment was made by converting 

its type to 'DateTime,' thereby facilitating the transformation of string representations 

into Date Time objects. This conversion was duly validated and corroborated through 

the inspection conducted via the info() function. Figure 3.13 A and B illustrate 

timestamp type. 
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Following a comprehensive phase of data analysis and assimilation, data visualization 

emerged as a pivotal undertaking, aimed at extracting insights and adeptly portraying 

the inherent characteristics of the dataset. This crucial step in data preparation was 

instrumental in optimizing the dataset for subsequent model utilization, thereby 

ensuring enhanced model accuracy and performance. In the initial stages, a strategic 

classification of features into two distinct groups, namely analog signals and digital 

signals, was executed. Signals specific to geographical coordinates, namely longitude 

and latitude, were systematically excluded. Leveraging the Matplotlib library for data 

visualization, it was discerned that certain signals exhibited a constant pattern across 

all vehicle operating states. Consequently, these unvarying signals were judiciously 

eliminated from consideration. The features expunged from the data frame 

encompassed ["gpsLong," "gpsLat," "gpsSpeed," "gpsQuality," "Pressure_switch," 

"Oil_level," "Caudal_impulses"]. Figure 3.14 presents drop signals, and Figure 3.15. 

presents analogue signals visualization, while Figure 3.16. presents digital signals 

visualization. 

 

 

Figure 3.14. MetroPT drop signals. 
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Figure 3.15. MetroPT analogue signals visualization. 
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Figure 3.16. MetroPT digital signals visualization. 

 

3.5. FEATURE ENGINEERING  

 

Subsequent to the visualization and descriptive analysis of the data, a conspicuous 

observation surfaced: the dataset lacked the requisite labels essential for classification 

[104]. In the inaugural phase of label assignment, a binary classification schema (0,1) 
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was implemented. Instances aligned with the three documented failures were assigned 

a label of "1," denoting the occurrence of failure in the air production unit. Conversely, 

instances falling outside the designated time frames, indicative of the absence of 

failure, were designated the label "0,". In formulating the second set of labels, failures 

were systematically categorized into three distinct classes. The initial class was 

designated a label of "1" corresponding to the first recorded failure, the subsequent 

class was assigned a label of "2" for the second documented failure, and the third class 

received the label "3" denoting the third failure. A fourth class was introduced with 

the label "4," encapsulating instances characterized by the absence of failures. This 

classification was contingent upon the precise timestamps associated with each 

recorded failure as shown in Table 3.1. 

 

Upon the generation of these labels, an observation surfaced regarding the imbalanced 

distribution of values. To rectify this issue, the under-sampling technique was applied 

to both the first and second sets of labels, ensuring a balanced representation of classes 

and thereby rendering the data conducive to modeling and analysis. 

 

Following label balancing, normalization was implemented on the analog signals 

characterized by continuous values, thereby scaling the data to conform to a 

predetermined range, typically (0, 1). Post-normalization, a stacking technique was 

invoked to resample the data, further optimizing its suitability for subsequent 

processing. 

 

Subsequently, a meticulous organization, sorting, and partitioning of the data ensued, 

resulting in three distinct subsets: an 80% training set, a 10% validation set, and a 10% 

test set. These delineated subsets served as the foundational components for the 

training of the proposed model and the subsequent evaluation of its performance in 

predicting failures . 

 



 

51 

PART 4 

 

EXPERIMENT RESULT AND DISCUSSION 

 

4.1. HYPERPARAMETER 

 

A multitude of fields and domains witness the extensive application of DL algorithms. 

The optimization of these algorithms' performance is inherently linked to the 

meticulous selection of optimal parameters, a process deemed fundamental as it 

profoundly influences both model performance and accuracy. Consequently, the 

challenge inherent in the process of parameter selection assumes significance, given 

its direct impact on the augmentation of model performance [110]. Therefore, 

parameters are intricately selected and fine-tuned to align with the characteristics of 

the specific dataset and its dimensions, along with the algorithms seamlessly integrated 

into the model.  

 

In the pursuit of this research endeavor, inspiration for parameter selection was drawn 

from prior study models, iterative experimentation, and the progress achieved by 

scholars in the realm of optimal parameter selection. Initially, a spectrum of distinct 

values for each hyperparameter, possessing the capacity to exert influence on model 

performance, was systematically examined. These hyperparameters encapsulated 

pivotal facets such as the learning rate, network depth (expressed in terms of layer 

count), units allocated per layer, types of activation functions, batch size, and other 

relevant parameters. The thoroughness of this expansive exploration facilitated a 

comprehensive analysis of the repercussions of diverse parameter values on model 

performance. 

 

This dedicated effort reached its pinnacle with the discerning selection of pertinent 

hyperparameters for our model, culminating in a substantial augmentation of its 

performance and accuracy. The meticulously tuned hyperparameters of the envisaged 



 

52 

CNN-LSTM model are exhaustively delineated in Table 4.1, revealing noteworthy 

outcomes and outstanding predictive proficiency. These results underscore the 

authentic efficacy of deploying hyperparameter optimization techniques to achieve 

elevated model performance, thereby fostering the advancement of more exacting and 

efficacious predictive maintenance applications [111]. 

 

Table 4.1. Hyperparameter utilized in the CNN-LSTM model. 

Hyper parameter Value 

Activation function Relu 

Dropout 0.2 

Loss function binary_crossentropy 

Epoch 10 

Batch size 12 

optimizer Adam 

 

4.2. IMPLICATION OF THE FINDINGS  

 

The hybrid CNN-LSTM model, conceived for the anticipation of failures in metro air 

production unit components, undergoes a training regimen utilizing the Metro PT 

suite. The execution of this research is conducted within the flexible Jupyter Notebook 

platform, harnessing the capabilities of the Python 3.7 programming language for the 

intricate construction of the model. All experiments are conscientiously executed on 

a computing system outfitted with an Intel Core i7 CPU and a robust 8 GB of RAM. 

This configuration guarantees substantial computational prowess, thereby ensuring 

the adequacy of computational resources for our research pursuits.  

 

To address this, we have taken on the task of creating two distinct categories. The first 

pertains to binary classification, while the second is tailored for multi-class 

classification. This dual classification framework underpins our model's approach, 

systematically addressing the unique challenges presented by each label distinction. 

This approach is implemented in the proposed hybrid CNN-LSTM model for 

predicting failures contained within the data set, and which has been registered by the 

organization responsible for preparing the data.  
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4.2.1. Binary Classification  

 

This section of the chapter presents the models employed in analyzing the Metro PT 

dataset for predicting APU component failure through binary classification (where "1" 

denotes component failure and "0" denotes non-failure). Following data preparation 

and processing, the correlation matrix is utilized to assess the relationships among the 

features, visually depicted in Figure 4.1. Subsequently, these features undergo further 

preparation before integration into the model, involving the removal of seven features. 

This results in a total of 13 inputs and two binary outputs (1 and 0) being fed into the 

models. 

 

The dataset is partitioned into three groups: an 80% training group, a 10% validation 

group, and another 10% designated as the test group. Consequently, the features are 

primed for binary classification using various models (CNN, LSTM, CNN-LSTM), 

and the outcomes of each model are compared independently. 

 

 

Figure 4.1. Correlation matrix of MetroPT features. 
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4.2.1.1. CNN Binary Classification  

 

Upon analyzing the correlation matrix to unveil inter-feature relationships, the 

specified features are removed from the initial dataset. This dataset is subsequently 

divided into three distinct groups. The objective is to ready it for a CNN designed for 

forecasting component failure. The CNN model is configured with 13 input and output 

features for binary classification, where "1" represents component failure and "0" 

indicates no failure. Its customization aims at predicting the likelihood of failure for 

an APU component. 

 

The CNN model architecture comprises three key layers: a one-dimensional 

convolutional layer, a pooling layer, and a flattening layer. The convolutional layer 

incorporates 64 filters and a kernel size of 3, utilizing the Rectified Linear Unit (ReLU) 

activation function. This is followed by a one-dimensional max pooling layer with a 

pool size of 2. The flattening layer includes 50 nodes activated by ReLU, and a dropout 

layer (dropout rate = 0.2) is added to prevent potential overfitting. Another layer, node 

1, utilizes the "sigmoid" activation function to make the final classification decision 

based on the selected features. For optimization, the model employs the 

"binary_crossentropy" loss function and the "Adam" optimizer. Evaluating the model's 

performance and accuracy utilizes accuracy metrics, visually represented by Figure 

4.2 showcasing the CNN model's architecture for binary classification. Additionally, 

Table 4.2 outlines the achieved results of the CNN model, using the specified 

hyperparameters in Table 4.1. 

 

 

Figure 4.2. CNN model for binary class. 
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Table 4.2. CNN model result. 

Method The proposed  

(Binary class) CNN 

Accuracy 90.64% 

 

4.2.1.2. LSTM Binary classification  

 

After employing the correlation matrix to discern feature relationships and 

subsequently eliminating them from the initial dataset, the data undergoes partitioning 

into three distinct groups. This segregation precedes the preparation for the LSTM 

network model, aimed at forecasting component failure. Configured with 13 input and 

output features for binary classification (where "1" signifies component failure and "0" 

indicates non-failure), the LSTM model is specialized to predict the probability of 

failure for an APU component. 

 

The LSTM model architecture consists of four layers. The initial three layers each 

contain 50 units, while the fourth and final layer introduces a dense layer with a single 

node using the "sigmoid" activation function to determine the classification based on 

chosen features. Utilizing the 'binary_crossentropy' as the loss function and the 'Adam' 

optimizer, the model's structure is represented visually in Figure 4.3, showcasing its 

design for binary classification. Moreover, Table 4.3 details the outcomes attained by 

the LSTM model, employing the hyperparameters specified in Table 4.1. 

 

Table 4.3. LSTM model result. 

Method The proposed  

(Binary class) LSTM 

Accuracy 94.13% 
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Figure 4.3. LSTM model for binary class. 

 

4.2.1.3. CNN-LSTM Binary Classification 

 

A correlation matrix was employed to establish a connection between the features and 

the binary classification target, visually represented in Figure 4.1. Subsequently, the 

hybrid model underwent execution both prior to and subsequent to the removal of 

seven features, with results indicating nominal disparities. Following this phase, the 

data underwent meticulous partitioning and preparation for input into the model, 

involving the allocation of an 80% training set, a 10% validation set, and a 10% test 

set. 

 

The envisaged hybrid CNN-LSTM model accommodates 13 input and output features, 

specifically tailored for predicting the likelihood of failure in an APU component, 

adhering to a binary classification paradigm (where '1' signifies component failure and 

'0' denotes non-failure). The model's architectural framework predominantly leverages 

CNN-LSTM for precise failure prediction. The CNN component integrates a one-

dimensional convolutional layer featuring 64 filters and a kernel size of 3, employing 

the Rectified Linear Unit (ReLU) as the activation function. Subsequently, a one-

dimensional max-pooling layer with a pool size of 2 is introduced, accompanied by a 

dropout layer (dropout rate = 0.2) designed to mitigate potential overfitting. The output 

of this layer seamlessly transitions into the LSTM model, characterized by 64 units. 

The LSTM outputs are further directed to a flat layer equipped with 64 units, 

functioning as a fully connected layer adept at converting multidimensional features 
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into one-dimensional data. ReLU is employed as the activation function for this layer, 

and a dropout layer (dropout rate = 0.2) is judiciously incorporated to address 

overfitting concerns. Lastly, the model integrates a dense output layer housing 1 unit, 

responsible for delivering the ultimate classification decision based on the selected 

features. The "sigmoid" activation function governs this layer, with 

"binary_crossentropy" serving as the loss function and the "Adam" optimizer. Model 

performance and accuracy undergo evaluation through accuracy metrics, and Figure 

4.4 vividly illustrates the architectural structure of the model tailored for binary 

classification. 

 

 

Figure 4.4. CNN-LSTM model structure for binary classification. 

 

The hybrid model undergoes training using an 80% training set, with its performance 

meticulously assessed through a 10% validation set. Following the training and 

validation phases, the model undergoes a rigorous evaluation utilizing a dedicated 10% 

test dataset. Key evaluation metrics, including accuracy and F-Score, are 

systematically computed to provide a comprehensive assessment of the model's 
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performance and accuracy. The outcomes of the Predictive Maintenance (PdM) CNN-

LSTM model for binary classification notably showcase its efficacy in predicting 

failure scenarios with a commendable level of accuracy. This encompasses the model's 

adeptness in identifying components prone to failure, facilitating proactive 

maintenance measures. Furthermore, the model demonstrates efficiency in scenarios 

where components operate without any failure, thereby reducing unnecessary 

maintenance efforts. A comparative analysis of the performance results of the 

proposed model against relevant work utilizing a Random Forest machine learning 

model on the MetroPT dataset [112], reveals that our hybrid CNN-LSTM model 

attains superior predictive accuracy.  This suggests enhanced speed and accuracy in 

error detection and diagnosis, surpassing the efficacy of previous models. The 

comparative metrics results are meticulously presented in Table 4.4. 

 

Table 4.4. Overall proposed study results for binary-class. 

 Method Previous study 

for Binary class  

Random Forest 

[112] 

CNN LSTM The proposed hybrid 

(Binary class) CNN-LSTM 

F-score 85% X X 92% 

Accuracy 84% 90.64%     94.13% 92.84% 

Recall            X X X 0.92 

Precision             X              X X 0.93 

 

The accuracy and performance of the model undergo additional scrutiny through the 

utilization of a confusion matrix. As illustrated in Figure 4.5, the matrix delineates the 

following values: TP (True Positives) = 7697, FP (False Positives) = 550, FN (False 

Negatives) = 625, and TN (True Negatives) = 7545. The discernment drawn from these 

values underscores the commendable performance of the model.  
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Figure 4.5. Confusion matrix for binary classification. 

 

The model achieves an impressive accuracy rate, reaching approximately 92.7%, 

demonstrating exceptional proficiency in identifying true positive cases with a recall 

rate of about 92.5%. Furthermore, the model accurately identifies positive cases with 

a high prevalence, registering approximately 93.3%. The F-1 factor serves as a 

noteworthy metric, highlighting the delicate equilibrium between precision and recall 

in the model's performance[113].  

 

Accuracy: This metric gauge the overall accuracy of the model and can be calculated 

using the formula (1): 

 

Precision = TP/  (TP + FP)   (4.1) 

 

Recall: Recall assesses the completeness of the model and is computed as indicated in 

(2): 

 

Recall = TP/ (TP + FN)  (4.2) 

 

F-score: The F-score represents the weighted average of recall and precision and is 

particularly valuable when dealing with imbalanced training data. The F-score is 

determined using the formula (3): 
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F - score = (2 * Precision * Recall)/ (Precision) + Recall))   (4.3) 

 

The model's accuracy exhibits improvement with a progressive increase in the number 

of epochs, as visually depicted in Figure 4.6. The graphical representation elucidates 

the discernible enhancement in accuracy and concurrent reduction in loss with respect 

to the increment in epoch size. 

 

 

Figure 4.6. Training loss &  Training Accuracy for binary classification. 

 

4.2.2. Multi Classification  

 

This section introduces a multi-classification methodology designed for categorizing 

failures within a dataset utilizing various models (CNN-LSTM, CNN, LSTM). 

Failures are classified into four distinct categories: the first category is labeled as "1" 

for the initial recorded failure, the second category is designated as "2" for the second 

recorded failure, the third category is assigned "3" for the third failure, and the fourth 

category is represented by the number "0," indicating No failure, as illustrated in Table 

4.5. 

 

Table 4.5. Multi-class failures types. 

Multi-Class 

Failure Non Failure 

Air leak =1 4 

Air leak =2 

oil leak =3 
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Following the classification of failures into these four categories, the dataset was 

partitioned into three distinct sets: an 80% training set, a 10% validation set, and a 10% 

test set. Hyperparameters were systematically applied to the model, with detailed 

specifications provided in Table 4.1. Thirteen input features  after deleting seven 

features and four output features were prepared, and the failure state of the APU 

component was predicted based on the classified failure states (as per Table 4.5). The 

proposed models were tested separately for accuracy. 

 

4.2.2.1. CNN Multi Classification  

 

This section introduces the CNN model tailored for multiple classification. After 

categorizing failures into four distinct classes based on the recorded multi-class target 

failures, as outlined in Table 4.5, the CNN model's architecture is designed to handle 

13 input features and predict the failure state of the APU component according to the 

classified failure states (refer to Table 4.5). 

 

The CNN component encompasses a one-dimensional convolutional layer with a filter 

size of 64 and a kernel size of 3, employing the rectified linear unit (ReLU) activation 

function. This is followed by a one-dimensional maximum pooling layer with a 

pooling size of 2 and a flattening layer consisting of 50 nodes. The ReLU activation 

function is applied to this layer, and a dropout layer with a rate of 0.2 is incorporated. 

The model is concluded with a dense output layer comprising 4 units, utilizing a 

"sigmoid" activation function to organize the outputs (1, 2, 3, 4). The loss function is 

denoted by "binary_crossentropy," optimized through the "Adam" optimizer. Model 

parameters align with those specified in Table 4.6. Figure 4.7 visually depicts the 

model structure for multiple classification. 

 

Table 4.6. CNN model result. 

Method The proposed  

(Multi class) CNN 

Accuracy 99.34% 
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Figure 4.7. CNN model architecture for multi-class. 

 

4.2.2.2. LSTM Multi Classification  

 

This section introduces the LSTM model tailored for multiple classification. Following 

the categorization of failures into four distinct classes based on the recorded multi-

class target, as outlined in Table 4.5, the LSTM model's structure is designed to 

accommodate 13 input features and predict the failure state of the APU component 

based on the classified failure states (refer to Table 4.5). 

 

The LSTM model is composed of four layers, with the first, second, and third layers 

each containing 50 units. The fourth and final layer involves the addition of a dense 

layer with a single node and a "sigmoid" activation function, responsible for delivering 

the final classification decision based on the selected features. The loss function is 

denoted by "binary_crossentropy," and the "Adam" optimizer is employed. 

 

Model parameters align with those specified in Table 4.1. Figure 4.8 provides a visual 

representation of the model structure for multiple classification. Standard performance 

evaluation involves accuracy metrics, encompassing training on an 80% training set 

and validation on a 10% validation set. Subsequently, a dedicated 10% test dataset is 

utilized to assess the model, employing metrics such as accuracy. The Table 4.7 

presents the detailed results of the model. 
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Figure 4.8. LSTM model architecture for multi-class. 

 

Table 4.7. LSTM model result. 

Method The proposed  

(Multi class) LSTM 

Accuracy 98.26% 

 

4.2.2.3. CNN-LSTM Multi Classification  

 

This section introduces a multi-classification methodology for categorizing failures 

within a dataset, employing a hybrid CNN-LSTM model [111]. Failures are classified 

into four distinct categories: the first category is denoted by a "1" for the initial 

recorded failure, the second category by a "2" for the second recorded failure, the third 

category by a "3" for the third failure, and the fourth category is represented by a "0" 

signifying no failure, as elucidated in Table 4.3. 

 

After the categorization of failures into four classes, the dataset underwent a 

partitioning into three distinct sets: an 80% training set, a 10% validation set, and a 

10% test set. Hyper-parameterization was systematically applied to the model, with 

detailed specifications outlined in Table 4.1. The architecture of the hybrid CNN-

LSTM model is designed to accommodate 13 input and output features, predicting the 

failure state of the APU component based on the classified failure states (as per Table 

4.5). The CNN component encompasses a one-dimensional convolutional layer (filter 

size: 64, kernel size: 3) with Rectified Linear Unit (ReLU) activation, succeeded by a 
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one-dimensional maximum pooling layer (pooling size: 2) and a dropout layer 

(dropout rate: 0.2) implemented for managing overfitting. The subsequent LSTM 

layer, comprised of 64 units, processes the output from the CNN component. The 

LSTM outputs are then directed into a dense layer (64 units) that functions as a fully 

connected layer, adept at converting multidimensional features into one-dimensional 

data. The ReLU activation function is applied to this layer, accompanied by a dropout 

layer (dropout rate: 0.2). The model concludes with a dense output layer, housing 4 

units and utilizing a "sigmoid" activation function to organize the outputs (1, 2, 3, 4). 

The loss function is denoted by "binary_crossentropy," optimized through the "Adam" 

optimizer. Figure 4.9 provides a graphical representation of the model structure for 

multi-classification. Model performance evaluation centers around accuracy metrics, 

entailing training with an 80% training set and validation with a 10% validation set. 

Subsequently, a dedicated 10% test dataset is employed for model evaluation, utilizing 

metrics such as accuracy and F-Score. 

 

 

Figure 4.9. CNN-LSTM model structure for Multi-class. 
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The evaluation outcomes of the multi-classification CNN-LSTM model underscore its 

efficacy in predicting classified failure scenarios and discerning potential components 

prone to failure, thereby mitigating unnecessary maintenance efforts. A comparative 

analysis with preceding research, employing a Random Forest machine learning model 

on the MetroPT dataset, reveals that the deep hybrid model attains superior predictive 

accuracy. This advancement is presumed to contribute positively to fault detection and 

diagnosis. The detailed comparison metrics are presented in Table 4.8. 

 

Table 4.8. Overall proposed study results for multi-class. 

Method Previous study for 

multi-class 

Random Forest 

[112] 

CNN LSTM The proposed hybrid 

(Multi-class) CNN-

LSTM 

F-score 97% X X 0.99 

Accuracy 87% 99.34% 98.26% 99.5% 

Recall X X X 0.99 

Precision                X X X 1 

 

 

Figure 4.10. Confusion Matrix for multi class CNN- LSTM model. 

 

The model's accuracy exhibits improvement with a progressive increase in the number 

of epochs, as visually depicted in Figure 4.11 The graphical representation elucidates 

the discernible enhancement in accuracy and concurrent reduction in loss with respect 

to the increment in epoch size. 
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Figure 4.11. Training loss & Training Accuracy for Multi-classification. 

 

4.3. LIMITATIONS OF THE STUDY 

 

In every research endeavor, it is crucial to recognize that no study exists without 

limitations. Despite our assiduous efforts to mitigate these constraints, they persist, 

influencing the breadth and resilience of our research. Acknowledging and addressing 

these limitations becomes imperative, not only to highlight their presence but also to 

provide context to our findings and illuminate pathways for subsequent investigation 

and improvement. Various factors and issues have the capacity to influence the 

outcomes and conclusions of this study. This section will delve into the inherent 

limitations of our research, their ramifications on the interpretation of our findings, 

and strategies aimed at their amelioration. 

 

A paramount limitation in this study revolves around the process of data acquisition 

and compilation. The existing datasets (CAMPSS, predictive maintenance, and motor 

data) within the domain of predictive maintenance have undergone thorough scrutiny 

and refinement by researchers and practitioners. In our investigation, the reliance on 

the Metro PT dataset served as a test case for implementing our proposed hybrid 

model. Nevertheless, the dataset posed challenges, particularly in the absence of labels, 

making label extraction a complex and challenging task. 

 

Another notable limitation stems from the heterogeneous nature of the data, marked 

by the coexistence of both digital and analog signals. Managing this diversity, which 

encompasses both continuous and intermittent signals, introduces complexities that 
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necessitate careful navigation. Additionally, our research grapples with limitations 

associated with the selection of hyperparameters. Decisions pertaining to the number 

of layers, dropout values, and batch sizes—crucial for optimizing the model's 

performance and accuracy—present challenges in their own right. Resource 

constraints, encompassing both financial and temporal aspects, have imposed 

restrictions on the depth and breadth of our research. These limitations have inevitably 

influenced the extent to which we could delve into the subject matter. 

 

4.4. FUTURE RESEARCH DIRECTION 

 

Potential avenues for future research are delineated in this section, presenting 

captivating opportunities to enrich our knowledge base and address the limitations 

inherent in this study. These directions possess the potential to engender more 

comprehensive insights, thereby contributing substantively to the continual 

progression of this field. The promising results demonstrated by our proposed 

framework are underscored, as evidenced by the attainment of an approximate 92% 

accuracy rate for the binary classifier and a notable 99% accuracy rate for multiple 

classifications. These achievements were realized through the application of hybrid 

deep learning algorithms on the MetroPT dataset. Therefore, prospects on the horizon 

suggest forthcoming opportunities to augment the accuracy of the binary classifier.  

 

An additional promising avenue lies in the anticipation of component failures, 

constituting a pivotal tool to empower decision-makers in the proactive detection and 

mitigation of malfunctioning components, thereby minimizing downtime. This 

proactive approach not only mitigates material and time-related losses but also 

facilitates the implementation of more streamlined and efficient maintenance 

practices.  

 

Furthermore, opportunities abound for the refinement of this study and the provision 

of valuable assistance to researchers through the prediction of the remaining useful life 

of these components. This approach harbors considerable potential, particularly within 

the domain of metro vehicles, as it stands to augment the overall reliability of the metro 

system, enhance passenger safety, elevate the quality of the passenger experience, and 
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preemptively address potential safety concerns before they escalate into severe issues. 

The capacity to forecast when maintenance is requisite and make judicious decisions 

regarding asset repair or replacement additionally contributes to the reduction of 

disruptions for passengers. The incorporation of machine learning and deep learning 

techniques holds the promise of unveiling deeper insights into intricate data patterns 

and predictive modeling, thereby ushering in novel horizons for research in this 

domain. 
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PART 5 

 

CONCLUSION  

 

The research initiative aims to predict equipment failures for the proactive 

implementation of maintenance strategies, leveraging the MetroPT dataset. This 

dataset encompasses three distinct signal types, namely digital, analog, and GPS, 

sourced from sensors strategically positioned within the air production unit. In an 

imperative initial phase, the dataset underwent meticulous scrutiny and preprocessing. 

Deliberate exclusions were made for GPS signals and signals manifesting fixed 

patterns. Following this, two distinct labels were introduced to address the unclassified 

nature of the data, aligning classification criteria with the failure cases documented by 

the company. The first label corresponds to binary classification (0, 1), while the 

second label accommodates multi-class classification (1, 2, 3, 4). 

 

To prepare the data for model input, a diverse set of techniques was deployed. Under-

sampling was employed to rectify imbalances in the dataset, normalization methods 

were applied to ensure uniformity for continuous signals, and a resampling technique 

utilizing stacking was executed prior to data integration. Significantly, the research 

introduced a meticulously crafted hybrid model that harnesses the strengths of deep 

learning methodologies, specifically integrating a CNN and a LSTM network. This 

hybrid model was purposefully designed to forecast component failures within the air 

production unit situated atop the metro system. 

 

The outcomes derived from this study are notably promising. The proposed hybrid 

model has exhibited a commendable level of accuracy, attaining 92% accuracy for 

binary classification and an impressive 99% accuracy for multi-class classification. 

These results unequivocally substantiate the efficacy of the hybrid model in the domain 

of predictive maintenance, surpassing the performance benchmarks established by 

antecedent research.
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In summary, this research effectively showcased the potential of deep learning 

techniques in the sphere of predictive maintenance, utilizing the MetroPT dataset. The 

hybrid model, amalgamating components from CNN and LSTM, demonstrated 

exceptional accuracy in predicting faults within the metro's air production unit. These 

findings provide invaluable insights into the practical applications of predictive 

maintenance, emphasizing the paramount significance of proactive strategies in 

mitigating operational disruptions and extending equipment longevity. The 

contributions of this research are poised to catalyze significant advancements in 

maintenance practices, ultimately establishing a benchmark for both future research 

endeavors and real-world applications. 
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