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The implementation of deep learning methods in medical image classification 

domain has yielded many progress in developing reliable systems for diagnosis of 

diseases. Researchers have conducted numerous studies to develop models with 

improved accuracy. Computed tomography (CT) scans served as an important 

imaging technique for quickly diagnosing lung diseases via deep learning techniques. 

 

This doctoral dissertation presents a novel approach for diagnosing COVID-19 

disease with enhanced accuracy, as well as an innovative method for detecting 

COVID-19 by integrating the U-Net model with a Graph Convolutional Network 

(GCN) to develop a feature-extracted GCN (FGCN). We use the U-Net model for 

image segmentation and feature extraction. We utilize the derived characteristics to 

construct an adjacency matrix that represents the underlying graph structure. We also 

feed the original image and the image graph with the greatest kernel to the GCN. 
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This technique involves employing graph convolutional networks (GCN) with 

different layer configurations and kernel sizes to extract important features from CT 

scan images. To generate integrated input graph data, we combine these graphs and 

feed them into a graph convolutional network (GCN), which also incorporates a 

dropout layer to minimize overfitting during the COVID-19 diagnosis.  

 

Unlike previous studies that only took deep features from convolutional filters and 

pooling layers without considering the nodes' spatial connectivity, we use graph 

convolutional networks (GCNs) for categorization and prediction. The developed 

model stands out as it is the first to view CT scans of the lungs as a graph of 

characteristics, categorized by a graph neural network model. Furthermore, it 

outperforms the latest methods proposed for COVID-19 detection in the literature. 

This allows us to identify spatial connectivity patterns, resulting in a significant 

improvement in association. Our study shows that the suggested structure, called the 

feature-extracted graph convolutional network (FGCN), is better at finding lung 

diseases than other recently suggested deep learning structures that don't use graph 

visualizations. The suggested approach surpasses several transfer learning models 

frequently employed for medical  image diagnosis, emphasizing the capacity of the 

graph representation to abstract information beyond what traditional methods can do. 

Furthermore, we contrast the proposed FGCN model with six widely used transfer 

learning models: DenseNet201, EfficientNetB0, InceptionV3, NasNet Mobile, 

ResNet50, and VGG16. We observe that the FGCN outperforms various transfer 

learning models. These results highlight the capacity of the graph-induced approach 

to represent abstract concepts, making it appropriate for similar medical diagnosis 

tasks. 

 

Key Word : COVID-19, Graph Convolutional Networks, Graph 

Representative Learning , Medical diagnostic imaging, Deep Learning. 

 

Science Code :  92431
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Derin öğrenme yöntemlerinin tıbbi görüntü sınıflandırma alanında uygulanması, 

hastalıkların teşhisi için güvenilir sistemlerin geliştirilmesinde birçok ilerleme 

sağlamıştır. Araştırmacılar, yüksek doğruluğa sahip modeller geliştirmek için çok 

sayıda çalışma yürütmüştür. Bu çalışmalarda bilgisayarlı tomografi (BT) taramaları, 

derin öğrenme teknikleri aracılığıyla akciğer hastalıklarının hızlı bir şekilde teşhis 

edilmesi için önemli bir görüntüleme tekniği olarak öne çıkmıştır. 

 

Bu doktora çalışmasında COVID-19 hastalığını yüksek hassasiyetle teşhis etmek 

için, U-Net modelini Graph Convolutional Network (GCN) ile entegre ederek, yeni 

bir yöntem sunulmuştur (FGCN). Resim segmentasyonu ve özellik çıkartımı için U-

Net modeli kullanılmıştır. Çıkartılan özellikler, temel graf yapısını temsil eden bir 

matris oluşturmak için kullanılmıştır. Ayrıca GCN'ye orijinal görüntüyle birlikte en 

büyük çekirdeğe sahip graf temsili de eklenmiştir. Böylece önerilen teknik, farklı 



 

vii 

katman yapılandırmaları ve çekirdek boyutları ile GCN kullanılarak BT tarama 

resimlerinden önemli özellikler çıkarılmasını sağlar. Entegre giriş graf verileri 

oluşturmak için, bu graflar birleştirilmiş ve bir graf konvolüsiyonlu ağ (GCN) içine 

aktarılmıştır. Bu ağ ayrıca, COVID-19 teşhisi sırasında aşırı öğrenmeyi en aza 

indirmek için bir çıkış katmanı da içermektedir.  

 

Sadece evrişimli filtrelerden ve havuzlama katmanlarından elde deilen derin 

özelliklerin kullanıldığı ve düğümler arası uzaysal bağlantıların dikkate alınmadığı 

eski çalışmaların aksine bu çalışmada uzaysal bağlılığın da önemli olduğu GCN 

ağları sınıflandırma ve tahminleme görevi için kullanılmıştır. Geliştirilen model, 

akciğerlerin CT taramalarını, bir graf sinir ağı modeliyle sınıflandırılabilir bir 

karakteristik graf olarak gören ilk model olarak öne çıkmaktadır. Ayrıca, literatürde 

COVID-19 tespiti için önerilen en son yöntemlerin performansını da geride 

bırakmıştır. Bu yaklaşım, uzaysal bağlantı biçimlerini tanımlamamıza olanak 

sağlamakta, bu da temsilde önemli bir iyileşmeyi beraberinde getirmeketdir. 

Çalışmamız, önerilen yapının (FGCN) akciğer hastalıklarını bulmada, son 

zamanlarda graf temsilleri kullanmayan derin öğrenme yapılarına kıyasla daha iyi 

olduğunu göstermektedir. Önerilen yaklaşım, tıbbi görüntüleme teşhisi için sık 

kullanılan transfer öğrenme modellerinin performansının ötesine geçerek, geleneksel 

yöntemlerin soyutlama kapasitesinin grafik temsilleri ile aşılabileceğini 

vurgulamaktadır. Önerilen FGCN modelinin karşılaştırıldığı altı yaygın transfer 

öğrenme modeli sırasıya DenseNet201, EfficientNetB0, InceptionV3, NasNet 

Mobile, ResNet50, ve VGG16’dir. FGCN'nin bu transfer öğrenme modellerinden 

üstün sınıflandırma sonuçları verdiği gözlemlenmiştir. Bu sonuçlar, graf temsilli 

yaklaşımın soyutlama kapasitesini vurgularken, benzer tıbbi teşhis görevleri için de 

kullanılabilirliğini göstermektedir. 

 

Anahtar Sözcükler  : COVID-19, Graph convolutional networks, Graph 

representative learning, Medizinische diagnostische bildgebung, Deep learning. 

 

Bilim Kodu : 92431 
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CHAPTER 1  

 

 INTRODUCTION 

 

Over the past few decades, we have witnessed the arrival of the big data era. As the 

amount of image data and demand for intelligent processing on it grows 

exponentially, standard image classification techniques suffer from restrictions and 

underestimation of a sufficient level of detection capability [1, 2]. At the end of the 

1980s, neural networks gained prominence in the fields of artificial intelligence (AI) 

and machine learning (ML), thanks to the development of numerous effective 

learning techniques and network designs [3]. Hinton et al. first proposed the 

expression "Deep Learning" (DL), based on the concept of an artificial neural 

network (ANN), in 2006. 

 

DL techniques have emerged to be more progressive in image recognition and 

classification tasks. Additionally, DL served as a gold standard in computer vision, 

video analysis, and speech recognition, as well as an emerging subclass of artificial 

intelligence. DL representations have achieved great success in many areas, with the 

advantage of automatic feature generation on unstructured data. It has a wide range 

of accessibility, including signal processing, time-series and textual content 

prediction, computational bioinformatics, etc. [4]. DL provides a set of machine 

learning methods and algorithms that use structures composed of numerous nonlinear 

transformations to represent high-level abstractions in data. Artificial neural 

networks (ANNs) are the basis of DL technologies. The neurons are the building 

blocks of all neural networks that offer deep learning processes. Simple building 

units, specifically neurons, relate to deep and fully connected layers in a multi-layer 

context [5]. 

 

The AI community has witnessed numerous studies about DL applied to medical 

diagnosis, most of which have the potential to outperform doctors' estimations. A 
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generic example would be lung disease, which is one of the most common diseases 

in the world, affecting millions of people each year. Early detection of a patient's 

nodules can improve the survival rate of lung cancer. However, the detection of 

pulmonary nodules requires special attention from radiologists. In the precancerous 

stage, the size of the nodule is relatively small, and it is difficult to distinguish it 

from other benign tissues. Even for a professional radiologist, the visual noise 

resolution of computed tomography (CT) scans makes it difficult to make a 

diagnosis. Existing systems, such as the Lung Imaging Reporting and Data System 

(LungRADS), encounter many false-positive problems during the detection of lung 

nodules [6]. To overcome these problems, artificial intelligence (AI) models are 

essential to detecting nodules in every hospital [7]. 

 

Recently, there has been widespread use of Graph Representation Learning (GRL), a 

new technique that focuses on feeding deep learning architectures with higher-order 

representations of entities. [7]. Some of the DL models developed for graph-based 

representations include Graph Neural Networks (GNNs), Gated Graph Neural 

Networks (GG-NNs), and Graph Convolutional Networks (GCNs) [8]. GCNs are one 

of the most adaptable data structures, and they provide access to the exceptional 

expressive power of graph representations. Several areas have effectively used 

machine learning trends to extract and predict graph statistics, as well as solve 

complex factors and their relationships. GCNs specialize in processing non-

Euclidean data, including graphs. When GCN performs the convolution on the input 

image, it uses the graph Laplacian operator instead of a fixed grid of one- or two-

dimensional Euclidean structured data [9].  

In physical and social networks domain, GCN is the primary choice for classification 

tasks. 

 

In this research, our goal to investigate the efficiency of GCN-based classification in 

medical diagnosis. The current study's main procedure is the segmentation and 

classification of lung diseases using U-Net and GCNs, inspired by the common 

approach for bioinformatics datasets. We also aim to introduce efficient graph 

representations for these segmented images, serving as an input to GCNs. To prove 

the efficiency of the graph representations of medical images, we compare them with 
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ground-truth classification results from the most recent studies using unstructured 

medical images and more common deep learning architectures like CNNs . 

 

1.1. GRAPHS 

 

In the domain of graphs, we can characterize objects based on how they connect with  

each other. A graph is an intuitive method to depict a group of items and their 

interconnections. According to Zhang et al. [10], Diagrams offer a common 

framework for describing numerous intricate systems. Complex systems underlie 

everything around us such as wired communication networks connecting electronic 

devices, thousands of proteins and genes communicating to control life, and 

hundreds of millions of neurons in our brains concealing human ideas [11]. 

Researchers have structured these complex systems as graphs.  

 

For more than ten years, researchers commonly use specialized neural network 

structures known as graph neural networks, or GNNs, that can operate on graph-

structured information [12]. Many real-world applications, including computer 

networks, molecular structure analysis, natural language processing (NLP), and 

image processing, can use graph-structured data. In general, we describe images as 

matrices (e.g., 512x512x3 floats) and think of them as rectangular squares of image 

channels. One can also conceptualize images as regular graphs, where each pixel 

serves as a vertex, connected to neighboring pixels by edges. Every non-border pixel 

has exactly eight neighbors, and each vertex stores data in the form of a 3-

dimensional vector that represents the pixel's RGB value, as shown in Figure 1.1, and 

the image graph. 
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Figure 1. 1. a) Image pixels, b) Graph of the image. 

 

1.1.1.  Graph With Weighted Edges 

 

A Graph with weighted edges is defined as the numerical weights assigned to each 

node in a graph. The result is a unique labeled graph, also known as a weighted 

graph, where the labels are numerical values commonly interpreted as positive. The 

weight indicates the degree of connection between the two points. For image 

segmentation, we use weighted graphs, in which the weight of their links represents 

the similarity between two pixels. A weighted graph assigns a numerical label, 

known as a weight, to each edge [13]. Assigning weights or other values to a graph's 

edges may be required. A tripling G = (E, N, w) can be used to describe a "weighted" 

or labeled set of the edges in a graph, in which w: E →(N)  node is a function that 

maps edges or directed edges to their values and node is a collection of possible 

items. For weighted graphs, the node can take any form, typically representing the 

real numbers. Several representations exist for a weighted graph. The initial 

representation directly reflects the function w. We can show this in Figure 1. 2 that 

the directed and undirected weighted graphs associate each edge with its 

corresponding value. 
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Figure 1. 2. Weighted a) Directed , and b) Undirected Graph representation. 

 

1.1.2. Attributed Graph 

 

Networks in the real world include nodes that have properties given in an attribute 

graph denoted by X. These properties, typically expressed as a vector Xv, which is 

describe the nodes' characteristics. Recent research on graph-structured data has 

mainly concentrated on modeling graphs that lack attributes [10]. There has been 

limited work on graph-structured data that incorporates both real-world structural 

features and associated attributes. Figure 1.3 illustrates an attributed graph containing 

five nodes and six edges, with each node assigned an attribute vector. 

 

 

 

Figure 1. 3. Attributed graph. 

 

1.2. GRAPH MACHINE LEARNING 
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Graph Machine Learning (GML) is a subfield of machine learning that develops 

algorithms to learn from data organized in a graph structure. Graphs consist of nodes 

(vertices) and edges (connections between nodes) and are used to represent various 

real-world data, including social, biological, and communication networks. GML is a 

specialized area within machine learning that focuses on the use of graph-structured 

data to perform various tasks. Here are some categories for GML: 

 

1.2.1. Supervised Gml 

 

Figure 1.4 displays three of the most popular GML tasks for supervised learning: 

 

i. Node Prediction: This method determines whether a node attribute is 

continuous or discrete. As shown in Figure 1.4 (a), we can think of node 

predictive properties as predicting a description about an item, such as which 

class to assign an item to and whether to recognise an account on a financial 

services platform as fraudulent. 

 

ii. Link prediction: It involves in speculating about the existence of a 

relationship between two nodes and possibly estimating certain aspects of the 

link. Link prediction is useful in applications such as bioinformatics, which 

predicts drug and protein interactions; recommendation systems, which 

determine what a user will want to buy or interact with next; and entity 

resolution, which determines whether two nodes reflect the same underlying 

entity, as shown in Figure 1.4 (b).  

 



 

7 

 

 

 

Figure 1. 4. a) Node, b) Link, and c) Graph prediction respectively in supervised 

ML. 

 

Due to its usefulness in practical applications like e-commerce and friend 

recommendations, as well as networks for finding potential collaborators, link 

prediction (LP) is gaining a lot of attention. The LP problem's goal is to predict 

whether links will exist or not in the future. Despite LP exploration over the past two 

decades, Jon Kleinberg and David Liben-Nowell's work has significantly impacted 

this field and garnered significant attention recently [13]. The task entails predicting 

the continuous or discrete characteristics of a subgraph or graph. 
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iii. Graph Prediction: Predicting a graph or subgraph's discrete or continuous 

attribute, as shown in Figure 1.4.c. When every object is modeled as a 

separate graph for prediction rather than as nodes inside a larger graph that 

represents an entire dataset, graph property prediction comes in handy. 

Individual graphs may represent chemicals or proteins that you want to make 

predictions about in use cases such as drug development, material science, 

and bioinformatics. 

 

1.2.2. Unsupervised GML 

 

Unsupervised learning is a type of machine learning that involves processing data 

without human supervision. Unlike supervised models, unsupervised models train on 

unlabeled data, allowing them to independently identify patterns and insights without 

explicit guidance or support. The four of the most popular GML tasks for 

unsupervised learning are as follows: 

 

i. Representation Learning: A key concept for GML implementations is 

dimensionality reduction without sacrificing significant signals, as shown in 

Figure 1.5(a). Graph representation learning specifically achieves this by 

creating low-dimensional features from graph topologies, typically for use in 

downstream exploratory data analysis (EDA) and machine learning. 

 

ii. A clustering method: known as community detection locates closely related 

clusters of nodes in a graph. Refer to Figure 1.5 (b), for an example  real-

world applications of community detection include anomaly detection, fraud 

detection, investigation data analysis, social network analysis, and biology. 

 

iii. Similarity: In GML, similarity refers to the process of identifying and 

evaluating similar node pairings within a network. Numerous use cases, such 

as fraud detection, anomaly detection, entity resolution, and recommendation, 

might benefit from similarity. Node similarity algorithms K-Nearest Neibor 

(KNN) and topological link prediction are examples of common similarity 

methods. Figure 1.5 (c) indicates similarity. 
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iv. Centrality and Path Finding: Many application cases, including 

transportation, logistics, problems with infrastructure, fraud and finding 

anomalies, and recommendation, use centrality in one way or another, as 

shown in Figure 1.5(d). You can use path finding to evaluate the quality and 

availability of paths, or to identify the paths with the lowest costs in a graph. 

Numerous application cases involving physical systems, including supply 

chains, infrastructure, and transportation, can benefit from path finding. 

 

 

 

Figure 1. 5. a) , b), c), and d) Illustrates four types of unsupervised GML, 

respectively. 

 

1.2.3. Semi-Supervised Learning: 

 

Combines both labeled and unlabeled data to improve learning accuracy, particularly 

useful when labeled data is scarce. 

 

1.3.  TECHNIQUES FOR GRAPH ANALYSIS WITH MACHINE LEARNING 

 

According to Langley in [14], machine learning is a scientific approach to employ 

algorithms and computers to generate analytical models that enable computers to 

gain knowledge from data without the need for specific instructions. Numerous fields 
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have benefited from machine learning, including the analysis of medical images, 

language synthesis, prediction, classification, and recommendation. Machine 

learning algorithms, without specific training, generate a mathematical model from 

sample data, or "training data," to predict "class labels". It is possible to categorize 

the machine learning task as either semi-supervised, supervised, or unsupervised 

[14].  By examining the input-label pairs from the training data, the computer 

attempts to develop a function that translates the input data to output labels in 

supervised deep learning applications. A successful supervised machine learning 

technique can effectively determine the class labels for new, unseen data .Using the 

training dataset without any already-present labels, the system tries to understand a 

formula that connects input data to output categories in tasks involving unsupervised 

deep learning. The training dataset for the hybrid semi-supervised machine learning 

job provides limited input-label data [14].  

 

Turker et al. propose an intelligent detection method that converts sensory data from 

a CNC milling machine into a visibility graph representation. This process 

transforms the data, consisting of 44 machining-related attributes, into a multilayer 

visibility graph, resulting in a 44-layer, 128x128 adjacency matrix. Additionally, 

they developed a novel data augmentation technique for graph representation to 

increase the original dataset of 18 trials. This technique expands the dataset to 360, 

with each experiment represented as a multilayer graph [15]. 

 

This approach has significantly advanced various fields, such as medical image 

analysis, language synthesis, prediction, classification, and recommendation. 

Machine learning (ML) algorithms create mathematical representations based on 

sample data referred to as "training data" to forecast "class labels" without needing 

explicit guidance. As mentioned in section 1.2, ML tasks can be divided into three 

categories: supervised, unsupervised, and semi-supervised. 

 

1.4. DEEP LEARNING ON GRAPHS 

 

According to Groover and Leskovec [16], deep learning techniques are powerful 

machine learning techniques that can understand the complex hidden characteristics 
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of information from any domain without requiring specific attribute development. 

From image recognition [17] to natural language synthesis [18-21], the use of deep 

learning has revolutionized many difficult tasks, those are originating from the 

Euclidean domain and exhibiting a comprehensive grid-like structure.  

 

Text data typically has 1D grid structure, while images typically have 2D structure. 

Because of the large volume of data coming from non-Euclidean areas [22], scholars 

have concentrated on deciphering complex structured data, such as data networks 

and 3D images. These intricate data structures are too complicated for the current 

techniques to manage. Because of this, when designing the architecture of neural 

networks based on graphs, researchers take cues from CNN [23], recurrent neural 

networks [24], and deep autoencoders [25]. This dissertation's main goal is to extend 

deep learning techniques, particularly GCNs, to weighted, attributed graphs. The 

standard term for this family of techniques is graph Graph convolutional networks 

(GCN). 

 

DL community specifically proposed Graph convolutional networks (GCN) for 

detailed analysis of graph-structured data [26]. As the name suggests, a GCN's 

design is a useful variation on CNN's architecture, which is originally effective for 

assessing visual representations. GCN, which has a graph structure, generalizes the 

CNN convolution and pooling techniques that perform well on grid-structured data. 

Existing GCNs use two convolution operation methods: spatially based and spectral-

based [27]. The convolution operation of spectral-based GCNs is distinguished by 

graph signal processing-inspired filters. These models can learn spectral filters 

specified via the Laplacian matrix's Eigen decomposition [26, 28, 29]. Spatial-based 

methods combine the features of nearby vertices to change how a vertex's attributes 

are shown in every layer of the neural network design [30]. Even if GCNs function at 

the vertex level, we can alternate graph pooling components with the GCN layer to 

coarsen graphs into high-level substructures. Node classification is a strong suit for 

the majority of graph neural network topologies currently in use. Research on graph 

categorization for attributed, weighted graphs has not been extensive. 

 

1.5. MOTIVATION 
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The motivation for this study is driven by two primary points: 

 

i. Improved Feature Extraction and Focus: The current work uses the U-Net 

architecture for intelligent segmentation and classification, taking advantage 

of its ability to extract features and adding an attention-based layer to find 

areas that are likely to be infectious. This approach is particularly crucial for 

identifying pulmonary conditions, including COVID-19 and other respiratory 

infections. 

 

ii. Innovative Algorithm Development: The objective of this study is to create 

and demonstrate an algorithm that can identify lung diseases by utilizing 

graph convolutional networks (GCNs). The GCN approach employs feature 

extraction from medical images and incorporates them into the U-Net design, 

offering numerous benefits compared to conventional networks. These 

advantages include the use of high-resolution CT scan images to improve 

segmentation and performance, even with limited training datasets. 

 

The study analyzes the COVID-CT scan image dataset, which consists of 2482 slices 

of chest CT scans. Additionally, the suggested approach has the capability to use 

Alternative CT scan datasets. We use deep learning algorithms because they can 

learn from both deep-parallel and wide-distributed models, making them cost-

effective and efficient for advanced analytics. 

 

The suggested technique effectively draws intricate information from vertices and 

edges by integrating convolutional neural networks (CNNs) with graphs. This will 

also enhance the accuracy and quality of the trained model. This makes it a reliable 

and effective option for detecting lung diseases. 

 

1.6. PROBLEM STATEMENT 

 

The classification of CT scan images presents a significant challenges, especially in 

the context of rapidly evolving healthcare demands such as those experienced during 

the COVID-19 pandemic. Traditional convolutional neural networks (CNNs), while 
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effective, suffer from complex computation times and often produce a fixed set of 

features that may not adapt well to varying medical image datasets. 

 

Hospitals and healthcare facilities have faced increased demands for accurate and 

efficient CT scan analysis to detect diseases like COVID-19. However, many 

institutions lack the necessary expertise and resources, leading to a bottleneck in 

processing and diagnosing these images accurately. The shortage of medical experts 

exacerbates this problem, making it crucial to develop automated and efficient image 

classification methods. 

 

Graph convolutional networks (GCNs) offer a promising solution to these 

challenges. By leveraging the relational information inherent in graph structures, 

GCNs can enhance feature extraction from CT scan images, leading to improved 

classification performance. When you combine GCNs with the U-Net model, you 

can make CT scan image classification even more accurate and efficient. This solves 

both the problem of how hard it is to compute and the need for high-quality, flexible 

feature extraction. 

 

This study aims to develop a novel CT scan image classification framework that 

combines GCNs with the U-Net model to provide a more accurate, efficient, and 

robust solution for medical image recognition, particularly in the detection of 

COVID-19 and other lung diseases. 

 

1.7. CONTRIBUTIONS 

 

This thesis makes several key contributions towards the application of graph 

convolutional networks (GCNs) for classifying medical CT scan images: 

 

i.      Literature Review on GCN in Medical Imaging: 

 

          We conducted a comprehensive review of the latest articles to explore the 

application of the GCN algorithm for medical CT scan images. Chapter Four 
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presents this review, providing future researchers with a comparative analysis 

of various deep learning approaches used for CT scan image classification. 

 

ii.      Hyperparameter Optimization for GCN: 

 

          Investigated the importance of essential hyperparameters for effective GCN 

training. This investigation includes the impact of batch size, learning rates, 

and other critical parameters on GCN performance, helping to identify 

optimal configurations for medical image classification tasks. 

 

iii.      Development of a Hybrid Deep Learning Architecture: 

 

           We introduced a new classification method specifically for CT scan images by 

combining GCN with U-Net to create a novel GCN architecture. This hybrid 

deep learning model includes five layers with fully connected layers, aimed at 

improving the accuracy and efficiency of CT scan image classification. We 

compared the performance of different optimizers and activation functions to 

determine the most effective combination. 

 

iv.      Evaluation of GCN Versus CNN: 

 

           In Chapter Five, we investigated the impact of employing GCN compared to 

fully training CNN models. This comparison was based on experiments 

conducted on a large set of CT scan images, providing insights into the 

relative advantages of GCNs in terms of computation time and classification 

performance. 

 

v.      Block-wise Fine-Tuning of GCN: 

 

           We examined the effects of block-wise GCN fine-tuning on a CT scan dataset 

to determine the optimal depth for a GCN. This analysis intended to improve 

the performance and adaptability in GCN technique for medical image 

classification. 
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vi.      Impact of Different Optimizers on GCN Performance: 

 

          The functionality of GCN was evaluated using various optimizers with 

different learning rates. This contribution highlights the importance of 

optimizer selection in training deep learning models and provides guidelines 

for choosing appropriate optimizers for GCN-based medical image 

classification. 

 

These contributions collectively advance the field of medical image classification by 

providing a robust framework for integrating GCNs with other deep learning 

architectures, optimizing training parameters, and evaluating the comparative 

performance of different approaches. 

 

1.8. THESIS ORGANIZATION 

 

The structure of this thesis is organized as follows: 

 

Chapter 1: Introduction : This chapter introduces the concept of graphs and their 

application in machine learning. It covers methods for analyzing graphs using 

machine learning and outlines the primary motivation and contributions of this 

research. 

 

Chapter 2: Graph Convolutional Networks: In this chapter, we discuss graph 

convolutional networks (GCNs), including the concepts of graphs and graph signals. 

We delve into the spectral and spatial graph convolutional networks that underpin 

our thesis method and explain the integration of GCNs with convolutional neural 

networks (CNNs). 

 

Chapter 3: Literature Review: This chapter provides a comprehensive review of 

medical image analysis and the various types of medical images used for 

classification. We examine deep learning applications for medical images, 

highlighting key studies and approaches relevant to our research. 
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Chapter 4: Proposed Hybrid Method :Here, we detail our proposed hybrid method, 

which combines GCNs with the U-Net model. We explain the architecture, 

implementation, and anticipated benefits of this approach. 

 

Chapter 5: Experimental Results: This chapter presents the experiments conducted 

on deep learning algorithms using a bioinformatics dataset. We provide the results of 

these experiments, along with a comprehensive analysis and insights gained from the 

data. 

 

Chapter 6: Discussion and Conclusions : The final chapter discusses the success of 

our method, summarizes the key findings, and draws conclusions based on the 

research outcomes. We also suggest potential directions for future research. This 

structured approach ensures a thorough exploration of the research topic, from 

foundational concepts to detailed experimental analysis and conclusive insights. 
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CHAPTER 2  

 

GRAPH CONVOLUTIONAL NETWORK (GCN) 

 

2.1. INTRODUCTION  

 

Deep learning (DL) is a sub-field of machine learning that uses layered algorithmic 

design to interpret data. A convolutional neural network (CNN) is one of the most 

important networks in deep learning, and it is a type of feed-forward neural network 

that uses a convolutional architecture to extract features from the input. The 

convolutional neural network (CNN) has produced some outstanding results. Similar 

to artificial neural networks (ANN), CNN consists of neurones that self-optimize. 

Deep learning neural networks have grown to be one of the most representatives. 

CNN-based computer vision has enabled individuals to perform tasks previously 

thought impossible, such as facial recognition, driverless automobiles, self-service 

supermarkets, and intelligent medical treatments. The inclusion of the convolution 

layer distinguishes CNN from other neural networks. It is impossible to separate the 

development of CNNs from that of artificial neural networks (ANNs).  

 

CNNs consist of three distinct layers. These layers include convolutional layers, 

pooling components, and fully connected layers. McCulloch and Pitts proposed the 

MP model as the first mathematical representation of neurons [31]. Rosenblatt 

proposed a single-layer perceptron model that incorporates learning capabilities into 

the MP model [32, 33]. A 1-D CNN, as suggested by Waibel et al., is a time-delay 

neural network for voice recognition [34]. Zhang et al. proposed the initial 2-D CNN, 

a shift-invariant ANN [35]. In addition, LeCun et al. developed a CNN for 

deciphering handwritten zip codes and coined the word "convolution," which is the 

precursor of LeNet [36]. According to Krizhevsky et al., ANNs with multiple hidden 

layers should be excellent at learning new  
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features. And "layerwise pretraining" as a way to get around the problems of deep 

neural network (DNN) training is what led to research in deep learning (DL).[23]. In 

the ImageNet Large Scale Visual Recognition Challenge (LSVRC), they used deep 

CNN to produce the top classification result at the time, which sparked significant 

research interest and contributed to the development of the current CNN   [24]. 

Ajmal et al. mentioned CNN as a method for image segmentation[37]. Convolutional 

layers are vital because they reduce the number of connections needed, and Figure 

2.1 represents how the convolution works. It additionally considers the spatial and 

temporal data included in images. The convolutional layer uses the window's kernel 

size to convolve the image and identify key features for categorization. 

 

 

Figure 2. 1. A typical method of convolution on an image. The input image, 

filtering, and outputs [38]                                                                                         

 

Gori et al. hve initially introduced the idea of graphed neural networks. A Graph 

Convolutional Network (GCN) is a kind of neural networks that structures data, uses 

the structure of a graph, and convolutionally collects data from neighboring nodes. It 

can also be defined as a type of deep learning that employs methods to organise deep 

neural networks in non-Euclidean spaces, such as graphs [39]. Graph Convolutional 

Networks offer a high expressive capacity for learning Graph Representations and 

have excelled in a variety of tasks and applications.  
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In [40] , we are employed a graph convolutional network (GCN) model to diagnose 

cases of COVID-19. GCN is a deep learning architecture specifically designed for 

data with a graph structure. The investigation uses the SARS-COV-2 CT-Scan 

Dataset, which includes 1252 positively labelled CT scans and 1230 negatively 

labelled CT scans, for a total of 2482 CT scans. The results demonstrate that the 

GCN architecture outperforms the current research, which uses several models of 

deep learning, with an accuracy of 98.8% and an F1-score of 98.1%. 

 

Recent years witnessed rapid development and proposal of various types of graph 

neural networks, including graph attention model [41, 42], graph generative models 

[22, 43], graph auto-encoders [44], and graph recurrent neural networks [45, 46]. 

With graph convolutional networks, Zhang et al. give a thorough evaluation that 

includes many other graphs known as graph neural networks, including graph 

attention networks, and  gated graph neural networks  [47].  

 

2.1.1. Graphs And Graph Signals In GCN 

 

A complex nonlinear data structure, known as a graph, represents a one-to-many 

connection in a non-Euclidean space. One might use an undirected graph to depict 

the relationships between the spectral signatures. The expression G = (N , E) denotes 

a graph without direction, with N and E representing the nodes and edge sets, 

respectively. In our context, the image's pixels make up the node set, while the 

connections between any two pixels, Pi and Pj, represent the pixels i and j. 

 

2.1.2. Building The Adjacency Matrix  

 

The adjacency matrix, abbreviated as A, describes the connections (or edges) 

between vertexes. You can generally calculate every element in the matrix using the 

radial basis function (RBF), as shown in Equ. 1: 

 

            
          

  
 

(2.1) 
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The parameter σ regulates the RBF's width. Vectors xi and xj represent the spectral 

characteristics that the vertexes vi and vj connect to. Given A, we generate the 

equivalent graph, or Laplacian matrix L, as follows: 

 

         

   

(2.2) 

 

where D represents the degree of the diagonal matrix in the (A) adjacency matrix.as 

we see that      ∑     
 
    .[48, 49] The normalized Laplacian matrix with symmetric 

can be applied as in equation  to improve the graph's performance for generalization 

[50]. 

 

                     = I -               (2.3) 

 

where      is a symmetric normalization Laplacian matrix, and I is the identity 

matrix. 

 

2.2. SPECTRAL DOMAIN TO GRAPH CONVOLUTIONS 

 

The convolution of two functions such as f and g can be represented as: 

 

   )     )  ∫    )     )  

   

  

 

   

(2.4) 

 

In this case, τ represents the shifting distance, and * represents the convolution 

process. 

 

Based on Equation 2.4, we define the Fourier transformation of the convolution in 

two theorems. 

 

The first theorem: The convolution of two functions f and g their Fourier transforms 

is the product of their equivalent Fourier transforms. This can be represented by 

equation 2.5 . 



 

21 

 

 [   )     )]   [   )]   [   )]  (2.5) 

 

Where * represents the multiplication operation, and F represents the Fourier 

transform.  

 

The second theorem: The product of the inverse Fourier transforms of the two 

functions, f and g in convolution is equal to 2π, and the inverse Fourier transform 

(   ) of the convolution of this two functions can be represented as Equation 2.6. 

 

    [   )     )]       [   )]    [   )]  (2.6) 

 

by using the two popular theorems stated in Equation 2.5, and 2.6  [51]. The graph 

convolution can be generalized to the new equation as sate in Equation 2.7: 

 

   )     )     [ [   )]   [   )]]  (2.7) 

 

So, it is possible to define the Fourier transform (F) or to get a set of basic functions 

using the convolution operation on a graph. 

 

Lemma 1: A set of eigenvectors of L can equivalently represent the basis functions of 

F. 

 

Proof: The proof can be obtained by looking into [51]. For numerous functions 

lacking convergence within the domain, for instance    )     , A real-valued 

exponential function is        ,and it is always accessible ,to create    )     

converge, Therefore, the Dirichlet condition of F is satisfied, that is represent as 

Equation 2.8 . 

 

∫     )     
  

  

     
(2.8) 

 

Attaching    )     in to F; 
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∫    )             
 

  

 
(2.9) 

 

And the Equation 2.9 can be rewritten as:  

 

∫    )    
 

  

    
(2.10) 

 

 

where               . Remember that a Laplace transform is expressed as 

Equation 2.10 Stated differently, the basic functions of F and L have the same 

eigenvectors. Given Lemma 1, we can conduct spectral decomposition on L based on 

Lemma 1. After that, we have: 

 

          (2.11) 

 

Let                )  be the collection of eigenvectors of L, which serves as the 

foundation of F. Given that            and U is an orthogonal matrix, we have  

        [52]. Therefore, we can rewrite the eigenvalue decomposition of L  in 

Equation 2.11 can also be expressed as  : 

 

L=Uᴧ     (2.12) 

 

Equation. 2.12 states that we can represent the graph of F for f as is   [ ]        , 

and we can express the reverse transformation as f = U F[f]. By drawing a 

comparison to Equation 2.7, we may express the convolution of functions f and g on 

a graph such as: 

 

  [      ]     [[    ] [    ]] (2.13) 

 

The convolution on a graph is able to be expressed as Equation (2.12)  if we 

write      as   . 
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 [       ]         
   (2.14) 

 

Where   , also known as     ), can be thought of as a function of L's eigenvalues 

(ᴧ) with regard to the variable. Hammond et al. [53] used the Kth order truncated 

expansion of Chebyshev polynomials to roughly fit    to reduce the computing 

complexity of Equation 2.14. This allows Equation 2.14 to be rewritten as: 

 

 [    ]  ∑  
ـ
 

 

   

    ̃)  

 

(2.15) 

 

Where   (•), and   
ـ
 are, the polynomials of Chebyshev respectively with regard to a 

variable • and the Chebyshev coefficients.  ̃   (2/     )        represent the L 

normalization. One can further simplify Equation 2.15 by setting K = 1 and setting 

the greatest eigenvalue in λmax of  ̃  to  2 [28].  

 

 [         ]              
 
      

 
   )  

(2.16) 

 

2.2.1. Building The Graph Convolutional Networks (GCNs)  

 

The propagation rule for graph convolutional networks (GCNs) is as follows by 

using Equation 2.16: 

 

     )        ̃
 
 
   ̃  ̃

  
 
     )    )      ) ) 

(2.17) 

 

 ̃ = A + I, and  ̃   =∑  ̃     In order to improve stability during network training 

are defined as the renormalization in terms of A and D, respectively. Additionally, 

   ) is the result obtained in the     layer, and also h (•) is the activation function (in 

our instance, ReLU) with regard to the biases [   )]   
 

 and the weights to-be-learned 

[   )]   
 

 of all layers ( l = 1, 2,..., p) [52]. 

 

2.3. OPTIMIZATION ALGORITHMS IN DEEP LEARNING 
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We use deep learning as a branch of machine learning, to perform complex tasks. If 

we deal with deep learning, it consists of an activation function, an input layer, an 

output layer, a hidden layer, and a loss function that make up the deep learning 

model. All deep learning algorithms aim to generalize the data that they use and 

generate predictions based on previously unseen information. We require both an 

optimization method and an algorithm that translates instances of inputs into samples 

of outputs. When translating inputs into outputs, an optimization method determines 

the value of the parameters that minimize the loss. The goal of optimization is to 

identify the model parameters that will result in the loss function L and the smallest 

error possible.  

 

Equation 2.18 officially defines the function of loss L as follows: given a 

Dataset=[(      )]   
 , where (      )  represents a group of pairs, With a finite of 

cardinality N,    is the      example, and    is its label. 

 

   )         
 

 
∑  

 

   

        )   ) 
 

(2.18) 

 

However, for binary classifications, the binary cross-entropy, which is technically 

defined by Equation 2.19, and is used as the function of loss: 

 

  ( ̂     )    
 

 
 ∑ [    

 
       ̂       )        ̂ )] (2.19) 

 

Where the  ̂  is expected label. We can present a general optimization in Equation 

2.20. 

 

               ) (2.20) 

 

2.3.1. Adam Optimizer In Deep Learning 
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Kingma et al. [54] developed the Adam optimizer to combine the advantages of the 

momentum approach and the RMSProp method. We use Equations 2.21 to 2.26 to 

modify the network parameters. 

 

 
       

   
 

√ ̂        
        ̂       

  (2.21) 

 

 ̂   
  

     
     

 
(2.22) 

 

  

 ̂   
  

     
  (2.23) 

 

   =        +(1 +  )G  (2.24) 

 

   =        +(1 +  [ ]
 )  (2.25) 

 

  =   ( ) (2.26) 

 

Where        ) are the learning rate and hyperparameter, respectively, that determine 

how much data from the previous update is required where      [0, 1]. The first 

moment is   ,  and the second moment is     . 

 

2.3.2. RMSprop Optimizer In Deep Learning  

 

In [55], Hinton et al. developed the RMSProp optimizer to deal with the Adagrad 

optimizer's systematically declining learning rate. The Equations 2.21 to 2.23 dictate 

the updating of the network parameters. 

 

  =   ( ) (2.27) 

 

𝐸[  ] = [  ]        )   
  (2.28) 
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√[𝐸  ]    
        

 ) (2.29) 

 

The amount of data from the previous update that is required is chosen using the   

symbol.We have avoided the gradually dropping gradients from the AdaGrad 

optimizer where 𝐸[  ]  is part of Equation 2.28 by using the running average of the 

squared gradients.  Additionally, the learning rate is  . 

 

2.4. GRAPH FILTERING  

 

Graph signals are capable of limited operations, such as graph filtering. In both the 

vertex and spectral domains, it is possible to localize a graph signal similarly to how 

traditional signal filtering is done in the time or frequency domains. 

 

Frequency filtering: Using frequency filtering, the convolution of a signal with a 

filter in the time domain is typically represented as frequency filtering for a standard 

signal. Unfortunately, convolving a graph within the vertex domain is more 

complicated than standard signal convolution in the time domain because of the non-

uniform nature of networks, where different nodes can have varying numbers of 

neighbors. In the case of classic signals, it's important to remember that the inverse 

Fourier transform of the multiplication of two signals' spectral representations 

equates to their convolution in the time domain. Therefore, the definition of spectral 

graph convolution can be expressed as follows: 

 

      )  )  ∑ ̂

 

   

   ) ̂   )    ) 

   

(2.30) 

 

 

Keep in mind that the spectral domain filtering is indicated by  ̂   ) ̂   ). 

Consequently, the method of applying filtering of frequency to a signal x on the 

graph G using a filter of y can be described identically as demonstrated in Equation 

2.30: 
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            [
 ̂   )  

  ̂   )
] 

 

     ) 

 

 

Vertex filtering involves applying a linear approach of signal elements from 

neighboring nodes to process a signal within the vertex domain. For a node i, this 

process can be mathematically described as follows: 

 

      )       )  ∑     

       )

   )   

(2.32) 

 

The term N(i, K) indicates the K-hop neighbor of node i in a graph, while parameters 

representing the weights applied for the combination [56]. Using a K-polynomial 

filter [1], we can derive the interpretation of frequency filtering from the perspective 

of vertex filtering. 

 

2.5. SPECTRAL GCN 

 

GCN is subdivided into spectral, and spatial based techniques, respectively. The 

former is detailed in this subsection, while in the next sections we discussed. Those 

techniques that begin with building the frequency filter are referred as spectral-based 

techniques. Bruna et al. were the first to offer a noteworthy spectral-based GCN [26]. 

The idea for this deep model on graphs came from the original CNN. The framework 

includes various spectral convolutional layers take a vector representation Xp with 

dimensions n × dp as as the input for the p
th

 layer, generating a feature map X
p+1

 with 

dimensions × dp+1. 
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The ith and jth vectors in the input (or output) feature map are indicated as by X
p
(:, i) 

(X
p+1

(:, j) ), respectively;     
 

 represents a vector of accessible filter parameters at the p
th
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layers. The activation function is denoted by σ(·), and the eigenvector of every 

column V is L. However, this convolutional architecture has a number of problems. 

First, the eigenvector matrix V has an O(n
3
)  time complexity, making it unfeasible 

for large-scale graphs because it necessitates the explicit computation of the graph 

Laplacian matrix's eigenvalue decomposition. Secondly, even with precomputed 

eigenvectors, Eq. (2.28)'s temporal complexity remains O(n
2
). Third, we need to 

learn O(n)  parameters for every layer.Additionally, these filters of non-parametric 

that are not limited to a specific vertex domain. The authors propose utilizing a rank-

r estimation of eigenvalue decomposition to bypass these limitations. In particular, 

they used the initial r eigenvectors from V, which represent the most continuous 

graph geometry, resulting in an O(1) reduction in the number of parameters for every 

filter. Furthermore, this kind of rank-r factorization can restrict the filters if the graph 

exhibits a clustering structure. Henaff et al. add to [26] By proposing that the 

parameters for filtering in graph spectral convolutions ought to be an input 

smoothing kernel (such as splines) along with the corresponding interpolated weights 

[57]. It is possible to accomplish some degree of spatial localization in the vertex 

domain, as stated in [57]. However, the localization ability and computational 

expenses hinder the development of stronger graph representations.  

 

As a way to fix these problems, Defferrard et al. proposed ChebNet, which 

implements K-polynomial filters within the convolutional layers to enhance 

localization [29]. ̂   )  ∑   
 
     

  Represents such a K-polynomial filter. When 

you use K-polynomial filters to combine the node properties in the K hop 

neighborhood [58], the number of trainable parameters drops to O(K) = O(1). This 

lets you get an effective positioning within the vertex area. Moreover, the Chebyshev 

polynomial approach [53] calculates the spectral graph convolution to further 

minimize the computing cost.In mathematics,     )  2x      )        ) with 

    ,     )     can can be employed to build the Chebyshev polynomial Tk (x) 

of degree k through recursive methods. The filters are normalized by Defferrard et al. 

by    ̂ = 2
  

     
 – l so that the scaled eigenvalues fall inside [−1, 1]. The convolutional 

layer is as a result: 
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(2.34) 

 

Where, at the −p
th
 layer,      

 
) is a K-dimensional parameter vector for the ith column of 

the input feature map and the jth column of the output feature map. Additionally, the 

authors create a successful max-pooling process using the multiple-level clustering 

algorithm Graclus [56] to reveal the graphs' hierarchical structure. 

 

Kipf et al. introduced a particular type of graph convolutional network (GCN) aimed 

at performing semi-supervised node classification on graph structures [28]. In this 

framework,  Chebyshev polynomial is limited to the first order (with K = 2 in Eq. 

(2.34)) by the authors, who also set (θ)I , j(1) = −(θ)I , j(2) =  i,j. Furthermore, relaxing  

       still ensures −1 ≤  ̂  ≤1,  l = 1, · · ·, n, since the eigenvalues of  ̂ are within 

[0, 2]. As a result, the convolution layer is reduced to: 

 

         ̃ 
 

   ̃  ̃ 
 

       )  (2.35) 

 

Matrix   ̃ represents the diagonal degree matrice of  ̃   , which is a parameter 

matrix of size dp+1×dp. Additionally,  ̃ = I + A corresponds to the process of 

incorporating self-loops into the initial graph. Furthermore, a notable relationship 

exists between Equation 2.35 and the isomorphism testing behavior of the 

Weisfeiler-Lehman algorithm [59]. Furthermore, GCN has an easy explanation of 

vertex localization because Equation. 2.35 is virtually similar to gathering 

representations of nodes from their direct neighborhood. Therefore, it often serves as 

a bridge between spectral-based approaches and spatial-based techniques. For large-

scale graphs, the training procedure could be memory intensive. Furthermore, 

learning illustrations for unseen nodes in the same network and nodes in various 

graphs is more challenging because GCN transduction interferes with generalization 

[28]. By facilitating effective minibatch training, FastGCN [60] enhances the initial 

GCN model in order to address the problems with GCN [28]. To guarantee that nodes V 

of graph G are drawn independently, and  identically from nodes of a graph G′ 
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(denoted as V′) based on a defined probability distribution P, it is assumed that the 

graph input G is a subgraph developed from a potentially infinite graph G′. In this 

method, Monte Carlo sampling can be used to approximate the initial convolution layer 

described by Equation. 2.35, indicate some i.i.d samples   
 
,...,    

  at pth layer. Graph 

convolution can be computed using the following method: 

 

        )   (
 

  
∑  ̃  
    (    

 )      
   )     )  (2.36) 

 

Using the graph convolution Monte Carlo estimator can lead to significant variation 

in estimates. To address this inconsistency, the researchers quantify the variability 

and evaluate the importance of the distribution by sampling P nodes. Additionally, 

Chen et al. employs control variate techniques to match the GCN framework [28], 

alongside rapid sampling stochastic algorithms for training [61]. Moreover, they 

present theoretical support for the convergence of their algorithm, regardless of the 

sample size during the training phase [61]. To enhance the training efficiency of 

GCN models, Huang et al. introduced an adaptive layer-wise sampling approach 

[62]. They suggest a top-down method for constructing the layers of a Graph 

Convolutional Networks and Suggest a method like layer-wise sampling to prevent 

the overexpansion of neighboring regions due to constant-size sampling. 

Additionally, they create a sampling strategy that explicitly addresses relevance to 

further minimize variation. 

 

Along with the earlier models, which are based on Chebyshev polynomial methods, a 

new set of localized polynomial filters and matching graph convolutional networks 

has been put forward. For instance, Levie and colleagues propose approximating 

filters using a more sophisticated method known as the Cayley polynomial [63]. The 

CayleyNet model is based on the challenge of identifying narrow frequency bands, 

since the eigenvalues of the Chebyshev polynomials' Laplacian matrix are confined 

to the interval [−1, 1]. This characteristic of having narrow frequency bands is 

commonly seen in graphs with community structures, which can hinder the 

effectiveness and flexibility of ChebNet across various graph mining tasks. The 

Cayley filters of rank K display the following characteristics: 
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 ̃             {∑         )         )    
   }  (2.37) 

 

Here, h > 0 represents a spectral expansion factor utilized to broaden the spectrum of 

a graph, enabling the Cayley filters to target specific frequency ranges. The 

parameters c = [  , · · ·, ck ]  are the ones that need to be learned. By utilizing the 

Jacobi approximation further, it is possible to obtain both the localization property 

and the linear complexity[63]. Moreover, it is proposed that LanczosNet [64], can 

effectively capture the inherent multi-scale properties present in graphs, overcoming 

the computational restrictions encountered by many current models employing the 

graph Laplacian of exponentiated in their convolution of graph processes for multi-

scale data analysis [29]. Specifically, the authors begin by employing the Lanczos 

algorithm to compute low-rank approximations of the matrix   ̃, resulting in the 

expression  ̃≈     , where BRB
T
 represents the eigenvalue analysis of a tridiagonal 

matrix T, and V=QB, with Q         encompassing the first K Lanczos vectors. 

Thus,  ̃  ≈        can be used to easily estimate the t-th power of  ̃. This leads to 

the formulation of the suggested spectral filter in LanczosNet as follows: 

 

        )        )   ̂  )        )     ̂     )        )       (2.38) 

 

When  ̂  )     ([  ,...,     ]) is a  matrix diagonal, and  MLP    (multi-layer 

perceptron). To utilize data at multiple scales, we add short- and long-scale 

parameters to the previously mentioned spectral filter. In [64], they also introduce a 

variation for node representation learning. Xu et al. suggest using the spectral 

wavelet transform on graphs as an alternative to Fourier transform-based spectrum 

filters. This enables the resulting model to adjust the graph sizes for recording  [65]. 

Furthermore, these fixed graphs might not be particularly effective at learning for 

certain tasks because most network topologies (like KNN graphs) are created 

manually according to the similarities between points of data. In their work, Li et al. 

[66], introduce a graph convolutional layer based on spectral methods that enables 

the simultaneous extraction of the Laplacian graph. This layer constructs an equation 

using the graph Laplacian, instead of just setting the filter coefficients, by integrating 
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the residual Laplacian concept. Nevertheless, this approach suffers from an inherent 

O(n²) complexity. 

 

2.5.1. Graph Laplacian 

 

The adjacency matrix A can be obtained from an undirected graph G = [ V, E ], 

where V represents a set of vertices with |V| = n and E represents a set of edges with 

|E| = m. Aᵢ,ⱼ equals 1 if there is a link between vertex i and vertex j, and 0 otherwise. 

The equation      )  ∑      )
 
    states that the degree of node i is equal to the sum of 

all the connections (edges) to that node. The matrix A's degree matrix is a diagonal 

matrix. The Laplacian matrix of A can be defined as L = D - A, where D is a diagonal 

matrix. Equation 2.39 represents the symmetrically normalized Laplacian matrix. 

 

 ̃       
 

      
 

    
(2.39) 

 

The symbol I represents the identity matrix. Normalization's goal is to more evenly 

distribute the impact of nodes with a high degree across other nodes in the network. 

 

2.5.2. Graph Fourier Transformation 

 

The Fourier transform is a signal processing or image processing technique that 

breaks down an input signal from the original temporal or spatial domain into its 

component frequency domain basis functions. To determine the traditional Fourier 

transform of a one-dimensional signal f. 

 

 ́   )           )    (2.40) 

 

The Laplace operator's eigenfunction is represented by the complex exponential, 

while the frequency of  ́ in the spectral domain is represented by ξ. 

 

The Laplacian matrix L represents the Laplacian operation on graphs. We can think 

of L's eigenvector and its corresponding eigenvalue at a given frequency as an analog 
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of the complex exponential. We can figure out the Fourier transform of graph signals 

by using the eigenvalue decomposition of  ́ = UΛUᵀ, where Λₗ,ₗ  stands for the 

associated eigenvalue λₗ and uₗ is the eigenvector in the lth column of U. 

 

 ̀  )       )  ∑   )     )

 

   

 

   

(2.41) 

The Equation 2.41 characterizes a signal of a graph within the vertex domain rather 

than the spectral domain. This allows the inverse graph Fourier transforms to be 

expressed as follows: 

 

   )  ∑  ̂ 
      )    )   (2.42) 

 

2.5.3. Graph Convolution Operator 

 

The concept of graph Fourier transforms can establish several well-known theorems, 

including Parseval's identity and the generalized translation operator present in the 

classical Fourier transform. But we are interested in the graph convolution operator, 

which has some properties in common with the classical counterpart. 

 

The convolution theorem, as i may remember, says that the point-wise multiplication 

of the pair of Fourier transforms of two signals is equal to the Fourier transform of a 

convolution among those signals. This characteristic allows us to define the 

convolution operation in terms of other domains. In this context, the convolution 

between two functions, f and g, is defined as: 

 

       [  [ ]    [ ]]            )       )    

    )    

(2.43) 

 

Where the Hadamard product is indicated by  and  

 

    )          ) (2.44) 
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Equation 2.44 is the diagonal matrix that the spectral filter coefficients correspond to. 

This spectral filter is especially important since different spectral-based graph 

convolutional networks (GCN) have different filter selections. 

 

2.6. SPATIAL GCNS 

 

Transferring spectral-based graph convolutional network models between graphs 

with varying eigenfunctions remains challenging due to their reliance on distinct 

eigenfunctions derived from the Laplacian matrix.  As an alternative, Equation 2.32 

indicates that filtering graphs in the vertex domain can extend the concept of graph 

convolution to the aggregation of graph signals among neighboring nodes. This 

section divides spatial graph convolutional networks into three primary categories: 

traditional models based on CNNs, models based on propagation, and several 

associated general frameworks. 

 

2.6.1. Spatial Gcns Based On the CNN Architecture 

 

It is common for CNN architectures to organize data in a grid-like structure, like 

images. These architectures have shown great success in a number of related tasks, 

including image classification[67, 68], object detection [69, 70], and semantic 

segmentation [23, 71]. Convolution designs leverage two fundamental characteristics 

of gridlike data: (1) each pixel has a constant number of neighboring pixels, and (2) 

the scanning sequence of images follows a regular spatial pattern, shifting from the 

left side to the right and from the top down, arbitrary graph data differs from images 

as it lacks a consistent count of neighboring elements and does not follow a specific 

spatial arrangement. 

 

In order to tackle these problems, numerous studies have suggested constructing 

graph convolutional networks directly based on traditional convolutional neural 

networks (CNNs). Niepert et al. suggest resolving the mentioned difficulties by 

isolating locally related sections of graphs [72]. The PATCHY-SAN technique starts 

by arranging the nodes of graph using a labeling method that utilizes centrality 
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metrics like degree, PageRank, and betweenness. Following this, it selects a specific 

sequence of nodes to include in a designated arrangement. Furthermore, the model 

creates a predetermined and unchanging neighborhood for each individual node to 

address the issue of random neighborhood sizes. Graph labeling processes ultimately 

normalize the neighborhood graph to assign similar relative positions to nodes with 

similar structural roles. The next step involves representation learning using standard 

CNNs. Nevertheless, because of its reliance on graph structure for determining the 

spatial order of nodes, the PATCHY-SAN technique lacks the adaptability and 

universality required for a wider range of applications.  

 

The LGCN model [73] aims to convert irregular graph data into a grid layout by 

integrating structural information with the input feature maps from the p-th layer. 

Unlike PATCHY-SAN, which organizes nodes using structural details [72]. For a 

vertex u   V in the graph G, the algorithm aggregates the input feature maps of u's 

adjacent nodes into a matrix M        )    . Here, |N(u)| dipicts the count of nodes 

that are one hop away from u. The first r biggest values in each column of M are kept 

and create a new matrix called ˜M        . The input feature map and the graph's 

structure data can be converted into a 1-D grid-like data set; the new matrix  ̌  

      is formed by preserving the first r biggest values for each column of M. In a 

straightforward manner, the input feature maps, over the network structure data, can 

be translated into one-dimensional grid-like data represented by  ̃p          )   . 

Next, the traditional one-dimensional Convolutional Neural Network (CNN) on Xp 

can be used to acquire new node representations     . A sub graph-based training 

strategy is suggested to adapt the large-scale graphs of a model.  

 

One approach to include graph data in standard CNNs involves introducing a 

structure-aware convolution operation, which can handle euclidean and non-

euclidean data, to integrate graph data into conventional CNNs, a method that 

introduces a structure-sensitive convolution operation is used, capable of managing 

each non euclidean and euclidean data. Traditional CNN convolutions only handle 

data with consistent topological structures. Chang et al. establish a connection 

between traditional filters and single-variable functions, which they call filters 

functional. They then integrates graph structure into these filters functional to 
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improve their sensitivity to structural features [74]. To approximate this structure-

aware convolution, they utilize the Chebyshev polynomial [41] because of the 

requirement to learn an infinite number of parameters. Another study [53] uses a 

different approximation due to the necessity of learning infinite parameters for this 

structure-aware convolution. A different study [75] transforms the traditional CNN 

by developing a series of adjustable fixed-size filters, with sizes spanning from 1 to 

K, demonstrating that these filters can conform to the graph's structure [4]. 

 

2.6.2. Spatial GCNs Employing A Propagation Based Architecture 

 

This part emphasizes the spatial-based Graph Convolutional Network (GCN), which 

disseminates and combines node representations from adjacent nodes within the 

vertex domain. According to the significant study in reference [76], the convolution 

of a graph for node u at the p-th layer is formulated as follows: 
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(2.45) 

 

        )         )
 

      ) 
 

) (2.46) 

 

In the     layer, the weighted matrix for these nodes with the same degree as |N(u)| is 

represented as      ) 
 

. However, for networks with a hugh number of nodes, the 

number of distinct values for node degree can be exceedingly high. Consequently, 

each layer will require the training of numerous weight matrices, potentially leading 

to the overfitting issue. In their paper, Atwood et al. describe DCNN, a graph 

convolutional network that uses graph diffusion processes to spread and combine 

node representations [77]. A k-step diffusion is performed by raising the matrix 

transition P to the power of k, where P = D
−1

A. Subsequently, the diffusion-

convolution process can be illustrated as follows: 

 

Z(u, k, i) = σ ( (k,i) ∑       )     )) 
    

 

(2.47) 
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P
k
 combines the features where Z(u, k, i) signifies the i

th
 output attribute of node u. 

Here, u, σ(•) indicates the hyperbolic tangent function utilized as the nonlinear 

activation. For K-hop diffusion, the computational complexity of computing the K
th

 

power of the transition matrix is O(n
2
K). This level of complexity is impractical for 

graphs with large-scale. Monti et al. propose a universal graph convolution network 

architecture called MoNet [78]. This framework features a patch operator that 

gathers signals from adjacent nodes. For a node i and its neighboring node j   N(i), a 

set of d-dimensional pseudo-coordinates u(i, j) is established. These coordinates are 

then fed into P learnable kernel functions (w1(u),...,wp(u)). 

 

P
k
 combines the features, where Z(u, k, i) signifies the i-th output attribute of node u. 

Here, u, σ(•) indicates the hyperbolic tangent function utilized as the nonlinear 

activation. For K-hop diffusion, the computational complexity of computing K
th

 

power of the matrix transition is O(n
2
K). This level of complexity is impractical for 

large-scale graphs. Monti et al. sugested a universal Graph Convolution Networks 

architecture called MoNet[78]. This framework features a patch operator that gathers 

signals from adjacent nodes. For a node i and its neighboring node j   N(i), a set of 

d-dimensional of pseudo coordinates u(i, j) is established. These coordinates are then 

fed into P learnable kernel functions (w1(u),...,wp(u)). The patch operator is 

expressed as     )  ∑   (     ))                 )  , where p represents the 

index of the patch and x(j) represents the value of the signal at node j. We compute 

the graph convolution in the spatial domain using the patch operator. 

 

(x  s y)(i) = ∑    )    )   
    

 

(2.48) 

Many modern frameworks for graph convolutional networks, like those described in 

references [28, 77] can be interpreted as special instances of MoNet by appropriately 

choosing u(i, j) and the kernel of function Wp(u). For example, SplineCNN [79]  

adopts the same structure [i.e. Equation. 2.48] but introduces a distinctive 

convolution kernel based on B-splines. When graphs possess information of edge 

attributes, the parameters of the filter weights frequently depend on the attributes of 

edges adjacent to a node [80] Inspired by the concept of a dynamic filter network, we 

introduce an edge-conditioned convolution (ECC) process to exploit edge attributes 
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[81]. This convolution operation is mathematically defined for the edge in between 

nodes v and u both are at the p-th ECC layer. This is done using the filter-generating 

network       →          , which creates the edge-specific weights matrix     
 

. 

 

        )  
 

    ) 
∑     

 

     )

       )     
(2.49) 

 

Multi-layer perceptrons execute the filtering-generating network F
p
, making b

p
 a 

learnable bias. Furthermore, Hamilton et al. introduce a model for inductive 

representation learning called GraphSAGE, which is based on aggregation [30]. The 

batch algorithm in its entirety is straightforward: for any given node u, the 

GraphSAGE convolution layer operates as follows: (1) it utilizes a trainable 

aggregator to merge the representation vectors of all neighboring nodes at the current 

layer; (2) it incorporates node u's representation vector into this aggregated 

representation; and (3) it processes the resultant vector through a fully connected 

layer with a non-linear activation function σ (·), followed by normalization. The 

pppth convolutional layer in GraphSAGE is composed of these elements: 
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       𝐸   𝐸  { 

     )       )}) (2.50) 
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) (2.51) 

 

Alternative methods for aggregation include the mean, LSTM, and pooling 

aggregator. By employing mean aggregators, Equation (2.50) can be simplified: 

 

        )        (       ))           )       ))
  ) (2.52) 

 

This shows a close resemblance to the GCN model[28]. Moreover, we define the 

pooling aggregator as follows: 

 

    𝐸   𝐸 
        ({         )     )        )}) (2.53) 
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The authors have also introduced a variation where they evenly sample a set number 

of neighbouring nodes for each node to facilitate minibatch training 

[30].Nevertheless, the effectiveness of node representation learning tends to decline 

as the graph convolutional models increase in depth. Empirical evidence has 

demonstrated that a 2-layer graph convolution method consistently provides optimal 

performance in GCN  [28] and GraphSAGE [30]. Reference  [9] states that Laplacian 

smoothing [82] connects the convolution in Graph Convolutional Networks (GCN) 

[28]. Additionally, increasing the number of convolution layers leads to less 

discernible representations, even for nodes belonging to distinct clusters.  

Xu et al. examine the expansion behaviours of two types of nodes: those in the core 

part of an expander-like structure ,and those in the tree section of graphs. They 

demonstrate that even with the identical number of propagation process, different 

outcomes can occur [83]. For example, the features of nodes in the core portion have 

a more rapid and extensive influence than nodes in the tree portion. As a result, the 

average spread of these features causes the node representations to become 

indistinguishable. To address this problem and enhance the complexity of graph 

convolutional models, Xu and colleagues developed the Jumping Knowledge 

Network, a skip connection framework inspired by the concept of residual networks 

used in computer vision [84] and [83].  

 

The Jumping Knowledge Network (JKN) adeptly chooses diverse combinations from 

various layers of convolution. In the ultimate model layer, it autonomously merges 

the intermediate for every node representations. The aggregation methods for each 

layer feature a concatenation aggregator, a max-pooling, and an LSTM attention 

aggregator. Furthermore, the JKN can be incorporated with other prominent graph 

neural network methods, like GCN [28], GraphSAGE [30], and GAT[41]. 

 

2.7. RELATED GENERAL GRAPH NEURAL NETWORKS  

 

Graph Convolutional Networks (GCNs), which apply convolutional aggregation 

techniques, belong to the broader category of graph neural networks (GNNs). Other 

GNN types use different aggregation methods, including gated graph neural 

networks (GGNNs) and graph attention networks [41] and graph attention networks 
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(GATs) [45] This overview highlights various GNN models, focusing on the 

specialized form of GCNs. One of the earliest GNN examples is described in [12], 

presenting the local parametric transition function f and the local output function of 

g. Here, X
0
(u,:) represents the input features of node u, while Eu  denotes the edge 

attributes associated with node u. 

 

H(u, :) = f  (X
0
(u, :),  Eu , H(u, :),X

0
(N(u), :) (2.54) 

 

X(u, :) = g( X
0
(u, :),H(u, :)) (2.55) 

 

Equation 2.54 defines one common type of collection in graph neural networks, 

where H(u,:) and X(u,:) represent the undetected state and output representation of 

node u. To ensure convergence, Banach's fixed point proof  [85] proposes the 

function f in [12] and restricts it to a contraction mapping. This method updates the 

hidden states using a traditional iterative technique. Achieving steady states through 

repeated iteration over the states is both inefficient and less effective. In contrast, 

SSE [86], employs a stochastic iterative method to learn the stable states of node 

illustrations. Specifically, SSE modifies the node display over T iterations to reach 

stability for a specific node u, beginning by sampling a set of nodes V   from V. 

 

X(u, :) ← (1 − α) X(u, :) + αT   [[X(v, :),  v   N(u)]] (2.56) 

 

Where T  is an aggregation function given by: and node u    ̃ . 

 

T   [[X(v, :),   v   N(u)]] =σ ( [ X
0
(u, :), ∑ [     )            )

)]]   )     

(2.57) 

 

X
0
(u,:) indicates the input characteristics of node u. A study by Xu et al. [86] also 

looks at how expressive the neighbourhood aggregation-based graph neural networks 

that are currently available are. They explore the capabilities of graph neural 

networks and find that neighborhood aggregation-based models [28, 30] are only 

marginally more potent than the 1-D Weisfeiler Lehman implmentation for 

isomorphism has a drawback due to its close relationship with the process of graph 
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isomorphism in Weisfeiler-Lehman when applied to graph neural networks. Xu et al. 

[86] introduce a straightforward architecture called the Graph Isomorphism Network, 

which matches the expressive power of the Weisfeiler-Lehman test. 

 

2.8. SUMMARY 

 

In this chapter, we have presented an overview of graph convolutional networks. In 

deep learning context, we explained the role of graphs and graph signals in GCNs, 

the adjacency matrix construction process, graph convolutional networks (GCNs), 

and optimization algorithms. Afterwards, we outlined spectral and spatial GCNs 

using the graph Laplacian, the graph Fourier transformation, additionally; we 

discussed conventional CNN-oriented spatial graph convolutional networks. Finally, 

we introduced propagation-oriented spatial graph convolutional networks. The next 

chapter will provide a summary of the most recent methods employed in medical 

image analysis.      
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CHAPTER 3  

 

MEDICAL IMAGE ANALYSIS REVIEW 

 

Main ideas of deep learning (DL) and the architecture of graph convolutional 

networks (GCNs) are reviewed in the previous sections, which are important 

components of our study. In this section, we present relevant research in the field of 

medical image classification and analysis. 

 

3.1. INTRODUCTION 

 

Deep Learning architectures showed impressive performance for image 

categorization and other relevant computer vision tasks. In this chapter, we review 

image categorization techniques used to classify a variety of medical image types. 

The strategies discussed here mostly depend on convolutional neural networks, and 

we also examine their fundamental concepts and approaches while evaluating how 

well they perform when diagnosing medical images. We then focus on more recent 

context-aware models that can increase diagnostic accuracy by preserving contextual 

information across various parts of an input image. We also discuss image 

classification models that take ambiguity measures into consideration, providing us 

with a mechanism for measuring the level of ambiguity in a prediction. This 

knowledge is crucial in the field of medical imaging, where a wrong diagnosis could 

have serious effects. We also look at deep learning's benefits for analyzing medical 

image data. The chapter concludes with a discussion and review of the major 

discoveries and information, as well as an analysis of the research gaps in the field of 

medical image classification and possible solutions for discussing them. 
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3.2. MEDICAL IMAGE TYPES FOR CLASSIFICATION  

 

Feature extraction, preprocessing, and classification are the three primary phases in 

the categorization of medical images [87]. Image classification poses a significant 

challenge for image analysis tasks, particularly in terms of selecting methods and 

strategies to utilize the output of image processing, pattern recognition, and 

classification methods, and then verifying these outputs with medical knowledge 

[87]. Medical image classification primarily aims to identify infected areas of the 

body while maintaining high accuracy [88]. Biomedical technologies utilize imaging 

methods such as computed tomography (CT), magnetic resonance imaging (MRI), 

and mammography to generate medical images [89]. Numerous healthcare imaging 

methods use radiation therapy, MRI, ultrasounds, and optical techniques as media 

modality. Each media modality has a unique quality and reacts differently to the 

organs and tissues of the human body [90]. There are four types of modality images 

available: 

 

3.2.1. Projections Imaging (X-Ray)  

 

It is electromagnetic energy (EM) that produces an X-ray, and it has a wavelength 

range from 0.1 to 10 nm. They transform into photons with energies ranging from 12 

to 125 keV. The demand for laboratory testing as a diagnostic tool in medicine 

roughly coincided with the development of x-ray images. There are three basic steps 

in the image generation process: prereading, main reading, and image processing 

[89]. 

 

3.2.2. Ultrasound Imaging (Ultrasonography) 

 

Sectional images of the human body are derived using high-frequency sounds that 

range from 1 to 20 MHz. The properties of the biological tissue that they travel 

through determine the strength of the echo-ultrasound return [91]. 

 

3.2.3. Magnetic Resonance Imaging (Mri) 
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Magnetic resonance imaging (MRI) uses a strong magnetic field, electromagnetic 

radiation, and a computer to create precise images of internal organs and structures in 

the human body that are often crisper, more accurate, and more likely to detect 

disease than images obtained using other imaging techniques. The body is tested for 

various illnesses, including cancer, liver, and heart diseases, and even monitoring the 

body of an unborn child is possible. MRI uses no ionizing radiation and is 

noninvasive [92]. 

 

3.2.4. Computed Tomography (CT) Scan Images 

 

Applications for cancer screening, such as virtual colonoscopies and lung screenings 

frequently use CT-computed tomography. CT imaging comes in a few different 

forms, including dual-source and dual-energy CT, CT angiography, PET/CT, and CT 

perfusion. Small attenuation variations (less than 5%) can occasionally prevent the 

traditional x-ray imaging projection from producing satisfactory results. Below, and 

with less than 1% discrimination, CT enhances the subject contrast [89]. 

 

3.3. CONTEXT-AWARE METHODS FOR MEDICAL IMAGE 

CLASSIFICATION 

 

The field of medical image analysis has recognized the significance of employing 

DL techniques to acquire contextual knowledge for image classifications. Contextual 

data helps to preserve the temporal relationships of a specific image region over a 

wide tissue region (i.e., a region's surroundings). According to several studies, 

contextual data is essential for decreasing abnormalities in various tissue 

architectures.  

 

The context-aware method, introduced by Ruqayya et al.[93], is a two-stage process 

that involves two primary stages: They use a patch-based DL model based on 

ResNet-50. A different SVM classifier for image-based classification derives its 

features from an overlapping patch. They use their established model to gather 

contextual data within image patches. Bejnordi et al. [94] proposed a context-aware 

stacking CNN method to categorize breast WSIs. They built their model in two steps. 
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First, they trained a CNN to keep the cellular-level details from image patches. Next, 

they added a Fully Convolutional Network (FCN) to allow the fusion of global 

interdependencies between structures by encouraging predictions in nearby areas. 

Yan et al.'s [95] hybrid model for classifying breast cancer histology images 

combined convolutional and recurrent deep neural networks. It makes use of a 

bidirectional (LSTM) network to consider both the short- and long-term spatial 

correlations between image patches. They first extract feature representations from 

image patches of a geometric image and then insert these extracted features into the 

bidirectional LSTM to maintain the spatial correlations between the feature 

representations.  

 

In order to capture the spatial connection between histopathology image patches, 

Huang et al. [96] presented a deep fusion network. They use a residual network to 

learn visual cues at the cellular level, up to massive tissue organization. They have 

constructed a deep fusion network to correct the residual network's predictions and 

simulate the uneven creation of distinguishing features across patches. In [97], 

researchers created and described a weakly supervised method for the classification 

of lung cancer WSIs. To provide a complete, all-around WSI explanation, they used 

patch-based FCN for discriminating block retrieval, as well as context-aware feature 

selection and aggregation.  

 

Zhou et al. [98] presented a novel Cell-Graph Convolutional Neural Network 

(CGCNN) to evaluate colorectal cancer. Based on node similarity, the network 

transforms each large medical image into a graph by representing each element as a 

nucleus within the input image and displaying cellular relationships as edges within 

those nodes. To improve the accuracy of the model, the network makes use of the 

nuclei's local properties and the nodes' spatial dependencies. Xue et al. [99] 

proposed the use of Generative Adversarial Networks (GAN) to enhance the 

classification of medical images. Based on class categorization, it uses conditional 

GAN to produce realistic medical image patches. Rather than directly augmenting 

the training set with synthetic images, they developed a synthetic augmentation 

approach that carefully integrates GAN-generated synthetic image patches. By the 

aid of this structure, the quality of synthetic enhancement is upheld by selecting 



 

46 

 

synthetic images based on their label accuracy and the degree to which their features 

align with those of real labeled images. They showed that using selective 

augmentation with GAN-generated images greatly improves classification 

performance.  

Pati et al. [100] have proposed a hierarchical cell-to-tissue graph (HACT) model to 

improve the structural description of histopathological tissue. Their approach uses 

two different types of graphs. Firstly, a low-level cell graph showcases the structure 

and connections among cells. Secondly, a high-level tissue graph illustrates the 

geographical distribution and morphological characteristics of various tissue 

sections. Graph representation learning methods have demonstrated comparable or 

even better classification results for a range of medical applications, spanning both 

signal and image analysis [101-103]. Furthermore, their technique captures 

hierarchies between cells and tissues, integrating the relative shape of cells with 

respect to tissue distribution. Additionally, they create a hierarchical graph neural 

network (HACT-Net) to transform HACT presentations into histological subtypes of 

breast cancer.  

 

Li et al. first presented Hierarchical Conditional Random Field-Based Attention 

Mechanism (HCRF-AM) for the purpose of categorizing medical images [104]. Two 

parts make up the HCRF-AM model: an image classification module (IC) and an 

attention mechanism (AM). To identify attention regions, the AM component 

generates an HCRF model. The IC component trains a CNN based on the supplied 

attention regions. From the CNN's patch-level results, it then employs an ensemble 

learning strategy according to probability distribution to provide image-level outputs. 

Campanella et al. [105] presented a DL method based on MIL that uses the supplied 

diagnoses as labels for training, eliminating the need for costly and time-consuming 

manual pixel-by-pixel annotations. The developed framework trains DNNs using 

MIL, producing tile-level representations of features. Recurrent neural networks 

(RNNs) then provide the final classification results, using these representations to 

integrate the data over the entire slide.  

 

Researchers found that the context-aware method improved the accuracy of DL-

based algorithms in diagnosing medical images. Nowadays, nonetheless, it is 
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essential to increase model trust by adding a level of confidence to the generated 

models. This necessitates the use of models in clinical practice to assess a sample's 

uncertainty during prediction and enhance the reliability of automated diagnosis 

systems. 

 

3.4. MEDICAL IMAGE ANALYSIS: MEASUREMENT OF UNCERTAINTY 

 

The process involves measuring the uncertainty of predictions made by deep learning 

and machine learning methods. It is a crucial first step towards developing 

explainable segmentation and classification models [106]. Several newly proposed 

image classifications and segmentation techniques for medical image analysis 

incorporate measurement of uncertainty.  

 

For instance, Simon et al. [107] identified areas of uncertainty in a model based on 

CNN by employing a variation map as a measure of ambiguity. Mobiny and Singh 

[108], suggest a Bayesian DenseNet-169 method that can generate an uncertainty 

measure for skin-lesion images by activating dropout layers during the testing stage. 

They looked into how the machine-physician collaboration may do better in skin-

lesion classification with the use of Bayesian deep learning. Fraz et al. [109] 

presented a structure for micro-vessel segmentation for H&E-stained histology 

images. It includes a component for quantifying uncertainty. They have developed a 

calibration approach to enhance model calibration and maintain overall classification 

accuracy [110]. It offers an ECE, or expected calibration errors, which is a widely 

used statistic to measure miscalibration. Their method has proven its ability to reduce 

calibration error in a variety of neural network designs and datasets, making it a 

versatile solution for any classification problem. In a different study, Raczkowski et 

al. [111] presented an active, trustworthy, and accurate Bayesian network (ARA-

CNN) image categorization structure for categorizing colorectal cancer medical 

images. Variational dropout and residual networks were the foundations for the 

network's construction. 

 

This section of techniques does not have the flexibility of an ensemble of different 

DL models or classical ML models based on uncertainty measures. To enhance the 
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trustworthiness of an autonomous diagnosis system, a dynamic ensemble based on a 

confidence measure in image predictions is essential. This is due to its ability to only 

incorporate models with a certain level of confidence in the final image prediction, 

identify cases that the model cannot confidently classify for further study, and 

eliminate samples that are untrustworthy due to uncertain predictions [112]. 

 

3.5. DEEP LEARNING APPLICATIONS FOR MEDICAL IMAGE 

ANALYSIS 

 

In image analysis, CNNs have been used for the processes of segmentation, 

detection, and classification for years. Research on machine learning distinguishes 

between detection, which involves drawing boundaries around several items, some of 

which may belong to different classes, and localization, which involves building 

boundaries around a single object in the image. Semantic segmentation targets 

objects by drawing borders around their edges and labeling them. Registration is the 

process of fitting one two or three-dimensional image onto another. According to the 

researchers, a practical machine learning system will combine a portion or all of the 

work into a single system, and task segmentation is not important. A single workflow 

would be excellent for detecting a lung tumor on a CT chest scan, localizing and 

segmenting it away from normal tissue, and prognosticating several treatment 

options, such as surgery or medication [113]. 

 

DL-based techniques have proven to be highly successful in introducing applications 

with exceptional performance for a variety of objectives. It is critical to draw 

attention to two categories of medical image analysis applications: classification and 

diagnoses. It is believed that biomedical image diagnostics serve as the fundamental 

level of differentiation across diverse class boundaries. For instance, we could 

categorize images of tumors as benign or malignant. DL-based diagnostic 

applications employ this method, first extracting attributes from input images and 

then using these attributes to distinguish between the structural features of benign 

and malignant samples. The MCUa diagnostic model [114], on the other hand, uses a 

classification task with multiple classes to tell the difference between four types of 

breast cancer samples: in situ carcinoma, invasive carcinoma, benign lesion, and 
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normal tissue. You can use MCUa to diagnose tasks that involve binary or multi-

class classification. Furthermore, DL-based automated evaluation solutions primarily 

focus on discriminating between cancer grades, which is a difficult task. 

 

3.5.1. Classification 

 

Classification mainly stands for computer-aided diagnosis (CAD) in medical domain. 

As early as 1995, Lo et al. presented a CNN to identify lung nodules on chest X-rays  

[115]. They utilized a CNN with two hidden layers and 55 chest x-rays to determine 

whether or not a lung nodule is found in a specific region. The relative availability of 

chest x-ray images has likely driven the development of deep learning in this 

modality. One of the most prevalent and easily treatable health issues in the world is 

pneumonia, also known as a chest infection.  

 

Rajpurkar et al. [116] used CheXNet, a better version of DenseNet [117] with 121 

convolutional layers, to sort the 112,000 images from the ChestXray  [115] into 14 

sets that showed 14 different diseases. Shen et al. [118] used 1010 labeled CT scans 

of lung samples from the Lung Image Database Consortium (LIDC-IDRI) dataset to 

decide whether lung nodules were benign or malignant. They did this by using CNNs 

along with Support Vector Machine (SVM) and Random Forest (RF) classifiers. In 

order to extract attributes, they used three parallel CNNs, each with two convolution 

layers, and image patches at various scales. They created an output feature vector 

using the learned features and then used an RF classifier or SVM with a radial basis 

function (RBF) filter to identify it as benign or malignant. They discovered that their 

approach was resilient to various noise input levels and could accurately classify 

nodules with 86% accuracy. 

 

3.5.2. Image Detection 

 

Image detection, sometimes referred to as computer-aided detection (CADe), is an 

important task because failing to identify a lesion on a scan and can have serious 

circumstances for the patient and the physician. The goal of the 2017 Kaggle Data 

Science Bowl [119] was to use CT lung scans to identify malignant lung nodules. 
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The competition made available a total of 2000 CT scans, and Fangzhou [120] 

emerged victorious with a logarithmic loss score of 0.399. The Their method initially 

isolated local patches for nodule detection using a 3-D CNN, influenced by U-Net 

architecture [121]. They then sent this output into a second stage, consisting of two 

completely connected layers, to classify the possibility of malignancy.  

 

In order to identify interstitial lung illness and thoraco-abdominal lymph nodes on 

CT scans, Shin et al. [122]examined five well-known CNN architectures. 

Recognizing lymph nodes is crucial since they may indicate cancer or an infection. 

Using advanced GoogLeNet, they were able to achieve a mediastinal lymph node 

detection average area under the curve (AUC) of 0.95 with a sensitivity of 85%. In 

addition, they provided evidence for the advantages of transfer learning, as well as 

the application of deep learning architectures with up to 22 layers, as opposed to the 

customary lower layer counts in medical image analysis. In the ILSVRC 2013 

localization task, Overfeat, a CNN pre-trained on natural images, won the prize 

[123]. For their study, Ciompi et al [124] used Overfeat on 2-D slices of CT lung 

images in the coronal, axial, and sagittal planes to find nodules in and around lung 

fissures. They used a method that combined straightforward SVM and RF binary 

classifiers with a Bag of Frequencies[125], an original 3-dimensional descriptor they 

created. 

 

3.5.3. Image Segmentation 

 

MRI and computed tomography (CT) image segmentation studies focus on the brain, 

especially on tumor segmentation. In order to plan a surgical removal, it is MRI and 

computed tomography (CT) image segmentation studies focus on the brain, 

especially on tumor segmentation. In order to plan a surgical removal, it is 

particularly crucial to ascertain the precise limits of the tumor. Neurological 

conditions such as limb numbness, weakness, and cognitive impairment result when 

surgery loses too many expressive brain regions. The development of an automated 

solution for medical anatomy segmentation is commendable, given that doctors have 

traditionally carried out this laborious task by hand, meticulously sketching contours 

on a full MRI or CT volume stack, slice by slice.  
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Akkus et al. [126] conducted a comprehensive analysis of brain MRI segmentation, 

examining several CNN architectures and metrics employed in the process. He also 

described several challenges and associated datasets, including Ischemic Stroke 

Lesion Segmentation (ISLES), Brain Tumor Segmentation (BRATS), and Mild 

Traumatic Brain Injury Outcome Prediction (MTOP). Using the BRATS 2013 

dataset, Havaei et al. [127] also examined gliomas and investigated different 2-

dimensional CNN structures. Their algorithm executed in 3 minutes as opposed to 

one hundred minutes, outperforming the BRATS 2013 champion. Using a 

transmitted architecture, their input cascade CNN effectively funneled the output 

from one CNN into another. Chen et al. [128] suggested using fully connected 

conditioned random fields (CRFs), atrous spatial pyramid pooling, and up-sampled 

filters. Brosch et al.[129] also used multi-scale structure investigations to segment 

multiple sclerosis (MS) lesions from the brain on MRI. They used a unique strategy, 

but they also used a deconvolutional network that resembled a UNet design, and an 

encoder convolutional pathway made up of pre-trained RBMs. 

 

3.6. DISCUSSION 

This section represents the application of deep learning in medical image analysis, 

focusing on classification, detection, and segmentation tasks. The discussion 

highlights the significance of various medical image types and the effectiveness of 

deep learning models in improving diagnostic accuracy and efficiency. Deep learning 

models, particularly graph convolutional neural networks (CNNs), have 

revolutionized image classification in medical imaging. It can accurately classify 

diseases by learning intricate patterns from large datasets. For example, GCNs can 

classify chest CT scans to detect COVID-19, outperforming traditional methods. In 

medical imaging, object detection entails identifying and localizing abnormalities 

within images. DL models provide bounding boxes around regions of interest, 

facilitating precise diagnosis and treatment planning. Image segmentation is crucial 

for delineating anatomical structures and pathological regions. In MRI and CT scans, 

techniques such as U-Net and its variants have shown exceptional performance in 

segmenting organs and tumors. Segmentation aids in volumetric analysis, surgical 

planning, and radiation therapy. 
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Finally, we outlined that deep learning has significantly advanced medical image 

analysis, enhancing the accuracy and efficiency of classification, detection, and 

segmentation tasks. However, addressing existing challenges and continuing 

innovation will be critical for widespread clinical adoption of these technologies. 

3.7. SUMMARY 

 

Medical image analysis involves feature extraction, preprocessing, and classification, 

which are essential for identifying infected areas with high accuracy. This process 

discusses various imaging techniques, including computed tomography (CT), 

magnetic resonance imaging (MRI), and mammography. Different modalities, 

including X-ray, ultrasound, MRI, and CT scans, each have unique characteristics 

and interactions with body tissues. Context-aware methods in medical image 

classification leverage deep learning (DL) techniques to capture spatial relationships 

and improve diagnostic accuracy. For example, the GCN and ResNet-50 models 

enable looking at image patches in great detail, and hybrid models that combine 

convolutional and recurrent neural networks improve spatial correlation. The field 

also explores uncertainty measurement in predictions to improve model reliability 

and trustworthiness in clinical applications. Additionally, deep learning techniques 

like CNNs have significantly advanced image classification, detection, and 

segmentation tasks, providing high performance in diagnosing and differentiating 

medical conditions such as lung nodules and brain tumors. Despite these 

advancements, further innovation and addressing current challenges are necessary for 

broader clinical adoption of DL technologies in medical imaging. 
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CHAPTER 4  

 

PROPOSED METHOD 

 

4.1. OVERVIEW  

 

Due to the significant progress in computer-assisted image acquisition in recent 

years, standard computer vision methods remain unsuccessful when it comes to 

processing large amounts of image data. Conventional machine vision techniques, 

for example, aren't particularly effective at distinguishing between high- and low-

level characteristics in images [130]. In-depth image analysis requires first 

classifying and processing the image data. It also has enormous implications for the 

development of computer vision in the field of image processing applications. 

Currently, a variety of industries and fields, including aerospace, healthcare, the 

agricultural sector, and manufacturing, use computer-assisted image categorization 

research. The primary goal of image classification research is to accurately and 

efficiently categorize semantically related feature data within images, as well as 

large-scale image attributes. Once the image data is derived, the image data should 

be cleaned to better extract and filter its features and classify the image using a deep 

learning method. Researchers can utilize computer vision technology to quickly 

execute image analysis operations like noise reduction and feature extraction due to 

the growing applicability of machine learning in various fields [131]. 

 

Researchers have made significant progress in the study of images and classification, 

ranging from the use of artificial intelligence to the concurrent image processing 

technologies. One significant area of artificial intelligence is machine learning. 

Despite fifty years of advancements in machine learning, several issues remain 

unresolved,such as sophisticated image comprehension and identification, natural 

language interpretation, and recommendation systems [132]. 
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Deep learning is one major field that has emerged in machine learning. In order to 

accomplish image classification or regression, it fully utilizes the hierarchical 

properties of artificial neural networks and biological neural systems for processing 

information. It learns low-level features and uses feature extraction techniques to 

acquire high-level features. Deep learning, as opposed to ordinary machine learning, 

uses multilayer neural networks to automatically recognize images and extract their 

most deeply ingrained features. Various feature learning techniques, as well as their 

combinations; can lead to distinct depth learning models. However, the current deep 

learning model's operating efficiency is competitive yet needs improvements. 

 

Lung diseases are becoming an escalating global health issue, affecting millions and 

putting a substantial strain on healthcare systems around the world [132].  The 

SARS-CoV-2 virus, which causes COVID-19, has significantly affected human 

health, particularly the respiratory system, leading to issues such as respiratory 

distress, pneumonia, acute respiratory distress syndrome (ARDS), and other 

complications. [133]. Rapid and precise detection ,and diagnosis of lung illnesses are 

essential for optimal therapy and enhanced patient results. Conventional diagnostic 

ways frequently rely on the human analysis of medical pictures, which can be time-

consuming and influenced by personal judgment. However, advancements in 

technology combined with medical science are paving the way for more accurate and 

efficient early detection of respiratory conditions [134]. 

 

This chapter demonstrates how to combine two deep learning architectures, GCN 

and UNet, to get the features of CT scan images, and then use their spatial 

connectivity patterns to classify into COVID and non-COVID groups by introducing 

the Feature Extracted Graph Convolutional Networks (FGCN), a revolutionary 

architecture that integrates the GCN with the UNet model. This architecture takes an 

arbitrary-sized  medical image as input, uses an attributed graph as an output, and 

classifies it as COVID or non-COVID. FGCN takes out features and uses a pooling 

layer to filter out the graph's less important vertices while keeping its overall 

structure. After an effective convolution layer, the graph becomes coarser.  

 Figure 4.1 illustrates a sample graph that includes a set of nodes, edges, and the 

corresponding adjacency matrix. This matrix indicates the connections between each 
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pair of nodes, each entry in the matrix represents the strength of the connection 

between the i-th and j-th nodes, Located where the i-th row meets the j-th column. 

Different methods can be employed to create the graph, such as utilizing Pearson 

correlation, the algorithm of KNN, or distance-based techniques to determine the 

values within the matrix  [59].  

 

 

 

Figure 4. 1. Directed graph along with its corresponding adjacency matrix, adapted 

from an illustration. [135].                                                                                           

 

4.1.1. ChebNet 

 

The convolution operation in spectral-based graph convolutional networks (GCNs) in 

the Fourier domain by the computation of the eigendecomposition of the graph 

Laplacian [26]. ChebNet inherits the principles of CNNs, with additional localized 

spectral filters for sophistication. Unlike traditional grid structures, these filters 

specialize in operating on graphs, enabling ChebNet to process complex data sets 

with sophisticated connectivity. ChebNet specifically uses Chebyshev polynomials, 

as shown in Figure 4.2, as the building blocks for its filters; those are approximating 

the behavior of graphs to construct localized filters. As a result, ChebNet provides 

higher accuracy while minimizing computational load. The Fourier transform 

constructs the convolution process for a spectral-based Graph Convolutional 

Networks (GCNs) involves calculating the eigen-decomposition of the Laplacian 

graph [26]. The normalization of the graph Laplacian is represented as       

    ⁄        ⁄      )   where D is the degree matrix, A is the adjacency matrix, U 

is the eigenvectors of a matrix, and Λ is the diagonal matrix containing the 

eigenvalues.This process can be described as the multiplication of a signal    
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   ), by a scalar for each node, using a filter defined as (         )), which is 

parameterized by      ). 

 

           ) 
   (4.1) 

 

ChebyNet, introduced by Defferrard et al. [29], circumvents the need to compute the 

Fourier basis is approximated using truncated Chebyshev polynomials to represent 

the spectrum filters.This approach utilizes a Chebyshev polynomial     ) of degree 

  [29]. 

 

 

Figure 4. 2. ChebNet graph convolution [136]. 

 

      ∑     

   

   

( ̃)
 

 
 

(4.2) 

 

In Equation 4.2,  ̃ is the diagonal matrix of a scaled eigenvalues with a formula  ̃̅  

           . The biggest eigenvalue of L is indicated by the symbol max. The 

Chebyshev polynomials are denoted by     )          )        ) , where 

    )            )   .  

ChebNet employs Chebyshev polynomials, allowing it to avoid calculating the 

eigenvectors of the Laplacian matrix, thus reducing computational costs. In Graph 
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Convolutional Networks (GCN), a graph pooling layer reduces the dimensions of the 

graph while expanding the area influenced by the graph filters. The layer before this 

in the graph convolutional network combines feature vectors into one, which is 

subsequently passed to a fully connected layer for producing classification outcomes. 

 

4.1.2. Graph Convolutional Networks (GCN) 

 

A Graph Convolutional Networks (GCN) is a form of graph neural network which 

applies mean pooling aggregation for spectral analysis. Introduced by Kipf and 

Welling [28] the GCN uses a limited first-order approximation of spectral 

convolutions on graphs. This approach features a simple layer-wise propagation 

method that converts the relationships among nodes in the graph into node features. 

Eliminating the problem of overfitting to the local neighborhood structure of graphs 

with a lot of node degrees is possible by making the convolution filter K=1. 

Additionally, we can simplify Equation 4.2 by approximating     , [28]. 

 

 

 

Figure 4. 3. Evaluation of graph-input data with a GCN [137]. 

 

      ́     ́       )   ́    ́  
   ⁄      ⁄   (4.3) 

  

The values  ́  and  ́  are not limited in Equation 4.3. GCN additionally assumes 

that     ́    ́  to minimize the parameters and prevent excessive model 

complexity [135]. This leads to the development of a graph convolution defined as 

follows: 
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      (        ⁄         ⁄ )   (4.4) 

  

Layer stacking in this method can lead to numerical issues, where gradients may 

abruptly disappear or escalate uncontrollably. For defining the signal        with 

input channels of C ,and F refers to extraction  filter for features, Kipf and Welling 

[28] elaborate on the concept as follows: 

 

   ̃   ⁄  ̃ ̃     ⁄    (4.5) 

  

The matrix   , denoted as   R
CXF

 , is generated by the filter bank parameters. 

Similarly, the matrix Z, denoted as Z  R
N*F

, is obtained by convolving the signals. 

 

4.2. STEPS OF THE PROPOSED METHOD  

 

This research utilizes a specific methodology: Initially, each image undergoes 

preprocessing steps such as normalization, filtering, and data augmentation to 

enhance the clarity of CT images. Then, we select images with nuclei ,and train a U-

net model with this dataset. The U-net performs extraction features, resulting in a 

graph-based feature map for each patient. For diagnostic classification of the CT 

images, we use the graph-structured data as input to a modified GCN, named the 

"feature-extracted GCN" (FGCN). Figure 4.4 displays the block diagram of our 

proposed method. 
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Figure 4. 4. Block diagram of the proposed work. 

 

4.2.1. Preprocessing 

 

The pre-processing step is designed to enhance the abstraction capabilities of 3D-CT 

images acquired from patients. This process consists of three phases: 

 

i. Filtering: In the filtering stage, the goal is to improve the clarity of a 3D-CT 

image. This process involves applying a set of criteria to decide the value of 

each pixel in the final image, using the values from surrounding pixels. 

 

ii. Normalization: This step changes the range of pixel intensity values, often 

known as "contrast stretching," to enhance the overall contrast of the image. 

 

iii. Data Augmentation: This preprocessing strategy is commonly employed 

with the U-net model. It enhances the training set by introducing alterations 

like rotations, shifts, and symmetrical changes. This approach helps lower the 

model's vulnerability to noise and mitigates the chances of overfitting 

compared to using the unaltered data. 

 

4.2.2. UNet Model 
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A standard convolutional network has a 3×3 convolution process done repeatedly. 

Following this convolution is a maximum pooling layer with a 2×2 size, and a ReLU 

activation function comes next. Every pooling procedure results in a doubling of the 

number of feature channels. The downsampling path aims to maintain the input 

image information for segmentation. The expansion path receives the data via links, 

as illustrated in Figure 4.5. In the upsampling process, the architecture reduces the 

count of feature channels by half after each phase of the expansion path. A four-

block extension path is used. These blocks consist of the deconvolution layer, feature 

map integrated from the contracting path, 3×3 convolution layer, and activation 

function. A further 1×1 convolution operation is conducted in order to reduce the 

feature map to the necessary channel count and create the segmented image [121]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 5. U-net Architecture [121]. 

 

4.2.3. Classification With FGCN  

 

4.2.3.1. Feature Extraction Using the U-Net Model 
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The strategies of effective extraction features are crucial for improving image 

classification and distribution. We use U-Net for features extraction from CT scan 

images. U-Net is preferred for its straightforward design, flexibility, and excellent 

performance in pixel-level segmentation, especially for biological images. Its well-

balanced architecture is specifically crafted to support tasks in computer vision ,and 

image processing that are involve localization, extraction features, context modeling, 

and precise resolution recovery. The model utilizes both its encoder ,and the decoder 

components to perform an accurate and detailed output. The encoder section (or 

contracting path) is shown on the left side of Figure 4.5, while the decoder section 

(or expanding path) is shown on the right side. Blue boxes in Figure 4.5 represent 

multi-channel feature maps, and white boxes indicate replicated feature maps. 

Arrows in the figure illustrate different processes, such as max pooling, convolution, 

and copying and cropping operations [120]. 

 

4.2.3.2. Feature-Extracted Using Graph Convolutional Networks (FGCN) 

 

We use an adapted form of GCN, referred to as feature-extracted GCN (FGCN), to 

carry out the classification task. The following outlines the procedure involved in 

FGCN. 

 

Step 1: The U-Net model extracts pyramid features from an image using different 

layers and kernel sizes. 

Step 2: We combine these extracted features to form a single combined adjacency 

matrix. 

Step 3: The COVID-19 graph is constructed from a unified adjacency matrix that 

reflects the connections and identified characteristics. 

 

Step 4: We combine the graph of the original image with the graph of the largest 

kernel. 
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Step 5: To mitigate overfitting, we merge these three graphs into one cohesive input 

block and process it through a Graph Convolutional Network (GCN) that includes an 

extra dropout layer. 

 

Step 6: Ultimately, we conduct image classification to assess if the patient is infected 

with COVID-19. 

 

4.2.4. Graph Convolution Layer  

 

The convolutional layer serves as the fundamental component of a CNN model and 

is responsible for performing most of the calculations. This layer's parameter is a 

filter vector that can be learned, with dimensions represented as (w * h * d), where w 

is the filter's width in pixels, h is its height, and d refers to its depth. For example, a 

typical filter may have dimensions of 5x5x3, meaning it has a width and height of 

five pixels, with a depth of three pixels corresponding to each color channel. A CNN 

model generally utilizes multiple filters to capture different features of the input 

image. During forward propagation, each filter slides across the input volume's width 

and height, calculating the sum of the dot products between the filter elements and 

the input at every location. As the filter moves across the input volume, it produces a 

two-dimensional activation map. This activation map visually represents basic 

features of the input, such as edges or patches of color. Subsequent layers use this 

activation map to identify more complex characteristics of the input, like the wheels 

or headlights of a vehicle. 

 

Following the convolutional layer is the rectified linear unit (ReLU), a non-linear 

activation function. An example of how a convolutional layer operates is shown in 

Figure 4.6. Here, a 3x3 filter is applied to a 5x5 input volume. The convolutions start 

from the top left corner of the input and proceed to the bottom right, covering the 

entire image. The pixel located at the top-left is referred to as the target pixel. 

Through convolution, new representations of this target pixel are generated. To 

compute the top-left pixel of the activation map, element-wise multiplication and 

summation are performed on the overlapping pixels from both the input and the 

filter. 
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Figure 4. 6. The process of convolution creates an activation map. 

 

Typically, a convolutional neural network (CNN) places the convolutional layer as 

its initial layer. Weight sharing is the primary advantage of a convolutional layer. 

Equation (4.6) provides a mathematical representation of this step. 

 

  
    ∑  

        
 )    

 

 

 (4.6) 

  

The symbols m and n represents the dimensions of the convolution filter. L 

represents the layer, x represents the features, W represents the weight, and b 

represents the basis. * denotes the convolutional operation, while f represents the 

activation function, which can be a sigmoid, rectified linear unit (ReLU), or 

hyperbolic tangent (tanh). You can adjust the activation methods based on the data's 

nature. 

 

In this section, we introduce and construct the graph convolutional layer from the 

bottom up. In conventional networks, linear layers convert incoming data in a linear 

manner. Using a weighted matrix W, this process transforms the feature input x into 

hidden vectors h. Putting biases aside for the moment, we can consider the process as 

follows:  

 

      (4.7) 

  

The relationship between vertices in graph data introduce another level of depth. 

Generally, networks tend to link similar vertices more frequently than different ones, 
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a phenomenon known as network compatibility, which makes the links significant. 

We can improve our node's representation by combining its attributes with those of 

its neighbors. We refer to this process as neighborhood gathering, or convolution. 

We use Ñ to stand for node i's surrounding area, which includes itself. 

 

   ∑                 ̌
 (4.8) 

  

Unlike the filters in convolutional neural networks (CNNs), each node shares and 

uniquely possesses the weight matrix W. However, unlike pixels, nodes don't have a 

set number of neighbors. This presents another problem. When a particular node has 

400 neighbors and another has just one, how do we handle those situations? The 

resulting embedding h for the node with 400 neighbors would be significantly larger 

if we were to simply summarize the feature vectors. We can use the degree of 

nodes—the number of connections a node has—to normalize the outcome, provide a 

comparable range of values for each node, and establish comparability among them. 
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(4.9) 

  

The graph convolutional layer, which was first introduced by Kipf et al. [28], has one 

last enhancement. The authors noticed that characteristics from nodes with a large 

number of neighbors spread far more quickly than characteristics from nodes that are 

more isolated. Researchers proposed giving attributes from nodes with fewer 

neighbors higher weights in order to counteract this impact and balance the influence 

across all nodes. The notation for this operation is: 

 

   ∑
 

√     )√     )     ̌
 

(4.10) 

  

4.2.5. Graph Pooling Layer  

 

The pooling layer downsamples the input volume across the width and height 

dimensions. This makes the features in the activation map look like they are in a 
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lower-dimensional space. There are several pooling algorithms available, including 

max-pooling and average-pooling. Figure 4.7 illustrates the application of max-

pooling to a convolutional neural network (CNN). Max-pooling involves creating an 

activation map by selecting the highest value within each pooling window. The 

pooling window is defined as an integer, a tuple, or a list of two integers that 

represent the window's height and breadth. The stride is an integer that determines 

the pooling process's step size. In Figure 4.7, max-pooling reduces the 4x4 input 

activation map to a smaller 2x2 size. The pooling process receives input parameters, 

including a window size of 2x2 and a stride size of 2. The method selects the highest 

value within a certain window size and then moves two pixels to the right to locate 

the subsequent value. In the initial pooling window, the maximum pixel value is 6. 

We exclude all other values and create an activation map consisting only of the 

highest pixel values from the image volume. 

 

 

 

Figure 4. 7. An illustration of the max-pooling layer, which reduces the size of the         

activation map . 

 

Bruna et al. [26] listed well-known graph clustering methods [56, 138]. One of the 

earliest applications for graph pooling in the GCN architecture can be found in [139, 

140] . Defferrard et al. [29] specifically used the Graclus algorithm  [56], which later 

found its way into other GNN-related publications  [78, 79]. The majority of these 

approaches are based on voxelization techniques. The literature about learning points 

has introduced pooling strategies to generalize the standard pooling layers for grids 

[80, 141]. Numerous pooling operators have been developed based on graph spectral 

theory [80, 142] or other clustering, scarification, and decomposition methods [143-

145], numerous pooling operators have been developed, as shown in Figure 4.8. 
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Figure 4. 8. Graph pooling layer. 

 

4.2.6. Fully Connected Layer 

 

The fully connected layer is the final block of the GCN architecture. The fully 

connected layer's primary function is to understand non-linear models for high-level 

data, as defined by the output from the final combination of convolutional pooling 

layers. To achieve this, we flatten the basic characteristics learned in the previous 

stages, which are appropriate for an ordinary neural network. A fully connected layer 

then connects the flattened characteristics, allowing concepts to be mapped between 

input and output. Once the GCN's building blocks are complete, the network can 

distinguish between various feature levels in an input image and use softmax 

classification to assign the image to a particular class. 
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CHAPTER 5  

 

RESULTS AND COMPARATIVE ANALYSIS 

 

This chapter introduces the results and discussion of the classification tasks using the 

proposed method we established, followed by a detailed examination of the dataset. 

It next assesses the suggested model's performance in terms of classification 

accuracy. We demonstrate the model's performance on a number of hyperparameters 

and compare our proposed method to multiple deep learning experiments on the 

datasets. 

 

5.1. EXPERIMENTS AND RESULTS  

 

This section provides an explanation of how we perform our proposed method to the 

dataset. It then introduces the six deep learning models used as baseline models, 

which we compare their performance with the proposed method. 

 

5.1.1. Dataset  

 

In this implementation, we used the SARS-COv2 dataset of CT scan images for our 

investigation. We utilized two distinct class categories and samples from the 

available dataset. We test the proposed methodology using a publicly available 

library of CT scan images of SARS-CoV-2 .This dataset is accessible via Kaggle and 

consists of 2482 slices in total, distributed as 1252 slices of SARS-CoV-2 (COVID-

19)-infected patients and 1230 slices of healthy people [146]. Figure 5.1 displays 

some samples of CT scans for both COVID ,and non-COVID cases.
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Figure 5. 1. a) SARS COVID ,and  b) non-COVID samples. 

 

5.1.2. Data Splitting  

 

We divided the dataset into two sets: training ,and testing, which is an important step 

in developing machine learning models. This involves separating the dataset into two 

parts: training set, which is used to teach the model about the CT slices, and testing 

set, which is meant for assessing the model's performance on data ,and it hasn't 

encountered before. Typically, we allocate 80% of the dataset for training to provide 

sufficient learning opportunities for the model, while the remaining 20% is set aside 

for testing to measure the model's accuracy and ability to generalize. This split 

ensures that the performance metrics, like accuracy, accurately reflect the model's 

capability to predict outcomes on new, unseen data. 

 

5.2. BASELINES  

 

This chapter compares FGCN with six different baseline deep learning models: 

VGG16, DensNet201, efficientnetB0, Inception V3, Nasnet Mobile, and ResNet50. 

Being commonly used transfer learning models those are generally successful in 

medical classification tasks; researchers use these models as baseline architectures to 

compare newly proposed models. 

 

5.2.1. VGG16 
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VGG16 is a deep learning model that introduced by Simonyan and Zisserman, 

comprises 16 layers [71]. It is widely recognized as a prominent model for transfer 

learning. It includes 13 convolutional layers and 3 fully connected layers. As 

illustrated in Figure 5.2, each convolutional layer utilizes 3x3 kernels, while each 

pooling layer uses 2x2 parameters. The architecture is organized into five blocks, 

each containing multiple convolutional layers followed by a pooling layer. 

 

In Block 1, the process begins with two convolutional layers, each equipped with 16 

filters, which captures the image features. Following this, a pooling layer decreases 

the image dimensions. This approach is maintained in the following blocks, with 

Blocks 1 ,and 2 each featuring two convolutional layers, while Blocks 3 through 5 

include three convolutional layers. This arrangement gradually deepens the network 

and improves its precision. Finally, the network uses three fully connected layers to 

combine features into two distinct classes [147]. 

 

 

 

Figure 5. 2. VGG16 architecture [148]. 

 

5.2.2. DenseNet201 

 

DenseNet201 is a specialized CNN model with 201 layers. We employed a pre-

trained version of this model, which has been trained on more than a million of 

images from the ImageNet dataset. This pre-trained network has a feed-forward 

architecture that allows each layer to classify images into 1000 distinct categories, as 
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illustrated in Figure 5.3. This capability includes categorizing various objects and 

diagnosing diseases in medical imaging classification tasks. [117]. 

 

 

 

Figure 5. 3. DenseNet201 Architecture [149]. 

 

5.2.3. ResNet50 

 

It is a convolutional neural network model that was designated to overcome the 

problems of the vanishing or expanding range. One of the most widely used CNN 

architectures recently is the ResNet structure. Microsoft Research first presented 

ResNet, an abbreviation for residual networks, in 2015. As shown in Figure 5.4, 

ResNet-50 introduces the concept of the residual neural network, which is a CNN 

with fifty layers. It learns residuals instead of features [150]. 
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Figure 5. 4. ResNet50 Architecture for CT and X-ray COVID-19 classification 

[151]. 

 

5.2.4. NasNet Mobile  

 

With its vast processing resources and brilliant engineering, Google proposed 

NasNet, which reframed the challenge of determining the ideal CNN structure as a 

reinforcement learning problem. In essence, the goal of this model is to find the 

optimal combination of each of the search space's parameters, as represented in 

Figure 5.5, which includes the sizes of filters, and the output is determined by the 
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number of channels, strides, and layers.. Every search process conducted in the 

context of reinforcement learning context rewarded the model's accuracy on the 

provided dataset. NasNet has achieved a state-of-the-art result in the ImageNet 

competition. However, a limited variety of classification tasks can employ the model 

due to its huge computation demand, which also optimizes the model architecture 

[152]. 

 

 

 

Figure 5. 5. NasNet Mobile architecture [153]. 

 

5.2.5. Inception V3 

 

This model is a CNN model that featuring 48 of layers, specifically designed to 

recognize and analyze intricate patterns in medical images, as shown in Figure 5.6. 

Its key advantage lies in its capacity to manage large datasets and accommodate 

images of differing sizes and resolutions. Given the considerable variability in image 

size, quality, and resolution, this capability is essential in medical image processing. 

Typically, the model includes three convolutions of various types and incorporates a 

maximum of one pooling layer. [150]. 
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Figure 5. 6. Inception V3 model architecture for binary classifications [154]. 

 

5.2.6. EfficientNetb0 

 

EfficientNet is a type of convolutional neural network (CNN) designed to optimize 

its parameters for depth, width, and resolution using a unified scaling method. 

Instead of adjusting these parameters randomly as in traditional approaches, 

EfficientNet applies a specific set of scaling factors to ensure balanced changes 

across all dimensions. This approach maintains consistency in scaling across depth, 

width, and resolution. The idea behind this mixed scaling is that larger input images 

need more channels to capture fine details and additional layers for expanding the 

network's receptive field. EfficientNetB0, one of the popular versions of this model, 

is depicted in Figure 5.7 [155]. 

 

 

 

Figure 5. 7. Architecture of EfficientNetB0 [156]. 

 

5.3. CLASSIFICATION RESULTS 
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In this section, we provide the findings obtained from the conducted experiments 

performed on a variety of customized CNN models for medical image classification 

tasks, in combination with the proposed model, all tested on the same dataset detailed 

in the previous section. 

 

We first used a split ratio of 80-20% to fix train and test data, as explained 

previously. Next, we randomly cropped the CT images from the original dataset to 

create fixed size images of size 512x512 pixels, that we input to the learning models. 

This could successfully minimize the complexity of computation while keeping the 

significance of the image data. To improve the dataset samples, we also applied some 

in-built image augmentation techniques including reversing the images in horizontal 

or vertical orientations, zooming in and out, rotating, skewing etc. The learning 

models were trained over 50 epochs with a learning rate of 0.0001 for each run. 

 

We used Tensorflow and PyTorch libraries to implement the suggested FGCN model 

together with the transfer learning models, such as VGG16, Inception V3, Resnet50, 

efficientnetB0, Nasnet Mobile, and DensNet201. According to the results, the 

suggested model outperforms the other six DL models, as presented in  Table 5.1. 

 

A tabular method of displaying your prediction model's performance involves using 

a confusion matrix. Each value in a confusion matrix indicates how many predictions 

the model has made regarding whether the classes were correctly or incorrectly 

categorized. A binary classification problem clearly entails only two classification 

classes, ideally a positive (P) and a negative (N) class.    

 

 

 

Figure 5. 8. Confusion matrix for binary class classification. 
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A confusion matrix given in Fig. 5.8, consists of TP, TN, FP and FN values, detailed 

as follows: 

 

True Positive (TP): The number of occurrences accurately classified as positive, 

meaning that both the actual class and the model's prediction were positive. 

 

True Negative (TN): This is the count of accurately predicted negative instances (i.e., 

the actual class was negative and the model predicted negative). 

 

False Positive (FP): The quantity of false positive cases refers to situations where 

the model predicted a positive class while the actual class was negative. This 

phenomenon is commonly known as a "Type I error." 

 

False Negative (FN): The model erroneously predicted instances as false negatives 

(FN) while their actual class was positive. It is also commonly known as a "Type II 

error." 

 

The confusion matrix provides the necessary information to compute classification 

metrics like F1-score, precision, recall, and specificity for the predictions made on 

the test data. In multi-class or binary-class classification problems, we assume that 

TP, TN, FP, and FN are one-versus-all classes. Accordingly, the class of concern 

itself is the positive class, and all other classes are the negative class with regard to 

the specific category of concern. In this context, we define accuracy as a model's 

general predictive accuracy, determined by dividing the number of correctly 

predicted samples by the total number of predictions presented in the next Equation 

5.1, [157]. 

 

Accuracy: is the ratio of correctly identified instances (including true positives and 

true negatives) to all instances. 

 

          
     

           
 

 

(5.1) 
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Precision: The proportion of true positive predictions out of all positive predictions 

made by the model. 

 

           
  

     
 

 

 

(5.2) 

Recall, also known as sensitivity or true positive rate, refers to the proportion of real 

positive cases that were accurately predicted. 

 

       
  

     
 

 

(5.3) 

 

F1-Score: The harmonic mean of precision and recall offers a balanced measure 

between the two 

 

         
                           

                          
 

 

(5.4) 

Specificity, often known as the true negative rate, refers to the accuracy of correctly 

predicting genuine negative outcomes. 

 

            
  

     
 

 

(5.5) 

In our tests through six deep learning models (VGG16, DensNet201, ResNet50, 

NasNet Mobile, InceptionV3, and EfficientnetB0) and the FGCN model proposed, 

we achieved confusion matrices as given in Figure 5.9 below. 
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Figure 5. 9. Confusion matrix for six DL models with proposed method. 

 

Table 5.1 displays the classification outcomes for all models. According to the data, 

the proposed model (FGCN) exhibits the accuracy of classification is  99.19%, 



 

78 

 

exceeding the performance of the other models evaluated. The models with the next 

highest accuracies are ResNet50, VGG16, and DenseNet201, with respective 

accuracies of 96.37%, 97.38%, and 96.18%. With accuracy values below 92%, 

Inception V3 and efficientnetB0 could not compete with the others. The model with 

the lowest capability is the NASNet Mobile, with scores of about 80%. The proposed 

model also boasts excellent recall, precision, specificity, and F-score metrics 

exceeding 99%. 

 

We also compared the computational times devoted for training for all models 

together with the proposed method FGCN to determine the variations in running 

times. The running times are calculated for the optimal setup that would result the 

best results given in Table 5.1. First, the proposed model FGCN has a running time 

of 260.24 sec/epoch for the training phase. EfficientNet-B0 outperforms FGCN with 

215.68 sec/epoch by the means of training speed, while NASNet Mobile is 

significantly faster than FGCN with the speed 132.78 sec/epoch, emerging as the 

fastest model in our experiments. InceptionV3 follows NASNet model with 145 

sec/epoch, while ResNet50 approximates FGCN with a running time of 265 

sec/epoch. DenseNet201 and VGG16 were the slowest models with 387.88 and 

480.38 sec/epoch respectively. In summary, the comparison for computational time 

depends on the architectural design of the models. As a result, FGCN can compete 

with DenseNet201, VGG16 and ResNet in terms of computational complexity, while 

it also has comparable performance with EfficientNet-B0. NASNet Mobile and 

InceptionV3 show exceptional running times, while these outcomes in computational 

complexity do not reflect classification accuracy results as presented in Table 5.1.  
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Table 5. 1. Classification outcomes for the SARS-CoV-2 CT dataset were obtained 

using various pre-trained deep learning models. 

 
DL models Recall Precision Specificity F-Score Accuracy 

DensNet201 0.97150 0.95220 0.95220 0.96180 0.96180 

EfficientnetB0 0.88800 0.89490 0.88660 0.89140 0.88730 

Inception V3 0.90620 0.93550 0.93360 0.92060 0.91950 

Nasnet Mobile 0.78870 0.81960 0.80170 0.80390 0.79480 

ResNet50 0.95740 0.96570 0.96930 0.96150 0.96370 

VGG16 0.96670 0.97890 0.98050 0.97280 0.97380 

FGCN 0.99670 0.99050 0.98450 0.99360 0.99190 

 

Learning curves demonstrate how a model’s accuracy improves through a given number 

of epochs, for both train and validation data. This type of visualization is valuable since 

it shows if an overfitting occurs during training, diagnosed by the divergence between 

the train and the validation curves. Fig. 5.10 depicts the learning curves for all models 

tested. These plots indicate that overfitting is evident for NasNet and VGG16 models, 

where the rest of the models have good consistency between train and validation curves. 

This behavior indicates that the generalization capacity of the models is in an adequate 

level.  
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Figure 5. 10. Train and validation learning curves for FGCN with six DL models  

implemented for 50 epochs. 
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Figure 5. 11. Train and validation loss plot for FGCN implemented for 50 epochs. 

 

Figure 5.11 demonstrates the loss curves across the tested models. Loss values reach 

very low values for all models, where the two models mentioned above show 

overfitting behavior due to divergence in their train and testing curves. The FGCN 
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model proposed has desirable learning and loss curves, indicating a good 

generalization capacity. 

 

5.3.1. Implementation and Tools 

 

This section covers the tools we've used to implement FGCN. The research by 

Ronnberger et al. [121] and Kapf & Welling [28] provided the code for the FGCN 

implementation. Kapf and Welling's code served as the foundation design for the 

GCN implementation. The majority of the novel contributions came from 

implementing the UNet model as a feature extractor and adjusting the 

hyperparameters. 

 

5.3.2. Testing Environment 

 

i. Operating system: Windows 10 Enterprise Edition, version 10, 64-bit 

ii.  CPU: Intel Core i7-12700HQ with 2.8 GHz  

iii.  RAM: 64 GB 

iv. GPU: RTX 3080 8GB 

 

5.3.3. Development Tools 

 

i. Languages used: Python (3.7) 

ii.  Jupyter notebook 

iii. Development tools: PyTorch (1.2), Tensorflow , Keras, NetworkX,  

Matplotlib, Numpy 

 

5.4. COMPARISON WITH RECENT METHODS 

 

Table 5.2 shows a comparison of our model’s performance metrics against the latest 

state-of-the-art techniques. When contrasted with earlier studies, the FGCN model 

performs similarly, featuring a unique combination of the U-Net architecture with a 

GCN. Additionally, it highlights the success of using a graph-based method for 

identifying and diagnosing complex patterns related to lung diseases. 
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Table 5. 2. Comparative analysis of performance metrics between the proposed 

model (FGCN) and existing approaches on datasets of COVID-19 CT 

scan images. 

 

Ref.no Dataset Model Acuracy Recall Precision Specificity 
F1-

Score 
AUC 

[158] 
CT scan (4382 COVID, 

9,369 non-COVID) 
U-Net++ 95.2 100 - 93.6 - - 

[159] Total of 1918 CT scan DCN 95.99 89.14 - 98.04 - 97.55
 

[160] 
CT scan (449 COVID,  

and  595 non-COVID) 
Two U-Nets 86 94 - 79 - 93 

[161] COVID-19 CT scan U-Net+ 82.9 97.4 - 92.2 - - 

[162] 
CT scan (521 COVID,  

and  665 non-COVID) 

EfficientNet-

B4 
87 89 - 87 - 90 

[163] 
CT scan (1262 COVID,  

1230 non-COVID) 
DenseNet-201 96.25 96.29 96.29 96.21 96.29 - 

[164] 
CT scan (108 COVID,  

912 non-COVID) 
Xception 99.02 96.29 96.29 96.21 96.29 - 

[165] 
CT scan (468 COVID,  

2996 non-COVID) 
ResNet-50 89.5 87 - 92 - 95 

[163] 
CT scan (723 COVID,  

413 non-COVID) 

U-Net and 

ResNet-50 
94.8 97.4 - 92.2 - - 

[166] 
CT scan (360 COVID,  

34 non-COVID) 
VGG16 91 94 100 - 97 - 

[167] 
CT scan (219 COVID,  

399 non-COVID) 
ResNet-50 86 96 79 - - 95.96 

[168] Consists of 1065 CT  CNN 83 84 - 80.5 - - 

[169] 
CT scan (1493 COVID,  

4594 non-COVID) 

Inception-

ResNetV2 
92.18 92.11 92.38 96.06 - - 

[170] 
CT scan (260 COVID,  

600 non-COVID) 
VGG19 89.3 89 90 - 90 - 

[171] 

CT scans (1252 

COVID-19 and 1230 

non-COVID-19) 

DarkNet19 

with repeated 

holdout 10FCV 

95.2 98.2 - 92.2 - 99.6 

[172] 
CT scan (313 COVID,  

229 non-COVID) 

U-Net and 

CNN 
98.91 98.96 - 98.86 90 - 

[173] 
CT scan (192 COVID,  

145 non-COVID) 
nCOVnet 97.62 97.62 - 78.57 - - 
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[174] 
CT scan (347 COVID,  

397 non-COVID) 
ResNet-18 78.29 76.9 81 79.9 78.9 83.82 

Current 

study 

CT scan (1252 

COVID, and 1230 

non-COVID) 

FGCN 99.19 99.67 99.05 98.45 99.36 - 

         

         

Beyond the superior classification accuracy achieved across the recent studies, 

reviewing the fundamental differences of these studies would be beneficial to 

understand the distinction of the current study and the cutting-edge. The DL-based 

algorithm for high-resolution CT scan image-based detection of new coronavirus 

relies on U-Net ++ [158], while the Dual-Branch Combining Network (DCN) 

accurately segments and identifies COVID-19 tumors using CT scans [159]. The 

internal dataset achieved a classification accuracy of 95.99%, while the validated 

external dataset achieved a classification accuracy of 92.87% , the suggested DCN 

did better than other models. DCN was more sensitive and got the same results with 

fewer samples, especially when it came to finding small lesions. Compared to 

previously developed deep learning models, it offers best interpretability on infection 

origins because its categorization is based on significant semantic data.  

 

Amyar et al. focus on the goal, which is to categorize and divide multitasking deep 

learning-based CT scans for COVID-19 pneumonia. The researchers assess and 

contrast their proposed model with alternative picture segmentation techniques using 

a dataset of 1,369 patients. This dataset includes 449 patients diagnosed with 

COVID-19, 425 patients with normal cases, 98 patients with lung cancer, and 397 

patients with diverse other illnesses. The outcomes are extremely encouraging, with a 

dice coefficient for segmentation above 0.88 and an area under the ROC curve for 

classification exceeding 97% [160] .  

 

Jin, S., et al. detailed their experience in developing and deploying an artificial 

intelligence system to autonomously analyze CT scans for identifying COVID-19 

pneumonia characteristics. Unlike traditional medical AI projects, this effort was 

specifically to address an epidemic crisis. The team, consisting of over 30 experts in 

medicine and artificial intelligence from Beijing and Wuhan, collaborated to 
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overcome various challenges specific to this case. Remarkably, they completed the 

system within four weeks. With a dataset of 1,136 training cases, which consisted of 

723 positive COVID-19 cases from five hospitals, the researchers achieved a 

sensitivity of 0.974 and a specificity of 0.922 on the test dataset. The test dataset 

contained various pulmonary ailments.The system also highlighted abnormal areas 

for quick examination. Until 2020, 16 hospitals have adopted this technology, 

performing over 1,300 screenings daily [161].  

 

Radiologists use AI to improve their ability to differentiate between COVID-19 and 

pneumonia of different origins during chest CT scans. After using the EfficientNet-

B4 model to divide the lungs into sections, they fed strange CT images into an 

EfficientNet-B4 DNN structure to distinguishing COVID-19 from other forms of 

pneumonia in each patient. They then pooled all the slices together using a two-layer, 

fully interconnected neural network. They used a 7:2:1 and proportional arrangement 

to divide the 1186 individuals (consisting of 132,583 CT slices) were divided into 

training, validation, and test sets. Two different hospitals conducted separate 

evaluations to assess the efficacy of the model. Six radiologists blindly reviewed 

studies, first without AI support and later with it [162].  

 

Authors classified COVID-19-affected individuals using deep transfer learning, 

DenseNet201. They suggested a model that would use a convolutional neural 

network and its own discovered weights from the ImageNet dataset to extract 

attributes. Extensive testing assesses the effectiveness of the proposed DTL model on 

COVID-19 chest scan images. The suggested DTL-based COVID-19 classification 

framework performs better than the competing methods, based on comparisons 

[163].  

 

In Ref. [164], the authors employed ten prominent convolutional neural networks to 

the models used to differentiate between COVID-19 infections and non-COVID-19 

cases are AlexNet, VGG-19, VGG-16, GoogleNet, SqueezeNet, MobileNet-V2, 

ResNet-50, ResNet-18, ResNet-101, and Xception. Out of all the options, ResNet-

101 and Xception demonstrated the most impressive performance. ResNet-101, in 
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particular, demonstrated a strong ability to differentiate between COVID-19 and non-

COVID-19 instancesm[164].  

 

In Ref. [165], authors developed a neural network model called COVNet to analyse 

dimensional chest CT scans and detect COVID-19 by extracting visual features. 

They evaluated the model's strength using CAP (community-acquired pneumonia) 

and other non-pneumonia CT examinations [165].  

 

In Ref. [166], authors employ an algorithm that relies on DL, computed tomography 

(CT) and X-rays for the early identification of COVID-19 patients. We use CNN to 

look at the 360-image set of X-rays and CT scans and turn VGG-19, Inception_V2, 

and the decision tree method into two groups of pneumonia. The refined form VGG-

19, Inception_V2, and the decision tree model are all very good at what they do. For 

example, the refined form VGG-19 has an average training and validation accuracy 

of 91%, while Inception_V2 has an average of 78% and the decision tree has an 

average of 60% [166].  

 

The ground-glass opacity (GGO), in particular, is a visibly useful feature for 

physician-assisted diagnosis that the model could extract from the disease [167]. The 

study used a DL method to screen for coronavirus disease using CT scans, analyzing 

1065 CT scans of COVID-19 samples that confirmed the presence of an infectious 

agent, additionally; this includes individuals who have previously been diagnosed 

with typical viral pneumonia. After creating the algorithm and making changes to the 

inception transfer-learning approach, they conducted internal and external 

validation.  [168].  

 

Utilizing X-ray images for deep learning enables rapid detection of COVID-19 

illnesses. When evaluating several deep learning models, Inception_Resnet_V2 and 

Densnet201 outperform all other models examined in this study, with an accuracy of 

92.18% and 88.09%, respectively [169].  

 

To determine which pre-trained CNN model was best for recognizing COVID-19 

cases, authors tested 15 of these models in Ref. [170]. In another study, authors 
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developed a deep learning system to identify pneumonia due to the coronavirus 

disease [175]. They use weak labels in DL for COVID-19 recognition from chest CT 

scan images. Without the need to annotate the lesions for training, the weakly 

supervised DL model can reliably predict the COVID-19 infectious probability in 

chest CT volumes. The rapid identification of COVID-19 patients made possible by 

the highly effective and easily trainable DL algorithm is helpful in containing the 

SARS-CoV-2 epidemic. 

 

In Ref. [172], The authors created a software solution that utilizes weakly supervised 

deep learning to identify COVID-19 by analyzing 3D CT scans. The researchers 

utilized a pre-trained UNet model to accurately outline the lung area of each patient. 

The researchers then fed this information into a 3D deep neural network to evaluate 

the probability of COVID-19 infection. For training, they collected 499 CT volumes 

from December 13, 2019, to January 23, 2020, and used 131 CT volumes from 

January 24, 2020, to February 6, 2020, for testing. The deep learning method 

achieved a ROC AUC of 0.959 and a PR AUC of 0.976. The ROC curve 

demonstrated an operating point with a sensitivity of 0.907 and a specificity of 0.911 

.The method attained an accuracy of 0.901, a positive predictive value of 0.840, and 

an extraordinarily high negative predictive value of 0.982 by using a probability 

threshold of 0.5 to distinguish between COVID-positive and COVID-negative cases. 

The technique efficiently analysed each patient's CT volume in a little 1.93 seconds 

using a dedicated GPU. Their unsupervised a deep learning model has the ability to 

accurately estimate the probability of COVID19 infection in chest CT data without 

requiring lesion annotation for training [172]. 

 

In Ref. [173], The authors introduce nCOVnet, a deep learning neural network 

designed for the rapid screening of COVID-19. This innovative approach analyzes 

patients' X-ray images to identify visual markers indicative of COVID19 in chest X-

rays [173]. 

 

Multi-deep is an innovative CAD system that uses several CNNs to identify the 

coronavirus (COVID-19) from chest CT scans. The system combines and examines a 
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predetermined quantity of key elements, leveraging deep characteristics taken out of 

every CNN [174].  

 

In conclusion, we present our suggested technique for identifying lung diseases, 

which utilizes a graph convolutional network (GCN)  is used after the U-Net feature 

extractor .  

The initial graph image and graph kernel, along with characteristics that have been 

retrieved are put into the GCN in the form of an adjacency matrix with a graph 

structure. After combining these three graphs into one block of graph input, the GCN 

processes them with an extra dropout layer to prevent overfitting. The output is then 

labeled as COVID-positive or negative. 

 

Our proposed framework, termed Feature-Extracted Graph Convolutional Networks 

(FGCN), outperformed other non-graph-induced deep learning architectures in 

detecting and classifying lung diseases. As illustrated in Table 5.2, our method 

achieved the highest performance metrics compared to other approaches. However, 

we also highlight that GCNs face significant challenges in the classification of CT 

scan images in deep learning. 
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CHAPTER 6  

 

DISCUSSION AND CONCLUSION 

 

6.1. DISCUSSION  

 

Graph Convolutional Networks (GCNs) have emerged as highly effective tools in 

diverse domains, owing to their adeptness in modeling and processing relational 

structures inherent in graph data. By extending convolutional operations to graphs, 

GCNs harness the intricate connectivity patterns present in actual datasets, such as 

social networks, molecular structures, and even pixel graphs derived from images. 

This capability empowers GCNs to excel in important tasks include graph 

categorisation, link prediction, and node classification, where understanding 

contextual relationships among data entities is pivotal. 

 

In our research, we present FGCN, an innovative DL architecture specially designed 

for detecting and classifying CT scans with COVID-19. Integrating UNet with GCN 

enhances FGCN's ability to extract features crucial for both segmentation and 

classification tasks. We benchmarked FGCN against several leading models—

VGG16, ResNet50, DenseNet201, Inception V3, Mobile NASNet, and 

EfficientNetB0—using the SARS COV2 CT scan dataset comprising 2,482 images. 

FGCN achieved outstanding results, notably a classification accuracy of 99.19%, 

surpassing all comparison models. ResNet50, VGG16, and DenseNet201 achieved 

accuracies 96.37%, of 97.38%, and 96.18%, respectively, while Inception V3 and 

EfficientNetB0 lagged behind, scoring below 92%. Mobile NASNet performed least 

effectively with scores around 80%. FGCN also demonstrated superior performance 

in recall, precision, specificity, and F-score metrics, all exceeding 99%.
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CT imaging plays a crucial role in early COVID-19 detection and patient 

management. Leveraging deep learning techniques with CT scans provides 

physicians with robust tools for disease categorization, segmentation, and treatment 

expected in the context of this rapidly evolving pandemic. 

 

6.2. CONCLUSION 

 

This thesis investigates the effects of utilizing the UNet model and Graph 

Convolutional Network (GCN) technique to extract features from chest CT scan 

images, aiming to enhance image classification and provide significant advantages 

for healthcare professionals. Throughout the study, we explored various deep 

learning techniques and their implementations, focusing particularly on graph 

convolutional networks (GCNs) combined with UNet. 

 

Key Findings and Contributions: 

 

i. Novel Deep Learning Models: The primary goal was to develop innovative 

deep learning models for medical image processing, with an emphasis on CT 

scan images used for diagnosis and grading. Two main methods were 

devised: 

 

i. Graph Convolutional Networks (GCNs): These were leveraged to 

enhance the performance of traditional CNNs by capturing spatial 

connectivity patterns in the images. 

 

ii. UNet Technique: This was used to categorize the SARS-CoV-2 CT 

scan dataset based on the model's predictions of the number of 

infections, enhancing confidence in the diagnostic process. 

 

ii. Performance Enhancement: The proposed methods aimed to accelerate 

deep learning algorithms and improve the accuracy of image classification. 

Hyperparameters were optimized using both single- and multi-objective 

function optimization techniques to support these improvements. 
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iii. Comparative Analysis: The proposed Feature-Extracted Graph 

Convolutional Network (FGCN) was compared against six other deep 

learning models (VGG16, DenseNet201, ResNet50, EfficientNetB0, 

Inception V3, and NasNet Mobile). The assessment criteria included 

precision, accuracy, specificity, recall, and F1-score, based on confusion 

matrices. 

 

iv. Superior Results: The FGCN demonstrated superior performance in 

classifying SARS-CoV-2 CT scan images into infected to COVID and non 

infected to COVID categories. This indicates the effectiveness of combining 

GCNs with UNet for diagnostic image classification tasks. 

 

In conclusion, the suggested FGCN structure effectively enhances the classification 

accuracy of thoracic CT scan images to detect COVID-19. This approach not only 

outperforms several state-of-the-art deep learning models but also offers a robust 

methodology for handling the spatial connectivity inherent in medical images. The 

success of this model underscores the potential of integrating GCNs with traditional 

CNN techniques to advance medical image processing and diagnostic accuracy. 

Future research should continue to refine these methods, focusing on scalability, 

interpretability, and broader applications across different types of medical images 

and diseases.
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