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ABSTRACT 

 

M.Sc. Thesis 

 

DETECTION AND CLASSIFICATION OF KIDNEY STONES BASED ON 

DEEP LEARNING METHODS  

 

Aziz AYDIN 

 

Karabuk University 

Institute of Graduate Programs 

Department of Biomedical Engineering 

 

Thesis Advisor:  

Assist. Prof. Dr. Eftâl ŞEHİRLİ 

January 2024, 154 pages 

 

Kidney stones are a prevalent global health issue, leading numerous individuals to seek 

emergency care due to intense pain. Different imaging methods are employed in the 

diagnosis of kidney stone disease, requiring specialized expertise for the 

comprehensive interpretation and diagnosis of these images. Significant advancements 

in the medical field have been facilitated thanks to the application of machine learning 

and deep learning methods. This thesis aims to employ deep learning and object 

detection techniques to detect and classify kidney stones on CT images. The dataset 

employed in this thesis comprises a total of 1799 coronal CT scans. Among these, 

1009 scans originate from individuals without kidney stones, while the remaining are 

collected from patients who have been diagnosed with kidney stones. This thesis 

involves implementing three different models as Faster R-CNN, YOLO, and a 

customized convolutional neural network (CNN). While Faster R-CNN performance 

was underwhelming, YOLO v5 achieved promising results, surpassing YOLO v7 with   
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a mAP (0.5) of 84.6% and a mAP (0.5:0.95) of 39.0% for kidney stone detection. The 

customized CNN exhibited remarkable accuracy reaching 99.13%. Indicating its 

efficacy in classifying kidney stones, the model achieved an accuracy closely 

comparable to the leading studies in the literature firmly establishing itself as a 

noteworthy achievement. 

 

Key Words : Kidney stones, Deep learning, Object detection 

 

Science Code : 925118 
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ÖZET 

 

Yüksek Lisans Tezi 

 

DERİN ÖĞRENME YÖNTEMLERİYLE BÖBREK TAŞLARININ 

TESPİT EDİLMESİ VE SINIFLANDIRILMASI 

  

Aziz AYDIN 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Biyomedikal Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi Eftâl ŞEHİRLİ 

Ocak 2024, 154 sayfa 

 

Böbrek taşları, küresel bir sağlık sorunu olarak önem taşımakta ve şiddetli ağrı 

nedeniyle birçok kişinin acil yardım talep etmesine sebep olmaktadır. Böbrek taşı 

hastalığının teşhisi için farklı görüntüleme teknikleri kullanılmakta, bu görüntülerin 

detaylı bir şekilde değerlendirilmesi ve doğru teşhis konulabilmesi için uzmanlık 

gerekmektedir. Tıp alanında, makine öğrenmesi ve derin öğrenme yöntemlerinin 

entegrasyonu ile önemli ilerlemeler kaydedilmiştir. Bu tez, koronal BT görüntülerde 

böbrek taşlarını tespit etmek ve sınıflandırmak amacıyla derin öğrenme ve nesne 

tespiti tekniklerini kullanmayı amaçlamaktadır. Kullanılan veri seti, toplamda 1799 

koronal BT görüntüleri içermektedir. Bu görüntülerden 1009’u böbrek taşı 

bulunmayan bireylerden alınmış olup, geri kalanı ise böbrek taşı teşhisi konmuş 

hastalardan elde edilmiştir. Bu tezde Faster R-CNN, YOLO ve özelleştirilmiş bir 

evrişimli sinir ağı (CNN) olmak üzere üç farklı model uygulanmıştır. Faster R-

CNN’nin performansı beklenen seviyenin altında kalmıştır. Öte yandan, YOLO v5 

umut verici sonuçlar elde etmiş ve özellikle böbrek taşı tespiti konusunda mAP (0,5) 
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%84,6 ve mAP (0,5:0,95) %39,0 başarı oranlarına ulaşarak YOLO v7’yi geçmiştir. 

Ayrıca, özelleştirilmiş bir CNN modeli de %99,13 doğrulukla dikkat çekmiştir. Bu 

model, böbrek taşlarını sınıflandırmadaki etkinliğini literatürdeki önde gelen 

çalışmalarla kıyaslanabilir bir doğruluk seviyesi elde etmiştir.  

 

Anahtar Kelimeler: Böbrek taşları, Derin öğrenme, Nesne tespiti 

 

Bilim Kodu: 925118  
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CHAPTER 1 

 

INTRODUCTION 

 

Kidney stone disease stands as a prevalent health concern, affecting a substantial 

portion of the population with a reported prevalence ranging from 1% to 20% [1]. The 

formation of stones within the urinary system, encompassing the kidneys, ureters, and 

bladder, arises from the condensation of minerals and acid salts, eventually 

crystallizing over time. Statistics reveal that approximately 11% of men and 6% of 

women in the United States encounter kidney stones at least once during their lifetime 

[2]. Factors contributing to the development of kidney stones include middle or 

advanced age, a familial history of stone disease, low fluid intake, protein and salt-rich 

diets, sedentary lifestyles, overweight or obesity, and certain genetic or inflammatory 

conditions [3]. 

 

Visualization of kidney stones is achieved through medical imaging modalities such 

as ultrasound, MRI, and CT scans, with the increased use of CT contributing to 

improved detection rates. The categorization of kidney stones into calcium, uric acid, 

struvite, and cysteine stones is based on their composition and formation [4]. 

Treatment methods vary according to the type of kidney stone, with options including 

shock wave lithotripsy, ureteroscopy, percutaneous nephrolithotomy, percutaneous 

nephron lithotripsy, and open surgery [5].  

 

Despite the evolution of medical imaging techniques, challenges such as low 

resolution, noise induced distortions, a high volume of patients, and a shortage of 

specialists can impede accurate evaluations. To address these challenges, artificial 

intelligence (AI)-based systems have emerged as a promising solution. Presently, deep 

learning methodologies, a subset of AI, demonstrate remarkable accuracy in diverse 

areas, including medical image processing and biomedical signal analysis [6,7]. 

 



2 

 

Deep learning is a subfield of AI that deals with machine learning like algorithms that 

have one or more hidden layers. Feature extraction happens automatically in deep 

learning. This feature makes it possible to work with larger data sets without the need 

for human intervention. Important features may disappear from the data in machine 

learning because the features identified in the data are selected. While crucial 

information is automatically extracted from the input in deep learning, it also has the 

ability to independently extract new features [8]. Although the human factor is more 

effective in machine learning, it is less in deep learning. Deep learning has becoming 

more popular as a method for working with large amounts of data since it requires less 

human intervention in tasks like feature extraction [9]. 

 

The aim of this thesis is to detect and classify kidney stones, which play an important 

role in number of kidney diseases, by using deep learning and object detection 

methods. Under this main aim, it is also planned to implement and compare different 

methods. Within the scope of this thesis, Faster R-CNN, YOLO, and a customized 

CNN model were developed using open source data set. 

 

In the first part of this thesis, titled “Introduction,” a brief overview of the study is 

provided. The introduction outlines the background, importance, and purpose of the 

thesis. In the second chapter, general information about the kidney, including its 

anatomy and physiology, kidney stone disease, and methods of detecting kidney 

stones, is presented. The third chapter reviews the literature on studies related to the 

classification and detection of kidney stones. In the fourth chapter, theoretical 

information on AI, including supervised, unsupervised, and reinforcement learning, as 

well as deep learning and artificial neural networks (ANN), is provided. The fifth 

chapter covers details about the dataset, the programming language used, the platform 

utilized, and features of the computer. In the sixth chapter, information about data pre-

processing, data augmentation, image annotation, and a detailed explanation of Faster 

R-CNN, YOLO, CNN structures, and the model performance evaluation metrics are 

given. In the seventh chapter, a discussion section is included, comparing the findings 

obtained with the developed models and the results of other studies related to the 

subject. 
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CHAPTER 2 

 

KIDNEY 

 

The kidneys are two vital organs that are important for survival. The kidneys are 

located on either side of the spine, at the bottom of the rib cage, and behind the 

abdomen. The kidneys are shaped like a bean or bean seed and are about the size of a 

fist [10]. The main functions of the kidneys are based on filtering the blood from 

accumulated impurities and toxins, balancing the levels of salts, minerals, and water, 

thus helping to regulate blood pressure. The kidneys are involved in the production of 

red blood cells and in revitalizing vitamin D into a form that the body can use to absorb 

calcium from food, thus maintaining bone strength [11]. Each kidney consists of about 

one million nephrons, which are comprised of two main components: the glomerulus 

and the tubule. Within the nephron, the glomerulus acts as a network of small blood 

vessels responsible for filtering the blood. At the same time, the tubule performs the 

essential functions of reabsorbing valuable substances and eliminating waste products, 

ultimately producing urine [12]. 

 

2.1. ANATOMY OF THE KIDNEY 

 

Kidney has an approximate length of 11 cm, a width of 6 cm, and a thickness of 3 cm. 

The left kidney is typically longer than the right kidney. Due to the liver’s position, 

the right kidney also tends to sit lower than the left kidney. The mean kidney weight 

is 150 g in males and 135 g in females [13]. Based on the glomerular filtration rate 

(GFR), the kidneys filter more than 150 L of fluid per day, but less than 1% of the 

filtered fluid is actually excreted in the urine [14]. When examining a kidney through 

a frontal section, three well-defined areas can be observed: the cortex, medulla, and 

pelvis. The outermost layer, known as the renal cortex, appears light in color and 

displays a granular texture. Situated beneath the cortex is the renal medulla, which has
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a darker reddish-brown hue. Within the medulla, cone-shaped tissue masses referred 

to as medullary or renal pyramids can be observed [15]. The renal pelvis is situated at 

the superior end of the ureter, displaying a flattened structure [16]. A frontal section 

of the kidney is illustrated in Figure 2.1 [17]. 

 
 

Figure 2.1. Kidney anatomy [17]. 

 

2.2. PHYSIOLOGY OF THE KIDNEY 

 

The kidneys have four main functions regulating the body’s fluid and electrolyte 

balance, producing hormones, eliminating waste products generated during 

metabolism, and performing specific metabolic activities. One of the crucial roles of 

the kidneys is the excretion of nitrogenous waste substances, including urea, 

creatinine, and ammonia ions, through urine. Therefore, any notable changes in renal 

function lead to the accumulation of these waste products within the body [18].  

 

Each nephron performs the task of filtering a small quantity of blood. Within the 

nephron, there is a filtering component called the glomerulus, along with a tubule. The 

nephrons operate through a two-step process. Initially, the glomerulus allows fluid and 

waste products to pass through it, while blocking the passage of blood cells and large 

molecules, particularly proteins. Subsequently, the filtered fluid moves through the 
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tubule, which selectively reabsorbs necessary minerals back into the bloodstream 

while eliminating waste substances. Eventually, the production of urine is the outcome 

of this process [10]. 

 

The kidneys release several hormones, including erythropoietin (EPO), a peptide 

hormone that is crucial for the production of red blood cells in the bone marrow. 

Additionally, the kidneys play a role in the synthesis of 1,25-dihydroxyvitamin D3, 

the active form of vitamin D, which is essential for maintaining calcium homeostasis. 

This active form of vitamin D is produced by the proximal tubule cells through the 

action of specific enzymes [19]. Likewise, renin, an enzyme synthesized in the 

kidneys, serves a crucial function within the renin-angiotensin-aldosterone hormonal 

system, which aids in the regulation of blood pressure [20]. 

 

2.3. RENAL DISEASES 

 

Renal diseases pose a significant threat to public health worldwide, with chronic 

kidney disease (CKD) affecting an estimated 8% to 16% of the global population. 

CKD is defined as a persistent impairment in kidney structure or function for a period 

exceeding three months. It is most commonly attributed to diabetes and hypertension 

[21]. If left untreated, CKD can progress to kidney failure, a critical condition 

necessitating either dialysis or a kidney transplant. Other common kidney diseases 

include diabetic nephropathy, glomerulonephritis, kidney stones, kidney tumors, 

pyelonephritis, and renal cell carcinoma [22]. 

 

2.3.1. Kidney Stones  

 

Nephrolithiasis, also known as kidney stone formation, occurs when substances such 

as calcium or other minerals in the urine become excessively concentrated. As a result, 

these substances adhere to each other and form solid masses within the kidneys, 

leading to the development of kidney stones [23]. The term “nephrolithiasis” originates 

from the Greek words “nephros,” meaning kidney, and “lithos,” meaning stone [24]. 

Nephrolithiasis, following hypertension, is one of the most prevalent chronic kidney 

conditions and has been recognized since ancient times, with treatments documented 
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in early medical texts. Kidney stones are a preventable source of illness. Annually, the 

United States faces a significant economic burden surpassing 5 billion dollars. This 

includes expenses associated with hospitalization, procedures to remove symptomatic 

stones, as well as the productivity loss due to missed work [25]. A sample of kidney 

stones is illustrated in Figure 2.2 [26]. 

 

 
 

Figure 2.2. Kidney stone [26]. 

 

Generally, there are four types of stone formation: calcium, uric acid, struvite and 

cystine stones. Basically, kidney stones are categorized according to their primary 

crystalline composition. An illustration of types of kidney stones is shown in Figure 

2.3 [27]. 

 
 

Figure 2.3. Types of kidney stones [27]. 
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Kidney stones exhibit a wide range of sizes, ranging from as small as a grain of sand 

to as large as a pearl. However, it is important to note that the majority of kidney stones 

are typically quite small in size. The summer season is associated with a higher 

prevalence of kidney stones. Typically, smaller stones are expelled from the body, 

often accompanied by varying levels of discomfort. Conversely, larger stones can 

obstruct the normal flow of urine, leading to extreme pain when they become lodged 

in the ureters, bladder, or urethra [28]. Kidney stones are more prevalent in men 

compared to women, and there are slight variations in the types of stones found 

between the sexes [29]. 

 

Although establishing a direct link between climate and the formation of kidney stones 

is challenging, there is an increased prevalence of kidney stones in areas with high 

temperatures and during the summer season. In hot climates, increased water loss 

through sweating can lead to concentrated urine and reduced urine volume. This, in 

turn, raises urine acidity and the concentration of certain molecules, promoting the 

crystallization of these substances in individuals prone to kidney stone formation [30]. 

Most kidney stones are the result of a combination of genetic and environmental 

factors [31]. Dehydration resulting from inadequate fluid intake is a primary factor in 

the progress of kidney stones [32]. 

 

Diagnosis of nephrolithiasis requires confirmation of the presence of a kidney stone 

by observing its transition, removal, and destruction, or by imaging or surgery to 

confirm the presence of a stone in the urinary tract. As a part of the investigation, a 

comprehensive medical history and physical examination are performed on people 

with suspected kidney stones. However, to establish a clinical diagnosis, it is usually 

necessary to complement these evaluations with suitable imaging methods [33]. 

 

2.4. DIAGNOIS OF THE KIDNEY STONES 

 

In the management of patients with renal stone disease, imaging plays a significant 

role in various aspects, including the initial diagnosis, development of treatment plans, 

and monitoring the effectiveness of medical therapy or urologic interventions during 

follow-up [34]. The use of imaging techniques is crucial in the evaluation of kidney 
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stones, serving as a significant diagnostic tool and the first step in determining the 

most suitable therapeutic options for their treatment. The choice of the most suitable 

imaging modality for kidney stones involves considering several factors, including the 

clinical setting, patient’s body composition, expense implications, and the patient’s 

sensitivity to ionizing radiation. Among the available imaging modalities, Computed 

Tomography (CT) scans, ultrasonography, and kidney ureter bladder (KUB) plain film 

radiography are widely utilized in clinical practice for the evaluation of kidney stones 

[35]. 

 

Non-contrast CT of the abdomen and pelvis is considered the gold standard for 

accurately diagnosing kidney stones, providing highly accurate results. However, one 

drawback is that it exposes patients to ionizing radiation. On the other hand, 

ultrasonography, although traditionally having lower sensitivity and specificity 

compared to CT, offers the advantage of being a radiation-free imaging modality. 

When evaluating patients with a history of stone disease, KUB plain film radiography 

is most beneficial for detecting any growth or changes in the stones over time. 

However, its usefulness in diagnosing acute stones is limited. MRI provides the 

potential for radiation-free 3D imaging, but its ability to visualize stones is currently 

challenging, and it can be an expensive option [35]. 
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CHAPTER 3 

 

LITERATURE REVIEWS 

 

Deep learning is an AI technique that enables computers to utilize provided data in 

order to make predictions. In recent times, there has been a remarkable progress in the 

field of computer vision and deep learning algorithms, which has led to their 

widespread adoption for analyzing medical images [36]. This section provides an 

overview of various studies conducted on the detection of kidney diseases, 

highlighting their key findings, and summarizing their outcomes. 

 

Patro et al. [37] proposed a study in which they introduced an approach for automatic 

kidney stone diagnosis. They developed a custom CNN model that utilized a novel 

Kronecker product structure. During the experimentation phase, a database consisting of 

1799 coronal CT scans was utilized. This database included scans from 433 individuals, 

with 790 scans showing kidney stones and 1009 scans representing normal healthy cases. 

To validate the proposed method, a 10-fold cross-validation (CV) technique was 

employed. the performance of the proposed Deep Kronecker Network (DKN) was 

evaluated and compared with traditional approaches such as CNN, Residual Neural 

Network (ResNet), and AlexNet. The automated model developed in this study achieved 

an accuracy of 98.56% in detecting kidney stones using CT images. 

 

Razmjooy & Yan [38], introduced a novel automatic method aimed at accurately 

diagnosing kidney stones. The primary objective was to propose an improved version of 

a metaheuristic technique called Fractional Order Coronavirus Herd Immunity Optimizer 

(FO-CHIO), which was integrated into a modified version of a Deep Belief Network 

(DBN). They used a dataset comprised a total of 12446 images, which were categorized 

as follows: 5077 normal images, 3709 cysts, 2283 tumor images, and 1377 stone images. 

Finally, a comparison was conducted between the proposed DBN/FO-CHIO method an 
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other state-of-the-art approaches. The results of the simulations revealed that the 

recommended DBN/FO-CHIO approach exhibited superior performance in terms of an 

accuracy of 97.98%. Additionally, the proposed DBN/FO-CHIO method demonstrated 

exceptional sensitivity with a value of 92.99%, surpassing the performance of the other 

comparison algorithms. 

 

Caglayan et al. [39] conducted a study to evaluate the effectiveness of a deep learning 

model in detecting kidney stones of varying sizes in different planes using unenhanced CT 

images. A total of 455 patients who underwent CT scanning for kidney stones between 

January 2016 and January 2020 were included. Among these patients, 405 were diagnosed 

with kidney stones, while 50 patients did not have kidney stones. The patients were divided 

into different groups based on the size of their renal stones: group 1 included patients with 

stones measuring 0-1 cm, group 2 included patients with stones measuring 1-2 cm, and 

group 3 included patients with stones larger than 2 cm. A total of 2959 CT images from 

455 patients were reviewed by two radiologists across three different planes. Among the 

different planes examined, the sagittal plane demonstrated the highest sensitivity and 

specificity in comparison to the other plane. The deep learning model achieved accuracy 

rates of 78%, 68%, and 70% in the axial plane for the testing group. In the coronal plane, 

the accuracy rates were 63%, 72%, and 64%. Lastly, in the sagittal plane, the accuracy 

rates were 85%, 89%, and 93% for the respective testing groups. 

 

Gurkan et al. [40] The You Only Look Once (YOLO) architecture designs were employed 

to detect kidney, kidney cysts, and kidney stones, with the added support of explainable 

artificial intelligence (xAI) features. The performance analysis of these YOLO designs 

utilized CT images categorized into three classes: 72 images of kidney cysts, 394 images 

of kidney stones, and 192 images of healthy kidneys. The dataset was split into three sets, 

with 75% used for training, 10% for validation, and 15% for testing. Both of tiny Yolov7 

and Yolov7 were utilized. The YOLOv7 architecture design attained the following 

results, with values of 0.85, 0.882, 0.829, and 0.854 for mAP (0.5), precision, 

sensitivity, and F1 score, respectively. 

 

Baygin et al. [41] utilized a publicly available dataset consisting of 1799 CT images. These 

images were captured with dimensions of 512x512 pixels. The dataset comprised two 

classes: normal and kidney. As a part of the pre-processing steps, the CT images 
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underwent several techniques to ensure their compatibility with the deep learning model. 

One of these techniques involved resizing the images to 224x224 pixels. A novel 

ExDark19 classification model was introduced to detect kidney stones in CT images. The 

proposed method, based on the concept of vision transform (ViT), demonstrated high 

classification performance in analyzing CT images. The primary objective of ExDark19 

was to achieve accurate classification results while minimizing the computational time 

required for kidney stone detection. In addition to that, the iterative neighborhood 

component analysis (INCA) technique was utilized to select the most informative feature 

vectors. These selected feature vectors were then fed into a k-nearest neighbor (kNN) 

classifier for the purpose of kidney stone classification. The evaluation of the proposed 

ExDark19 model was carried out using a 10-fold CV strategy. The results demonstrated 

an accuracy of 99.22% with the 10-fold CV approach and 99.71% using the hold-out 

validation method. 

 

The focus of the research [42] revolved around three significant categories of renal 

diseases: kidney stones, cysts, and tumors. To construct an AI based diagnostic system for 

kidney diseases, a comprehensive collection of 12446 whole abdomen and urogram CT 

images was gathered and annotated. Six models were developed for the purpose of kidney 

disease classification. Among these models, three were based on recent state-of-the-art 

variants of ViT, namely External Attention Transformer (EANet), Compact Convolutional 

Transformer (CCT), and Swin Transformer (Shifted Window Transformer). The other 

three models utilized well-known deep learning architectures: ResNet, Visual Geometry 

Group (VGG16), and Inception V3. These models were employed to leverage the 

strengths of both recent advancements and established deep learning techniques in the 

field of kidney disease classification. After testing the models, VGG16 and CCT exhibited 

good performance. However, the Swin Transformer model surpassed them all in terms of 

accuracy, achieving an accuracy rate of 99.30%. 

 

In a study conducted by Yildirim et al. [43], the focus was on the detection of kidney 

stones. A total of 1799 non-contrast CT images of the brain were collected from 500 

patients with urinary and kidney stone-related medical conditions. Out of these, 67 patients 

were excluded from the study based on a specific criterion. A total of 433 subjects were 

included in the study, consisting of 278 patients with kidney stones and 165 patients 

without stones (normal). The labeling procedure, where the presence or absence of stones 
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was identified, was performed by experts, including a radiologist and a urologist. Notably, 

no segmentation was applied to the CT images during the labeling process. The researchers 

utilized rotation and zooming techniques for data augmentation. After augmenting the 

images, the next step involved feeding images them into a deep learning model for further 

analysis. Specifically, they employed the XResNet-50 model for the detection process, 

leveraging its capabilities to effectively classify and identify kidney stones. For parameter 

tuning of the model, Adam optimization and cross-entropy loss were employed. By 

utilizing these techniques, it was aimed to optimize the performance of the model. As a 

result, the model achieved an accuracy of 96.82%. 

 

S. Sudharson & P. Kokil [44] proposed a paper focused on kidney disease detection and 

classification. The study utilized a dataset comprising 4940 ultrasound images acquired 

from various sources. The dataset was categorized into four distinct categories, namely 

cyst, tumor, stone, and normal. The researchers proposed a computer-aided diagnosis 

(CAD) system to address the issue of speckle noise. To ensure high image quality, a 

perception-based image quality evaluator (PIQUE) score was utilized as a part of the 

image selection process. Images with a PIQUE score of P < 50 were selected for further 

analysis. Subsequently, data augmentation techniques rotation, translation, and cropping 

were applied to the selected images. The dataset was then divided into train and test sets, 

with 90% of the images allocated to the training process and the remaining 10% reserved 

for testing the CAD system’s performance. In the test dataset, different speckle noise 

levels were intentionally added by utilizing noise model. The proposed CAD system then 

performed the de-speckling process using a pre-trained network. Specifically, a pre-

trained ResNet-101 model was utilized for the feature extraction process. This model 

played a crucial role in extracting informative features from the noisy images, aiding in 

the subsequent steps of the CAD system’s analysis and diagnosis of kidney diseases. For 

the classification means Support Vector Machine (SVM) was employed. In conclusion, 

the model achieved an accuracy score of 87.31% when tested with a speckle noise ratio of 

0.02. This indicates the model’s ability to effectively classify and diagnose kidney 

diseases, even in the presence of a certain level of speckle noise. 

 

Parakh et al. [45] the aim of this study was to examine the diagnostic accuracy of a 

cascading CNN for detecting urinary stones in unenhanced CT images. Additionally, the 

researchers sought to assess the performance of pretrained models when supplemented 
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with labeled CT images acquired from various scanners. In this retrospective clinical 

study, unenhanced abdominopelvic CT scans from 535 adults who were suspected of 

having urolithiasis were utilized. 279 of them (comprising 165 men and 114 women) were 

diagnosed with stones, while the remaining 256 patients (including 140 men and 116 

women) did not have stones. The effectiveness of a cascading CNN for the detection of 

urinary stones was demonstrated. In this approach, the urinary tract was first detected by 

the initial CNN model, while the subsequent CNN model was responsible for detecting 

the presence of stones. This cascading approach allowed for a more accurate and specific 

identification of urinary stones within the imaging data. The CNN utilized was initially 

pretrained with ImageNet, which consisted of 1.2 million natural images spanning 1000 

categories. Following the ImageNet pretraining, the model was fine-tuned using an in-

house dataset called GrayNet. Which contained labeled CT images specifically designed 

for human anatomy recognition. This fine-tuning process resulted in the generation of a 

pretrained model called the GrayNet pretrained model. The weights of this pretrained 

model were then utilized to initialize the CNN models employed for urinary tract 

identification and stone detection tasks. The network achieved Area Under Curve (AUC) 

of 0.954. 

  

Längkvist et al [46] a CNN was employed to detect ureteral stones in thin-slice CT scans. 

The primary focus of this research was to develop an automatic detection method for 

ureteral stones that do not rely on specific feature selection or segmentation techniques. 

The complete dataset used in this study comprised 465 unenhanced abdominal CT scans 

that were clinically acquired. To train the CNN, the scans were randomly divided into a 

training set (80% of the dataset) and a testing set (20% of the dataset). Prior to the division, 

28 scans that contained stones that were either too small or too large were removed from 

the dataset. The achieved sensitivity for the model was 100%. 

 

Table 3.1 provides an overview of previous research studies, listing the algorithms utilized 

and the corresponding years of each study and additional information on the used datasets.
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Table 3.1. Overview of previous research studies. 

 

No Authors Reference Year Input 

images 

Number of 

Images 

Model Results 

1 Patro et al. [37] 2023 CT 1799 DKN Accuracy: 98.56%. 

2 Razmjooy & Yan [38] 2023 CT 12446 DBN/FO-

CHIO 

Accuracy: 97.98%. 

3  Caglayan et al. [39] 2022 CT 2959 xResNet50 Accuracy: 85%, 89%, and 93% in the sagittal 

plane. 

4 Gurkan et al. [40] 2022 CT 658 YOLO v7 mAP (0.5): 0.85, Precision: 0.882, 

Sensitivity: 0.829, F1 score: 0.854. 

5 Baygin et al. [41] 2022 CT 1799 ExDark19  10-fold CV Accuracy: 99.22%, hold-out 

Accuracy: 99.71%. 

6 Islam et al. [42] 2022 CT 12446 Swin 

transformers 

Accuracy :99.30%. 

7 Yildirim et al. [43] 2021 CT 1799 xResNet50 Accuracy: 96.82 % 

8 S. Sudharson & P. 

Kokil 

[44] 2021 Ultrasound 4940 SVM Accuracy: 87.31% 

9 Parakh et al. [45] 2019 CT 535 Dual CNN AUC: 0.954  

10 Längkvist et al. [46] 2018 CT 465 CNN Sensitivity: 100% 



15 

 

CHAPTER 4 

 

ARTIFICIAL INTELLIGENCE 

 

AI is an emerging field that utilizes computer technology to explore and progress theories, 

methods, techniques, and application systems aimed at simulating, extending, and 

amplifying human intelligence [47]. AI, as a scientific field, aims to enable machines to 

solve complex problems in a manner that resembles thinking and problem-solving 

capabilities of human [48]. Machine learning and deep learning are two integral 

components of the field of AI, with deep learning being the more recently introduced 

technique [49]. 

 

4.1. MACHINE LEARNING 

 

Machine learning is the discipline that revolves around developing algorithms and 

statistical models, allowing computer systems to perform tasks by analyzing patterns 

and making inferences, without relying on explicit instructions. It is a branch of AI 

that aims to extract information from given inputs, recognize patterns, and make 

decisions with minimal human intervention [50]. Machine learning is a type of 

software that enhances its performance in the future by learning from past experiences. 

It falls under the umbrella of AI, aiming to simulate human intelligence within 

computer systems [51]. There are various types of machine learning, including 

supervised learning, unsupervised learning and reinforcement learning offering 

different approaches to the learning process [52]. Supervised learning involves the use 

of classification and regression techniques, while unsupervised learning utilizes 

clustering techniques. Diagram of machine learning algorithms is visually represented 

in Figure 4.1 [52]. 
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Figure 4.1. Diagram of machine learning algorithms [52]. 

 

4.1.1. Supervised Learning 

 

Supervised learning, a subset of machine learning, relies on labeled data to train 

models for both prediction and detection tasks. In this approach, known outputs are 

assigned to each known input in the training data. Adequate availability of labeled 

input-output data enables supervised learning to achieve high performance in 

estimation. Machine learning can be classified into two main categories based on the 

types of model outputs in supervised learning. If the output is continuous, it is 

considered a regression problem, whereas if the output is discrete and represents a 

value from a finite set of predefined options, it is categorized as a classification 

problem [53]. 

 

In regression, the objective is to predict a continuous value label for an unlabeled 

sample using a trained model. The model makes predictions based on the patterns and 

information which were learned from the labeled dataset. While classification involves 

predicting the class to which a new test sample belongs, utilizing a labeled training set 

where each sample is associated with a known class [53].There is a range of supervised 

machine learning algorithms available, and some of the commonly used ones include 

Decision Tree (DT), Random Forest (RF), kNN, SVM, ANN, Naïve Bayes (NB), 

Linear Regression (LR), and Linear Discriminant Analysis (LDA) [54]. 
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4.1.2. Unsupervised Learning 

 

Unsupervised machine learning methods hold great significance as analytical tools for 

handling and interpreting high-dimensional data. By identifying and underlying both 

patterns and hidden structures in complex datasets, these techniques effectively 

simplify the understanding and analysis of high-dimensional data [55]. Clustering 

techniques, dimensionality reduction algorithms, autoencoders, and generative 

adversarial networks (GANs) are among the commonly utilized unsupervised 

techniques [56]. Unsupervised learning offers advantages over supervised learning in 

certain tasks by eliminating the need for annotated data guidance, making it more 

suitable for handling those tasks [57]. The differentiation between supervised learning 

and unsupervised learning is shown in Figure 4.2 [57].  

 

 
 

Figure 4.2. The difference between supervised learning and unsupervised learning 

[57]. 

 

The picture consists of two scenarios: supervised and unsupervised learning. In the 

supervised learning scenario, the model is trained using labeled samples of three apples 

with corresponding annotations. Its goal is to predict accurate annotations for new and 

unseen data. On the other hand, in the unsupervised learning scenario, a mix of apples, 

bananas, and peaches are presented without annotations. The model’s objective is to 

discover patterns or structures within the unlabeled data and classify or group the fruits 

based on inherent similarities or relationships. 
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4.1.3. Reinforcement Learning 

 

Reinforcement learning involves learning by actively interacting with an environment, 

making diverse actions, and encountering both successes and failures in the pursuit of 

maximizing the rewards obtained. Unlike supervised learning, where the correct 

actions are explicitly provided for each encountered situation, reinforcement learning 

aligns with natural learning processes where there is no available supervisor. Instead, 

the learning process evolves through trial and error, allowing the agent to learn from 

its own experiences [58]. Reinforcement learning can broadly be categorized into two 

main techniques: model-based and model-free approaches. Examples of model-based 

Reinforcement learning approaches include AlphaZero and AlphaGo. Examples of 

model-free Reinforcement learning algorithms include Q-learning, Deep Q Network 

(DQN), Monte Carlo Control, and State-Action-Reward-State-Action (SARSA) [59]. 

 

4.2. DEEP LEARNING 

 

The evolution of information technologies has been accompanied by the parallel 

processing capabilities of computers, enabling the growth of AI technology, and 

facilitating the expansion of ANN architectures with a higher number of artificial 

neurons. Deep learning, specifically, has emerged as a specialized form of ANN, 

benefiting from these advancements [60]. The term deep in deep learning, in fact, 

refers to the series of consecutive intermediary layers known as hidden layers. By 

adopting an incremental approach and learning layer by layer, deep learning methods 

are able to construct sophisticated representations of the data [61]. 

 

Deep learning has demonstrated its effectiveness in challenging tasks and delivering 

remarkable solutions with high accuracy across various domains, including text, 

signal, image, and video. It has particularly shown a promise in the fields such as 

medical image analysis and is regarded as an essential methodology for the future 

applications in the healthcare sector [61]. 

 

ANN is an advanced system and computational methodology utilized in machine 

learning. At the same time, ANN is the fundamental component of deep learning 
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algorithms. ANN serves the purpose of acquiring knowledge, demonstrating it, and 

ultimately applying it to maximize the output responses of complex systems, 

respectively [62]. 

 

ANN is similarly structured to the human brain, where neuron nodes are 

interconnected in a network-like manner. In the human brain, billions of cells called 

as neurons play a vital role. These neurons consist of a cell body responsible for 

processing information by sending and receiving inputs and outputs from the brain. 

The concept behind ANN is influenced by the functioning of the biological neural 

system. The aim is to process data and information in a manner that facilitates learning 

and the estimation of knowledge. Neurons within ANN are intricately interconnected 

and arranged in layers. The input layer is responsible for receiving data, while the 

output layer produces the final result. Between these layers, there are one or more than 

one hidden layer. These hidden layers serve as intermediate processing stages within 

the network [62]. A sample of ANN architecture is shown in the Figure 4.3 [62]. The 

depicted figure shows a sample of ANN architecture that includes an input layer with 

five interconnected neurons, two hidden layers with their respective connections, and 

one output layer with four interconnected neurons. This arrangement enables the 

network to effectively process input data, performs computations within the hidden 

layers, and produces meaningful outputs based on the processed information. 

 
 

Figure 4.3. A sample of ANN architecture [62]. 

 



20 

 

ANN offer numerous advantages compared to traditional machine learning algorithms. 

It possesses significant numerical capabilities, enabling them to perform multiple tasks 

simultaneously. Moreover, it is well-suited for systems that demand a high level of 

fault tolerance. Trained ANN exhibits the remarkable ability to generate output even 

when presented with incomplete information, showcasing their adaptability. However, 

it is important to note that solving complex problems often requires the utilization of 

multilayer and multi-neuron ANN models. Additionally, the training process of ANN 

can be time-consuming due to the extensive number of neurons and links within the 

network structure [63]. 
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CHAPTER 5 

 

MATERIALS 

 

This section provides an overview of the materials utilized in this thesis as dataset, the 

used programming language, the used platform, and the properties of the used 

computer. 

 

5.1. DATASET 

 

The data used in this study was sourced from the kidney stone detection repository 

available on GitHub [64]. This repository contains a diverse collection of coronal CT 

scans obtained from various institutions and scanners, with the aim of developing 

robust and precise algorithms for automated kidney stone detection. 

 

The researchers [43] collected Non-Contrast CT images from a total of 500 patients 

who were admitted to Elazığ Fethi Sekin City Hospital in Turkey for urinary system 

stone disease. However, certain criteria were applied to exclude specific patients from 

the study. These exclusions encompassed 67 patients who had double-J (pigtail) 

ureteral catheters, patients under the age of 18 or over the age of 80, individuals with 

a single kidney, patients with kidney anomalies, and those with atrophic kidneys. 

 

The dataset utilized in this study consists of CT scans obtained from individuals of 

varying genders (both male and female) with ages ranging from 18 to 80 years, all of 

whom have received a diagnosis of kidney stones. The confirmation of kidney stone 

diagnoses was established through a thorough examination of the scans by radiologists 

or urologists. To ensure precise detection and meticulous annotation of kidney stones, 

each CT scan in the dataset underwent evaluation by at least two radiologists. Within 

the scope of this study, 268 participants presented positive results on a stone test, 

indicating the presence of kidney stones, while 165 participants reported normal results
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without any indication of kidney stones. The dataset used for this study comprises a 

total of 1799 coronal CT scans. Among these scans, 1009 correspond to normal 

subjects without kidney stones, while the remaining 790 scans belong to patients 

diagnosed with kidney stones. All CT scans were acquired with the patient in a supine 

position on a single scanner, and no contrast agent was administered during the 

imaging procedure [43]. Examples of the used dataset is shown in Figure 5.1 [43]. A 

description of the dataset utilized is illustrated in Table 5.1. 

 

 
 

Figure 5.1. Samples of CT images in the dataset [43]. 

 

Table 5.1. Description of the dataset. 

 

 Normal Kidney stone Total 

Nubmer of 

patients 

165 268 433 

Coronal CT scans 1009 790 1799 
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5.2. PYTHON 

 

Python is an incredibly robust programming language that excels in areas such as data 

science, scientific computing, and machine learning. It offers great flexibility, is 

known for its ease of learning, and boasts a wide range of libraries and packages to 

support these fields. Python remains the top choice for scientific computing, data 

science, and machine learning due to its ability to balance both performance and 

productivity. It achieves this by allowing the use of low-level libraries for optimized 

execution while also providing clean and intuitive high-level application programming 

interfaces (APIs) for seamless development [65]. 

 

5.2.1. Advantages of Python 

 

Python is widely popular among AI developers for several reasons: 

 

• Ease of use: Python has a simple and easy-to-understand syntax, making it 

accessible for new data scientists.  

• Flexibility: Python is not only suitable for software development but also 

enables handling data analysis, numerical and logical computations, and web 

development. It is extensively used in web development frameworks like 

Django, TurboGears, and Tornado, making it a preferred choice for developers 

with application and web development skills. 

• Building analytics tools: Python is well-suited for building data analytics tools, 

which are crucial for assessing performance in various business domains. It 

allows easy extraction of insights and correlation analysis from large datasets, 

making it significant in self-service analytics and data mining. 

• Deep learning capabilities: Python offers a range of packages like TensorFlow, 

Keras, and Theano that assist data scientists in developing deep learning 

algorithms. These packages enable the creation of ANN that mimic human 

brain architecture, providing superior support for deep learning tasks. 

• Strong community base: Python has a large and active community of 

developers and data scientists. This community provides a platform for sharing 
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ideas, discussing issues, and collaborating on projects. Platforms like 

Python.org, Fullstackpython.com, and realpython.com offer resources and 

support for Python developers, fostering continuous improvements and 

advancements in the language [66]. 

 

5.3. GOOGLE COLABORATORY 

 

Google Colaboratory is a project aimed at promoting machine learning education and 

research. Colaboratory notebooks are built on the Jupyter platform and function 

similarly to Google Docs, allowing for easy sharing and collaboration among multiple 

users on the same notebook. Google Colaboratory comes equipped with pre-

configured Python 2 and 3 runtimes, featuring essential machine learning and AI 

libraries such as TensorFlow, Matplotlib, and Keras. It’s noteworthy that the runtime’s 

virtual machine (VM) deactivates after a certain period, leading to data and 

configuration loss. However, the notebook itself remains intact, and files can be 

transferred from the VM’s hard disc to the user’s Google Drive account [67]. The 

execution of notebooks in Google Colaboratory occurs within Linux-based VMs that 

are provided and managed by Google. These VMs enable computation using central 

processing units (CPU) and can also leverage specialized graphical processing units 

(GPU) and tensor processing units (TPU) for accelerated computation [68]. 

 

5.4. ROBOFLOW  

 

Roboflow is a computer vision platform designed for various tasks such as data 

collection, data training, and pre-processing. This platform offers a wide range of 

features, including support for both public datasets and custom datasets. Additionally, 

Roboflow provides multiple annotation techniques and employs pre-processing 

techniques such as image resizing, orientation adjustment, and contrast enhancement. 

Roboflow is an online platform that offers free labeling and annotation services, 

eliminating the need to download additional software onto your computer. Its primary 

objective is to provide a secure environment for managing and annotating datasets, 
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with the added convenience of accessing the platform from various devices such as 

tablets or smartphones [69]. 

 

5.5. PROPERTIES OF THE COMPUTER  

 

The properties of the computer utilized in this thesis are presented in Table 5.2. 

 

Table 5.2. Properties of the used computer. 

  

 

Product Property 

CPU i7-1165G7 2.80GHz 

Read access memory (RAM)      16.00 GB 

Hard disc 512 GB 

Cache memory 12.00 MB 

Display card 2.00 GB GDDR6 

Operating system Windows 11 (64-bit) 
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CHAPTER 6 

 

METHODS 

 

This chapter provides an illustration of the procedure of the execution of the proposed 

techniques of work in this thesis, as shown in Figure 6.1. 

 

 
 

Figure 6.1. Flow chart of the proposed methods. 



27 

 

6.1. PREPROCESSING 

 

The recognition or classification accuracy of objects is significantly influenced by the 

quality of the image. Superior image quality enhances recognition or classification 

accuracies compared to unprocessed images that contain noise. Extracting features 

from such unprocessed images becomes more arduous, resulting in a decrease in the 

object   recognition or classification accuracy. To address issues caused by low-quality 

images, it is common to perform pre-processing before extracting features from the 

image [70]. Image preprocessing generally encompasses two primary types: data 

cleaning and data conversion. Data cleaning aims to minimize the presence of noise 

within the image, while data conversion focuses on resizing the image, converting it 

to color space like grayscale, and applying normalization techniques [71]. 

 

6.1.1. Resizing 

 

Resizing images is an essential pre-processing step in computer vision, particularly 

when using deep learning models. Smaller images enable faster training of these 

models. When using larger images, the neural network needs to process and learn from 

a significantly larger number of pixels, leading to increased training time for the 

architecture [72].  

 

In this thesis, the YOLO algorithms and CNN were utilized with resized images having 

dimensions of 640x640 and 300x300, respectively. As for the Faster R-CNN the 

original dimensions of images were utilized. 

 

6.1.2. Detection of Region of Interest (ROI) 

 

The region of interest (ROI) refers to a specific labeled area within an image, typically 

representing a small portion of the overall image [73]. By selecting the ROI based on 

its relevance to the medical condition or research question, medical professionals and 

researchers can direct their analysis, measurements, and diagnostic interpretations 

specifically to ROI. This targeted approach enables more precise and accurate analysis, 
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as it eliminates the need to analyze the overall image [74]. A sample of the ROI is 

shown in Figure 6.2. 

 

 
 

Figure 6.2. ROI of CT coronal image. 

 

The image is a CT coronal image of a patient with kidney stones. ROI of the sample 

image has been marked as the kidneys which possesses the kidney stones within the 

specific region. 

 

6.2. DATA AUGMENTATION 

 

To achieve optimal performance, modern machine learning models generally rely on 

a large amount of high-quality annotated data. However, the collection and annotation 

processes for such data are usually manual and time-consuming, requiring significant 

resources. Obtaining an adequate amount of training data is often challenging in real-

world application. Data augmentation has emerged as the most effective approach to 

address this issue. The primary objective of data augmentation is to increase the 

volume, quality, and diversity of the training data. Data augmentation involves the 

application of diverse techniques, including geometric transformations, noise 

injection, and generative models, to expand a dataset. This process enhances models’ 

capacities to generalize and improve performances [75]. 
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In this thesis, data augmentation techniques were utilized to improve the performances 

of CNN and YOLO algorithms. The CNN employed horizontal flip, zoom, shear, and 

rotation augmentations. Besides, points outside the boundaries of the images were 

filled according to the nearest pixel. On the other side, the YOLO algorithm utilized 

both horizontal flipping and 10-degree rotation. Table 6.1 displays the augmentation 

techniques utilized for the CNN and YOLO with their respective ranges. 

 

Table 6.1. Augmentation Techniques for CNN and YOLO with respective ranges. 

 

 

6.3. IMAGE ANNOTATIONS 

 

Over the past decade, object detection has experienced significant advancements and 

has emerged as a rapidly evolving sub-field of deep learning. This progress has led to 

increased complexity and broader applications of object detection models. 

Consequently, the demand for larger datasets and multi-format labeled annotations for 

training and testing these models has also risen. Image annotation is a specific type of 

data labeling that pertains to the labeling process of visual digital data. Generally, 

image annotation involves manual work [76]. 

 

LabelImg is a locally installed software that runs on the user’s machine. It provides a 

visual interface built with the Qt toolkit and is implemented in Python. This software 

supports multiple annotation formats such as PASCAL VOC (XML), YOLO, and 

CreateML. It is compatible with Windows, macOS, and Linux operating systems [76]. 

 

In this thesis, the annotation process was carried out by utilizing LabelImg. For the 

Faster R-CNN model, the resulting annotations were saved in XML files, while for the 

Type CNN YOLO 

Horizontal Flip True True 

Zoom 0.2 - 

Shear 0.2 - 

Rotation 20⁰ 10⁰ 
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YOLO model, the annotations were saved in TXT files. A sample of the annotated 

image from the dataset is shown in Figure 6.3. The annotated image is coronal CT scan 

including kidney stones. The annotations highlight the presence and location of kidney 

stones within the image. 

 

 
 

Figure 6.3. A Sample annotated image in LabelImg. 

 

6.4. OBJECT DETECTION  

 

In recent years, there has been a significant expansion in the field of computer vision 

research. Utilizing machine learning techniques has proven to be an effective approach 

for addressing various computer vision tasks. Object detection, a fundamental problem 

in computer vision, focuses on identifying and localizing instances of specific objects 

within digital images or videos. Object detection consists of two primary tasks: object 

localization and classification. Object localization involves determining the precise 

location and scale of one or multiple object instances by enclosing them with bounding 

boxes. On the other hand, classification refers to the process of assigning a class label 

for the detected object based on its visual characteristics and features [77]. Single-class 

object detection refers to the task of detecting and localizing a specific type of object 



31 

 

within an image, where there is only one object of interest. In contrast, multi-class 

object detection involves detecting and localizing multiple objects belonging to same 

or different classes within an image [77]. This process is shown in Figure 6.4 which 

provides a comprehensive illustration of classification, localization, and segmentation 

for object detection [78]. 

 

 
 

Figure 6.4. Classification, localization, and segmentation in object detection [78]. 

 

Object detection algorithms are broadly classified into two main categories: one-stage 

and two-stage algorithms, both predominantly relying on deep learning techniques. 

The key difference between these approaches lies in the generation of region 

proposals. One-stage object detection algorithms do not require a separate region 

proposal generation step. Instead, they directly predict object’s class label and its 

corresponding bounding box coordinates. On the other hand, two-stage object 

detection algorithms follow a two-step process. Initially, they generate region 

proposals that are likely to contain objects of interest. These proposals are then 

classified and refined to obtain the final object detections [79]. One-stage object 

detection algorithms include YOLO, SSD, RetinaNet, DSSD, M2Det, and RefineDet, 

while two-stage object detection algorithms include R-CNN, Fast R-CNN, Faster R-

CNN and Mask R-CNN [80]. Architectures of one-stage and two-stage object 

detection algorithms are shown in Figure 6.5. 
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Figure 6.5. Architectures of object detection algorithms. (a) one-stage (b) two-stage 

[80]. 

 

Where in (a) the basic architecture of one-stage detectors involves predicting bounding 

boxes directly from input images without the need for a separate region proposal 

network. In (b) the fundamental architecture of two-stage detectors comprises a region 

proposal network that generates region proposals, which are then fed into a classifier 

and regressor for further processing [80].  

 

In this thesis, both Faster R-CNN, YOLO and CNN were utilized for the detection of 

the kidney stones and image classification in CT coronal scan images. Labels were 

specified as with kidney stones and without kidney stones. 

 

6.4.1. Faster R-CNN 

 

R-CNN, or Region-based Convolutional Neural Network, emerged as one of the 

earliest successful methods for object detection. It introduced a multi-step approach 
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that combined selective search for generating region proposals and a convolutional 

neural network for classification. Although R-CNN showed promising results, its 

speed was a limiting factor. This prompted the development of Fast R-CNN, a 

significant improvement that addressed the efficiency issues. Fast R-CNN was 

developed as an enhancement to R-CNN. Instead of generating region proposals before 

the convolutional network, Fast R-CNN generates proposals by applying the selective 

search algorithm directly on the convolutional feature map. Both R-CNN and Fast R-

CNN failed to overcome a particular challenge which was the generation of many 

invalid regions using methods such as selective search. This drawback not only 

hampers efficiency but also leads to wasteful utilization of computational resources 

[81]. The difference in the architectures of R-CNN and Fast R-CNN is shown in Figure 

6.6 [82].  

 
 

Figure 6.6. The difference in the architectures of R-CNN algorithms. (a) R-CNN (b) 

Fast R-CNN [82]. 

 

However, the pursuit of even greater speed and accuracy gave rise to Faster R-CNN, 

a revolutionary innovation in the field of object detection [81]. Faster R-CNN 

combined the strengths of its predecessors while introducing a novel element known 

as the Region Proposal Network (RPN). RPN replaces computationally expensive 
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methods like selective search with the aim of significantly speeding up the object 

detection process. By sharing convolutional layers with the detection network, the 

RPN generated region proposals directly, eliminating the need for external region 

proposal algorithms. This architectural change significantly accelerated the object 

detection process and achieved state-of-the-art performance. Figure 6.7 illustrates the 

flowchart of the Faster R-CNN process [81]. 

 

 
 

Figure 6.7. Flowchart of the Faster R-CNN [81]. 

 

According to the description provided by Ren et al. in their original paper, Faster R-

CNN can be divided into four main components: Conv layers, RPN, Roi Pooling, and 

Classification. The process begins with resizing an input image P*Q of any size to a 

fixed size M*N, which is then fed into the Convolution layers to extract the feature 

map. This feature map is subsequently utilized by both the following RPN layer and 

the fully connected layer in a shared manner. The RPN utilizes SoftMax to determine 

the positivity or negativity of anchors and applies bounding box regression to refine 

the proposals for more accurate results. The ROI Pooling layer combines the feature 

maps and proposals, extracting proposal feature maps that are then passed to the fully 

connected layer for object category determination. The Classification component 

utilizes the proposal feature maps to calculate the category of the proposal and 
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simultaneously obtains the precise position of the detection frame through bounding 

box regression [81]. 

 

6.4.1.1. Implementation of Faster R-CNN  

 

In this thesis, the Faster-RCNN implementation was carried out by using TensorFlow 

object detection API. This API is a toolkit designed for object detection applications.  

It represents an advanced methodology for real-time object detection. TensorFlow 

Serving simplifies the deployment of novel methods, algorithms, and experiments 

while preserving the same server architecture and APIs [83]. The below flowchart in 

Figure 6.8 represents the steps of implementing Faster R-CNN. 

 

 
 

Figure 6.8. Flowchart of implementing Faster-RCNN using TensorFlow object 

detection API. 

 

The first step was to install and download all the required libraries and dependencies. 

The images in the dataset were labelled by using LabelImg. These annotated images 

are then used to train a model that can provide bounding box information. In order to 

train the model, both the image itself and the corresponding bounding box coordinates 

for all objects within the image are required. To store this annotation information, the 

program generates XML files in the Pascal Visual Object Classes format. These XML 

files contain various image details, such as the image name, size, and the coordinates 

of the bounding boxes. The dataset has been divided into two portions. Specifically, 

80% of the total images have been allocated as training samples, while the remaining 



36 

 

20% of the images have been set aside as test samples. The training and testing samples 

are used to create two separate CSV files. A sample of the CSV files is shown in Table 

6.2 where CSV files contain information such as the height and width of the images, 

as well as the coordinates of the bounding boxes and the class names associated with 

the objects in the images. 

Table 6.2. A sample of CSV file. 

                                                   

 

 

Subsequently, TFRecord files are generated from these CSV files. TFRecord is a 

binary storage format used by TensorFlow. By using a binary format, the data occupies 

less disk space compared to other formats. Additionally, binary data can be copied 

more quickly and read efficiently from the disk, leading to improved performance 

when working with large datasets. The next step was to download and configure the 

pre-trained models. In this thesis, both Resnet-50 and Resnet-101 were utilized for the 

detection of kidney stones. In order to train the model effectively, a labelmap text file 

is created. This file plays a significant role in mapping the class names to their 

corresponding IDs. It serves as an input during the training process. In this thesis, there 

is one ID related to kidney stone class. checkpoints are generated during training. 

These checkpoints contain the weights and parameter values learned by the model 

during the training process. In this thesis, the training process utilized specific values 

for the batch size, number of steps, and learning rate. The batch size was set to 8, the 

learning rate, on the other hand, was set to 0.001. The number of steps was set to 8000, 

indicating the total number of iterations or updates performed during the training 

process. To monitor and analyze the results of the training and evaluation stages, 

TensorFlow provides a visualization platform called TensorBoard. This powerful tool 

allows to observe various metrics and statistics related to the training process. Many 

filename width height class xmin ymin xmax ymax 

1.3.46.670589.33.png 1052 1266 Tas_Var 671 401 682 413 

1.3.46.670589.33.png 956 1346 Tas_Var 363 596 368 602 

1.3.46.670589.33.png 956 1346 Tas_Var 357 602 372 619 

1.3.46.670589.33.png 956 1346 Tas_Var 359 635 365 641 

1.3.46.670589.33.png 956 1346 Tas_Var 370 630 376 637 

1.3.46.670589.33.png 956 1346 Tas_Var 364 632 371 640 
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metrics are tracked such as training time, total loss, number of steps, and more [84]. 

Table 6.3 provides additional information on the implementation of Faster R-CNN. 

 

Table 6.3. Additional information on the utilized hyperparameters. 

 

 

6.4.2. YOLO  

 

The YOLO algorithm stands out as an object detection algorithm, utilizing a single 

neural network to estimate both bounding boxes and class probabilities for objects 

within an image. YOLO takes a grid-based approach, splitting the input image into 

cells (W × H) and predicting precise bounding box details along with class 

probabilities for each cell. Every prediction for a bounding box entails five values: Pc, 

bx, by, bh, and bw. Here, Pc denotes the confidence score, indicating the model’s 

certainty about the presence and accuracy of the object within the box. The coordinates 

bx and by specify the box center relative to the grid cell, while bh and bw represent 

the box’s height and width relative to the entire image. [85].  

 

The fundamental structure of YOLO involves three key elements: the backbone, the 

neck, and the head. Notably, the architecture of the backbone, the neck, and the head 

can undergo variations in different YOLO versions. Continuous refinements and 

innovations within these components have been instrumental in driving significant 

improvements in both accuracy and speed of the YOLO network [85]. A sample of the 

architecture of YOLO is shown in Figure 6.9 [85]. 

 

Type Value 

No. of Images Train: 625 

Test: 165 

No. of Steps 8000 

Batch Size 8 

Learning Rate 0.001 
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Figure 6.9. The architecture of YOLO [85]. 

 

The primary function of the Backbone is to extract essential features from the input 

image. Where the neck plays a crucial role in combining feature maps from diverse 

layers of the backbone network, forwarding them seamlessly to the. Finally, the head 

module takes charge of processing the combined features, predicting bounding boxes, 

objectness scores, and classification scores [86]. Table 6.4 shows the differences 

among YOLO versions.  

 

Table 6.4. Primary features of YOLO versions [85]. 

 

 

Version Date Framework Backbone 

YOLO 2015 Darknet Darknet24 

YOLOv2 2016 Darknet Darknet24 

YOLOv3 2018 Darknet Darknet53 

YOLOv4 2020 Darknet CSPDarknet53 

YOLOv5 2020 Pytorch Modified CSP v7 

PP-YOLO 2020 PaddlePaddle ResNet50-vd 
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The YOLO output takes the form of a tensor with dimensions W × H × (B × 5 + C), 

where B represents the number of bounding boxes, and C represents the number of 

classes. This output is subject to non-maximum suppression (NMS) to remove 

redundant detections. The grid cells play a crucial role in handling operations related 

to bounding box estimation and class probabilities. Each grid cell in the model predicts 

bounding boxes and confidence scores for those boxes. These confidence scores 

indicate the model’s level of certainty that the box contains an object and convey its 

assessment of the accuracy of the predicted box as shown in Eq. 6.1. In essence, YOLO 

calculates the probability of the detection element’s bounding box center residing 

within the grid cell, as expressed by Eq. 6.2 [86,87]. 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑃) =  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝) ×  𝐼𝑂𝑈(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑡𝑎𝑟𝑔𝑒𝑡) (6.1) 

 

𝐼𝑜𝑈 = |
𝐵 ∩ 𝐵𝑔𝑡

𝐵 ∪ 𝐵𝑔𝑡 
| (6.2) 

 

Within the YOLO algorithm framework, the target box is labeled as 𝐵𝑔𝑡 , and the 

predicted box is denoted as B. The probability (p) indicates the likelihood of an 

object’s presence within the identified bounding box. The Intersection over Union 

(IoU) metric, articulated by Eq. 6.2, computes the shared area between the ground truth 

Scaled-YOLOv4 2021 Pytorch CSPDarknet 

PP-YOLOv2 2021 PaddlePaddle ResNet101-vd 

YOLOR 2021 Pytorch CSPDarknet 

YOLOX 2021 Pytorch Modified CSP v5 

PP-YOLOE 2022 PaddlePaddle CSPRepResNet 

YOLOv6 2022 Pytorch EfficientRep 

YOLOv7 2022 Pytorch RepConvN 

DAMO-YOLO 2022 Pytorch MAE-NAS 

YOLOv8 2023 Pytorch YOLO v8 

YOLO-NAS 2023 Pytorch YOLO-NAS 
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and predicted bounding boxes. It establishes a threshold for an acceptable region for 

each identified object in the input image, influencing decision-making processes. After 

the estimation, the confidence value is then applied to determine the most suitable 

bounding box [87,88]. The process of IoU is shown in Figure 6.10. 

 

 
 

Figure 6.10. a) The process of calculating IoU [89]. b) Examples of different IoU 

values. 

 

In this thesis, both YOLO v5 and YOLO v7 were utilized for the detection of the 

kidney stones. 

 

6.4.2.1. YOLO v5  

 

In June 2020, Ultralytics LLC introduced the YOLOv5 algorithm, presenting a more 

compact and convenient alternative compared to YOLOv2, YOLOv3, and YOLOv4. 

YOLOv5’s smaller size facilitates flexible deployment and enhances detection 

accuracy [80]. YOLOv5 introduces five scaled versions: YOLOv5n (nano), YOLOv5s 

(small), YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (extra-large). These 

variants are tailored with varying widths and depths in their convolution modules to 

fit specific applications and adhere to diverse hardware requirements [89]. Table 6.5 

shows the differences between the versions of yolo in respect to the mean average 

precision (mAP) of the models based on COCO val2017 dataset, the inference speed 

on CPU and GPU, and the number of the parameters of each model [90]. 
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Table 6.5. Overview of all the models, including the mAP, inference speed on CPU, 

GPU, and the number of parameters. 

 

 

Where  mAPval stands for mean average precision over different IoU thresholds, 

from 0.5 to 0.95, step 0.05 in COCO val2017 dataset, V100 b1 is an inference time 

which is the speed at which a neural network can make predictions in milliseconds 

on the Nvidia V100 GPU where the batch size is set to 1. Params stand for the 

number of parameters in the model. Which is calculated by summing the number of 

elements in each layer of the model. The M stands for Million. The architecture of 

YOLO v5 is shown in Figure 6.11 [91]. 

 

 

 

 

  

Model 𝒎𝑨𝑷𝒗𝒂𝒍 

50-95 

GPU Speed 

V100 b1 

(ms) 

CPU speed 

b1 

(ms) 

Params 

(M) 

YOLO v5n 28.0 6.3 45 1.9 

YOLO v5s 37.4 6.4 98 7.2 

YOLO v5m 45.4 8.2 224 21.2 

YOLO v5l 49.0 10.1 430 46.5 

YOLO v5x 50.7 12.1 766 86.7 
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Figure 6.11. YOLO v5 architecture [91]. 

 

As Illustrated in Figure 6.11, the YOLOv5 network is composed of three primary 

components: the backbone, neck, and output. In the YOLOv5 architecture, the 

backbone network is primarily comprised of the focus module, the wrapped 

convolution module, the C3 module, and the spatial pyramid pooling (SPP) module. 

The focus module improves the network’s ability to extract features from images by 

performing slicing operations on the input images. The C3 module, on the other hand, 

enhances the feature representation capabilities of the network while preserving the 

accuracy of feature extraction. This is achieved by reducing the memory consumption 

and number of parameters required by the network. SPP is a pooling layer that 

eliminates the network’s fixed size restriction, allowing it to effectively process inputs 

of varying sizes. The neck network is designed to optimize the utilization of features 

extracted from the backbone network. predicting confidence, class probability, and 
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object box coordinates across three diverse feature maps are carried out using three 

1×1 convolutional layers as shown in the output layer [91,92]. 

 

6.4.2.1.1 Implementation of YOLO v5 

 

In this thesis, the YOLO implementation was carried out by using Google 

colaboratory. The first step was to setup the YOLO environment by cloning the 

repository of YOLO in GitHub. After the cloning was done, folders such as data, 

model, and hyperparameters configuration files were created. Both images and the 

labels were uploaded into data folders to initiate the training process. The labels are in 

.TXT extension which contains number of classes, the center position of x and y, the 

height, and the width. In addition to that, the hyperparameters can be determined and 

customized as needed. In this thesis, the value of class is zero since there is only one 

class. Out of total 790 images in the dataset 80% of them were divided as train ,10% 

as validation and 10% as test. The used dataset and the hyperparameters are shown in 

Figure 6.12. 

 
 

Figure 6.12. Schematic of implementation of YOLO v5. 
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In this thesis, four datasets were used to perform the detection process of kidney stones. 

A brief description of the utilized datasets is shown in Figure 6.13. 

 

 
 

Figure 6.13. The utilized datasets in YOLO v5 and YOLO v7. 

 

To detect kidney stones using the YOLO algorithm, four datasets were used. Original 

Dataset (D1) which was the main set of original images. Augmented Dataset (D2) was 

the second dataset which had additional images created with variations. The third 

dataset was RoI Annotated Dataset (D3) which focused on specific areas relevant to 

kidney stones, marked for the model’s attention. The last one was combined 

augmented RoI Dataset (D4) which contained a mix of augmented images within the 

identified areas of interest. 

 

For this thesis, Adam and SGD optimizers were used. Stochastic Gradient Descent 

(SGD) stands out as a prevalent optimizer in deep learning, primarily employed to 

minimize the cost function. SGD algorithms are widely utilized when dealing with 

massive datasets. SGD is an optimization algorithm commonly employed in linear 

regression, as illustrated in Eq. 6.3., Eq. 6.4, and Eq. 6.5 [93]. 

 

𝑊 = 𝜔 − 𝜂 ▽ 𝑄𝑖(𝜔) (6.3) 

 

𝑊 ← 𝜂 ▽ 𝑄(𝜔) (6.4) 
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𝑄(𝜔) = 𝒍𝒏∑𝑖𝑄𝑖(𝜔) ⇒▽ 𝑄(𝜔) = 𝒍𝒏∑𝑖 ▽ 𝑄𝑖(𝜔)   (6.5)  

 

in Eq. 6.3, 𝜔 represents the initial weight during the training of a neural network. 𝜂 

denotes the learning rate. 𝑄𝑖 signifies the presently observed data, where Q generally 

represents an error function. SGD determines the optimal weight W by minimizing the 

error function Q. Subsequently, the derivative of the actual and predicted values is 

calculated to obtain the loss function. W undergoes updates during the neural network 

training process. Eq. 6.4. represents the parameter update in the context of SGD. The 

final expression in Eq. 6.5. is the objective of minimizing the error along with its 

gradient [93].  

 

Adam optimization, introduced by Diederik P. Kingma and Jimmy Ba in 2014, is a 

gradient descent-based algorithm. The name “Adam” stands for Adaptive Moment 

Estimation, reflecting the optimizer’s approach to weight updates during training. The 

mathematical representation of the Adam optimization algorithm is shown in Eq. 6.6 

[93]. 

 

△ 𝜔𝑡 = −𝜂
𝑥𝑡

√𝑦𝑡 + 𝜖
∗ 𝑔𝑡 (6.6) 

 

𝑥𝑡 = 𝛿1 ∗ 𝑥𝑡−1 − (1 − 𝛿1) ∗ 𝑔𝑡 (6.7) 

 

𝑦𝑡 = 𝛿2 ∗ 𝑦𝑡−1 − (1 − 𝛿2) ∗ 𝑔𝑡
2 (6.8) 

 

𝜔𝑡+1 = 𝜔𝑡 +△ 𝜔𝑡 (6.9) 

 

In Eq. 6.6., 𝜂 represents the learning rate, and 𝑔𝑡 is the gradient at time t.  𝑥𝑡 signifies 

the exponential average of gradients along the parameter 𝑤𝑗, while 𝑦𝑡 represents the 

exponential average of the squares of gradients along 𝑤𝑗. The decay rates of moment 

estimates are controlled by the hyperparameters 𝛿1and 𝛿2 [93]. 𝜖 represents a fixed 

value to ensure numerical stability [94]. Eq. 6.7 explains the process for updating the 

first moment (mean) of the gradient, 𝑥𝑡. This involves a weighted combination of the 

previous first moment 𝑥𝑡−1  and the current gradient , 𝑔𝑡 with the rate of decay 
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determined by the hyperparameter 𝛿1. Simultaneously, Eq. 6.8 articulates the update 

mechanism for the second moment (uncentered variance) of the gradient, 𝑦𝑡. It 

incorporates the previous second moment 𝑦𝑡−1  and the squared gradient, 𝑔𝑡
2 with the 

decay rate modulated by the hyperparameter 𝛿2. Eq. 6.9 depicts the adjustment of the 

internal parameter, ω, within the optimizer. This adjustment entails adding the change, 

represented as Δω𝑡, into the current value of ω𝑡 [95]. 

 

The default value of the learning rate of SGD and ADAM is 0.01 and 0.001 

respectively [94]. The values of epochs, batch size and momentum were set as 100, 

32, and 0.937, respectively. After the training process was carried out the validation 

and test phases were done to validate the model’s performance. The last step was to 

show the detected kidney stones alongside with the confidence value, bounding box, 

and class label. 

 

6.4.2.2. YOLO v7 

 

Released as the successor to YOLOv6, YOLOv7 is a recent model that significantly 

elevates object detection performance. Notably, YOLOv7 achieves enhanced accuracy 

without imposing additional computational and inference costs. Wang et al. introduced 

the YOLOv7 version in July 2022. The developers of YOLOv7 aimed to establish a 

state-of-the-art standard in object detection by devising a network architecture capable 

of more accurate bounding box predictions at comparable inference rates to its old 

YOLO versions [96]. The novel design of this network architecture is illustrated in 

Figure 6.14 [96].  
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Figure 6.14. Architecture of YOLO v7 [96]. 

 

The computational block within the YOLOv7 backbone is denoted as Extended 

Efficient Layer Aggregation Network (E-ELAN). The YOLOv7 Neck module plays a 

crucial role by executing feature fusion on the previously generated effective feature 

layers. The YOLOv7 Head, encompassing essential elements for both classification 

and regression, serves as the pivotal component in charge of these tasks [97]. 

 

6.4.3. CNN 

 

CNN is a versatile deep learning model engineered to handle diverse data types, 

including 1D for signals or sequences, 2D for images or sound spectrograms, and 3D 

for video or volumetric images. CNN accepts images for the input layer. It can consist 

of one or more layers, with matrix multiplication or convolution applied in at least one 

layer. CNN architectures comprise layers with distinct functions and characteristics, 

such as convolution layers, activation layers, pooling layers, flatten layers, and fully 

connected layers. The output layer represents the final stage in the neural network, 

where the model produces its final predictions based on the acquired knowledge and 

training. [98]. A general CNN representation structure is given in Figure 6.15 [99].  
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Figure 6.15. CNN general structure [99]. 

 

Convolution Layer: This layer is very important for the CNN structure. This layer 

allows the detection of features in the image. It contains low or high frequency features 

in the image data. To detect these features, a sample matrix called a filter or kernel is 

applied on the image. The dimensions of the kernel matrix are generally values such 

as 3x3,5x5, 7x7.The kernel matrix starts from the upper left corner of the image and 

scrolls throughout the lower right corner. As the kernel matrix moves along the image, 

the values of the image and filter matrices undergo multiplication according to their 

respective indices, and the products are summed. The total result is then recorded in 

an output matrix. This process is continued in the same way throughout the entire 

image. The matrix formed as a result of the values recorded in the output matrix is 

called Feature Map. As a result of the kernels applied on the image, there will be 

changes in the original dimensions of the image. Even if a filter is applied, pixel 

padding can be done to avoid losing important information on the image. For this 

purpose, the process performed to ensure that the dimensions of the input image and 

the output image are the same is the padding process. The logic of padding is to 

increase the size by adding zeros around the image [100]. The process of convolution 

and padding is shown in Figure 6.16 [101]. 
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Figure 6.16. Convolution and padding process in CNN [101]. 

 

Activation Layer: This layer can also be called the non-linear layer. sigmoid, tanh, 

SoftMax and Relu are frequently used activation functions in this layer. Activation 

functions determine what action a neuron should apply to the incoming input and thus 

create the output. In general, the Relu activation function is used in the layers of CNN 

models. Additionally, in the context of binary classification tasks, the final layer often 

utilizes the sigmoid function, whereas for multi-class classification, the SoftMax 

function is commonly applied to the last layer [100,102]. 

 

Pooling Layer: The pooling layer operates similarly to the convolution layer and 

reduces the burden of data calculation by reducing image dimensions. There are two 

types of pooling: Max Pooling and Average Pooling. In Max Pooling, the highest value 

within the kernel region is selected and stored in the output matrix. Average Pooling, 

on the other hand, takes the average of the part covered by the filter/kernel and stores 

it in the output matrix. Both pooling methods iteratively apply this process across the 

image, generating the output matrix [100,102]. Although Average Pooling method was 

used more widely in the past years, Max Pooling has been used more widely recently 
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thanks to its noise reduction ability [103]. Figure 6.17 shows Max and Average pooling 

operations. Max Pooling method was used in this thesis. 

 

 
 

Figure 6.17. Max and Average pooling operations. 

 

Flatten Layer: Within CNN models, the flatten layer serves the purpose of 

transforming the output from the preceding convolution layer, which consists of two-

dimensional feature maps, into a one-dimensional array. This step is essential to 

facilitate the transition to the fully connected layer, as fully connected layers operate 

exclusively on one-dimensional arrays [104]. 

 

Fully connected layer: It is used at the end of the network after feature extraction is 

performed by the convolution and pooling layers. In this layer, each neuron is 

connected to all neurons of the previous layer. It is used by the network to make 

predictions [104]. 

 

6.4.3.1 Optimization of Hyperparameters 

 

Determining hyperparameters and appropriately preprocessing data are crucial aspects 

in training deep learning models. These parameters have a direct impact on the model’s 

performance and contribute significantly to achieving generalized results. 
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To enhance model performance, various combinations were explored, including (16-

16-32-32-64-64), (32-32-64-64-256-256), (32-64-128-256), (128-128-256-512), and 

(16-32-32-64) for the number of convolution layers and neurons. Additionally, 

different neuron sizes as 16, 32, 64, 128, and 256 were experimented with for the fully 

connected layer. The dropout rates of 0.2, 0.3, 0.4, and 0.5 were tested to further fine-

tune the model. In addition, Batch normalization layer also was implemented as part 

of the tests carried out.  

 

6.4.3.2 Implementation of CNN 

 

In this thesis, the CNN implementation was carried out by using Google colaboratory. 

The first step was to setup the CNN environment by importing the necessary files such 

as Keras and TensorFlow packages. The next step was to upload the dataset files into 

the Google Colaboratory environment where there are two classes in the dataset named 

as Normal and Kidney stone. Later the image pre-processing step was initiated by 

resizing the images to 300x300. Out of total 1799 images in the dataset 80% of them 

were divided as train and 20% as test. Further information about the used dataset and 

the hyperparameters are shown in Figure 6.18.  
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Figure 6.18. Schematic of implementation of CNN. 

 

next step was to build the CNN model by using Convolution, Max Pooling, Flatten 

and Fully connected layers. A total of 23 layers were utilized. The architecture of the 

utilized CNN is shown in Figure 6.19. 

 
 

Figure 6.19. Architecture of the CNN model. 
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Afterward, data augmentation techniques such as horizontal flip, shear, zoom, and 

rotation were applied to the dataset. Following that, to initiate the training phase the 

batch size and the learning rate were set as 32, 0.001, respectively. 

 

In this thesis, different epochs such as 20, 40, 60, 80, and 100 were utilized. In addition 

to that, Adam and RMSprop optimizers were selected to perform the training of the 

CNN model. Binary cross-entropy loss function was selected. Sigmoid was chosen as 

the activation function in order to perform binary classification in the output layer. It 

is expressed in Eq. 6.10.  

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
6.10 

 

Here, x represents the input value to the sigmoid function. The sigmoid function 

produces output values that fall within the range of 0 to 1 [105].  

 

Following that, the test set were utilized to validate the model’s performance. Table 

6.6 shows information on the utilized CNN architecture for the feature extraction 

process. Table 6.7 shows information about the Flatten and Fully connected layers 

utilized in CNN architecture. 

 

Table 6.6. Additional information on the architecture of CNN for the feature extraction 

process. 

 

Block Type Kernel 

size 

Filters Stride Padding 

1 Conv2D 3x3 64 1 same 

Relu - - - - 

MaxPooling2D 2x2 - 2 - 

2 Conv2D 3x3 64 1 same 

Relu - - - - 
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MaxPooling2D 2x2 - 2 - 

3 Conv2D 3x3 128 1 same 

Relu - - - - 

MaxPooling2D 2x2 - 2 - 

4 Conv2D 3x3 128 1 same 

Relu - - - - 

MaxPooling2D 2x2 - 2 - 

5 Conv2D 3x3 512 1 same 

Relu - - - - 

MaxPooling2D 2x2 - 2 - 

6 Conv2D 3x3 512 1 same 

Relu - - - - 

MaxPooling2D 2x2 - 2 - 

 

Table 6.7. Architecture of CNN in classifier process. 

 

Layer Type No. of Neurons 

1 Flatten - 

2 Dense 128 

Relu - 

3 Output 1 
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6.5. EVALUATION METRICS 

 

To assess classification models, multiple performance evaluation metrics are 

employed, and these metrics rely on values within the confusion matrix, also known 

as the error matrix. This matrix is instrumental in visualizing the performance of 

algorithms or models through a tabular representation. It encompasses four key 

parameters: True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN). Here, TP refers to the number of images classified as kidney stones 

and actually identified as kidney stones, while TN refers to the number of images 

classified as Normal and actually identified as Normal. On the other hand, FP refers to 

the number of images classified as kidney stones, but actually identified as Normal, 

while FN refers to the number of images classified as Normal, but actually identified 

as kidney stones. The components of confusion matrix are shown in Figure 6.20 [106]. 

A practical example illustrating the process of TP, FP, FN, and FN is given in Figure 

6.21. 

 
 

Figure 6.20. Confusion matrix [106]. 

 

 
 

Figure 6.21. An example showing the process of TP, FP, FN, and TN in object 

detection. 
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The provided example illustrates predictions with the IoU value set at α=0.5. The 

initial prediction is classified as a TP, given that the IoU value is higher than 0.5. The 

second prediction in the example is classified as a FP because it does not meet the IoU 

value criteria. The third prediction is FN since the model failed to predict ground truth 

bounding box. The last prediction is TN due to the absence of kidney stone. 

 

Sensitivity (Recall): It measures the proportion of true positive samples relative to the 

total number of positive samples (both TP and FN), as expressed by Eq. 6.11 [107]. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6.11) 

 

Specificity: It serves as a performance metric used to assess a model’s ability in 

accurately classifying negative examples, as expressed by Eq. 6.12 [107]. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (6.12) 

 

Precision: It measures the proportion of true positive samples among the total number 

of samples classified as positive. (both TP and FP), as expressed by Eq. 6.13 [107]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6.13) 

 

Accuracy: It evaluates the ratio of correctly classified samples to the total number of 

samples and stands as the most utilized performance measure for classification models, 

as expressed by Eq. 6.14 [107]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6.14) 

 

F1 Score: This metric used in performance evaluation at the end of the classification 

It is a metric that offers insights into the accuracy of a test, obtained through the 

calculation of the harmonic mean between sensitivity and precision. The F1 score 

equation is shown in Eq. 6.15 [107]. 
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𝐹1 =
2 ∗ (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 (6.15) 

 

Average Precision (AP): A metric frequently used alongside with precision and 

sensitivity, to offer a comprehensive evaluation of a model’s performance. It enhances 

our understanding by averaging precision across various sensitivity levels. 

Furthermore, mAP is another metric used to evaluate object detection models. Similar 

to average precision, mAP involves averaging precision, but instead of considering 

precision at different sensitivity levels, it averages precision across various confidence 

score thresholds. To calculate mAP, precision and sensitivity values are assessed at 

different confidence value thresholds. A graph depicting the precision-sensitivity 

curve is generated, and the area under this curve is determined. The mAP score is then 

obtained by averaging the area under the curve across different object classes. A higher 

mAP value indicates a more effective detection performance of the target detection 

model on a given dataset. The equation of mAP is given in Eq. 6.16 [108-110]. 

 

𝑚𝐴𝑃 =   
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑛=1

  (6.16) 

 

In this context, where AP𝑖 represents the AP of the 𝑖𝑡ℎ class and N is the total number 

of classes. Since there is only kidney stone class in our thesis, the number of classes 

was taken as 1. 
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CHAPTER 7 

 

RESULTS & DISCUSSION  

 

In this part of the thesis, the analysis of the performance evaluation metrics obtained 

by Faster R-CNN, YOLO, and CNN models is explained in detail. The models were 

first compared with each other in various combinations and then evaluated by 

comparing them with state-of-the-art studies that have achieved significant results. 

 

7.1. Faster R-CNN  

 

To address the objective of kidney stone detection, three models of Faster R-CNN 

namely Faster R-CNN ResNet50 V1 800x1333, Faster R-CNN ResNet101 V1 

800x1333, and Faster R-CNN ResNet101 V1 1024x1024 were utilized.  

 

7.1.1. Results of ResNet50 V1 800x1333 model  

 

The results obtained by the training process of Faster R-CNN ResNet50 V1 800x1333 

model such as total loss, classification loss, localization loss, RPN’s localization loss, 

and RPN’s objectness loss are shown in Figures 7.1-7.3 

 

 
 

Figure 7.1. Total loss graph of the ResNet50 V1 800x1333 model.
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Figure 7.2. Loss graphs of the model. (a) Classification (b) localization. 

 

 
 

Figure 7.3. Loss graphs of RPN. (a) Localization (b) objectness. 

 

As mentioned earlier, AP stands out as a crucial metric for assessing the accuracy of 

the object detection model. The obtained results of AP in the test phase are shown in 

Table 7.1. 

Table 7.1. The obtained results based on AP. 

 

Model AP (0.5:0.95) 

(%) 

AP (0.50) 

(%) 

AP (0.75) 

(%) 

Total loss 

ResNet50 V1 800x1333 24.8 62.9 14.0 0.164 
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The Average Sensitivity (AS) is similar to AP, but instead it measures the sensitivity. 

The obtained results of AS in the test phase are shown in Table 7.2. 

 

Table 7.2. The obtained results based on AS. 

 

 

AS (1) denotes a scenario where the model provides one detection per image. AS (10) 

signifies the model offering ten detections per image. AS (100) indicates the model 

producing one hundred detections per image.  

 

The learning rate is a fundamental hyperparameter that affects the model’s 

performance. In this thesis, the learning rate value was set as 0.001 and the number of 

steps was set as 8000 . Figure 7.4 shows the change of learning rate during the training 

process. 

 

 
 

Figure 7.4. The change of learning rate during the training process. 

 

Model AS (1) (%) AS (10) (%) AS (100) (%) 

ResNet50 V1 800x1333 20.5 34.2 35.4 
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7.1.2. Results of ResNet101 V1 800x1033 model  

 

The results obtained by the training process of Faster R-CNN ResNet101 V1 800x1333 

model such as total loss, classification loss, localization loss, RPN’s localization loss, 

and RPN’s objectness loss are shown in Figures 7.5-7.7. 

 

 
 

Figure 7.5. Total loss graph of the ResNet101 V1 800x1333 model. 

 

 
 

Figure 7.6. Loss graphs of the model. (a) Classification (b) localization. 
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Figure 7.7. Loss graphs of RPN. (a) Localization (b) objectness. 

 

The obtained results based on AP in the test phase are shown in Table 7.3. 

 

Table 7.3. The obtained results based on AP. 

 

 

The obtained results based on AS in the test phase are shown in Table 7.4. 

 

Table 7.4. The obtained results based on AS. 

 

 

In this thesis, the learning rate value was set as 0.001 and the number of steps was set 

as 8000. Figure 7.8 shows the change of learning rate during the training process. 

Model AP (0.5:0.95) 

(%) 

AP (0.50) 

(%) 

AP (0.75) 

(%) 

Total loss 

ResNet101 V1 

800x1333 

25.0 62.5 14.7 0.193 

Model AS (1) (%) AS (10) (%) AS (100) (%) 

ResNet101 V1 800x1333 19.5 34.9 36.1 
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Figure 7.8. The change of learning rate during the training process. 

 

7.1.3. Results of ResNet101 V1 1024x1024 model  

 

The results obtained by the training process of Faster R-CNN ResNet101 V1 

1024x1024 model such as total loss, classification loss, localization loss, RPN’s 

localization loss, and RPN’s objectness loss, and are shown in Figures 7.9-7.11. 

 

 
 

Figure 7.9. Total loss graph of the ResNet101 V1 1024x1024 model. 
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Figure 7.10. Loss graphs of the model. (a) Classification (b) localization. 

 

 
 

Figure 7.11. Loss graphs of RPN. (a) Localization (b)objectness. 

 

The obtained results based on AP in the test phase are shown in Table 7.5. 

 

Table 7.5. The obtained results based on AP. 

 

 

 

Model AP (0.5:0.95) 

(%) 

AP (0.50) 

(%) 

AP (0.75) 

(%) 

Total loss 

ResNet101 V1 1024x1024 23.5 63.7 12.0 0.138 
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The obtained results based on AS in the test phase are shown in Table 7.6. 

 

Table 7.6. The obtained results based on AS. 

 

 

In this thesis, the learning rate value was set as 0.001 and the number of steps was set 

as 8000.Figure 7.12 shows the change of learning rate during the training process. 

 

 
 

Figure 7.12. The change of learning rate. 

 

Table 7.7 shows a summary of the obtained results among the models in respect to AP 

and AS. 

 

 

 

 

Model AS (1) (%) AS (10) (%) AS (100) (%) 

ResNet101 V1 1024x1024 19.1 33.1 34.3 
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Table 7.7. Summary of the obtained results of AP 

 

 

7.1.4. Experimental results of ResNet50 V1 800x1333 model  

 

Visual representations of the detection results achieved by the Faster R-CNN 

ResNet50 V1 800x1333 architecture during the test phase of kidney stones in the 

dataset alongside with the ground truth bounding boxes are given in Figures 7.13-7.15. 

 

 
 

Figure 7.13. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth 

bounding boxes. 

Model AP 

(0.5:0.95) 
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(0.75) 
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(%) 

AS 

(100) 
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Faster R-CNN 

ResNet50 V1 

800x1333 

24.8 62.9 14.0 20.5 34.2 35.4 

Faster R-CNN 

ResNet101 V1 

800x1333 

25.0 62.5 14.7 19.5 34.9 36.1 

Faster R-CNN 

ResNet101 V1 

1024x1024 

23.5 63.7 12.0 19.1 33.1 34.3 
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Figure 7.14. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth 

bounding boxes. 

 

 
 

Figure 7.15. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth 

bounding boxes. 
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7.1.5. Experimental results of ResNet101 V1 800x1333 model  

 

Visual representations of the detection results achieved with the Faster R-CNN 

ResNet101 V1 800x1333 architecture during the test phase of kidney stones in the 

dataset alongside with the ground truth bounding boxes are given in Figure 7.16, and 

7.17, respectively. 

 

 
 

Figure 7.16. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth 

bounding boxes. 

 

 
 

Figure 7.17. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth 

bounding boxes 
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7.1.6. Experimental results of ResNet101 V1 1024x1024 model  

 

Visual representations of the detection results achieved with the Faster R-CNN 

ResNet101 V1 1024x1024 architecture during the test phase of kidney stones in the 

dataset alongside with the ground truth bounding boxes are given in Figure 7.18, and 

7.19, respectively. 

 

 
 

Figure 7.18. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth   

bounding boxes. 

 

 
 

Figure 7.19. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth   

bounding boxes. 
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7.2. YOLO  

 

In this thesis, as stated before for the purpose of detection of kidney stone using YOLO 

algorithm, four datasets named as D1, D2, D3, and D4 were utilized. 

 

Both YOLO v5 and YOLO v7 models were utilized for the detection of kidney stones, 

in addition to that both SGD and Adam optimizers were selected to perform the 

detection process. Furthermore, the epoch size and batch size values were set as 100 

and 32, respectively. 

 

7.2.1. YOLO v5   

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v5 with the SGD optimizer on D1 dataset 

are shown in Figures 7.20-7.22. 

 

 
 

Figure 7.20. Precision-Sensitivity curve for D1 dataset (Train Phase). 
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Figure 7.21. Confusion matrix for D1 dataset (Train Phase). 

 

 
 

Figure 7.22. Train and validation losses for D1 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v5 with the SGD optimizer on D1 dataset are shown in Figures 

7.23, and 7.24, respectively. 
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Figure 7.23. Precision-Sensitivity curve for D1 dataset (Test phase). 

 

 
 

Figure 7.24. Confusion matrix for D1 dataset (Test phase). 
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The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v5 with the SGD optimizer on D2 dataset 

are shown in Figures 7.25-7.27. 

 

 
 

Figure 7.25. Precision-Sensitivity curve for D2 dataset (Train Phase). 

 

 
 

Figure 7.26. Confusion matrix for D2 dataset (Train phase). 
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Figure 7.27. Train and validation losses for D2 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v5 with the SGD optimizer on the D2 dataset are shown in Figures 

7.28, and 7.29, respectively. 

 

 
 

Figure 7.28. Precision-Sensitivity curve for D2 dataset (Test phase). 
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Figure 7.29. Confusion matrix for D2 dataset (Test phase). 

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v5 with the SGD optimizer on D3 dataset 

are shown in Figures 7.30-7.32. 

 

 
 

Figure 7.30. Precision-Sensitivity curve for D3 dataset (Train Phase). 
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Figure 7.31. Confusion matrix for D3 dataset (Train Phase). 

 

 
 

Figure 7.32. Train and validation losses for D3 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v5 with the SGD optimizer on the D3 dataset are shown in Figures 

7.33, and 7.34, respectively. 
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Figure 7.33. Precision-Sensitivity curve for D3 dataset (Test phase). 

 

 
 

Figure 7.34. Confusion matrix for D3 dataset (Test Phase). 
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The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v5 with the SGD optimizer on D4 dataset 

are shown in Figure 7.35-7.37. 

 

 
 

Figure 7.35. Precision-Sensitivity curve for D4 dataset (Train Phase). 

 

 
 

Figure 7.36. Confusion matrix for D4 dataset (Train Phase). 
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Figure 7.37. Train and validation losses for D4 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v5 with the SGD optimizer on the D4 dataset are shown in Figures 

7.38, and 7.39, respectively. 

 

 
 

Figure 7.38. Precision-Sensitivity curve for D4 dataset (Test phase). 
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Figure 7.39. Confusion matrix for D4 dataset (Test phase). 

 

Table 7.8 shows a summary of the obtained results for the four datasets in respect to 

Accuracy, Precision, Sensitivity, F1 score, and mAP in both of Train and Test phases 

for YOLO v5 model with SGD optimizer. 

 

Table 7.8. Train and test results of the model. 

 

 Train  Test 

 D1 D2 D3 D4 D1 D2 D3 D4 

Accuracy (%) 76.0 73.0 82.0 80.0 73.0 76.0 83.0 79.0 

Precision (%) 87.0 77.3 85.7 80.2 73.3 85.6 85.3 78.1 

Sensitivity (%) 65.9 68.1 75.7 76.0 66.5 72.2 77.7 76.8 
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F1 score (%) 74.9 72.4 80.3 78.0 69.7 78.3 81.3 77.4 

mAP (0.5) (%) 73.5 67.5 79.3 79.0 63.4 79.9 79.8 75.4 

mAP (0.5:0.95) (%) 29.0 26.2 35.0 32.4 25.2 39.0 37.2 31.5 

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v5 with the Adam optimizer on D1 dataset 

are shown in Figures 7.40-7.42. 

 

 
 

Figure 7.40. Precision-Sensitivity curve for D1 dataset (Train Phase). 
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Figure 7.41. Confusion matrix for D1 dataset (Train Phase). 

 

 
 

Figure 7.42. Train and validation losses for D1 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v5 with the Adam optimizer on D1 dataset are shown in Figures 

7.43, and 7.44, respectively. 
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Figure 7.43. Precision-Sensitivity curve for D1 dataset (Test phase). 

 

 
 

Figure 7.44. Confusion matrix for D1 dataset (Test phase). 

 

The obtained results such as precision-sensitivity curve, confusion matrix, 

train, and validation loss graphs from training YOLO v5 with the Adam 

optimizer on D2 dataset are shown in Figures 7.45-7.47. 
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Figure 7.45. Precision-Sensitivity curve for D2 dataset (Train Phase). 

 

 
 

Figure 7.46. Confusion matrix for D2 dataset (Train Phase). 
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Figure 7.47. Train and validation losses for D2 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v5 with the Adam optimizer on D2 dataset are shown in Figures 

7.48, and 7.49, respectively.  

 

 
 

Figure 7.48. Precision-Sensitivity curve for D2 dataset (Test phase). 
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Figure 7.49. Confusion matrix for D2 dataset (Test phase). 

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v5 with the Adam optimizer on D3 dataset 

are shown in Figures 7.50-7.52 

 

 
 

Figure 7.50. Precision-Sensitivity curve for D3 dataset (Train Phase). 
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Figure 7.51. Confusion matrix for D3 dataset (Train Phase). 

 

 
 

Figure 7.52. Train and validation losses for D3 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v5 with the Adam optimizer on D3 dataset are shown in Figures 

7.53, and 7.54, respectively. 
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Figure 7.53. Precision-Sensitivity curve for D3 dataset (Test phase). 

 

 
 

Figure 7.54. Confusion matrix for D3 dataset (Test phase). 
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The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v5 with the Adam optimizer on D4 dataset 

are shown in Figures 7.55-7.57. 

 

 
 

Figure 7.55. Precision-Sensitivity curve for D4 dataset (Train Phase). 

 

 
 

Figure 7.56. Confusion matrix for D4 dataset (Train Phase). 
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Figure 7.57. Train and validation losses for D4 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v5 with the Adam optimizer on D4 dataset are shown in Figures 

7.58, and 7.59, respectively. 

 

 
 

Figure 7.58. Precision-Sensitivity curve for D4 dataset (Test phase). 
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Figure 7.59. Confusion matrix for D4 dataset (Test phase). 

 

Table 7.9 shows a summary of the obtained results for the four datasets in respect to 

Accuracy, Precision, Sensitivity, F1 score, and mAP in both of Train and Test phases 

for YOLO v5 model with Adam optimizer. 

 

Table 7.9. Train and test results of the model. 

 

 Train  Test 

 D1 D2 D3 D4 D1 D2 D3 D4 

Accuracy (%) 75.0 71.0 80.0 75.0 75.0 74.0 85.0 78.0 

Precision (%) 84.9 79.1 84.3 81.9 77.6 88.0 89.7 83.3 
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Sensitivity (%) 68.8 64.1 73.1 68.3 65.9 72.6 77.2 73.2 

F1 score (%) 76.0 70.8 78.3 74.4 71.2 79.5 82.9 77.9 

mAP (0.5) (%) 73.8 65.9 79.8 75.1 68.4 81.2 84.6 76.0 

mAP (0.5:0.95) (%) 30.1 26.2 34.8 31.7 25.2 40.5 39.0 33.6 

 

Table 7.10 and Table 7.11 show a summary of the obtained results for the four datasets 

in respect to Accuracy, Precision, Sensitivity, F1 score, and mAP in both of Train and 

Test phases for YOLO v5 model between SGD and Adam optimizers. 

 

Table 7.10. Train results of the model between SGD and Adam. 

 

 

 

 SGD  Adam 

 D1 D2 D3 D4 D1 D2 D3 D4 

Accuracy (%) 76.0 73.0 82.0 80.0 75.0 71.0 80.0 75.0 

Precision (%) 87.0 77.3 85.7 80.2 84.9 79.1 84.3 81.9 

Sensitivity (%) 65.9 68.1 75.7 76.0 68.8 64.1 73.1 68.3 

F1 score (%) 74.9 72.4 80.3 78.0 76.0 70.8 78.3 74.4 

mAP (0.5) (%) 73.5 67.5 79.3 79.0 73.8 65.9 79.8 75.1 

mAP (0.5:0.95) 

(%) 

29.0 26.2 35.0 32.4 30.1 26.2 34.8 31.7 
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Table 7.11. Test results of the model between SGD and Adam. 

 

 

7.2.1.2. Experimental results of YOLO v5  

 

Visual representations of the detection results achieved with the YOLO v5 during the 

test phase of kidney stones in the datasets alongside with the ground truth bounding 

boxes are given in Figures 7.60-7.63. 

 

 
 

Figure 7.60. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth                                

bounding boxes. 

 SGD  Adam 

 D1 D2 D3 D4 D1 D2 D3 D4 

Accuracy (%) 73.0 76.0 83.0 79.0 75.0 74.0 85.0 78.0 

Precision (%) 73.3 85.6 85.3 78.1 77.6 88.0 89.7 83.3 

Sensitivity (%) 66.5 72.2 77.7 76.8 65.9 72.6 77.2 73.2 

F1 score (%) 69.7 78.3 81.3 77.4 71.2 79.5 82.9 77.9 

mAP (0.5) (%) 63.4 79.9 79.8 75.4 68.4 81.2 84.6 76.0 

mAP (0.5:0.95) 

(%) 

25.2 39.0 37.2 31.5 25.2 40.5 39.0 33.6 
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Figure 7.61. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth 

bounding boxes. 

 

 

 

Figure 7.62. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth 

bounding boxes. 

 

 
 

Figure 7.63. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth 

bounding boxes. 
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7.2.2. YOLO v7 

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v7 with the SGD optimizer on D1 dataset 

are shown in Figures 7.64-7.66. 

 

 
 

Figure 7.64. Precision-Sensitivity curve for D1 dataset (Train Phase). 

 

 
 

Figure 7.65. Confusion matrix for D1 dataset (Train Phase). 
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Figure 7.66. Train and validation losses for D1 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v7 with the SGD optimizer on D1 dataset are shown in Figures 

7.67, and 7.68, respectively. 

 

 
 

Figure 7.67. Precision-Sensitivity curve for D1 dataset (Test phase). 
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Figure 7.68. Confusion matrix for D1 dataset (Test phase). 

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v7 with the SGD optimizer on D2 dataset 

are shown in Figures 7.69-7.71. 

 

 
 

Figure 7.69. Precision-Sensitivity curve for D2 dataset (Train Phase). 
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Figure 7.70. Confusion matrix for D2 dataset (Train Phase). 

 

 
 

Figure 7.71. Train and validation losses for D2 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v7 with the SGD optimizer on D2 dataset are shown in Figures 

7.72, and 7.73, respectively. 
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Figure 7.72. Precision-Sensitivity curve for D2 dataset (Test phase). 

 

 
 

Figure 7.73. Confusion matrix for D2 dataset (Test phase). 

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v7 with the SGD optimizer on D3 dataset 

are shown in Figures 7.74-7.76. 
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Figure 7.74. Precision-Sensitivity curve for D3 dataset (Train phase). 

 

 
 

Figure 7.75. Confusion matrix for D3 dataset (Train phase). 
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Figure 7.76. Train and validation losses for D3 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v7 with the SGD optimizer on D3 dataset are shown in Figures 

7.77, and 7.78, respectively. 

 

 
 

Figure 7.77. Precision-Sensitivity curve for D3 dataset (Test phase). 
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Figure 7.78. Confusion matrix for D3 dataset (Test phase). 

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v7 with the SGD optimizer on D4 dataset 

are shown in Figures 7.79-7.81. 

 

 
 

Figure 7.79. Precision-Sensitivity curve for D4 dataset (Train Phase). 
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Figure 7.80. Confusion matrix for D4 dataset (Train Phase). 

 

 
 

Figure 7.81. Train and validation losses for D4 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v7 with the SGD optimizer on D4 dataset are shown in Figures 

7.82, and 7.83, respectively. 
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Figure 7.82. Precision-Sensitivity curve for D4 dataset (Test phase). 

 

 
 

Figure 7.83. Confusion matrix for D4 dataset (Test phase). 
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Table 7.12 shows a summary of the obtained results for the four datasets in respect to 

Accuracy and mAP in both of Train and Test phases for YOLO v7 model with SGD 

optimizer. Table 7.13 show a summary of the obtained results for the four datasets in 

respect to Accuracy, Precision, Sensitivity, F1 score, mAP in Test phase for YOLO v7 

model with SGD optimizer. 

 

Table 7.12. Summary of the obtained results in Train and Test. 

 

 

Table 7.13. Summary of the obtained results in Test. 

 

 Train  Test 

 D1 D2 D3 D4 D1 D2 D3 D4 

Accuracy (%) 60.0 60.0 57.0 70.0 59.0 74.0 66.0 74.0 

mAP (0.5) (%) 46.9 52.8 53.5 64.0 48.3 66.3 61.4 64.9 

 Test 

 D1 D2 D3 D4 

Accuracy (%) 59.0 74.0 66.0 74.0 

Precision (%) 61.9 76.6 72.6 68.9 

Sensitivity (%) 52.5 64.5 62.4 64.3 

F1 score (%) 56.8 70.0 67.1 66.5 

mAP (0.5) (%) 48.3 66.3 61.4 64.9 

mAP (0.5:0.95) (%) 17.3 26.7 26.7 26.1 
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The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v7 with the Adam optimizer on D1 dataset 

are shown in Figures 7.84-7.86. 

 

 
 

Figure 7.84. Precision-Sensitivity curve for D1 dataset (Train Phase). 

 

 
 

Figure 7.85. Confusion matrix for D1 dataset (Train Phase). 



107 

 

 
 

Figure 7.86. Train and validation losses for D1 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v7 with the Adam optimizer on D1 dataset are shown in Figures 

7.87, and 7.88, respectively. 

 

 
 

Figure 7.87. Precision-Sensitivity curve for D1 dataset (Test phase). 
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Figure 7.88. Confusion matrix for D1 dataset (Test phase). 

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v7 with the Adam optimizer on D2 dataset 

are shown in Figures 7.89-7.91. 

 

 
 

Figure 7.89. Precision-Sensitivity curve for D2 dataset (Train Phase). 
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Figure 7.90. Confusion matrix for D2 dataset (Train Phase). 

 

 
 

Figure 7.91. Train and validation losses for D2 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v7 with the Adam optimizer on D2 dataset are shown in Figures 

7.92, and 7.93, respectively. 
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Figure 7.92. Precision-Sensitivity curve for D2 dataset (Test phase). 

 

 
 

Figure 7.93. Confusion matrix for D2 dataset (Test phase). 
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The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v7 with the Adam optimizer on D3 dataset 

are shown in Figures 7.94-7.96. 

 

 
 

Figure 7.94. Precision-Sensitivity curve for D3 dataset (Train phase). 

 

 
 

Figure 7.95. Confusion matrix for D3 dataset (Train phase). 
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Figure 7.96. Train and validation losses for D3 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v7 with the Adam optimizer on D3 dataset are shown in Figures 

7.97, and 7.98, respectively. 

 

 
 

Figure 7.97. Precision-Sensitivity curve for D3 dataset (Test phase). 
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Figure 7.98. Confusion matrix for D3 dataset (Test phase). 

 

The obtained results such as precision-sensitivity curve, confusion matrix, train, and 

validation loss graphs from training YOLO v7 with the Adam optimizer on D4 dataset 

are shown in Figures 7.99-7.101. 

 

 
 

Figure 7.99. Precision-Sensitivity curve for D4 dataset (Train Phase). 
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Figure 7.100. Confusion matrix for D4 dataset (Train Phase). 

 

 
 

Figure 7.101. Train and validation losses for D4 dataset (Train Phase). 

 

The obtained results such as precision-sensitivity curve and confusion matrix from the 

test phase of YOLO v7 with the Adam optimizer on D4 dataset are shown in Figures 

7.102, and 7.103, respectively. 
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Figure 7.102. Precision-Sensitivity curve for D4 dataset (Test phase). 

 

 
 

Figure 7.103. Confusion matrix for D4 dataset (Test phase). 



116 

 

Table 7.14 shows a summary of the obtained results for the four datasets in respect to 

Accuracy and mAP in both of Train and Test phases for YOLO v7 model with Adam 

optimizer. Table 7.15 shows a summary of the obtained results for the four datasets in 

respect to Accuracy, Precision, Sensitivity, F1 score, mAP in Test phase for YOLO v7 

model with Adam optimizer. 

 

Table 7.14. Summary of the obtained results in Train and Test. 

 

 

Table 7.15. Summary of the obtained results in Test 

 

 

 Train  Test 

 D1 D2 D3 D4 D1 D2 D3 D4 

Accuracy (%) 71.0 76.0 45.0 76.0 65.0 76.0 60.0 73.0 

mAP (0.5) (%) 70.8 73.2 46.4 73.7 64.2 73.7 55.0 66.1 

 Test 

 D1 D2 D3 D4 

Accuracy (%) 65.0 76.0 60.0 73.0 

Precision (%) 86.8 83.7 64.2 75.4 

Sensitivity (%) 58.9 67.3 57.7 66.9 

F1 score (%) 70.1 74.6 60.7 70.8 

mAP (0.5) (%) 64.2 73.7 55.0 66.1 

mAP (0.5:0.95) (%) 23.4 31.6 21.9 25.7 
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Table 7.16 show a summary of the obtained results for the four datasets in respect to 

Accuracy and mAP in Train phase for YOLO v7 model between SGD and Adam 

optimizers. Table 7.17 shows a summary of the obtained results for the four datasets 

in respect to Accuracy, Precision, Sensitivity, F1 score, mAP in Test phase for YOLO 

v7 model between SGD and Adam optimizers. 

 

Table 7.16. Train results of the model between SGD and Adam. 

 

 

Table 7.17. Test results of the model between SGD and Adam. 

  

 SGD  Adam 

 D1 D2 D3 D4 D1 D2 D3 D4 

Accuracy (%) 60.0 60.0 57.0 70.0 71.0 76.0 45.0 76.0 

mAP (0.5) (%) 46.9 52.8 53.5 64.0 70.8 73.2 46.4 73.7 

 SGD  Adam 

 D1 D2 D3 D4 D1 D2 D3 D4 

Accuracy (%) 59.0 74.0 66.0 74.0 65.0 76.0 60.0 73.0 

Precision (%) 61.9 76.6 72.6 68.9 86.8 83.7 64.2 75.4 

Sensitivity (%) 52.5 64.5 62.4 64.3 58.9 67.3 57.7 66.9 

F1 score (%) 56.8 70.0 67.1 66.5 70.1 74.6 60.7 70.8 

mAP (0.5) (%) 48.3 66.3 61.4 64.9 64.2 73.7 55.0 66.1 

mAP (0.5:0.95) 

(%) 

17.3 26.7 26.7 26.1 23.4 31.6 21.9 25.7 
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7.2.3.1. Experimental results of YOLO v7 

 

Visual representations of the detection results achieved with the YOLO v7 during the 

test phase of kidney stones in the dataset alongside with the ground truth bounding 

boxes are given in Figure 7.104-7.108. 

 

 
 

Figure 7.104. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth 

bounding boxes. 

 

 
 

Figure 7.105. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth 

bounding boxes. 
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Figure 7.106. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth 

bounding boxes. 

 

 
 

Figure 7.107. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth 

bounding boxes. 

 

 
 

Figure 7.108. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth 

bounding boxes. 
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7.3. CNN   

 

In this thesis, a deep learning system was created to classify kidney stones with the 

help of approximately 1799 CT scans images labeled as Normal and Kidney stone 

obtained from open source. Images used in the model were separated as 80% for 

training and 20% for testing. Additionally, two different optimizers, RMSprop and 

Adam, were used for classification purpose. The number of epochs was also assigned 

as 20, 40, 60, 80, and 100. The learning rate value was set as 0.001. 

 

The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the RMSprop optimizer on D1 dataset for 20 epochs are shown in Figures 7.109-

7.111. 

 

 
 

Figure 7.109. Training and validation losses graphs. 
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Figure 7.110. Training and validation accuracy graphs. 

 

 
 

Figure 7.111. Confusion matrix. 

 

The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the RMSprop optimizer on D1 dataset for 40 epochs are shown in Figures 7.112-

7.114. 
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Figure 7.112. Training and validation losses graphs. 

 

 
 

Figure 7.113. Training and validation accuracy graphs. 
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Figure 7.114. Confusion matrix. 

 

The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the RMSprop optimizer on D1 dataset for 60 epochs are shown in Figures 7.115-

7.117. 

 

 
 

Figure 7.115. Training and validation losses graphs. 



124 

 

 
 

Figure 7.116. Training and validation accuracy graphs. 

 

 
 

Figure 7.117. Confusion matrix. 

 

The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the RMSprop optimizer on D1 dataset for 80 epochs are shown in Figures 7.118-

7.120. 
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Figure 7.118. Training and validation losses graphs. 

 

 
 

Figure 7.119. Training and validation accuracy graphs. 
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Figure 7.120. Confusion matrix. 

 

The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the RMSprop optimizer on D1 dataset for 100 epochs are shown in Figures 7.121-

7.123. 

 

 
 

Figure 7.121. Training and validation losses graphs. 
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Figure 7.122. Training and validation accuracy graphs. 

 

 
 

Figure 7.123. Confusion matrix. 
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Table 7.18 shows a summary of the obtained results in respect of Accuracy, Precision, 

Sensitivity, Specificity, and F1 score for CNN model with RMSprop optimizer 

alongside with different epochs. 

 

Table 7.18. Summary of the obtained results. 

 

 

 

The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the Adam optimizer on D1 dataset for 20 epochs are shown in Figures 7.124-

7.126. 

 

 
 

Figure 7.124. Training and validation losses graphs. 

Epochs 20 40 60 80 100 

Accuracy (%) 97.40 97.69 99.13 97.69 97.69 

Precision (%) 98.75 97.59 99.39 97.59 99.37 

Sensitivity (%) 95.78 97.59 98.79 97.59 95.78 

Specificity (%) 98.89 97.79 99.44 97.79 99.44 

F1 Score (%) 97.24 97.59 99.08 97.59 97.54 
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Figure 7.125. Training and validation accuracy graphs. 

 

 
 

Figure 7.126. Confusion matrix. 
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The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the Adam optimizer on D1 dataset for 40 epochs are shown in Figures 7.127-

7.129. 

 

 
 

Figure 7.127. Training and validation losses graphs. 

 

 
 

Figure 7.128. Training and validation accuracy graphs. 
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Figure 7.129. Confusion matrix. 

 

The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the Adam optimizer on D1 dataset for 60 epochs are shown in Figures 7.130-

7.132. 

 

 
 

Figure 7.130. Training and validation losses graphs. 
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Figure 7.131. Training and validation accuracy graphs. 

 

 
 

Figure 7.132. Confusion matrix. 
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The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the Adam optimizer on D1 dataset for 80 epochs are shown in Figures 7.133-

7.135. 

 

 
 

Figure 7.133. Training and validation losses graphs. 

 

 

Figure 7.134. Training and validation accuracy graphs. 
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Figure 7.135. Confusion matrix. 

 

The obtained results such as train, validation loss graphs, and confusion matrix of CNN 

with the Adam optimizer on D1 dataset for 100 epochs are shown in Figures 7.136-

7.138. 

 

 
 

Figure 7.136. Training and validation losses graphs. 
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Figure 7.137. Training and validation accuracy graphs. 

 

 
 

Figure 7.138. Confusion matrix. 
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Table 7.19 shows a summary of the obtained results in respect of Accuracy, Precision, 

Sensitivity, Specificity, and F1 score for CNN model with Adam optimizer alongside 

with different epochs. 

 

Table 7.19. Summary of the obtained results. 

 

 

 

 

Table 7.20 shows a summary of the obtained results in respect of Accuracy, Precision, 

Sensitivity, Specificity, and F1 score for CNN model with RMSprop and Adam 

optimizer alongside with different epochs. 

 

 

 

 

 

 

 

 

 

 

 

Epochs 20 40 60 80 100 

Accuracy (%) 97.40 99.13 97.40 96.54 97.98 

Precision (%) 98.15 98.80 100 98.12 100 

Sensitivity (%) 96.38 99.39 94.57 94.57 95.78 

Specificity (%) 98.34 98.89 100 98.34 100 

F1 Score (%) 97.25 99.09 97.20 96.31 97.84 
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Table 7.20. Summary of the obtained results based on RMSprop and Adam. 

 

  RMSprop Adam 

Epochs 20 40 60 80 100 20 40 60 80 100 

Accuracy (%) 97.40 97.69 99.13 97.69 97.69 97.40 99.13 97.40 96.54 97.98 

Precision (%) 98.75 97.59 99.39 97.59 99.37 98.15 98.80 100 98.12 100 

Sensitivity (%) 95.78 97.59 98.79 97.59 95.78 96.38 99.39 94.57 94.57 95.78 

Specificity (%) 98.89 97.79 99.44 97.79 99.44 98.34 98.89 100 98.34 100 

F1 score (%) 97.24 97.59 99.08 97.59 97.54 97.25 99.09 97.20 96.31 97.84 
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7.4. DISCUSSION  

 

In this thesis, publicly available CT kidney stone dataset was utilized, and three distinct 

deep learning models namely Faster R-CNN, YOLO, and a custom CNN were trained 

and tested. The primary objective of the thesis is to achieve both kidney stone detection 

and classification within the CT image dataset. 

 

The first model employed was the Faster R-CNN, designed for precise object detection 

in computer vision. Complementing the Faster R-CNN model, feature extraction 

backbones ResNet50 and ResNet101 were incorporated. Three different variants of 

Faster R-CNN as ResNet50 V1 800x1333, ResNet101 V1 800x1333, and ResNet101 

V1 1024x1024 were utilized. Considering the obtained results, the three models 

exhibited a very similar values in terms of AP and AS. The highest performance was 

achieved by ResNet101 V1 1024x1024 model which yielded a value of 63.7% in 

respect to AP (0.50). The significance of the number of steps parameter on the training 

results of Faster R-CNN has been demonstrated by researchers Oluibukun Gbenga 

Ajayi and John Ashi in their article [111]. This study investigated the impact of varying 

training epochs on the accuracy of a Faster R-CNN. They trained the Faster R-CNN 

model with five different epochs. They have concluded that increasing the number of 

training epochs significantly enhances the model’s performance; however, a loss of 

efficiency occurs after a certain number of epochs. The accuracy for the five classes 

increased across epochs: 52.6% (10,000 epochs), 67.9% (20,000 epochs), 97.3% 

(100,000 epochs), 98.4% (200,000 epochs), and 97% (242,000 epochs). Taking these 

important findings into account, it’s clear that in this thesis, the choice to limit the 

number of steps to 8000 due to computational limits noticeably affected the results. 

The constraint on training steps, driven by the limitations in computational resources, 

probably played a role in the obtained results. 

 

The second utilized model was YOLO, with two different versions: YOLO v5 and 

YOLO v7. Additionally, two different optimizers, named SGD and Adam, were 

employed. In light of the obtained results, YOLO v5 with the Adam optimizer 

outperformed all other models with an 84.6% mAP (0.5) and an accuracy value of 
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85.0%. Furthermore, the model achieved a precision of 89.7%, sensitivity of 77.2%, 

F1 score of 82.9%, and a mAP (0.5:0.95) of 39.0%. 

 

YOLO v7 yielded less favorable results, with various issues becoming apparent during 

the model evaluation. One of the observed issues was overfitting. Notably, there was 

a substantial decline in mAP curve during the training phase, which lead to a potential 

issue with the model’s generalization. In addition to that, some of the validation loss 

curves were increasing, pointing to a possible overfitting. A noteworthy observation 

emerged during the evaluation where the model exhibited a tendency to detect objects 

in close proximity to the intended targets, leading to a decrease in its overall 

comprehension and performance. the observation described above is depicted in detail 

in Figure 7.139. 

 

 
 

Figure 7.139. Model confusion between kidney stones and spinal cord. 

 

In Figure 7.139, the model identified objects resembling kidney stones, including parts 

of the spinal cord. This misidentification led to numerous false predictions, resulting 

in a decline in overall performance. These false predictions align with FP in the 

confusion matrix. The second observation was that it’s important to mention that the 

model struggled with accurate predictions for larger objects, contributing to an overall 

decrease in performance as shown in Figure 7.140.  
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Figure 7.140. Model difficulty predicting larger kidney stones. 

 

In Figure 7.140, the model faced difficulty predicting larger kidney stones, leading to 

an increase in FN due to its inability to draw bounding boxes for these objects. While 

these observations were made based on the current dataset, it’s crucial to acknowledge 

that they may differ depending on the quality and diversity of the dataset employed.  

 

The third model used was CNN with RMSprop and Adam optimizers. It was trained 

with different epochs as 20, 40, 60, 80, and 100. The learning rate and batch size were 

set at 0.001 and 32. Among all the trained models using CNN, the best performing 

model achieved an accuracy of 99.13%. This result was attained after 40 epochs of 

training, utilizing the Adam optimizer. However, it was noticed that increasing the 

epochs may have led to an increase in FPs and FNs as shown in training curves for 

different epochs. As stated in section 6.4.3.1 for the optimization of the 

hyperparameters, too many tests were employed in order to get the best results of the 

model.  

 

In the future work, increasing the dataset size for Faster R-CNN and YOLO is 

recommended to enhance their performance. Gathering data from diverse sources can 

contribute to better model generalization. Additionally, implementing CNN 

classification based on the size of kidney stones can be explored. For segmentation 
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and classification, different deep learning models like U-Net and Mask R-CNN can be 

considered.  

 

Table 7.21 presents a comparison of results between state-of-the-art studies and the 

proposed method based on kidney stone classification using CNN, with the same 

dataset. 

 

Table 7.21. Comparative results of CNN based kidney stone classification 

  

 

Table 7.22 shows a comparison of results between state-of-the-art studies and the 

proposed method using different datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

Authors Reference Model Accuracy (%) 

Patro et al.  [37] DKN 98.56 

Baygin et al. [41] ExDark19 99.71 

Yildirim et al. [43] xResNet50 96.82 

Proposed method  CNN 99.13 
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Table 7.22. Comparison of the proposed method with literature studies. 

 

 

Authors Input images Number of 

Images 

Model Results 

Razmjooy & Yan CT 12446 DBN/FO-CHIO Accuracy: 97.98%. 

Caglayan et al. CT 2959 xResNet50 Accuracy: 85%, 89%, and 93% in the sagittal plane. 

Gurkan et al. CT 658 YOLO v7 mAP (0.5): 0.85, Precision: 0.882, Sensitivity: 0.829, F1 

score: 0.854. 

Islam et al. CT 12446 Swin 

transformers 

Accuracy: 99.30%. 

S. Sudharson & P. 

Kokil 

Ultrasound 4940 SVM Accuracy: 87.31% 

Parakh et al. CT 535 Dual CNN AUC: 0.954  

Längkvist et al. CT 465 CNN Sensitivity: 100% 

Proposed method CT 1799 CNN Accuracy: 99.13 % 
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CHAPTER 8 

 

CONCLUSION 

 

In this thesis, advanced deep learning models were developed to detect and classify 

kidney stones in coronal CT images. The utilized dataset consisting of 1799 coronal 

CT scans. Out of these scans, 1009 were from individuals without kidney stones, and 

the remaining were from patients diagnosed with kidney stones. In addition to that, 

this thesis involved the training and testing of three distinct deep learning models, 

namely Faster R-CNN, YOLO, and the customized CNN. 

 

According to the obtained results in this thesis, the Faster R-CNN results were less 

favorable. On the other hand, the YOLO v5 model exhibited promising outcomes in 

identifying kidney stones, surpassing the performance of YOLOv7. The YOLO v5 

model demonstrated reasonable accuracy, detecting kidney stones, with a mAP (0.5) 

of 84.6% and a mAP (0.5:95) of 39.0% on the test set. In assessing the performance of 

the CNN, it’s noteworthy that the customized CNN model, trained over 40 epochs 

using the Adam optimizer with a learning rate of 0.001 and a batch size of 32, 

demonstrated the highest accuracy as 99.13%. This metric indicates the model’s 

effectiveness in correctly classifying instances within the dataset. The proposed model, 

employing a customized CNN, achieved an accuracy closely approaches to the top 

performing studies in the literature, marking it as a noteworthy achievement. 

Nevertheless, certain limitations and challenges were identified, emphasizing the need 

for future enhancements. 
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