

A NEOTERIC EVALUATION OF DEEP
REINFORCEMENT LEARNING ALGORITHMS

UTILIZING GAME CONCEPTS

2024
Master Thesis

COMPUTER ENGINEERING

Zabiullah ALI SHER

Thesis Advisor
Assist. Prof. Dr. Nehad T.A RAMAHA

 A NEOTERIC EVALUATION OF DEEP REINFORCEMENT LEARNING

ALGORITHMS UTILIZING GAME CONCEPTS

Zabiullah ALI SHER

Thesis Advisor
Assist. Prof. Dr. Nehad T.A RAMAHA

T.C.
Karabük University

Institute of Graduate Programs
Department of Computer Engineering

Prepared as
Master Thesis

KARABÜK
June 2024

ii

I certify that in my opinion the thesis submitted by Zabiullah ALI SHER title “A
NEOTERIC EVALUATION OF DEEP REINFORCEMENT LEARNING
ALGORITHMS UTILIZING GAME CONCEPTS” is fully adequate in scope and in
quality as a thesis for the degree of Master of Computer Engineering.

Assist. Prof. Dr. Nehad T.A RAMAHA

Thesis Advisor, Department of Computer Engineering

This thesis is accepted by the examining committee with a unanimous vote in the

Department of Computer Engineering as a Master of Science thesis. June 14, 2024

Examining Committee Members (Institutions) Signature

Chairman : Asst. Prof. Dr. Alaa Ali HAMEED (IU) ………………….

Member : Asst. Prof. Dr. Nehad T.A RAMAHA (KBU) ………………….

Member : Asst. Prof. Dr. İsa AVCI (KBU) ………………….

The degree of Master of Computer Engineering by the thesis submitted is approved by

the Administrative Board of the Institute of Graduate Programs, Karabük University.

Assoc. Prof. Dr. Zeynep ÖZCAN

Director of the Institute of Graduate Programs

iii

“I hereby declare that this thesis is the result of my own work and all information
included has been obtained and expounded in accordance with academic rules and
ethical policy specified by the institute. Besides, I declare that the statement, results,
materials, not original to this thesis have been cited and referenced literally.”

Without being bound by a particular time, I accept all moral and legal consequences
of any detection contrary to the aforementioned statement.

Zabiullah ALI SHER

iv

ABSTRACT

M. Sc. Thesis

A NEOTERIC EVALUATION OF DEEP REINFORCEMENT LEARNING

ALGORITHMS UTILIZING GAME CONCEPTS

Zabiullah ALI SHER

Karabük University

Institute of Graduate Programs

Department of Computer Engineering

Thesis Advisor:

Assist. Prof. Dr. Nehad T.A RAMAHA

June 2024, 64 pages

This study developed an innovative Deep Reinforcement Learning (DRL) approach

applied to the Chrome Dino Run. Unlike traditional methods using pixel-based images,

this study transforms the state representation to include x and y coordinates and the

width and height of the game obstacles. This departure aims to streamline learning,

improve DRL efficiency, and reduce computational costs. By emphasizing essential

features in the state representation, such as cacti and birds’ precise coordinates, the

model learns more efficiently and generalizes better across various game scenarios.

Integrated with DRL algorithms like Deep Q-Network (DQN), the proposed method

demonstrates competitive performance while being computationally more efficient.

The abstraction of the game state to essential elements, such as object coordinates, not

only enhances the efficiency of the learning but also provides a more interpretable

representation. This interpretability fosters a deeper understanding of the learned

v

policies, shedding light on the decision-making process of the DRL agent. By

concentrating on key features directly influencing decision-making, the study suggests

that abstract state representations simplify the learning process and enhance the

generalization capabilities of the DRL model.

Keywords : Reinforcement Learning, Double DQN, Chrome Dino Run,

Deep Neural Networks, Obstacle Coordinates, Exploration-

Exploitation, Bellman Equation.

Science code : 92431

vi

ÖZET

Yüksek Lisans Tezi

OYUN KAVRAMLARINDAN YARARLANAN DERİN PEKİŞTİRMELİ

ÖĞRENME ALGORİTMALARININ NEOTERİK BİR DEĞERLENDİRMESİ

Zabiullah ALI SHER

Karabük Üniversitesi

Lisansüstü Eğitim Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Tez Danışmanı:

Dr. Öğr. Üyesi Nehad T.A RAMAHA

Haziran 2024, 64 sayfa

Bu çalışma, Chrome Dino Run'a uygulanan yenilikçi bir Derin Güçlendirme Öğrenme

(DRL) yaklaşımı geliştirdi. Piksel tabanlı görüntüler kullanan geleneksel

yöntemlerden farklı olarak bu çalışma, durum temsilini x ve y koordinatlarını ve oyun

engellerinin genişlik ve yüksekliğini içerecek şekilde dönüştürüyor. Bu ayrılma,

öğrenmeyi kolaylaştırmayı, DRL verimliliğini artırmayı ve hesaplama maliyetlerini

azaltmayı amaçlamaktadır. Model, kaktüsler ve kuşların kesin koordinatları gibi

durum temsilindeki temel özellikleri vurgulayarak daha verimli öğrenir ve çeşitli oyun

senaryolarında daha iyi genelleme yapar. Deep Q-Network (DQN) gibi DRL

algoritmalarıyla entegre edilen önerilen yöntem, hesaplama açısından daha verimli

olmasının yanı sıra rekabetçi bir performans sergiliyor.

Oyun durumunun nesne koordinatları gibi temel unsurlara soyutlanması yalnızca

öğrenmenin verimliliğini arttırmakla kalmaz, aynı zamanda daha yorumlanabilir bir

vii

temsil sağlar. Bu yorumlanabilirlik, öğrenilen politikaların daha derinlemesine

anlaşılmasını teşvik ederek DRL temsilcisinin karar verme sürecine ışık tutar. Karar

almayı doğrudan etkileyen temel özelliklere odaklanan çalışma, soyut durum

temsillerinin öğrenme sürecini basitleştirdiğini ve DRL modelinin genelleme

yeteneklerini geliştirdiğini öne sürüyor.

Anahtar Kelimeler : Takviyeli Öğrenme, Çift DQN, Chrome Dino Koşusu, Derin

Sinir Ağları, Engel Koordinatları, Keşif-Kullanım, Bellman

Denklemi.

Bilim Kodu : 92431

viii

ACKNOWLEDGEMENT

I extend my heartfelt gratitude to my beloved mother, whose unwavering support,

encouragement, and sacrifice in every step of my life have been the cornerstone of my

academic journey. Her boundless love and guidance have been my source of strength

throughout this endeavor.

I would also like express my sincere appreciation to my advisor, Assist. Prof. Dr.

Nehad T.A Ramaha, for his irreplaceable guidance, expert knowledge, and unwavering

encouragement. His mentorship has been instrumental in shaping my research and

academic growth, and I am truly grateful for his dedication and support.

Special thanks are owed to my kind-hearted and gentlemanly uncle, Ataeulah Afzali,

for his generous economic support, which alleviated financial burdens and allowed me

to focus wholeheartedly on my studies and research.

I am deeply grateful to Turkey and Karabük University for providing an enriching

academic environment and essential resources for conducting this research. I extend

my appreciation to all the professors and faculty members whose expertise and

guidance have contributed to my academic development.

Additionally, I am thankful to all the professors, and my family who have provided

assistance, feedback, and encouragement during the course of my master’s thesis.

This thesis would not have been possible without the support and contributions of all

those mentioned above. Thank you from the bottom of my heart.

ix

LIST OF CONTENTS

Page

APPROVAL ... ii

ABSTRACT .. iv

ÖZET... vi

ACKNOWLEDGEMENT .. viii

LIST OF CONTENTS .. ix

LIST OF FIGURES .. xiii

LIST OF TABLES ... xv

ABBREVIATIONS .. xvi

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1. BACKGROUND .. 1

1.2. MOTIVATION .. 1

1.3. OBJECTIVE ... 1

1.4. SCOPE OF THE STUDY .. 2

1.5. LIMITATION OF THE STUDY ... 2

CHAPTER 2 .. 3

LITERATURE REVIEW... 3

2.1. REINFORCEMENT LEARNING (RL) .. 3

2.2. DEEP REINFORCEMENT LEARNING (DRL) .. 4

2.2.1. Advancements Beyond Traditional RL ... 5

2.3. RELATED WORK .. 6

2.3.1. DRL Architectures in Gaming .. 6

2.3.2. Challenges and Opportunities ... 8

2.3.3. Chrome Dino Run Previous Approaches .. 9

CHAPTER 3 .. 12

x

Page

PROBLEM STATEMENT .. 12

3.1. CHALLENGES IN HIGH-DIMENSIONAL SPACES 12

3.1.1. Challenges in Chrome Dino Run .. 13

3.2. LIMITATIONS OF EXISTING APPROACHES .. 13

3.3. RATIONAL FOR STATE REPRESENTATION MODIFICATION 15

CHAPTER 4 .. 17

METHODOLOGY ... 17

4.1. PROGRAMING LANGUAGES AND FRAMEWORKS 17

4.1.1. Python.. 17

4.1.2. Native Python Libraries .. 18

4.1.3. Selenium .. 18

4.1.4. NumPy ... 18

4.1.5. Pillow and OpenCV .. 18

4.1.6. PyTorch ... 19

4.2. OVERVIEW OF DEEP REINFORCEMENT LEARNING 19

4.2.1. Double Deep Q-Network (DDQN) ... 20

4.3. DRL ALGORITHM SELECTION .. 21

4.3.1. Mean Squared Error (MSE) Loss Function... 22

4.3.2. Soft Update .. 22

4.3.3. Epsilon-Greedy Action .. 23

4.3.4. Adam Optimizer .. 24

4.4. TRAINING PROCESS .. 24

4.5. EVALUATION METRICS .. 26

4.5.1. Maximum Score .. 26

4.5.2. Average Score ... 26

4.5.3. Training Time .. 27

4.5.4. Exploration-Exploitation Strategy... 27

CHAPTER 5 .. 28

STATE REPRESENTATION ... 28

5.1. TRADITIONAL IMAGE-BASED STATE REPRESENTATION 29

xi

Page

5.1.1. Convolutional Neural Networks (CNNs) .. 29

5.1.2. Computational Inefficiencies .. 30

5.2. PROPOSED STATE REPRESENTATION .. 30

5.2.1. State Representation Design.. 31

5.2.2. Advantages of State Representation .. 33

CHAPTER 6 .. 35

EXPERIMENTAL SETUP .. 35

6.1. ENVIRONMENT CONFIGURATION ... 36

6.1.1. Game Module .. 36

6.1.2. Vision Module ... 38

6.1.3. Replay Buffer Module ... 39

6.1.4. Agent ... 40

6.2. DATA FLOW .. 40

6.3. HYPERPARAMETER TUNING .. 41

6.3.1. Learning Rate (LR) ... 42

6.3.2. Updating the Q-Network ... 43

6.3.3. Soft Update Parameter .. 43

6.3.4. Exploration-Exploitation ... 44

6.4. MODELS ... 44

CHAPTER 7 .. 47

RESULTS AND ANALYSIS .. 47

7.1. EXPERIMENTAL SETUP .. 47

7.2. BASELINE PERFORMANCE .. 47

7.3. ALTERNATIVE CONFIGURATIONS .. 48

7.4. LEARNING CURVES ... 51

7.5. GENERALIZATION TO DIFFERENT SCENARIOS 52

CHAPTER 8 .. 54

DISCUSSION .. 54

8.1. INTERPRETATION OF RESULTS ... 54

xii

Page

8.2. INSIGHTS INTO STATE REPRESENTATION INFLUENCE 55

8.3. IMPLICATIONS FOR FUTURE RESEARCH .. 55

CHAPTER 9 .. 57

CONCLUSION .. 57

9.1. SUMMARY OF FINDINGS .. 57

9.2. CONTRIBUTIONS OF THE STUDY .. 57

9.3. LIMITATIONS AND FUTURE WORK .. 58

BIBLIOGRAPHY .. 59

CURRICULUM VITAE .. 64

xiii

LIST OF FIGURES

Page

Figure 2.1. Illustrates the DRL process which is enhanced by the algorithm of CNNs,
here game frame goes through the convolutional and pooling layers and
also using the ReLU activation function, it extracts all hierarchical features
[13]. ... 7

Figure 2.2. A pretrained CNNs illustration of transfer learning, an initial training
dataset is transferred to a medical dataset showing off CNNs flexibility
and efficiency [16]. ... 8

Figure 2.3. Snapshots serve as the state through the CNN for feature extractions [19].
 ... 10

Figure 3.1. Illustrates the complexity and richness of high-dimensional space [22]. 12

Figure 3.2. Architecture of Dino Chrome Run CNN [20] ... 13

Figure 3.3. Illustrates our image-based state representation which is traditionally used
in our exampled game environment. ... 14

Figure 3.4. Illustration of state representation as coordinates (x, y, width, height). .. 15

Figure 5.1. Illustration of CNN process employed in traditional image-based state
representation [40]... 29

Figure 5.2. Illustration of processing the original image through edge detection and
then send to CNN utilization [3]. .. 30

Figure 5.3. Our image preprocessing journey that before rendering it as the state it goes
through this processing step to finally outputs the coordinates. 31

Figure 5.4. Overview of the state representation process. ... 32

Figure 5.5. A snapshot of the Chrome Dino Run game environment, that shows how it
give the precise coordinates and also the dimensions of the obstacle in the
game. ... 33

Figure 5.6. This visually image-based state representation illustrates the high-
dimensional state space representation [43]. ... 34

Figure 6.1. This illustration shows the entire overview of our solution process that how
the data flow through which components in our Chrome Dino Run game.
 ... 35

Figure 6.2. Shortly it illustrates the interaction flow within our system. The agent
signals an action to the game and takes back a screenshot from the game.

xiv

Then the screenshot will go to preprocess in the image processing stage
then we get the result and send it to the neural network as the state. 38

Figure 6.3. It illustrates that our agent starts its journey by a screenshot then extract
the coordinates and utilize that as its state representation and it saved in its
experience memory data flow. .. 40

Figure 6.4. Architecture of our PyTorch neural network that we represented in this
visual diagram. .. 45

Figure 7.1. Maximum rewards across different configuration visual representation. 49

Figure 7.2. Average rewards for different configuration for our system. 50

Figure 7.3. Average rewards per epoch for different configurations. 50

Figure 7.4. Our baseline experiment learning curves journey. 51

Figure 7.5. Our baseline experiment maximum rewards and it is shown per epoch. 52

xv

LIST OF TABLES

Page

Table 2.1. Previous approaches methods and other details on Chrome Dino Run Game.
 ... 9

Table 6.1. Configuration of our Hyperparameters constants tuning for our DRL
system’s DDQN algorithm. ... 42

Table 6.2. Exploration and Exploitation parameters for Fine-Tuning. 44

Table 7.1. Variation of configurations on our coordinate-based state representation.
 ... 48

xvi

ABBREVIATIONS

DRL : Deep Reinforcement Learning

RL : Reinforcement Learning

AI : Artificial Intelligence

DQN : Deep Q-Network

DDQN : Double Deep Q-Network

DNNs : Deep Neural Networks

CNNs : Convolutional Neural Networks

NNs : Neural Networks

DL : Deep Learning

1

CHAPTER 1

INTRODUCTION

1.1. BACKGROUND

Nowadays, deep learning (DL) and reinforcement learning (RL) concepts and

algorithms are considered very important tools for developing intelligent systems.

When these two powerful concepts are merged together, then we get the Deep

Reinforcement Learning (DRL) paradigm that becomes very powerful in the artificial

intelligence (AI) field [1,2]. After combining their principles, we make our machine

capable of making intelligent decisions in complex environments. At its core, the

model we create has neural networks (NNs) that can easily process the decision-

making strategy; thus, it allows the agent to navigate very flexibly in passing through

a complex and dynamic scenario.

Chrome Dino Run is a web browser-based game; a T-rex dinosaur navigates an infinite

journey in a desert, facing obstacles. This game aims to jump over the cacti and pass

through birds to survive and get great scores [3]. The agent we defined in this DRL

system is responsible for acting as the player; the assigned player is to navigate through

infinite obstacles that are randomly generated. Two fundamental actions are available

in this game, such as jumping or doing nothing. Our agent in this dynamic and infinite

environment aims to make itself capable of identifying and executing optimal

strategies to pass through. It enables the agent to be flexible in navigating this diverse

number of obstacles in this infinite environment and continuously maximize its overall

scores. The DRL system we designed will transform the Chrome Dino Run game to

compete itself as an AI game mastery.

1

1.2. MOTIVATION

The motivation we are breaking up in this research is to address the challenges of

agents training in visually complex and dynamic situations; the prime characteristic in

this case study is the environment of the Chrome Dino Run game, which is taken into

action.

Image-based methods in DRL often struggle with some burden of high computations

because of the high-dimensional input spaces [4]. Specifically, overcome tasks that are

visually complex and dynamic. Here, the motivation is to contribute to this already

developed algorithm that excels in the intuition of learning strategies and does more

efficiently with high computational environments for the Chrome Dino Run game.

1.3. OBJECTIVE

This research's main goal is to push the DRL forward to deal with specific challenges

that produce visually complex and dynamic environments [4,5], This research uses the

Chrome Dino Run game environment as a testing ground to reach this goal. Therefore,

this research is trying to achieve a bunch of unified and different ideas; each idea

contributes to a deep exploration of the capabilities of DRL intuition. To achieve the

desired goal, this research has the following sub-objectives:

1. To utilize an algorithm excelling the computational efficiency terms without

compromising its performance, we use Double Deep Q-Network (DDQN)

capabilities to adeptly navigate the Chrome Dino Run game. Successfully

delivering the balance between learning efficiency and high performance is one

of the crucial outcomes of the used algorithm achievement.

2. To explore the proposed algorithm generalization in real-time scenarios.

Beyond gaming, we aim to explore the generalization of the proposed

algorithm in real-time scenarios [6]. In this matter, we aim to ensure the

adaptability of the DRL to all sorts of applications used for crucial decision-

making in dynamic environments.

2

3. To highlight the proposed algorithm's potential contributions to the table

beyond handling the specific Chrome Dino Run constraints in the game

environment.

1.4. SCOPE OF THE STUDY

This study focuses on looking into different angles of DRL, particularly within the

context of Chrome Dino Run game dynamics and visually complex environment. We

will focus primarily on resolving the suggested DDQN algorithm and particularly how

it works in the gaming environment, along with our contribution to this algorithm.

Our horizon widens here, demonstrating various ways of input representation,

particularly in this study. Rather than the whole game frames, our decision is to focus

on obstacle coordinates only, which means a deep dive into the different ways of

making it happen, the advantages of this contribution, and facing limitations with this

polished approach. This study aims to add some considerate contributions

demonstrating a nuanced perspective dealing with DRL input representation strategies.

1.5. LIMITATION OF THE STUDY

While being a very good testing space for our DRL methodologies, the Chrome Dino

Run game is an environment with straightforward approaches. The constraints of the

game might not capture the complexity found in the real world’s more complex

scenarios.

Although the elimination might need further research and technological

enhancements, strategies are explored to tackle the problem. However, there are some

issues that the suggested DRL system faces, like frame acquisition lag, which gets

trickier, and the complexity of our agent responding consecutively.

Primarily, our research addresses challenges encountered within the gaming scene of

Chrome Dino Run. Employing this in other games or real-world scenarios might need

things to tweak the process to hold up.

3

CHAPTER 2

LITERATURE REVIEW

2.1. REINFORCEMENT LEARNING (RL)

RL is the core of AI, it represents to train an intelligent agent with adaptable

capabilities in the dynamic environment, it has transformed in a powerhouse, showing

off its flexibilities in all sort of applications [7], particularly in gaming world. Naturally

its algorithm has the ability of picking up the optimal strategies by repetitive

interactions in a complex environment covering a groundbreaking achievement.

In the RL world, the Q-learning update equation works as the basis for a repetitive

fine-tuning strategy of the agent in choosing the action [8], we adapted it into the

context of the Chrome Dino Run environment, this formula is guiding the agent’s

learning process. It allows the agent to figure out decisions with its interactions in the

dynamic game environment. Here is the update equation which expressed:

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 ⋅ 𝑚𝑎𝑥ռ஥𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (2.1)

Here, 𝑄(𝑠, 𝑎) is state-action pair of current Q-value, where the state 𝑠 is our obstacle

coordinates, and action 𝑎 is the decision of agent. 𝛼 is the agent’s learning rate (0 < 𝛼

≤ 1), it is an essential parameter to determine the assigned weight of the new

information. Each update is controlled by this magnitude, the smaller the value ensures

the more conservative adjustments. 𝑟 which illustrate the immediate reward that the

agent obtained with an action 𝑎 taken in a state 𝑠. This reward is given if the agent

successfully navigates over the obstacles or a penalty (negative reward) for the agent’s

collisions. 𝛾 we could express this as the discount factor, that influences the balance

between immediate and future rewards. In our Chrome Dino Run dynamic

environment, the bigger 𝛾 would emphasizes the importance of long-term

4

consequences. Finally, 𝑚𝑎𝑥ռ஥𝑄(𝑠′, 𝑎′) says the maximum Q-values which is achieved

in the state 𝑠′ subsequent after the agent takes action 𝑎. This part covers the

anticipation of agent’s cumulative future rewards.

In this repetitive process update, the mentioned equation which embedded within the

Q-learning algorithm, it allows our created agent to learn functional learning of

optimal strategies in playing the Chrome Dino Run game, our agent adapt the behavior

according to the experiences and rewards which accumulated in the training epochs

iterations.

In the gaming world, the basis of the technology is the RL [7], it shows off its value

across various gaming environment. The previous works have shown the RL algorithm

adaptability like an expert that dominates the classic games, and breaks the limits in

the world of video games. The achievements of the RL in game were solid proof in

how it is an expert at controlling the tricky decisions and picking up learning nuanced

behaviors.

2.2. DEEP REINFORCEMENT LEARNING (DRL)

We believe the transition from RL to DRL constitutes an important turning point in

our AI environment along with broad consequences. However, it has characterized by

the seamless deep neural networks (DNNs) integration [9], which then brings a new

era of capabilities, and also pushing the boundaries of previously feasible

consideration in to our AI world.

The algorithm of DRL is just an extended version of RL since it typically uses DNNs

for function approximations such as Q-value and policy. Therefore, it can work with

high-dimensional state spaces because it uses neural networks (NNs) for its prediction,

which makes it ideal for tasks like images and audios, which are sensory raw inputs.

Since then, the updated equation for the Q-value, particularly in DQN [10], is written

below.

5

𝑄֏ռ֍ւր֏ = 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 + (𝛾 ⋅ 𝑚𝑎𝑥ռ஬𝑄֏ռ֍ւր֏Ϻ։ր֓֏ ⋅ (1 − 𝑑𝑜𝑛𝑒𝑠)) (2.2)

Here, the 𝑄֏ռ֍ւր֏ is belongs to target’s Q-value for the current pair of state-action.

Because with this value we aim to estimate by the time our agent is learning. Where,

the 𝑟𝑒𝑤𝑎𝑟𝑑 is immediate reward as obtained after taking the action within the current

state. As if, successfully avoiding an obstacle would positive whereas, negative for

colliding with an obstacle. Now, 𝛾 is our discount factor, a value between 0 and 1

provided to determine the future rewards importance. In order that, the trade-off-

between immediate and future rewards influences. Consequently, 𝑚𝑎𝑥ռ஬𝑄֏ռ֍ւր֏Ϻ։ր֓

is the maximum Q-value among all action 𝑎′ possibilities within the next state 𝑠′. In

addition, it shows the estimated future reward for the best possible action of the agent.

Finally, (1 − 𝑑𝑜𝑛𝑒𝑠) is binary indicator 0 or 1 that shows either the episode has

terminated or not terminated. In fact, we could use to avoid future rewards

consideration as if the episode has terminated.

2.2.1. Advancements Beyond Traditional RL

As if the basic RL algorithm perfectly thrives in some particular areas, we believe it

hardly works with areas that involve high-dimensional input spaces. So, integrating

DNN's potentials makes it possible to generalize a great learning process across huge

states even though it provides a huge and flexible framework and introduces a

paradigm shift in the RL concept, which we can call DRL.

Hence, there are a huge number of challenges in the high-dimensional input spaces

[11], but the DRL concept stands out with its huge capabilities as an innovative light

in the AI world. NNs bring depth and complexity to the learning process of the agent

giving it the power to expose the complex relationship between data. This concept

enables our agent to make wise decisions in a dynamic environment. So, this

transformation of combining RL with the DNN concept forms the foundation to

address the complexities that are encountered in the Chrome Dino Run game.

We decided to choose DRL because of its learning spatial pattern ability, it works

flexible with any dynamic environment, if we talk about its decision-making policy, it

6

is very efficient. Hence, our objective is to select a sophisticated concept, to have the

ability of learning techniques and also it should be consistent and customizable for our

unique features of our chrome dino run game.

2.3. RELATED WORK

When we mix the DRL with gaming environments, the result it produces is fascinating

and extraordinary. we believe that we could say that it outperforms frequency as a

human-level performance in most certain environments. Thus, to leverage our DRL

strategic decisions, if to be more specific, it is the DDQN algorithm for our Chrome

Dino Run game challenges, which arises for tracking the record and handling its

dynamic, and visually diverse gaming environments.

2.3.1. DRL Architectures in Gaming

In the gaming environment, I believe researchers have extensively worked with a

variety of DRL architectures and here the goal was to achieve a human-level, or higher

than that, superhuman performance. As we illustrated in Figure 2.1, here the CNNs

have emerged a popular task [5,12], since it is a very efficient solution for visual

processing of the input it receives from the game frames. Therefore, the visual

illustration, reminds us in order that the capacity of NNs which is used to extract the

hierarchical features and also recognize the patterns, this emphasizes the pivotal role

that makes our agent successful in visually demanding games environment that we

could use. Although, we could say that it could reinforces the significance of using the

CNNs to explore along with our DRL architecture in the high-level gaming

performance.

7

Figure 2.1. Illustrates the DRL process which is enhanced by the algorithm of CNNs,
here game frame goes through the convolutional and pooling layers and
also using the ReLU activation function, it extracts all hierarchical features
[13].

Several demonstrations of DRL ability to perform better than humans across the game

spectrum include the agents that master in the Atari games [14], navigate through

complex 3D environments, and make themselves higher in real-time game strategies.

Therefore, these achievements show the generalization and flexibility of the DRL

algorithm, so these capabilities make it a potential candidate for addressing challenges

that are exposed by dynamic and visually rich scenarios in the game.

So now, the technique of transfer learning, which is exemplified in Figure 2.2, can play

a vital role in enhancing the strength of the agent's generalizing ability across distinct

gaming environments. Here, the concept includes training a CNN agent on an exactly

different game and then transferring the knowledge acquired to definitely another

game [15]. Hence, this method effectively leverages the learned policy, which we can

significantly apply to another game and reduce the training time so that it could excel

at a drastic gaming task where it could adapt swiftly to a totally new environment.

8

Figure 2.2. A pretrained CNNs illustration of transfer learning, an initial training
dataset is transferred to a medical dataset showing off CNNs flexibility
and efficiency [16].

Demonstration of transfer learning basically give the model a capacity to generalize

its knowledge within different scenarios, since this method leads our agent to more

efficient and effective character in the new environment.

2.3.2. Challenges and Opportunities

Hence, DRL successfully doing very well in game scenarios, but there are challenges

that remained, to be specific it is in balancing the concept of exploration and

exploitation, sometimes there are challenges in sparse rewards, we believe there are

challenges in ensuring the robustness of learned policies. Of course, there are

researches going on that focuses to resolve these problems and also find options for

further refinement and innovations in gaming environments of DRL application.

9

2.3.3. Chrome Dino Run Previous Approaches

Although, this game generates new challenges regularly based on its infinite and high-

dimensional state space. Hence, this game, with its continuously changing

environment and as well as its real-time decision-making requirements, it needs

flexible and adaptive learning strategies. Perceiving each aspect of its mechanics is

very critical to develop an effective DRL strategies.

In 2020, Divyanshu Marwa [17] applied DRL to the Chrome Dino Run game with the

algorithm of DDQN to train the agent that she designed, and the state representation

is the entire game frame that is rendered for the agent, so to extract features from the

image, she used CNN's algorithm. Training lasted for 8 hours across 2647 episodes,

during which the agent could achieve a maximum score of 2800.

In a similar endeavor, to play the Chrome Dino Run game Lustina Ivanova in 2021

[18], she used the standard DQN algorithm with the help of reinforcement learning,

represented the entire game frame as the state, and used the CNN algorithm for

nuanced feature extraction of the image. Her agent training lasted for about 24 hours

and 1,980,000 steps, with a result of 258 maximum scores.

Table 2.1. Previous approaches methods and other details on Chrome Dino Run Game.

Reference Divyanshu Marwa [17] Lustina Ivanova [18]

Year 2020 2021

Algorithm Double Deep Q-Network (DDQN) Deep Q-Network (DQN)

Method Convolutional Neural Network Convolutional Neural Network

Episode 2,647 N/A

Time 8 hours 24 hours with 1,980,000 time steps

Max Score 2,800 258

In contrast to the traditional image-based state representation, we used the DDQN

algorithm to design our system and also obstacle coordinates (𝑥, 𝑦,𝑤, ℎ) for the state

representation of our agent. Unlike the abovementioned methods [17,18], we did not

use the CNN algorithm for image feature extractions. We trained our agent for almost

3 hours and 2000 episodes so that our agent achieved a maximum score of 2064. Our

10

method that we used is explained in clear detail in Chapter 4. This approach proved to

be not only effective in achieving competitive performance but also efficient in terms

of computation, owing to the simplified state representation based on obstacle

coordinates.

Figure 2.3. Snapshots serve as the state through the CNN for feature extractions [19].

A very large amount of procedure has been discovered, based on the previous attempts

when addressing this game’s challenges [17,18,20]. Therefore, all the traditional

attempts on this were just using CNNs frequently giving the entire game frame as its

input where it aims encompassing an effective visual information [3]. But the problem

here is all of the above strategies requires a huge amount of computation so that is it

faces inefficiencies in computation, this prompts that we should explore some kind of

alternative representation of the state. Where we clearly illustrated visually in Figure

2.3, we explained in detail the intricacies and limitations of previous approaches in

Chapter 3.

In previous approaches [23], [24], because they used the entire game frame as the state

representation, which caused the reward methods to be straightforward. Typically, if

the agent crashes into an obstacle, the agent will receive a negative reward, and if the

11

agent successfully passes through an obstacle, then the agent will receive a positive

reward. This reward method is directly tied to the outcome of the game.

In our approach, because we used obstacle coordinates as the state representation, so

that it allows us to design a more nuanced reward method. Since using the alternative

state representation, I have more control over the reward mechanism, that allows me

to make more customized and efficient reward methods. In Chapter 4 of this research,

we discussed our reward methods to play the Chrome Dino Run game, which

highlights its efficiency and effectiveness to guide our agent through the learning

process.

12

CHAPTER 3

PROBLEM STATEMENT

If we go through the Chrome Dino Run game environment demanding, and think it

within the framework of DRL, so we could get spot point of the problem where it

needs a very critical evaluation of problem in the hand of DRL. There by, this section

of thesis, extracts the complexities encountered and the difficulties which is found, so

that we can identify the limitations in the existing approaches where we can re-

structure the state representation in an easy and computation efficient way.

3.1. CHALLENGES IN HIGH-DIMENSIONAL SPACES

As we get deeper into DRL architecture, where the gaming environments, including

our exampled game (Chrome Dino Run), this will introduce some kind of challenges,

which are very critical, in case of managing its high-dimensional state spaces. Hence,

this high computational load [12,21], where we are processing the entire game frames

is going to lack the learning process time for the agent. Perceiving this problem, will

prompts a way of exploring an alternative state representation, where the main goal

should be the relevant extraction of features that the agent needs and this will maintain

a manageable computational burden.

Figure 3.1. Illustrates the complexity and richness of high-dimensional space [22].

13

3.1.1. Challenges in Chrome Dino Run

Our exampled game environment, provides some kind of challenges, where it makes

difficult than other DRL applications. As explained above this environment involves,

infinite and also high-dimensional state space [12], so that our agent needs to make

decision in the real-time that adds some layers of complexities. We are required to

train the agent very efficiently that could navigate this dynamic environment, and

agent should have a comprehensive knowledge of those challenges, which we are

going to explore in the subsequent chapters.

Figure 3.2. Architecture of Dino Chrome Run CNN [20]

The requirement of real-time decision-making really depends on the complexity of the

game, as illustrated in Figure 3.2, where it consists pooling and convolutional layers,

so that it processes the input from the game environment frames. And the final output

which we are getting would be the agent’s decision, either jump or do nothing. By the

time the obstacles expose itself in the screen dynamically, so here our agent should be

very careful on splitting second decision, and here it should provide a sense of urgency

to its learning process. So, this means that to train a proficient agent that perceives the

time-sensitive navigation.

3.2. LIMITATIONS OF EXISTING APPROACHES

In fact, with the existing approach on the Chrome Dino Run game, especially when

we are using CNNs, and pass the entire game frame as input introduces computational

14

inefficiencies for the agent. However, processing a large number of visual data

consecutively for the agent in the real-time can strain the learning process in a serious

situation. Hence, this part of our thesis sheds some lights on the limitations for the

traditional methodologies which are existed, and we are going to establish our own

innovative strategies of modifying the representation of the state.

Figure 3.3. Illustrates our image-based state representation which is traditionally used
in our exampled game environment.

As compared to the association of computational inefficiencies, where the process gets

the entire game frame as its input, as illustrated in Figure 3.3, the existing approaches

[23], which are demonstrated in our Chrome Dino Run game, are currently struggling

with real-time learning problems. This pressure, which is caused by the large amount

of visual data processing, will act as a catalyst for our unique tactics, which are

explored in the subsequent sections, where we are only focusing on the modification

of state representation to just enhance the efficiency and effectiveness of the agent.

Our motivation is the need to achieve greater efficiency, and we also need to enhance

the learning dynamics, so here our approach gets inspiration from the previous efforts

done by researchers, but with a unique carving path. We used DRL techniques; to be

specific, we used the DDQN algorithm in our methodology. The difference here is that

we strategically focused on obstacle coordinates as a very straightforward state

representation. Hence, this is our intentional move that aims to improve the flexibility

of the algorithm and how it could act in a dynamic and visually diverse environment

for our example problem that renders to the algorithm.

15

Figure 3.4. Illustration of state representation as coordinates (x, y, width, height).

Moreover, we have carefully reviewed the previous approaches of the DRL algorithm

in games and decided to contribute a distinct approach of state representation to the

Chrome Dino Run game. Indeed, we acknowledge that the value that is passed as input

to CNNs is the entire game frame, so that our methodologies give the CNNs a more

streamlined input that is precisely needed by our agent. In this research, we prioritize

obstacle coordinates as our main focus, using the DRL approaches along with this

contribution. Therefore, we deliberately chose the underscored commitment just to

enhance the adaptability of our algorithm so that it could behave smoothly in the

dynamic and visually diverse challenges that the game renders, as depicted in Figure

3.4.

3.3. RATIONAL FOR STATE REPRESENTATION MODIFICATION

Through our journey designing this DRL system, the main concern is the pursuit to

create a carefully balance between the information richness and the efficiency of

computation, so that requires us to understand state representation that we render to

our agent. Therefore, the abovementioned challenges and limitations that we identified

clears the concern that why we must subtly modify the source that how our agent

should perceive and process its environment adeptly. This material explains the basis

for our decision to change state representation, which in turn provides theoretical

support for developing and implementing the algorithm that we propose as shown on

Figure 3.4. Finding a better way to learn is inseparable from adjusting strategically

16

how the agent interacts with and comes to understand Chrome Dino Run's various

states.

By the time we go through the chapters, we are going to move our focus on unfolding

the state representation, give a depth detail of our consideration, and mainly describe

the innovative strategies that we contributed into the DRL algorithm. Therefore, as we

explored the complexities of the state representation, our goal is to illuminate a

streamlined path moving through efficient and effective learning in the world of

Chrome Dino Run dynamics.

17

CHAPTER 4

METHODOLOGY

In this chapter, we are going to deep dive into our contribution methods, which are for

using the DRL algorithm we make our agent master on the Chrome Dino Run game.

We are going to start off our journey by concentrating on the DRL in depth, and we

will shed light on the critical role of the DRL in our intelligent agent training and how

to interact with dynamic like environments. Based on the foundation we designed, we

are going to navigate through the very detailed considerations involved and we

restructure the state representation. The approach that we have chosen, is mainly gets

its basis around obstacle coordinates, so this basis, on which we aimed, shows an

intentional approach to speeding up the learning process.

4.1. PROGRAMING LANGUAGES AND FRAMEWORKS

Python pulls off all the tricks in our grand plan implementation, and makes sure the

entire system’s frameworks and libraries do their responsibilities in an organized

manner. Each of these technologies comes together, creating a powerful dynamic

system, it is crafted to tackle the thrown challenges of the Chrome Dino Run game.

4.1.1. Python

The programming language Python, lies at the heart of our setup, managing the entire

workflow of our code by versatility and expressiveness, like a real expert in the real-

world. It makes the perfect pick by its readability and ease of use, the way it crystal

clears complex functionalities allows us to articulate. Whether diving into the

complexity of RL or navigating into the game interaction, with an elegance and finesse

python spin the narration and tells the story [24].

18

4.1.2. Native Python Libraries

With mixing all frameworks which are explained in this section, the old perfect Python

libraries also show off their versatility in this research. Covering the tricks of random

number or other useful features from these libraries, contributes to our flexible and

rich implementation of the system. Each native library in this system plays a unified

role, working efficiently in a group to create stack of functionalities and methodologies

in sync together [24].

4.1.3. Selenium

Selenium library is acting in the center spotlight, connecting our Python code with

JavaScript in the browser, playing the role of a bridge. To chat smoothly with Chrome

Dino Run game it makes seamless interaction with a paramount role. Leading the code

line as an action in the browser, selenium is the manager for the journey of our agent

through the digital realm, grabbing screenshot from canvas, and restarting the game to

reset the environment for the agent altogether interactions [25].

4.1.4. NumPy

NumPy, in Python it is the numerical operations expert, it could be said that NumPy

is the backbone that does all the calculations to help our agent making its decision, and

navigates the numerical turns and complexities smoother in the RL world. Handling

arrays and metrices efficiently is just our agent needs to smoothly prowess the

computation in decision-making [26].

4.1.5. Pillow and OpenCV

The team up of Pillow and OpenCV libraries dons are the artisans, and are visual

elements fine-tuning of our system. The library expert in computer vision OpenCV, to

process the image in a smooth way, makes the agent sure that the images are handled

efficiently and smoothly [27], while the Pillow library, takes the preprocessing

19

screenshot of the game frame from canvas [28]. Together, they get ready the entire

visual input for our learning agent, makes sure all ok.

4.1.6. PyTorch

In the deep learning terms, the emergence of PyTorch could be like an expert, a

dynamic computational graph is expected which can syncs up seamless alignment of

the Chrome Dino Run environment [29]. PyTorch can easily bring the DDQN model

to the agent’s life easily, which our agent learns and adapts and use its game wise in

each timestep in its life.

4.2. OVERVIEW OF DEEP REINFORCEMENT LEARNING

The intention of training our agent was that it could play the Chrome Dino Run game

smoothly, so here we should select our RL algorithm very carefully. Therefore, an

algorithm which barely noticeable to manage the complexities of the state

representation and also it is already built in PyTorch library is the DDQN algorithm,

this would be a very good example to lighthouse our virtual journey to lead.

Since the Chrome Dino Run game has a dynamic environment, so that we have to

choose a pursuit reinforcement learning algorithm for our agent’s training, and that

should be a very careful selection. Thus, after pivotal research, we came up with the

DDQN algorithm [30], which is the best lighthouse that guides our agent through the

virtual journey it has. This algorithm exposes its sophisticated potentials within the

competitive environment of the library of PyTorch, so that it could provide a very

powerful framework that our agent could easily learn optimal strategies by the time it

starts interacting with the complex environment of the Chrome Dino Run game.

Meanwhile, we are going through the equation that the learning process of our model

incorporates with both, immediate reward and as well as estimates of future rewards,

altogether encapsulated. Hence, it will help the agent’s adaption of its Q-value over

the episode which shown below:

20

𝑄֏ռ֍ւր֏ = 𝑟 + (𝛾𝑄֏ռ֍ւր֏Ϻ։ր֓֏(1 − 𝑑𝑜𝑛𝑒𝑠)) (4.1)

Here, when we mentioned 𝑄֏ռ֍ւր֏ it is the updated Q-value for our current state-action

pair, 𝑟 in this concept is the immediate reward which is obtained within the

environment, 𝛾 is the representation of discount factor, that influences the weight of

the future reward that we assigned, similarly 𝑄֏ռ֍ւր֏Ϻ։ր֓֏ this guy just tells us the Q-

value which obtained for the next state, and this will reflect an estimate of the future

reward for our agent, finally 𝑑𝑜𝑛𝑒𝑠 is an indicator of binary values (0 or 1) it shows

whether the environment’s episode is terminated.

4.2.1. Double Deep Q-Network (DDQN)

We picked DDQN over regular DQN because DQN has a very prevalent issue known

as overestimation bias, which usually affects the learning stability and performance of

our agent, and DDQN eliminates this common issue, which is its foundation. Since we

have to develop two unique Q-networks for our DDQN method, which is the notion

of this algorithm, one of the Q-networks 𝑄և֊վռև is only for present state Q-values and

the other 𝑄֏ռ֍ւր֏ is just for future estimation Q-values. As a result, this crucial

approach is a unique one that decreases bias overestimation while also improving the

overall agent learning process.

Moreover, the inspiration of DDQN roots from the Bellman Equation, and that is a

very basic reinforcement learning concept. As for the action function 𝑄(𝑠, 𝑎) value,

we express the Bellman Equation as follows:

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾∑
֎஬𝑃(𝑠′ ∣ 𝑠, 𝑎)𝑚𝑎𝑥ռ஬𝑄(𝑠′, 𝑎′) (4.2)

The Bellman Equation is the main concept for our RL algorithm, where it encapsulates

the Q-values 𝑄(𝑠, 𝑎) dynamics, it expects the cumulative future rewards where it takes

action 𝑎 in the state 𝑠. Therefore, the above equation composes in many components

with complex structure, 𝑅(𝑠, 𝑎) is our immediate reward it obtains this reward after it

execute an action 𝑎 in a state 𝑠, respectively 𝛾 which is our discount factor in concept

21

it just determines the future reward significance, 𝑃(𝑠஥|𝑠, 𝑎) is our probability transition

it points to likelihood subsequent state 𝑠′ transition if we give the current state 𝑠 and

also the current action 𝑎. Hence, this equation has the intention to optimize the

decision-making, it calculates the maximum Q-value 𝑚𝑎𝑥ռ஬𝑄(𝑠஥, 𝑎஥) where a state 𝑠′

succeeds in all sides of feasible action 𝑎′. We are going to use this carefully selected

formulation that forms the basis of our agents understanding and managing of our RL

scenarios.

Moreover, into the learning path of the agent our algorithm guide works as a

foundation and with consistency. Hence, the Bellman Equation uses two distinct

networks [31], this helps us the durable learning route with an insurance. While our

local Q-network makes immediate decisions, and the target Q-network make next state

decision, both these creates a full understanding of game environment.

4.3. DRL ALGORITHM SELECTION

The method we used for our reinforcement learning roots from the Bellman Equation

which works as the leader for our Q-learning environment [32]. Specifically, this

Bellman Equation controls for our Q-value updates so that our agent that navigates

through dynamic environment in the Chrome Dino Run game is essential. We used the

Bellman Equation in our implementation context like this:

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥ռ஬𝑄(𝑠′, 𝑎′) (4.3)

Here, 𝑄(𝑠, 𝑎) is our Q-value when takes action 𝑎 in a particular state 𝑠, we show our

immediate reward as 𝑅(𝑠, 𝑎), respectively 𝛾 will represent our discount factor along

these parts the 𝑚𝑎𝑥ռ஬𝑄(𝑠஥, 𝑎஥) will store the maximum Q-value for our subsequent

state, and 𝑠′ stores the next state.

Basically, in numerous cases, the silent lying of the bias caused by exaggerating haunts

the RL. This conventional DDQN architecture is also very robust. However, it can

sometimes be entrapped by the allure of inflating its Q-values especially when there is

22

noise and uncertainty abound. DDQN, a dedicated protagonist, opens new doors to our

journey towards learning that are free from these dangers of bias it can do this.

4.3.1. Mean Squared Error (MSE) Loss Function

The loss function used in our environment is the MSE loss function which is expressed

mathematically 𝑀𝑆𝐸(𝑦, 𝑦)̂ = φ
։ ∑

։

ք=φ
(𝑦ք − 𝑦)̂ϵ, so basically this function calculates

the average squared difference between each 𝑦ք̂ which is the predicted value and our

𝑦ք that is the true target value [33,34]. The loss function we used is particularly useful

for problems like regression, here the goal of this function in our project is to minimize

the difference between values that are predicted against the value which are the actual

values.

In our contribution, we used 𝑚𝑠𝑒_𝑙𝑜𝑠𝑠 function, and this function seamlessly

integrated with computational graph library of PyTorch context, so that this method

gives us the facility of backpropagation of the errors by the time our agent starts

training. Therefore, our described 𝑚𝑠𝑒_𝑙𝑜𝑠𝑠 function will help us in the training

process that it sets the stage, where it shows its crucial role that how it guides our

neural network to push it towards of getting an optimal parameter adjustment.

Moreover, we used 𝑚𝑠𝑒_𝑙𝑜𝑠𝑠 function in our contribution as like this:

𝑙𝑜𝑠𝑠 = 𝑚𝑠𝑒_𝑙𝑜𝑠𝑠(𝑄ր֓֋րվ֏րտ, 𝑄֏ռ֍ւր֏) (4.4)

In the above formula, 𝑄ր֓֋րվ֏րտ is the Q-values that our local Q-network predicted,

and 𝑄֏ռ֍ւր֏ is the Q-values which derived from the bellman equation that we used.

Therefore, 𝑚𝑠𝑒_𝑙𝑜𝑠𝑠 function gets the predicted and also the expected Q-values and

then calculates the mean squared difference between them, so that measuring the

expectation and also the actual outcome of the agent during the learning process.

4.3.2. Soft Update

23

The architecture of the reinforcement learning we designed and contributed, here in

this contribution the concept of soft update plays a pivotal role that stabilizes our agent

learning process and also it helps the agent to enhance its adaptability in the dynamic

world of Chrome Dino Run game. Which we expressed the soft update formula like

this:

𝜃֏ռ֍ւր֏ = 𝜏 ⋅ 𝜃և֊վռև + (1 − 𝜏) ⋅ 𝜃֏ռ֍ւր֏ (4.5)

In this formula 𝜃֏ռ֍ւր֏ this guy is our target model and 𝜃և֊վռև is the parameters that we

extract from the local model, 𝜏 this guy is the parameter that we defined and assigned

its value, based on this value our target model gets updated from local model.

Therefore, through this formula our target model gets integrated gradually from local

model parameters, and also it ensures a very smooth and controlled transition in to our

target model. Basically, the concept of soft update just prevents the target from sudden

change of transition, in short, this concept encourages a strong stability to learning

process and helps our DRL system in overall efficiency. Moreover, this concept helps

our agent to minimize the overestimation bias, and the concept of overestimation bias

is very common in DQN algorithm, so that this concept is really valuable that helps

our agent a smoother integration by the time it starts training.

4.3.3. Epsilon-Greedy Action

In our DRL architecture particularly in decision-making, the concept of epsilon-greedy

is a pivotal strategy [35], because it helps our agent to achieve a delicate balance

between exploration and also exploitation. So that, our agent gets guide from this

strategy to select its action during the learning process, and also it helps the agent to

interact with the environment a very carefully approach.

ছ
arg max(𝑄─𝑣𝑎𝑙𝑢𝑒𝑠) , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1− ∈

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∈
 (4.6)

Where, ∈ is the probability of the agent’s exploration, it helps the agent select

exploration over the exploitation. We can describe the Q-values as the estimated

24

expected future rewards that we have already recorded in each action. This useful

approach helps our agent to exploit with a high-value actions that is in its memory and

also maintain it exploration strategy based on this concept to adapt the dynamic nature

of the environment and learn what to do.

4.3.4. Adam Optimizer

Optimizing our neural network parameters in the world of DRL architecture, it is a

pivotal aspect because it influences our agent’s learning process [36]. Here, in this

contribution, the Adam Optimizer works as a pillar in this landscape, because it

combines two very useful concepts like RMS prop and Momentum that helps the

neural network parameters to modify its learning rate dynamically. Therefore, the

mathematical formulation of this concept is just computes the first and second moment

estimates by including them, hence it helps the agent to have an adaptive and efficient

parameter during its training process.

Here, the process that updates the learning rate, it initializes the moment vectors 𝑚

and 𝑣, it computes the gradients, and also loops through to update the estimates. The

biased-corrected 𝑚ࣲ and 𝑣 ̂which is the first and second moment estimates is an account

for the time-dependent nature of our algorithm. Finally, to update the parameters, this

optimizer uses learning rate, the estimation of the correct moment, and also a constant

which is a very small, this helps the optimizer to prevent numerical instability.

4.4. TRAINING PROCESS

In this contribution of DRL, we set 20 epochs of a revolutionary journey where each

epoch contains 100 episodes to our agent experience the dynamic environment of this

learning process. This is a well-thought plan that shapes, sharps and update the

experience of our intelligent agent to bypass numerous obstacles which is offered by

Chrome Dino Run game environment.

𝑇ռւր։֏ = ం ం (𝑖 ⋅ 𝑗)
φЈЈ

օ=φ

ϵЈ

ք=φ
 (4.7)

25

So that, 𝑇ռւր։֏ is our agent that transforms itself across 20 epochs where each epoch

is comprising of 100 episodes journey to be master in this game environment.

Moreover, every era in the training program is equivalent to a chapter in a story that is

drafted. This show unfolds from epoch to epoch over 100 episodes with 20 epochs.

Therefore, at each 100 episodes the chapter carefully avoid its title, through these

episodes, we see the challenges and hardships that his handler encounters in this ever-

changing world of Chrome Dino Run game. We will witness that as the agent devotes

itself to the ambiguities within game rules, its understanding of them becomes more

sophisticated and it draws gradually closer to optimal decision-making, throughout this

period the agent himself subtly weaves through the web of actions that constitutes

Chrome Dino Run.

It interacts with events, it draws lessons from observation, and it reads the context in

ensembles of arias coexisting somewhat like plain song. Evaluation is often made in

no way depending on game action, such as applause for success and attacks after an

error to which something has led the score. These things greatly influence one’s

subsequent choices. Its and we can talk about being both sides of the agent’s brain at

once. Underlying context that creates such null concepts. The rewards, whether it is a

round applause or foul play in the game, prompt notes of rhythm. Importantly, these

changes where subsequent action will take place, a harmony of interplay like this keeps

up the rate at which we learn, with each new thing learned fitting into an evolving we

of knowledge.

In the Chrome Dino Run game, the learning process of our agent we can say that is a

dynamic interaction over these episodes because our state, its action, and all its

subsequent rewards will make its structure with decision-making. Let’s put 𝑠 as our

state, 𝑎 would be our action, 𝑟 is the reward in each time step. Therefore, the rule that

our agent uses to learn an optimal policy 𝜋 would map the states to our actions, so that

our agent goal is to maximize the cumulative expected rewards over time.

26

𝜋∗(𝑠) = arg maxռ𝑄∗(𝑠, 𝑎) (4.8)

Here in this formula, 𝜋∗(𝑠) is our optimal policy where 𝑄∗(𝑠, 𝑎) we can say that is our

optimal action-value function if our agent take an action 𝑎 in some kind of state 𝑠 so

this will represent the expected cumulative reward. When we loop through the

episodes so the agent updates its understanding over time, because if the policy is

updated so that our agent could navigate over the complexity of the game environment

very effectively.

4.5. EVALUATION METRICS

For our contribution to this DRL architecture, we assessed our agent, which involves

numerous measures, so each of these measures provides its own perspective on what

it is capable of. So, in this evaluation, the main goal was that our agent should obtain

the highest score during this planned journey of 2000 episodes. Numerous measures

that are integrated into this evaluation demonstrate how proficient our agent is to

navigate this dynamic and complex environment of the Chrome Dino Run game.

We evaluated our agent through a comprehensive analysis to check its performance

across all these metrics and see how it provides insight into its level of expertise in the

dynamic environment of the Chrome Dino Run game.

4.5.1. Maximum Score

For our intelligent agent, a very high pivotal metrics is that how it performs to achieve

a maximum score during this 2000 episodes. So that, our trained agent did its very best

demonstration and ability where it achieved a remarkable maximum score that is 2064,

so with demonstration our agent showed off its ability of navigating the game

environment adeptly.

4.5.2. Average Score

27

Over the entire duration, our agent’s average score shows its consistent performance

in the game environment that how it performs. Therefore, if we notice the average

score, it received which is 525 means that our agent demonstrated with a robust ability

that makes itself very effective in decision-making across a very diverse range of game

scenarios.

4.5.3. Training Time

The performance of our agent and also its efficiency is the crucial part of its training

process, where our agent successfully completed the 2000 episodes for the total time

of 187 minutes and 56 seconds. Therefore, we can say that our algorithm provides an

intuition of computational efficiency for the agent in training pipeline.

4.5.4. Exploration-Exploitation Strategy

Our epsilon-greedy strategy controls the agent’s exploration-exploitation

compromises. Since, we initially assigned the parameter for 𝜖 as 1 to explore more,

and also, we assigned the decay rate of the 𝜖 to 0.995. By the time our agent explores

so the 𝜖 gets smaller to minimum reduced amount, which assigned the minimum decay

value to 0.01, so that the decay rate ensures our agent to shift forward and of

exploitation gradually until it gains more experience.

In this chapter of metrics, we explained that how our agent collectively illustrates its

adaptability against the environment, how it performed based on its learning

efficiency, and also how our agent achieved the capabilities of decision-making

strategies. Finally, how our agent formed with a robust foundation to make itself

successful in the training methodology that we assigned.

28

CHAPTER 5

STATE REPRESENTATION

The game we chose to work with is Chrome Dino Run, which is a dynamic

environment where the obstacles are generated randomly, so our agent must determine

them and make its decision very carefully. So that, the DDQN algorithm finds its forts

here because of its adaptability and also its capacity for learning, where an agent can

learn from each of its interactions in the dynamic environment seamlessly. In such a

dynamic environment, DDQN gives our agent the courage to maneuver where it can

pass through the challenges that our agent faces during the learning process in the

Chrome Dino Run game.

Our agent faces a dilemma of complexities in the environment of the game, so state

representation will play its own pivotal role in choosing it carefully because it shapes

the learning path for our agent. Hence, in this chapter, we dive deeper into the very

tiny difference in our state representation for our agent in the Chrome Dino Run game

based on the contribution we have made to this DRL solution. Firstly, the exploration

in this chapter will be the examination of traditional image-based state representation

methods, which are already done in this field, and here we are going to perceive the

strengths, limitations, and also the complexities they provide in computation.

Respectively, in the next step, we are going to introduce our own innovative design of

state representation, which is a kind of move away from a conventional approach. This

will set a full, detailed stage justification that we represented the modified state. We

are going to render the strategies that enhance agent efficiency, adaptability, and also

the learning performance of our agent. Finally, our journey as we present the state

representation complexities gradually exposes itself in the subsequent sections, and we

are also going to illuminate in detail the path towards a more effective approach as

well as the tiny differences in approaches that we have used in the training of our agent

in the Chrome Dino Run game dynamic environment.

29

5.1. TRADITIONAL IMAGE-BASED STATE REPRESENTATION

The discussion of traditional approaches in the DRL solutions, the foundation of

training an agent is the state representation, which is image-based. We often get this

kind of state representation in gaming scenarios, which are highly rich in visual data

environments [37–39]. In this section, we are going to delve into methodologies that

overload the agent with the entire game frame as input, which is then the state for our

agent, and we are also going to expose the challenges that our agent bears that are

associated with these conventional strategies. So that as we shown in Figure 5.1, the

process of traditional image-based state representation, we get the raw game frame

from the game environment as our input [12,18,32], which then it goes through

convolutional and also pooling layers for extraction of hierarchical feature and finally

we get our state representation value.

Figure 5.1.Illustration of CNN process employed in traditional image-based state
representation [40].

5.1.1. Convolutional Neural Networks (CNNs)

The ever-used approaches algorithm to have an effective state representation for our

agent is utilizing CNN algorithm which is clearly and visually illustrated in the Figure

5.1, well the CNN naturally involves methods like processing the game frames through

layers [41], and these layers enable the agent to extract hierarchical features and also

all its complex patterns from this raw image which is visually presented as input.

30

Figure 5.2. Illustration of processing the original image through edge detection and
then send to CNN utilization [3].

5.1.2. Computational Inefficiencies

When utilizing CNNs and then processing the whole game frame that comes out of the

game canvas, as seen in Figures 5.1 and 5.2, this conventional approach leaves our

agent vulnerable to computational inefficiencies [42]. The processing of a large

amount of visual data is really straining the real-time learning process of our agent,

which can make it very difficult for our agent to achieve the best training efficiency.

The above section discussed about the limitations that our agent would face in

traditional image-based state representation approaches and it demands a high

computation and overfitting of visual features, this prompts us to design a revaluation

contribution on input representation for CNNs because this help the agent to be more

efficient and adaptive during training strategies.

5.2. PROPOSED STATE REPRESENTATION

As we deep dived into the traditional image-based state representation and perceived

how it incurs a high computational challenge, now is the time that we should introduce

our own novel state representation approach, which is only customized for the Chrome

Dino Run game environment, and we know that this game is dynamic in nature and

also rich in visual data complexities. Our state representation that we proposed has a

very specific goal, and that goal is to streamline the learning process for our agent. It

also offers our agent a more efficient and targeted means by which our agent can

interpret and navigate this dynamic game.

31

5.2.1. State Representation Design

As we decided to design the state representation in tiny different way, I believe this

state takes the main stage of this DRL architecture and also this will reshape the leaning

trajectory of our agent in the DRL system. We select to render the state representation

as the obstacle coordinates (x, y, width, height), and extracting the coordinate needs a

very careful preprocessing pipeline so we have carefully stepped a sequence of process

that converts our raw visual data into this meaningful and purposeful state

representation. If we assume that 𝑆 is our state and 𝑜 is respectively our obstacle then

we can structure our equation as tuple that is shown below:

𝑆 = (𝑥֊, 𝑦֊, 𝑤֊, ℎ֊) (5.1)

Our state representation is very carefully defined with the game’s obstacle coordinates

in our DRL system, so here in this equation, each of the element contributes with each

other’s providing crucial information for the understanding of the entire game

environment. Specifically, 𝑥֊ is the x-coordinate, 𝑦֊ is the y-coordinate, 𝑤֊ is the

width, and finally ℎ֊ is the height of our obstacle, each representing their own meaning

in this equation, respectively. We designed this structure, and it serves as a

foundational representation for the pipeline or our preprocessing. This concept

facilitates an integration which is seamless in the game data and also provides a

meaningful and informative format for our learning algorithm.

Figure 5.3. Our image preprocessing journey that before rendering it as the state it goes
through this processing step to finally outputs the coordinates.

32

In the Chrome Dino Run game environment we start off taking a screenshot from

canvas of the game, since at the backend the language JavaScript so we get a byte-

encoded image view then we convert this byte-encoded image into NumPy array then

we convert this array image into grayscale which gradually removes the colors to

expose some tiny differences in the underlying contrast which clearly shown in Figure

5.3, then the grayscale image is rendered to the blur function to make it smoother the

imperfections and emphasize some vital features of the image then it goes through the

canny edge detection process to enhance the definition of the obstacles basically it

sharpens the contours of the image the dilation process highlights the key elements in

focus.

Finally, we reached at the end of the process the function ‘findContours’ that identifies

the contours of the image so we can that, this contours delicately outline the boundaries

of the obstacle in the image that come out of the game canvas the ‘boundingRect’

function then subsequently gives the 𝑥, 𝑦,𝑤, ℎ which is the encapsulation of the

dimension of the obstacle, all these steps which are described are visually illustrated

in Figure 5.3.

Figure 5.4. Overview of the state representation process.

33

5.2.2. Advantages of State Representation

In our contribution to this DRL system, we used Neural Networks (NNs) after the

preprocessed image and extracted coordinates as the state representation rather than

CNNs and inputting the entire game frame. Unlike the previous approaches that inputs

image as the state representation into the CNNs and then extracts the visual patterns,

our approach just concentrates on the important information what our agent needs to

navigate through the environment which is the coordinate of the obstacle (𝑥, 𝑦, 𝑤, ℎ)

which is clearly illustrated in Figure 5.4. our novel approach is pretty straightforward

where it gets only the useful information form the image which is obstacle coordinates

and render it as the state representation for the agent this method does not compute

overhead associated image processing that helps our agent in learning process time.

The exemplified environment gives as a dynamic problem that we can navigate it with

a unique perspective way which is why we use NNs algorithm that can optimize and

handles our input structure effectively.

We use obstacle coordinates that our agent uses as its state representation is a very

careful decision for the game and this decision exposes a variety of advantages in this

DRL solution that we have. Indeed, these advantages give our agent the efficiency

ability and also computational lightness that our agent performs in the environment.

Figure 5.5. A snapshot of the Chrome Dino Run game environment, that shows how it
give the precise coordinates and also the dimensions of the obstacle in the
game.

34

We used a diverse range approach just to express the state representation in our DRL

solutions is it illustrated very good in Figure 5.5. so that, it shows how we divert the

image-based state representation to more concise and very short information which

needed by our agent. I believe that image preprocessing, features extraction and

reduction of the dimension is a method that every research needs to construct it in the

gaming environment because visually rich data is a very huge computational problem.

Figure 5.6. This visually image-based state representation illustrates the high-
dimensional state space representation [43].

As we investigated about state representation the method that we undertake is

inseparably connected with the undefine problem that we receive from Chrome Dino

Run game environment. As shown in Figure 5.6, that our strategy and approach make

balance between computing efficiency and it gives the agent a rich information that it

needs to navigate the environment.

35

CHAPTER 6

EXPERIMENTAL SETUP

Before we tested and developed the Chrome Dino Run game, we carefully configured

our experimental setup for our DRL solution. Therefore, in this chapter, we dig into

the appropriate setup and also the complexities of our environment, how we collect

systematic relevant data for our agent, how we tuned up our hyperparameters for fast

learning, and finally how we implemented the model from the PyTorch library, which

is the real backbone that forms all the computational exploration for our agent. We

made each section like a key component for easy understanding of how we setup our

experimentation. All these collections are done because of their contribution to making

our agent intelligent in a robust evaluation framework.

Figure 6.1. This illustration shows the entire overview of our solution process that how
the data flow through which components in our Chrome Dino Run game.

36

6.1. ENVIRONMENT CONFIGURATION

Firstly, we are going to understand our in-depth of the inner workings of our DRL

solution, including its complexities. We integrated the component of a versatile library,

Selenium, into the environment of the Chrome Dino Run game in its core architecture

because this component interacts between the Chrome Dino Run environment’s

JavaScript and our Python methods. This library serves as the core method of our DRL

solution and enables some pivotal functionalities like capturing snapshots, restarting

the game, and monitoring the game termination status in the real-time.

The play starts off when our game module takes a screenshot from the game’s canvas,

and preprocess some of the stages, and renders the result to our DRL system.

Now that we get the image from our game module so the attention turns itself to the

vision module, where our main focus is the computer vision skills. Here, we employed

the great and powerful OpenCV library that makes our efforts easy by extracting the

intricate complexities of the image that was received from the game module, and at

the end, it gives us the coordinates of the obstacle (𝑥, 𝑦,𝑤, ℎ). This module expresses

our Chrome Dino Run game’s complexities renders a materialized and smooth

parameter which is the coordinates.

So that as we receive the smooth transmission of our image to coordinates makes our

agent a master of the decision-making in the environment and this the highest and

important point of the mentioned visual journey. This kind of state representation

along with the associated rewards give our agent a journey that can ensure a detailed

and precise rendering of the game world. Our DRL system exemplifies itself including

its refined design and efficiency based on smooth exchange of state representation.

6.1.1. Game Module

When we start off our system, the first module that essentially takes place is the game

module, so the module makes itself ready to capture the essence of Chrome Dino Run

and renders. Our game module's primary role is to act as the eyes of the agent because

37

it takes the screenshots from the dynamic and ever-changing environment of the game.

We can say that the screenshots it captures for our agent are the beginning strains of

the game environment story for our DRL system, so our game module gives raw visual

data and sets the groundwork for the succeeding acts.

Within the game module, we can say that the method 𝑔𝑟𝑎𝑏_𝑠𝑐𝑟𝑒𝑒𝑛 is taking on a

pivotal responsibility in the game module as well as in our entire system because the

responsibility this method has is like the lens of our agent through which we can

capture the environment. Basically, this method adeptly captures the current game

status and gives us a byte-string array type that contains the entire visual information

of the game encapsulated. In short, the byte-string array that we receive from this

method is a visual data state of the game snapshot that provides a raw material through

which we preprocess subsequent stages for decision-making. The retrieval of this

method is quick, and makes our system ensures that it receives the most up-to-date

visual data as a byte string.

Respectively, after the 𝑔𝑟𝑎𝑏_𝑠𝑐𝑟𝑒𝑒𝑛 method, the next method that takes center stage

in our system is our 𝑎𝑐𝑡 method, because this method translates our agent’s decision

that it takes into tangible movements in the Chrome Dino Run game environment.

Moreover, the role of this method in the game module is to transfer the appropriate

action from our system to the Chrome Dino Run game environment, coordinating such

activities as jumping or withholding the action.

In the abovementioned module, there is a property named 𝑖𝑠_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 that is the

sensor of our system, or we could say that this property is acting like the sensor for our

system it provides a binary signal to our system informing about the game termination,

whether the game has concluded, and also signals our agent that either it has done a

successful navigation or an obstacle collision going through these challenges of the

game.

38

Figure 6.2. Shortly it illustrates the interaction flow within our system. The agent
signals an action to the game and takes back a screenshot from the game.
Then the screenshot will go to preprocess in the image processing stage
then we get the result and send it to the neural network as the state.

6.1.2. Vision Module

When we transition our focus towards the vision module here the screenshots that our

game module captured as the byte-string array serves as a canvas and our vision

module should unfold its intricate details smoothly. Within this module we used some

sophisticated algorithms from OpenCV library through which this module skillfully

extracts the elusive coordinates of obstacles from visual composition of the image.

Therefore, we can say that coordinates we received is like a complicated strokes in the

environment so it easily unlocks the door of understandable complexities which

embedded naturally into the fabric of our game environment.

This module starts off with an initial step that is 𝑐𝑜𝑛𝑣2𝑔𝑟𝑎𝑦 method that takes the

image as its input, basically this method processes the captured game frame what it

receives it just transforms that into a grayscale image. Therefore, this conversion make

it sample for further step because the image is now a single-channel representation of

the image.

When one steps forward, after our image is converted into grayscale, so the next

method that takes places is the 𝑏𝑙𝑢𝑟 method that takes an image as the input and give

the image a very smooth effect. In this method we apply a Gaussian blur to the image

39

since this method renders the image with lesser noise and also with an enhanced quality

overall, and make the image ready for further processing.

Respectively, then 𝑐𝑎𝑛𝑛𝑦 method comes to the play, so this method takes the

preprocessed image from the 𝑏𝑙𝑢𝑟 method then this method applies its embedded

Canny edge detection algorithm to the received image. Basically, when the Canny edge

detection applied the image contours makes itself sharpen because the edges should be

identified clearly and also highlights essential key features before it renders the image

to the next step.

After the abovementioned process, the step come to the 𝑓𝑖𝑛𝑑𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑠 method which

is an OpenCV module. This method identifies and also extracts the contours which are

presented in the image that comes in as processed through the above methods. This

method provides a very detailed representation of the key features in the image and

also it provides the structures within the image of the game.

To get the end result as the coordinate of the game image, we utilized the 𝑏𝑜𝑢𝑑𝑖𝑛𝑔𝑅𝑒𝑐𝑡

method which is an OpenCV method. Since, this method gives as the final state which

are the coordinates of the game as (x, y, width, height) encapsulates our state and gives

us.

6.1.3. Replay Buffer Module

The headed module is responsible for just doing behind-the-scenes stuff, or we can say

it is a backstage actor, just like a coordinator of memories that assumes to boost our

agent's performance. Moreover, it takes on the role of saving and preserving the

experiences by the time our agent just passed and experienced them, including states,

actions, rewards, next states, and finally the terminals. Our agent saves these

experiences in its memory because they will serve as an archive for its learning journey

by the time it tries to learn the environment. This gives our agent an array of

experiences from various positions that helps the agent to draw during the training

process.

40

6.1.4. Agent

Our agent which is the last arrangement in our DRL solution modules we arm it with

coordinates of obstacle which our vision module already extracted utilizing this these

coordinates it enters into the limelight to make decision during its journey based on its

past experiences and define its trajectory within the game. The coordinates which are

extracted by the above-mentioned module helps our agent as its state representation as

it takes action navigating the Chrome Dino Run game landscape. Our agent has a

binary option that comes out of its neurons which is 0 based on this our agent’s

decision would be ‘do nothing’ and if its 1 so the neurons of our agent signal to our

agent you should ‘jump’ and this becomes a concluding note in this complex

composition.

6.2. DATA FLOW

I believe that the interaction and communication between numerous components

within our DRL solution complexities that they arrange is our data flow. Therefore,

the main data that all the components try to make it is the coordinates of the obstacle,

because this obstacle’s coordinates just try to shape our state representation, and this

representation guides our agent through its learning path in this complex environment.

Figure 6.3. It illustrates that our agent starts its journey by a screenshot then extract
the coordinates and utilize that as its state representation and it saved in its
experience memory data flow.

41

As we visually showcased our data flow diagram in Figure 6.3, from the overall

perspective of our components, the game module takes the first and center stage in our

DRL solution because it provides the game environment screenshots continuously, and

these screenshots serve as our agent's visual information for its entire journey.

Respectively, as we go forward, our vision module takes the responsibility, and tries

to enter into the limelight, and starts some preprocessing routes meticulously. As the

responsibility is transferred to our vision module, this module applies a variety of

complex algorithms that we took from the computer vision OpenCV library and extract

the encoded obstacle coordinate (𝑥, 𝑦,𝑤, ℎ) features from the image that is delivered

by the game module.

The extracted coordinates from the image influence the neural pathway as an extended

choice for our agent because this choice enhances the efficiency of our agent during

the learning process and also our agent will have a precise choice in decision-making.

The data flow that we structured very precisely will act as a well-rehearsed

performance that will reinforce our agent to be intelligent in this efficient system, and

it will also highlight that how important is the state representation that we have chosen,

which is the obstacle coordinates, is and how it guides and forces our agent to perform

efficiently in this DRL system.

6.3. HYPERPARAMETER TUNING

In our DRL system, the overall components and modules that are living or trying to

show themselves are very carefully structured. Similarly, the DDQN algorithm that we

selected in our architecture is not only some layer arrangement; we fine-tuned its

hyperparameters in a precise way. In this DDQN algorithm, our NN concept just

exposes some stages of layers, including the input layer that is responsible for

capturing the substance of the coordinates that we extracted very carefully and the

hidden layers that we give the responsibility of extracting the tiny differences of

features following this layer. At the end of this path, we have an output layer that just

gives our agent action that is more suitable to perform based on the current state that

our agent faced. Moreover, the architecture that we designed will help our agent to

navigate through the game environment with poise and purpose.

42

Table 6.1. Configuration of our Hyperparameters constants tuning for our DRL
system’s DDQN algorithm.

Constant Value

Buffer Size 6e5

Update Every 4

Batch Size 1024

Gamma 0.99

Tau 1e-2

LR (Learning Rate) 1e-3

For optimal performance of our DRL solution we carefully mixed up our DDQN

hyperparameters based on the algorithmic experimentation. Each constant which are

mentioned in Table 6.1, acts a vital role in this complex environment and for

performance term and nuanced decision-making these constants are important. To

make sure that our agent performs a precise and also a balance learning process

refining these parameters are crucial.

6.3.1. Learning Rate (LR)

In the concept of our DRL solution, learning rate controls the size of the steps and then

it updates the parameters of the model based on these steps and how it receives its

rewards to predict. We used this important parameter to train our algorithm for our Q-

learning concept. Moreover, if we assign a higher learning rate so it allows our

algorithm to update its parameter larger but the concern here is that it overshoots and

converges bigger. Likewise, if the assigned value is lower so that more conservative

update and here the issue would be slowing down the learning process.

Thus, to appropriately select a learning rate for our algorithm so we have to have more

experimentation on the tuning our learning rate value. Hence, very high value selection

for our learning rate results a fluctuation and very low value selection for our learning

rate our algorithm will get stuck in local minima. Observing the mentioned issues, we

used an advanced optimization algorithm named Adam that makes the learning rate

flexible during the training because it checks out the historical information of our

gradients in the algorithm and do the needs for the learning rate. Therefore, this kind

43

flexibility in adjusting the learning rate during training time will improve the training

process in our DRL solution.

6.3.2. Updating the Q-Network

When we update the Q-network for our agent continuously, so we can say that is the

key of our training process, for our agent. Therefore, our agent makes its

understanding, that where and how it should act by the time our agent garnered its

rewards during this training process. Our Q-network will strength itself during the

training process and makes out an ever-evolving masterpiece because our agent is now

a composition of strategies that it learned and flexibility it gained during the training

process.

Moreover, updating the Q-network will traverse our agent through episodes and

epochs, and after the training is done then we get a piece of intelligence out of our

agent. When we tun the parameters, to be flexible with game environment, after that

when we update the Q-network then our DRL solution shapes itself with intricacies

components. Finally, we get an agent with a new emerge that is not only a learner but

a masterpiece with expertise, and also our agent really ready for the challenge that the

Chrome Dino Run game gives it, and I believe our agent will navigate through it with

its finesse and strategies that it gained during the training.

6.3.3. Soft Update Parameter

In terms of our DRL solution the soft update we used to update the parameters of our

target network very gradually over the time of training, because an abrupt update will

cause some issues to our target network and we denoted the soft update with parameter

called ‘tau’ (𝜏). Thuse, we embedded two kinds networks in our DRL solution which

are our 𝑄֏ռ֍ւր֏ and the other one the 𝑄և֊վռև rather than updating the 𝑄֏ռ֍ւր֏ with 𝑄և֊վռև

parameters directly per iteration, so we used this soft update 𝜏 concept to update our

target network with a tiny number of parameters from our local network.

44

Hence, the soft update parameter helps our agent to update its target network with a

more stable and also change very slowly within its algorithm because it helps our agent

in avoiding oscillations during training. Generally, we set our 𝜏 value with very small

number may be between 0.001 and 0.005 because it makes our algorithm ensures to

update very slow and very steady its 𝑄֏ռ֍ւր֏ parameters from 𝑄և֊վռև parameters.

6.3.4. Exploration-Exploitation

The concept of exploration over exploitation in our system tries to make a right balance

between finding a new action that may have greater reward for our agent which the

exploration concept and the knowledge that our agent currently has and based on this

knowledge it can maximize its cumulative reward which is the concept of exploitation.

Here balancing this concept really, a tough challenge because if the agent explores too

much then it won’t be able to gain it cumulative rewards for some optimal actions.

Likewise, if our agent continues with the exploitation or the knowledge it currently

has will lead our agent premature or we can say with less knowledge.

Table 6.2. Exploration and Exploitation parameters for Fine-Tuning.

Parameter Initial Value

Epsilon 1

Epsilon Decay 0.995

Epsilon Minimum Decay 0.01

We select the concept epsilon-greedy, in this concept our agent chooses a random

action, or we can say the exploration concept if the probability is 𝜖, likewise it

continues with its current knowledge it has and also it knows that this action is

appropriate in this state if the probability is 1 − 𝜖.

6.4. MODELS

In our system, our goal is to design an architecture through which our agent should

achieve a high and precise flexibility in performance, when playing the game. Hence,

we carefully chose PyTorch library to design our model for our agent in this system

45

which is very powerful and rich in machine learning environment. As shown in Figure

6.4, the layers in our model are customized where each layer handle various aspects of

its responsibilities in the learning process of our system for our agent.

Respectively, our input layer which is the initial layer in our model, we designed this

layer that has the capacity of 4, and this number is the size of our state that comes as

an input to our first layer which is represented like (𝑥, 𝑦, 𝑤, ℎ). When it receives the

state as its input with the mentioned size so following forward it outputs a data

representation of 16 in size that provides the feature space as its intermediate

representation for the subsequent layers, that builds on top of this layer.

When take a look into our hidden layers, so, our first hidden layer receives a size 16

data representation from the input layer and then converts this intermediate data

representation in a size of 32 feature space for second hidden layer which requires a

data representation of 32 in size. Respectively, our second hidden layer receives the

Figure 6.4. Architecture of our PyTorch neural network that we represented in this
visual diagram.

46

data and then refine that data features in an input size of 64 feature space which then

send to output layer.

Finally, we got to the final layer, which is the output layer appropriately, so our last

layer takes a dimension of 64 feature space, and give us a size of 2, which is aligned

with the number of actions that our agent tries to learn in the Chrome Dino Run game

environment. I believe, this layer is doing a very crucial responsibility, because it

determines the optimal action for our agent based on what it leaned features from its

past.

Initially, the layers we have here in this system are linear, to introduce none-linear

functionality and make our model enable to capture complex patterns, basically we

have utilized to all the layers, is the concept of Rectified Linear Unit (ReLU) activation

function and we exclude the last layer which the output layer from ReLU activation

function. We decided to employ ReLU to our layers reflects a strategic choice that

enables the capacity of capturing intricate patterns and enhance the model with none-

linear system within the game environment.

We used the PyTorch 𝑎𝑟𝑔𝑚𝑎𝑥 function for our action selection. Generally, this

function selects the value that has the highest Q-value probability, and this is going to

be a very important factor for our agent in this system for decision making.

47

CHAPTER 7

RESULTS AND ANALYSIS

This chapter is held, to explain and also show off the thorough study that we have done

on the Chrome Dino Run game, and how our agent that we trained it, performs in this

environment. In this chapter, our main focus would be on some key metrics, like the

maximum score that our agent achieved during it then training, average score, and

finally the training time that our agent past, by this key metrics, we can assess the

efficiency of our agent among a variety of configurations and variations that we had

refined.

7.1. EXPERIMENTAL SETUP

A very quick review of experimental setup. We use PyTorch and implement the

DDQN algorithm for our experiments. Our model that we structured has an input layer

with 4 dimensions as input and this layer outputs 16 dimensions to the next layer which

the hidden layer. In this architecture the first hidden layer has the input 16 and outputs

back 32 dimensions to the next hidden layer. The second hidden layer takes an input

of 32 feature space and outputs 64 dimensions to output layer. Finally, our output layer

gives a 2-dimensional information which are the actions for our agent. Respectively,

we applied ReLU activation function to all our layers excluding the output layer which

uses the 𝑎𝑟𝑔𝑚𝑎𝑥 function for high Q-value production.

7.2. BASELINE PERFORMANCE

The journey of our agent continued for 187 minutes and 56.8 seconds in its time.

During its journey in this training, it achieved a maximum score 2064 which was very

good, and if we count its average score from the overall of its training process so our

48

agent gained 525 score in average. If we come to its exploration-exploitation trade-

offs, we set the parameter of our epsilon to 1 and it was decaying during this training

process with the decay rate of 0.995 exponentially, until it reached for the minimum

value which was 0.01, so this was our baseline performance configurations.

7.3. ALTERNATIVE CONFIGURATIONS

We examined various experimentation by changing the hyperparameters setting and

also the model’s itself architecture, just to assess the different setting’s impact and also

its variations. All we summarized in Table 7.1, including the performance of our agent

under different configurations, and also, we highlighted the changes like maximum

rewards and the time of the training for each episode.

Table 7.1. Variation of configurations on our coordinate-based state representation.

Configuration
TAU
(𝝉)

Learning Rate
(LR)

Hidden
Layers

Hidden Layer
Size

Epsilon
Decay

Base Line 0.01 0.001 2 32, 64 0.995

A 0.001 0.0005 1 64 0.998

B 0.01 0.001 1 8 0.995

C 0.1 0.001 0 4 0.995

D 0.01 0.001 2 32, 64 0.99

E 0.1 0.01 1 8, 4 0.995

We focused mainly just on coordinate-based state representation, and also Table 7.1,

clearly explains every configuration that we applied in our paper and tells everything.

In the abovementioned table we described our experiment in each row, and columns

in this table points to the specific configuration of the parameters with their respective

sizes in each experiment that we have done. Therefore, we have provided a clear

transparency, and we mentioned the overall experiments and its setup describing all

its configurations, from these experiments that we have done in this research, gives us

the understanding of how we configure the parameters based on which environment.

This exploration within the context of coordinate-based state representation of Chrome

Dino Run is nicely understandable.

49

Figure 7.1. Maximum rewards across different configuration visual representation.

Based on the variations we brought in parameter configurations where we depicted in

Table 7.1, and visually illustrated in chart based in Figure 7.1, altogether points to the

maximum rewards variation that our agent gained in different environments. This

concept provides, that how our agent performed under various circumstances and the

impact of these configuration variations on our agent like layers structure and learning

rate in the Chrome Dino Run environment. Figure 7.1, the visual representation as the

chart represents the comparative analysis of experiment outcomes.

In general, this average reward term describes the number of average rewards, that our

agent received while it is in training. This may consist of several episodes and epochs,

particularly in the Chrome Dino Run game environment. Therefore, we extracted the

average rewards of our agent, because it evaluates its performance and how agent

became intelligent.

Table 7.1 along with Figure 7.2, consecutively show the average reward of our agent

which it gained during its training across different configuration that we have made.

We uniquely identified each configuration, since we could spot them and do some

comparative analysis on them, to check the performance of our agent under these

different experimental settings for our Chrome Dino Run game environment.

50

Figure 7.2. Average rewards for different configuration for our system.

Figure 7.3. Average rewards per epoch for different configurations.

Figure 7.3 displays the average rewards that the agent earned for each period under

various conditions, as shown by Table 7.1. This visual depiction makes it easier to

analyze agent performance in-depth during training by showing the patterns and

changes linked to a particular test configuration in the Chrome Dino Run environment.

51

7.4. LEARNING CURVES

To journey with our agent, passing through Chrome Dino Run game complexities, and

face the challenges that come to our agent, the learning curves are nicely explained

and illustrated in Figure 7.4. Curves that are created, comes with the goal of showing

the fundamental progress of our agent in the training episodes, so that it could offer us

its visual representation that it tracked down during the learning time steps. Learning

curves illustrates fluctuations, peaks, and plateaus as our agent performs by navigating

the dynamic game environment.

Figure 7.4. Our baseline experiment learning curves journey.

Each curve gives us insights into the gradual improvements and adaptation of our agent

that passed through the challenges of the Chrome Dino Run game, which posed, and

also it offers us the expanded view of how our agent grows in performance. Figure 7.4

clearly illustrates the learning curves on average rewards that our agent received in

each epoch over the course of training episodes.

In Figure 7.5, we illustrated the pinnacle of achievement, that our agent recorded

receiving the maximum reward in each epoch, facing the challenges and passing

through during its training process. As it shown visually, it mostly highlights the peak

moments that our agent performed in that epoch, so that provides the extensive

52

overview of our agent that how it uses its ability and capacity to navigate through the

obstacles and also excel within that dynamic environment of the Chrome Dino Run

game. Initially our agent is in exploratory point that really does not know about

decision-making, so that learning curves narrates the proficiency of our agent in some

challenging path in the dynamic environment.

Figure 7.5. Our baseline experiment maximum rewards and it is shown per epoch.

In this comprehensive analysis, learning curves, as showcased in Figure 7.4 and Figure

7.5, provide a detailed insight into the dynamic evolution of the agent’s performance

throughout the training process. The curves not only depict the raw scores achieved by

the agent but also uncover intricate trends, shedding light on crucial aspects such as

convergence patterns or episodes marked by fluctuations. This through examination of

learning curves enriches our understanding of the agent’s learning trajectory, offering

valuable insights into the nuance of its adaptation to the challenges posed by the

Chrome Dino Run environment.

7.5. GENERALIZATION TO DIFFERENT SCENARIOS

In this research, we mostly focused on generalizations within the variety of scenarios

in the case of critical aspects to assess the adaptability and robustness of our model.

53

The Chrome Dino Run game gives us some multitude of challenges, such as obstacle

variations and the configuration of some dynamic changes in game speed.

We carefully conducted several experiments to see how our agent uses its learned

policies by examining them into some different situations. The mentioned situations

could include random obstacle patterns; that could also be the environment with an

absolutely different layout; and it also adds some complexity by the time the player

gets more scores to the game. Our goal in this study is to investigate the model that we

structured. Now, this model should use its ability to generalize its experience that it

perceived to make decisions beyond some setting that our agent encounters during the

training.

54

CHAPTER 8

DISCUSSION

In this chapter we going to discuss about the examination of our methods and also

about interpretation of the data that we collected and shed some light on our

experimental research specifically that what we have within the Chrome Dino Run

game environment.

8.1. INTERPRETATION OF RESULTS

The essential role here is that we have to interpret our methods for its understanding

and its limitations efficiencies. We have examined our model’s performance and made

metrics for it, the examination factors that we got here, such as maximum rewards,

average rewards, and the learning curves we made for our agent’s performance. We

identified our agent’s patterns, trends, and anomalies so that we could provide an in-

depth narrative about our agent to capture model from its core perceive its behavior

from the overall training process.

Different experiments that we have done with different configurations will reveal some

invisible patterns that influence our agent to make itself successful in the Chrome Dino

Run environment. Therefore, when we fine-tuned our hyperparameters noticeably, we

got a discernible improvement in scores; the convergence accelerated, and this is an

evident when we fine-tune the specific parameter. As an instance, we can say that if

we bring a small change in the learning rate parameter or if we bring change to the

structure of our NN will have a very significant impact on the agent’s learning

dynamics.

55

8.2. INSIGHTS INTO STATE REPRESENTATION INFLUENCE

Our discussion mainly covers the influence of state representation that we designed

and how it impacts on the learning dynamics of our model. After a lot of investigations,

we found out that transitioning from traditional image-based state representation to a

more efficient way like coordinate-based state representation approach will impact

better on the model that we designed. Therefore, through all these meticulous

investigations that we made on the experimental configurations, we perceived that how

the state representation we chose has the impact on the ability of our model and how

it navigates through the complex gaming environment.

The data we are collecting from the game environment support our initial theories that

apply on the exploration-exploitation trade-off. The trends we've noticed highlight

how crucial it is to finely tune key parameters, finding that sweet spot where we

delicately balance exploring new strategies and making the most of what we've already

learned. As we dig into these findings, we get a better grasp of how our agent tackles

the game's tricky parts. This gives us some cool ideas for sprucing up and fine-tuning

the DRL system down the road.

8.3. IMPLICATIONS FOR FUTURE RESEARCH

These findings are just the tip of the iceberg not just about what we have learned today.

We are excited about what they could unlock the bigger picture of DRL research and

where do these findings lead us will be the new research avenues that it opens up. As

we discover the areas to level up like potential extensions, and unexplored dimensions

or the stuff we have not looked into yet gives some thrilling future endeavors. They

are not just about improving DRL models but about making them absolute

adaptability, efficiency, and generalization capabilities in the dynamic world with all-

around awesomeness to the forefront.

With these talks, we can think of our agent as a super player who can learns by playing

millions of games. That is the dream of our agent in gaming, and we are digging deep

56

to explore its potential for advancing our research in the exciting domain of DRL

applied to the gaming environment.

57

CHAPTER 9

CONCLUSION

After all this digging, we have finally unearthed the treasure summary of oud study, in

this final chapter, we tie up all emphasizing key findings, contributions and the

problems we have solved and the exciting possibilities for future research.

9.1. SUMMARY OF FINDINGS

It is not just about the data and conclusion of our research; it captures the essence of

what we learned and we can think of it the overall summary of our journey. We go

back to the good stuff such as highlighting what significance we have achieved, the

challenges we faced and what interesting things we noticed during this extensive

experimentation that we have done with the Chrome Dino Run game environment.

Rewinding and rewatching our highlights back give us all about what we did and this

analysis is our way of putting a bow on the package, and what doors it unlocks for our

future explorations.

9.2. CONTRIBUTIONS OF THE STUDY

We made the impact of our research clear and relatable, showcasing the

groundbreaking contributions that take the whole field of DRL applied to gaming

scenarios to the next level. Whether we talk about new ways of the state representation,

making the enhancements to the algorithm, or diving deep into the complex details of

the Chrome Dino Run game, we lay out a unique value that our research brings to the

existing body of knowledge. In this section, we give credit to how our study pushes

the boundaries and how our study can help boost our grasp on using DRL principles.

58

9.3. LIMITATIONS AND FUTURE WORK

Although, our research found some roadblocks but it isn’t flawless, thus it gives some

awesome ideas that can inspire future research efforts. We took a close look at the

limitations and challenges of our study, we may not have all the answers, but we

identified areas where we can improve. We hope that our work can serve for us as a

guide for future research to build on our work and unravel the hidden secrets.

Selenium is basically a tool that helps us to interact with Chrome Dino Run game in

the browser, and sometimes our agent experiences a delay problem when taking

screenshots using this library, so we need to speed it up to make the interaction feel

natural and instant for our agent [44]. Basically, our agent takes screenshots from the

game to observe what is happening, so that if those screenshots take too long, it makes

our agent to react slowly. We can improve this issue by utilizing parallel processing

or asynchronous methods since our agent can see the game very clearly and will react

as quickly as possible.

Challenge that makes our agent stuck frequently in a loop, and also in this situation,

our agent won’t be able to learn since it gets infrequent rewards [45,46], which we

generally call it sparse rewards in the game environment, which opens up an

opportunity for our future investigations. Therefore, making the system more flexible,

we should explore different ways of improving our agent through a nicely reward

system. Doing that, we should investigate reward engineering strategies and also,

through extra environmental cues [47–49], we can implement advance reward shaping

methods. This leads our agent to an efficient and flexible learning and also enables our

agent in grasping some hidden behaviors to improve the overall performance of the

system.

59

BIBLIOGRAPHY

1. Plaat, A., "Deep Reinforcement Learning, a textbook", (2022).

2. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M.

G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D., "Human-level control through deep reinforcement
learning", Nature 2015 518:7540, 518 (7540): 529–533 (2015).

3. "Build an AI to Play Dino Run", https://blog.paperspace.com/dino-run/

(2024).

4. "2018 {IEEE} Conference on Computational Intelligence and Games, {CIG}

2018, Maastricht, The Netherlands, August 14-17, 2018", (2018).

5. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,

A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F.,
Sifre, L., Van Den Driessche, G., Graepel, T., and Hassabis, D., "Mastering the
game of Go without human knowledge", Nature 2017 550:7676, 550 (7676):
354–359 (2017).

6. Kirk, R., Zhang, A., Grefenstette, E., and Rocktäschel, T., "A Survey of Zero-

shot Generalisation in Deep Reinforcement Learning", (2021).

7. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,

Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K.,
and Hassabis, D., "A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play", Science, 362 (6419): 1140–1144
(2018).

8. Hu, H., Mirchandani, S., and Sadigh, D., "Imitation Bootstrapped

Reinforcement Learning", (2023).

9. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,

and Wierstra, D., "Continuous control with deep reinforcement learning", 4th
International Conference On Learning Representations, ICLR 2016 -
Conference Track Proceedings, (2015).

10. Huang, Y., "Deep Q-networks", Deep Reinforcement Learning:

Fundamentals, Research And Applications, 135–160 (2020).

60

11. Li, S., Hu, X., and Du, Y., "Deep Reinforcement Learning and Game Theory
for Computation Offloading in Dynamic Edge Computing Markets", IEEE
Access, 9: 121456–121466 (2021).

12. Aparecido Breve, F., "From Pixels to Titles: Video Game Identification by

Screenshots using Convolutional Neural Networks", (2023).

13. Tian, X., Li, B., Gu, R., and Zhu, Z., "Reconfiguring multicast sessions in elastic

optical networks adaptively with graph-aware deep reinforcement learning",
Journal Of Optical Communications And Networking, Vol. 13, Issue 11, Pp.
253-265, 13 (11): 253–265 (2021).

14. Guo, X., Singh, S., Lee, H., Lewis, R. L., and Wang, X., "Deep Learning for

Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning",
Neural Information Processing Systems, (2014).

15. Wang, Z., Fan, D., Jiang, X., Triantafyllou, M. S., and Karniadakis, G. E.,

"Deep reinforcement transfer learning of active control for bluff body flows at
high Reynolds number", Journal Of Fluid Mechanics, 973: A32 (2023).

16. Do, S., Song, K. D., and Chung, J. W., "Basics of deep learning: A radiologist’s

guide to understanding published radiology articles on deep learning", Korean
Journal Of Radiology, 21 (1): 33–41 (2020).

17. Marwah, D., Srivastava, S., Gupta, A., and Verma, S., "Chrome Dino Run using

Reinforcement Learning", (2020).

18. "How to Play Google Chrome Dino Game Using Reinforcement Learning | by

Iustina Ivanova | Deelvin Machine Learning | Medium",
https://medium.com/deelvin-machine-learning/how-to-play-google-
chrome-dino-game-using-reinforcement-learning-d5b99a5d7e04 (2023).

19. Torrado, R. R., Bontrager, P., Togelius, J., Liu, J., and Perez-Liebana, D., "Deep

Reinforcement Learning for General Video Game AI", IEEE Conference On
Computatonal Intelligence And Games, CIG, 2018-August: (2018).

20. "Build an AI to Play Dino Run", https://blog.paperspace.com/dino-run/

(2023).

21. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,

D., and Riedmiller, M. A., "Playing Atari with Deep Reinforcement Learning",
ArXiv.Org, (2013).

22. Adriaenssens, A. J. C., Raveendranathan, V., and Carloni, R., "Learning to

Ascend Stairs and Ramps: Deep Reinforcement Learning for a Physics-Based
Human Musculoskeletal Model", Sensors, 22 (21): 8479 (2022).

61

23. Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,
Horgan, D., Piot, B., Azar, M., and Silver, D., "Rainbow: Combining
Improvements in Deep Reinforcement Learning", (2017).

24. "Welcome to Python.Org", https://www.python.org/ (2024).

25. "WebDriver | Selenium",

https://www.selenium.dev/documentation/webdriver/ (2024).

26. "NumPy", https://numpy.org/ (2024).

27. "OpenCV - Open Computer Vision Library", https://opencv.org/ (2024).

28. "Pillow (PIL Fork) 10.2.0 Documentation",

https://pillow.readthedocs.io/en/stable/ (2024).

29. "PyTorch", https://pytorch.org/ (2024).

30. Van Hasselt, H., Guez, A., and Silver, D., "Deep Reinforcement Learning with

Double Q-Learning", AAAI Conference On Artificial Intelligence, 2094–2100
(2015).

31. Sewak, M., "Deep Q Network (DQN), Double DQN, and Dueling DQN", Deep

Reinforcement Learning, 95–108 (2019).

32. Oroojlooyjadid, A., Nazari, M. R., Snyder, L. V., and Takáč, M., "A Deep Q-

Network for the Beer Game: Deep Reinforcement Learning for Inventory
Optimization", Manufacturing & Service Operations Management, 24 (1):
285–304 (2021).

33. Hodson, T. O., Over, T. M., and Foks, S. S., "Mean Squared Error,

Deconstructed", Journal Of Advances In Modeling Earth Systems, 13 (12):
e2021MS002681 (2021).

34. Gilroy, E. J., Hirsch, R. M., and Cohn, T. A., "Mean square error of regression‐

based constituent transport estimates", Water Resources Research, 26 (9):
2069–2077 (1990).

35. Geman, S., Bienenstock, E., and Doursat, R., "Neural Networks and the

Bias/Variance Dilemma", Neural Computation, 4 (1): 1–58 (1992).

36. Heskes, T., "Bias/Variance Decompositions for Likelihood-Based Estimators",

Neural Computation, 10 (6): 1425–1433 (1998).

37. Hafez, M. B. and Wermter, S., "Continual Robot Learning using Self-

Supervised Task Inference", IEEE Transactions On Cognitive And
Developmental Systems, (2023).

62

38. Ramaha, N. T. A., Mahmood, R. M., Hameed, A. A., Fitriyani, N. L., Alfian,
G., and Syafrudin, M., "Brain Pathology Classification of MR Images Using
Machine Learning Techniques", Computers 2023, Vol. 12, Page 167, 12 (8):
167 (2023).

39. Alhamid, M. and Ramaha, N. T. A., "Unveiling Alzheimer’s Disease via MRI:

Deep Learning Approaches for Accurate Detection", International Journal Of
Advanced Natural Sciences And Engineering Researches (IJANSER), 7 (10):
418–422 (2023).

40. "How I Built an AI to Play Dino Run | by Ravi | Acing AI | Medium",

https://medium.com/acing-ai/how-i-build-an-ai-to-play-dino-run-
e37f37bdf153 (2024).

41. Indolia, S., Goswami, A. K., Mishra, S. P., and Asopa, P., "Conceptual

Understanding of Convolutional Neural Network- A Deep Learning Approach",
Procedia Computer Science, 132: 679–688 (2018).

42. Volokitin, V. D., Vasiliev, E. P., Kozinov, E. A., Kustikova, V. D., Liniov, A.

V., Rodimkov, Y. A., Sysoyev, A. V., and Meyerov, I. B., "Improved
vectorization of OpenCV algorithms for RISC-V CPUs", (2023).

43. Porotti, R., Tamascelli, D., Restelli, M., and Prati, E., "Coherent transport of

quantum states by deep reinforcement learning", Communications Physics
2019 2:1, 2 (1): 1–9 (2019).

44. Gutiérrez-Moreno, R., Barea, R., López-Guillén, E., Araluce, J., and Bergasa,

L. M., "Reinforcement Learning-Based Autonomous Driving at Intersections in
CARLA Simulator", Sensors 2022, Vol. 22, Page 8373, 22 (21): 8373 (2022).

45. Dawood, M., Dengler, N., De Heuvel, J., and Bennewitz, M., "Handling Sparse

Rewards in Reinforcement Learning Using Model Predictive Control",
Proceedings - IEEE International Conference On Robotics And Automation,
2023-May: 879–885 (2023).

46. Lucia, S. and Karg, B., "A deep learning-based approach to robust nonlinear

model predictive control", IFAC-PapersOnLine, 51 (20): 511–516 (2018).

47. Yi, M., Xu, X., Zeng, Y., and Jung, S., "Deep imitation reinforcement learning

with expert demonstration data", The Journal Of Engineering, 2018 (16):
1567–1573 (2018).

48. Abdulrazzaq, M. M., Ramaha, N. T. A., Hameed, A. A., Salman, M., Yon, D.

K., Fitriyani, N. L., Syafrudin, M., and Lee, S. W., "Consequential
Advancements of Self-Supervised Learning (SSL) in Deep Learning Contexts",
Mathematics 2024, Vol. 12, Page 758, 12 (5): 758 (2024).

49. Bahar, K. and Ramaha, N. T. A., "Exploring Somali Sentiment Analysis: A

Resource-Light Approach for Small-scale Text Classification", International

63

Conference On Applied Engineering And Natural Sciences, 1 (1): 620–628
(2023).

64

CURRICULUM VITAE

Zabiullah ALI SHER graduated from Hakim-e-Nasir Khusraw Balkhi High School in

Kabul, Afghanistan. Following his high school education, he pursued higher studies at

RANA University, where he obtained a bachelor’s degree in Software Engineering in

2013. During his undergraduate studies, Zabiullah demonstrated a keen interest in the

practical applications of software engineering principles. For his thesis, he developed

a comprehensive system named "Business Book," designed to maintain and calculate

all insurance policies for the Insurance Corporation of Afghanistan. This project not

only showcased his technical skills but also addressed a significant need within the

insurance sector in Afghanistan.

Building on his academic and practical experiences, Zabiullah decided to further his

education and expertise by pursuing a master’s degree in Computer Engineering at

Karabuk University in Turkey. At Karabuk University, he continued to expand his

knowledge and skills, focusing on advanced topics in computer engineering. For his

master’s thesis, Zabiullah conducted research on "A Neoteric Evaluation of Deep

Reinforcement Learning Algorithms Utilizing Game Concepts." This research delved

into the innovative applications of deep reinforcement learning, leveraging game

concepts to evaluate and enhance these algorithms.

Zabiullah's academic journey reflects a strong commitment to leveraging technology

to solve real-world problems and contribute to the development of critical sectors in

his home country and beyond. Through his undergraduate and graduate studies, he has

consistently demonstrated a dedication to advancing his field and applying his

knowledge to practical and impactful projects.

