

DETECTION AND CLASSIFICATION OF KIDNEY

STONES BASED ON DEEP LEARNING
METHODS

2024
MASTER THESIS

BIOMEDICAL ENGINEERING

Aziz AYDIN

 Thesis Advisor
Assist. Prof. Dr Eftâl ŞEHİRLİ

DETECTION AND CLASSIFICATION OF KIDNEY STONES BASED ON

DEEP LEARNING METHODS

Aziz AYDIN

Thesis Advisor

Assist. Prof. Dr. Eftâl ŞEHİRLİ

T.C.

Karabuk University

Institute of Graduate Programs

Department of Biomedical Engineering

Prepared as

Master Thesis

KARABUK

January 2024

ii

I certify that in my opinion the thesis submitted by Aziz AYDIN titled “DETECTION

AND CLASSIFICATION OF KIDNEY STONES BASED ON DEEP LEARNING

METHODS” is fully adequate in scope and in quality as a thesis for the degree of

Master of Science.

APPROVAL

Assist. Prof. Dr. Eftâl ŞEHİRLİ

Thesis Advisor, Department of Biomedical Engineering

This thesis is accepted by the examining committee with a unanimous vote in the

Department of Biomedical Engineering as a Master of Science thesis. January 16, 2024

Examining Committee Members (Institutions) Signature

Chairman : Assoc. Prof. Dr. Ahmet Reşit KAVSAOĞLU (KBU)

Member : Assist. Prof. Dr. Kadir İLERİ (BANU) ONLINE

Member : Assist. Prof. Dr. Eftâl ŞEHİRLİ (KBU)

The degree of Master of Science by the thesis submitted is approved by the

Administrative Board of the Institute of Graduate Programs, Karabuk University.

Assoc. Prof. Dr. Zeynep ÖZCAN

Director of the Institute of Graduate Programs

iii

“I declare that all the information within this thesis has been gathered and presented in

accordance with academic regulations and ethical principles and I have according to the

requirements of these regulations and principles cited all those which do not originate in

this work as well.”

 Aziz AYDIN

iv

ABSTRACT

M.Sc. Thesis

DETECTION AND CLASSIFICATION OF KIDNEY STONES BASED ON

DEEP LEARNING METHODS

Aziz AYDIN

Karabuk University

Institute of Graduate Programs

Department of Biomedical Engineering

Thesis Advisor:

Assist. Prof. Dr. Eftâl ŞEHİRLİ

January 2024, 154 pages

Kidney stones are a prevalent global health issue, leading numerous individuals to seek

emergency care due to intense pain. Different imaging methods are employed in the

diagnosis of kidney stone disease, requiring specialized expertise for the

comprehensive interpretation and diagnosis of these images. Significant advancements

in the medical field have been facilitated thanks to the application of machine learning

and deep learning methods. This thesis aims to employ deep learning and object

detection techniques to detect and classify kidney stones on CT images. The dataset

employed in this thesis comprises a total of 1799 coronal CT scans. Among these,

1009 scans originate from individuals without kidney stones, while the remaining are

collected from patients who have been diagnosed with kidney stones. This thesis

involves implementing three different models as Faster R-CNN, YOLO, and a

customized convolutional neural network (CNN). While Faster R-CNN performance

was underwhelming, YOLO v5 achieved promising results, surpassing YOLO v7 with

v

a mAP (0.5) of 84.6% and a mAP (0.5:0.95) of 39.0% for kidney stone detection. The

customized CNN exhibited remarkable accuracy reaching 99.13%. Indicating its

efficacy in classifying kidney stones, the model achieved an accuracy closely

comparable to the leading studies in the literature firmly establishing itself as a

noteworthy achievement.

Key Words : Kidney stones, Deep learning, Object detection

Science Code : 925118

vi

ÖZET

Yüksek Lisans Tezi

DERİN ÖĞRENME YÖNTEMLERİYLE BÖBREK TAŞLARININ

TESPİT EDİLMESİ VE SINIFLANDIRILMASI

Aziz AYDIN

Karabük Üniversitesi

Lisansüstü Eğitim Enstitüsü

Biyomedikal Mühendisliği Anabilim Dalı

Tez Danışmanı:

Dr. Öğr. Üyesi Eftâl ŞEHİRLİ

Ocak 2024, 154 sayfa

Böbrek taşları, küresel bir sağlık sorunu olarak önem taşımakta ve şiddetli ağrı

nedeniyle birçok kişinin acil yardım talep etmesine sebep olmaktadır. Böbrek taşı

hastalığının teşhisi için farklı görüntüleme teknikleri kullanılmakta, bu görüntülerin

detaylı bir şekilde değerlendirilmesi ve doğru teşhis konulabilmesi için uzmanlık

gerekmektedir. Tıp alanında, makine öğrenmesi ve derin öğrenme yöntemlerinin

entegrasyonu ile önemli ilerlemeler kaydedilmiştir. Bu tez, koronal BT görüntülerde

böbrek taşlarını tespit etmek ve sınıflandırmak amacıyla derin öğrenme ve nesne

tespiti tekniklerini kullanmayı amaçlamaktadır. Kullanılan veri seti, toplamda 1799

koronal BT görüntüleri içermektedir. Bu görüntülerden 1009’u böbrek taşı

bulunmayan bireylerden alınmış olup, geri kalanı ise böbrek taşı teşhisi konmuş

hastalardan elde edilmiştir. Bu tezde Faster R-CNN, YOLO ve özelleştirilmiş bir

evrişimli sinir ağı (CNN) olmak üzere üç farklı model uygulanmıştır. Faster R-

CNN’nin performansı beklenen seviyenin altında kalmıştır. Öte yandan, YOLO v5

umut verici sonuçlar elde etmiş ve özellikle böbrek taşı tespiti konusunda mAP (0,5)

vii

%84,6 ve mAP (0,5:0,95) %39,0 başarı oranlarına ulaşarak YOLO v7’yi geçmiştir.

Ayrıca, özelleştirilmiş bir CNN modeli de %99,13 doğrulukla dikkat çekmiştir. Bu

model, böbrek taşlarını sınıflandırmadaki etkinliğini literatürdeki önde gelen

çalışmalarla kıyaslanabilir bir doğruluk seviyesi elde etmiştir.

Anahtar Kelimeler: Böbrek taşları, Derin öğrenme, Nesne tespiti

Bilim Kodu: 925118

viii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my esteemed advisor, Asist. Prof. Dr.

Eftâl ŞEHİRLİ, for his invaluable guidance and unwavering support throughout my

master’s journey. his vast wisdom and wealth of experience have inspired me

throughout my thesis. I’d like to thank God, my family, and my friends. It would have

been impossible to finish my studies without their unlimited support over the past few

years.

ix

CONTENTS

 Page

APPROVAL .. ii

ABSTRACT .. iv

ÖZET .. vi

ACKNOWLEDGEMENT .. viii

CONTENTS .. ix

LIST OF FIGURES ... xii

LIST OF TABLES .. xix

SYMBOLS AND ABBREVIATIONS ... xxi

CHAPTER 1 .. 1

INTRODUCTION ... 1

CHAPTER 2 .. 3

KIDNEY .. 3

2.1. ANATOMY OF THE KIDNEY .. 3

2.2. PHYSIOLOGY OF THE KIDNEY ... 4

2.3. RENAL DISEASES ... 5

2.3.1. Kidney Stones ... 5

2.4. DIAGNOIS OF THE KIDNEY STONES ... 7

CHAPTER 3 .. 9

LITERATURE REVIEWS .. 9

CHAPTER 4 .. 15

ARTIFICIAL INTELLIGENCE .. 15

4.1. MACHINE LEARNING .. 15

4.1.1. Supervised Learning ... 16

4.1.2. Unsupervised Learning ... 17

x

Page

4.1.3. Reinforcement Learning ... 18

4.2. DEEP LEARNING ... 18

CHAPTER 5 .. 21

 MATERIALS .. 21

5.1. DATASET .. 21

5.2. PYTHON .. 23

5.2.1. Advantages of Python ... 23

5.3. GOOGLE COLABORATORY .. 24

5.4. ROBOFLOW .. 24

5.5. PROPERTIES OF THE COMPUTER ... 25

CHAPTER 6 .. 26

METHODS .. 26

6.1. PREPROCESSING .. 27

6.1.1. Resizing .. 27

6.1.2. Detection of Region of Interest (ROI) .. 27

6.2. DATA AUGMENTATION ... 28

6.3. IMAGE ANNOTATIONS ... 29

6.4. OBJECT DETECTION .. 30

6.4.1. Faster R-CNN ... 32

6.4.2. YOLO ... 37

6.4.3. CNN .. 47

6.5. EVALUATION METRICS .. 55

CHAPTER 7 .. 58

RESULTS & DISCUSSION .. 58

7.1. Faster R-CNN ... 58

7.1.1. Results of ResNet50 V1 800x1333 model ... 58

7.1.2. Results of ResNet101 V1 800x1033 model ... 61

7.1.3. Results of ResNet101 V1 1024x1024 model ... 63

7.1.4. Experimental results of ResNet50 V1 800x1333 model 66

xi

Page

7.1.5. Experimental results of ResNet101 V1 800x1333 model 68

7.1.6. Experimental results of ResNet101 V1 1024x1024 model 69

7.2. YOLO ... 70

7.2.1. YOLO v5 .. 70

7.3. CNN .. 120

7.4. DISCUSSION .. 138

CHAPTER 8 .. 143

CONCLUSION .. 143

REFERENCES .. 144

BIOGRAPHY .. 154

xii

LIST OF FIGURES

Page

Figure 2.1. Kidney anatomy [17]. .. 4

Figure 2.2. Kidney stone [26]. ... 6

Figure 2.3. Types of kidney stones [27]. .. 6

Figure 4.1. Diagram of machine learning algorithms [52]... 16

Figure 4.2. The difference between supervised learning and unsupervised learning

[57]. ... 17

Figure 4.3. A sample of ANN architecture [62]... 19

Figure 5.1. Samples of CT images in the dataset [43]. .. 22

Figure 6.1. Flow chart of the proposed methods. ... 26

Figure 6.2. ROI of CT coronal image. ... 28

Figure 6.3. A Sample annotated image in LabelImg. .. 30

Figure 6.4. Classification, localization, and segmentation in object detection [78]. . 31

Figure 6.5. Architectures of object detection algorithms. (a) one-stage (b) two-stage

[80]. .. 32

Figure 6.6. The difference in the architectures of R-CNN algorithms. (a) R-CNN (b)

Fast R-CNN [82]. .. 33

Figure 6.7. Flowchart of the Faster R-CNN [81]. .. 34

Figure 6.8. Flowchart of implementing Faster-RCNN using TensorFlow object

detection API. ... 35

Figure 6.9. The architecture of YOLO [85]. .. 38

Figure 6.10. a) The process of calculating IoU [89]. b) Examples of different IoU

values. ... 40

Figure 6.11. YOLO v5 architecture [91]. ... 42

Figure 6.12. Schematic of implementation of YOLO v5. .. 43

Figure 6.13. The utilized datasets in YOLO v5 and YOLO v7. 44

Figure 6.14. Architecture of YOLO v7 [96]. ... 47

Figure 6.15. CNN general structure [99]. .. 48

Figure 6.16. Convolution and padding process in CNN [101]. 49

xiii

Page

Figure 6.17. Max and Average pooling operations. ... 50

Figure 6.18. Schematic of implementation of CNN. ... 52

Figure 6.19. Architecture of the CNN model. .. 52

Figure 6.20. Confusion matrix [106]. .. 55

Figure 6.21. An example showing the process of TP, FP, FN, and TN in object

detection. .. 55

Figure 7.1. Total loss graph of the ResNet50 V1 800x1333 model. 58

Figure 7.2. Loss graphs of the model. (a) Classification (b) localization. 59

Figure 7.3. Loss graphs of RPN. (a) Localization (b) objectness. 59

Figure 7.4. The change of learning rate during the training process.......................... 60

Figure 7.5. Total loss graph of the ResNet101 V1 800x1333 model. 61

Figure 7.6. Loss graphs of the model. (a) Classification (b) localization. 61

Figure 7.7. Loss graphs of RPN. (a) Localization (b) objectness. 62

Figure 7.8. The change of learning rate during the training process.......................... 63

Figure 7.9. Total loss graph of the ResNet101 V1 1024x1024 model. 63

Figure 7.10. Loss graphs of the model. (a) Classification (b) localization. 64

Figure 7.11. Loss graphs of RPN. (a) Localization (b)objectness. 64

Figure 7.12. The change of learning rate. .. 65

Figure 7.13. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes. ... 66

Figure 7.14. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes. ... 67

Figure 7.15. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes. ... 67

Figure 7.16. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes. ... 68

Figure 7.17. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes .. 68

Figure 7.18. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes. ... 69

Figure 7.19. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes. ... 69

xiv

Page

Figure 7.20. Precision-Sensitivity curve for D1 dataset (Train Phase). 70

Figure 7.21. Confusion matrix for D1 dataset (Train Phase). 71

Figure 7.22. Train and validation losses for D1 dataset (Train Phase). 71

Figure 7.23. Precision-Sensitivity curve for D1 dataset (Test phase). 72

Figure 7.24. Confusion matrix for D1 dataset (Test phase). 72

Figure 7.25. Precision-Sensitivity curve for D2 dataset (Train Phase). 73

Figure 7.26. Confusion matrix for D2 dataset (Train phase). 73

Figure 7.27. Train and validation losses for D2 dataset (Train Phase). 74

Figure 7.28. Precision-Sensitivity curve for D2 dataset (Test phase). 74

Figure 7.29. Confusion matrix for D2 dataset (Test phase). 75

Figure 7.30. Precision-Sensitivity curve for D3 dataset (Train Phase). 75

Figure 7.31. Confusion matrix for D3 dataset (Train Phase). 76

Figure 7.32. Train and validation losses for D3 dataset (Train Phase). 76

Figure 7.33. Precision-Sensitivity curve for D3 dataset (Test phase). 77

Figure 7.34. Confusion matrix for D3 dataset (Test Phase). 77

Figure 7.35. Precision-Sensitivity curve for D4 dataset (Train Phase). 78

Figure 7.36. Confusion matrix for D4 dataset (Train Phase). 78

Figure 7.37. Train and validation losses for D4 dataset (Train Phase). 79

Figure 7.38. Precision-Sensitivity curve for D4 dataset (Test phase). 79

Figure 7.39. Confusion matrix for D4 dataset (Test phase). 80

Figure 7.40. Precision-Sensitivity curve for D1 dataset (Train Phase). 81

Figure 7.41. Confusion matrix for D1 dataset (Train Phase). 82

Figure 7.42. Train and validation losses for D1 dataset (Train Phase). 82

Figure 7.43. Precision-Sensitivity curve for D1 dataset (Test phase). 83

Figure 7.44. Confusion matrix for D1 dataset (Test phase). 83

Figure 7.45. Precision-Sensitivity curve for D2 dataset (Train Phase). 84

Figure 7.46. Confusion matrix for D2 dataset (Train Phase). 84

Figure 7.47. Train and validation losses for D2 dataset (Train Phase). 85

Figure 7.48. Precision-Sensitivity curve for D2 dataset (Test phase). 85

Figure 7.49. Confusion matrix for D2 dataset (Test phase). 86

Figure 7.50. Precision-Sensitivity curve for D3 dataset (Train Phase). 86

Figure 7.51. Confusion matrix for D3 dataset (Train Phase). 87

xv

Page

Figure 7.52. Train and validation losses for D3 dataset (Train Phase). 87

Figure 7.53. Precision-Sensitivity curve for D3 dataset (Test phase). 88

Figure 7.54. Confusion matrix for D3 dataset (Test phase). 88

Figure 7.55. Precision-Sensitivity curve for D4 dataset (Train Phase). 89

Figure 7.56. Confusion matrix for D4 dataset (Train Phase). 89

Figure 7.57. Train and validation losses for D4 dataset (Train Phase). 90

Figure 7.58. Precision-Sensitivity curve for D4 dataset (Test phase). 90

Figure 7.59. Confusion matrix for D4 dataset (Test phase). 91

Figure 7.60. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes. .. 93

Figure 7.61. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes. .. 94

Figure 7.62. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes. .. 94

Figure 7.63. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes. .. 94

Figure 7.64. Precision-Sensitivity curve for D1 dataset (Train Phase). 95

Figure 7.65. Confusion matrix for D1 dataset (Train Phase). 95

Figure 7.66. Train and validation losses for D1 dataset (Train Phase). 96

Figure 7.67. Precision-Sensitivity curve for D1 dataset (Test phase). 96

Figure 7.68. Confusion matrix for D1 dataset (Test phase). 97

Figure 7.69. Precision-Sensitivity curve for D2 dataset (Train Phase). 97

Figure 7.70. Confusion matrix for D2 dataset (Train Phase). 98

Figure 7.71. Train and validation losses for D2 dataset (Train Phase). 98

Figure 7.72. Precision-Sensitivity curve for D2 dataset (Test phase). 99

Figure 7.73. Confusion matrix for D2 dataset (Test phase). 99

Figure 7.74. Precision-Sensitivity curve for D3 dataset (Train phase). 100

Figure 7.75. Confusion matrix for D3 dataset (Train phase). 100

Figure 7.76. Train and validation losses for D3 dataset (Train Phase). 101

Figure 7.77. Precision-Sensitivity curve for D3 dataset (Test phase). 101

Figure 7.78. Confusion matrix for D3 dataset (Test phase). 102

Figure 7.79. Precision-Sensitivity curve for D4 dataset (Train Phase). 102

xvi

Page

Figure 7.80. Confusion matrix for D4 dataset (Train Phase). 103

Figure 7.81. Train and validation losses for D4 dataset (Train Phase). 103

Figure 7.82. Precision-Sensitivity curve for D4 dataset (Test phase). 104

Figure 7.83. Confusion matrix for D4 dataset (Test phase). 104

Figure 7.84. Precision-Sensitivity curve for D1 dataset (Train Phase). 106

Figure 7.85. Confusion matrix for D1 dataset (Train Phase). 106

Figure 7.86. Train and validation losses for D1 dataset (Train Phase). 107

Figure 7.87. Precision-Sensitivity curve for D1 dataset (Test phase). 107

Figure 7.88. Confusion matrix for D1 dataset (Test phase). 108

Figure 7.89. Precision-Sensitivity curve for D2 dataset (Train Phase). 108

Figure 7.90. Confusion matrix for D2 dataset (Train Phase). 109

Figure 7.91. Train and validation losses for D2 dataset (Train Phase). 109

Figure 7.92. Precision-Sensitivity curve for D2 dataset (Test phase). 110

Figure 7.93. Confusion matrix for D2 dataset (Test phase). 110

Figure 7.94. Precision-Sensitivity curve for D3 dataset (Train phase). 111

Figure 7.95. Confusion matrix for D3 dataset (Train phase). 111

Figure 7.96. Train and validation losses for D3 dataset (Train Phase). 112

Figure 7.97. Precision-Sensitivity curve for D3 dataset (Test phase). 112

Figure 7.98. Confusion matrix for D3 dataset (Test phase). 113

Figure 7.99. Precision-Sensitivity curve for D4 dataset (Train Phase). 113

Figure 7.100. Confusion matrix for D4 dataset (Train Phase). 114

Figure 7.101. Train and validation losses for D4 dataset (Train Phase). 114

Figure 7.102. Precision-Sensitivity curve for D4 dataset (Test phase). 115

Figure 7.103. Confusion matrix for D4 dataset (Test phase). 115

Figure 7.104. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes. .. 118

Figure 7.105. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes. .. 118

Figure 7.106. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes. .. 119

Figure 7.107. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes. .. 119

xvii

Page

Figure 7.108. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes. .. 119

Figure 7.109. Training and validation losses graphs. .. 120

Figure 7.110. Training and validation accuracy graphs. .. 121

Figure 7.111. Confusion matrix. .. 121

Figure 7.112. Training and validation losses graphs. .. 122

Figure 7.113. Training and validation accuracy graphs. .. 122

Figure 7.114. Confusion matrix. .. 123

Figure 7.115. Training and validation losses graphs. .. 123

Figure 7.116. Training and validation accuracy graphs. .. 124

Figure 7.117. Confusion matrix. .. 124

Figure 7.118. Training and validation losses graphs. .. 125

Figure 7.119. Training and validation accuracy graphs. .. 125

Figure 7.120. Confusion matrix. .. 126

Figure 7.121. Training and validation losses graphs. .. 126

Figure 7.122. Training and validation accuracy graphs. .. 127

Figure 7.123. Confusion matrix. .. 127

Figure 7.124. Training and validation losses graphs. .. 128

Figure 7.125. Training and validation accuracy graphs. .. 129

Figure 7.126. Confusion matrix. .. 129

Figure 7.127. Training and validation losses graphs. .. 130

Figure 7.128. Training and validation accuracy graphs. .. 130

Figure 7.129. Confusion matrix. .. 131

Figure 7.130. Training and validation losses graphs. .. 131

Figure 7.131. Training and validation accuracy graphs. .. 132

Figure 7.132. Confusion matrix. .. 132

Figure 7.133. Training and validation losses graphs. .. 133

Figure 7.134. Training and validation accuracy graphs. .. 133

Figure 7.135. Confusion matrix. .. 134

Figure 7.136. Training and validation losses graphs. .. 134

Figure 7.137. Training and validation accuracy graphs. .. 135

Figure 7.138. Confusion matrix. .. 135

xviii

Page

Figure 7.139. Model confusion between kidney stones and spinal cord. 139

Figure 7.140. Model difficulty predicting larger kidney stones. 140

xix

LIST OF TABLES

 Page

Table 3.1. Overview of previous research studies. .. 14

Table 5.1. Description of the dataset. ... 22

Table 5.2. Properties of the used computer. ... 25

Table 6.1. Augmentation Techniques for CNN and YOLO with respective ranges.. 29

Table 6.2. A sample of CSV file. ... 36

Table 6.3. Additional information on the utilized hyperparameters. 37

Table 6.4. Primary features of YOLO versions [85]. ... 38

Table 6.5. Overview of all the models, including the mAP, inference speed on CPU,

GPU, and the number of parameters. .. 41

Table 6.6. Additional information on the architecture of CNN for the feature

extraction process. ... 53

Table 6.7. Architecture of CNN in classifier process. ... 54

Table 7.1. The obtained results based on AP. .. 59

Table 7.2. The obtained results based on AS. .. 60

Table 7.3. The obtained results based on AP. .. 62

Table 7.4. The obtained results based on AS. .. 62

Table 7.5. The obtained results based on AP. .. 64

Table 7.6. The obtained results based on AS. .. 65

Table 7.7. Summary of the obtained results of AP .. 66

Table 7.8. Train and test results of the model. ... 80

Table 7.9. Train and test results of the model. ... 91

Table 7.10. Train results of the model between SGD and Adam. 92

Table 7.11. Test results of the model between SGD and Adam. 93

Table 7.12. Summary of the obtained results in Train and Test. 105

Table 7.13. Summary of the obtained results in Test. .. 105

Table 7.14. Summary of the obtained results in Train and Test. 116

Table 7.15. Summary of the obtained results in Test ... 116

Table 7.16. Train results of the model between SGD and Adam. 117

Table 7.17. Test results of the model between SGD and Adam. 117

Table 7.18. Summary of the obtained results. .. 128

xx

Page

Table 7.19. Summary of the obtained results. .. 136

Table 7.20. Summary of the obtained results based on RMSprop and Adam. 137

Table 7.21. Comparative results of CNN based kidney stone classification 141

Table 7.22. Comparison of the proposed method with literature studies. 142

xxi

SYMBOLS AND ABBREVIATIONS

ABBREVIATION

AI : Artificial Intelligence

AUC : Area Under Curve

AP : Average Precision

APIs : Application Programming Interfaces

ANN : Artificial Neural Network

AS : Average Sensitivity

CAD : Computer-Aided Diagnosis

CCT : Compact Convolutional Transformer

CKD : Chronic Kidney Disease

CNN : Convolutional Neural Network

CPU : Central Processing Units

CT : Computed Tomography

CV : Cross-Validation

D1 : Original Dataset

D2 : Augmented Dataset

D3 : ROI Dataset

D4 : Augmented ROI Dataset

DKN : Deep Kronecker Network

DBN : Deep Belief Network

DQN : Deep Q Network

DT : Decision Tree

EANet : External Attention Transformer

EPO : Erythropoietin

E-ELAN : Extended Efficient Layer Aggregation Network

FO-CHIO : Fractional Order Coronavirus Herd Immunity Optimizer

GANs : Generative Adversarial Networks

GFR : Glomerular Filtration Rate

GPU : Graphical Processing Units

xxii

INCA : Iterative Neighborhood Component Analysis

IoU : Intersection over Union

Knn : k-Nearest Neighbor

KUB : Kidney Ureter Bladder

LDA : Linear Discriminant Analysis

LR : Linear Regression

mAP : mean Average Precision

NB : Naïve Bayes

NMS : Non-Maximum Suppression

PIQUE : Perception-Based Image Quality Evaluator

RAM : Read Access Memory

RF : Random Forest

R-CNN : Region-based Convolutional Neural Network

ResNet : Residual Neural Network

ROI : Region of Interest

RPN : Region Proposal Network

SARSA : State Action Reward State Action

SGD : Stochastic Gradient Descent

SPP : Spatial Pyramid Pooling

SVM : Support Vector Machine

TP : True Positive

TN : True Negative

FP : False Positive

FN : False Negative

TPU : Tensor Processing Units

ViT : Vision Transform

VM : Virtual Machine

VGG : Visual Geometry Group

xAI : Explainable Artificial Intelligence

YOLO : You Only Look Once

1

CHAPTER 1

INTRODUCTION

Kidney stone disease stands as a prevalent health concern, affecting a substantial

portion of the population with a reported prevalence ranging from 1% to 20% [1]. The

formation of stones within the urinary system, encompassing the kidneys, ureters, and

bladder, arises from the condensation of minerals and acid salts, eventually

crystallizing over time. Statistics reveal that approximately 11% of men and 6% of

women in the United States encounter kidney stones at least once during their lifetime

[2]. Factors contributing to the development of kidney stones include middle or

advanced age, a familial history of stone disease, low fluid intake, protein and salt-rich

diets, sedentary lifestyles, overweight or obesity, and certain genetic or inflammatory

conditions [3].

Visualization of kidney stones is achieved through medical imaging modalities such

as ultrasound, MRI, and CT scans, with the increased use of CT contributing to

improved detection rates. The categorization of kidney stones into calcium, uric acid,

struvite, and cysteine stones is based on their composition and formation [4].

Treatment methods vary according to the type of kidney stone, with options including

shock wave lithotripsy, ureteroscopy, percutaneous nephrolithotomy, percutaneous

nephron lithotripsy, and open surgery [5].

Despite the evolution of medical imaging techniques, challenges such as low

resolution, noise induced distortions, a high volume of patients, and a shortage of

specialists can impede accurate evaluations. To address these challenges, artificial

intelligence (AI)-based systems have emerged as a promising solution. Presently, deep

learning methodologies, a subset of AI, demonstrate remarkable accuracy in diverse

areas, including medical image processing and biomedical signal analysis [6,7].

2

Deep learning is a subfield of AI that deals with machine learning like algorithms that

have one or more hidden layers. Feature extraction happens automatically in deep

learning. This feature makes it possible to work with larger data sets without the need

for human intervention. Important features may disappear from the data in machine

learning because the features identified in the data are selected. While crucial

information is automatically extracted from the input in deep learning, it also has the

ability to independently extract new features [8]. Although the human factor is more

effective in machine learning, it is less in deep learning. Deep learning has becoming

more popular as a method for working with large amounts of data since it requires less

human intervention in tasks like feature extraction [9].

The aim of this thesis is to detect and classify kidney stones, which play an important

role in number of kidney diseases, by using deep learning and object detection

methods. Under this main aim, it is also planned to implement and compare different

methods. Within the scope of this thesis, Faster R-CNN, YOLO, and a customized

CNN model were developed using open source data set.

In the first part of this thesis, titled “Introduction,” a brief overview of the study is

provided. The introduction outlines the background, importance, and purpose of the

thesis. In the second chapter, general information about the kidney, including its

anatomy and physiology, kidney stone disease, and methods of detecting kidney

stones, is presented. The third chapter reviews the literature on studies related to the

classification and detection of kidney stones. In the fourth chapter, theoretical

information on AI, including supervised, unsupervised, and reinforcement learning, as

well as deep learning and artificial neural networks (ANN), is provided. The fifth

chapter covers details about the dataset, the programming language used, the platform

utilized, and features of the computer. In the sixth chapter, information about data pre-

processing, data augmentation, image annotation, and a detailed explanation of Faster

R-CNN, YOLO, CNN structures, and the model performance evaluation metrics are

given. In the seventh chapter, a discussion section is included, comparing the findings

obtained with the developed models and the results of other studies related to the

subject.

3

CHAPTER 2

KIDNEY

The kidneys are two vital organs that are important for survival. The kidneys are

located on either side of the spine, at the bottom of the rib cage, and behind the

abdomen. The kidneys are shaped like a bean or bean seed and are about the size of a

fist [10]. The main functions of the kidneys are based on filtering the blood from

accumulated impurities and toxins, balancing the levels of salts, minerals, and water,

thus helping to regulate blood pressure. The kidneys are involved in the production of

red blood cells and in revitalizing vitamin D into a form that the body can use to absorb

calcium from food, thus maintaining bone strength [11]. Each kidney consists of about

one million nephrons, which are comprised of two main components: the glomerulus

and the tubule. Within the nephron, the glomerulus acts as a network of small blood

vessels responsible for filtering the blood. At the same time, the tubule performs the

essential functions of reabsorbing valuable substances and eliminating waste products,

ultimately producing urine [12].

2.1. ANATOMY OF THE KIDNEY

Kidney has an approximate length of 11 cm, a width of 6 cm, and a thickness of 3 cm.

The left kidney is typically longer than the right kidney. Due to the liver’s position,

the right kidney also tends to sit lower than the left kidney. The mean kidney weight

is 150 g in males and 135 g in females [13]. Based on the glomerular filtration rate

(GFR), the kidneys filter more than 150 L of fluid per day, but less than 1% of the

filtered fluid is actually excreted in the urine [14]. When examining a kidney through

a frontal section, three well-defined areas can be observed: the cortex, medulla, and

pelvis. The outermost layer, known as the renal cortex, appears light in color and

displays a granular texture. Situated beneath the cortex is the renal medulla, which has

4

a darker reddish-brown hue. Within the medulla, cone-shaped tissue masses referred

to as medullary or renal pyramids can be observed [15]. The renal pelvis is situated at

the superior end of the ureter, displaying a flattened structure [16]. A frontal section

of the kidney is illustrated in Figure 2.1 [17].

Figure 2.1. Kidney anatomy [17].

2.2. PHYSIOLOGY OF THE KIDNEY

The kidneys have four main functions regulating the body’s fluid and electrolyte

balance, producing hormones, eliminating waste products generated during

metabolism, and performing specific metabolic activities. One of the crucial roles of

the kidneys is the excretion of nitrogenous waste substances, including urea,

creatinine, and ammonia ions, through urine. Therefore, any notable changes in renal

function lead to the accumulation of these waste products within the body [18].

Each nephron performs the task of filtering a small quantity of blood. Within the

nephron, there is a filtering component called the glomerulus, along with a tubule. The

nephrons operate through a two-step process. Initially, the glomerulus allows fluid and

waste products to pass through it, while blocking the passage of blood cells and large

molecules, particularly proteins. Subsequently, the filtered fluid moves through the

5

tubule, which selectively reabsorbs necessary minerals back into the bloodstream

while eliminating waste substances. Eventually, the production of urine is the outcome

of this process [10].

The kidneys release several hormones, including erythropoietin (EPO), a peptide

hormone that is crucial for the production of red blood cells in the bone marrow.

Additionally, the kidneys play a role in the synthesis of 1,25-dihydroxyvitamin D3,

the active form of vitamin D, which is essential for maintaining calcium homeostasis.

This active form of vitamin D is produced by the proximal tubule cells through the

action of specific enzymes [19]. Likewise, renin, an enzyme synthesized in the

kidneys, serves a crucial function within the renin-angiotensin-aldosterone hormonal

system, which aids in the regulation of blood pressure [20].

2.3. RENAL DISEASES

Renal diseases pose a significant threat to public health worldwide, with chronic

kidney disease (CKD) affecting an estimated 8% to 16% of the global population.

CKD is defined as a persistent impairment in kidney structure or function for a period

exceeding three months. It is most commonly attributed to diabetes and hypertension

[21]. If left untreated, CKD can progress to kidney failure, a critical condition

necessitating either dialysis or a kidney transplant. Other common kidney diseases

include diabetic nephropathy, glomerulonephritis, kidney stones, kidney tumors,

pyelonephritis, and renal cell carcinoma [22].

2.3.1. Kidney Stones

Nephrolithiasis, also known as kidney stone formation, occurs when substances such

as calcium or other minerals in the urine become excessively concentrated. As a result,

these substances adhere to each other and form solid masses within the kidneys,

leading to the development of kidney stones [23]. The term “nephrolithiasis” originates

from the Greek words “nephros,” meaning kidney, and “lithos,” meaning stone [24].

Nephrolithiasis, following hypertension, is one of the most prevalent chronic kidney

conditions and has been recognized since ancient times, with treatments documented

6

in early medical texts. Kidney stones are a preventable source of illness. Annually, the

United States faces a significant economic burden surpassing 5 billion dollars. This

includes expenses associated with hospitalization, procedures to remove symptomatic

stones, as well as the productivity loss due to missed work [25]. A sample of kidney

stones is illustrated in Figure 2.2 [26].

Figure 2.2. Kidney stone [26].

Generally, there are four types of stone formation: calcium, uric acid, struvite and

cystine stones. Basically, kidney stones are categorized according to their primary

crystalline composition. An illustration of types of kidney stones is shown in Figure

2.3 [27].

Figure 2.3. Types of kidney stones [27].

7

Kidney stones exhibit a wide range of sizes, ranging from as small as a grain of sand

to as large as a pearl. However, it is important to note that the majority of kidney stones

are typically quite small in size. The summer season is associated with a higher

prevalence of kidney stones. Typically, smaller stones are expelled from the body,

often accompanied by varying levels of discomfort. Conversely, larger stones can

obstruct the normal flow of urine, leading to extreme pain when they become lodged

in the ureters, bladder, or urethra [28]. Kidney stones are more prevalent in men

compared to women, and there are slight variations in the types of stones found

between the sexes [29].

Although establishing a direct link between climate and the formation of kidney stones

is challenging, there is an increased prevalence of kidney stones in areas with high

temperatures and during the summer season. In hot climates, increased water loss

through sweating can lead to concentrated urine and reduced urine volume. This, in

turn, raises urine acidity and the concentration of certain molecules, promoting the

crystallization of these substances in individuals prone to kidney stone formation [30].

Most kidney stones are the result of a combination of genetic and environmental

factors [31]. Dehydration resulting from inadequate fluid intake is a primary factor in

the progress of kidney stones [32].

Diagnosis of nephrolithiasis requires confirmation of the presence of a kidney stone

by observing its transition, removal, and destruction, or by imaging or surgery to

confirm the presence of a stone in the urinary tract. As a part of the investigation, a

comprehensive medical history and physical examination are performed on people

with suspected kidney stones. However, to establish a clinical diagnosis, it is usually

necessary to complement these evaluations with suitable imaging methods [33].

2.4. DIAGNOIS OF THE KIDNEY STONES

In the management of patients with renal stone disease, imaging plays a significant

role in various aspects, including the initial diagnosis, development of treatment plans,

and monitoring the effectiveness of medical therapy or urologic interventions during

follow-up [34]. The use of imaging techniques is crucial in the evaluation of kidney

8

stones, serving as a significant diagnostic tool and the first step in determining the

most suitable therapeutic options for their treatment. The choice of the most suitable

imaging modality for kidney stones involves considering several factors, including the

clinical setting, patient’s body composition, expense implications, and the patient’s

sensitivity to ionizing radiation. Among the available imaging modalities, Computed

Tomography (CT) scans, ultrasonography, and kidney ureter bladder (KUB) plain film

radiography are widely utilized in clinical practice for the evaluation of kidney stones

[35].

Non-contrast CT of the abdomen and pelvis is considered the gold standard for

accurately diagnosing kidney stones, providing highly accurate results. However, one

drawback is that it exposes patients to ionizing radiation. On the other hand,

ultrasonography, although traditionally having lower sensitivity and specificity

compared to CT, offers the advantage of being a radiation-free imaging modality.

When evaluating patients with a history of stone disease, KUB plain film radiography

is most beneficial for detecting any growth or changes in the stones over time.

However, its usefulness in diagnosing acute stones is limited. MRI provides the

potential for radiation-free 3D imaging, but its ability to visualize stones is currently

challenging, and it can be an expensive option [35].

9

CHAPTER 3

LITERATURE REVIEWS

Deep learning is an AI technique that enables computers to utilize provided data in

order to make predictions. In recent times, there has been a remarkable progress in the

field of computer vision and deep learning algorithms, which has led to their

widespread adoption for analyzing medical images [36]. This section provides an

overview of various studies conducted on the detection of kidney diseases,

highlighting their key findings, and summarizing their outcomes.

Patro et al. [37] proposed a study in which they introduced an approach for automatic

kidney stone diagnosis. They developed a custom CNN model that utilized a novel

Kronecker product structure. During the experimentation phase, a database consisting of

1799 coronal CT scans was utilized. This database included scans from 433 individuals,

with 790 scans showing kidney stones and 1009 scans representing normal healthy cases.

To validate the proposed method, a 10-fold cross-validation (CV) technique was

employed. the performance of the proposed Deep Kronecker Network (DKN) was

evaluated and compared with traditional approaches such as CNN, Residual Neural

Network (ResNet), and AlexNet. The automated model developed in this study achieved

an accuracy of 98.56% in detecting kidney stones using CT images.

Razmjooy & Yan [38], introduced a novel automatic method aimed at accurately

diagnosing kidney stones. The primary objective was to propose an improved version of

a metaheuristic technique called Fractional Order Coronavirus Herd Immunity Optimizer

(FO-CHIO), which was integrated into a modified version of a Deep Belief Network

(DBN). They used a dataset comprised a total of 12446 images, which were categorized

as follows: 5077 normal images, 3709 cysts, 2283 tumor images, and 1377 stone images.

Finally, a comparison was conducted between the proposed DBN/FO-CHIO method an

10

other state-of-the-art approaches. The results of the simulations revealed that the

recommended DBN/FO-CHIO approach exhibited superior performance in terms of an

accuracy of 97.98%. Additionally, the proposed DBN/FO-CHIO method demonstrated

exceptional sensitivity with a value of 92.99%, surpassing the performance of the other

comparison algorithms.

Caglayan et al. [39] conducted a study to evaluate the effectiveness of a deep learning

model in detecting kidney stones of varying sizes in different planes using unenhanced CT

images. A total of 455 patients who underwent CT scanning for kidney stones between

January 2016 and January 2020 were included. Among these patients, 405 were diagnosed

with kidney stones, while 50 patients did not have kidney stones. The patients were divided

into different groups based on the size of their renal stones: group 1 included patients with

stones measuring 0-1 cm, group 2 included patients with stones measuring 1-2 cm, and

group 3 included patients with stones larger than 2 cm. A total of 2959 CT images from

455 patients were reviewed by two radiologists across three different planes. Among the

different planes examined, the sagittal plane demonstrated the highest sensitivity and

specificity in comparison to the other plane. The deep learning model achieved accuracy

rates of 78%, 68%, and 70% in the axial plane for the testing group. In the coronal plane,

the accuracy rates were 63%, 72%, and 64%. Lastly, in the sagittal plane, the accuracy

rates were 85%, 89%, and 93% for the respective testing groups.

Gurkan et al. [40] The You Only Look Once (YOLO) architecture designs were employed

to detect kidney, kidney cysts, and kidney stones, with the added support of explainable

artificial intelligence (xAI) features. The performance analysis of these YOLO designs

utilized CT images categorized into three classes: 72 images of kidney cysts, 394 images

of kidney stones, and 192 images of healthy kidneys. The dataset was split into three sets,

with 75% used for training, 10% for validation, and 15% for testing. Both of tiny Yolov7

and Yolov7 were utilized. The YOLOv7 architecture design attained the following

results, with values of 0.85, 0.882, 0.829, and 0.854 for mAP (0.5), precision,

sensitivity, and F1 score, respectively.

Baygin et al. [41] utilized a publicly available dataset consisting of 1799 CT images. These

images were captured with dimensions of 512x512 pixels. The dataset comprised two

classes: normal and kidney. As a part of the pre-processing steps, the CT images

11

underwent several techniques to ensure their compatibility with the deep learning model.

One of these techniques involved resizing the images to 224x224 pixels. A novel

ExDark19 classification model was introduced to detect kidney stones in CT images. The

proposed method, based on the concept of vision transform (ViT), demonstrated high

classification performance in analyzing CT images. The primary objective of ExDark19

was to achieve accurate classification results while minimizing the computational time

required for kidney stone detection. In addition to that, the iterative neighborhood

component analysis (INCA) technique was utilized to select the most informative feature

vectors. These selected feature vectors were then fed into a k-nearest neighbor (kNN)

classifier for the purpose of kidney stone classification. The evaluation of the proposed

ExDark19 model was carried out using a 10-fold CV strategy. The results demonstrated

an accuracy of 99.22% with the 10-fold CV approach and 99.71% using the hold-out

validation method.

The focus of the research [42] revolved around three significant categories of renal

diseases: kidney stones, cysts, and tumors. To construct an AI based diagnostic system for

kidney diseases, a comprehensive collection of 12446 whole abdomen and urogram CT

images was gathered and annotated. Six models were developed for the purpose of kidney

disease classification. Among these models, three were based on recent state-of-the-art

variants of ViT, namely External Attention Transformer (EANet), Compact Convolutional

Transformer (CCT), and Swin Transformer (Shifted Window Transformer). The other

three models utilized well-known deep learning architectures: ResNet, Visual Geometry

Group (VGG16), and Inception V3. These models were employed to leverage the

strengths of both recent advancements and established deep learning techniques in the

field of kidney disease classification. After testing the models, VGG16 and CCT exhibited

good performance. However, the Swin Transformer model surpassed them all in terms of

accuracy, achieving an accuracy rate of 99.30%.

In a study conducted by Yildirim et al. [43], the focus was on the detection of kidney

stones. A total of 1799 non-contrast CT images of the brain were collected from 500

patients with urinary and kidney stone-related medical conditions. Out of these, 67 patients

were excluded from the study based on a specific criterion. A total of 433 subjects were

included in the study, consisting of 278 patients with kidney stones and 165 patients

without stones (normal). The labeling procedure, where the presence or absence of stones

12

was identified, was performed by experts, including a radiologist and a urologist. Notably,

no segmentation was applied to the CT images during the labeling process. The researchers

utilized rotation and zooming techniques for data augmentation. After augmenting the

images, the next step involved feeding images them into a deep learning model for further

analysis. Specifically, they employed the XResNet-50 model for the detection process,

leveraging its capabilities to effectively classify and identify kidney stones. For parameter

tuning of the model, Adam optimization and cross-entropy loss were employed. By

utilizing these techniques, it was aimed to optimize the performance of the model. As a

result, the model achieved an accuracy of 96.82%.

S. Sudharson & P. Kokil [44] proposed a paper focused on kidney disease detection and

classification. The study utilized a dataset comprising 4940 ultrasound images acquired

from various sources. The dataset was categorized into four distinct categories, namely

cyst, tumor, stone, and normal. The researchers proposed a computer-aided diagnosis

(CAD) system to address the issue of speckle noise. To ensure high image quality, a

perception-based image quality evaluator (PIQUE) score was utilized as a part of the

image selection process. Images with a PIQUE score of P < 50 were selected for further

analysis. Subsequently, data augmentation techniques rotation, translation, and cropping

were applied to the selected images. The dataset was then divided into train and test sets,

with 90% of the images allocated to the training process and the remaining 10% reserved

for testing the CAD system’s performance. In the test dataset, different speckle noise

levels were intentionally added by utilizing noise model. The proposed CAD system then

performed the de-speckling process using a pre-trained network. Specifically, a pre-

trained ResNet-101 model was utilized for the feature extraction process. This model

played a crucial role in extracting informative features from the noisy images, aiding in

the subsequent steps of the CAD system’s analysis and diagnosis of kidney diseases. For

the classification means Support Vector Machine (SVM) was employed. In conclusion,

the model achieved an accuracy score of 87.31% when tested with a speckle noise ratio of

0.02. This indicates the model’s ability to effectively classify and diagnose kidney

diseases, even in the presence of a certain level of speckle noise.

Parakh et al. [45] the aim of this study was to examine the diagnostic accuracy of a

cascading CNN for detecting urinary stones in unenhanced CT images. Additionally, the

researchers sought to assess the performance of pretrained models when supplemented

13

with labeled CT images acquired from various scanners. In this retrospective clinical

study, unenhanced abdominopelvic CT scans from 535 adults who were suspected of

having urolithiasis were utilized. 279 of them (comprising 165 men and 114 women) were

diagnosed with stones, while the remaining 256 patients (including 140 men and 116

women) did not have stones. The effectiveness of a cascading CNN for the detection of

urinary stones was demonstrated. In this approach, the urinary tract was first detected by

the initial CNN model, while the subsequent CNN model was responsible for detecting

the presence of stones. This cascading approach allowed for a more accurate and specific

identification of urinary stones within the imaging data. The CNN utilized was initially

pretrained with ImageNet, which consisted of 1.2 million natural images spanning 1000

categories. Following the ImageNet pretraining, the model was fine-tuned using an in-

house dataset called GrayNet. Which contained labeled CT images specifically designed

for human anatomy recognition. This fine-tuning process resulted in the generation of a

pretrained model called the GrayNet pretrained model. The weights of this pretrained

model were then utilized to initialize the CNN models employed for urinary tract

identification and stone detection tasks. The network achieved Area Under Curve (AUC)

of 0.954.

Längkvist et al [46] a CNN was employed to detect ureteral stones in thin-slice CT scans.

The primary focus of this research was to develop an automatic detection method for

ureteral stones that do not rely on specific feature selection or segmentation techniques.

The complete dataset used in this study comprised 465 unenhanced abdominal CT scans

that were clinically acquired. To train the CNN, the scans were randomly divided into a

training set (80% of the dataset) and a testing set (20% of the dataset). Prior to the division,

28 scans that contained stones that were either too small or too large were removed from

the dataset. The achieved sensitivity for the model was 100%.

Table 3.1 provides an overview of previous research studies, listing the algorithms utilized

and the corresponding years of each study and additional information on the used datasets.

14

Table 3.1. Overview of previous research studies.

No Authors Reference Year Input

images

Number of

Images

Model Results

1 Patro et al. [37] 2023 CT 1799 DKN Accuracy: 98.56%.

2 Razmjooy & Yan [38] 2023 CT 12446 DBN/FO-

CHIO

Accuracy: 97.98%.

3 Caglayan et al. [39] 2022 CT 2959 xResNet50 Accuracy: 85%, 89%, and 93% in the sagittal

plane.

4 Gurkan et al. [40] 2022 CT 658 YOLO v7 mAP (0.5): 0.85, Precision: 0.882,

Sensitivity: 0.829, F1 score: 0.854.

5 Baygin et al. [41] 2022 CT 1799 ExDark19 10-fold CV Accuracy: 99.22%, hold-out

Accuracy: 99.71%.

6 Islam et al. [42] 2022 CT 12446 Swin

transformers

Accuracy :99.30%.

7 Yildirim et al. [43] 2021 CT 1799 xResNet50 Accuracy: 96.82 %

8 S. Sudharson & P.

Kokil

[44] 2021 Ultrasound 4940 SVM Accuracy: 87.31%

9 Parakh et al. [45] 2019 CT 535 Dual CNN AUC: 0.954

10 Längkvist et al. [46] 2018 CT 465 CNN Sensitivity: 100%

15

CHAPTER 4

ARTIFICIAL INTELLIGENCE

AI is an emerging field that utilizes computer technology to explore and progress theories,

methods, techniques, and application systems aimed at simulating, extending, and

amplifying human intelligence [47]. AI, as a scientific field, aims to enable machines to

solve complex problems in a manner that resembles thinking and problem-solving

capabilities of human [48]. Machine learning and deep learning are two integral

components of the field of AI, with deep learning being the more recently introduced

technique [49].

4.1. MACHINE LEARNING

Machine learning is the discipline that revolves around developing algorithms and

statistical models, allowing computer systems to perform tasks by analyzing patterns

and making inferences, without relying on explicit instructions. It is a branch of AI

that aims to extract information from given inputs, recognize patterns, and make

decisions with minimal human intervention [50]. Machine learning is a type of

software that enhances its performance in the future by learning from past experiences.

It falls under the umbrella of AI, aiming to simulate human intelligence within

computer systems [51]. There are various types of machine learning, including

supervised learning, unsupervised learning and reinforcement learning offering

different approaches to the learning process [52]. Supervised learning involves the use

of classification and regression techniques, while unsupervised learning utilizes

clustering techniques. Diagram of machine learning algorithms is visually represented

in Figure 4.1 [52].

16

Figure 4.1. Diagram of machine learning algorithms [52].

4.1.1. Supervised Learning

Supervised learning, a subset of machine learning, relies on labeled data to train

models for both prediction and detection tasks. In this approach, known outputs are

assigned to each known input in the training data. Adequate availability of labeled

input-output data enables supervised learning to achieve high performance in

estimation. Machine learning can be classified into two main categories based on the

types of model outputs in supervised learning. If the output is continuous, it is

considered a regression problem, whereas if the output is discrete and represents a

value from a finite set of predefined options, it is categorized as a classification

problem [53].

In regression, the objective is to predict a continuous value label for an unlabeled

sample using a trained model. The model makes predictions based on the patterns and

information which were learned from the labeled dataset. While classification involves

predicting the class to which a new test sample belongs, utilizing a labeled training set

where each sample is associated with a known class [53].There is a range of supervised

machine learning algorithms available, and some of the commonly used ones include

Decision Tree (DT), Random Forest (RF), kNN, SVM, ANN, Naïve Bayes (NB),

Linear Regression (LR), and Linear Discriminant Analysis (LDA) [54].

17

4.1.2. Unsupervised Learning

Unsupervised machine learning methods hold great significance as analytical tools for

handling and interpreting high-dimensional data. By identifying and underlying both

patterns and hidden structures in complex datasets, these techniques effectively

simplify the understanding and analysis of high-dimensional data [55]. Clustering

techniques, dimensionality reduction algorithms, autoencoders, and generative

adversarial networks (GANs) are among the commonly utilized unsupervised

techniques [56]. Unsupervised learning offers advantages over supervised learning in

certain tasks by eliminating the need for annotated data guidance, making it more

suitable for handling those tasks [57]. The differentiation between supervised learning

and unsupervised learning is shown in Figure 4.2 [57].

Figure 4.2. The difference between supervised learning and unsupervised learning

[57].

The picture consists of two scenarios: supervised and unsupervised learning. In the

supervised learning scenario, the model is trained using labeled samples of three apples

with corresponding annotations. Its goal is to predict accurate annotations for new and

unseen data. On the other hand, in the unsupervised learning scenario, a mix of apples,

bananas, and peaches are presented without annotations. The model’s objective is to

discover patterns or structures within the unlabeled data and classify or group the fruits

based on inherent similarities or relationships.

18

4.1.3. Reinforcement Learning

Reinforcement learning involves learning by actively interacting with an environment,

making diverse actions, and encountering both successes and failures in the pursuit of

maximizing the rewards obtained. Unlike supervised learning, where the correct

actions are explicitly provided for each encountered situation, reinforcement learning

aligns with natural learning processes where there is no available supervisor. Instead,

the learning process evolves through trial and error, allowing the agent to learn from

its own experiences [58]. Reinforcement learning can broadly be categorized into two

main techniques: model-based and model-free approaches. Examples of model-based

Reinforcement learning approaches include AlphaZero and AlphaGo. Examples of

model-free Reinforcement learning algorithms include Q-learning, Deep Q Network

(DQN), Monte Carlo Control, and State-Action-Reward-State-Action (SARSA) [59].

4.2. DEEP LEARNING

The evolution of information technologies has been accompanied by the parallel

processing capabilities of computers, enabling the growth of AI technology, and

facilitating the expansion of ANN architectures with a higher number of artificial

neurons. Deep learning, specifically, has emerged as a specialized form of ANN,

benefiting from these advancements [60]. The term deep in deep learning, in fact,

refers to the series of consecutive intermediary layers known as hidden layers. By

adopting an incremental approach and learning layer by layer, deep learning methods

are able to construct sophisticated representations of the data [61].

Deep learning has demonstrated its effectiveness in challenging tasks and delivering

remarkable solutions with high accuracy across various domains, including text,

signal, image, and video. It has particularly shown a promise in the fields such as

medical image analysis and is regarded as an essential methodology for the future

applications in the healthcare sector [61].

ANN is an advanced system and computational methodology utilized in machine

learning. At the same time, ANN is the fundamental component of deep learning

19

algorithms. ANN serves the purpose of acquiring knowledge, demonstrating it, and

ultimately applying it to maximize the output responses of complex systems,

respectively [62].

ANN is similarly structured to the human brain, where neuron nodes are

interconnected in a network-like manner. In the human brain, billions of cells called

as neurons play a vital role. These neurons consist of a cell body responsible for

processing information by sending and receiving inputs and outputs from the brain.

The concept behind ANN is influenced by the functioning of the biological neural

system. The aim is to process data and information in a manner that facilitates learning

and the estimation of knowledge. Neurons within ANN are intricately interconnected

and arranged in layers. The input layer is responsible for receiving data, while the

output layer produces the final result. Between these layers, there are one or more than

one hidden layer. These hidden layers serve as intermediate processing stages within

the network [62]. A sample of ANN architecture is shown in the Figure 4.3 [62]. The

depicted figure shows a sample of ANN architecture that includes an input layer with

five interconnected neurons, two hidden layers with their respective connections, and

one output layer with four interconnected neurons. This arrangement enables the

network to effectively process input data, performs computations within the hidden

layers, and produces meaningful outputs based on the processed information.

Figure 4.3. A sample of ANN architecture [62].

20

ANN offer numerous advantages compared to traditional machine learning algorithms.

It possesses significant numerical capabilities, enabling them to perform multiple tasks

simultaneously. Moreover, it is well-suited for systems that demand a high level of

fault tolerance. Trained ANN exhibits the remarkable ability to generate output even

when presented with incomplete information, showcasing their adaptability. However,

it is important to note that solving complex problems often requires the utilization of

multilayer and multi-neuron ANN models. Additionally, the training process of ANN

can be time-consuming due to the extensive number of neurons and links within the

network structure [63].

21

CHAPTER 5

MATERIALS

This section provides an overview of the materials utilized in this thesis as dataset, the

used programming language, the used platform, and the properties of the used

computer.

5.1. DATASET

The data used in this study was sourced from the kidney stone detection repository

available on GitHub [64]. This repository contains a diverse collection of coronal CT

scans obtained from various institutions and scanners, with the aim of developing

robust and precise algorithms for automated kidney stone detection.

The researchers [43] collected Non-Contrast CT images from a total of 500 patients

who were admitted to Elazığ Fethi Sekin City Hospital in Turkey for urinary system

stone disease. However, certain criteria were applied to exclude specific patients from

the study. These exclusions encompassed 67 patients who had double-J (pigtail)

ureteral catheters, patients under the age of 18 or over the age of 80, individuals with

a single kidney, patients with kidney anomalies, and those with atrophic kidneys.

The dataset utilized in this study consists of CT scans obtained from individuals of

varying genders (both male and female) with ages ranging from 18 to 80 years, all of

whom have received a diagnosis of kidney stones. The confirmation of kidney stone

diagnoses was established through a thorough examination of the scans by radiologists

or urologists. To ensure precise detection and meticulous annotation of kidney stones,

each CT scan in the dataset underwent evaluation by at least two radiologists. Within

the scope of this study, 268 participants presented positive results on a stone test,

indicating the presence of kidney stones, while 165 participants reported normal results

22

without any indication of kidney stones. The dataset used for this study comprises a

total of 1799 coronal CT scans. Among these scans, 1009 correspond to normal

subjects without kidney stones, while the remaining 790 scans belong to patients

diagnosed with kidney stones. All CT scans were acquired with the patient in a supine

position on a single scanner, and no contrast agent was administered during the

imaging procedure [43]. Examples of the used dataset is shown in Figure 5.1 [43]. A

description of the dataset utilized is illustrated in Table 5.1.

Figure 5.1. Samples of CT images in the dataset [43].

Table 5.1. Description of the dataset.

 Normal Kidney stone Total

Nubmer of

patients

165 268 433

Coronal CT scans 1009 790 1799

23

5.2. PYTHON

Python is an incredibly robust programming language that excels in areas such as data

science, scientific computing, and machine learning. It offers great flexibility, is

known for its ease of learning, and boasts a wide range of libraries and packages to

support these fields. Python remains the top choice for scientific computing, data

science, and machine learning due to its ability to balance both performance and

productivity. It achieves this by allowing the use of low-level libraries for optimized

execution while also providing clean and intuitive high-level application programming

interfaces (APIs) for seamless development [65].

5.2.1. Advantages of Python

Python is widely popular among AI developers for several reasons:

• Ease of use: Python has a simple and easy-to-understand syntax, making it

accessible for new data scientists.

• Flexibility: Python is not only suitable for software development but also

enables handling data analysis, numerical and logical computations, and web

development. It is extensively used in web development frameworks like

Django, TurboGears, and Tornado, making it a preferred choice for developers

with application and web development skills.

• Building analytics tools: Python is well-suited for building data analytics tools,

which are crucial for assessing performance in various business domains. It

allows easy extraction of insights and correlation analysis from large datasets,

making it significant in self-service analytics and data mining.

• Deep learning capabilities: Python offers a range of packages like TensorFlow,

Keras, and Theano that assist data scientists in developing deep learning

algorithms. These packages enable the creation of ANN that mimic human

brain architecture, providing superior support for deep learning tasks.

• Strong community base: Python has a large and active community of

developers and data scientists. This community provides a platform for sharing

24

ideas, discussing issues, and collaborating on projects. Platforms like

Python.org, Fullstackpython.com, and realpython.com offer resources and

support for Python developers, fostering continuous improvements and

advancements in the language [66].

5.3. GOOGLE COLABORATORY

Google Colaboratory is a project aimed at promoting machine learning education and

research. Colaboratory notebooks are built on the Jupyter platform and function

similarly to Google Docs, allowing for easy sharing and collaboration among multiple

users on the same notebook. Google Colaboratory comes equipped with pre-

configured Python 2 and 3 runtimes, featuring essential machine learning and AI

libraries such as TensorFlow, Matplotlib, and Keras. It’s noteworthy that the runtime’s

virtual machine (VM) deactivates after a certain period, leading to data and

configuration loss. However, the notebook itself remains intact, and files can be

transferred from the VM’s hard disc to the user’s Google Drive account [67]. The

execution of notebooks in Google Colaboratory occurs within Linux-based VMs that

are provided and managed by Google. These VMs enable computation using central

processing units (CPU) and can also leverage specialized graphical processing units

(GPU) and tensor processing units (TPU) for accelerated computation [68].

5.4. ROBOFLOW

Roboflow is a computer vision platform designed for various tasks such as data

collection, data training, and pre-processing. This platform offers a wide range of

features, including support for both public datasets and custom datasets. Additionally,

Roboflow provides multiple annotation techniques and employs pre-processing

techniques such as image resizing, orientation adjustment, and contrast enhancement.

Roboflow is an online platform that offers free labeling and annotation services,

eliminating the need to download additional software onto your computer. Its primary

objective is to provide a secure environment for managing and annotating datasets,

25

with the added convenience of accessing the platform from various devices such as

tablets or smartphones [69].

5.5. PROPERTIES OF THE COMPUTER

The properties of the computer utilized in this thesis are presented in Table 5.2.

Table 5.2. Properties of the used computer.

Product Property

CPU i7-1165G7 2.80GHz

Read access memory (RAM) 16.00 GB

Hard disc 512 GB

Cache memory 12.00 MB

Display card 2.00 GB GDDR6

Operating system Windows 11 (64-bit)

26

CHAPTER 6

METHODS

This chapter provides an illustration of the procedure of the execution of the proposed

techniques of work in this thesis, as shown in Figure 6.1.

Figure 6.1. Flow chart of the proposed methods.

27

6.1. PREPROCESSING

The recognition or classification accuracy of objects is significantly influenced by the

quality of the image. Superior image quality enhances recognition or classification

accuracies compared to unprocessed images that contain noise. Extracting features

from such unprocessed images becomes more arduous, resulting in a decrease in the

object recognition or classification accuracy. To address issues caused by low-quality

images, it is common to perform pre-processing before extracting features from the

image [70]. Image preprocessing generally encompasses two primary types: data

cleaning and data conversion. Data cleaning aims to minimize the presence of noise

within the image, while data conversion focuses on resizing the image, converting it

to color space like grayscale, and applying normalization techniques [71].

6.1.1. Resizing

Resizing images is an essential pre-processing step in computer vision, particularly

when using deep learning models. Smaller images enable faster training of these

models. When using larger images, the neural network needs to process and learn from

a significantly larger number of pixels, leading to increased training time for the

architecture [72].

In this thesis, the YOLO algorithms and CNN were utilized with resized images having

dimensions of 640x640 and 300x300, respectively. As for the Faster R-CNN the

original dimensions of images were utilized.

6.1.2. Detection of Region of Interest (ROI)

The region of interest (ROI) refers to a specific labeled area within an image, typically

representing a small portion of the overall image [73]. By selecting the ROI based on

its relevance to the medical condition or research question, medical professionals and

researchers can direct their analysis, measurements, and diagnostic interpretations

specifically to ROI. This targeted approach enables more precise and accurate analysis,

28

as it eliminates the need to analyze the overall image [74]. A sample of the ROI is

shown in Figure 6.2.

Figure 6.2. ROI of CT coronal image.

The image is a CT coronal image of a patient with kidney stones. ROI of the sample

image has been marked as the kidneys which possesses the kidney stones within the

specific region.

6.2. DATA AUGMENTATION

To achieve optimal performance, modern machine learning models generally rely on

a large amount of high-quality annotated data. However, the collection and annotation

processes for such data are usually manual and time-consuming, requiring significant

resources. Obtaining an adequate amount of training data is often challenging in real-

world application. Data augmentation has emerged as the most effective approach to

address this issue. The primary objective of data augmentation is to increase the

volume, quality, and diversity of the training data. Data augmentation involves the

application of diverse techniques, including geometric transformations, noise

injection, and generative models, to expand a dataset. This process enhances models’

capacities to generalize and improve performances [75].

29

In this thesis, data augmentation techniques were utilized to improve the performances

of CNN and YOLO algorithms. The CNN employed horizontal flip, zoom, shear, and

rotation augmentations. Besides, points outside the boundaries of the images were

filled according to the nearest pixel. On the other side, the YOLO algorithm utilized

both horizontal flipping and 10-degree rotation. Table 6.1 displays the augmentation

techniques utilized for the CNN and YOLO with their respective ranges.

Table 6.1. Augmentation Techniques for CNN and YOLO with respective ranges.

6.3. IMAGE ANNOTATIONS

Over the past decade, object detection has experienced significant advancements and

has emerged as a rapidly evolving sub-field of deep learning. This progress has led to

increased complexity and broader applications of object detection models.

Consequently, the demand for larger datasets and multi-format labeled annotations for

training and testing these models has also risen. Image annotation is a specific type of

data labeling that pertains to the labeling process of visual digital data. Generally,

image annotation involves manual work [76].

LabelImg is a locally installed software that runs on the user’s machine. It provides a

visual interface built with the Qt toolkit and is implemented in Python. This software

supports multiple annotation formats such as PASCAL VOC (XML), YOLO, and

CreateML. It is compatible with Windows, macOS, and Linux operating systems [76].

In this thesis, the annotation process was carried out by utilizing LabelImg. For the

Faster R-CNN model, the resulting annotations were saved in XML files, while for the

Type CNN YOLO

Horizontal Flip True True

Zoom 0.2 -

Shear 0.2 -

Rotation 20⁰ 10⁰

30

YOLO model, the annotations were saved in TXT files. A sample of the annotated

image from the dataset is shown in Figure 6.3. The annotated image is coronal CT scan

including kidney stones. The annotations highlight the presence and location of kidney

stones within the image.

Figure 6.3. A Sample annotated image in LabelImg.

6.4. OBJECT DETECTION

In recent years, there has been a significant expansion in the field of computer vision

research. Utilizing machine learning techniques has proven to be an effective approach

for addressing various computer vision tasks. Object detection, a fundamental problem

in computer vision, focuses on identifying and localizing instances of specific objects

within digital images or videos. Object detection consists of two primary tasks: object

localization and classification. Object localization involves determining the precise

location and scale of one or multiple object instances by enclosing them with bounding

boxes. On the other hand, classification refers to the process of assigning a class label

for the detected object based on its visual characteristics and features [77]. Single-class

object detection refers to the task of detecting and localizing a specific type of object

31

within an image, where there is only one object of interest. In contrast, multi-class

object detection involves detecting and localizing multiple objects belonging to same

or different classes within an image [77]. This process is shown in Figure 6.4 which

provides a comprehensive illustration of classification, localization, and segmentation

for object detection [78].

Figure 6.4. Classification, localization, and segmentation in object detection [78].

Object detection algorithms are broadly classified into two main categories: one-stage

and two-stage algorithms, both predominantly relying on deep learning techniques.

The key difference between these approaches lies in the generation of region

proposals. One-stage object detection algorithms do not require a separate region

proposal generation step. Instead, they directly predict object’s class label and its

corresponding bounding box coordinates. On the other hand, two-stage object

detection algorithms follow a two-step process. Initially, they generate region

proposals that are likely to contain objects of interest. These proposals are then

classified and refined to obtain the final object detections [79]. One-stage object

detection algorithms include YOLO, SSD, RetinaNet, DSSD, M2Det, and RefineDet,

while two-stage object detection algorithms include R-CNN, Fast R-CNN, Faster R-

CNN and Mask R-CNN [80]. Architectures of one-stage and two-stage object

detection algorithms are shown in Figure 6.5.

32

Figure 6.5. Architectures of object detection algorithms. (a) one-stage (b) two-stage

[80].

Where in (a) the basic architecture of one-stage detectors involves predicting bounding

boxes directly from input images without the need for a separate region proposal

network. In (b) the fundamental architecture of two-stage detectors comprises a region

proposal network that generates region proposals, which are then fed into a classifier

and regressor for further processing [80].

In this thesis, both Faster R-CNN, YOLO and CNN were utilized for the detection of

the kidney stones and image classification in CT coronal scan images. Labels were

specified as with kidney stones and without kidney stones.

6.4.1. Faster R-CNN

R-CNN, or Region-based Convolutional Neural Network, emerged as one of the

earliest successful methods for object detection. It introduced a multi-step approach

33

that combined selective search for generating region proposals and a convolutional

neural network for classification. Although R-CNN showed promising results, its

speed was a limiting factor. This prompted the development of Fast R-CNN, a

significant improvement that addressed the efficiency issues. Fast R-CNN was

developed as an enhancement to R-CNN. Instead of generating region proposals before

the convolutional network, Fast R-CNN generates proposals by applying the selective

search algorithm directly on the convolutional feature map. Both R-CNN and Fast R-

CNN failed to overcome a particular challenge which was the generation of many

invalid regions using methods such as selective search. This drawback not only

hampers efficiency but also leads to wasteful utilization of computational resources

[81]. The difference in the architectures of R-CNN and Fast R-CNN is shown in Figure

6.6 [82].

Figure 6.6. The difference in the architectures of R-CNN algorithms. (a) R-CNN (b)

Fast R-CNN [82].

However, the pursuit of even greater speed and accuracy gave rise to Faster R-CNN,

a revolutionary innovation in the field of object detection [81]. Faster R-CNN

combined the strengths of its predecessors while introducing a novel element known

as the Region Proposal Network (RPN). RPN replaces computationally expensive

34

methods like selective search with the aim of significantly speeding up the object

detection process. By sharing convolutional layers with the detection network, the

RPN generated region proposals directly, eliminating the need for external region

proposal algorithms. This architectural change significantly accelerated the object

detection process and achieved state-of-the-art performance. Figure 6.7 illustrates the

flowchart of the Faster R-CNN process [81].

Figure 6.7. Flowchart of the Faster R-CNN [81].

According to the description provided by Ren et al. in their original paper, Faster R-

CNN can be divided into four main components: Conv layers, RPN, Roi Pooling, and

Classification. The process begins with resizing an input image P*Q of any size to a

fixed size M*N, which is then fed into the Convolution layers to extract the feature

map. This feature map is subsequently utilized by both the following RPN layer and

the fully connected layer in a shared manner. The RPN utilizes SoftMax to determine

the positivity or negativity of anchors and applies bounding box regression to refine

the proposals for more accurate results. The ROI Pooling layer combines the feature

maps and proposals, extracting proposal feature maps that are then passed to the fully

connected layer for object category determination. The Classification component

utilizes the proposal feature maps to calculate the category of the proposal and

35

simultaneously obtains the precise position of the detection frame through bounding

box regression [81].

6.4.1.1. Implementation of Faster R-CNN

In this thesis, the Faster-RCNN implementation was carried out by using TensorFlow

object detection API. This API is a toolkit designed for object detection applications.

It represents an advanced methodology for real-time object detection. TensorFlow

Serving simplifies the deployment of novel methods, algorithms, and experiments

while preserving the same server architecture and APIs [83]. The below flowchart in

Figure 6.8 represents the steps of implementing Faster R-CNN.

Figure 6.8. Flowchart of implementing Faster-RCNN using TensorFlow object

detection API.

The first step was to install and download all the required libraries and dependencies.

The images in the dataset were labelled by using LabelImg. These annotated images

are then used to train a model that can provide bounding box information. In order to

train the model, both the image itself and the corresponding bounding box coordinates

for all objects within the image are required. To store this annotation information, the

program generates XML files in the Pascal Visual Object Classes format. These XML

files contain various image details, such as the image name, size, and the coordinates

of the bounding boxes. The dataset has been divided into two portions. Specifically,

80% of the total images have been allocated as training samples, while the remaining

36

20% of the images have been set aside as test samples. The training and testing samples

are used to create two separate CSV files. A sample of the CSV files is shown in Table

6.2 where CSV files contain information such as the height and width of the images,

as well as the coordinates of the bounding boxes and the class names associated with

the objects in the images.

Table 6.2. A sample of CSV file.

Subsequently, TFRecord files are generated from these CSV files. TFRecord is a

binary storage format used by TensorFlow. By using a binary format, the data occupies

less disk space compared to other formats. Additionally, binary data can be copied

more quickly and read efficiently from the disk, leading to improved performance

when working with large datasets. The next step was to download and configure the

pre-trained models. In this thesis, both Resnet-50 and Resnet-101 were utilized for the

detection of kidney stones. In order to train the model effectively, a labelmap text file

is created. This file plays a significant role in mapping the class names to their

corresponding IDs. It serves as an input during the training process. In this thesis, there

is one ID related to kidney stone class. checkpoints are generated during training.

These checkpoints contain the weights and parameter values learned by the model

during the training process. In this thesis, the training process utilized specific values

for the batch size, number of steps, and learning rate. The batch size was set to 8, the

learning rate, on the other hand, was set to 0.001. The number of steps was set to 8000,

indicating the total number of iterations or updates performed during the training

process. To monitor and analyze the results of the training and evaluation stages,

TensorFlow provides a visualization platform called TensorBoard. This powerful tool

allows to observe various metrics and statistics related to the training process. Many

filename width height class xmin ymin xmax ymax

1.3.46.670589.33.png 1052 1266 Tas_Var 671 401 682 413

1.3.46.670589.33.png 956 1346 Tas_Var 363 596 368 602

1.3.46.670589.33.png 956 1346 Tas_Var 357 602 372 619

1.3.46.670589.33.png 956 1346 Tas_Var 359 635 365 641

1.3.46.670589.33.png 956 1346 Tas_Var 370 630 376 637

1.3.46.670589.33.png 956 1346 Tas_Var 364 632 371 640

37

metrics are tracked such as training time, total loss, number of steps, and more [84].

Table 6.3 provides additional information on the implementation of Faster R-CNN.

Table 6.3. Additional information on the utilized hyperparameters.

6.4.2. YOLO

The YOLO algorithm stands out as an object detection algorithm, utilizing a single

neural network to estimate both bounding boxes and class probabilities for objects

within an image. YOLO takes a grid-based approach, splitting the input image into

cells (W × H) and predicting precise bounding box details along with class

probabilities for each cell. Every prediction for a bounding box entails five values: Pc,

bx, by, bh, and bw. Here, Pc denotes the confidence score, indicating the model’s

certainty about the presence and accuracy of the object within the box. The coordinates

bx and by specify the box center relative to the grid cell, while bh and bw represent

the box’s height and width relative to the entire image. [85].

The fundamental structure of YOLO involves three key elements: the backbone, the

neck, and the head. Notably, the architecture of the backbone, the neck, and the head

can undergo variations in different YOLO versions. Continuous refinements and

innovations within these components have been instrumental in driving significant

improvements in both accuracy and speed of the YOLO network [85]. A sample of the

architecture of YOLO is shown in Figure 6.9 [85].

Type Value

No. of Images Train: 625

Test: 165

No. of Steps 8000

Batch Size 8

Learning Rate 0.001

38

Figure 6.9. The architecture of YOLO [85].

The primary function of the Backbone is to extract essential features from the input

image. Where the neck plays a crucial role in combining feature maps from diverse

layers of the backbone network, forwarding them seamlessly to the. Finally, the head

module takes charge of processing the combined features, predicting bounding boxes,

objectness scores, and classification scores [86]. Table 6.4 shows the differences

among YOLO versions.

Table 6.4. Primary features of YOLO versions [85].

Version Date Framework Backbone

YOLO 2015 Darknet Darknet24

YOLOv2 2016 Darknet Darknet24

YOLOv3 2018 Darknet Darknet53

YOLOv4 2020 Darknet CSPDarknet53

YOLOv5 2020 Pytorch Modified CSP v7

PP-YOLO 2020 PaddlePaddle ResNet50-vd

39

The YOLO output takes the form of a tensor with dimensions W × H × (B × 5 + C),

where B represents the number of bounding boxes, and C represents the number of

classes. This output is subject to non-maximum suppression (NMS) to remove

redundant detections. The grid cells play a crucial role in handling operations related

to bounding box estimation and class probabilities. Each grid cell in the model predicts

bounding boxes and confidence scores for those boxes. These confidence scores

indicate the model’s level of certainty that the box contains an object and convey its

assessment of the accuracy of the predicted box as shown in Eq. 6.1. In essence, YOLO

calculates the probability of the detection element’s bounding box center residing

within the grid cell, as expressed by Eq. 6.2 [86,87].

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑃) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝) × 𝐼𝑂𝑈(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑡𝑎𝑟𝑔𝑒𝑡) (6.1)

𝐼𝑜𝑈 = |
𝐵 ∩ 𝐵𝑔𝑡

𝐵 ∪ 𝐵𝑔𝑡
| (6.2)

Within the YOLO algorithm framework, the target box is labeled as 𝐵𝑔𝑡 , and the

predicted box is denoted as B. The probability (p) indicates the likelihood of an

object’s presence within the identified bounding box. The Intersection over Union

(IoU) metric, articulated by Eq. 6.2, computes the shared area between the ground truth

Scaled-YOLOv4 2021 Pytorch CSPDarknet

PP-YOLOv2 2021 PaddlePaddle ResNet101-vd

YOLOR 2021 Pytorch CSPDarknet

YOLOX 2021 Pytorch Modified CSP v5

PP-YOLOE 2022 PaddlePaddle CSPRepResNet

YOLOv6 2022 Pytorch EfficientRep

YOLOv7 2022 Pytorch RepConvN

DAMO-YOLO 2022 Pytorch MAE-NAS

YOLOv8 2023 Pytorch YOLO v8

YOLO-NAS 2023 Pytorch YOLO-NAS

40

and predicted bounding boxes. It establishes a threshold for an acceptable region for

each identified object in the input image, influencing decision-making processes. After

the estimation, the confidence value is then applied to determine the most suitable

bounding box [87,88]. The process of IoU is shown in Figure 6.10.

Figure 6.10. a) The process of calculating IoU [89]. b) Examples of different IoU

values.

In this thesis, both YOLO v5 and YOLO v7 were utilized for the detection of the

kidney stones.

6.4.2.1. YOLO v5

In June 2020, Ultralytics LLC introduced the YOLOv5 algorithm, presenting a more

compact and convenient alternative compared to YOLOv2, YOLOv3, and YOLOv4.

YOLOv5’s smaller size facilitates flexible deployment and enhances detection

accuracy [80]. YOLOv5 introduces five scaled versions: YOLOv5n (nano), YOLOv5s

(small), YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (extra-large). These

variants are tailored with varying widths and depths in their convolution modules to

fit specific applications and adhere to diverse hardware requirements [89]. Table 6.5

shows the differences between the versions of yolo in respect to the mean average

precision (mAP) of the models based on COCO val2017 dataset, the inference speed

on CPU and GPU, and the number of the parameters of each model [90].

41

Table 6.5. Overview of all the models, including the mAP, inference speed on CPU,

GPU, and the number of parameters.

Where mAPval stands for mean average precision over different IoU thresholds,

from 0.5 to 0.95, step 0.05 in COCO val2017 dataset, V100 b1 is an inference time

which is the speed at which a neural network can make predictions in milliseconds

on the Nvidia V100 GPU where the batch size is set to 1. Params stand for the

number of parameters in the model. Which is calculated by summing the number of

elements in each layer of the model. The M stands for Million. The architecture of

YOLO v5 is shown in Figure 6.11 [91].

Model 𝒎𝑨𝑷𝒗𝒂𝒍

50-95

GPU Speed

V100 b1

(ms)

CPU speed

b1

(ms)

Params

(M)

YOLO v5n 28.0 6.3 45 1.9

YOLO v5s 37.4 6.4 98 7.2

YOLO v5m 45.4 8.2 224 21.2

YOLO v5l 49.0 10.1 430 46.5

YOLO v5x 50.7 12.1 766 86.7

42

Figure 6.11. YOLO v5 architecture [91].

As Illustrated in Figure 6.11, the YOLOv5 network is composed of three primary

components: the backbone, neck, and output. In the YOLOv5 architecture, the

backbone network is primarily comprised of the focus module, the wrapped

convolution module, the C3 module, and the spatial pyramid pooling (SPP) module.

The focus module improves the network’s ability to extract features from images by

performing slicing operations on the input images. The C3 module, on the other hand,

enhances the feature representation capabilities of the network while preserving the

accuracy of feature extraction. This is achieved by reducing the memory consumption

and number of parameters required by the network. SPP is a pooling layer that

eliminates the network’s fixed size restriction, allowing it to effectively process inputs

of varying sizes. The neck network is designed to optimize the utilization of features

extracted from the backbone network. predicting confidence, class probability, and

43

object box coordinates across three diverse feature maps are carried out using three

1×1 convolutional layers as shown in the output layer [91,92].

6.4.2.1.1 Implementation of YOLO v5

In this thesis, the YOLO implementation was carried out by using Google

colaboratory. The first step was to setup the YOLO environment by cloning the

repository of YOLO in GitHub. After the cloning was done, folders such as data,

model, and hyperparameters configuration files were created. Both images and the

labels were uploaded into data folders to initiate the training process. The labels are in

.TXT extension which contains number of classes, the center position of x and y, the

height, and the width. In addition to that, the hyperparameters can be determined and

customized as needed. In this thesis, the value of class is zero since there is only one

class. Out of total 790 images in the dataset 80% of them were divided as train ,10%

as validation and 10% as test. The used dataset and the hyperparameters are shown in

Figure 6.12.

Figure 6.12. Schematic of implementation of YOLO v5.

44

In this thesis, four datasets were used to perform the detection process of kidney stones.

A brief description of the utilized datasets is shown in Figure 6.13.

Figure 6.13. The utilized datasets in YOLO v5 and YOLO v7.

To detect kidney stones using the YOLO algorithm, four datasets were used. Original

Dataset (D1) which was the main set of original images. Augmented Dataset (D2) was

the second dataset which had additional images created with variations. The third

dataset was RoI Annotated Dataset (D3) which focused on specific areas relevant to

kidney stones, marked for the model’s attention. The last one was combined

augmented RoI Dataset (D4) which contained a mix of augmented images within the

identified areas of interest.

For this thesis, Adam and SGD optimizers were used. Stochastic Gradient Descent

(SGD) stands out as a prevalent optimizer in deep learning, primarily employed to

minimize the cost function. SGD algorithms are widely utilized when dealing with

massive datasets. SGD is an optimization algorithm commonly employed in linear

regression, as illustrated in Eq. 6.3., Eq. 6.4, and Eq. 6.5 [93].

𝑊 = 𝜔 − 𝜂 ▽ 𝑄𝑖(𝜔) (6.3)

𝑊 ← 𝜂 ▽ 𝑄(𝜔) (6.4)

45

𝑄(𝜔) = 𝒍𝒏∑𝑖𝑄𝑖(𝜔) ⇒▽ 𝑄(𝜔) = 𝒍𝒏∑𝑖 ▽ 𝑄𝑖(𝜔) (6.5)

in Eq. 6.3, 𝜔 represents the initial weight during the training of a neural network. 𝜂

denotes the learning rate. 𝑄𝑖 signifies the presently observed data, where Q generally

represents an error function. SGD determines the optimal weight W by minimizing the

error function Q. Subsequently, the derivative of the actual and predicted values is

calculated to obtain the loss function. W undergoes updates during the neural network

training process. Eq. 6.4. represents the parameter update in the context of SGD. The

final expression in Eq. 6.5. is the objective of minimizing the error along with its

gradient [93].

Adam optimization, introduced by Diederik P. Kingma and Jimmy Ba in 2014, is a

gradient descent-based algorithm. The name “Adam” stands for Adaptive Moment

Estimation, reflecting the optimizer’s approach to weight updates during training. The

mathematical representation of the Adam optimization algorithm is shown in Eq. 6.6

[93].

△ 𝜔𝑡 = −𝜂
𝑥𝑡

√𝑦𝑡 + 𝜖
∗ 𝑔𝑡 (6.6)

𝑥𝑡 = 𝛿1 ∗ 𝑥𝑡−1 − (1 − 𝛿1) ∗ 𝑔𝑡 (6.7)

𝑦𝑡 = 𝛿2 ∗ 𝑦𝑡−1 − (1 − 𝛿2) ∗ 𝑔𝑡
2 (6.8)

𝜔𝑡+1 = 𝜔𝑡 +△ 𝜔𝑡 (6.9)

In Eq. 6.6., 𝜂 represents the learning rate, and 𝑔𝑡 is the gradient at time t. 𝑥𝑡 signifies

the exponential average of gradients along the parameter 𝑤𝑗, while 𝑦𝑡 represents the

exponential average of the squares of gradients along 𝑤𝑗. The decay rates of moment

estimates are controlled by the hyperparameters 𝛿1and 𝛿2 [93]. 𝜖 represents a fixed

value to ensure numerical stability [94]. Eq. 6.7 explains the process for updating the

first moment (mean) of the gradient, 𝑥𝑡. This involves a weighted combination of the

previous first moment 𝑥𝑡−1 and the current gradient , 𝑔𝑡 with the rate of decay

46

determined by the hyperparameter 𝛿1. Simultaneously, Eq. 6.8 articulates the update

mechanism for the second moment (uncentered variance) of the gradient, 𝑦𝑡. It

incorporates the previous second moment 𝑦𝑡−1 and the squared gradient, 𝑔𝑡
2 with the

decay rate modulated by the hyperparameter 𝛿2. Eq. 6.9 depicts the adjustment of the

internal parameter, ω, within the optimizer. This adjustment entails adding the change,

represented as Δω𝑡, into the current value of ω𝑡 [95].

The default value of the learning rate of SGD and ADAM is 0.01 and 0.001

respectively [94]. The values of epochs, batch size and momentum were set as 100,

32, and 0.937, respectively. After the training process was carried out the validation

and test phases were done to validate the model’s performance. The last step was to

show the detected kidney stones alongside with the confidence value, bounding box,

and class label.

6.4.2.2. YOLO v7

Released as the successor to YOLOv6, YOLOv7 is a recent model that significantly

elevates object detection performance. Notably, YOLOv7 achieves enhanced accuracy

without imposing additional computational and inference costs. Wang et al. introduced

the YOLOv7 version in July 2022. The developers of YOLOv7 aimed to establish a

state-of-the-art standard in object detection by devising a network architecture capable

of more accurate bounding box predictions at comparable inference rates to its old

YOLO versions [96]. The novel design of this network architecture is illustrated in

Figure 6.14 [96].

47

Figure 6.14. Architecture of YOLO v7 [96].

The computational block within the YOLOv7 backbone is denoted as Extended

Efficient Layer Aggregation Network (E-ELAN). The YOLOv7 Neck module plays a

crucial role by executing feature fusion on the previously generated effective feature

layers. The YOLOv7 Head, encompassing essential elements for both classification

and regression, serves as the pivotal component in charge of these tasks [97].

6.4.3. CNN

CNN is a versatile deep learning model engineered to handle diverse data types,

including 1D for signals or sequences, 2D for images or sound spectrograms, and 3D

for video or volumetric images. CNN accepts images for the input layer. It can consist

of one or more layers, with matrix multiplication or convolution applied in at least one

layer. CNN architectures comprise layers with distinct functions and characteristics,

such as convolution layers, activation layers, pooling layers, flatten layers, and fully

connected layers. The output layer represents the final stage in the neural network,

where the model produces its final predictions based on the acquired knowledge and

training. [98]. A general CNN representation structure is given in Figure 6.15 [99].

48

Figure 6.15. CNN general structure [99].

Convolution Layer: This layer is very important for the CNN structure. This layer

allows the detection of features in the image. It contains low or high frequency features

in the image data. To detect these features, a sample matrix called a filter or kernel is

applied on the image. The dimensions of the kernel matrix are generally values such

as 3x3,5x5, 7x7.The kernel matrix starts from the upper left corner of the image and

scrolls throughout the lower right corner. As the kernel matrix moves along the image,

the values of the image and filter matrices undergo multiplication according to their

respective indices, and the products are summed. The total result is then recorded in

an output matrix. This process is continued in the same way throughout the entire

image. The matrix formed as a result of the values recorded in the output matrix is

called Feature Map. As a result of the kernels applied on the image, there will be

changes in the original dimensions of the image. Even if a filter is applied, pixel

padding can be done to avoid losing important information on the image. For this

purpose, the process performed to ensure that the dimensions of the input image and

the output image are the same is the padding process. The logic of padding is to

increase the size by adding zeros around the image [100]. The process of convolution

and padding is shown in Figure 6.16 [101].

49

Figure 6.16. Convolution and padding process in CNN [101].

Activation Layer: This layer can also be called the non-linear layer. sigmoid, tanh,

SoftMax and Relu are frequently used activation functions in this layer. Activation

functions determine what action a neuron should apply to the incoming input and thus

create the output. In general, the Relu activation function is used in the layers of CNN

models. Additionally, in the context of binary classification tasks, the final layer often

utilizes the sigmoid function, whereas for multi-class classification, the SoftMax

function is commonly applied to the last layer [100,102].

Pooling Layer: The pooling layer operates similarly to the convolution layer and

reduces the burden of data calculation by reducing image dimensions. There are two

types of pooling: Max Pooling and Average Pooling. In Max Pooling, the highest value

within the kernel region is selected and stored in the output matrix. Average Pooling,

on the other hand, takes the average of the part covered by the filter/kernel and stores

it in the output matrix. Both pooling methods iteratively apply this process across the

image, generating the output matrix [100,102]. Although Average Pooling method was

used more widely in the past years, Max Pooling has been used more widely recently

50

thanks to its noise reduction ability [103]. Figure 6.17 shows Max and Average pooling

operations. Max Pooling method was used in this thesis.

Figure 6.17. Max and Average pooling operations.

Flatten Layer: Within CNN models, the flatten layer serves the purpose of

transforming the output from the preceding convolution layer, which consists of two-

dimensional feature maps, into a one-dimensional array. This step is essential to

facilitate the transition to the fully connected layer, as fully connected layers operate

exclusively on one-dimensional arrays [104].

Fully connected layer: It is used at the end of the network after feature extraction is

performed by the convolution and pooling layers. In this layer, each neuron is

connected to all neurons of the previous layer. It is used by the network to make

predictions [104].

6.4.3.1 Optimization of Hyperparameters

Determining hyperparameters and appropriately preprocessing data are crucial aspects

in training deep learning models. These parameters have a direct impact on the model’s

performance and contribute significantly to achieving generalized results.

51

To enhance model performance, various combinations were explored, including (16-

16-32-32-64-64), (32-32-64-64-256-256), (32-64-128-256), (128-128-256-512), and

(16-32-32-64) for the number of convolution layers and neurons. Additionally,

different neuron sizes as 16, 32, 64, 128, and 256 were experimented with for the fully

connected layer. The dropout rates of 0.2, 0.3, 0.4, and 0.5 were tested to further fine-

tune the model. In addition, Batch normalization layer also was implemented as part

of the tests carried out.

6.4.3.2 Implementation of CNN

In this thesis, the CNN implementation was carried out by using Google colaboratory.

The first step was to setup the CNN environment by importing the necessary files such

as Keras and TensorFlow packages. The next step was to upload the dataset files into

the Google Colaboratory environment where there are two classes in the dataset named

as Normal and Kidney stone. Later the image pre-processing step was initiated by

resizing the images to 300x300. Out of total 1799 images in the dataset 80% of them

were divided as train and 20% as test. Further information about the used dataset and

the hyperparameters are shown in Figure 6.18.

52

Figure 6.18. Schematic of implementation of CNN.

next step was to build the CNN model by using Convolution, Max Pooling, Flatten

and Fully connected layers. A total of 23 layers were utilized. The architecture of the

utilized CNN is shown in Figure 6.19.

Figure 6.19. Architecture of the CNN model.

53

Afterward, data augmentation techniques such as horizontal flip, shear, zoom, and

rotation were applied to the dataset. Following that, to initiate the training phase the

batch size and the learning rate were set as 32, 0.001, respectively.

In this thesis, different epochs such as 20, 40, 60, 80, and 100 were utilized. In addition

to that, Adam and RMSprop optimizers were selected to perform the training of the

CNN model. Binary cross-entropy loss function was selected. Sigmoid was chosen as

the activation function in order to perform binary classification in the output layer. It

is expressed in Eq. 6.10.

𝑓(𝑥) =
1

1 + 𝑒−𝑥
6.10

Here, x represents the input value to the sigmoid function. The sigmoid function

produces output values that fall within the range of 0 to 1 [105].

Following that, the test set were utilized to validate the model’s performance. Table

6.6 shows information on the utilized CNN architecture for the feature extraction

process. Table 6.7 shows information about the Flatten and Fully connected layers

utilized in CNN architecture.

Table 6.6. Additional information on the architecture of CNN for the feature extraction

process.

Block Type Kernel

size

Filters Stride Padding

1 Conv2D 3x3 64 1 same

Relu - - - -

MaxPooling2D 2x2 - 2 -

2 Conv2D 3x3 64 1 same

Relu - - - -

54

MaxPooling2D 2x2 - 2 -

3 Conv2D 3x3 128 1 same

Relu - - - -

MaxPooling2D 2x2 - 2 -

4 Conv2D 3x3 128 1 same

Relu - - - -

MaxPooling2D 2x2 - 2 -

5 Conv2D 3x3 512 1 same

Relu - - - -

MaxPooling2D 2x2 - 2 -

6 Conv2D 3x3 512 1 same

Relu - - - -

MaxPooling2D 2x2 - 2 -

Table 6.7. Architecture of CNN in classifier process.

Layer Type No. of Neurons

1 Flatten -

2 Dense 128

Relu -

3 Output 1

55

6.5. EVALUATION METRICS

To assess classification models, multiple performance evaluation metrics are

employed, and these metrics rely on values within the confusion matrix, also known

as the error matrix. This matrix is instrumental in visualizing the performance of

algorithms or models through a tabular representation. It encompasses four key

parameters: True Positive (TP), True Negative (TN), False Positive (FP), and False

Negative (FN). Here, TP refers to the number of images classified as kidney stones

and actually identified as kidney stones, while TN refers to the number of images

classified as Normal and actually identified as Normal. On the other hand, FP refers to

the number of images classified as kidney stones, but actually identified as Normal,

while FN refers to the number of images classified as Normal, but actually identified

as kidney stones. The components of confusion matrix are shown in Figure 6.20 [106].

A practical example illustrating the process of TP, FP, FN, and FN is given in Figure

6.21.

Figure 6.20. Confusion matrix [106].

Figure 6.21. An example showing the process of TP, FP, FN, and TN in object

detection.

56

The provided example illustrates predictions with the IoU value set at α=0.5. The

initial prediction is classified as a TP, given that the IoU value is higher than 0.5. The

second prediction in the example is classified as a FP because it does not meet the IoU

value criteria. The third prediction is FN since the model failed to predict ground truth

bounding box. The last prediction is TN due to the absence of kidney stone.

Sensitivity (Recall): It measures the proportion of true positive samples relative to the

total number of positive samples (both TP and FN), as expressed by Eq. 6.11 [107].

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6.11)

Specificity: It serves as a performance metric used to assess a model’s ability in

accurately classifying negative examples, as expressed by Eq. 6.12 [107].

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (6.12)

Precision: It measures the proportion of true positive samples among the total number

of samples classified as positive. (both TP and FP), as expressed by Eq. 6.13 [107].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6.13)

Accuracy: It evaluates the ratio of correctly classified samples to the total number of

samples and stands as the most utilized performance measure for classification models,

as expressed by Eq. 6.14 [107].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6.14)

F1 Score: This metric used in performance evaluation at the end of the classification

It is a metric that offers insights into the accuracy of a test, obtained through the

calculation of the harmonic mean between sensitivity and precision. The F1 score

equation is shown in Eq. 6.15 [107].

57

𝐹1 =
2 ∗ (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (6.15)

Average Precision (AP): A metric frequently used alongside with precision and

sensitivity, to offer a comprehensive evaluation of a model’s performance. It enhances

our understanding by averaging precision across various sensitivity levels.

Furthermore, mAP is another metric used to evaluate object detection models. Similar

to average precision, mAP involves averaging precision, but instead of considering

precision at different sensitivity levels, it averages precision across various confidence

score thresholds. To calculate mAP, precision and sensitivity values are assessed at

different confidence value thresholds. A graph depicting the precision-sensitivity

curve is generated, and the area under this curve is determined. The mAP score is then

obtained by averaging the area under the curve across different object classes. A higher

mAP value indicates a more effective detection performance of the target detection

model on a given dataset. The equation of mAP is given in Eq. 6.16 [108-110].

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑛=1

 (6.16)

In this context, where AP𝑖 represents the AP of the 𝑖𝑡ℎ class and N is the total number

of classes. Since there is only kidney stone class in our thesis, the number of classes

was taken as 1.

58

CHAPTER 7

RESULTS & DISCUSSION

In this part of the thesis, the analysis of the performance evaluation metrics obtained

by Faster R-CNN, YOLO, and CNN models is explained in detail. The models were

first compared with each other in various combinations and then evaluated by

comparing them with state-of-the-art studies that have achieved significant results.

7.1. Faster R-CNN

To address the objective of kidney stone detection, three models of Faster R-CNN

namely Faster R-CNN ResNet50 V1 800x1333, Faster R-CNN ResNet101 V1

800x1333, and Faster R-CNN ResNet101 V1 1024x1024 were utilized.

7.1.1. Results of ResNet50 V1 800x1333 model

The results obtained by the training process of Faster R-CNN ResNet50 V1 800x1333

model such as total loss, classification loss, localization loss, RPN’s localization loss,

and RPN’s objectness loss are shown in Figures 7.1-7.3

Figure 7.1. Total loss graph of the ResNet50 V1 800x1333 model.

59

Figure 7.2. Loss graphs of the model. (a) Classification (b) localization.

Figure 7.3. Loss graphs of RPN. (a) Localization (b) objectness.

As mentioned earlier, AP stands out as a crucial metric for assessing the accuracy of

the object detection model. The obtained results of AP in the test phase are shown in

Table 7.1.

Table 7.1. The obtained results based on AP.

Model AP (0.5:0.95)

(%)

AP (0.50)

(%)

AP (0.75)

(%)

Total loss

ResNet50 V1 800x1333 24.8 62.9 14.0 0.164

60

The Average Sensitivity (AS) is similar to AP, but instead it measures the sensitivity.

The obtained results of AS in the test phase are shown in Table 7.2.

Table 7.2. The obtained results based on AS.

AS (1) denotes a scenario where the model provides one detection per image. AS (10)

signifies the model offering ten detections per image. AS (100) indicates the model

producing one hundred detections per image.

The learning rate is a fundamental hyperparameter that affects the model’s

performance. In this thesis, the learning rate value was set as 0.001 and the number of

steps was set as 8000 . Figure 7.4 shows the change of learning rate during the training

process.

Figure 7.4. The change of learning rate during the training process.

Model AS (1) (%) AS (10) (%) AS (100) (%)

ResNet50 V1 800x1333 20.5 34.2 35.4

61

7.1.2. Results of ResNet101 V1 800x1033 model

The results obtained by the training process of Faster R-CNN ResNet101 V1 800x1333

model such as total loss, classification loss, localization loss, RPN’s localization loss,

and RPN’s objectness loss are shown in Figures 7.5-7.7.

Figure 7.5. Total loss graph of the ResNet101 V1 800x1333 model.

Figure 7.6. Loss graphs of the model. (a) Classification (b) localization.

62

Figure 7.7. Loss graphs of RPN. (a) Localization (b) objectness.

The obtained results based on AP in the test phase are shown in Table 7.3.

Table 7.3. The obtained results based on AP.

The obtained results based on AS in the test phase are shown in Table 7.4.

Table 7.4. The obtained results based on AS.

In this thesis, the learning rate value was set as 0.001 and the number of steps was set

as 8000. Figure 7.8 shows the change of learning rate during the training process.

Model AP (0.5:0.95)

(%)

AP (0.50)

(%)

AP (0.75)

(%)

Total loss

ResNet101 V1

800x1333

25.0 62.5 14.7 0.193

Model AS (1) (%) AS (10) (%) AS (100) (%)

ResNet101 V1 800x1333 19.5 34.9 36.1

63

Figure 7.8. The change of learning rate during the training process.

7.1.3. Results of ResNet101 V1 1024x1024 model

The results obtained by the training process of Faster R-CNN ResNet101 V1

1024x1024 model such as total loss, classification loss, localization loss, RPN’s

localization loss, and RPN’s objectness loss, and are shown in Figures 7.9-7.11.

Figure 7.9. Total loss graph of the ResNet101 V1 1024x1024 model.

64

Figure 7.10. Loss graphs of the model. (a) Classification (b) localization.

Figure 7.11. Loss graphs of RPN. (a) Localization (b)objectness.

The obtained results based on AP in the test phase are shown in Table 7.5.

Table 7.5. The obtained results based on AP.

Model AP (0.5:0.95)

(%)

AP (0.50)

(%)

AP (0.75)

(%)

Total loss

ResNet101 V1 1024x1024 23.5 63.7 12.0 0.138

65

The obtained results based on AS in the test phase are shown in Table 7.6.

Table 7.6. The obtained results based on AS.

In this thesis, the learning rate value was set as 0.001 and the number of steps was set

as 8000.Figure 7.12 shows the change of learning rate during the training process.

Figure 7.12. The change of learning rate.

Table 7.7 shows a summary of the obtained results among the models in respect to AP

and AS.

Model AS (1) (%) AS (10) (%) AS (100) (%)

ResNet101 V1 1024x1024 19.1 33.1 34.3

66

Table 7.7. Summary of the obtained results of AP

7.1.4. Experimental results of ResNet50 V1 800x1333 model

Visual representations of the detection results achieved by the Faster R-CNN

ResNet50 V1 800x1333 architecture during the test phase of kidney stones in the

dataset alongside with the ground truth bounding boxes are given in Figures 7.13-7.15.

Figure 7.13. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes.

Model AP

(0.5:0.95)

(%)

AP

(0.50)

(%)

AP

(0.75)

(%)

AS

(1) (%)

AS

(10)

(%)

AS

(100)

(%)

Faster R-CNN

ResNet50 V1

800x1333

24.8 62.9 14.0 20.5 34.2 35.4

Faster R-CNN

ResNet101 V1

800x1333

25.0 62.5 14.7 19.5 34.9 36.1

Faster R-CNN

ResNet101 V1

1024x1024

23.5 63.7 12.0 19.1 33.1 34.3

67

Figure 7.14. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes.

Figure 7.15. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes.

68

7.1.5. Experimental results of ResNet101 V1 800x1333 model

Visual representations of the detection results achieved with the Faster R-CNN

ResNet101 V1 800x1333 architecture during the test phase of kidney stones in the

dataset alongside with the ground truth bounding boxes are given in Figure 7.16, and

7.17, respectively.

Figure 7.16. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes.

Figure 7.17. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes

69

7.1.6. Experimental results of ResNet101 V1 1024x1024 model

Visual representations of the detection results achieved with the Faster R-CNN

ResNet101 V1 1024x1024 architecture during the test phase of kidney stones in the

dataset alongside with the ground truth bounding boxes are given in Figure 7.18, and

7.19, respectively.

Figure 7.18. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes.

Figure 7.19. Evaluation of kidney stone. (a) Model’s predictions (b) ground truth

bounding boxes.

70

7.2. YOLO

In this thesis, as stated before for the purpose of detection of kidney stone using YOLO

algorithm, four datasets named as D1, D2, D3, and D4 were utilized.

Both YOLO v5 and YOLO v7 models were utilized for the detection of kidney stones,

in addition to that both SGD and Adam optimizers were selected to perform the

detection process. Furthermore, the epoch size and batch size values were set as 100

and 32, respectively.

7.2.1. YOLO v5

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v5 with the SGD optimizer on D1 dataset

are shown in Figures 7.20-7.22.

Figure 7.20. Precision-Sensitivity curve for D1 dataset (Train Phase).

71

Figure 7.21. Confusion matrix for D1 dataset (Train Phase).

Figure 7.22. Train and validation losses for D1 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v5 with the SGD optimizer on D1 dataset are shown in Figures

7.23, and 7.24, respectively.

72

Figure 7.23. Precision-Sensitivity curve for D1 dataset (Test phase).

Figure 7.24. Confusion matrix for D1 dataset (Test phase).

73

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v5 with the SGD optimizer on D2 dataset

are shown in Figures 7.25-7.27.

Figure 7.25. Precision-Sensitivity curve for D2 dataset (Train Phase).

Figure 7.26. Confusion matrix for D2 dataset (Train phase).

74

Figure 7.27. Train and validation losses for D2 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v5 with the SGD optimizer on the D2 dataset are shown in Figures

7.28, and 7.29, respectively.

Figure 7.28. Precision-Sensitivity curve for D2 dataset (Test phase).

75

Figure 7.29. Confusion matrix for D2 dataset (Test phase).

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v5 with the SGD optimizer on D3 dataset

are shown in Figures 7.30-7.32.

Figure 7.30. Precision-Sensitivity curve for D3 dataset (Train Phase).

76

Figure 7.31. Confusion matrix for D3 dataset (Train Phase).

Figure 7.32. Train and validation losses for D3 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v5 with the SGD optimizer on the D3 dataset are shown in Figures

7.33, and 7.34, respectively.

77

Figure 7.33. Precision-Sensitivity curve for D3 dataset (Test phase).

Figure 7.34. Confusion matrix for D3 dataset (Test Phase).

78

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v5 with the SGD optimizer on D4 dataset

are shown in Figure 7.35-7.37.

Figure 7.35. Precision-Sensitivity curve for D4 dataset (Train Phase).

Figure 7.36. Confusion matrix for D4 dataset (Train Phase).

79

Figure 7.37. Train and validation losses for D4 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v5 with the SGD optimizer on the D4 dataset are shown in Figures

7.38, and 7.39, respectively.

Figure 7.38. Precision-Sensitivity curve for D4 dataset (Test phase).

80

Figure 7.39. Confusion matrix for D4 dataset (Test phase).

Table 7.8 shows a summary of the obtained results for the four datasets in respect to

Accuracy, Precision, Sensitivity, F1 score, and mAP in both of Train and Test phases

for YOLO v5 model with SGD optimizer.

Table 7.8. Train and test results of the model.

 Train Test

 D1 D2 D3 D4 D1 D2 D3 D4

Accuracy (%) 76.0 73.0 82.0 80.0 73.0 76.0 83.0 79.0

Precision (%) 87.0 77.3 85.7 80.2 73.3 85.6 85.3 78.1

Sensitivity (%) 65.9 68.1 75.7 76.0 66.5 72.2 77.7 76.8

81

F1 score (%) 74.9 72.4 80.3 78.0 69.7 78.3 81.3 77.4

mAP (0.5) (%) 73.5 67.5 79.3 79.0 63.4 79.9 79.8 75.4

mAP (0.5:0.95) (%) 29.0 26.2 35.0 32.4 25.2 39.0 37.2 31.5

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v5 with the Adam optimizer on D1 dataset

are shown in Figures 7.40-7.42.

Figure 7.40. Precision-Sensitivity curve for D1 dataset (Train Phase).

82

Figure 7.41. Confusion matrix for D1 dataset (Train Phase).

Figure 7.42. Train and validation losses for D1 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v5 with the Adam optimizer on D1 dataset are shown in Figures

7.43, and 7.44, respectively.

83

Figure 7.43. Precision-Sensitivity curve for D1 dataset (Test phase).

Figure 7.44. Confusion matrix for D1 dataset (Test phase).

The obtained results such as precision-sensitivity curve, confusion matrix,

train, and validation loss graphs from training YOLO v5 with the Adam

optimizer on D2 dataset are shown in Figures 7.45-7.47.

84

Figure 7.45. Precision-Sensitivity curve for D2 dataset (Train Phase).

Figure 7.46. Confusion matrix for D2 dataset (Train Phase).

85

Figure 7.47. Train and validation losses for D2 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v5 with the Adam optimizer on D2 dataset are shown in Figures

7.48, and 7.49, respectively.

Figure 7.48. Precision-Sensitivity curve for D2 dataset (Test phase).

86

Figure 7.49. Confusion matrix for D2 dataset (Test phase).

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v5 with the Adam optimizer on D3 dataset

are shown in Figures 7.50-7.52

Figure 7.50. Precision-Sensitivity curve for D3 dataset (Train Phase).

87

Figure 7.51. Confusion matrix for D3 dataset (Train Phase).

Figure 7.52. Train and validation losses for D3 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v5 with the Adam optimizer on D3 dataset are shown in Figures

7.53, and 7.54, respectively.

88

Figure 7.53. Precision-Sensitivity curve for D3 dataset (Test phase).

Figure 7.54. Confusion matrix for D3 dataset (Test phase).

89

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v5 with the Adam optimizer on D4 dataset

are shown in Figures 7.55-7.57.

Figure 7.55. Precision-Sensitivity curve for D4 dataset (Train Phase).

Figure 7.56. Confusion matrix for D4 dataset (Train Phase).

90

Figure 7.57. Train and validation losses for D4 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v5 with the Adam optimizer on D4 dataset are shown in Figures

7.58, and 7.59, respectively.

Figure 7.58. Precision-Sensitivity curve for D4 dataset (Test phase).

91

Figure 7.59. Confusion matrix for D4 dataset (Test phase).

Table 7.9 shows a summary of the obtained results for the four datasets in respect to

Accuracy, Precision, Sensitivity, F1 score, and mAP in both of Train and Test phases

for YOLO v5 model with Adam optimizer.

Table 7.9. Train and test results of the model.

 Train Test

 D1 D2 D3 D4 D1 D2 D3 D4

Accuracy (%) 75.0 71.0 80.0 75.0 75.0 74.0 85.0 78.0

Precision (%) 84.9 79.1 84.3 81.9 77.6 88.0 89.7 83.3

92

Sensitivity (%) 68.8 64.1 73.1 68.3 65.9 72.6 77.2 73.2

F1 score (%) 76.0 70.8 78.3 74.4 71.2 79.5 82.9 77.9

mAP (0.5) (%) 73.8 65.9 79.8 75.1 68.4 81.2 84.6 76.0

mAP (0.5:0.95) (%) 30.1 26.2 34.8 31.7 25.2 40.5 39.0 33.6

Table 7.10 and Table 7.11 show a summary of the obtained results for the four datasets

in respect to Accuracy, Precision, Sensitivity, F1 score, and mAP in both of Train and

Test phases for YOLO v5 model between SGD and Adam optimizers.

Table 7.10. Train results of the model between SGD and Adam.

 SGD Adam

 D1 D2 D3 D4 D1 D2 D3 D4

Accuracy (%) 76.0 73.0 82.0 80.0 75.0 71.0 80.0 75.0

Precision (%) 87.0 77.3 85.7 80.2 84.9 79.1 84.3 81.9

Sensitivity (%) 65.9 68.1 75.7 76.0 68.8 64.1 73.1 68.3

F1 score (%) 74.9 72.4 80.3 78.0 76.0 70.8 78.3 74.4

mAP (0.5) (%) 73.5 67.5 79.3 79.0 73.8 65.9 79.8 75.1

mAP (0.5:0.95)

(%)

29.0 26.2 35.0 32.4 30.1 26.2 34.8 31.7

93

Table 7.11. Test results of the model between SGD and Adam.

7.2.1.2. Experimental results of YOLO v5

Visual representations of the detection results achieved with the YOLO v5 during the

test phase of kidney stones in the datasets alongside with the ground truth bounding

boxes are given in Figures 7.60-7.63.

Figure 7.60. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes.

 SGD Adam

 D1 D2 D3 D4 D1 D2 D3 D4

Accuracy (%) 73.0 76.0 83.0 79.0 75.0 74.0 85.0 78.0

Precision (%) 73.3 85.6 85.3 78.1 77.6 88.0 89.7 83.3

Sensitivity (%) 66.5 72.2 77.7 76.8 65.9 72.6 77.2 73.2

F1 score (%) 69.7 78.3 81.3 77.4 71.2 79.5 82.9 77.9

mAP (0.5) (%) 63.4 79.9 79.8 75.4 68.4 81.2 84.6 76.0

mAP (0.5:0.95)

(%)

25.2 39.0 37.2 31.5 25.2 40.5 39.0 33.6

94

Figure 7.61. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes.

Figure 7.62. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes.

Figure 7.63. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes.

95

7.2.2. YOLO v7

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v7 with the SGD optimizer on D1 dataset

are shown in Figures 7.64-7.66.

Figure 7.64. Precision-Sensitivity curve for D1 dataset (Train Phase).

Figure 7.65. Confusion matrix for D1 dataset (Train Phase).

96

Figure 7.66. Train and validation losses for D1 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v7 with the SGD optimizer on D1 dataset are shown in Figures

7.67, and 7.68, respectively.

Figure 7.67. Precision-Sensitivity curve for D1 dataset (Test phase).

97

Figure 7.68. Confusion matrix for D1 dataset (Test phase).

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v7 with the SGD optimizer on D2 dataset

are shown in Figures 7.69-7.71.

Figure 7.69. Precision-Sensitivity curve for D2 dataset (Train Phase).

98

Figure 7.70. Confusion matrix for D2 dataset (Train Phase).

Figure 7.71. Train and validation losses for D2 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v7 with the SGD optimizer on D2 dataset are shown in Figures

7.72, and 7.73, respectively.

99

Figure 7.72. Precision-Sensitivity curve for D2 dataset (Test phase).

Figure 7.73. Confusion matrix for D2 dataset (Test phase).

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v7 with the SGD optimizer on D3 dataset

are shown in Figures 7.74-7.76.

100

Figure 7.74. Precision-Sensitivity curve for D3 dataset (Train phase).

Figure 7.75. Confusion matrix for D3 dataset (Train phase).

101

Figure 7.76. Train and validation losses for D3 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v7 with the SGD optimizer on D3 dataset are shown in Figures

7.77, and 7.78, respectively.

Figure 7.77. Precision-Sensitivity curve for D3 dataset (Test phase).

102

Figure 7.78. Confusion matrix for D3 dataset (Test phase).

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v7 with the SGD optimizer on D4 dataset

are shown in Figures 7.79-7.81.

Figure 7.79. Precision-Sensitivity curve for D4 dataset (Train Phase).

103

Figure 7.80. Confusion matrix for D4 dataset (Train Phase).

Figure 7.81. Train and validation losses for D4 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v7 with the SGD optimizer on D4 dataset are shown in Figures

7.82, and 7.83, respectively.

104

Figure 7.82. Precision-Sensitivity curve for D4 dataset (Test phase).

Figure 7.83. Confusion matrix for D4 dataset (Test phase).

105

Table 7.12 shows a summary of the obtained results for the four datasets in respect to

Accuracy and mAP in both of Train and Test phases for YOLO v7 model with SGD

optimizer. Table 7.13 show a summary of the obtained results for the four datasets in

respect to Accuracy, Precision, Sensitivity, F1 score, mAP in Test phase for YOLO v7

model with SGD optimizer.

Table 7.12. Summary of the obtained results in Train and Test.

Table 7.13. Summary of the obtained results in Test.

 Train Test

 D1 D2 D3 D4 D1 D2 D3 D4

Accuracy (%) 60.0 60.0 57.0 70.0 59.0 74.0 66.0 74.0

mAP (0.5) (%) 46.9 52.8 53.5 64.0 48.3 66.3 61.4 64.9

 Test

 D1 D2 D3 D4

Accuracy (%) 59.0 74.0 66.0 74.0

Precision (%) 61.9 76.6 72.6 68.9

Sensitivity (%) 52.5 64.5 62.4 64.3

F1 score (%) 56.8 70.0 67.1 66.5

mAP (0.5) (%) 48.3 66.3 61.4 64.9

mAP (0.5:0.95) (%) 17.3 26.7 26.7 26.1

106

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v7 with the Adam optimizer on D1 dataset

are shown in Figures 7.84-7.86.

Figure 7.84. Precision-Sensitivity curve for D1 dataset (Train Phase).

Figure 7.85. Confusion matrix for D1 dataset (Train Phase).

107

Figure 7.86. Train and validation losses for D1 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v7 with the Adam optimizer on D1 dataset are shown in Figures

7.87, and 7.88, respectively.

Figure 7.87. Precision-Sensitivity curve for D1 dataset (Test phase).

108

Figure 7.88. Confusion matrix for D1 dataset (Test phase).

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v7 with the Adam optimizer on D2 dataset

are shown in Figures 7.89-7.91.

Figure 7.89. Precision-Sensitivity curve for D2 dataset (Train Phase).

109

Figure 7.90. Confusion matrix for D2 dataset (Train Phase).

Figure 7.91. Train and validation losses for D2 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v7 with the Adam optimizer on D2 dataset are shown in Figures

7.92, and 7.93, respectively.

110

Figure 7.92. Precision-Sensitivity curve for D2 dataset (Test phase).

Figure 7.93. Confusion matrix for D2 dataset (Test phase).

111

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v7 with the Adam optimizer on D3 dataset

are shown in Figures 7.94-7.96.

Figure 7.94. Precision-Sensitivity curve for D3 dataset (Train phase).

Figure 7.95. Confusion matrix for D3 dataset (Train phase).

112

Figure 7.96. Train and validation losses for D3 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v7 with the Adam optimizer on D3 dataset are shown in Figures

7.97, and 7.98, respectively.

Figure 7.97. Precision-Sensitivity curve for D3 dataset (Test phase).

113

Figure 7.98. Confusion matrix for D3 dataset (Test phase).

The obtained results such as precision-sensitivity curve, confusion matrix, train, and

validation loss graphs from training YOLO v7 with the Adam optimizer on D4 dataset

are shown in Figures 7.99-7.101.

Figure 7.99. Precision-Sensitivity curve for D4 dataset (Train Phase).

114

Figure 7.100. Confusion matrix for D4 dataset (Train Phase).

Figure 7.101. Train and validation losses for D4 dataset (Train Phase).

The obtained results such as precision-sensitivity curve and confusion matrix from the

test phase of YOLO v7 with the Adam optimizer on D4 dataset are shown in Figures

7.102, and 7.103, respectively.

115

Figure 7.102. Precision-Sensitivity curve for D4 dataset (Test phase).

Figure 7.103. Confusion matrix for D4 dataset (Test phase).

116

Table 7.14 shows a summary of the obtained results for the four datasets in respect to

Accuracy and mAP in both of Train and Test phases for YOLO v7 model with Adam

optimizer. Table 7.15 shows a summary of the obtained results for the four datasets in

respect to Accuracy, Precision, Sensitivity, F1 score, mAP in Test phase for YOLO v7

model with Adam optimizer.

Table 7.14. Summary of the obtained results in Train and Test.

Table 7.15. Summary of the obtained results in Test

 Train Test

 D1 D2 D3 D4 D1 D2 D3 D4

Accuracy (%) 71.0 76.0 45.0 76.0 65.0 76.0 60.0 73.0

mAP (0.5) (%) 70.8 73.2 46.4 73.7 64.2 73.7 55.0 66.1

 Test

 D1 D2 D3 D4

Accuracy (%) 65.0 76.0 60.0 73.0

Precision (%) 86.8 83.7 64.2 75.4

Sensitivity (%) 58.9 67.3 57.7 66.9

F1 score (%) 70.1 74.6 60.7 70.8

mAP (0.5) (%) 64.2 73.7 55.0 66.1

mAP (0.5:0.95) (%) 23.4 31.6 21.9 25.7

117

Table 7.16 show a summary of the obtained results for the four datasets in respect to

Accuracy and mAP in Train phase for YOLO v7 model between SGD and Adam

optimizers. Table 7.17 shows a summary of the obtained results for the four datasets

in respect to Accuracy, Precision, Sensitivity, F1 score, mAP in Test phase for YOLO

v7 model between SGD and Adam optimizers.

Table 7.16. Train results of the model between SGD and Adam.

Table 7.17. Test results of the model between SGD and Adam.

 SGD Adam

 D1 D2 D3 D4 D1 D2 D3 D4

Accuracy (%) 60.0 60.0 57.0 70.0 71.0 76.0 45.0 76.0

mAP (0.5) (%) 46.9 52.8 53.5 64.0 70.8 73.2 46.4 73.7

 SGD Adam

 D1 D2 D3 D4 D1 D2 D3 D4

Accuracy (%) 59.0 74.0 66.0 74.0 65.0 76.0 60.0 73.0

Precision (%) 61.9 76.6 72.6 68.9 86.8 83.7 64.2 75.4

Sensitivity (%) 52.5 64.5 62.4 64.3 58.9 67.3 57.7 66.9

F1 score (%) 56.8 70.0 67.1 66.5 70.1 74.6 60.7 70.8

mAP (0.5) (%) 48.3 66.3 61.4 64.9 64.2 73.7 55.0 66.1

mAP (0.5:0.95)

(%)

17.3 26.7 26.7 26.1 23.4 31.6 21.9 25.7

118

7.2.3.1. Experimental results of YOLO v7

Visual representations of the detection results achieved with the YOLO v7 during the

test phase of kidney stones in the dataset alongside with the ground truth bounding

boxes are given in Figure 7.104-7.108.

Figure 7.104. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes.

Figure 7.105. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes.

119

Figure 7.106. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes.

Figure 7.107. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes.

Figure 7.108. Evaluation of kidney stones. (a) Model’s predictions (b) ground truth

bounding boxes.

120

7.3. CNN

In this thesis, a deep learning system was created to classify kidney stones with the

help of approximately 1799 CT scans images labeled as Normal and Kidney stone

obtained from open source. Images used in the model were separated as 80% for

training and 20% for testing. Additionally, two different optimizers, RMSprop and

Adam, were used for classification purpose. The number of epochs was also assigned

as 20, 40, 60, 80, and 100. The learning rate value was set as 0.001.

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the RMSprop optimizer on D1 dataset for 20 epochs are shown in Figures 7.109-

7.111.

Figure 7.109. Training and validation losses graphs.

121

Figure 7.110. Training and validation accuracy graphs.

Figure 7.111. Confusion matrix.

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the RMSprop optimizer on D1 dataset for 40 epochs are shown in Figures 7.112-

7.114.

122

Figure 7.112. Training and validation losses graphs.

Figure 7.113. Training and validation accuracy graphs.

123

Figure 7.114. Confusion matrix.

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the RMSprop optimizer on D1 dataset for 60 epochs are shown in Figures 7.115-

7.117.

Figure 7.115. Training and validation losses graphs.

124

Figure 7.116. Training and validation accuracy graphs.

Figure 7.117. Confusion matrix.

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the RMSprop optimizer on D1 dataset for 80 epochs are shown in Figures 7.118-

7.120.

125

Figure 7.118. Training and validation losses graphs.

Figure 7.119. Training and validation accuracy graphs.

126

Figure 7.120. Confusion matrix.

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the RMSprop optimizer on D1 dataset for 100 epochs are shown in Figures 7.121-

7.123.

Figure 7.121. Training and validation losses graphs.

127

Figure 7.122. Training and validation accuracy graphs.

Figure 7.123. Confusion matrix.

128

Table 7.18 shows a summary of the obtained results in respect of Accuracy, Precision,

Sensitivity, Specificity, and F1 score for CNN model with RMSprop optimizer

alongside with different epochs.

Table 7.18. Summary of the obtained results.

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the Adam optimizer on D1 dataset for 20 epochs are shown in Figures 7.124-

7.126.

Figure 7.124. Training and validation losses graphs.

Epochs 20 40 60 80 100

Accuracy (%) 97.40 97.69 99.13 97.69 97.69

Precision (%) 98.75 97.59 99.39 97.59 99.37

Sensitivity (%) 95.78 97.59 98.79 97.59 95.78

Specificity (%) 98.89 97.79 99.44 97.79 99.44

F1 Score (%) 97.24 97.59 99.08 97.59 97.54

129

Figure 7.125. Training and validation accuracy graphs.

Figure 7.126. Confusion matrix.

130

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the Adam optimizer on D1 dataset for 40 epochs are shown in Figures 7.127-

7.129.

Figure 7.127. Training and validation losses graphs.

Figure 7.128. Training and validation accuracy graphs.

131

Figure 7.129. Confusion matrix.

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the Adam optimizer on D1 dataset for 60 epochs are shown in Figures 7.130-

7.132.

Figure 7.130. Training and validation losses graphs.

132

Figure 7.131. Training and validation accuracy graphs.

Figure 7.132. Confusion matrix.

133

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the Adam optimizer on D1 dataset for 80 epochs are shown in Figures 7.133-

7.135.

Figure 7.133. Training and validation losses graphs.

Figure 7.134. Training and validation accuracy graphs.

134

Figure 7.135. Confusion matrix.

The obtained results such as train, validation loss graphs, and confusion matrix of CNN

with the Adam optimizer on D1 dataset for 100 epochs are shown in Figures 7.136-

7.138.

Figure 7.136. Training and validation losses graphs.

135

Figure 7.137. Training and validation accuracy graphs.

Figure 7.138. Confusion matrix.

136

Table 7.19 shows a summary of the obtained results in respect of Accuracy, Precision,

Sensitivity, Specificity, and F1 score for CNN model with Adam optimizer alongside

with different epochs.

Table 7.19. Summary of the obtained results.

Table 7.20 shows a summary of the obtained results in respect of Accuracy, Precision,

Sensitivity, Specificity, and F1 score for CNN model with RMSprop and Adam

optimizer alongside with different epochs.

Epochs 20 40 60 80 100

Accuracy (%) 97.40 99.13 97.40 96.54 97.98

Precision (%) 98.15 98.80 100 98.12 100

Sensitivity (%) 96.38 99.39 94.57 94.57 95.78

Specificity (%) 98.34 98.89 100 98.34 100

F1 Score (%) 97.25 99.09 97.20 96.31 97.84

137

Table 7.20. Summary of the obtained results based on RMSprop and Adam.

 RMSprop Adam

Epochs 20 40 60 80 100 20 40 60 80 100

Accuracy (%) 97.40 97.69 99.13 97.69 97.69 97.40 99.13 97.40 96.54 97.98

Precision (%) 98.75 97.59 99.39 97.59 99.37 98.15 98.80 100 98.12 100

Sensitivity (%) 95.78 97.59 98.79 97.59 95.78 96.38 99.39 94.57 94.57 95.78

Specificity (%) 98.89 97.79 99.44 97.79 99.44 98.34 98.89 100 98.34 100

F1 score (%) 97.24 97.59 99.08 97.59 97.54 97.25 99.09 97.20 96.31 97.84

138

7.4. DISCUSSION

In this thesis, publicly available CT kidney stone dataset was utilized, and three distinct

deep learning models namely Faster R-CNN, YOLO, and a custom CNN were trained

and tested. The primary objective of the thesis is to achieve both kidney stone detection

and classification within the CT image dataset.

The first model employed was the Faster R-CNN, designed for precise object detection

in computer vision. Complementing the Faster R-CNN model, feature extraction

backbones ResNet50 and ResNet101 were incorporated. Three different variants of

Faster R-CNN as ResNet50 V1 800x1333, ResNet101 V1 800x1333, and ResNet101

V1 1024x1024 were utilized. Considering the obtained results, the three models

exhibited a very similar values in terms of AP and AS. The highest performance was

achieved by ResNet101 V1 1024x1024 model which yielded a value of 63.7% in

respect to AP (0.50). The significance of the number of steps parameter on the training

results of Faster R-CNN has been demonstrated by researchers Oluibukun Gbenga

Ajayi and John Ashi in their article [111]. This study investigated the impact of varying

training epochs on the accuracy of a Faster R-CNN. They trained the Faster R-CNN

model with five different epochs. They have concluded that increasing the number of

training epochs significantly enhances the model’s performance; however, a loss of

efficiency occurs after a certain number of epochs. The accuracy for the five classes

increased across epochs: 52.6% (10,000 epochs), 67.9% (20,000 epochs), 97.3%

(100,000 epochs), 98.4% (200,000 epochs), and 97% (242,000 epochs). Taking these

important findings into account, it’s clear that in this thesis, the choice to limit the

number of steps to 8000 due to computational limits noticeably affected the results.

The constraint on training steps, driven by the limitations in computational resources,

probably played a role in the obtained results.

The second utilized model was YOLO, with two different versions: YOLO v5 and

YOLO v7. Additionally, two different optimizers, named SGD and Adam, were

employed. In light of the obtained results, YOLO v5 with the Adam optimizer

outperformed all other models with an 84.6% mAP (0.5) and an accuracy value of

139

85.0%. Furthermore, the model achieved a precision of 89.7%, sensitivity of 77.2%,

F1 score of 82.9%, and a mAP (0.5:0.95) of 39.0%.

YOLO v7 yielded less favorable results, with various issues becoming apparent during

the model evaluation. One of the observed issues was overfitting. Notably, there was

a substantial decline in mAP curve during the training phase, which lead to a potential

issue with the model’s generalization. In addition to that, some of the validation loss

curves were increasing, pointing to a possible overfitting. A noteworthy observation

emerged during the evaluation where the model exhibited a tendency to detect objects

in close proximity to the intended targets, leading to a decrease in its overall

comprehension and performance. the observation described above is depicted in detail

in Figure 7.139.

Figure 7.139. Model confusion between kidney stones and spinal cord.

In Figure 7.139, the model identified objects resembling kidney stones, including parts

of the spinal cord. This misidentification led to numerous false predictions, resulting

in a decline in overall performance. These false predictions align with FP in the

confusion matrix. The second observation was that it’s important to mention that the

model struggled with accurate predictions for larger objects, contributing to an overall

decrease in performance as shown in Figure 7.140.

140

Figure 7.140. Model difficulty predicting larger kidney stones.

In Figure 7.140, the model faced difficulty predicting larger kidney stones, leading to

an increase in FN due to its inability to draw bounding boxes for these objects. While

these observations were made based on the current dataset, it’s crucial to acknowledge

that they may differ depending on the quality and diversity of the dataset employed.

The third model used was CNN with RMSprop and Adam optimizers. It was trained

with different epochs as 20, 40, 60, 80, and 100. The learning rate and batch size were

set at 0.001 and 32. Among all the trained models using CNN, the best performing

model achieved an accuracy of 99.13%. This result was attained after 40 epochs of

training, utilizing the Adam optimizer. However, it was noticed that increasing the

epochs may have led to an increase in FPs and FNs as shown in training curves for

different epochs. As stated in section 6.4.3.1 for the optimization of the

hyperparameters, too many tests were employed in order to get the best results of the

model.

In the future work, increasing the dataset size for Faster R-CNN and YOLO is

recommended to enhance their performance. Gathering data from diverse sources can

contribute to better model generalization. Additionally, implementing CNN

classification based on the size of kidney stones can be explored. For segmentation

141

and classification, different deep learning models like U-Net and Mask R-CNN can be

considered.

Table 7.21 presents a comparison of results between state-of-the-art studies and the

proposed method based on kidney stone classification using CNN, with the same

dataset.

Table 7.21. Comparative results of CNN based kidney stone classification

Table 7.22 shows a comparison of results between state-of-the-art studies and the

proposed method using different datasets.

Authors Reference Model Accuracy (%)

Patro et al. [37] DKN 98.56

Baygin et al. [41] ExDark19 99.71

Yildirim et al. [43] xResNet50 96.82

Proposed method CNN 99.13

142

Table 7.22. Comparison of the proposed method with literature studies.

Authors Input images Number of

Images

Model Results

Razmjooy & Yan CT 12446 DBN/FO-CHIO Accuracy: 97.98%.

Caglayan et al. CT 2959 xResNet50 Accuracy: 85%, 89%, and 93% in the sagittal plane.

Gurkan et al. CT 658 YOLO v7 mAP (0.5): 0.85, Precision: 0.882, Sensitivity: 0.829, F1

score: 0.854.

Islam et al. CT 12446 Swin

transformers

Accuracy: 99.30%.

S. Sudharson & P.

Kokil

Ultrasound 4940 SVM Accuracy: 87.31%

Parakh et al. CT 535 Dual CNN AUC: 0.954

Längkvist et al. CT 465 CNN Sensitivity: 100%

Proposed method CT 1799 CNN Accuracy: 99.13 %

143

CHAPTER 8

CONCLUSION

In this thesis, advanced deep learning models were developed to detect and classify

kidney stones in coronal CT images. The utilized dataset consisting of 1799 coronal

CT scans. Out of these scans, 1009 were from individuals without kidney stones, and

the remaining were from patients diagnosed with kidney stones. In addition to that,

this thesis involved the training and testing of three distinct deep learning models,

namely Faster R-CNN, YOLO, and the customized CNN.

According to the obtained results in this thesis, the Faster R-CNN results were less

favorable. On the other hand, the YOLO v5 model exhibited promising outcomes in

identifying kidney stones, surpassing the performance of YOLOv7. The YOLO v5

model demonstrated reasonable accuracy, detecting kidney stones, with a mAP (0.5)

of 84.6% and a mAP (0.5:95) of 39.0% on the test set. In assessing the performance of

the CNN, it’s noteworthy that the customized CNN model, trained over 40 epochs

using the Adam optimizer with a learning rate of 0.001 and a batch size of 32,

demonstrated the highest accuracy as 99.13%. This metric indicates the model’s

effectiveness in correctly classifying instances within the dataset. The proposed model,

employing a customized CNN, achieved an accuracy closely approaches to the top

performing studies in the literature, marking it as a noteworthy achievement.

Nevertheless, certain limitations and challenges were identified, emphasizing the need

for future enhancements.

144

REFERENCES

1. Chewcharat, A. and Curhan, G., "Trends in the prevalence of kidney stones in the

United States from 2007 to 2016", Urolithiasis, 49 (1): 27–39 (2021).

2. Internet: "Definition & Facts for Kidney Stones - NIDDK",

https://www.niddk.nih.gov/health-information/urologic-diseases/kidney-

stones/definition-facts (2023).

3. Shin, S., Srivastava, A., Alli, N. A., and Bandyopadhyay, B. C., "Confounding risk

factors and preventative measures driving nephrolithiasis global makeup", World

Journal Of Nephrology, 7 (7): 129 (2018).

4. Al-Shawi, M. M., Aljama, N. A., Aljedani, R., Alsaleh, M. H., Atyia, N., Alsedrah,

A., and Albardi, M., "The Role of Radiological Imaging in the Diagnosis and

Treatment of Urolithiasis: A Narrative Review", Cureus, 14 (12): (2022).

5. Wood, K., Keys, T., Mufarrij, P., and Assimos, D. G., "Impact of Stone Removal

on Renal Function: A Review", Reviews In Urology, 13 (2): 73 (2011).

6. Shen, D., Wu, G., and Suk, H. Il, "Deep Learning in Medical Image Analysis",

Annurev Bioeng, 19: 221–248 (2017).

7. Zemouri, R., Zerhouni, N., and Racoceanu, D., "Deep learning in the biomedical

applications: Recent and future status", Applied Sciences (Switzerland), 9 (8):

(2019).

8. Shaheen, F., Verma, B., and Asafuddoula, M., "Impact of Automatic Feature

Extraction in Deep Learning Architecture", International Conference On Digital

Image Computing: Techniques And Applications, (2016).

9. Chen, X. W. and Lin, X., "Big data deep learning: Challenges and perspectives",

IEEE Access, 2: 514–525 (2014).

10.Internet: "Your Kidneys & How They Work - NIDDK",

https://www.niddk.nih.gov/health-information/kidney-disease/kidneys-how-they-

work (2018).

145

11. Internet: "7 Things to Know About Kidney Function | National Kidney Foundation",

https://www.kidney.org/kidneydisease/howkidneyswrk (2023).

12. Hall, J. E. and Hall, M. E., "Guyton and Hall Textbook of Medical Physiology E-

Book", 14th. Ed., Elsevier, 331–360 (2020).

13. Abboudi, H., Khan, M. S., Dasgupta, P., and Ahmed, K., "Simulation in Urology",

Blandy’s Urology, 3. Ed., John Wiley & Sons, Ltd, 27–38 (2019).

14. Choi, H. Y., Park, H. C., and Ha, S. K., "High Water Intake and Progression of

Chronic Kidney Diseases", Electrolytes & Blood Pressure , 13 (2): 51 (2015).

15. Zulkar Nain, "(PDF) Genetic Anomalies in Kidney: Common Malformations and

Dysfunctions", CreateSpace Independent Publishing Platform, 2–3 (2016).

16. RM, S., D, P., and SW, L., "Anatomy, Abdomen and Pelvis, Kidneys", StatPearls,

(2023).

17. Delaney, M. A., Kowalewska, J., and Treuting, P. M., "Urinary System",

Comparative Anatomy and Histology: A Mouse, Rat, and Human Atlas, Second

Edition, Academic Press, 275–301 (2018).

18. Khan, K. N. M., Hard, G. C., and Alden, C. L., "Kidney", Haschek and

Rousseaux’s Handbook of Toxicologic Pathology, Third Edition: Volume 1-3,

3rd. Ed., Academic Press, 1667–1773 (2013).

19. Mukoyama, M. and Nakao, K., "Hormones of the kidney", Endocrinology: Basic

and Clinical Principles: Second Edition, Humana Press, 353–365 (2005).

20. Shankar, A. S., Du, Z., Mora, H. T., van den Bosch, T. P. P., Korevaar, S. S., Van

den Berg-Garrelds, I. M., Bindels, E., Lopez-Iglesias, C., Clahsen-van Groningen,

M. C., Gribnau, J., Baan, C. C., Danser, A. H. J., Hoorn, E. J., and Hoogduijn, M.

J., "Human kidney organoids produce functional renin", Kidney International, 99

(1): 134–147 (2021).

21. Chen, T. K., Knicely, D. H., and Grams, M. E., "Chronic Kidney Disease

Diagnosis and Management: A Review", JAMA, 322 (13): 1294–1304 (2019).

22. Divatia, M., Ozcan, A., Guo, C. C., and Ro, J. Y., "Kidney Cancer: Recent

Advances in Surgical and Molecular Pathology", First Edition., Springer Cham,

(2020).

23. Worcester, E. M. and Coe, F. L., "Nephrolithiasis", Primary Care, 35 (2): 369–

391 (2008).

24. Shah, J. and Whitfield, H. N., "Urolithiasis through the ages", BJU International,

89 (8): 801–810 (2002).

146

25. Saigal, C. S., Joyce, G., and Timilsina, A. R., "Direct and indirect costs of

nephrolithiasis in an employed population: opportunity for disease

management?", Kidney International, 68 (4): 1808–1814 (2005).

26. Liu, Y., Li, M., Qiang, L., Sun, X., Liu, S., and Lu, T. J., "Critical size of kidney

stone through ureter: A mechanical analysis", Journal Of The Mechanical

Behavior Of Biomedical Materials, 135: (2022).

27. Peerapen, P. and Thongboonkerd, V., "Kidney Stone Prevention", Advances In

Nutrition, 14 (3): 555–569 (2023).

28. Asha, S. and Sunitha, J., "Kidney Stones Benefit of Natural Products", LAP

LAMBERT Academic Publishing, 12–20 (2012).

29. Gillams, K., Juliebø-Jones, P., Juliebø, S. Ø., and Somani, B. K., "Gender

Differences in Kidney Stone Disease (KSD): Findings from a Systematic

Review", Current Urology Reports, 22 (10): 3 (2021).

30. Stamatelou, K. and Goldfarb, D. S., "Epidemiology of Kidney Stones",

Healthcare (Basel, Switzerland), 11 (3): (2023).

31. Curhan, G. C., Willett, W. C., Rimm, E. B., and Stampfer, M. J., "Family history

and risk of kidney stones", Journal Of The American Society Of Nephrology :

JASN, 8 (10): 1568–1573 (1997).

32. Gamage, K. N., Jamnadass, E., Sulaiman, S. K., Pietropaolo, A., Aboumarzouk,

O., and Somani, B. K., "The role of fluid intake in the prevention of kidney stone

disease: A systematic review over the last two decades", Turkish Journal Of

Urology, 46 (Supp. 1): 92–103 (2020).

33. Khan, S. R., Pearle, M. S., Robertson, W. G., Gambaro, G., Canales, B. K., Doizi,

S., Traxer, O., and Tiselius, H. G., "Kidney stones", Nature Reviews. Disease

Primers, 2: (2016).

34. McCarthy, C. J., Baliyan, V., Kordbacheh, H., Sajjad, Z., Sahani, D., and

Kambadakone, A., "Radiology of renal stone disease", International Journal Of

Surgery, 36: 638–646 (2016).

35. Brisbane, W., Bailey, M. R., and Sorensen, M. D., "An overview of kidney stone

imaging techniques", Nature Reviews. Urology, 13 (11): 654–662 (2016).

36. Dogan, S., Akbal, E., Tuncer, T., and Acharya, U. R., "Application of substitution

box of present cipher for automated detection of snoring sounds", Artificial

Intelligence In Medicine, 117: (2021).

37. Patro, K. K., Allam, J. P., Neelapu, B. C., Tadeusiewicz, R., Acharya, U. R.,

Hammad, M., Yildirim, O., and Pławiak, P., "Application of Kronecker

convolutions in deep learning technique for automated detection of kidney stones

with coronal CT images", Information Sciences, 640: (2023).

147

38. Yan, C. and Razmjooy, N., "Kidney stone detection using an optimized Deep

Believe network by fractional coronavirus herd immunity optimizer", Biomedical

Signal Processing And Control, 86: (2023).

39. Caglayan, A., Horsanali, M. O., Kocadurdu, K., Ismailoglu, E., and Guneyli, S.,

"Deep learning model-assisted detection of kidney stones on computed

tomography", International Braz J Urol : Official Journal Of The Brazilian

Society Of Urology, 48 (5): 830–839 (2022).

40. BAYRAM, A. F., GURKAN, C., BUDAK, A., and KARATAŞ, H., "A Detection

and Prediction Model Based on Deep Learning Assisted by Explainable Artificial

Intelligence for Kidney Diseases", Avrupa Bilim Ve Teknoloji Dergisi, 40: 67–

74 (2022).

41. Baygin, M., Yaman, O., Barua, P. D., Dogan, S., Tuncer, T., and Acharya, U. R.,

"Exemplar Darknet19 feature generation technique for automated kidney stone

detection with coronal CT images", Artificial Intelligence In Medicine, 127:

(2022).

42. Islam, M. N., Hasan, M., Hossain, M. K., Alam, M. G. R., Uddin, M. Z., and

Soylu, A., "Vision transformer and explainable transfer learning models for auto

detection of kidney cyst, stone and tumor from CT-radiography", Scientific

Reports, 12 (1): (2022).

43. Yildirim, K., Bozdag, P. G., Talo, M., Yildirim, O., Karabatak, M., and Acharya,

U. R., "Deep learning model for automated kidney stone detection using coronal

CT images", Computers In Biology And Medicine, 135: (2021).

44. Sudharson, S. and Kokil, P., "Computer-aided diagnosis system for the

classification of multi-class kidney abnormalities in the noisy ultrasound images",

Computer Methods And Programs In Biomedicine, 205: (2021).

45. Parakh, A., Lee, H., Lee, J. H., Eisner, B. H., Sahani, D. V., and Do, S., "Urinary

Stone Detection on CT Images Using Deep Convolutional Neural Networks:

Evaluation of Model Performance and Generalization", Radiology. Artificial

Intelligence, 1 (4): (2019).

46. Längkvist, M., Jendeberg, J., Thunberg, P., Loutfi, A., and Lidén, M., "Computer

aided detection of ureteral stones in thin slice computed tomography volumes

using Convolutional Neural Networks", Computers In Biology And Medicine,

97: 153–160 (2018).

47. Liu, P. ran, Lu, L., Zhang, J. yao, Huo, T. tong, Liu, S. xiang, and Ye, Z. wei,

"Application of Artificial Intelligence in Medicine: An Overview", Current

Medical Science, 41 (6): 1115 (2021).

48. Bansla, A. and Bansla, N., "Artificial intelligence", International Journal Of

Applied Engineering Research, 7 (11): (2012).

148

49. Sultan, A. S., Elgharib, M. A., Tavares, T., Jessri, M., and Basile, J. R., "The use

of artificial intelligence, machine learning and deep learning in oncologic

histopathology", Journal Of Oral Pathology & Medicine, 49 (9): 849–856

(2020).

50. El Naqa, I. and Murphy, M. J., "What Is Machine Learning?", Machine Learning

in Radiation Oncology, Springer International Publishing, 3–11 (2015).

51. Yang, X. S., "Introduction to Algorithms for Data Mining and Machine Learning",

Introduction to Algorithms for Data Mining and Machine Learning, 1st. Ed.,

Academic Press, 1–173 (2019).

52. Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., and Green, R., "Artificial

Intelligence and Machine Learning in Pathology: The Present Landscape of

Supervised Methods", Academic Pathology, 6: (2019).

53. Jain, V. and Chatterjee, J. M., "Machine Learning with Health Care Perspective:

Machine Learning and Healthcare", First Edition., Springer, 1–25 (2020).

54. Osarogiagbon, A. U., Khan, F., Venkatesan, R., and Gillard, P., "Review and

analysis of supervised machine learning algorithms for hazardous events in

drilling operations", Process Safety And Environmental Protection, 147: 367–

384 (2021).

55. Eckhardt, C. M., Madjarova, S. J., Williams, R. J., Ollivier, M., Karlsson, J.,

Pareek, A., and Nwachukwu, B. U., "Unsupervised machine learning methods and

emerging applications in healthcare", Knee Surgery, Sports Traumatology,

Arthroscopy, 31: 376–381 (2023).

56. McAlpine, E. D., Michelow, P., and Celik, T., "The Utility of Unsupervised

Machine Learning in Anatomic Pathology", American Journal Of Clinical

Pathology, 157 (1): 5–14 (2022).

57. Ma, Y., Liu, K., Guan, Z., Xu, X., Qian, X., and Bao, H., "Background

Augmentation Generative Adversarial Networks (BAGANs): Effective Data

Generation Based on GAN-Augmented 3D Synthesizing", Symmetry, 10 (12):

734 (2018).

58. Hammoudeh, Ahmad. "A Concise Introduction to Reinforcement Learning”

(2018).

59. Sarker, I. H., "Machine Learning: Algorithms, Real-World Applications and

Research Directions", SN Computer Science, 2: 1–21 (2021).

60. Hinton, G. E., Osindero, S., and Teh, Y. W., "A fast learning algorithm for deep

belief nets", Neural Computation, 18 (7): 1527–1554 (2006).

149

61. Lee, J. G., Jun, S., Cho, Y. W., Lee, H., Kim, G. B., Seo, J. B., and Kim, N., "Deep

Learning in Medical Imaging: General Overview", Korean Journal Of

Radiology, 18 (4): 570–584 (2017).

62. Dastres, R. and Soori, M., "Artificial Neural Network Systems", International

Journal Of Imaging And Robotics (IJIR), 21 (2): 13–25 (2021).

63. Maad M. Mijwil, " Artificial Neural Networks Advantages and Disadvantages",

2: (2018).

64. Internet: Ozal, Y., "GitHub - Yildirimozal/Kidney_stone_detection",

https://github.com/yildirimozal/Kidney_stone_detection (2023).

65. Nabeel, S., " Research on Machine Learning in Python: Main Developments and

Technology Trends in DS, ML, and AL", (2022).

66. Teoh, T. T. and Rong, Z., "Python for Artificial Intelligence. In: Artificial

Intelligence with Python", Machine Learning: Foundations, Methodologies, and

Applications, Springer Singapore, Singapore, 3–7 (2022).

67. Carneiro, T., Da Nobrega, R. V. M., Nepomuceno, T., Bian, G. Bin, De

Albuquerque, V. H. C., and Filho, P. P. R., "Performance Analysis of Google

Colaboratory as a Tool for Accelerating Deep Learning Applications", IEEE

Access, 6: 61677–61685 (2018).

68. Nelson, M. J. and Hoover, A. K., "Notes on Using Google Colaboratory in AI

Education", Annual Conference On Innovation And Technology In Computer

Science Education, ITiCSE, 533–534 (2020).

69. Hidayah, A. H. N., Syafeeza, A. R., Razak, N. A., Saad, W. H. M., Wong, Y. C.,

and Naja, A. A., "Disease Detection of Solanaceous Crops Using Deep Learning

for Robot Vision", Journal Of Robotics And Control (JRC), 3 (6): 790–799

(2022).

70. Shahriar, M. T. and Li, H., "A Study of Image Pre-processing for Faster Object

Recognition", arXiv, (2020).

71. Kottath, A. V. and Shri Bharathi, S. V., "Image Preprocessing Techniques in Skin

Diseases Prediction using Deep Learning: A Review", 4th International

Conference On Inventive Research In Computing Applications, ICIRCA 2022

- Proceedings, 1–6 (2022).

72. Saponara, S. and Elhanashi, A., "Impact of Image Resizing on Deep Learning

Detectors for Training Time and Model Performance", Lecture Notes In

Electrical Engineering, 866: 10–17 (2022).

73. Galea, R. R., Diosan, L., Andreica, A., Popa, L., Manole, S., and Bálint, Z.,

"Region-of-Interest-Based Cardiac Image Segmentation with Deep Learning",

Applied Sciences , 11 (4): 1965 (2021).

150

74. Sun, S. and Zhang, R., "Region of Interest Extraction of Medical Image based on

Improved Region Growing Algorithm", Proceedings of the 2017 International

Conference on Material Science, Energy and Environmental Engineering ,

(2017).

75. Mumuni, A. and Mumuni, F., "Data augmentation: A comprehensive survey of

modern approaches", Array, 16: (2022).

76. Doppala, B. P., Vamsi, B., Bhattacharyya, D., and Rao, J. N., "A Review of Image

Annotation Tools for Object Detection", Proceedings - International Conference

On Applied Artificial Intelligence And Computing, ICAAIC 2022, 976–982

(2022).

77. Patel, S. and Patel, A., "Object Detection with Convolutional Neural Networks",

Machine Learning for Predictive Analysis, Proceedings of ICTIS 2020, Springer

Nature Singapore, 529–539 (2021).

78. Diwan, T., Anirudh, G., and Tembhurne, J. V., "Object detection using YOLO:

challenges, architectural successors, datasets and applications", Multimedia Tools

And Applications, 82 (6): 9243–9275 (2023).

79. Chen, Y., Goorden, M. C., Beekman, F. J., Du, L., Zhang, R., and Wang, X.,

"Overview of two-stage object detection algorithms", Journal Of Physics:

Conference Series, 1544 (1): 012033 (2020).

80. Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., and Qu, R., "A survey of

deep learning-based object detection", IEEE Access, 7: 128837–128868 (2019).

81. Chen, Y., Goorden, M. C., Beekman, F. J., and Li, W., "Analysis of Object

Detection Performance Based on Faster R-CNN", Journal Of Physics:

Conference Series, 1827 (1): 012085 (2021).

82. Aniyan, A. K., Thorat, K., Hakim, H., and Fadhil, A., "Survey: Convolution

Neural networks in Object Detection", Journal Of Physics: Conference Series,

1804 (1): 012095 (2021).

83. Krishna Sai, B. N. and Sasikala, T., "Object Detection and Count of Objects in

Image using Tensor Flow Object Detection API", 2019 International Conference

On Smart Systems And Inventive Technology (ICSSIT), 542–546 (2019).

84. Internet: "TensorBoard | TensorFlow",

https://www.tensorflow.org/tensorboard (2023).

85. Qureshi, R., RAGAB, M. G., ABDULKADER, S. J., muneer, amgad,

ALQUSHAIB, A., SUMIEA, E. H., and Alhussian, H., "A Comprehensive

Systematic Review of YOLO for Medical Object Detection (2018 to 2023)",

TechRxiv, (2023).

151

86. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., "You Only Look Once:

Unified, Real-Time Object Detection", Proceedings Of The IEEE Computer

Society Conference On Computer Vision And Pattern Recognition, 2016-

December: 779–788 (2015).

87. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A.,

"The pascal visual object classes (VOC) challenge", International Journal Of

Computer Vision, 88 (2): 303–338 (2010).

88. M. Hussain, ‘‘Yolo-v1 to yolo-v8, the rise of yolo and its complementary nature

toward digital manufacturing and industrial defect detection,’’ Machines, vol. 11,

no. 7, p. 677, 2023

89. Terven, J. R. and Cordova-Esparza, D. M., "A Comprehensive Review of YOLO:

From YOLOv1 and Beyond", ArXiv, (2023).

90. Internet: Glenn, Jocher, " Ultralytics/Yolov5 · GitHub",

https://github.com/ultralytics/yolov5/blob/master/README.md (2023).

91. Wu, B., Pang, C., Zeng, X., and Hu, X., "ME-YOLO: Improved YOLOv5 for

Detecting Medical Personal Protective Equipment", Applied Sciences, 12 (23):

11978 (2022).

92. Antonakakis, M., Tzavaras, A., Tsakos, K., Spanakis, E. G., Sakkalis, V.,

Zervakis, M., and Petrakis, E. G. M., "Real-Time Object Detection using an Ultra-

High-Resolution Camera on Embedded Systems", IST 2022 - IEEE

International Conference On Imaging Systems And Techniques, Proceedings,

(2022).

93. Mehmood, F., Ahmad, S., and Whangbo, T. K., "An Efficient Optimization

Technique for Training Deep Neural Networks", Mathematics 2023, Vol. 11,

Page 1360, 11 (6): 1360 (2023).

94. Internet: “Optimizers", https://keras.io/api/optimizers/ (2023).

95. Kingma, D. P. and Ba, J. L., "Adam: A Method for Stochastic Optimization", 3rd

International Conference On Learning Representations, ICLR 2015 -

Conference Track Proceedings, (2014).

96. Kaya, Ö., Çodur, M. Y., and Mustafaraj, E., "Automatic Detection of Pedestrian

Crosswalk with Faster R-CNN and YOLOv7", Buildings, 13 (4): 1070 (2023).

97. Li, K. ;, Wang, Y. ;, Hu, Z., Fischer, S., Li, K., Wang, Y., and Hu, Z., "Improved

YOLOv7 for Small Object Detection Algorithm Based on Attention and Dynamic

Convolution", Applied Sciences , 13 (16): 9316 (2023).

98. LeCun, Y., Bengio, Y., & Hinton, G., “Deep learning”, Nature, 521(7553), 436-444

(2015).

152

99. Rguibi, Z., Hajami, A., Zitouni, D., Elqaraoui, A., and Bedraoui, A., "CXAI:

Explaining Convolutional Neural Networks for Medical Imaging Diagnostic",

Electronics, 11 (11): 1775 (2022).

100. Varlı, M., “Derin Öğrenme Tabanli Epileptik Nöbet Teşhisi”, (master’s

dissertation) (2022)

101. Internet: Dharmaraj, "Zero-Padding in Convolutional Neural Networks | by

Dharmaraj | Medium", https://medium.com/@draj0718/zero-padding-in-

convolutional-neural-networks-bf1410438e99 (2023).

102. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma,

O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L., "Review of

deep learning: concepts, CNN architectures, challenges, applications, future

directions", Journal Of Big Data, 8 (1): 53 (2021).

103. Indolia, S., Goswami, A. K., Mishra, S. P., and Asopa, P., "Conceptual

Understanding of Convolutional Neural Network- A Deep Learning Approach",

International Conference On Computational Intelligence And Data Science,

132: 679–688 (2018).

104. Aurélien Géron, "Hands-on Machine Learning with Scikit-Learn, Keras and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems",

O’Reilly Media, O’Reilly Media, 587–657 (2019).

105. KILIÇARSLAN, S., Kemal, A. D. E. M., & Çelik, M., “An overview of the

activation functions used in deep learning algorithms”, Journal of New Results

in Science, 10(3), 75-88 (2021).

106. Jemshi, K. M., Sreelekha, G., Sathidevi, P. S., Mohanachandran, P., and Vinekar,

A., "Plus disease classification in Retinopathy of Prematurity using transform

based features", Multimedia Tools And Applications, 1–31 (2023).

107. M, H. and M.N, S., "A Review on Evaluation Metrics for Data Classification

Evaluations", International Journal Of Data Mining & Knowledge

Management Process, 5 (2): 01–11 (2015).

108. Han, X., Zhong, Y., Zhang, L., Wang, L., Di, L., Du, Q., Liu, P., and Thenkabail,

P. S., "An Efficient and Robust Integrated Geospatial Object Detection

Framework for High Spatial Resolution Remote Sensing Imagery", Remote

Sesing , 9 (7): 666 (2017).

109. Padilla, R., Netto, S. L., and Da Silva, E. A. B., "A Survey on Performance

Metrics for Object-Detection Algorithms", International Conference On

Systems, Signals, And Image Processing, 237–242 (2020).

153

110. Padilla, R., Passos, W. L., Dias, T. L. B., Netto, S. L., and Da Silva, E. A. B., "A

Comparative Analysis of Object Detection Metrics with a Companion Open-

Source Toolkit", Electronics, 10 (3): 279 (2021).

111. Ajayi, O. G. and Ashi, J., "Effect of varying training epochs of a Faster Region-

Based Convolutional Neural Network on the Accuracy of an Automatic Weed

Classification Scheme", Smart Agricultural Technology, 3: 100128 (2023).

154

BIOGRAPHY

Aziz AYDIN completed his high school studies at al Najah secondary school in

Kuwait in 2015. He completed his undergraduate education in Medical Engineering

at Karabuk University between 2016 and 2021, including the first year of preparation.

In September 2021, he started his master’s degree in Biomedical Engineering at

Karabuk University. His current research interests are machine learning, deep

learning, image processing, Python, MATLAB, and programming languages.

