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ABSTRACT

M.Sc. Thesis

DETECTION AND CLASSIFICATION OF KIDNEY STONES BASED ON
DEEP LEARNING METHODS

Aziz AYDIN

Karabuk University
Institute of Graduate Programs

Department of Biomedical Engineering

Thesis Advisor:
Assist. Prof. Dr. Eftal SEHIRLI
January 2024, 154 pages

Kidney stones are a prevalent global health issue, leading numerous individuals to seek
emergency care due to intense pain. Different imaging methods are employed in the
diagnosis of Kkidney stone disease, requiring specialized expertise for the
comprehensive interpretation and diagnosis of these images. Significant advancements
in the medical field have been facilitated thanks to the application of machine learning
and deep learning methods. This thesis aims to employ deep learning and object
detection techniques to detect and classify kidney stones on CT images. The dataset
employed in this thesis comprises a total of 1799 coronal CT scans. Among these,
1009 scans originate from individuals without kidney stones, while the remaining are
collected from patients who have been diagnosed with kidney stones. This thesis
involves implementing three different models as Faster R-CNN, YOLO, and a
customized convolutional neural network (CNN). While Faster R-CNN performance

was underwhelming, YOLO v5 achieved promising results, surpassing YOLO v7 with

iv



a mAP (0.5) of 84.6% and a mAP (0.5:0.95) of 39.0% for kidney stone detection. The
customized CNN exhibited remarkable accuracy reaching 99.13%. Indicating its
efficacy in classifying kidney stones, the model achieved an accuracy closely
comparable to the leading studies in the literature firmly establishing itself as a

noteworthy achievement.
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Science Code : 925118



OZET

Yiiksek Lisans Tezi

DERIN OGRENME YONTEMLERIYLE BOBREK TASLARININ
TESPIT EDILMESI VE SINIFLANDIRILMASI

Aziz AYDIN

Karabiik Universitesi
Lisansiistii Egitim Enstitiisii

Biyomedikal Miihendisligi Anabilim Dali

Tez Danismani:
Dr. Ogr. Uyesi Eftal SEHIRLI
Ocak 2024, 154 sayfa

Bobrek taslari, kiiresel bir saglik sorunu olarak 6nem tasimakta ve siddetli agr
nedeniyle bir¢ok kisinin acil yardim talep etmesine sebep olmaktadir. Bobrek tasi
hastaliginin teshisi i¢in farkli goriintiileme teknikleri kullanilmakta, bu goriintiilerin
detayli bir sekilde degerlendirilmesi ve dogru teshis konulabilmesi i¢in uzmanlik
gerekmektedir. Tip alaninda, makine 6grenmesi ve derin 6grenme yoOntemlerinin
entegrasyonu ile 6nemli ilerlemeler kaydedilmistir. Bu tez, koronal BT goriintiilerde
bobrek taglarimi tespit etmek ve smiflandirmak amaciyla derin 6grenme ve nesne
tespiti tekniklerini kullanmay1 amaglamaktadir. Kullanilan veri seti, toplamda 1799
koronal BT goriintiileri i¢ermektedir. Bu goriintiilerden 1009’u bobrek tasi
bulunmayan bireylerden alinmis olup, geri kalani ise bobrek tasi teshisi konmus
hastalardan elde edilmistir. Bu tezde Faster R-CNN, YOLO ve ozellestirilmis bir
evrisimli sinir ag1 (CNN) olmak iizere ii¢ farkli model uygulanmistir. Faster R-
CNN’nin performansi beklenen seviyenin altinda kalmistir. Ote yandan, YOLO v5

umut verici sonuglar elde etmis ve 6zellikle bobrek tasi tespiti konusunda mAP (0,5)
Vi



%84,6 ve mAP (0,5:0,95) %39,0 basar1 oranlarina ulasarak YOLO v7’yi ge¢mistir.
Ayrica, Ozellestirilmis bir CNN modeli de %99,13 dogrulukla dikkat ¢cekmistir. Bu
model, bobrek taglarin1 simiflandirmadaki etkinligini literatiirdeki onde gelen

caligmalarla kiyaslanabilir bir dogruluk seviyesi elde etmistir.
Anahtar Kelimeler: Bobrek taslari, Derin 6grenme, Nesne tespiti

Bilim Kodu: 925118
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CHAPTER 1

INTRODUCTION

Kidney stone disease stands as a prevalent health concern, affecting a substantial
portion of the population with a reported prevalence ranging from 1% to 20% [1]. The
formation of stones within the urinary system, encompassing the kidneys, ureters, and
bladder, arises from the condensation of minerals and acid salts, eventually
crystallizing over time. Statistics reveal that approximately 11% of men and 6% of
women in the United States encounter kidney stones at least once during their lifetime
[2]. Factors contributing to the development of kidney stones include middle or
advanced age, a familial history of stone disease, low fluid intake, protein and salt-rich
diets, sedentary lifestyles, overweight or obesity, and certain genetic or inflammatory

conditions [3].

Visualization of kidney stones is achieved through medical imaging modalities such
as ultrasound, MRI, and CT scans, with the increased use of CT contributing to
improved detection rates. The categorization of kidney stones into calcium, uric acid,
struvite, and cysteine stones is based on their composition and formation [4].
Treatment methods vary according to the type of kidney stone, with options including
shock wave lithotripsy, ureteroscopy, percutaneous nephrolithotomy, percutaneous

nephron lithotripsy, and open surgery [5].

Despite the evolution of medical imaging techniques, challenges such as low
resolution, noise induced distortions, a high volume of patients, and a shortage of
specialists can impede accurate evaluations. To address these challenges, artificial
intelligence (Al)-based systems have emerged as a promising solution. Presently, deep
learning methodologies, a subset of Al, demonstrate remarkable accuracy in diverse

areas, including medical image processing and biomedical signal analysis [6,7].



Deep learning is a subfield of Al that deals with machine learning like algorithms that
have one or more hidden layers. Feature extraction happens automatically in deep
learning. This feature makes it possible to work with larger data sets without the need
for human intervention. Important features may disappear from the data in machine
learning because the features identified in the data are selected. While crucial
information is automatically extracted from the input in deep learning, it also has the
ability to independently extract new features [8]. Although the human factor is more
effective in machine learning, it is less in deep learning. Deep learning has becoming
more popular as a method for working with large amounts of data since it requires less

human intervention in tasks like feature extraction [9].

The aim of this thesis is to detect and classify kidney stones, which play an important
role in number of kidney diseases, by using deep learning and object detection
methods. Under this main aim, it is also planned to implement and compare different
methods. Within the scope of this thesis, Faster R-CNN, YOLO, and a customized

CNN model were developed using open source data set.

In the first part of this thesis, titled “Introduction,” a brief overview of the study is
provided. The introduction outlines the background, importance, and purpose of the
thesis. In the second chapter, general information about the kidney, including its
anatomy and physiology, kidney stone disease, and methods of detecting kidney
stones, is presented. The third chapter reviews the literature on studies related to the
classification and detection of kidney stones. In the fourth chapter, theoretical
information on Al, including supervised, unsupervised, and reinforcement learning, as
well as deep learning and artificial neural networks (ANN), is provided. The fifth
chapter covers details about the dataset, the programming language used, the platform
utilized, and features of the computer. In the sixth chapter, information about data pre-
processing, data augmentation, image annotation, and a detailed explanation of Faster
R-CNN, YOLO, CNN structures, and the model performance evaluation metrics are
given. In the seventh chapter, a discussion section is included, comparing the findings
obtained with the developed models and the results of other studies related to the

subject.



CHAPTER 2

KIDNEY

The kidneys are two vital organs that are important for survival. The kidneys are
located on either side of the spine, at the bottom of the rib cage, and behind the
abdomen. The kidneys are shaped like a bean or bean seed and are about the size of a
fist [10]. The main functions of the kidneys are based on filtering the blood from
accumulated impurities and toxins, balancing the levels of salts, minerals, and water,
thus helping to regulate blood pressure. The kidneys are involved in the production of
red blood cells and in revitalizing vitamin D into a form that the body can use to absorb
calcium from food, thus maintaining bone strength [11]. Each kidney consists of about
one million nephrons, which are comprised of two main components: the glomerulus
and the tubule. Within the nephron, the glomerulus acts as a network of small blood
vessels responsible for filtering the blood. At the same time, the tubule performs the
essential functions of reabsorbing valuable substances and eliminating waste products,
ultimately producing urine [12].

2.1. ANATOMY OF THE KIDNEY

Kidney has an approximate length of 11 cm, a width of 6 cm, and a thickness of 3 cm.
The left kidney is typically longer than the right kidney. Due to the liver’s position,
the right kidney also tends to sit lower than the left kidney. The mean kidney weight
is 150 g in males and 135 g in females [13]. Based on the glomerular filtration rate
(GFR), the kidneys filter more than 150 L of fluid per day, but less than 1% of the
filtered fluid is actually excreted in the urine [14]. When examining a kidney through
a frontal section, three well-defined areas can be observed: the cortex, medulla, and
pelvis. The outermost layer, known as the renal cortex, appears light in color and

displays a granular texture. Situated beneath the cortex is the renal medulla, which has



a darker reddish-brown hue. Within the medulla, cone-shaped tissue masses referred
to as medullary or renal pyramids can be observed [15]. The renal pelvis is situated at
the superior end of the ureter, displaying a flattened structure [16]. A frontal section
of the kidney is illustrated in Figure 2.1 [17].

Fibrous capsule

Cortex Minor calices

Medulla (pyramids)
Renal sinus
Renal papilla

Maijor calices
Renal column

(of Bertin) ——— Renal pelvis

Base of pyramid
Ureter

Figure 2.1. Kidney anatomy [17].

2.2. PHYSIOLOGY OF THE KIDNEY

The kidneys have four main functions regulating the body’s fluid and electrolyte
balance, producing hormones, eliminating waste products generated during
metabolism, and performing specific metabolic activities. One of the crucial roles of
the kidneys is the excretion of nitrogenous waste substances, including urea,
creatinine, and ammonia ions, through urine. Therefore, any notable changes in renal

function lead to the accumulation of these waste products within the body [18].

Each nephron performs the task of filtering a small quantity of blood. Within the

nephron, there is a filtering component called the glomerulus, along with a tubule. The

nephrons operate through a two-step process. Initially, the glomerulus allows fluid and

waste products to pass through it, while blocking the passage of blood cells and large

molecules, particularly proteins. Subsequently, the filtered fluid moves through the
4



tubule, which selectively reabsorbs necessary minerals back into the bloodstream
while eliminating waste substances. Eventually, the production of urine is the outcome

of this process [10].

The kidneys release several hormones, including erythropoietin (EPO), a peptide
hormone that is crucial for the production of red blood cells in the bone marrow.
Additionally, the kidneys play a role in the synthesis of 1,25-dihydroxyvitamin D3,
the active form of vitamin D, which is essential for maintaining calcium homeostasis.
This active form of vitamin D is produced by the proximal tubule cells through the
action of specific enzymes [19]. Likewise, renin, an enzyme synthesized in the
kidneys, serves a crucial function within the renin-angiotensin-aldosterone hormonal

system, which aids in the regulation of blood pressure [20].

2.3. RENAL DISEASES

Renal diseases pose a significant threat to public health worldwide, with chronic
kidney disease (CKD) affecting an estimated 8% to 16% of the global population.
CKD is defined as a persistent impairment in kidney structure or function for a period
exceeding three months. It is most commonly attributed to diabetes and hypertension
[21]. If left untreated, CKD can progress to kidney failure, a critical condition
necessitating either dialysis or a kidney transplant. Other common kidney diseases
include diabetic nephropathy, glomerulonephritis, kidney stones, kidney tumors,

pyelonephritis, and renal cell carcinoma [22].

2.3.1. Kidney Stones

Nephrolithiasis, also known as kidney stone formation, occurs when substances such
as calcium or other minerals in the urine become excessively concentrated. As a result,
these substances adhere to each other and form solid masses within the kidneys,
leading to the development of kidney stones [23]. The term “nephrolithiasis” originates
from the Greek words “nephros,” meaning kidney, and “lithos,” meaning stone [24].
Nephrolithiasis, following hypertension, is one of the most prevalent chronic kidney

conditions and has been recognized since ancient times, with treatments documented
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in early medical texts. Kidney stones are a preventable source of illness. Annually, the
United States faces a significant economic burden surpassing 5 billion dollars. This
includes expenses associated with hospitalization, procedures to remove symptomatic
stones, as well as the productivity loss due to missed work [25]. A sample of kidney

stones is illustrated in Figure 2.2 [26].
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Figure 2.2. Kidney stone [26].
Generally, there are four types of stone formation: calcium, uric acid, struvite and
cystine stones. Basically, kidney stones are categorized according to their primary

crystalline composition. An illustration of types of kidney stones is shown in Figure

2.3 [27].
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Figure 2.3. Types of kidney stones [27].



Kidney stones exhibit a wide range of sizes, ranging from as small as a grain of sand
to as large as a pearl. However, it is important to note that the majority of kidney stones
are typically quite small in size. The summer season is associated with a higher
prevalence of kidney stones. Typically, smaller stones are expelled from the body,
often accompanied by varying levels of discomfort. Conversely, larger stones can
obstruct the normal flow of urine, leading to extreme pain when they become lodged
in the ureters, bladder, or urethra [28]. Kidney stones are more prevalent in men
compared to women, and there are slight variations in the types of stones found

between the sexes [29].

Although establishing a direct link between climate and the formation of kidney stones
is challenging, there is an increased prevalence of kidney stones in areas with high
temperatures and during the summer season. In hot climates, increased water loss
through sweating can lead to concentrated urine and reduced urine volume. This, in
turn, raises urine acidity and the concentration of certain molecules, promoting the
crystallization of these substances in individuals prone to kidney stone formation [30].
Most kidney stones are the result of a combination of genetic and environmental
factors [31]. Dehydration resulting from inadequate fluid intake is a primary factor in
the progress of kidney stones [32].

Diagnosis of nephrolithiasis requires confirmation of the presence of a kidney stone
by observing its transition, removal, and destruction, or by imaging or surgery to
confirm the presence of a stone in the urinary tract. As a part of the investigation, a
comprehensive medical history and physical examination are performed on people
with suspected kidney stones. However, to establish a clinical diagnosis, it is usually

necessary to complement these evaluations with suitable imaging methods [33].

2.4. DIAGNOIS OF THE KIDNEY STONES

In the management of patients with renal stone disease, imaging plays a significant
role in various aspects, including the initial diagnosis, development of treatment plans,
and monitoring the effectiveness of medical therapy or urologic interventions during

follow-up [34]. The use of imaging techniques is crucial in the evaluation of kidney
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stones, serving as a significant diagnostic tool and the first step in determining the
most suitable therapeutic options for their treatment. The choice of the most suitable
imaging modality for kidney stones involves considering several factors, including the
clinical setting, patient’s body composition, expense implications, and the patient’s
sensitivity to ionizing radiation. Among the available imaging modalities, Computed
Tomography (CT) scans, ultrasonography, and kidney ureter bladder (KUB) plain film
radiography are widely utilized in clinical practice for the evaluation of kidney stones
[35].

Non-contrast CT of the abdomen and pelvis is considered the gold standard for
accurately diagnosing kidney stones, providing highly accurate results. However, one
drawback is that it exposes patients to ionizing radiation. On the other hand,
ultrasonography, although traditionally having lower sensitivity and specificity
compared to CT, offers the advantage of being a radiation-free imaging modality.
When evaluating patients with a history of stone disease, KUB plain film radiography
is most beneficial for detecting any growth or changes in the stones over time.
However, its usefulness in diagnosing acute stones is limited. MRI provides the
potential for radiation-free 3D imaging, but its ability to visualize stones is currently
challenging, and it can be an expensive option [35].



CHAPTER 3

LITERATURE REVIEWS

Deep learning is an Al technique that enables computers to utilize provided data in
order to make predictions. In recent times, there has been a remarkable progress in the
field of computer vision and deep learning algorithms, which has led to their
widespread adoption for analyzing medical images [36]. This section provides an
overview of various studies conducted on the detection of kidney diseases,

highlighting their key findings, and summarizing their outcomes.

Patro et al. [37] proposed a study in which they introduced an approach for automatic
kidney stone diagnosis. They developed a custom CNN model that utilized a novel
Kronecker product structure. During the experimentation phase, a database consisting of
1799 coronal CT scans was utilized. This database included scans from 433 individuals,
with 790 scans showing kidney stones and 1009 scans representing normal healthy cases.
To validate the proposed method, a 10-fold cross-validation (CV) technique was
employed. the performance of the proposed Deep Kronecker Network (DKN) was
evaluated and compared with traditional approaches such as CNN, Residual Neural
Network (ResNet), and AlexNet. The automated model developed in this study achieved

an accuracy of 98.56% in detecting kidney stones using CT images.

Razmjooy & Yan [38], introduced a novel automatic method aimed at accurately
diagnosing kidney stones. The primary objective was to propose an improved version of
a metaheuristic technique called Fractional Order Coronavirus Herd Immunity Optimizer
(FO-CHIO), which was integrated into a modified version of a Deep Belief Network
(DBN). They used a dataset comprised a total of 12446 images, which were categorized
as follows: 5077 normal images, 3709 cysts, 2283 tumor images, and 1377 stone images.

Finally, a comparison was conducted between the proposed DBN/FO-CHIO method an



other state-of-the-art approaches. The results of the simulations revealed that the
recommended DBN/FO-CHIO approach exhibited superior performance in terms of an
accuracy of 97.98%. Additionally, the proposed DBN/FO-CHIO method demonstrated
exceptional sensitivity with a value of 92.99%, surpassing the performance of the other

comparison algorithms.

Caglayan et al. [39] conducted a study to evaluate the effectiveness of a deep learning
model in detecting kidney stones of varying sizes in different planes using unenhanced CT
images. A total of 455 patients who underwent CT scanning for kidney stones between
January 2016 and January 2020 were included. Among these patients, 405 were diagnosed
with kidney stones, while 50 patients did not have kidney stones. The patients were divided
into different groups based on the size of their renal stones: group 1 included patients with
stones measuring 0-1 cm, group 2 included patients with stones measuring 1-2 cm, and
group 3 included patients with stones larger than 2 cm. A total of 2959 CT images from
455 patients were reviewed by two radiologists across three different planes. Among the
different planes examined, the sagittal plane demonstrated the highest sensitivity and
specificity in comparison to the other plane. The deep learning model achieved accuracy
rates of 78%, 68%, and 70% in the axial plane for the testing group. In the coronal plane,
the accuracy rates were 63%, 72%, and 64%. Lastly, in the sagittal plane, the accuracy

rates were 85%, 89%, and 93% for the respective testing groups.

Gurkan et al. [40] The You Only Look Once (YOLO) architecture designs were employed
to detect kidney, kidney cysts, and kidney stones, with the added support of explainable
artificial intelligence (xAl) features. The performance analysis of these YOLO designs
utilized CT images categorized into three classes: 72 images of kidney cysts, 394 images
of kidney stones, and 192 images of healthy kidneys. The dataset was split into three sets,
with 75% used for training, 10% for validation, and 15% for testing. Both of tiny Yolov7
and Yolov7 were utilized. The YOLOV7 architecture design attained the following
results, with values of 0.85, 0.882, 0.829, and 0.854 for mAP (0.5), precision,

sensitivity, and F1 score, respectively.

Baygin et al. [41] utilized a publicly available dataset consisting of 1799 CT images. These
images were captured with dimensions of 512x512 pixels. The dataset comprised two

classes: normal and kidney. As a part of the pre-processing steps, the CT images
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underwent several techniques to ensure their compatibility with the deep learning model.
One of these techniques involved resizing the images to 224x224 pixels. A novel
ExDark19 classification model was introduced to detect kidney stones in CT images. The
proposed method, based on the concept of vision transform (ViT), demonstrated high
classification performance in analyzing CT images. The primary objective of ExDark19
was to achieve accurate classification results while minimizing the computational time
required for kidney stone detection. In addition to that, the iterative neighborhood
component analysis (INCA) technique was utilized to select the most informative feature
vectors. These selected feature vectors were then fed into a k-nearest neighbor (KNN)
classifier for the purpose of kidney stone classification. The evaluation of the proposed
ExDark19 model was carried out using a 10-fold CV strategy. The results demonstrated
an accuracy of 99.22% with the 10-fold CV approach and 99.71% using the hold-out

validation method.

The focus of the research [42] revolved around three significant categories of renal
diseases: kidney stones, cysts, and tumors. To construct an Al based diagnostic system for
kidney diseases, a comprehensive collection of 12446 whole abdomen and urogram CT
images was gathered and annotated. Six models were developed for the purpose of kidney
disease classification. Among these models, three were based on recent state-of-the-art
variants of ViT, namely External Attention Transformer (EANet), Compact Convolutional
Transformer (CCT), and Swin Transformer (Shifted Window Transformer). The other
three models utilized well-known deep learning architectures: ResNet, Visual Geometry
Group (VGG16), and Inception V3. These models were employed to leverage the
strengths of both recent advancements and established deep learning techniques in the
field of kidney disease classification. After testing the models, VGG16 and CCT exhibited
good performance. However, the Swin Transformer model surpassed them all in terms of

accuracy, achieving an accuracy rate of 99.30%.

In a study conducted by Yildirim et al. [43], the focus was on the detection of kidney
stones. A total of 1799 non-contrast CT images of the brain were collected from 500
patients with urinary and kidney stone-related medical conditions. Out of these, 67 patients
were excluded from the study based on a specific criterion. A total of 433 subjects were
included in the study, consisting of 278 patients with kidney stones and 165 patients

without stones (normal). The labeling procedure, where the presence or absence of stones
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was identified, was performed by experts, including a radiologist and a urologist. Notably,
no segmentation was applied to the CT images during the labeling process. The researchers
utilized rotation and zooming techniques for data augmentation. After augmenting the
images, the next step involved feeding images them into a deep learning model for further
analysis. Specifically, they employed the XResNet-50 model for the detection process,
leveraging its capabilities to effectively classify and identify kidney stones. For parameter
tuning of the model, Adam optimization and cross-entropy loss were employed. By
utilizing these techniques, it was aimed to optimize the performance of the model. As a

result, the model achieved an accuracy of 96.82%.

S. Sudharson & P. Kokil [44] proposed a paper focused on kidney disease detection and
classification. The study utilized a dataset comprising 4940 ultrasound images acquired
from various sources. The dataset was categorized into four distinct categories, namely
cyst, tumor, stone, and normal. The researchers proposed a computer-aided diagnosis
(CAD) system to address the issue of speckle noise. To ensure high image quality, a
perception-based image quality evaluator (PIQUE) score was utilized as a part of the
image selection process. Images with a PIQUE score of P < 50 were selected for further
analysis. Subsequently, data augmentation techniques rotation, translation, and cropping
were applied to the selected images. The dataset was then divided into train and test sets,
with 90% of the images allocated to the training process and the remaining 10% reserved
for testing the CAD system’s performance. In the test dataset, different speckle noise
levels were intentionally added by utilizing noise model. The proposed CAD system then
performed the de-speckling process using a pre-trained network. Specifically, a pre-
trained ResNet-101 model was utilized for the feature extraction process. This model
played a crucial role in extracting informative features from the noisy images, aiding in
the subsequent steps of the CAD system’s analysis and diagnosis of kidney diseases. For
the classification means Support Vector Machine (SVM) was employed. In conclusion,
the model achieved an accuracy score of 87.31% when tested with a speckle noise ratio of
0.02. This indicates the model’s ability to effectively classify and diagnose kidney

diseases, even in the presence of a certain level of speckle noise.

Parakh et al. [45] the aim of this study was to examine the diagnostic accuracy of a
cascading CNN for detecting urinary stones in unenhanced CT images. Additionally, the

researchers sought to assess the performance of pretrained models when supplemented
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with labeled CT images acquired from various scanners. In this retrospective clinical
study, unenhanced abdominopelvic CT scans from 535 adults who were suspected of
having urolithiasis were utilized. 279 of them (comprising 165 men and 114 women) were
diagnosed with stones, while the remaining 256 patients (including 140 men and 116
women) did not have stones. The effectiveness of a cascading CNN for the detection of
urinary stones was demonstrated. In this approach, the urinary tract was first detected by
the initial CNN model, while the subsequent CNN model was responsible for detecting
the presence of stones. This cascading approach allowed for a more accurate and specific
identification of urinary stones within the imaging data. The CNN utilized was initially
pretrained with ImageNet, which consisted of 1.2 million natural images spanning 1000
categories. Following the ImageNet pretraining, the model was fine-tuned using an in-
house dataset called GrayNet. Which contained labeled CT images specifically designed
for human anatomy recognition. This fine-tuning process resulted in the generation of a
pretrained model called the GrayNet pretrained model. The weights of this pretrained
model were then utilized to initialize the CNN models employed for urinary tract
identification and stone detection tasks. The network achieved Area Under Curve (AUC)
of 0.954.

Langkvist et al [46] a CNN was employed to detect ureteral stones in thin-slice CT scans.
The primary focus of this research was to develop an automatic detection method for
ureteral stones that do not rely on specific feature selection or segmentation techniques.
The complete dataset used in this study comprised 465 unenhanced abdominal CT scans
that were clinically acquired. To train the CNN, the scans were randomly divided into a
training set (80% of the dataset) and a testing set (20% of the dataset). Prior to the division,
28 scans that contained stones that were either too small or too large were removed from

the dataset. The achieved sensitivity for the model was 100%.

Table 3.1 provides an overview of previous research studies, listing the algorithms utilized

and the corresponding years of each study and additional information on the used datasets.
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Table 3.1. Overview of previous research studies.

No Authors Reference Year Input Number of Model Results
images Images
1 Patroetal. [37] 2023 CT 1799 DKN Accuracy: 98.56%.
2 Razmjooy & Yan [38] 2023 CT 12446 DBN/FO- Accuracy: 97.98%.
CHIO
3  Caglayan et al. [39] 2022 CT 2959 XResNet50 Accuracy: 85%, 89%, and 93% in the sagittal
plane.
4  Gurkan et al. [40] 2022 CT 658 YOLO v7 mAP  (0.5): 0.85, Precision: 0.882,
Sensitivity: 0.829, F1 score: 0.854.
5 Bayginetal. [41] 2022 CT 1799 ExDark19 10-fold CV Accuracy: 99.22%, hold-out
Accuracy: 99.71%.
6 Islam et al. [42] 2022 CT 12446 Swin Accuracy :99.30%.
transformers
7 Yildirimet al. [43] 2021 CT 1799 XResNet50 Accuracy: 96.82 %
8  S.Sudharson & P. [44] 2021 Ultrasound 4940 SVM Accuracy: 87.31%
Kokil
9  Parakhetal. [45] 2019 CT 535 Dual CNN AUC: 0.954
10 Léngkvist et al. [46] 2018 CT 465 CNN Sensitivity: 100%
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CHAPTER 4

ARTIFICIAL INTELLIGENCE

Al is an emerging field that utilizes computer technology to explore and progress theories,
methods, techniques, and application systems aimed at simulating, extending, and
amplifying human intelligence [47]. Al, as a scientific field, aims to enable machines to
solve complex problems in a manner that resembles thinking and problem-solving
capabilities of human [48]. Machine learning and deep learning are two integral
components of the field of Al, with deep learning being the more recently introduced
technique [49].

4.1. MACHINE LEARNING

Machine learning is the discipline that revolves around developing algorithms and
statistical models, allowing computer systems to perform tasks by analyzing patterns
and making inferences, without relying on explicit instructions. It is a branch of Al
that aims to extract information from given inputs, recognize patterns, and make
decisions with minimal human intervention [50]. Machine learning is a type of
software that enhances its performance in the future by learning from past experiences.
It falls under the umbrella of Al, aiming to simulate human intelligence within
computer systems [51]. There are various types of machine learning, including
supervised learning, unsupervised learning and reinforcement learning offering
different approaches to the learning process [52]. Supervised learning involves the use
of classification and regression techniques, while unsupervised learning utilizes
clustering techniques. Diagram of machine learning algorithms is visually represented
in Figure 4.1 [52].
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Machine Learning
(ML)

Figure 4.1. Diagram of machine learning algorithms [52].

4.1.1. Supervised Learning

Supervised learning, a subset of machine learning, relies on labeled data to train
models for both prediction and detection tasks. In this approach, known outputs are
assigned to each known input in the training data. Adequate availability of labeled
input-output data enables supervised learning to achieve high performance in
estimation. Machine learning can be classified into two main categories based on the
types of model outputs in supervised learning. If the output is continuous, it is
considered a regression problem, whereas if the output is discrete and represents a
value from a finite set of predefined options, it is categorized as a classification
problem [53].

In regression, the objective is to predict a continuous value label for an unlabeled
sample using a trained model. The model makes predictions based on the patterns and
information which were learned from the labeled dataset. While classification involves
predicting the class to which a new test sample belongs, utilizing a labeled training set
where each sample is associated with a known class [53].There is a range of supervised
machine learning algorithms available, and some of the commonly used ones include
Decision Tree (DT), Random Forest (RF), KNN, SVM, ANN, Naive Bayes (NB),
Linear Regression (LR), and Linear Discriminant Analysis (LDA) [54].
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4.1.2. Unsupervised Learning

Unsupervised machine learning methods hold great significance as analytical tools for
handling and interpreting high-dimensional data. By identifying and underlying both
patterns and hidden structures in complex datasets, these techniques effectively
simplify the understanding and analysis of high-dimensional data [55]. Clustering
techniques, dimensionality reduction algorithms, autoencoders, and generative
adversarial networks (GANs) are among the commonly utilized unsupervised
techniques [56]. Unsupervised learning offers advantages over supervised learning in
certain tasks by eliminating the need for annotated data guidance, making it more
suitable for handling those tasks [57]. The differentiation between supervised learning

and unsupervised learning is shown in Figure 4.2 [57].
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Figure 4.2. The difference between supervised 