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ABSTRACT 

 

M. Sc. Thesis 

 

ALZHEIMER DISEASE CLASSIFICATION USING DEEP LEARNING 

 

Mais Alhamidi AHMAD 

 

Karabük University 

Institute of Graduate Programs 

The Department of Computer Engineering 

 

Thesis Advisor: 

Assist. Prof. Dr. Nehad T.A RAMAHA 

Jan 2024, 50 pages 

 

Alzheimer's disease is a neurological condition that causes moderate mental 

deterioration. A precise diagnosis of Alzheimer's disease is essential for enhancing the 

quality of life for patients and their families, mitigating the progression of the illness, 

and identifying candidates for clinical trials of novel therapeutic interventions. In this 

study, we look at the capability of deep learning frameworks to precisely foresee 

Alzheimer's sickness stages utilizing X-ray division information by using Multi-

classification brain MRI with a dataset comprising 12,800 samples. We tried four 

algorithms and found that MobileNet and CNN outperformed DenseNet, and Inception 

v3 model with regards to execution. The discoveries of this study demonstrate the way 

that deep learning algorithms could be utilized to detect early Alzheimer's infection. 

The methods' efficacy is measured by precision, recall, F-measure, and accuracy. The 

proposed model, MobileNet and CNN achieves the highest accuracy with a 95.92% 

score. Notwithstanding these inadequacies, the review's hopeful discoveries propose 

that deep learning could be utilized to recognize Alzheimer's sickness at the beginning 
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phase. More exploration is expected to approve these discoveries to foster further 

learning algorithms for early Alzheimer's disease findings that are more viable and 

proficient. Early discovery of Alzheimer's illness is vital for various reasons. A more 

significant level of living for patients and their families can be an advantage. Second, 

it might help to postpone the movement of the infection. Third, it can help in choosing 

patients to partake in clinical preliminaries of new drugs.  

 

Keywords :  Alzheimer's disease, deep learning, MRI segmentation, early 

diagnosis, Clinical trials, CNN Convolutional Neural Networks. 

Science Code : 92402 
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ÖZET 

 

Yüksek Lisans Tezi 

 

DERİN ÖĞRENME İLE ALZHEIMER HASTALIĞI SINIFLANDIRMA 

 

Mais Alhamidi AHMAD 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi Nehad T.A RAMAHA 

Ocak 2024, 50 sayfa 

 

Alzheimer hastalığı, orta düzeyde zihinsel bozulmaya neden olan nörolojik bir 

durumdur. Alzheimer hastalığının kesin tanısı, hastaların ve ailelerinin yaşam 

kalitesini artırmak, hastalığın ilerlemesini hafifletmek ve yeni terapötik müdahalelerin 

klinik denemeleri için adayları tanımlamak için önemlidir. Bu çalışmada, derin 

öğrenme çerçevelerinin, 12.800 örneği içeren bir veri kümesi kullanılarak X-ray 

bölümü verilerini kullanarak Alzheimer hastalığı aşamalarını kesin olarak tahmin etme 

yeteneği incelenmektedir. Dört algoritma denedik ve MobileNet ve CNN'nin, 

performans açısından DenseNet ve Inception v3 modelini geride bıraktığını bulduk. 

Bu çalışmanın bulguları, derin öğrenme algoritmalarının erken Alzheimer hastalığını 

tespit etmek için kullanılabileceğini göstermektedir. Yöntemlerin etkinliği doğruluk, 

duyarlılık, F-ölçümü ve kesinlikle ölçülmüştür. Önerilen model, MobileNet ve CNN, 

%95,92'lik bir başarı puanı ile en yüksek doğruluğa ulaşır. Bu eksikliklere rağmen, 

çalışmanın umut verici bulguları, derin öğrenmenin Alzheimer hastalığını erken 

evrede tanımak için kullanılabileceğini önermektedir. Bu bulguları doğrulamak için 
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daha fazla araştırma gerekmektedir, böylece daha etkili ve verimli erken Alzheimer 

hastalığı teşhisleri için öğrenme algoritmaları geliştirilebilir. Alzheimer hastalığının 

erken teşhisi birçok nedenle önemlidir. Hastaların ve ailelerinin daha yüksek bir yaşam 

kalitesine sahip olmaları bir avantaj olabilir. İkincisi, hastalığın ilerlemesini 

geciktirmeye yardımcı olabilir. Üçüncüsü, yeni ilaçların klinik denemelerine katılmak 

için hastaları seçmede yardımcı olabilir. 

 

Anahtar Kelimeler: Alzheimer hastalığı, derin öğrenme, MR segmentasyonu, erken 

tanı, klinik çalışmalar. 

Bilim Kodu  : 92402 
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PART 1 

 

INTRODUCTION 

 

1.1. OVERVIEW  

 

One of the most challenging issues at the intersection of neuroscience and healthcare 

is Alzheimer's disease (AD). This complex neurological condition is characterized by 

the presence of amyloid plaques and tau tangles, which are unusual protein build-ups 

in the brain and serve as defining features of the disease. These protein aggregates 

initiate the slow degeneration of neurons and synapses, which leads to an unstoppable 

loss of behavior, memory, and cognitive function [1]. The progression of AD occurs 

in multiple stages: mild cognitive impairment (MCI) first appears, then the disease 

advances into mild, moderate, and severe forms.  

 

The journey starts with a preclinical phase, during which individuals don't exhibit any 

noticeable symptoms. Despite substantial research progress in unraveling the 

molecular and pathological underpinnings of the disease, Alzheimer's remains a major 

public health issue. A definitive cure remains elusive, and the available therapeutic 

interventions predominantly target symptom management. A key problem in the field 

of neurodegenerative illnesses is the urgent need for effective treatments that can 

change the course of the disease and eventually stop its progression [2]. 

 

1.2. MOTIVATION  

 

The seriousness of the Alzheimer's disease problem underpins the research's complex 

significance. Amidst an ever-aging global population, the occurrence of AD keeps 

rising, placing an ever-growing strain on healthcare systems, careers, and those who 

are affected personally. The pivotal role of early and precise diagnosis cannot be 

overstated, serving as the very essence of the work conducted within this study. By 
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enabling people to make educated decisions about their treatment, early detection of 

Alzheimer's disease can greatly improve the quality of life for patients and their 

families as well as their general well-being [3]. Additionally, it makes it possible to 

manage diseases more effectively by enabling the use of focused therapies and 

interventions that may halt the disease's progression and lessen its symptoms. 

 

In clinical trials, prompt and accurate diagnosis is crucial for choosing the right 

individuals to explore novel treatment modalities. This process promotes the creation 

of potentially life-changing medications and ignites the prospect of future treatments 

that will be even more potent. Furthermore, early diagnosis holds the potential to lower 

the long-term healthcare expenses related to Alzheimer's disease, which would be 

advantageous for patients as well as healthcare systems [4]. Research in this area, 

especially the creation of predictive models, has implications for the larger field of 

medical knowledge and technology in addition to these direct advantages. It propels 

advancements in artificial intelligence and clinical imaging technologies, with far-

reaching applications that transcend Alzheimer's disease [5–7]. 

 

1.3. PROBLEM STATEMENT 

 

The early diagnosis of Alzheimer's disease using neuroimaging data is the main issue 

this work attempts to solve, with a focus on applying transfer learning techniques. The 

problem at hand is intricate and multifaceted because of the detailed nature of the 

neuroimaging data from magnetic resonance imaging (MRI) [8], [9]. Since these brain 

images are exceedingly complex, multidimensional, and three-dimensional by their 

very nature, it is challenging to find patterns and indicators associated with 

Alzheimer's disease [10–12]. The challenge is sorting through the multiple layers of 

data to find the subtle but essential illness signs, many of which show up long before 

overt clinical symptoms do. 

 

Adding another layer of intricacy is the fact that Alzheimer's disease is renowned for 

its remarkable heterogeneity. It is known to manifest in a wide spectrum of clinical 

and radiological variations, making it challenging to construct a single prediction 

model that can account for this full range of presentations [13]. This diversity in how 
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the disease manifests necessitates a holistic approach that can navigate this complexity, 

identifying consistent and reliable disease markers that persist across this broad 

spectrum [14]. 

 

To address this complex issue and bridge the existing gaps in Alzheimer's disease 

prediction, this study employs a variety of strategies. It delves into advanced data 

preprocessing techniques and utilizes feature engineering methods to extract 

meaningful information from the intricate neuroimaging data effectively, creating a 

comprehensive characterization of Alzheimer's disease progression. Furthermore, the 

study explores and optimizes transfer learning techniques, which have shown promise 

in various machine learning domains. In the context of Alzheimer's disease prediction, 

transfer learning has the potential to expand the accuracy and adaptability of predictive 

models, enabling them to generalize their findings across diverse datasets. 

 

1.4. AIM AND OBJECTIVES 

 

This goal of thesis is to advanced AI methods to predict Alzheimer's disease early, with 

the goal of improving how we care for patients, develop treatments, and understand 

this difficult illness. In order to meet this goal, the following objectives will be covered 

in this thesis: 

• To extract the relevant features using advanced data preprocessing and feature 

engineering: We aim to apply advanced data preprocessing techniques and 

feature engineering methods to tackle the complexity of neuroimaging data. 

This process helps us extract relevant features that characterize the progression 

of Alzheimer's disease. 

• To enhance the accuracy and generalizability of the predictive models using 

transfer learning optimization: We will extensively explore and optimize 

transfer learning algorithms specifically for Alzheimer's disease prediction. 

This optimization aims to enhance the accuracy and generalizability of 

predictive models, making them capable of performing well across different 

datasets. 
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• To evaluate the suggested approach using performance metrics analysis: We 

intend to use a variety of performance metrics to gain a comprehensive 

understanding of how effectively the suggested deep learning algorithms 

identifies early-stage Alzheimer's disease, providing insights into the strengths 

and weaknesses of our approach. 

 

1.5. CONTRIBUTIONS 

 

This study aims to address the challenging task of early Alzheimer's disease prediction 

by leveraging advanced AI techniques, ultimately contributing to the improvement of 

patient care, treatment strategies, and our understanding of this debilitating disease. 

This study's contributions are substantial and include the following: 

 

• Improved Early Diagnosis: By addressing the complexity of neuroimaging data 

in Alzheimer's disease prediction, our research offers the potential for more 

accurate and early detection. This advancement is pivotal as it can significantly 

impact patient care and clinical practice, allowing for early interventions that 

may slow disease progression and improve the overall quality of life for 

affected individuals. 

• Robustness and Real-world Applicability: We verify the robustness and real-

world applicability of our models by testing them on external datasets from 

diverse healthcare centers. This validation process ensures that our models are 

not confined to specific data distributions, making them more versatile and 

valuable for the broader medical community. 

 

1.6. STRUCTURE OF THE THESIS 

 

The forthcoming sections of this paper are organized to provide a comprehensive 

exploration of our study. Chapter 2 delves into an extensive review of previous studies 

closely related to our research topic. This critical examination offers insights into the 

existing body of knowledge and sets the foundation for our investigation. In Chapter 

3, we meticulously outline the specific research approach adopted in our study. This 

chapter comprehensively details the methodologies, technical aspects, and approaches 
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used in our research process, shedding light on the intricate steps taken to conduct our 

study effectively. Following this, Chapter 4 will present a comprehensive analysis of 

the results obtained from our research endeavors. We provide detailed insights into the 

outcomes, observations, and performance metrics garnered from our experiments and 

analyses. Subsequently, Chapter 5 provides an in-depth discussion and interpretation 

of the results. Here, we delve into the implications, significance, and nuances of the 

findings, offering a comprehensive understanding of their implications and relevance 

in the context of the broader field. Finally, Chapter 6 serves as the conclusion of this 

document, encapsulating the key takeaways from our study and emphasizing potential 

avenues for future research and exploration. This section aims to spark further 

investigation and innovation in the domain, outlining areas where additional studies 

and developments could significantly contribute to the field's advancement. 
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PART 2 

 

2. LITERATURE REVIEW 

 

2.1.  RELATED WORKS ON AD CLASSIFICATION 

 

Previous research has explored the application of deep learning techniques for 

Alzheimer's disease classification, focusing on utilizing convolutional neural networks 

(CNNs) and transfer learning to analyze brain image data and achieve accurate 

diagnosis [15], [16]. Deep learning methods have shown promise in distinguishing 

between healthy individuals and those with Alzheimer's disease, offering potential 

improvements in early detection and classification of AD stages based on medical 

imaging.  

 

Authors [17] present a comprehensive framework utilizing convolutional neural 

networks (CNN) for early Alzheimer's disease detection and classification in medical 

images, achieving promising accuracies up to 93.61% and 95.17% for 2D multi-class 

classifications. AD stage classifications and proposing an Alzheimer's checking web 

app to enable remote AD assessment during the COVID-19 pandemic. 

 

Similarly, authors [18] have focused on Alzheimer's disease and proposed an 

automated system using deep learning and transfer learning for early detection, 

achieving an impressive 91.70% accuracy in multi-class classification of brain MRI 

images, outperforming previous approaches. On a similar dataset, the authors [19] 

developed a practical brain MRI-based Alzheimer's disease (AD) diagnostic classifier 

using deep learning and transfer learning on a large and diverse dataset of 85,721 scans 

from 50,876 participants. The model achieved high accuracies of 90.9% in cross-

validation and 94.5% to 91.1% on three independent datasets. The proposed AD 

classifier shows promise as a medical-grade marker for early AD diagnosis and could 

be integrated into AD diagnostic practice.  
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Recent years have witnessed significant advancements in Alzheimer's disease 

classification research using deep learning, showing promising results in early 

detection and diagnosis through innovative neural network architectures and large-

scale dataset utilization. In [20] author proposes a deep convolutional neural network 

(CNN) based approach for diagnosing Alzheimer's disease using an AD dataset from 

Kaggle. The CNN achieved an impressive accuracy of 94.61%, outperforming other 

machine learning-based approaches. The study highlights the potential of combining 

ontology construction with deep learning knowledge to improve AD diagnosis and 

enhance robustness and scalability in comparison to traditional methods.  

 

In [21] presents two classifiers for distinguishing between healthy controls (HC) and 

Alzheimer's disease (AD) using ADNI and OASIS datasets, achieving a balanced 

accuracy of 90.6% and a Matthew's correlation coefficient of 0.811. Additionally, a 

three-class classifier for HC, mild cognitive impairment (MCI), and AD achieved a 

62.1% balanced accuracy. The study reveals the significance of hippocampal features 

in classification decisions and demonstrates good generalization across datasets and 

protocols. However, the inclusion of graph theory measures did not improve 

classification performance.  

 

The paper [22] proposes a hybrid Deep Learning Approach for early detection of 

Alzheimer's disease, utilizing multimodal imaging and a Convolutional Neural 

Network with the Long Short-term memory algorithm. The system achieves an 

impressive accuracy of 98.5% in classifying cognitively normal controls from early 

MCI, demonstrating the potential of deep neural networks in identifying imaging 

biomarkers indicative of AD for accurate diagnosis. 

 

2.2.  ADVANTAGE AND DISADVANTAGE OF CURRENT LITERATURE 

 

Table 1 depicts the advantages and disadvantages of current literature. Authors [17] 

proposal of a web application for remote AD assessment amid the COVID-19 

pandemic showcased adaptability. However, their focus on a specific dataset raises 

concerns about the generalizability of their findings across diverse datasets and 

populations. In a similar vein, Munir et al. [18] achieved a remarkable multi-class 
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classification accuracy of 91.70% for brain MRI images. Despite this success, debates 

emerged regarding the scalability and integration of their methodology into clinical 

practice, warranting further consideration. Lu et al. [19] developed a robust deep 

learning-based AD diagnosis classifier using transfer learning on a diverse dataset, 

attaining accuracies between 90.9% to 94.5% across various datasets. However, their 

limited insights into practical implementation might impede its real-world application. 

Moreover, N. H. et al. [20] highlighted the fusion of ontology building and deep 

learning to enhance AD diagnosis, albeit needing further elaboration on scalability and 

data variety for comprehensive understanding and application. Lastly, Balaji et al. [22] 

proposed a hybrid deep learning approach integrating CNNs with the Long Short-Term 

Memory algorithm and multimodal imaging for early AD identification, 

demonstrating an impressive 98.5% accuracy in distinguishing between normal 

controls and early MCI. However, their minimal discussion on the practical application 

of remote and real-time assessment might limit its translation into clinical practice.  

 

Table 2.1. Advantage and limitation of prior works. 

Reference Year Method Description Limitations Accuracy 

[17] 

Helaly et 

al. 

2022 CNN This study employs 

convolutional neural 

networks (CNNs) and 

transfer learning (VGG19 

model) to classify 

Alzheimer's disease 

stages. 

Regarding an 

imbalanced 

dataset, they use 

basic Sampling 

techniques called 

oversampling, and 

downsampling.  

Around 

93% to 

95% 

[18] 

Munir et 

al. 

2022 CNN Utilizing deep learning 

and transfer learning on 

MRI, the proposed system 

achieves 91.70% accuracy 

in classifying Alzheimer's 

into four stages. 

Scalability and 

incorporation into 

clinical practice 

were the subject 

of a brief debate. 

91.7% 

[19] Lu et 

al. 

2022 Inception-

ResNet-

V2 

Alzheimer's disease 

diagnosis, showcasing 

strong potential for 

clinical integration and 

predicting AD conversion 

in mild cognitive 

impairment patients three 

times more accurately. 

Scant knowledge 

of practical 

implementation. 

90.9% 

[20] N. H. 

et al. 

2022 CNN Utilizing ontological 

methods in AD diagnosis, 

highlighting the potential 

Slightly more talk 

on scalability and 

data variety. 

94.61% 
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synergy between 

ontology-driven deep 

learning, and offering 

enhanced robustness and 

scalability for improved 

results. 

[22] Balaji 

et al. 

2023 CLSTM This study proposes a 

hybrid Deep Learning 

Approach, in 

distinguishing cognitively 

normal controls from 

early MCI (EMCI), 

showcasing the potential 

of deep neural networks in 

automatically identifying 

imaging biomarkers 

indicative of AD for 

accurate diagnosis. 

Slightly discussed 

application of 

remote and real-

time assessment 

for AD diagnosis 

in practice and 

model contains 

overfitting. 

98.5% 

 

2.3. RESEARCH GAPS IN CURRENT LITERATURE 

 

In our exploration of Alzheimer's disease identification through deep learning, we've 

pinpointed crucial research gaps that offer potential avenues for future investigations. 

Firstly, it's imperative to delve into employing deep learning on more diverse datasets 

before assessing the reliability and adaptability of the suggested models. Secondly, 

conducting long-term studies can provide valuable insights into the progression of 

diseases over time, shedding light on how Alzheimer's advances. Thirdly, there's a 

need to enhance the interpretability of deep learning models used for medical 

diagnosis, making their decision-making processes more transparent and 

understandable. 

 

Moreover, addressing issues associated with small sample sizes and imbalanced data 

is essential to ensure more accurate and unbiased models. Additionally, integrating 

these deep learning models practically into clinical settings requires thorough research. 

It's vital to validate these models extensively on external and real-world data to ensure 

their effectiveness in real-life scenarios. Furthermore, ethical considerations and 

privacy concerns in implementing deep learning for diagnosis need careful attention 

to ensure patient data security and adherence to ethical guidelines. 
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Comparative studies between traditional methods and the exploration of multimodal 

approaches can significantly improve accuracy and understanding of the diverse nature 

of the disease. Lastly, investigating the feasibility of real-time and remote assessment 

for Alzheimer's disease holds potential for early detection and diagnosis. Addressing 

these research gaps has the capacity to advance the field of Alzheimer's disease 

classification using deep learning and ultimately enhance patient outcomes by 

facilitating early detection and effective management strategies. 
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PART 3 

 

3. METHODOLOGY 

 

3.1. PROPOSED METHODOLOGY 

 

All the experimentation was carried out on a machine equipped with a 12th Gen 

Intel(R) Core (TM) i7-12700K CPU and 32GB of RAM, and GeForce RTX 3060 using 

Python’s Tensor Flow package for implementation. Figure 1 showcases illustrates the 

sequential process involved in constructing a training and testing model for 

Alzheimer's disease (AD) classification employing deep learning methodologies. 

Initially, in Step 1, the AD dataset undergoes data pre-processing, involving activities 

like data cleansing, outlier removal, and data normalization, preparing it for 

subsequent phases. Subsequently, Step 2 entails the evaluation and selection of the 

most optimal model among various deep learning models suited for AD classification. 

Moving forward to Step 3, the chosen model is trained on the training dataset, followed 

by its evaluation on the testing set to gauge its performance, marked as Step 4, utilizing 

diverse evaluation metrics such as accuracy, precision, recall, and F1 score. 

Additionally, the flowchart includes several supplementary steps: Image pre-

processing/augmentation, aimed at preparing the AD images for training and testing 

by resizing, cropping, and flipping them; Training split, involving the division of the 

training set into training and validation subsets for model training and evaluation, 

respectively; Confusion matrix, a tabular representation comparing model predictions 

to actual labels; and Learning curve, depicting the model's performance with 

increasing training epochs. Furthermore, the chart enumerates various deep learning 

models applicable for AD classification, including CNN, DenseNet, Inception V3, and 

MobileNet, each designed to cater to specific requirements and noted for their 

effectiveness in AD classification tasks. 
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Figure 3.1. Research methodology. 

 

3.2. DATA DESCRIPTION 

 

6400 photos were acquired from Kaggle [23] for the dataset for Alzheimer's illness 

MRI used in this study. Four groups—lightly demented, moderately demented, non-

demented, and very mildly demented—were created from the dataset. Each class 

included a different number of photographs, totaling 6400 in all. There were 896 

images in the mildly demented class, 64 in the moderately demented class, 3200 in the 

non-demented class, and 2240 in the very mildly demented class, shown in figure 2. 

The images were all resized to (176× 176) pixels for processing. Figure 3 displays 

some illustrations from the training set. 
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Figure 3.2. Class distribution of the experimental dataset. 

 

The utilization of the dataset for this study was primarily motivated by the prevalence 

of its use in previous research studies. Many prior studies in the field of Alzheimer's 

disease prediction and diagnosis have employed this specific dataset. As a result, it 

presented an ideal opportunity for us to compare our results with those of previous 

works and establish the effectiveness of our experimental models in relation to their 

performance. Figure 3 depicts the sample images of the dataset. The dataset's inherent 

variability in the number of photographs per class, with varying sample sizes, added 

an additional layer of complexity, mirroring the heterogeneity often observed in 

clinical settings. By utilizing this well-established dataset, we could not only 

benchmark our findings against previous research but also contribute to the ongoing 

efforts to enhance the accuracy and efficiency of Alzheimer's disease prediction 

models. This dataset, in particular, facilitated a meaningful comparative analysis, 

enabling us to demonstrate that our experimental models outperformed previous 

works. It, therefore, played a crucial role in validating the effectiveness of our 

approach and its potential for improving early Alzheimer's disease detection and 

classification. 
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Figure 3.3. Sample MRI scans. 

 

In our pursuit of developing a robust and effective model for Alzheimer's disease 

prediction, the choice of dataset and its sampling techniques played a pivotal role in 

shaping our study. Recognizing the importance of data balance and diversity, we 

employed Synthetic Minority Over-Sampling Technique (SMOTE) to address 

imbalances within the dataset. The distribution of images across the classes was 

imbalanced, with some classes having substantially fewer samples than others. To 

mitigate the imbalances and ensure that our predictive models were not skewed by 

class distribution, we turned to SMOTE. This technique is widely recognized for its 

effectiveness in over-sampling the minority class by generating synthetic samples that 

resemble the existing data points. By applying SMOTE to our dataset, we were able to 

balance the representation of all classes, ensuring that the model did not favor one class 

over the others during training and evaluation. The use of SMOTE significantly 
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increased the number of samples in our dataset, resulting in a more balanced and 

diverse representation of Alzheimer's disease stages. After oversampling, our dataset 

swelled to a total of 12,800 samples. This enhancement was critical for achieving more 

reliable and accurate predictions, as our models were now trained on a dataset that 

better reflected the true distribution of Alzheimer's disease stages. 

 

3.3. IMAGE PREPROCESSING 

 

Image preprocessing is a critical step in preparing the MRI images for training deep 

learning models [24], [25]. This process involves applying various transformations and 

augmentations to improve the model's robustness and generalization [26]. In the 

context of medical imaging, such as Alzheimer's disease MRI segmentation, data 

augmentation techniques play a vital role in increasing the diversity of the training 

data, preventing overfitting, and enhancing the model's ability to handle variations in 

real-world data[27], [28] [29], [30]. Data augmentation techniques introduce 

controlled variations to the original images, creating new training samples while 

maintaining their semantic meaning [31]–[35]. The following data augmentation 

techniques are commonly employed in image preprocessing for MRI segmentation: 

 

• Rotation is a transformation that rotates the image by a specified angle around 

its center. By applying random rotations, the model becomes more resilient to 

the orientation variations that might exist in the original dataset [36]. This is 

particularly beneficial in medical imaging, where the alignment and 

positioning of brain structures can vary between scans. 

• Shearing involves displacing points in an image along a direction 

perpendicular to a line [37]. It helps to introduce shear distortions, simulating 

the effect of tilting or stretching of the brain structures. Shearing increases the 

variability in the training data, making the model more adaptable to diverse 

anatomical shapes [38]. 

• Zooming alters the image scale by either magnifying or reducing its size [39], 

[40]. Introducing random zooms during preprocessing enables the model to 

learn from images with different resolutions, mimicking the variations that may 

arise from different imaging devices or protocols [41], [42]. 
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• Flipping horizontally or vertically involves reflecting the image across its 

central axis [43]. This technique helps the model understand that certain 

structures are symmetric and invariant to such transformations [44]. Flipping 

creates additional samples while preserving the spatial relationships of brain 

structures. 

 

 

Figure 3.4. Data Pre-processing. 

 

Combining these data augmentation methods makes the training dataset more usefully 

sized and gives the model a more varied and representative set of examples[45]–[47]. 

As a result, the danger of overfitting is diminished, and the model's capacity to 

generalize to new data is enhanced. Proper image preprocessing and data augmentation 

contribute significantly to the success of the MRI segmentation task for Alzheimer's 
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disease research, as they enhance the model's performance and adaptability to handle 

real-world clinical scenarios[48]–[50]. 

 

3.4. MODEL CONSTRUCTION 

 

DL algorithms offer different trade-offs in terms of model size, computational 

efficiency, and accuracy [51]–[54]. The best algorithm for AD classification should be 

chosen based on the application's unique needs, the available computational resources, 

and the desired performance. To identify the ideal architecture for a certain activity, it 

is typical to experiment with a variety of them. The focus of our research study is to 

use pre-trained transfer learning (TL) network classifiers such as CNN, Inceptionv3, 

DenseNet, and Mobilenetv2 for the four-class classification of AD. These pre-trained 

classifiers have been trained on a sizable dataset of 1.28 million images from the 

ImageNet database and are capable of classifying photos into 1000 different categories 

[55]. We used a trial-and-error approach to optimize the performance of these 

classifiers, giving the parameters several values in order to find the optimal values for 

each parameter. We used” Adam” optimizer to train the pre-trained DL models 

through TL, with a learning rate of 0.01 and a mini batch size of 10 images. Each DL 

model was trained for 100 epochs to conduct the TL experiments for detecting and 

categorizing stages of AD, while also considering the possibility of overfitting. We 

used a set of optimized parameters for the classification experiment, as shown in Table 

1. This approach allowed us to determine the most effective parameters for the 

classification of brain tumors using TL with pre-trained DL models. 

 

Table 3.1. Hyper parameters of experimented models. 

Parameter Value 

Optimization algorithm Adam 

Loss Categorical Cross-entropy 

Minimum Epochs 14 

Maximum Epochs 100 

Learning rate 0.001 

Verbose True 

Shuffle Each Epoch 
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3.3.1. CNN 

 

CNN is a fundamental deep learning architecture widely used for image classification 

tasks. It is particularly effective in learning hierarchical representations from image 

data. CNN consists of multiple layers, including convolutional layers, pooling layers, 

and fully connected layers [56]. The convolutional layers apply filters to the input 

image, capturing local patterns and features [57]. The pooling layers down sample the 

feature maps, reducing spatial dimensions while retaining important information [58]. 

Finally, the fully connected layers combine the learned features and make predictions 

[59]–[61]. CNNs have shown remarkable success in various medical imaging tasks, 

including AD classification, due to their ability to automatically learn discriminative 

features. 

 

Our CNN model is a seven-layer convolutional neural network. Following the 

convolutional layers that comprise the first four layers, a maximum pooling layer, a 

dropout layer, and a fully connected layer are added. The convolutional layers remove 

highlights from the information image using 2D convolutions. The first convolutional 

layer has 16 3x3 channels, the second convolutional layer contains 16 3x3 channels, 

the third convolutional layer contains 32 3x3 channels, and the fourth convolutional 

layer contains 64 3x3 channels. The model is a seven-layer CNN architecture. The 

initial four layers are convolutional, while the following three layers are max pooling, 

dropout, and completely associated. Utilizing 2D convolutions, convolutional layers 

extricate highlights from the info picture. 16 3x3 channels are available in the first 

convolutional layer, 32 3x3 channels are available in the second, and 64 3x3 channels 

are available in the fourth. The max pooling layer downsamples the feature maps from 

the convolutional layers. The pooling size is 2x2, and the stride is 2. The dropout layer 

randomly drops out 20% of the neurons in the network. This helps to prevent 

overfitting. The fully connected layer is a traditional neural network layer with 512 

neurons. This layer is responsible for classifying the input image into one of 4 classes. 
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Figure 3.5. CNN architecture. 

 

3.3.2. Inception V3 

 

Google created the deep convolutional neural network architecture known as Inception 

V3 [62]–[64]. It is built to be computationally effective while achieving great 

accuracy. The Inception module, which uses numerous parallel convolutional 

procedures with various filter sizes, is a component of Inception V3 [65]. This allows 

the network to capture both local and global information, enabling effective feature 

extraction [66]. Inception V3 is known for its ability to handle complex patterns and 

has been widely applied in various computer vision tasks, including AD classification. 

It offers a good trade-of between accuracy and computational efficiency. 
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The described model is an InceptionV3-based Convolutional Neural Network (CNN) 

designed for Alzheimer's disease prediction using MRI segmentation data. It 

incorporates InceptionV3 as the feature extractor, processing MRI images through 

convolutional and pooling layers to capture intricate patterns efficiently. Dropout 

layers are added for regularization to prevent overfitting, and Global Average 

Pooling2D is employed to summarize spatial information. Fully connected Dense 

layers, along with Dropout layers for additional regularization, reduce data 

dimensions. The final Dense layer has four neurons, representing the classes of MRI 

segmentation images, with softmax activation for probabilistic output. This 

architecture effectively handles the complexities in MRI data, facilitating accurate 

Alzheimer's disease predictions based on the input images. 

 

 

Figure 3.6. Inception v3 architecture. 
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3.3.3. DenseNet 

 

DenseNet is used for Alzheimer's disease classification by leveraging its deep neural 

network architecture to learn meaningful features from MRI segmentation images. The 

DenseNet model is pertained on a large dataset, such as ImageNet, to capture general 

visual patterns in images [67]. This pertained DenseNet model is then fine-tuned and 

adapted for the specific task of Alzheimer's disease classification using MRI data. The 

DenseNet model serves as the backbone of a Convolutional Neural Network (CNN) 

for Alzheimer's disease classification. The MRI segmentation images are passed 

through the DenseNet layers, which extract high-level features from the input images. 

The output of the DenseNet layers is then fed into additional layers, including Dropout, 

Global Average Pooling2D, Flatten, and Dense layers, to further process the extracted 

features and reduce the data dimensions. 

 

The DenseNet model used for Alzheimer's disease prediction consists of several 

layers. The Densenet121 model serves as the backbone of the CNN and generates an 

output shape of (None, 7, 7, 1024) with 7x7 spatial dimensions and 1024 feature maps. 

Following the Densenet121 layer, a Dropout layer is added to prevent overfitting. The 

Dropout layer's output retains the same shape as the previous layer. Next, a Global 

Average Pooling2D layer is applied to convert the spatial information into a 1D vector, 

resulting in an output shape of (None, 1024). A Flatten layer reshapes the data into a 

1D vector with (None, 1024) dimensions. Batch Normalization layers are added after 

each Dense (fully connected) layer, and they serve to improve training efficiency and 

generalization. The first Dense layer has 512 neurons, followed by a Dropout layer. 

The next layers are then added: a Dropout layer, a Dense layer with 128 neurons, a 

Dense layer with 256 neurons, and so forth, ending with a Dense layer with 4 neurons. 

For regularization following each Dense layer, a Batch Normalization layer, a Dropout 

layer, and more Dropout layers are added [68]. A total of 7,742,980 parameters are 

employed in the model, and the final Dense layer contains 4 neurons that represent the 

classes of MRI segmentation images in the dataset. There are 87,616 non-trainable 

parameters and 7,655,364 trainable parameters. 
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Figure 3.7. DenseNet architecture. 

 

3.3.4. MobileNet 

 

MobileNet is a lightweight deep learning architecture specifically designed for 

efficient image classification on mobile and embedded devices [69]. It uses depth wise 

separable convolutions, which split the standard convolution operation into two 

separate layers: depth wise convolution and pointwise convolution [70] [71]. This 

significantly reduces the computational complexity while preserving the model’s 

ability to learn complex features. MobileNet is known for its compact size and fast 

inference speed, making it suitable for resource constrained environments [72]. In the 
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context of brain MRI classification, MobileNet can effectively capture important 

tumor features while maintaining efficiency. 

 

The model takes MRI segmentation images as input and processes them through the 

MobileNet layers, generating an output shape of (None, 7, 7, 1024) with 7x7 spatial 

dimensions and 1024 feature maps. A Dropout layer is added to mitigate overfitting, 

followed by a Global Average Pooling2D layer that summarizes the spatial 

information, yielding an output shape of (None, 1024)[73]–[75]. A Flatten layer 

reshapes the data into a 1D vector of (None, 1024) dimensions. Batch Normalization 

layers are added after each Dense (fully connected) layer to enhance training efficiency 

and generalization. The model contains multiple Dense layers that progressively 

reduce data dimensions. The first Dense layer has 512 neurons, followed by a Dropout 

layer, then a Dense layer with 256 neurons, and so on, until the final Dense layer with 

4 neurons representing the classes of MRI segmentation images related to different 

Alzheimer's disease stages. 
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Figure 3.8. MobileNet architecture. 

 

In our research efforts to enhance the performance of deep neural network models and 

tackle prevalent challenges, we meticulously curated and applied an array of training 

and optimization techniques. Within this segment, we delve into these methodologies, 

elucidating their individual parameter values as applied in our study. Our objective 

revolved around refining the learning process, mitigating overfitting, and bolstering 

the efficacy of our deep neural network models in accurately classifying AD. Through 

the implementation of these training and optimization techniques, each paired with its 

specific parameter values, our aim was to elevate the overall performance of the 

models. 
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3.5. TRAINING AND OPTIMIZATION TECHNIQUES  

 

To achieve better performance and overcoming typical hurdles encountered in deep 

neural network models, we meticulously chose and applied diverse training and 

optimization methods in our research. This section covers an exploration of these 

techniques, detailing the specific parameter values utilized in our study. Our goal was 

to enhance the learning process, mitigate overfitting, and refine the overall 

performance of our deep neural network models for accurate AD classification. Our 

approach involved the strategic implementation of these training and optimization 

techniques, each paired with its corresponding parameter values, aiming to achieve 

precise classification of AD. 

 

3.5.1. Backpropagation 

 

In this study, we employed backpropagation, a fundamental algorithm crucial for 

training deep neural networks. Its function involves computing the loss function's 

gradient concerning the network's parameters, enabling the adjustment of weights and 

biases. Specifically, we utilized the widely-used stochastic gradient descent (SGD) 

backpropagation technique. This method modifies parameters based on a fraction of 

the gradient, referred to as the learning rate. Additionally, we implemented the Adam 

optimizer, an extension of gradient descent, to optimize the network's parameters. 

Adam amalgamates adaptive learning rates and momentum, fostering quicker 

convergence. Throughout our experiments, we designated the learning rate as 0.001. 

 

3.5.2. Learning Rate Scheduling 

 

To control the learning rate during training, we applied a learning rate scheduler that 

reduced the learning rate over time. Specifically, we utilized the ReduceLROnPlateau 

scheduler, which reduces the learning rate by a factor of 0.1 if the validation loss does 

not improve after three 3 consecutive epochs. 
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3.5.3. Regularization Techniques 

 

In order to mitigate overfitting, we integrated dropout into our models. Dropout 

regularization involves randomly excluding 50% of the neurons during the training 

process, fostering the acquisition of resilient representations. 

 

3.5.4. Batch Normalization 

 

Batch Batch normalization was employed to enhance training stability and speed. We 

integrated batch normalization layers following every convolutional and fully 

connected layer. This method works by normalizing activations, achieved through 

subtracting the batch mean and dividing by the batch standard deviation. 

 

3.5.5. Early Stopping 

 

To prevent overfitting and identify the optimal model, we implemented early stopping. 

The training process was monitored using the validation accuracy metric, and if the 

validation accuracy reaches over 99%, the training was stopped to avoid overfitting 

and ensure generalization to unseen data. 

 

3.6. EVALUATION 

 

A classification model assesses the probability of each unit belonging to a specific 

class [76], [77]. In binary classification problems, a threshold is commonly utilized to 

determine the predicted class for each unit based on the model's probability[78], [79]. 

To evaluate the performance of binary classifiers, we can employ equation 1-4, which 

incorporates TP (true positive), FP (false positive), FN (false negative), and TN (true 

negative) to compute different evaluation metrics. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

TP+FP+FN+FP
  (3.1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

TP+FP
 (3.2) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP+FN
 (3.3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗( 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

precision+recall
 (3.4) 

 

In multi-class classification, a probability value is predicted for each unit based on the 

likelihood of belonging to any of the available classes [80]. To evaluate the 

performance of the model, macro-average precision and recall are calculated for a 

generic class K by taking the arithmetic mean of the precision and recall metrics for 

each individual class. Equation 7 and 8 are used to calculate these metrics respectively. 

Finally, the Macro F1-Score, which is the harmonic mean of Macro-Precision and 

Macro-Recall, is used to summarize the overall performance of the multi-class 

classifier and is calculated using Equation 9. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐾 =
𝑇𝑃𝐾

𝑇𝑃𝐾+𝐹𝑃𝐾
 (3.5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝐾 =
𝑇𝑃𝐾

𝑇𝑃𝐾+𝐹𝑁𝐾
 (3.6) 

 

𝑀𝑎𝑐𝑟𝑜𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐾

𝐾
𝐾=1

𝐾
 (3.7) 

 

𝑀𝑎𝑐𝑟𝑜𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝐾

𝐾
𝐾=1

𝐾
 (3.8) 

 

𝑀𝑎𝑐𝑟𝑜 − 𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗( 𝑀𝑎𝑐𝑟𝑜𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑀𝑎𝑐𝑟𝑜𝑅𝑒𝑐𝑎𝑙𝑙)

𝑀𝑎𝑐𝑟𝑜𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1+𝑀𝑎𝑐𝑟𝑜𝑅𝑒𝑐𝑎𝑙𝑙−1
 (3.9) 

 

The macro-average precision and recall in multi-class classification are calculated by 

taking the arithmetic mean of precision and recall values for all classes. The numerator 

of these metrics is made up of values that range between 0 and 1, which means that 

macro-average methods take an overall mean of various measures. This approach 

treats classes of different sizes equally, which means that small and large classes have 

equal weight in the calculation of the metrics. The macro F1-score, which is the 

harmonic mean of macro-precision and macro-recall, is used as an overall evaluation 
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metric for multi-class classifiers. A high macro-F1 value indicates good overall 

performance of the algorithm across all classes, while a low macro-F1 value indicates 

poor prediction for some of the classes. 
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PART 4 

 

4. RESULT ANALYSIS 

 

5.1. PERFORMANCE OF THE CLASSIFIERS 

 

Table 3 presents the evaluation results of four different algorithms, namely MobileNet, 

CNN, DenseNet, and Inception V3, using various performance metrics. MobileNet 

and CNN achieved the highest performance across all metrics, showcasing their 

superiority in accurately predicting Alzheimer's disease stages. With an accuracy of 

0.9589, both models correctly classified approximately 95.89% of the samples. Their 

precision of 0.9596 indicates that they had a high ability to avoid false positives, while 

their recall of 0.9587 highlights its capability to correctly identify actual positive cases. 

The F1 score of 0.9592 demonstrates a well-balanced trade-off between precision and 

recall. Overall, MobileNet and CNN is the top-performing algorithm in this study, 

making them a strong candidate for Alzheimer's disease prediction using MRI 

segmentation data.  

 

Table 4.1. Result of the classifiers. 

Algorithm Accuracy Precision Recall F1 score 

MobileNet 0.9589 0.9596 0.9587 0.9592 

CNN 0.9589 0.9596 0.9587 0.9592 

DenseNet 0.8806 0.8913 0.8819 0.8815 

Inception V3 0.8761 0.8785 0.8752 0.8764 

 

DenseNet exhibits lower performance compared to MobileNet and CNN. With an 

accuracy of 0.8806, DenseNet correctly classified approximately 88.06% of the 

samples. Its precision of 0.8913 shows a relatively higher rate of true positive 

predictions among positive predictions, while its recall of 0.8819 indicates a relatively 

lower ability to identify actual positive cases. The F1 score of 0.8815 signifies a 

reasonable balance between precision and recall. While DenseNet performs lower than 
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the top two algorithms, it still demonstrates a respectable level of predictive power, 

suggesting its potential usefulness in Alzheimer's disease prediction tasks. Inception 

V3 achieved the lowest performance among the four algorithms. With an accuracy of 

0.8761, it correctly classified approximately 87.61% of the samples. Its precision of 

0.8785 indicates a relatively higher rate of true positive predictions among positive 

predictions, while its recall of 0.8752 points to a relatively lower ability to identify 

actual positive cases. The F1 score of 0.8764 shows a balanced trade-off between 

precision and recall. While Inception V3 lags behind the top-performing models, it 

still exhibits reasonable predictive capabilities for Alzheimer's disease classification, 

shown in figure 8. 

 

 

Figure 4.1. Performance of each DL classifiers. 

 

5.2. RESULT VALIDATION 

 

5.2.1. CNN 

 

The CNN's confusion matrix indicates that the model correctly identified 629 instances 

as non-demented, 581 instances as very mild demented, 59 instances as mild 

demented, and 583 instances as moderate demented. However, it misclassified 10 

instances as non-demented, 2 instances as very mild demented, 31 instances as mild 
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demented, and none as moderate demented. The misclassification rate for the moderate 

demented category is 0%, which is excellent. Nonetheless, the misclassification rate 

for the mild demented category is relatively high at 50.8%, suggesting a higher 

likelihood of misclassifying individuals as mild demented compared to the other 

categories. Additionally, the accuracy curve follows a descending pattern, with the 

highest accuracy for non-demented cases, followed by very mild dementia, mild 

dementia, and moderate dementia. The AUC (Area Under the Curve) values also 

exhibit a similar pattern, indicating that the classification algorithm is most accurate 

for non-demented cases, followed by very mild dementia, mild dementia, and 

moderate dementia. 

 

  

Figure 4.2. Confusion matric and ROC-AUC curve of CNN model. 

 

5.2.2. MobileNet 

 

In the non-demented category, the rate of inaccurate diagnoses is relatively low. This 

demonstrates the system's accuracy in assessing whether a patient is or is not mentally 

ill. The category of very mild dementia has a very high misclassification rate. This 

means that the classification algorithm is not very good at predicting whether a patient 

has very mild dementia. The misclassification rate for the mild dementia category is 

zero, which means that the classification algorithm never misclassified a patient as 

having mild dementia. The classification algorithm never incorrectly identified a 

patient as having moderate dementia, as seen by the zero-misclassification rate for the 
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category of moderate dementia. The non-demented category has the greatest curve, 

followed by the categories for very mild dementia, mild dementia, and moderate 

dementia. This indicates that the categorization algorithm, followed by very mild 

dementia, mild dementia, and moderate dementia, is the most accurate at determining 

if a patient has no signs of dementia. 

 

 

 

Figure 4.3. Confusion matric and ROC-AUC curve of MobileNet model. 

 

5.2.3. DenseNet 

 

The misclassification rate for the non-demented category is remarkably low, indicating 

the classification algorithm's excellent performance in predicting whether a patient is 

non-demented. Conversely, the misclassification rate for the very mild dementia 

category is exceedingly high, highlighting the algorithm's limitations in accurately 

predicting whether a patient has very mild dementia. However, the misclassification 

rate for the mild dementia category is zero, implying that the classification algorithm 

never misclassified a patient as having mild dementia. The algorithm never 

misdiagnosed a patient as having intermediate dementia, as shown by the fact that mild 

dementia similarly has a misclassification rate of zero. The non-demented category 

has the greatest AUC, followed by the categories of very mild dementia, mild 

dementia, and moderate dementia. The AUC values are shown in descending order. 

This shows that the stages of dementia for which the classification algorithm is most 
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accurate at predicting if a patient has dementia are very mild dementia, mild dementia, 

and moderate dementia. 

 

 

 

Figure 4.4. Confusion matric and ROC-AUC curve of DenseNet model. 

 

5.2.4. Inception V3 

 

The model demonstrates a high level of accuracy in predicting whether a patient is 

non-demented. However, it struggles with predicting whether a patient has very mild 

dementia, as indicated by the considerably high misclassification rate in that category. 

On a positive note, the algorithm achieves perfect accuracy in classifying patients with 

mild dementia and moderate dementia, having zero misclassification rates in these 

categories. Additionally, the AUC values follow a descending order, with the highest 

AUC for the non-demented category, followed by very mild dementia, mild dementia, 

and moderate dementia. This confirms that the classification algorithm is most reliable 

in predicting whether a patient is non-demented, followed by very mild dementia, mild 

dementia, and moderate dementia. 
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Figure 4.5. Confusion matric and ROC-AUC curve of Inception v3 model. 

 

5.3.  LEARNING CURVE 

 

3.5.6. CNN 

 

The learning curve of CNN demonstrates that the model's accuracy first rises sharply 

as it learns to recognize the characteristics crucial for categorizing Alzheimer's 

patients. However, when the model gets closer to its highest level of accuracy, the rate 

of development slows down. The learning curve also shows that the model's accuracy 

is not always consistent. There are times when the accuracy rises quickly, which are 

followed by times when it plateaus or even falls significantly. This is probably because 

the model is learning to recognize various features at various phases of training. 

 

 

Figure 9.6. Learning curve of CNN model. 
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3.5.7. Mobilenet 

 

The learning curve illustrates the MobileNet model's initial rapid increase in accuracy 

as it learns to identify crucial features for Alzheimer's patient classification. However, 

as the model approaches its maximum accuracy, the rate of improvement diminishes. 

Furthermore, the learning curve highlights that the model's accuracy is not consistently 

steady throughout the training process. There are periods of rapid accuracy growth, 

followed by plateaus or slight decreases. This variation is likely attributed to the model 

learning different features at distinct stages of training. 

 

 

Figure 4.7. Learning curve of MobileNet model. 

 

3.5.8. Densenet 

 

In the initial stages, the learning curve demonstrates a swift rise in the DenseNet 

model's accuracy, indicating its ability to recognize crucial features for classifying 

Alzheimer's patients. However, as the model nears its maximum accuracy, the rate of 

improvement gradually decreases. The learning curve also reveals fluctuations in the 

model's accuracy, with periods of rapid increase, followed by plateaus or slight dips. 

This behavior is likely attributed to the model learning diverse features at various 

stages during training. 
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Figure 4.8. Learning curve of DenseNet model. 

 

3.5.9. Inception V3 

 

The learning curve demonstrates that the model's accuracy first rises sharply as it 

learns to recognize the characteristics crucial for categorizing Alzheimer's patients. 

However, when the model gets closer to its highest level of accuracy, the rate of 

development slows down. The learning curve also shows that the model's accuracy is 

not always consistent. There are times when the accuracy rises quickly, which are 

followed by times when it plateaus or even falls significantly. This is probably because 

the model is learning to recognize various features at various phases of training. 

 

 

Figure 4.9. Learning curve of Inception v3 model. 
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PART 5 

 

5. DISCUSSION 

 

5.1.  ALGORITHM PERFORMANCE 

 

The results of this study demonstrate the potential of deep learning algorithms for 

accurately predicting Alzheimer's disease stages using MRI segmentation data. 

Authors [81] used deep learning algorithm for Alzheimer's disease early detection 

specifically focusing on CNN and MobileNet and achieved a significant result. For our 

research, four different algorithms were tested, and MobileNet was found to be the 

best-performing algorithm, followed by CNN, DenseNet, and Inception V3. This is 

likely due to the fact that MobileNet is a lightweight architecture that is specifically 

designed for efficient image classification. As a result, it is able to learn the important 

features from MRI segmentation images quickly and accurately. The confusion 

matrices and AUC values provided in the results section provide further confirmation 

of the relative performance of the four algorithms. The confusion matrices show that 

MobileNet has the lowest misclassification rates for all four categories, while 

Inception V3 has the highest misclassification rates for the very mild dementia 

category. The AUC values also show that MobileNet has the highest AUC for all four 

categories, while Inception V3 has the lowest AUC for the very mild dementia 

category. The learning curves also provide valuable insights into the performance of 

the four algorithms. They suggest that MobileNet and CNN are the best-performing 

algorithms, followed by DenseNet and Inception V3. This is probably because 

DenseNet and Inception V3 are simpler designs than MobileNet and CNN, which are 

more sophisticated. 

 

5.2.  IMPLICATIONS FOR EARLY AD DETECTION 

 

This study's discoveries have various ramifications for the early identification of 

Alzheimer's infection. They initially recommend that using X-ray division 
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information, profound learning calculations can be used to anticipate the phases of 

Alzheimer's sickness exactly. This is a huge finding since it could prompt the 

improvement of novel, upgraded strategies for the early determination of Alzheimer's 

sickness. Second, the consequences of this study show that the best calculation for 

anticipating Alzheimer's infection from X-ray division information is MobileNet. This 

is vital in light of the fact that it raises the likelihood that MobileNet may be utilized 

to foster a convenient and proficient profound learning strategy for the early 

determination of Alzheimer's disease. In decision, the discoveries of this study show 

that utilizing a bigger dataset and preparing the calculations for a more extended 

timeframe can improve the viability of profound learning calculations for foreseeing 

Alzheimer's sickness. This is critical on the grounds that it recommends future 

upgrades in profound learning calculations' precision for identifying Alzheimer's 

sickness right off the bat. Generally, the review's discoveries are empowering and 

demonstrate that profound learning calculations may sometime be applied to the early 

recognizable proof of Alzheimer's infection. Further examination is expected to affirm 

these outcomes and work on the adequacy and utility of profound learning calculations 

for the early ID of Alzheimer's illness. 

 

5.3.  STATE-OF-THE-ART COMPARISON 

 

This comparative analysis, shown in Table 4 indicates the effectiveness of our work 

and also provides valuable insights into how it fares against prominent studies in the 

field. Helaly et al. [17] conducted their research with a dataset comprising 6,000 

samples, implementing a CNN-based approach that resulted in an accuracy of 93.61% 

and 95.17% for 2D. Munir et al. [18] expanded the dataset to 6,393 samples, using a 

CNN model that achieved an accuracy of 91.7%. B. Lu et al. [19] worked with 6,857 

samples, deploying the Inception-ResNet-V2 architecture, and achieved an accuracy 

of 90.9%. N. H. et al. [20] tackled the problem with 5,121 samples, harnessing a CNN-

based model that impressed with an accuracy of 94.61%. Balaji et al. [22] focused on 

a smaller dataset of 624 samples but employed a CLSTM model, resulting in an 

impressive accuracy of 98.5%. 
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Table 5.1. State-of-the-art comparison. 

Research Year Dataset Size Algorithm Result 

[17] Helaly et al. 2022 6000 samples CNN  Around 93% 

to 95%  

[18] Munir et al. 2022 6,393 samples CNN 91.7% 

[19] Lu et al. 2022 6,857 samples Inception-

ResNet-V2 

90.9% 

[20] N. H. et al. 2022 5,121 samples CNN 94.61% 

[22] Balaji et al. 2023 624 samples CLSTM 98.5% 

Our Approach 2023 12,800 samples MobileNet/CNN 95.92% 

 

In contrast, our approach set out with a dataset comprising 12,800 samples, harnessing 

the MobileNet architecture to attain an accuracy of 95.92%. This exceptional 

performance surpasses the majority of state-of-the-art methods, highlighting our 

approach's potential in the early prediction of Alzheimer's disease stages. Notably, our 

approach achieves an accuracy that is on par with models designed for larger datasets, 

a testament to its efficiency and robustness. This outcome firmly positions our 

methodology as a competitive and promising contender in the field of Alzheimer's 

disease prediction, holding significant potential for the early detection and 

classification of this debilitating condition. 
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PART 6 

 

6. CONCLUSION AND FUTURE WORK 

 

In the course of our investigation, we have delved into the potential of deep learning 

systems to harness MRI segmentation data for the prediction of Alzheimer's disease 

stages. Among the four algorithms we scrutinized, MobileNet emerged as the standout 

performer, surpassing CNN, DenseNet, and Inception V3. This outcome marks a 

substantial stride in the utilization of deep learning for the early diagnosis of 

Alzheimer's disease. The results underscore the immense promise that deep learning 

algorithms hold for revolutionizing the early detection of Alzheimer's disease. They 

are not only heartening but genuinely thrilling. It's important to recognize that these 

promising results beckon for a more comprehensive examination to refine the 

efficiency and efficacy of deep learning algorithms in the context of early Alzheimer's 

disease diagnosis. Notwithstanding these positive outcomes, it is crucial to 

acknowledge the noteworthy constraints of our research, as they impact the appropriate 

interpretation of the data. First and foremost, our dataset is small even though it was 

carefully chosen. This limitation may have introduced some constraints on the 

accuracy of our findings. Additionally, the use of the same dataset for both algorithm 

evaluation and training introduce the risk of overfitting, potentially affecting the 

robustness of our algorithms. Furthermore, our exploration was restricted to just four 

alternative methods, leaving open the possibility that other algorithms may 

demonstrate even more remarkable performance. In light of these limitations, 

addressing these constraints represents a critical step as we endeavor to advance the 

field of early Alzheimer's disease diagnosis. 

 

Our study lays the foundation for promising future research avenues. The journey 

ahead includes the imperative task of validating and refining our findings. For the 

suggested models to be reliable and scalable, access to bigger and more varied datasets 

is required. In addition, longitudinal research tracking the course of Alzheimer's 
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disease over an extended period of time could yield essential knowledge regarding the 

dynamic character of the illness. To make deep learning models for medical diagnosis 

more practically usable in clinical settings, we also need to prioritize improving their 

interpretability. In addition to these considerations, we are keen on addressing the 

challenges associated with small sample sizes and imbalanced data, and further 

exploring the practical integration of deep learning models into clinical practice, while 

being attentive to ethical considerations and the preservation of patient privacy. 

Comparative assessments of deep learning against traditional diagnostic methods, as 

well as the exploration of multimodal approaches, stand as promising paths to enhance 

both accuracy and our understanding of disease variability. Lastly, the prospect of real-

time and remote assessment for Alzheimer's disease represents an exciting frontier for 

our future research. Achieving effective remote detection and diagnosis could 

transform patient care, revolutionizing early detection and management in the realm 

of this debilitating condition. Pursuing these research directions, we aim to bring us 

closer to more precise and timely diagnoses, ultimately improving patient outcomes 

and offering a brighter future for those grappling with Alzheimer's disease.  



      

42 

 

 

REFERENCES 

 

[1] L. Piubelli, G. Murtas, V. Rabattoni, and L. Pollegioni, “The Role of D-Amino 

Acids in Alzheimer’s Disease,” Journal of Alzheimer’s Disease, vol. 80, no. 2, 

pp. 475–492, Jan. 2021, doi: 10.3233/JAD-201217. 

[2] T. Jo, K. Nho, and A. J. Saykin, “Deep Learning in Alzheimer’s Disease: 

Diagnostic Classification and Prognostic Prediction Using Neuroimaging 

Data,” Front Aging Neurosci, vol. 11, p. 457612, Aug. 2019, doi: 

10.3389/FNAGI.2019.00220/BIBTEX. 

[3] C. Laske et al., “Innovative diagnostic tools for early detection of Alzheimer’s 

disease,” Alzheimer’s & Dementia, vol. 11, no. 5, pp. 561–578, May 2015, doi: 

10.1016/J.JALZ.2014.06.004. 

[4] N. Yamanakkanavar, J. Y. Choi, and B. Lee, “MRI Segmentation and 

Classification of Human Brain Using Deep Learning for Diagnosis of 

Alzheimer’s Disease: A Survey,” Sensors 2020, Vol. 20, Page 3243, vol. 20, 

no. 11, p. 3243, Jun. 2020, doi: 10.3390/S20113243. 

[5] H. A. Helaly, M. Badawy, and A. Y. Haikal, “Deep Learning Approach for 

Early Detection of Alzheimer’s Disease,” Cognit Comput, vol. 14, no. 5, pp. 

1711–1727, Sep. 2022, doi: 10.1007/S12559-021-09946-2/FIGURES/15. 

[6] S. Gao and D. Lima, “A review of the application of deep learning in the 

detection of Alzheimer’s disease,” International Journal of Cognitive 

Computing in Engineering, vol. 3, pp. 1–8, Jun. 2022, doi: 

10.1016/J.IJCCE.2021.12.002. 

[7] S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis, and D. Feng, “Early diagnosis of 

Alzheimer’s disease with deep learning,” 2014 IEEE 11th International 

Symposium on Biomedical Imaging, ISBI 2014, pp. 1015–1018, Jul. 2014, doi: 

10.1109/ISBI.2014.6868045. 

[8] A. P. Porsteinsson, R. S. Isaacson, S. Knox, M. N. Sabbagh, and I. Rubino, 

“Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021,” The 

Journal of Prevention of Alzheimer’s Disease 2021 8:3, vol. 8, no. 3, pp. 371–

386, Jun. 2021, doi: 10.14283/JPAD.2021.23. 

[9] G. Chetelat and J. C. Baron, “Early diagnosis of alzheimer’s disease: 

contribution of structural neuroimaging,” Neuroimage, vol. 18, no. 2, pp. 525–

541, Feb. 2003, doi: 10.1016/S1053-8119(02)00026-5. 



      

43 

[10] J. Collinge et al., “INHERITED PRION DISEASE WITH 144 BASE PAIR 

GENE INSERTION: 2. CLINICAL AND PATHOLOGICAL FEATURES,” 

Brain, vol. 115, no. 3, pp. 687–710, Jun. 1992, doi: 10.1093/BRAIN/115.3.687. 

[11] N. Yamanakkanavar, J. Y. Choi, and B. Lee, “MRI Segmentation and 

Classification of Human Brain Using Deep Learning for Diagnosis of 

Alzheimer’s Disease: A Survey,” Sensors 2020, Vol. 20, Page 3243, vol. 20, 

no. 11, p. 3243, Jun. 2020, doi: 10.3390/S20113243. 

[12] D. S. Knopman, B. F. Boeve, and R. C. Petersen, “Essentials of the Proper 

Diagnoses of Mild Cognitive Impairment, Dementia, and Major Subtypes of 

Dementia,” Mayo Clin Proc, vol. 78, no. 10, pp. 1290–1308, Oct. 2003, doi: 

10.4065/78.10.1290. 

[13] S. S. Kundaram and K. C. Pathak, “Deep Learning-Based Alzheimer Disease 

Detection,” Lecture Notes in Electrical Engineering, vol. 673, pp. 587–597, 

2021, doi: 10.1007/978-981-15-5546-6_50/COVER. 

[14] S. Shojaei, M. Saniee Abadeh, and Z. Momeni, “An evolutionary explainable 

deep learning approach for Alzheimer’s MRI classification,” Expert Syst Appl, 

vol. 220, p. 119709, Jun. 2023, doi: 10.1016/J.ESWA.2023.119709. 

[15] H. Hampel et al., “Blood-based biomarkers for Alzheimer disease: mapping the 

road to the clinic,” Nature Reviews Neurology 2018 14:11, vol. 14, no. 11, pp. 

639–652, Oct. 2018, doi: 10.1038/s41582-018-0079-7. 

[16] J. E. Wraith et al., “Mucopolysaccharidosis type II (Hunter syndrome): A 

clinical review and recommendations for treatment in the era of enzyme 

replacement therapy,” Eur J Pediatr, vol. 167, no. 3, pp. 267–277, Mar. 2008, 

doi: 10.1007/S00431-007-0635-4/TABLES/2. 

[17] H. A. Helaly, M. Badawy, and A. Y. Haikal, “Deep Learning Approach for 

Early Detection of Alzheimer’s Disease,” Cognit Comput, vol. 14, no. 5, pp. 

1711–1727, Sep. 2022, doi: 10.1007/S12559-021-09946-2/FIGURES/15. 

[18] S. Munir et al., “Alzheimer Disease Detection Empowered with Transfer 

Learning”, doi: 10.32604/cmc.2022.020866. 

[19] B. Lu et al., “A practical Alzheimer’s disease classifier via brain imaging-based 

deep learning on 85,721 samples,” J Big Data, vol. 9, no. 1, pp. 1–22, Dec. 

2022, doi: 10.1186/S40537-022-00650-Y/FIGURES/5. 

[20] N. H. ; U. ; Rehman et al., “Constructing Domain Ontology for Alzheimer 

Disease Using Deep Learning Based Approach,” Electronics 2022, Vol. 11, 

Page 1890, vol. 11, no. 12, p. 1890, Jun. 2022, doi: 

10.3390/ELECTRONICS11121890. 

[21] V. S. Diogo, H. A. Ferreira, and D. Prata, “Early diagnosis of Alzheimer’s 

disease using machine learning: a multi-diagnostic, generalizable approach,” 

Alzheimers Res Ther, vol. 14, no. 1, pp. 1–21, Dec. 2022, doi: 10.1186/S13195-

022-01047-Y/FIGURES/4. 



      

44 

[22] P. Balaji, M. A. Chaurasia, S. M. Bilfaqih, A. Muniasamy, and L. E. G. Alsid, 

“Hybridized Deep Learning Approach for Detecting Alzheimer’s Disease,” 

Biomedicines 2023, Vol. 11, Page 149, vol. 11, no. 1, p. 149, Jan. 2023, doi: 

10.3390/BIOMEDICINES11010149. 

[23] “Alzheimer MRI Preprocessed Dataset.” Accessed: Aug. 08, 2023. [Online]. 

Available: https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-

dataset.  

[24] S. P. Singh, L. Wang, S. Gupta, H. Goli, P. Padmanabhan, and B. Gulyás, “3D 

Deep Learning on Medical Images: A Review,” Sensors 2020, Vol. 20, Page 

5097, vol. 20, no. 18, p. 5097, Sep. 2020, doi: 10.3390/S20185097. 

[25] Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, “Deep 

Learning for Brain MRI Segmentation: State of the Art and Future Directions,” 

J Digit Imaging, vol. 30, no. 4, pp. 449–459, Aug. 2017, doi: 10.1007/S10278-

017-9983-4/TABLES/4. 

[26] L. Zhang et al., “Generalizing Deep Learning for Medical Image Segmentation 

to Unseen Domains via Deep Stacked Transformation,” IEEE Trans Med 

Imaging, vol. 39, no. 7, pp. 2531–2540, Jul. 2020, doi: 

10.1109/TMI.2020.2973595. 

[27] P. Celard, E. L. Iglesias, J. M. Sorribes-Fdez, R. Romero, A. S. Vieira, and L. 

Borrajo, “A survey on deep learning applied to medical images: from simple 

artificial neural networks to generative models,” Neural Computing and 

Applications 2022 35:3, vol. 35, no. 3, pp. 2291–2323, Nov. 2022, doi: 

10.1007/S00521-022-07953-4. 

[28] A. Subasi, “Use of artificial intelligence in Alzheimer’s disease detection,” 

Artificial Intelligence in Precision Health: From Concept to Applications, pp. 

257–278, Jan. 2020, doi: 10.1016/B978-0-12-817133-2.00011-2. 

[29] M. Elgendi et al., “The Effectiveness of Image Augmentation in Deep Learning 

Networks for Detecting COVID-19: A Geometric Transformation Perspective,” 

Front Med (Lausanne), vol. 8, p. 629134, Mar. 2021, doi: 

10.3389/FMED.2021.629134/BIBTEX. 

[30] Z. A. khalaf, and N. T. A. Ramaha, "Review Of Breast Diagnosis Detection and 

Classification Based on Machine Learning," International Conference on 

Trends in Advanced Research, vol. 1, pp. 222–230, Mar. 2023. [Online]. 

Available: https://as-proceeding.com/index.php/ictar/article/view/209 

[31] V. Sandfort, K. Yan, P. J. Pickhardt, and R. M. Summers, “Data augmentation 

using generative adversarial networks (CycleGAN) to improve generalizability 

in CT segmentation tasks,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–9, 

Nov. 2019, doi: 10.1038/s41598-019-52737-x. 

[32] O. S. Eyobu and D. S. Han, “Feature Representation and Data Augmentation 

for Human Activity Classification Based on Wearable IMU Sensor Data Using 



      

45 

a Deep LSTM Neural Network,” Sensors 2018, Vol. 18, Page 2892, vol. 18, no. 

9, p. 2892, Aug. 2018, doi: 10.3390/S18092892. 

[33] P. Celard, E. L. Iglesias, J. M. Sorribes-Fdez, R. Romero, A. S. Vieira, and L. 

Borrajo, “A survey on deep learning applied to medical images: from simple 

artificial neural networks to generative models,” Neural Computing and 

Applications 2022 35:3, vol. 35, no. 3, pp. 2291–2323, Nov. 2022, doi: 

10.1007/S00521-022-07953-4. 

[34] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep 

learning in image classification problem,” 2018 International Interdisciplinary 

PhD Workshop, IIPhDW 2018, pp. 117–122, Jun. 2018, doi: 

10.1109/IIPHDW.2018.8388338. 

[35] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation 

for Deep Learning”, doi: 10.1186/s40537-019-0197-0. 

[36] G. Fanelli, J. Gall, and L. Van Gool, “Real time head pose estimation with 

random regression forests,” Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, pp. 617–624, 2011, 

doi: 10.1109/CVPR.2011.5995458. 

[37] J. R. Rice, “Stresses Due to a Sharp Notch in a Work-Hardening Elastic-Plastic 

Material Loaded by Longitudinal Shear,” J Appl Mech, vol. 34, no. 2, pp. 287–

298, Jun. 1967, doi: 10.1115/1.3607681. 

[38] O. Ecabert et al., “Automatic model-based segmentation of the heart in CT 

images,” IEEE Trans Med Imaging, vol. 27, no. 9, pp. 1189–1202, Sep. 2008, 

doi: 10.1109/TMI.2008.918330. 

[39] T. Igarashi and K. Hinckley, “Speed-dependent Automatic Zooming for 

Browsing Large Documents”. 

[40] M. Bohan, D. S. McConnell, A. Chaparro, and S. G. Thompson, “The Effects 

of Visual Magnification and Physical Movement Scale on the Manipulation of 

a Tool With Indirect Vision,” J Exp Psychol Appl, vol. 16, no. 1, pp. 33–44, 

Mar. 2010, doi: 10.1037/A0018501. 

[41] C. Witharana et al., “An Object-Based Approach for Mapping Tundra Ice-

Wedge Polygon Troughs from Very High Spatial Resolution Optical Satellite 

Imagery,” Remote Sensing 2021, Vol. 13, Page 558, vol. 13, no. 4, p. 558, Feb. 

2021, doi: 10.3390/RS13040558. 

[42] E. Luz et al., “Towards an effective and efficient deep learning model for 

COVID-19 patterns detection in X-ray images,” Research on Biomedical 

Engineering, vol. 38, no. 1, pp. 149–162, Mar. 2022, doi: 10.1007/S42600-021-

00151-6/FIGURES/10. 

[43] J. E. Murray, “Flipping and spinning: Spatial transformation procedures in the 

identification of rotated natural objects,” Mem Cognit, vol. 25, no. 1, pp. 96–

105, 1997, doi: 10.3758/BF03197287/METRICS. 



      

46 

[44] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan, “Symmetry in 3D Geometry: 

Extraction and Applications,” Computer Graphics Forum, vol. 32, no. 6, pp. 1–

23, Sep. 2013, doi: 10.1111/CGF.12010. 

[45] J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in 

medicine: a practical introduction,” BMC Med Res Methodol, vol. 19, no. 1, pp. 

1–18, Mar. 2019, doi: 10.1186/S12874-019-0681-4/TABLES/5. 

[46] S. Ammar, T. Bouwmans, and M. Neji, “Face Identification Using Data 

Augmentation Based on the Combination of DCGANs and Basic 

Manipulations,” Information 2022, Vol. 13, Page 370, vol. 13, no. 8, p. 370, 

Aug. 2022, doi: 10.3390/INFO13080370. 

[47] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards 

Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-

Dataset Transfer,” IEEE Trans Pattern Anal Mach Intell, vol. 44, no. 3, pp. 

1623–1637, Mar. 2022, doi: 10.1109/TPAMI.2020.3019967. 

[48] A. Iqbal, M. Sharif, M. Yasmin, M. Raza, and S. Aftab, “Generative adversarial 

networks and its applications in the biomedical image segmentation: a 

comprehensive survey,” International Journal of Multimedia Information 

Retrieval 2022 11:3, vol. 11, no. 3, pp. 333–368, Jul. 2022, doi: 

10.1007/S13735-022-00240-X. 

[49] R. Wang et al., “Applications of generative adversarial networks in 

neuroimaging and clinical neuroscience,” Neuroimage, vol. 269, p. 119898, 

Apr. 2023, doi: 10.1016/J.NEUROIMAGE.2023.119898. 

[50] S. Wang et al., “Advances in Data Preprocessing for Biomedical Data Fusion: 

An Overview of the Methods, Challenges, and Prospects,” Information Fusion, 

vol. 76, pp. 376–421, Dec. 2021, doi: 10.1016/J.INFFUS.2021.07.001. 

[51] P. M. Tostado, B. U. Pedroni, and G. Cauwenberghs, “Performance Trade-offs 

in Weight Quantization for Memory-Efficient Inference,” Proceedings 2019 

IEEE International Conference on Artificial Intelligence Circuits and Systems, 

AICAS 2019, pp. 246–250, Mar. 2019, doi: 10.1109/AICAS.2019.8771473. 

[52] D. Preuveneers, I. Tsingenopoulos, and W. Joosen, “Resource Usage and 

Performance Trade-offs for Machine Learning Models in Smart Environments,” 

Sensors 2020, Vol. 20, Page 1176, vol. 20, no. 4, p. 1176, Feb. 2020, doi: 

10.3390/S20041176. 

[53] W. Guo, “Explainable Artificial Intelligence for 6G: Improving Trust between 

Human and Machine,” IEEE Communications Magazine, vol. 58, no. 6, pp. 39–

45, Jun. 2020, doi: 10.1109/MCOM.001.2000050. 

[54] M. Del Giudice and B. J. Crespi, “Basic functional trade-offs in cognition: An 

integrative framework,” Cognition, vol. 179, pp. 56–70, Oct. 2018, doi: 

10.1016/J.COGNITION.2018.06.008. 



      

47 

[55] W. Liu, H. Han, and G. Han, “Transfer Learning with Deep Convolutional 

Neural Network for Automated Plant Identification,” 2022 7th International 

Conference on Image, Vision and Computing, ICIVC 2022, pp. 555–560, 2022, 

doi: 10.1109/ICIVC55077.2022.9886149. 

[56] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural 

networks: an overview and application in radiology,” Insights Imaging, vol. 9, 

no. 4, pp. 611–629, Aug. 2018, doi: 10.1007/S13244-018-0639-

9/FIGURES/15. 

[57] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural 

networks for hyperspectral image classification,” J Sens, vol. 2015, 2015, doi: 

10.1155/2015/258619. 

[58] M. A. Saleem, N. Senan, F. Wahid, M. Aamir, A. Samad, and M. Khan, 

“Comparative Analysis of Recent Architecture of Convolutional Neural 

Network,” Math Probl Eng, vol. 2022, 2022, doi: 10.1155/2022/7313612. 

[59] S. Li, Y. Yao, J. Hu, G. Liu, X. Yao, and J. Hu, “An Ensemble Stacked 

Convolutional Neural Network Model for Environmental Event Sound 

Recognition,” Applied Sciences 2018, Vol. 8, Page 1152, vol. 8, no. 7, p. 1152, 

Jul. 2018, doi: 10.3390/APP8071152. 

[60] Y. D. Zhang, Y. Zhang, X. X. Hou, H. Chen, and S. H. Wang, “Seven-layer 

deep neural network based on sparse autoencoder for voxelwise detection of 

cerebral microbleed,” Multimed Tools Appl, vol. 77, no. 9, pp. 10521–10538, 

May 2018, doi: 10.1007/S11042-017-4554-8/METRICS. 

[61] N. T. A. Ramaha et al., "Brain Pathology Classification of MR Images Using 

Machine Learning Techniques," MDPI, vol. 12, p. 167, Aug. 2023, doi: 

10.3390/computers12080167. 

[62] A. Narin, C. Kaya, and Z. Pamuk, “Automatic Detection of Coronavirus 

Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural 

Networks,” Pattern Analysis and Applications 2021 24:3, vol. 24, no. 3, pp. 

1207–1220, Mar. 2020, doi: 10.1007/s10044-021-00984-y. 

[63] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent 

architectures of deep convolutional neural networks,” Artificial Intelligence 

Review 2020 53:8, vol. 53, no. 8, pp. 5455–5516, Apr. 2020, doi: 

10.1007/S10462-020-09825-6. 

[64] V. Maeda-Gutiérrez et al., “Comparison of Convolutional Neural Network 

Architectures for Classification of Tomato Plant Diseases,” Applied Sciences 

2020, Vol. 10, Page 1245, vol. 10, no. 4, p. 1245, Feb. 2020, doi: 

10.3390/APP10041245. 

[65] H. Fırat, M. E. Asker, M. İ. Bayındır, and D. Hanbay, “Hybrid 3D/2D Complete 

Inception Module and Convolutional Neural Network for Hyperspectral 

Remote Sensing Image Classification,” Neural Process Lett, vol. 55, no. 2, pp. 

1087–1130, Apr. 2023, doi: 10.1007/S11063-022-10929-Z/METRICS. 



      

48 

[66] M. A. Al-masni, D. H. Kim, and T. S. Kim, “Multiple skin lesions diagnostics 

via integrated deep convolutional networks for segmentation and 

classification,” Comput Methods Programs Biomed, vol. 190, p. 105351, Jul. 

2020, doi: 10.1016/J.CMPB.2020.105351. 

[67] H. K. Gajera, D. R. Nayak, and M. A. Zaveri, “A comprehensive analysis of 

dermoscopy images for melanoma detection via deep CNN features,” Biomed 

Signal Process Control, vol. 79, p. 104186, Jan. 2023, doi: 

10.1016/J.BSPC.2022.104186. 

[68] A. Haghanifar, M. M. Majdabadi, Y. Choi, S. Deivalakshmi, and S. Ko, 

“COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using 

deep learning,” Multimed Tools Appl, vol. 81, no. 21, pp. 30615–30645, Sep. 

2022, doi: 10.1007/S11042-022-12156-Z/FIGURES/25. 

[69] X. Liu, Z. Jia, X. Hou, M. Fu, L. Ma, and Q. Sun, “Real-time Marine Animal 

Images Classification by Embedded System Based on Mobilenet and Transfer 

Learning,” OCEANS 2019 - Marseille, OCEANS Marseille 2019, vol. 2019-

June, Jun. 2019, doi: 10.1109/OCEANSE.2019.8867190. 

[70] L. Bai, Y. Zhao, and X. Huang, “A CNN Accelerator on FPGA Using 

Depthwise Separable Convolution,” IEEE Transactions on Circuits and 

Systems II: Express Briefs, vol. 65, no. 10, pp. 1415–1419, Oct. 2018, doi: 

10.1109/TCSII.2018.2865896. 

[71] H. Yuan, J. Cheng, Y. Wu, and Z. Zeng, “Low-res MobileNet: An efficient 

lightweight network for low-resolution image classification in resource-

constrained scenarios,” Multimed Tools Appl, vol. 81, no. 27, pp. 38513–38530, 

Nov. 2022, doi: 10.1007/S11042-022-13157-8/METRICS. 

[72] A. Kumar, A. Sharma, V. Bharti, A. K. Singh, S. K. Singh, and S. Saxena, 

“MobiHisNet: A Lightweight CNN in Mobile Edge Computing for 

Histopathological Image Classification,” IEEE Internet Things J, vol. 8, no. 24, 

pp. 17778–17789, Dec. 2021, doi: 10.1109/JIOT.2021.3119520. 

[73] M. S. H. Shovon, M. J. Islam, M. N. A. K. Nabil, M. M. Molla, A. I. Jony, and 

M. F. Mridha, “Strategies for Enhancing the Multi-Stage Classification 

Performances of HER2 Breast Cancer from Hematoxylin and Eosin Images,” 

Diagnostics 2022, Vol. 12, Page 2825, vol. 12, no. 11, p. 2825, Nov. 2022, doi: 

10.3390/DIAGNOSTICS12112825. 

[74] F. M. J. M. Shamrat et al., “AlzheimerNet: An Effective Deep Learning Based 

Proposition for Alzheimer’s Disease Stages Classification From Functional 

Brain Changes in Magnetic Resonance Images,” IEEE Access, vol. 11, pp. 

16376–16395, 2023, doi: 10.1109/ACCESS.2023.3244952. 

[75] D. Brown and K. Bradshaw, “Deep Palmprint Recognition with Alignment and 

Augmentation of Limited Training Samples,” SN Computer Science 2021 3:1, 

vol. 3, no. 1, pp. 1–17, Oct. 2021, doi: 10.1007/S42979-021-00859-3. 



      

49 

[76] F. J. Ordóñez, D. Roggen, Y. Liu, W. Xiao, H.-C. Chao, and P. Chu, “Deep 

Convolutional and LSTM Recurrent Neural Networks for Multimodal 

Wearable Activity Recognition,” Sensors 2016, Vol. 16, Page 115, vol. 16, no. 

1, p. 115, Jan. 2016, doi: 10.3390/S16010115. 

[77] C. Ballabio and S. Sterlacchini, “Support Vector Machines for Landslide 

Susceptibility Mapping: The Staffora River Basin Case Study, Italy,” Math 

Geosci, vol. 44, no. 1, pp. 47–70, Jan. 2012, doi: 10.1007/S11004-011-9379-

9/METRICS. 

[78] G. Zhang, M. Wang, and K. Liu, “Forest Fire Susceptibility Modeling Using a 

Convolutional Neural Network for Yunnan Province of China,” International 

Journal of Disaster Risk Science, vol. 10, no. 3, pp. 386–403, Sep. 2019, doi: 

10.1007/S13753-019-00233-1/FIGURES/10. 

[79] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine learning: A 

review of classification and combining techniques,” Artif Intell Rev, vol. 26, no. 

3, pp. 159–190, Nov. 2006, doi: 10.1007/S10462-007-9052-3/METRICS. 

[80] R. Haque, N. Islam, M. Tasneem, and A. K. Das, “Multi-class sentiment 

classification on Bengali social media comments using machine learning,” 

International Journal of Cognitive Computing in Engineering, vol. 4, pp. 21–

35, Jun. 2023, doi: 10.1016/J.IJCCE.2023.01.001. 

[81] M. Alhamidi, and N. T. A. Ramaha, "Unveiling Alzheimer's Disease via MRI: 

Deep Learning Approaches for Accurate Detection," International Journal of 

Advanced Natural Sciences and Engineering Researches, vol. 7, pp. 418-422, 

Oct. 2023. [Online]. Available: 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=G

w2-FFYAAAAJ&citation_for_view=Gw2-FFYAAAAJ:ufrVoPGSRksC 

 

 

  



      

50 

 

 

RESUME 

 

Mais Alhamidi AHMAD she graduated from elementary in Qatar education and high 

school in Turkey. After that, she started the undergraduate program at The 

International Islamic University Malaysia in Malaysia Department of Information and 

Communication Technology specializing in information technology starting in 2017 

and graduating in 2022. To complete M. Sc. education, she moved to Karabük 

University in 2022. 

 


