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ABSTRACT 

 

M. Sc. Thesis 

 

OBTAINING EEG-BASED FEATURES OF MENTAL STATES WITH 

BRAIN-COMPUTER INTERFACES USING MACHINE LEARNING 

 

Ahsan MUMTAZ 

 

Karabuk University 

Institute of Graduate Programs  

Department of Computer Engineering 

 

Thesis Advisor: 

Assist. Prof. Dr. Iman ELAWADY  

 May 2024, 74 pages 

 

This thesis examines the development of passive brain-computer interfaces that 

monitor mental states such as focused, unfocused, or drowsy using 

electroencephalographic (EEG) brain activity imaging and machine learning 

techniques. The aim of the study is to develop and compare suitable algorithms for 

accurately detecting and tracking mental states. 

 

A comprehensive step-by-step process is established for processing EEG data in the 

study. This process encompasses preprocessing, feature extraction, and classification 

stages of EEG signals. Various time and frequency-based methods are employed in 

the feature extraction stage to obtain meaningful information from the signal. The 

extracted features are then fed into classification algorithms. 
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The thesis compares three different machine learning algorithms – k-Nearest 

Neighbors (k-NN), Adaptive Decision Tree (ADT) classifier, and Support Vector 

Machines (SVM) – using the Radial Basis Function (RBF) model. The objective of 

this comparison is to determine which algorithm provides the highest accuracy in 

mental state detection. 

 

As a result, experiments and analyses conclude that the SVM algorithm outperforms 

the other methods in mental state detection. The superior performance of SVM stems 

from its ability to work effectively on complex and high-dimensional datasets. These 

findings represent a significant step towards the development and implementation of 

EEG-based passive brain-computer interfaces. 

 

This thesis contributes to the development of methods that enable continuous and 

reliable monitoring of individuals' mental states by analyzing EEG signals and 

utilizing machine learning techniques. 

 

Keywords : Brain computer Interface, BCI, electroencephalographic (EEG), 

Support Vector Machines (SVM) , Feature extraction of Mental 

states. 

Science Code : 92419 
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ÖZET 

 

Yüksek Lisans Tezi 

 

MAKİNE ÖĞRENMEYİ KULLANARAK BEYİN-BİLGİSAYAR 

ARAYÜZLERİ İLE ZİHİNSEL DURUMLARIN EEG TABANLI 

ÖZELLİKLERİNİN ELDE EDİLMESİ 

 

Ahsan MUMTAZ 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı  

 

Tez Danışmanı:  

Dr. Öğr. Üyesi Iman ELAWADY  

Mayıs 2024, 74 sayfa 

 

Bu tez, elektroensefalografik (EEG) beyin aktivitesi görüntüleme ve makine öğrenme 

teknikleri kullanarak, kişinin odaklanmış, odaklanmamış veya uykulu olma gibi 

zihinsel dikkat durumlarını izleyen pasif beyin-bilgisayar arayüzlerinin geliştirilmesini 

incelemektedir. Çalışmanın amacı, zihinsel durumların doğru bir şekilde tespit 

edilmesi ve izlenmesi için uygun algoritmaların geliştirilmesi ve karşılaştırılmasıdır. 

 

Çalışmada, EEG verilerinin işlenmesi için kapsamlı bir adım dizisi oluşturulmuştur. 

Bu süreçte, EEG sinyallerinin ön işleme, özellik çıkarımı ve sınıflandırma aşamaları 

ele alınmıştır. Özellik çıkarımı aşamasında, sinyalden anlamlı bilgilerin elde edilmesi 

amacıyla çeşitli zaman ve frekans tabanlı yöntemler kullanılmıştır. Elde edilen 

özellikler, daha sonra sınıflandırma algoritmalarına girdi olarak verilmiştir. 
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Tezde, Radial Basis Function (RBF) modeli kullanılarak, k-en yakın komşu (k-NN), 

Adaptif Karar Ağacı (ADT) sınıflandırıcı ve Destek Vektör Makineleri (SVM) olmak 

üzere üç farklı makine öğrenme algoritması karşılaştırılmıştır. Bu karşılaştırmanın 

amacı, hangi algoritmanın zihinsel durum tespiti konusunda en yüksek doğruluğu 

sağladığını belirlemektir. 

 

Sonuç olarak, yapılan deneyler ve analizler neticesinde SVM algoritmasının diğer 

yöntemlere kıyasla zihinsel durum tespitinde daha yüksek bir performans gösterdiği 

tespit edilmiştir. SVM'nin üstün performansı, onun karmaşık ve yüksek boyutlu veri 

setleri üzerinde daha etkili çalışabilme yeteneğinden kaynaklanmaktadır. Bu bulgular, 

EEG tabanlı pasif beyin-bilgisayar arayüzlerinin geliştirilmesi ve uygulanması için 

önemli bir adım teşkil etmektedir. 

 

Bu tez, EEG sinyallerinin analiz edilmesi ve makine öğrenme tekniklerinin 

kullanılmasıyla, bireylerin zihinsel dikkat durumlarının sürekli ve güvenilir bir şekilde 

izlenmesini sağlayacak yöntemlerin geliştirilmesine katkıda bulunmaktadır. 

 

Anahtar Kelimeler :  Beyin Bilgisayar Arayüzü, BCI, Elektroensefalografik (EEG), 

Destek Vektör Makineleri (SVM), Zihinsel Durumların 

Özellik Çıkarımı 

Bilim Kodu : 92419 
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PART 1 

 

INTRODUCTION 

 

1.1. OVERVIEW 

 

Human interplay, both verbal and non-verbal, is fundamental to our each day lives. It 

enables us to specific feelings, deliver mind, and interact with our surroundings. 

However, for people with bodily disabilities due to accidents, ailments, or congenital 

conditions, conventional method of conversation may be significantly restrained or 

even not possible. This affords a considerable barrier to their capacity to engage with 

others and participate completely in society. Brain-Computer Interfaces (BCIs) offer 

a progressive solution by using establishing a direct communique pathway among the 

brain and external devices. By leveraging neuroimaging strategies including 

Electroencephalography (EEG), BCIs permit people to transmit messages, control 

devices, and engage with their surroundings the usage of neural pastime on my own 

[11]. This paradigm shift in communication technology holds large promise for 

reinforcing the great of existence for people with disabilities and unlocking new 

opportunities for human-computer interaction. 

 

1.2. MOTIVATION 

 

The motivation behind this research lies in the profound impact that BCIs can have on 

the lives of individuals with severe motor disabilities or communication impairments. 

By providing a means of communication and control that bypasses traditional 

neuromuscular pathways, BCIs offer newfound independence and autonomy to those 

who were previously unable to express themselves or interact with their environment. 

This not only improves their quality of life but also opens up avenues for personal 

expression, social interaction, and participation in various activities. Additionally, the 

advancement of BCI technology has broader implications for fields such as healthcare, 
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assistive technology, gaming, and neurorehabilitation. By addressing the technical 

challenges and limitations of current BCI systems, this research aims to contribute to 

the development of more robust, reliable, and user-friendly interfaces that can benefit 

a wide range of users. 

 

1.3. PROBLEM STATEMENT 

 

Despite the tremendous potential of BCIs, several challenges remain to be addressed. 

One of the primary challenges is the accurate extraction of relevant information from 

EEG signals. EEG recordings, while rich in data, are also inherently noisy and subject 

to various artifacts, which can complicate the interpretation of neural activity [27]. 

Furthermore, the translation of raw EEG signals into meaningful commands or 

instructions for external devices requires sophisticated signal processing techniques 

and machine learning algorithms. Another challenge is the lack of standardized 

methodologies for assessing the accuracy and performance of BCI systems. Evaluating 

the effectiveness of different signal processing methods and machine learning models 

in real-world scenarios is essential for advancing the field and ensuring the practical 

utility of BCIs for end-users. 

 

1.4. AIM AND OBJECTIVES 

 

The aim of this studies is to increase an effective framework for EEG-based totally 

statistical feature extraction of mental states with Brain-Computer Interfaces. To 

achieve this aim, the subsequent objectives could be pursued: 

 

Gain a comprehensive understanding of the underlying principles and programs of 

Brain-Computer Interfaces (BCIs) and Electroencephalography (EEG). 

Investigate the hardware and software program requirements for implementing an 

EEG-based totally BCI gadget, along with EEG electrode placement, sign acquisition 

hardware, and software gear for facts processing and evaluation. 

Develop robust signal processing strategies for extracting applicable features from 

EEG alerts, such as strategies for artifact removal, feature extraction, and 

dimensionality reduction. 
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Implement machine gaining knowledge of algorithms, such as Support Vector 

Machines (SVM) [50], for mental state detection and classification based totally on 

extracted EEG features. 

Evaluate the accuracy and overall performance of various device mastering fashions 

for mental kingdom classification using actual-world EEG statistics accrued from 

human members. 

 

Explore capacity applications of EEG-based BCI systems in various domain names, 

including healthcare, assistive technology, gaming, and human-pc interaction. 

 

1.5. CONTRIBUTIONS 

 

This research contributes to the advancement of EEG-based BCI systems by 

addressing key challenges in signal processing and machine learning. By developing 

simplified and improved methods for extracting features, artifact reduction, and mental 

state classification, this work aims to improve the effectiveness, reliability, and user 

experience of BCIs for individuals with disabilities. Additionally, by evaluating the 

performance of different machine learning models in real-world scenarios, this 

research provides valuable insights into the strengths and limitations of current BCI 

technology and informs future development efforts. 

 

1.6. STRUCTURE OF THE THESIS 

 

The thesis is structured as follows: 

Chapter 1 provides an overview of Brain-Computer Interfaces (BCIs) and 

Electroencephalography (EEG), highlighting their significance, historical 

development, and applications in various fields. 

 

Chapter 2 explores the hardware and software requirements for implementing an 

EEG-based BCI system, including EEG electrode placement, signal acquisition 

hardware, and software tools for data processing and analysis. 
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Chapter 3 delves into the details of data acquisition and signal processing techniques 

for feature extraction from EEG signals, including methods for artifact removal, 

feature extraction, and dimensionality reduction. 

 

Chapter 4 presents the methodology for mental state detection and classification using 

machine learning algorithms, including Support Vector Machines (SVM), Neural 

Networks, and Ensemble methods. 

 

Chapter 5 Evaluates the accuracy and performance of different machine learning 

models for mental state classification using real-world EEG data collected from human 

participants, including quantitative analysis of classification accuracy, precision, 

recall, and F1-score. 

 

Finally, concludes the thesis by summarizing the key findings, discussing their 

implications for future research and development, and suggesting directions for further 

investigation. 
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PART 2 

 

LITERATURE REVIEW  

 

The use of Brain-Computer Interfaces (BCIs) in conjunction with system mastering 

for tracking mental states through EEG information is a rapidly advancing field. This 

literature assessment explores latest advancements in EEG-based totally BCIs, 

focusing on methods for characteristic extraction and category of mental states, with 

an emphasis on the brand new research findings. 

 

Electroencephalography (EEG) is a broadly applied non-invasive method for 

recording brain electrical interest, offering excessive temporal resolution. EEG alerts 

have been validated to effectively replicate diverse cognitive and emotional states, 

such as attention, relaxation, and drowsiness, with the aid of analyzing feature patterns 

in brainwave frequencies [1]. Recent studies have highlighted the capability of EEG 

in actual-time monitoring of intellectual states, essential for packages in each clinical 

and non-scientific settings [2]. 

 

The extraction of applicable features from uncooked EEG records is essential to the 

fulfillment of intellectual country monitoring. Commonly extracted features consist of 

energy spectral density, wavelet coefficients, and Hjorth parameters. Research 

indicates that specific frequency bands (e.G., delta, theta, alpha, and beta) correlate 

with exceptional cognitive states. For example, expanded theta pastime is regularly 

related to drowsiness, at the same time as beta interest is related to focused attention. 

 

Power Spectral Density (PSD) is often used to quantify the electricity distribution of 

the EEG sign across extraordinary frequency bands. Studies have shown that PSD 

features can efficiently distinguish among various intellectual states, together with 

alertness and drowsiness [3]. Wavelet transform affords a time-frequency 

representation of the EEG signal, making it appropriate for reading non-desk bound 
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alerts like EEG. This approach has been efficiently implemented to extract capabilities 

indicative of cognitive workload and stress [4]. 

 

Machine learning algorithms are essential for classifying EEG information into 

distinct mental states. Support Vector Machines (SVM), ok-Nearest Neighbor (k-NN), 

and choice tree classifiers are many of the most generally used techniques. 

 

Support Vector Machines (SVM) are extensively employed in EEG-based totally BCIs 

because of their capability to address excessive-dimensional data and robustness 

against overfitting. Recent studies have proven the excessive accuracy of SVMs in 

classifying mental states. For instance, Zhang et al. (2022) accomplished an accuracy 

of over 90% in detecting cognitive load using SVMs [5]. The ok-Nearest Neighbor (k-

NN) set of rules classifies facts points primarily based on the bulk class amongst their 

ok nearest neighbors. Although easy, its performance may be stimulated via the choice 

of k and the gap metric used. Recent programs of ok-NN in EEG-based totally emotion 

popularity have proven promising results, with accuracies comparable to extra 

complex fashions [6]. Decision bushes break up statistics into branches based totally 

on function values, taking pictures complex choice obstacles. While liable to 

overfitting, recent advances in pruning strategies have advanced their robustness. 

Decision bushes had been effectively utilized in real-time mental country category 

systems due to their fast computation instances [7]. 

 

Comparative studies have shown that whilst SVMs typically outperform different 

classifiers in phrases of accuracy, the choice of set of rules can depend on the dataset 

and computational resources. For example, a examine through Li et al. (2021) 

evaluating SVM, okay-NN, and selection bushes for EEG-primarily based intellectual 

nation classification determined that SVMs provided the exceptional universal overall 

performance, however choice timber supplied faster type times, beneficial for real-

time applications [8]. 

 

BCIs utilizing EEG information to monitor attention in the course of continuous 

overall performance obligations are designed to evaluate and decorate cognitive 

characteristic. These systems require real-time processing and high accuracy. 
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Modifications to standard EEG headgear, blended with superior machine learning 

algorithms, have appreciably advanced the accuracy and usability of these systems. A 

latest have a look at proven that a modified EEG headgear, together with an SVM-

primarily based classifier, may want to accurately determine interest states with an 

accuracy of 92.6% in a continuous overall performance venture [9]. 

 

Future research need to focus on enhancing the robustness and generalizability of 

EEG-based totally BCIs throughout various populations and environments. Exploring 

hybrid models that combine multiple classifiers or integrate deep learning techniques 

may want to further beautify category performance. Additionally, growing user-

friendly and non-intrusive EEG devices will be critical for vast adoption in diverse 

applications [10]. 

 

Advancements in EEG-based totally BCIs and device getting to know have supplied 

powerful equipment for tracking mental states. The use of SVMs, ok-NN, and 

selection tree classifiers has shown promising outcomes in accurately detecting states 

including focused interest, unfocused attention, and drowsiness. Continued research 

and development on this area keep awesome capability for applications in healthcare, 

productivity enhancement, and beyond.  
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PART 3 

 

BRAIN COMPUTER INTERFACE 

 

3.1. INTRODUCTION OF BCI 

 

(BCIs) Brain-computer interfaces are revolutionary technologies that allow direct 

communication between the human brain and external devices. These systems bridge 

the gap between the mind and machines, opening up a world of possibilities for 

individuals with neurological impairments, enhancing human capabilities, and 

transforming various aspects of life. BCIs are systems that translate brain signals into 

commands, allowing users to interact with their surroundings without relying on 

traditional neuromuscular pathways [11]. They intercept and interpret the electrical 

activity generated by the brain's neurons, which reflects the user's thoughts, intentions, 

and motor imagery [12]. 

 

3.2. HOW BCI WORKS 

 

Brain-computer interfaces (BCIs) operate by assessing brain activity and converting it 

into commands applicable for the control of external devices. This procedure 

encompasses three key steps. Figure. 3.1. illustrates set of steps of standard processing 

for communication and mobility BCIs. Common components within the set of steps 

encompass artifact suppression, feature extraction, and signal classification 

techniques. The outcomes of this process govern the control of communication or 

mobility aids. [12]. 
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Figure. 3.1. The main steps of BCI [12]. 

 

3.2.1. Signal Acquisition 

 

Brain-Computer Interfaces (BCIs) record neural activity using a number of sensors, 

including electroencephalography (EEG), magnetoencephalography (MEG), and 

functional magnetic resonance imaging (fMRI). Because it is non-invasive and 

relatively inexpensive, EEG is the most commonly used sensor in BCIs. EEG sensors 

are placed on the scalp to measure brain electrical activity. Figure. 3.2. [13]. 

 

 

Figure. 3.2. EEG Sensor locations on Scalp [13]. 
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Nowadays, there have been noteworthy advancements in EEG sensor technology, 

leading to enhancements in signal quality and resolution. A notable illustration is the 

work of researchers at the University of California, San Francisco [14], who have 

introduced a novel EEG sensor type characterized by heightened sensitivity and 

reduced susceptibility to noise compared to conventional EEG sensors. 

 

Another encouraging trend involves the adoption of wearable EEG devices [15]. These 

devices are typically more compact and comfortable than traditional EEG headsets, 

rendering them better suited for daily use. An instance is the Emotiv Epoc+, a wearable 

EEG headset designed for tasks such as mind-controlled video games and various other 

applications. 

 

3.2.2. Signal Processing 

 

After acquiring the brain signals, the next step involves processing them and extracting 

relevant features. This process includes signal filtering to eliminate noise and 

identifying patterns that correlate with distinct brain states or activities. 

 

Noteworthy progress in machine learning has resulted in substantial enhancements in 

signal processing algorithms for Brain-Computer Interfaces (BCIs). An illustrative 

example is the work conducted by researchers at the Massachusetts Institute of 

Technology) [16], who have introduced a groundbreaking algorithm capable of 

decoding brain signals with unprecedented accuracy. This algorithm is proficient in 

learning intricate patterns of brain activity associated with Mental states like focus or 

unfocus etc 

 

3.2.3 Feature Extraction 

 

Species possess distinctive features that distinguish them from one another. An 

essential aspect of Brain-Computer Interface (BCI) technology involves the capability 

to identify emotions by analyzing EEG data, facilitating a direct assessment of an 

individual's "inner" state. Various methods for extracting characteristics have been 
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explored, with insights from neuroscientific research often guiding the selection of 

appropriate features and electrode placements. 

 

Table. 3.1. illustrates different strategies for feature extraction, encompassing both 

linear and nonlinear approaches. Linear methods include Fast Fourier Transform 

(FFT), Wavelet Packet Decomposition (WPD), Eigenvector, Autoregressive (AR), 

Independent Component Analysis (ICA), Wavelet Transform (WT), and Principal 

Component Analysis (PCA). On the other hand, examples of nonlinear methods 

consist of fractal dimension (FD), higher-order spectrum (HOS), recurrence plots, 

phase space plots, correlation dimension (CD), Hurst exponent (H), largest Lyapunov 

exponent (LLE), and other entropy measures. 

 

Table 3.1. BCI Extracted Features [17], 

Feature Domain Data Type Extracted Features Abbreviated 

features 

Time HRV 

Signal 

Standard Deviation 

 

RR means Of 

differences 

 

Root Mean Square of 

the Successive 

Differences  

 

Standard Deviation of 

Successive differences 

 

Percentage of RR 

Differences 

SDNN 

 

 

MNN 

 

 

 

RMSSD 

 

 

 

SDSD 

 

 

 

PNN 

Frequency HRV 

Signal 

Estimation of the 

spectrum, low 

frequency, very low 

PSD, LF, VLF, 

HF 
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frequency, and high 

frequency bands 

Non - Linear HRV 

Signal 

Discrete wavelet 

transform, Point 

dimension, Detrended 

fluctuation analysis, 

Poincare, Hurst, 

Fractal dimension 

Correlation 

Dimension, Sample 

Entropy, Approximate 

Entropy  

DWT, PD, DFA, 

POINC, ARE, 

H, FD, CD, 

SampEnt, 

approxEnt 

Linear HRV 

Signal 

Geometric method, 

Statistical method, 

Time frequency 

method 

Geometric 

method, 

Statistical 

method, Time 

frequency 

method 

 

The features extracted are subsequently converted into commands for the operation of 

an external device. This translation process is facilitated by machine learning 

algorithms that undergo training on a dataset comprising brain signals and their 

corresponding commands. 

 

Recent studies have concentrated on the creation of machine learning algorithms 

characterized by increased robustness and adaptability to fluctuations in the user's 

brain activity. A case in point is the work conducted by researchers at the University 

of California, Berkeley [18], who introduced a novel algorithm capable of learning to 

interpret brain signals into commands, even in situations where the user's brain 

activity undergoes changes over time. 
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3.3. APPLICATIONS OF BCIs 

 

Brain-computer interfaces (BCIs) possess a diverse array of prospective uses, which 

encompass: 

 

 Reinstating motor abilities in paralyzed individuals: Brain-computer 

interfaces (BCIs) can be employed to govern artificial limbs and wheelchairs, 

enabling individuals with paralysis to recover lost functionality and self-

sufficiency. Hybrid brain-computer interface (BCI) systems are suggested to 

enhance the systematic efficiency of conventional BCIs by enabling multi-

degree control of a physical wheelchair [19]. 

 

 

Figure. 3.3. BCI for wheelchair control [19]. 

 

 Communication for people with locked-in syndrome: Communication for 

individuals with locked-in syndrome can be facilitated through the use of 

Brain-Computer Interfaces (BCIs). Locked-in syndrome refers to a state of 

paralysis and inability to talk or move. 
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 Controlling prosthetic limbs and exoskeletons: BCIs can be employed to 

govern prosthetic limbs and exoskeletons, enabling individuals with 

disabilities to execute intricate movements and accomplish difficult activities 

with greater naturalness. 

 Neurorehabilitation for stroke and other neurological disorders: Brain-

computer interfaces (BCIs) can be employed to aid individuals suffering from 

stroke and other neurological illnesses in regaining lost functionality. 

 Treatment of neurological disorders such as epilepsy and Parkinson's 

disease: Neurological illnesses including epilepsy and Parkinson's disease can 

be treated with BCIs, which offer brain feedback or stimulate targeted brain 

areas. 

 Enhancement of cognitive performance and decision-making: BCIs can be 

utilized to improve cognitive performance and decision-making abilities in 

those who are in good health. 

 Immersive gaming experiences: BCIs can create more immersive and 

interactive gaming experiences by directly connecting the player's brain to the 

game [20]. 

 

Brain-computer interfaces (BCIs) are an emerging area of study that have the capacity 

to fundamentally transform our methods of engaging with the surrounding 

environment. 

 

3.4.  CHALLENGES AND FUTURE DIRECTIONS 

 

Challenges 

 

BCIs are a rapidly developing field with the potential to revolutionize the way we 

interact with the world around us. 

 

 Signal quality and robustness: BCIs are still susceptible to noise and signal 

artifacts, which can limit their accuracy and reliability [16]. 
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 Ethical and social implications: The use of BCIs raises a number of ethical 

and social concerns, such as privacy, autonomy, and the potential for misuse 

[21]. 

 User acceptance and adoption: Widespread adoption of BCIs will depend on 

factors such as user acceptance, cost, and availability of training and support  

[22]. 

 

Future Directions 

 

 Development of more advanced signal processing algorithms: New 

algorithms are needed to improve the accuracy and robustness of BCIs in the 

face of noise and signal artifacts [23]. 

 Investigation of new BCI paradigms: Researchers are exploring new ways to 

use brain signals to control devices and interact with the world around us [24]. 

 Development of more user-friendly and accessible BCI systems: BCIs need 

to become more user-friendly and accessible in order to be widely adopted by 

people with disabilities and other user populations [25]. 

 

BCIs are a rapidly developing field with the potential to revolutionize the way we 

interact with the world around us. By addressing the challenges and pursuing the future 

directions outlined above, BCIs can have a profound impact on the lives of millions of 

people. 

 

3.5. CONCLUSION OF THE CHAPTER 

 

Brain-computer interfaces (BCIs) represent swiftly advancing technologies poised to 

reshape our interactions with the world. They hold promise across various 

applications, from restoring motor function in individuals with paralysis to facilitating 

communication for those with locked-in syndrome and enhancing cognitive 

performance. Despite these potentials, there are ongoing challenges, including the 

improvement of signal quality and robustness, addressing ethical and social 

considerations, and ensuring widespread user acceptance. Overcoming these 

challenges and charting future directions can lead to the transformative societal impact 
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of BCIs. In the subsequent chapter, we will delve into the significance of EEG in BCI 

and its role in extracting features from brain wave.
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PART 4 

 

ELECTROENCEPHALOGRAPHY (EEG) 

 

4.1. INTRODUCTION TO EEG 

 

Electroencephalography (EEG) is a non-invasive technique for recording electrical 

activity of the brain. It is widely used in clinical and research settings to assess brain 

function and diagnose neurological disorders. EEG recordings are typically obtained 

by placing electrodes on the scalp, which measure the voltage fluctuations generated 

by the brain's electrical activity [26] [27]. In order to accurately extract relevant data 

about specific tasks from EEG signals, modern signal analysis techniques and a close 

examination of the signals' distinct characteristics are essential. In order to improve 

our understanding of brain activity, [28].  states that precise identification and analysis 

of EEG data is crucial. The search results obtained from Google Scholar, PubMed, and 

Web of Science between 2016 and 2022 demonstrate the substantial interest in EEG 

as a topic of study, as illustrated in Fig 4.1. By giving a comprehensive explanation of 

denoising procedures—including mathematical formulations accompanied by 

pseudocodes—the paper presents a novel addition. Additionally, we outline the most 

recent advancements in the field of EEG, highlighting current challenges and 

discussing future directions [29] 
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Figure. 4.1. Bar graph illustrating the number of published papers over the years 

obtained from Google Scholar, PubMed, and Web of Science searches for the subject 

of the electroencephalogram (EEG) [29] 

 

EEG is used to evaluate a huge variety of mind capabilities, which include: 

• Brain interest: EEG may be used to degree the general stage of mind pastime, 

which can be beneficial in diagnosing conditions [30] consisting of epilepsy 

and coma. 

• Sensory processing: EEG may be used to have a look at how the brain 

strategies sensory statistics [31] inclusive of attractions and sounds. 

• Cognitive function: EEG can be used to evaluate cognitive feature, together 

with interest, memory, and language processing. 

• Motor function: EEG can be used to study how the brain controls movement. 

 

4.2. HOW ELECTROENCEPHALOGRAPHY (EEG) WORKS 

 

Electroencephalography (EEG) is a non-invasive technique designed to gauge electric 

activity inside the brain. It operates on the principle that synchronized firing of a 

collection of neurons generates a minute electrical signal. Electrodes located at the 

scalp choose up those voltage fluctuations, typically in the microvolt variety [32]. 

Subsequently, those indicators are amplified and recorded using an EEG device. 
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Figure. 4.2. An EEG allows measuring the electrical activity on the scalp using 

electrodes which are often fixated on an EEG cap [33] 

 

 

4.2.1. The Brain's Electrical Activity 

 

The mind is a exceptionally complex organ composed of billions of neurons, which 

can be the primary units of the fearful system. Neurons talk with each different through 

sending electrical signals thru their axons, lengthy, thin fibers that join neurons to 

different cells [32]. When a neuron fires, it releases an electrical impulse that travels 

down its axon, causing the discharge of neurotransmitters at the synapse, the junction 

among two neurons. These neurotransmitters then bind to receptors on the postsynaptic 

neuron, triggering the technology of an electrical sign within the postsynaptic neuron. 

The human brain capabilities as an organic electrochemical laptop, with neurons using 

chemical reactions to provide electrical activity. The electrochemical properties of 

neurons are liable for producing our movements, styles, and behavior.  When a neuron 

is stimulated by means of outside or internal stimuli, it transmits electrochemical 

impulses obtained from the dendrites along the axon to the following neuron, as 

depicted in Figure. 4.Three. An electroencephalogram (EEG) is a way used to come 

across the voltage versions of the mind's electrical interest at some stage in a quick 
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time period, normally 20-40 mins. This is done by using putting severa electrodes on 

the scalp [34]. 

 

 

Figure. 4.3. Structure of the neuron [34] 

 

4.2.2. Generating EEG Recordings 

 

EEG electrodes are placed at the scalp to capture the electric hobby of the brain. These 

electrodes are typically made from silver or gold and are packed with a conductive gel 

to set up most excellent contact with the pores and skin. A connection is made between 

the electrodes and an EEG machine, which both amplifies and records the electrical 

signals identified by the electrodes. 

 

4.2.3. EEG Waves and Brain Activity: 

 

Recordings from EEG typically reveal a series of waves, each characterized by a 

specific frequency and amplitude. The frequency of an EEG wave is quantified in hertz 

(Hz), and its amplitude is measured in microvolts (μV). Various types of brain activity 

generate distinct EEG waves. For instance, alpha waves, linked to relaxed 

wakefulness, exhibit a frequency of 8-12 Hz, while beta waves, associated with active 

mental engagement, display a frequency of 12-30 Hz. [35] . Figure. 4.4. 
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Figure. 4.4. Different EEG waves output and it’s Mental state results [35] 

 

4.3. HISTORY OF EEG 

 

Hans Berger, the father of EEGs, wanted to be an astronomer. Berger quit his 

mathematics studies at Friedrich Schiller University of Jena after one semester to join 

the army for a year. After falling off his horse, his distant sister sent him a telegraph, 

feeling he was in bad shape. Since Berger was kilometers from his sister, he thought 

this was telepathic communication and was inspired to research psychic experiences' 

physiological roots. He earned a medical degree from Jena University in 1897 [36].  

 

Berger researched neurology, brain circulation, psychophysiology, and temperature. 

In 1924 [36], Berger performed the first EEG recording of human brain activity, named 

‘Elektrenkephalogramm’, following Richard Caton's animal studies.  

 

Berger recorded intracerebral brain activity in skull defect patients by putting the 

electrode in the periosteum and inserting silver wires under the scalp at the front and 

back. By 1927, he could obtain readings from an unbroken skull with more sensitive 

equipment and created a non-invasive recording method utilizing silver foil electrodes 

secured to the head by a rubber bandage. He recorded the first human brain electrical 

activity and championed translating the brain recording technology from animals to 

humans, which Polish scientist Adolf Beck had used on frogs and English physiologist 
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Richard Caton had used on rabbits and monkeys. Berger often tested Klaus and Ilse, 

his children [36] 

 

Berger originally described normal and aberrant brainwaves, including the alpha wave 

rhythm (Berger's wave) and the quicker beta waves. 

 

Berger initially described “the nature of EEG alterations in brain diseases such as 

epilepsy”. "The discovery of the EEG was not only a breakthrough in neurophysiology 

but also that this technology was of outstanding importance for its diagnostic value," 

he concluded. In 1937, an international forum recognized his discoveries, and by 1938 

[37], electroencephalography was widely recognized by scholars, leading to its use in 

the US, England, and France for diagnostic purposes. Berger was nominated for the 

1940 Nobel Prize in Physiology or Medicine but declined owing to the war [37]. 

 

4.4. CLINICAL APPLICATIONS OF EEG 

 

EEG serves as a versatile tool with diverse applications in clinical settings, including: 

 

4.4.1. Diagnosing Neurological Disorders 

EEG is employed for diagnosing various neurological disorders like epilepsy, 

dementia, and sleep disorders. By identifying characteristic EEG patterns, clinicians 

gain valuable insights into underlying brain activity, facilitating informed diagnostic 

decisions [38]. 

 

4.4.2. Monitoring Brain Function 

In critical care or cases of head injuries, EEG can monitor brain function. Continuous 

EEG monitoring provides real-time assessment of brain activity, allowing for early 

detection of potential complications. 

 

4.4.3. Brain-Computer Interfaces (BCIs) 

EEG plays a pivotal role in Brain-Computer Interfaces (BCIs), enabling users to 

control external devices, such as computers or prosthetics, using their thoughts. 
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Through the analysis of EEG signals, BCIs interpret users' intentions and translate 

them into commands for the external device [39]. 

 

4.5. ADVANTAGES AND LIMITATIONS OF EEG 

 

EEG presents several advantages as a neuroimaging technique: 

 

4.5.1. Non-Invasive 

EEG is a non-invasive procedure, eliminating the need for surgery or substance 

injections. This characteristic renders it a safe and well-tolerated technique for both 

clinical and research applications. 

 

4.5.2. High Temporal Resolution 

Offering high temporal resolution, EEG permits the real-time measurement of brain 

activity. This capability facilitates the examination of dynamic brain processes, 

including alterations in neural activity linked to sensory perception or cognitive tasks. 

 

4.5.3. Cost-Effective 

Compared to other neuroimaging methods like fMRI or MEG, EEG is relatively cost-

effective. This affordability enhances its accessibility for both clinical and research 

purposes. 

 

However, alongside its advantages, EEG also has limitations: 

 

4.5.4. Low Spatial Resolution 

EEG possesses low spatial resolution, lacking precision in pinpointing the exact source 

of brain activity. This limitation arises from the skull's electrical conductivity, causing 

distortion and attenuation of the electrical signals generated by the brain. 

 

4.5.5. Susceptibility to Artifacts 

EEG recordings are susceptible to artifacts, signal distortions caused by factors such 

as eye movements, muscle activity, and external electrical interference. These artifacts 

pose challenges in accurately interpreting EEG data. 
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4.6. THE FUTURE OF EEG RESEARCH 

 

Ongoing EEG research is dynamic, with scientists exploring novel techniques and 

applications for this valuable tool. Some promising areas of investigation include: 

 

Development of New EEG Technologies: Researchers are actively working on 

developing innovative EEG technologies that offer improved spatial resolution and 

reduced susceptibility to artifacts. This includes the exploration of dry EEG electrodes, 

eliminating the need for conductive gel and enhancing comfort and convenience in 

use. 

 

Integration with Other Brain Imaging Techniques: EEG is undergoing integration 

with other brain imaging techniques, such as fMRI and MEG, to provide a more 

comprehensive understanding of brain function. This multimodal neuroimaging 

approach is generating valuable insights into the intricate neural mechanisms 

governing brain activity. 

 

Personalized Medicine Applications: Exploration of EEG extends to personalized 

medicine applications, particularly in tailoring treatment strategies for neurological 

disorders based on individual EEG patterns. This personalized approach holds promise 

for enhancing treatment outcomes and overall patient care. 

 

4.7. CONCLUSION OF THE CHAPTER 

 

Electroencephalography (EEG) stands as a crucial non-invasive technique in both 

clinical and research domains, offering valuable insights into brain function and aiding 

in the diagnosis of neurological disorders. The chapter provides a comprehensive 

overview of EEG, detailing its working principles, historical development, clinical 

applications, advantages, and limitations. The presented information underscores the 

significance of precise signal analysis techniques in extracting meaningful data from 

EEG recordings. The documented surge in research interest, as evidenced by the 

increasing number of published papers over the years, highlights the continued 
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relevance and importance of EEG in scientific inquiry. Furthermore, the discussion on 

the future of EEG research points towards promising advancements, including the 

development of new technologies, integration with other imaging techniques, and 

personalized medicine applications. As EEG continues to evolve, it holds the potential 

to enhance our understanding of the intricate neural processes governing brain activity 

and contribute to innovative approaches in diagnostics and personalized treatment 

strategies for neurological disorders. 

. 
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PART 5 

 

WORK ENVIRONMENT 

 

5.1. INTRODUCTION OF THE CHAPTER 

 

Before initiating the project, it is crucial to define the specifications of our work 

environment, encompassing both hardware and software components. Kaggle stands 

out as a prominent global community for data science, providing robust tools and 

resources to support individuals in achieving their data science goals. All brain signal 

datasets were sourced from Kaggle, and the raw experimental data is accessible on the 

Kaggle website [40].Subsequently, I processed these datasets to derive meaningful 

findings, focusing on data intervals of 0-10 minutes for concentration, 10-20 minutes 

for lack of focus, and 20-30 minutes for drowsiness. The initial two files represent 

practice data, and for analysis, I will utilize the last 5 files from each participant. 

Additionally, I will elaborate on the essential components of the datasets. 

In this chapter, the discussion will cover various hardware components, including the 

EMOTIV device and EEG sensors. Software components such as pandas, scipy, the 

Numpy library, and the programming language Python will also be addressed. 

 

5.2. HARDWARE 

 

5.2.1. EEG Electrodes 

 

EEG electrodes are small, metal discs which are connected to the scalp to document 

electric activity in the brain. They are utilized in a variety of clinical approaches, such 

as electroencephalography (EEG), evoked capacity (EP), and occasion-associated 

capability (ERP) studies. EEG electrodes are commonly product of silver/silver 

chloride (Ag/AgCl) or gold, and they are packed with a conductive gel or paste to 

make certain correct contact with the scalp [41]. 
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Figure. 5.1. EEG Sensor Placed on scalp 

 

There are two main types of EEG electrodes: dry and wet. Dry electrodes do not 

require any gel or paste, and they are typically used for short-term recordings. Wet 

electrodes require gel or paste to ensure good contact with the scalp Figure. 5.1, and 

they are typically used for longer-term recordings. 

 

EEG electrodes are placed on the scalp according to the International 10-20 system 

Figure. 5.2. This system is a standardized way of placing electrodes on the scalp that 

ensures that recordings from different patients can be compared. 

 

EEG electrodes are a safe and effective way to record electrical activity in the brain. 

They are used in a variety of medical procedures to diagnose and monitor brain 

disorders. 

 Figure. 5.2. International 10-20 system for EEG [42].        
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The Emotiv EPOC gadget, worn on the head, records brain waves using Electro 

Encephalography and transmits data wirelessly. Figure 5.3. provides a perspective of 

the device. This device can be used for study or fun. 

5.2.2. System Requirements  

 

Below are the minimum system requirements for working on BCI and EEG signal 

processing:   

CPU: 

A powerful CPU is essential for real-time BCI processing. A quad-core or octa-core 

processor is recommended. 

RAM: 

BCI processing can be memory-intensive, so 8GB of RAM or more is recommended. 

Storage: 

BCI data can be large, so a large hard drive or SSD is recommended. 

Graphics Card: 

A dedicated graphics card is not required for BCI processing, but it can be helpful for 

visualizing EEG data. 

Operating System: 

Windows, macOS, or Linux can be used for BCI processing.  

 

 

Figure. 5.3. Emotiv EPOC EEG [43].        
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Table 5.1. Minimum System Requirements 

Component Minimum Recommended 

CPU Dual-core Quad-core or octa-core 

RAM 4GB 8GB or more 

Storage 500GB 1TB or more 

Graphics Card Integrated Dedicated (optional) 

Operating System 
Windows, macOS, or 

Linux 
 

 

5.3. SOFTWARE 

 

5.3.1. EEGLab 

 

EEGLAB stands as an open-source toolbox designed for the evaluation of 

electroencephalography (EEG) facts, created by way of Arnaud Delorme and Scott 

Makeig. Widely adopted through researchers and clinicians globally, EEGLAB offers 

a complete set of functions for facts preprocessing, visualization, and analysis. These 

consist of: 

 

Data Importing and Exporting: 

EEGLAB facilitates the import and export of data from various file formats, including 

EDF, BIDS, and BV. 

 

Data Preprocessing: 

EEGLAB provides a range of tools for data preprocessing, encompassing filtering, 

artifact rejection, and channel interpolation. 

 

Data Visualization: 

EEGLAB offers diverse tools for data visualization, such as time-frequency plots, 

topographic maps, and event-related potentials (ERPs) [42]. 

 

Statistical Analysis: 
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EEGLAB includes various tools for statistical analysis, covering t-tests, ANOVAs, 

and correlation analysis. 

 

Source reconstruction:  

EEGLAB provides a variety of tools for source reconstruction, such as LORETA and 

sLORETA. 

5.3.2 PyCharm 

 

PyCharm is an included development environment (IDE) for Python evolved by means 

of JetBrains. It is a famous IDE for Python development, and it's far utilized by a 

massive wide variety of builders. 

 

PyCharm provides a wide range of features for Python development, including: 

 

Code completion: PyCharm gives code of completion for Python code, which can 

help you to write down code greater quick and as it should be. 

 

 

 

 

  

Figure. 5.4. EEGLab Output on different frequencies        

  



31 

 

Code inspection: PyCharm presents code inspection for Python code, which can help 

you to discover and fix capacity insects on your code. 

 

Refactoring: PyCharm offers refactoring gear for Python code, which let you to 

enhance the great of your code. 

 

Debugging: PyCharm affords debugging gear for Python code, which permit you to 

to debug your code. 

 

Testing: PyCharm offers testing tools for Python code, which let you to test your code. 

 

Profiling: PyCharm affords profiling equipment for Python code, which permit you 

to to discover overall performance bottlenecks for your code.  

 

In addition to these capabilities, PyCharm also affords a number of different features 

that make it a powerful and versatile IDE for Python improvement, including: 

 

A customizable consumer interface: PyCharm's consumer interface can be 

customized to fit your man or woman wishes. 

 

A extensive variety of plugins: PyCharm helps a wide range of plugins, which could 

add extra functionality to the IDE. 

 

Integration with version manage systems: PyCharm may be integrated with popular 

version manage systems, which include Git and Mercurial. 

 

Support for far off improvement: PyCharm can be used to increase Python 

applications on far flung servers. 

 

PyCharm is available in  editions: Community and Professional. The Community 

Edition is free and open-source, and it offers a wide variety of functions for Python 

improvement. The Professional Edition is a business product, and it includes additional 

functions, along with help for scientific computing and web improvement. 
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5.3.3. Python 

 

Python is a popular programming language for brain-computer interface (BCI) 

applications due to its simplicity, versatility, and extensive library support. It offers a 

range of tools and libraries that facilitate various aspects of BCI development, 

including data acquisition, signal processing, feature extraction, and machine learning. 

 

Data Acquisition 

 

Python offers libraries such as PyBCI and NeuroPy that facilitate seamless interaction 

with BCI hardware devices. These libraries enable real-time data acquisition from 

various neuroimaging modalities, including EEG and MEG, handling the intricacies 

of device communication and data streams effectively [44]. 

 

Signal Processing 

 

In the domain of signal processing, Python boasts a diverse ecosystem of libraries, 

including SciPy, NumPy, and PyBioSignal. These tools are instrumental in tasks such 

as filtering, artifact removal, and feature extraction from raw neurophysiological data 

[45].They empower developers to clean, preprocess, and transform acquired signals 

into a format suitable for in-depth analysis, allowing a focused approach to core BCI 

algorithms. 

 

Feature Extraction 

 

Feature extraction plays a pivotal role in transforming preprocessed signals into 

meaningful representations that capture underlying neural activity patterns. Python 

libraries like MNE-Python and OpenBCI provide robust tools for extracting relevant 

features, such as power spectral density, event-related potentials, and connectivity 

measures [46]. These resources empower developers in capturing essential 

information for further analysis and interpretation. 
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Machine Learning 

 

Machine learning plays a crucial role in BCI applications, enabling the classification 

of mental states, control of external devices, and decoding neural signals. Python offers 

powerful machine learning libraries like scikit-learn, TensorFlow, and PyTorch that 

provide algorithms for classification, regression, and deep learning [47]. ML plays a 

crucial role in improving the accuracy and performance of EEG-based BCIs. By 

effectively extracting meaningful features from EEG signals, selecting appropriate ML 

algorithms, and continuously adapting to user variations, we can create more robust 

and reliable BCI systems that can significantly impact various fields, including 

healthcare, communication, and human-computer interaction.  

 

5.4. CONCLUSION OF THE CHAPTER 

 

This chapter delineates the necessary hardware and software components essential for 

the development of brain-computer interface (BCI) applications. The hardware 

prerequisites encompass EEG electrodes and a computer system meeting minimum 

system requirements. On the software side, the components include EEGLab, 

PyCharm, and the Python programming language. Each of these tools contributes 

specific functionalities critical for BCI development: EEGLab provides a 

comprehensive toolbox for EEG analysis, PyCharm serves as a robust IDE for Python 

development, and Python offers an extensive library ecosystem for tasks ranging from 

data acquisition to machine learning. 

 

In the forthcoming chapter, the focus will be on organizing and utilizing unprocessed 

signals for Signal acquisition and feature extraction. This approach aims to facilitate 

the examination of outcomes in the BCI development process.
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PART 6 

 

METHODOLOGY 

 

6.1. PROPOSED METHODOLOGY 

 

This detailed methodology involves a systematic approach to analyzing EEG signals 

for the purpose of identifying distinct mental states. It begins with the acquisition of 

raw EEG data from experiments designed to assess attention levels using a passive 

EEG BCI. The data is then subjected to pre-processing steps, including signal 

conditioning with high-pass Butterworth filters to eliminate noise and artifacts while 

preserving neural information. Feature extraction techniques, such as Short-Time 

Fourier Transform (STFT), are applied to analyze the frequency content of the EEG 

signals over time. This provides insights into how neural activity varies across 

different mental states. Additionally, power spectrum analysis is conducted to examine 

the distribution of signal power across frequency bands, further characterizing the EEG 

signals. Data binning is employed to reduce the dimensionality of the data and capture 

meaningful patterns in the signals. This involves combining adjacent frequency bins 

into broader frequency bands, facilitating the identification of relevant features for 

mental state detection. 

 

Finally, machine learning-based classification using Least Squares Support Vector 

Machines (SVM) is utilized to detect specific mental states based on the extracted 

features from EEG signals. SVM classifiers are trained to discriminate between 

different mental states, such as "focused" and "unfocused," using spectral features 

derived from EEG data. This approach leverages advanced signal processing 

techniques and machine learning algorithms to enhance the accuracy and reliability of 

mental state detection, ultimately contributing to the development of more effective 

Brain-Computer Interface systems. 
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6.2. SIGNAL ACQUISITION: 

 

6.2.1. Raw Data 

 

This compilation consists of 34 experiments (eeg_record1.mat…………. 

eeg_record34.mat) designed to assess the attention levels of individuals using passive 

EEG BCI (Brain-Computer Interface). Each Matlab file encapsulates the data object 

obtained from the EMOTIV device after a single experiment. The raw data is stored 

in the variable o.data, which is an array of dimensions {number-of-samples}x25. Each 

column o.data(:,i) represents a single data channel. The frequency at which samples 

are taken is 128 Hz. 

 

We don't know which data are useful I have to plot all the channels Figure. 6.2. There 

are 14 channels [ 'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1', 'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 

'AF4'] 

Figure. 6.1. Research methodology [48]. 
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6.2.2. Select Useful Channels 

 

Finally, program selects a subset of channels (['F7', 'F3', 'P7', 'O1', 'O2', 'P8', 'AF4']) 

that appear to have the highest-quality EEG signals based on the plots Figure. 6.3. 

These channels may be used in subsequent analyses or processing steps.  

 

  

  Figure. 6.2. Plot of all 14 channels 

Figure. 6.3. Plot of useful channels 
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6.2.3. Signal conditioning (filtering) 

 

High-pass Butterworth filters are commonly employed in electroencephalography 

(EEG) signal processing to eliminate low-frequency artifacts and noise while 

preserving the vital high-frequency components that carry the underlying neural 

information [49] [45]. These filters effectively attenuate unwanted signals such as 

muscle activity, electrode-skin interface artifacts, and DC offset, allowing for a clearer 

representation of the brain's electrical activity. The cutoff frequency of the high-pass 

filter is typically set to a value between 0.1 and 1 Hz, depending on the specific 

application and the desired level of noise reduction [44]. By employing high-pass 

Butterworth filters, researchers and clinicians can extract meaningful information from 

EEG signals with greater accuracy, leading to improved understanding of brain 

function and enhanced diagnostic capabilities. 

 

Therefore, when applying a Highpass filter with a cutoff frequency of 0.16 Hz. All 

frequencies below 0.16 Hz will be eliminated. The Butterworth high-pass filter has 

been implemented using the specified cutoff frequency and sampling rate of 128 Hz 

Figure. 6.4. 

 

 

 

Figure. 6.4.  A code which set filter of 0.16 Hz cutoff frequency and sampling rate of 128 Hz 
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The variable "feature_names" seemingly encompasses the names of the features that 

will be retrieved from the EEG data. The feature name appears to be a combination of 

the channel name and the frequency range, with an underscore (_) separating them. 

The frequency ranges are observed to increase by 0.5 Hz from 0.5 Hz to 18.0 Hz. 

In Figure. 6.5. red signal represents the raw signal for one of the EEG channels in the 

'unfocus' state for the 'eeg_record3' trial. The green signal represents the same channel 

after it has been filtered using the high-pass filter with a cut-off frequency of 0.16 Hz. 

The plot shows that the high-pass filter has removed the low-frequency drift in the 

signal, and the filtered signal has a zero-mean. Therefore, the high-pass filter has 

validated the elimination of unwanted DC offset from the signal. 

In Figure. 6.6. red signal represents the raw signal for one of the EEG channels in the 

'unfocus' state for the 'eeg_record3' trial, By using same high-pass filter with a cut-off 

frequency of 0.16 Hz 

  
Figure. 6.5. Plot of 'eeg_record3' trial raw and filtered signals 
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In this way we have calculated 34 plots for all 34 trials. 

 

6.2.4. Short-time Fourier Transform (STFT) 

 

The Short-Time Fourier Transform (STFT) is a powerful tool for analyzing non-

stationary signals, like speech, music, and biosignals. It provides a time-frequency 

representation, revealing how the frequency content of the signal changes over time 

[50] [51]. 

 

The STFT essentially divides a signal into smaller segments and performs a Fourier 

transform on each segment. This allows us to see how the frequency content evolves 

over time. 

The formula for the STFT X(t,ω) of a signal x(τ) is given [50]: 

 

𝑋(𝑡, 𝜔)  = ∑ 𝑥(𝜏) ⋅ 𝑤(𝜏 − 𝑡) ⋅ 𝑒 − 𝑗𝜔𝜏𝑑𝜏∞
−∞                                                        (6.1) 

 

where w(τ−t) is the window function, and ω is the angular frequency. The spectrogram 

is defined as the square of the STFT amplitudes. S(t,ω) = |XSTFT(t,ω)|2 and quantifies 

the frequency composition of the EEG signals near a given time point. The raw EEG 

 

Figure. 6.6. Plot of 'eeg_record33' trial raw and filtered signals 
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data was acquired from the Epoc Emotiv headset in 7 channels at a sampling frequency 

of Fs = 128 Hz. The STFT calculation was performed separately for each channel. 

STFT was computed using  T = 15 second fragments of EEG signals and m = 1024 

fast discrete Fourier transform (DFT). The Blackman windowing function was used to 

make the EEG signal taper at both ends of each fragment. The Blackman windowing 

function is defined by [39]. 

 

𝑤(�̂�) = {
0.42 − 0.5 cos

2𝜋�̂�

𝑀−1
+ 0.08 cos

4𝜋�̂�

𝑀−1
, 0 ≤ �̂� < 𝑀

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                        (6.2) 

 

 

 

where M is the total number of time points within the window (M = Fs · ΔT = 1920) 

and \hat{t} = 0,1,…,M−1 is a discrete time-index within the window. STFT was then 

calculated at a time step of 1 s producing a set of time-varying DFT amplitudes 

XSTFT(t,ω) at 1 s intervals within each input EEG channel.  

 

After calculating STFT in each EEG channel, the absolute squares of the DFT 

amplitudes were calculated to construct the time dependent power spectrum (that is, 

spectrogram) of t signal S(t, ω) in each channel as discussed above. Due to m = 1024 

points used in DFT, the obtained spectrum characterized the power distribution in the 

EEG signal over m/2 + 1 = 513 frequencies ωk = kFs/m = 0.125k Hz, where k changed 

between 0 and m/2 = 512. These were subsequently binned into 0.5 Hz frequency 

bands by using average, thus, evaluating an average spectral power in each 0.5 Hz 

frequency band from 0 to 64 Hz. The frequency range was then restricted to 0–18 Hz 

so that only 36 frequencies, Ωk = k · 0.5 Hz, k = 1,…,16, were retained in the dataset. 

The constant component Ω = 0 Hz was discarded. Finally, the binned and frequency 

Figure. 6.7. A code which Calculate STFT 
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restricted spectrograms S(t, Ω) were temporally smoothed by using a 15 s-running 

average. 

 

The STFT is calculated using a Blackman window of size 128 with 0 overlap 

Figure.6.7. The STFT is calculated for 1-second windows of data, and the resulting 

spectrogr`ams are stored in dictionaries with keys 'power_focus', 'power_unfocus', and 

'power_drowsy'. These dictionaries have the same keys as the original data dictionary 

and store the spectrogram for each channel of each trial. The spectrogram is calculated 

as the squared magnitude of the STFT coefficients. 

 

Figure. 6.8. A Pseudocolor plot for a single EEG recording ('eeg_record18') in the 

focused state for 7 channels 
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After STFT calculation will get the power values using a pseudocolor plot for a single 

EEG recording ('eeg_record18', 'eeg_record33') in the focused state Figure. 6.8. & 

Figure. 6.9. The pcolormesh() function is used to create the plot, with the time and 

frequency values being the X and Y axes, respectively, and the power values being 

represented by color. It’s creating a separate plot for each of the 7 channels in the EEG 

recording. 

 

In this way got 34 Power values spectrograms of EEG recordings in the focused state, 

34 Power values spectrograms of EEG recordings in the unfocused state and 34 Power 

values spectrograms of EEG recordings in the drowsy state for 7 channels each 

recording. 

 

6.2.5. Power Spectrum 

 

The power spectrum of a signal is a representation of how the power of the signal is 

distributed across different frequencies. Here in Figure. 6.10. & Figure. 6.11. we can 

see Power distribution of two trials on specific time interval  

Figure. 6.9. A pseudocolor plot for a single EEG recording ('eeg_record33') in the          

focused state for 7 channels 
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Figure. 6.10. The power spectrum of a specific time interval of eeg_record18 Trial 

 

Figure. 6.11. The power spectrum of a specific time interval of eeg_record33 Trial 
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In this way got 34 Power distribution plots for 7 channels each recording. 

 

6.2.6. Data Binning 

 

The process of combining adjacent frequency bins into broader frequency bands. This 

is done to reduce the dimensionality of the data and potentially capture more 

meaningful information about the underlying patterns in the signals. Specifically, we 

took averages of the power spectrum values within each broader frequency bin. 

Here EEG data is processed in several steps, including averaging over 4-second 

intervals and then further averaging over 15-second running windows 

 

 

Figure. 6.12. Data bin Avarage over 15 seconds running window of eeg_record18 Trial 
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6.3. DETECTING MENTAL STATES: 

 

We used the Least Squares Support Vector Machines (SVM) machine learning 

approach to implement the mental state detector [52] . To create an SVM detector, the 

time-varying EEG signal's spectra were first reorganized into a feature vector. This 

was accomplished by combining the power spectra calculated for each time point from 

all input EEG channels, resulting in a vector with a dimensionality of 252, 

characterizing the distribution of the EEG signal's power over all EEG channels and 

frequencies ranging from 0 to 18 Hz at 0.5 Hz steps. Following that, an SVM classifier 

was trained to detect each mental state individually. A predetermined number of 

feature vectors were drawn at random from the EEG spectral data to create the training 

data. Multiple SVM classifiers had to be combined to discriminate between more than 

two mental states because SVM is a two-class classifier. Over all others, the first SVM 

classifier was trained to detect the presence of the "focused" state in EEG data. In 

comparison to the others, a second SVM classifier was trained to detect the presence 

of the "unfocused" state. 

 

Figure. 6.13. Data bin Avarage over 15 seconds running window of eeg_record33 Trial 
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6.3.1.  SVM classifier design:  

 

The SVM classifiers were trained using the svmtrain function of the Matlab Statistics 

Toolbox. The tuning parameters have been left at their default values. The auto-scaling 

parameter was enabled, and the box constraint (which determines the cost of 

misclassifications in SVM) was set to one. The linear kernel function and the "least 

squares" method were used to solve the SVM optimisation problem in this study due 

to the large size of the training data [53]. 

 

SVM is based on the result of a linear convolution of a feature vector representing the 

temporally-local EEG signal with a vector with weights of W, y = i Wi fi, where fi 

represents the spectral power features and i represents the index enumerating such 

features as well as the corresponding weights Wi. The sign and magnitude of the 

individual weights Wi provide information about the contribution and importance of 

each feature to the detector's decision process because the feature vector of each time-

point is classified as either +1 (present) if y b exceeds a certain threshold b, or as 1 

(absent) otherwise.  By the construction of the feature vector \overline{f}(t), the 

weights Wi indicate the frequencies and the electrodes contributing to the 

discrimination of particular mental states, both in a positive sense when Wi > 0 and 

negative sense when Wi < 0. 

 

In Figure. 6.14. & Figure. 6.15. we got SVM vectors from power data and visualizing 

the transformed vectors for eeg_record18 & eeg_record5 recordings under different 

conditions. The logarithmic transformation will apply to enhance the features for SVM 

classification 
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Figure. 6.14. Preparing SVM vectors from power data for eeg_record18 

Figure. 6.15. Preparing SVM vectors from power data for eeg_record5 
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In Figure. 6.16. we have SVM vectors for a specific channel at different time points 

(every 5th time point within the range of 0 to 25). The peaks in the plot are lowest 

frequency, and each peak marks the start of the data for that specific channel. 

 

Figure. 6.16. SVM vectors for a specific channel at different time points 

 

The result seems like it's separatable between subjects at 11HZ.  

 

6.4 CONCLUSION OF THE CHAPTER 

 

This chapter 1st plots all 14 channels and subsequently selects a subset of useful 

channels. Then did Signal conditioning involves applying a high-pass Butterworth 

filter to eliminate low-frequency artifacts. Short-time Fourier Transform (STFT) is 

introduced to analyze non-stationary signals, providing a time-frequency 

representation. Then demonstrates the calculation of STFT and its application to EEG 

recordings, leading to power values spectrograms. Power spectrum analysis and data 

binning follow, reducing dimensionality and capturing meaningful information. 

Mental state detection is implemented using Least Squares Support Vector Machines 

(SVM) on the reorganized feature vectors derived from power spectra. SVM classifiers 
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are designed, trained, and visualized, showcasing their effectiveness in distinguishing 

mental states. In next chapter we are going to discuss results and will check our final 

result with accuracy.
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PART 7 

 

RESULTS AND DISCUSSION 

 

7.1. INTRODUCTION OF THE CHAPTER 

 

This chapter will focus on studying and analyzing various outcomes, as well as 

discussing the distinct impact of training parameters. Preparing and training a Support 

Vector Machine (SVM) model for mental state classification using EEG data.  

Additionally, we will endeavor to determine the optimal model parameters. Lastly, we 

will explore additional enhancements that might enhance the efficiency of the system. 

 

7.2. DATA SPLITTING AND SCALING 

 

Partitioning the data into distinct training and testing sets is a prevalent technique in 

machine learning to evaluate the efficacy of a model. The primary factors contributing 

to this are: 

 

7.2.1. Evaluation of the Model: 

 

Training Set: The model undergoes training using the training set, enabling it to 

acquire knowledge of patterns and relationships present in this specific piece of the 

data. 

 

Testing Set: The purpose of the testing set is to assess the model's ability to apply its 

learned knowledge to unfamiliar data. It enables you to simulate the performance of 

the model on unseen data throughout the training process. 
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7.2.2 Mitigating Overfitting: 

 

Training and evaluating a model on the same dataset, without dividing it, can lead to 

the model memorizing the training data instead of learning generic patterns. This 

phenomenon is referred to as overfitting, in which a model exhibits high performance 

on the training data but demonstrates poor performance on new, unseen data. 

 

7.2.3. Evaluating Generalization: 

 

The objective of a machine learning model is to exhibit strong generalization 

capabilities when presented with novel, unfamiliar data. By utilizing a distinct testing 

set, one can evaluate the model's capacity to extrapolate beyond the training data. 

 

7.2.4. Optimizing Hyperparameters: 

 

When optimizing the hyperparameters of a model, such as modifying parameters that 

are not learned during training, it is beneficial to have a distinct validation set. This set 

is utilized for evaluating various hyperparameter setups, and the testing set remains 

unaltered until the final assessment. 

 

7.2.5. Preventing the unauthorized disclosure of data: 

 

Assessing a model using the identical data it was trained on can unintentionally lead 

to data leakage, wherein information from the testing set influences the training 

process. 

 

The process of categorization typically entails the division of data into distinct training 

and testing sets. Each instance in the training set includes a single "target value" (i.e., 

the class labels) and several "Attributes" refer to the characteristics or variables that 

are noticed or measured. The objective of Support Vector Machines (SVM) is to 

generate a model that can accurately predict the target values of the test data, only 

based on the properties of the test data [54]. 
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Typical divisions involve ratios such as 80/20 or 70/30, where 80% or 70% of the data 

is allocated for training and the remaining 20% or 30% is allocated for testing. The 

precise division ratio is contingent upon variables such as the magnitude of the dataset 

and the particular demands of the problem. 

 

7.3. SVM MODEL TRAINING: 

 

I partitioned the EEG signal trials that were deemed helpful into five subjects, I will 

concatenate 5 files of each participant with 3 states. And Intend to employ various 

models to assess accuracy. 

Subj1_files={‘eeg_record3’,’eeg_record4’,’eeg_record5’,’eeg_record6’,’eeg_record

7’} 

subj2_files={‘eeg_record10’,’eeg_record11’,’eeg_record12’,’eeg_record13’,’eeg_re

cord14’} 

subj3_files={‘eeg_record17’,’eeg_record18’,’eeg_record19’,’eeg_record20’,’eeg_re

cord21’} 

subj4_files={‘eeg_record24’,’eeg_record25’,’eeg_record26’,’eeg_record27’} 

subj5_files={‘eeg_record31’,’eeg_record32’,’eeg_record33’,’eeg_record34’} . 

 

7.3.1. Score of SVM Model: 

 

The efficacy of the mental state classifier based on Support Vector Machines (SVM) 

is assessed using the accuracy (1), precision (2), and recall (3) parameters, while the 

F1 score (4) is the harmonic mean of the precision and recall parameters. 

 

1. Acc. =
correct predictions result in the 

whole number of results
∗ 100%                                                          (7.1)        

 

1. Precision =
𝑇𝑃 

𝐹𝑃+𝑇𝑃 
                                                                                             (7.2) 

 

2. Recall =
𝑇𝑃 

𝑇𝑃+𝐹𝑁 
                                                                                                  (7.3)                                                             
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3. F1 =
2(Precision∗recall)

Precision +𝑟𝑒𝑐𝑎𝑙𝑙 
                                                                                         (7.4) 

   

Figure. 7.1. depicts an enhanced efficacy analysis, showcasing the comparative 

performance of the mental state classifier utilizing Support Vector Machines (SVM) 

across a cohort of five subjects.                                         

        

Figure. 7.1. Performance comparison of the 5 Subjects and all Subjects 

                              

Table 7.1 shows how well the SVM-based mental state classifier worked with both 

subject-specific and common-subject scenarios. The table show feature matrix (shape) 

and gives target labels. 

 

Table 7.1. The feature vectors results from SVM results for focus, unfocus, and 

sleepy into a feature matrix (shape) and gives target labels. 

Subjects Length of target Shape 

Subject1 8775 (8775, 252) 

Subject2 8775 (8775, 252) 

Subject3 8775 (8775, 252) 

Subject4 7020 (7020, 252) 

Subject5 7020 (7020, 252) 

All subjects 40365 (40365, 252) 
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7.3.2. Principal Component Analysis (PCA): 

 

PCA is a dimensionality reduction technique that transforms the original features into 

a new set of uncorrelated features called principal components. So I did calculate the 

variance ratio for each principal component [55] This ratio indicates the proportion of 

the dataset's total variance captured by each component. 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 =  
Explained variance

Sum of Explained variance
                                                              (7.5) 

 

In Figure. 7.2. you can see Heatmap correlation matrix for the scaled training data. 

 

Figure. 7.2. Heatmap of calculated correlation matrix of scaled training data 

 

Figure. 7.3. showing the DataFrame of the loadings of each feature on the principal 

components. Here plot of first and third principal components, highlighting features 

with loadings greater than 0.085 
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Figure. 7.3. Highlighting features of principle component with loadings greater than 

0.085 

 

7.3.3. Radial Basis Function (RBF): 

 

The radial basis function (RBF) is commonly used as a kernel function in support 

vector machines (SVMs) for various machine learning tasks, particularly in 

classification and regression. The RBF kernel is defined as [39]: 

 

𝐾 (𝑥, 𝑥´) = 𝑒𝑥𝑝(− 
‖𝑥−𝑥´‖2

2𝜎2 )                                                                                      (7.6) 

 

Here, x and x´are input vectors, ‖𝑥 − 𝑥´‖is the Euclidean distance between them, and 

𝜎 is a parameter that controls the width of the Gaussian kernel. 

The RBF kernel allows the SVM to capture intricate dependencies and variations. Its 

flexibility and expressiveness enable the SVM to adapt to various data distributions 

without explicitly calculating the transformation to a higher-dimensional space. The 

RBF kernel's parameter (𝜎) allows fine-tuning of the decision boundary's smoothness, 
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providing control over the model's behavior. Empirically successful in machine 

learning applications, especially when dealing with high-dimensional and complex 

data like EEG recordings, the RBF kernel serves as a suitable choice for exploring 

nuanced patterns in mental state detection [56]. 

 

7.3.4. SVM Linear Model : 

 

A linear kernel Support Vector Machine (SVM) is a machine learning model utilized 

for classification and regression problems. The objective of the linear SVM algorithm 

is to identify an optimal hyperplane that effectively partitions the input data into 

distinct classes. The "support vectors" refer to the data points that are in closest 

proximity to the decision boundary. The optimal hyperplane is designed to optimize 

the distance between these support vectors, resulting in a wider margin. 

 

Concisely: 

• SVM stands for Support Vector Machine. 

• The linear kernel assumes a decision boundary that is linear. 

• Categorization: The task involves the allocation of input data points to pre-

established classifications. 

Figure. 7.4. linear SVM Classifier separating the two classes [56] 
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• Optimal hyperplane: The decision boundary that optimizes the separation 

between classes by maximizing the margin. 

• Support vectors are the data points that are located closest to the decision border. 

 

The linear Support Vector Machine (SVM) is highly efficient when dealing with 

datasets that may be easily separated by a straight line, known as linearly separable 

datasets. Its widespread usage stems from its simplicity and effectiveness in solving 

binary classification problems. 

 

5.3.5. KNN Model: 

 

KNN, also known as k-Nearest Neighbors, is a straightforward and intuitive machine 

learning method utilized for problems including classification and regression. The K-

nearest neighbors (KNN) algorithm classifies an object based on the majority vote of 

its k closest neighbors. The value of k is determined by the user [57]. The algorithm 

categorizes a data point by assigning it to the class that is most frequently represented 

among its k closest neighbors in the feature space. KNN is a non-parametric and lazy 

learning method, which implies that it does not make any assumptions about the 

distribution of the underlying data and does not construct a model during the training 

phase. Instead, it stores the training dataset in memory and generates predictions 

during runtime by evaluating the similarity between incoming data points and the old 

ones. KNN is very beneficial when working with datasets that are small to moderately 

sized and does not necessitate lengthy training time [58]. Nevertheless, the 

computational cost might be substantial when dealing with extensive datasets or 

feature spaces with a high number of dimensions. 
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So, in our program K-Nearest Neighbors (KNN) classifier is implemented using the 

scikit-learn library. The model is trained and evaluated on both original scaled features 

and PCA-transformed features. So it’s considering 3 nearest neighbors for making 

predictions. Initially, the KNN model is trained using the scaled training data, and its 

accuracy scores on both the training and test datasets are calculated. Then, the model 

is trained using the first 30 principal components of the training data, and again, its 

accuracy scores on the training and test datasets are computed. This approach allows 

for comparing the performance of the KNN model when using different feature 

representations. 

 

7.3.6. Decision Tree Classifier Model: 

 

A Decision Tree Classifier is a machine learning technique that uses a recursive 

process to divide the dataset into smaller groups depending on the most important 

feature at each step. The algorithm creates a hierarchical structure resembling a tree. 

Each internal node corresponds to a decision made using a certain feature. Each branch 

represents one of the possible outcomes of that decision. Finally, each leaf node 

represents the ultimate class label. Decision trees possess the quality of interpretability 

and are capable of handling both classification and regression tasks. These models 

have the ability to accurately represent intricate connections within the data, but there 

Figure. 7.5. k-Nearest Neighbors model 
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is a potential for overfitting, particularly when using deep trees. Pruning methods are 

frequently utilized to prevent overfitting. 

 

 

 

We used scikit-learn library, it imports tools from scikit-learn to create the model. 

Then creates an instance of the Decision Tree Classifier with a maximum depth of 16. 

This controls the complexity of the tree, preventing overly deep trees that might overfit 

the training data. The model is trained on scaled features and corresponding target 

labels. Finally, the model checks how well the model performs on both the training 

data it learned from and unseen test data to see if it can generalize effectively to new 

situations. 

 

Table. 7.2. The accuracy outcomes of the attention state for various models 

MODELS Training data 

score 

Test data score 

SVM Linear Model 74.6% 73.3% 

SVM RBF Model 94.6% 93.3% 

Figure. 7.6. Decision Tree Algorithm in Machine Learning 
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SVM RBF Model 

PCA 

91.7% 90.6% 

KNN Model 99.8% 99.2% 

KNN Model PCA 99.7% 98.7% 

Decision Trees 97.8% 84.6% 

 

In this study, we employed several machine learning models, including Support Vector 

Machines (SVMs) and Random Forests, to analyze the data. We evaluated their 

performance using established metrics like accuracy (1), precision (2), and recall (3). 

Accuracy measures the overall model correctness. Precision focuses on the proportion 

of true positives among the model's predictions. Recall emphasizes the ability to 

identify all actual positive cases.  Furthermore, the F1 score (4) combines precision 

and recall to provide a comprehensive view. 

 

 

 

Figure. 7.7. Accuracy, precision, recall and F1 score outcomes of various Models 

 

7.4. RANDOM FOREST CLASSIFIER: 

 

The Random Forest Classifier is an ensemble learning technique that constructs 

numerous decision trees throughout the training process and produces the most often 
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occurring class (for classification) or the average prediction (for regression) from the 

individual trees. Boosting is a technique that enhances the decision tree algorithm by 

aggregating the results of numerous weak learners (individual trees) to achieve more 

accurate and reliable predictions. It effectively addresses the issue of over-fitting and 

improves predictive accuracy.  

 

It helps in selecting the optimal depth for the Random Forest Classifier by plotting the 

training and testing accuracy scores for different depth values. The plot assists in 

understanding how the model's performance changes with varying depths and guides 

the selection of an appropriate hyperparameter value for the Random Forest model. 

 

Figure. 7.8. Random Forest Classifier training and testing accuracy scores for 

different depths of trees 

 

7.5. DISCUSSION 

 

This study aimed to address the issue of identifying mental states in human participants 

by analyzing EEG data. Past research has examined the issue of distinguishing 

between drowsy and attentive states by analyzing EEG data, specifically in the context 
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of car driving. In contrast to previous investigations, the current study focused on 

distinguishing between the cognitive states involved in passive observation or 

supervision tasks. The lack of active engagement in the work resulted in significant 

disparities in this context. There were also three other cognitive states identified: 

concentrated, drowsy, and unfocused or detached. The latter condition occurs when 

participants are not actively dozing but, as a result of a lack of attention, lose the ability 

to respond to events. Despite its significant potential for process control and its 

increased level of intrigue and difficulty in detection, the latter state has not been 

studied in previous research. This is because a "detached" mental state may not be 

evident through any overt signs or indicators, whether visual or otherwise. Within that 

framework, the latter is denoted as a distinct state, namely a pristine mental state. The 

techniques suggested in the research for differentiating this "unadulterated" mental 

state can be more widely utilized to differentiate subjective states in various tasks and 

circumstances, in addition to discerning between separate categories of states. 

Prior research has mostly focused on the fatigue of car drivers, as well as the stress 

levels of those who work in mentally demanding occupations. In that case, in addition 

to EEG monitoring, other techniques such as video and movement monitoring were 

used. Despite their historical success, many of these strategies are difficult to adapt to 

different situations. Video- and movement-based alertness monitoring has a unique 

problem when individuals are inactive or passive. Passive BCI based on EEG is a 

viable solution to this problem because it provides a simple and transferable 

technology for monitoring people's state of mind. EEG signals provide a direct 

connection to brain neural activity and allow for direct monitoring of neural patterns 

associated with various mental states. This method avoids the limitations of existing 

methods for monitoring mental conditions that rely on physical, visual, or 

physiological cues. 

 

We collected an original EEG dataset for this study to investigate the issue of detecting 

and monitoring mental states. The dataset focuses on the level of participation of 

participants during a passive observation job. To detect changes in attentional mental 

states, a method based on Support Vector Machines (SVM) was presented. The 

Support Vector Machine (SVM) detector was trained using EEG data samples 

collected from participants during specific mental states. The detection was carried out 
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using a collection of machine learning Support Vector Machine (SVM) classifiers that 

were combined using an XOR aggregation of the results of numerous state-specific 

classifiers. The created detector proved to be both effective and beneficial in 

differentiating between focused, unfocused, and drowsy mental attention states using 

EEG data. 

 

Table 7.3 chronologically summarizes previous research findings on identifying 

mental attention states. According to the data in Table 5.3, our study outperformed the 

majority of previous investigations. Examining the studies that produced similar 

results, it is clear that they either included additional data to corroborate the EEG signal 

or simply classified attention into two distinct stages. 

 

Table 7.3 Comparing different studies that tried to predict people's attention states 

 

Dataset Mental states 

predicted 

Method Accuracy 

(%) 

Reference 

EEG 3 different 

attention levels 

KNN 57.00 [59] 

EEG 2 states (i.e. 

attentive or 

inattentive ) 

SVM 76.82 [60] 

EEG and 

respiration 

data 

6 levels (i.e. 

awake, slightly 

drowsy, 

moderately 

drowsy, extreme 

drowsy, sleep, 

deep sleep) 

SVM 98.60 [61] 

EEG 3 levels (i.e. 

attention, no 

attention and rest) 

SVM 76.19 −85.24 [62] 
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EEG 2 states (i.e. 

driving or math 

task) 

SVM 84.6 ± 5.8–

86.2 ± 5.4 

[63] 

EEG 2 states (i.e. 

attentive or 

inattentive ) 

SVM 77.00–83.00 [64] 

EEG 3 states (i.e. 

fatigue, 

frustration, 

attention) 

SVM 71.6–84.8 [65] 

EEG 2 states (i.e. 

attentive or 

inattentive ) 

SVM 92.80 [66] 

EEG 

engagement 

index 

2 states (i.e. 

attentive or 

inattentive ) 

SVM 93.33 ± 8.16 [67] 

Only EEG 3 diff. attention 

levels 

SVM 92.6(best)  

91.3 (avg.) 

[40] 

 

Our research revealed that training the mental state detectors separately for each 

person is crucial. We noticed that a general mental state detector had notably inferior 

performance compared to the detectors tailored to specific individuals, resulting in a 

decrease of 20-30% in detection accuracy for the three indicated mental states. 

 

7.6. CONCLUSIONS OF THE CHAPTER 

 

The final chapter of this thesis provides a comprehensive exploration of the application 

of Support Vector Machine (SVM) models for mental state classification using EEG 

data. The chapter begins by elucidating the importance of data splitting and scaling in 

machine learning, emphasizing the mitigation of overfitting, evaluation of 

generalization, and optimization of hyperparameters. The subsequent sections detail 

the SVM model training process, showcasing the impressive accuracy achieved for 

subject-specific and common-subject paradigms. The inclusion of Principal 
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Component Analysis (PCA) further enhances the understanding of the feature space, 

allowing for a nuanced exploration of patterns in mental state detection. Additionally, 

the chapter introduces the Radial Basis Function (RBF) kernel, highlighting its 

adaptability to complex data distributions such as EEG recordings. The comparison of 

various models, including SVM linear and RBF models, KNN, Decision Trees, and 

Random Forest Classifier, presents a diverse array of approaches for mental state 

detection. The discussion section synthesizes the key findings, emphasizing the novel 

contribution of detecting a "detached" mental state and the importance of tailoring 

mental state detectors to individual subjects. The study's success in outperforming 

prior investigations is underscored, particularly in the context of training detectors 

separately for each person, which significantly enhances accuracy. Overall, this 

research provides valuable insights into the nuanced aspects of mental state 

classification, paving the way for broader applications in diverse tasks and situations. 
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CONCLUSION: 

 

This study involved the creation of a passive EEG BCI (brain-computer interface) to 

observe and track specific mental states in humans. We acquired 

electroencephalogram (EEG) records from subjects engaged in a passive supervision 

task. We effectively accomplished accurate identification of three distinct cognitive 

attention states, namely focus, unfocus, and drowsiness, in individuals who were not 

actively involved in a task. The study reported discriminating accuracy for engaged, 

disengaged, and drowsing states. We ensure that our signals provide high-quality 

output after filtering by first dividing them into smaller segments for the Fourier 

transform, and then merging nearby frequency bins into wider frequency bands. This 

allows us to achieve best results. The training produced a best accuracy score of 92.6% 

while the testing achieved a best accuracy score of 92.2%. These findings have 

significant ramifications for driver security applications. 

 

The work employed an SVM-based EEG BCI approach that enables the utilization of 

a pre-trained machine learning model. This model may be applied to many scenarios, 

such as identifying different mental states and diverse settings. Examining the 

specifications of developed mental state detectors can offer fresh perspectives on how 

such states are represented in EEG signals. Support Vector Machine (SVM) models 

for mental state classification utilizing EEG data are thoroughly examined. It 

emphasizes data splitting and scaling in machine learning to reduce overfitting, 

evaluate generalization, and optimize hyperparameters. The following sections 

describe SVM model training and demonstrate subject-specific and common-subject 

paradigm accuracy.  

 

Principal Component Analysis (PCA) boosts feature space knowledge, enabling subtle 

mental state detection pattern investigation. The chapter also presents the Radial Basis 

Function (RBF) kernel, which works well with complicated data distributions like 
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EEG recordings. The comparison of SVM linear and RBF models, KNN, Decision 

Trees, and Random Forest Classifier shows a variety of mental state detection 

methods. The discussion section highlights the innovative contribution of identifying 

a "detached" mental state and the usefulness of subject-specific mental state detectors. 

The study outperformed previous studies, especially in training detectors for each 

person, which improves accuracy. This research illuminates mental state 

classification's nuances, enabling its use in a variety of tasks and settings. 

  



68 

 

 

 

 

FUTURE WORK 

 

This study represents a significant leap forward in passive EEG BCI technology, 

demonstrating its potential to accurately track human mental states without requiring 

active engagement. By differentiating three distinct attention states with up to 92.6% 

accuracy, it paves the way for practical applications in driver safety, where early 

detection of drowsiness or disengagement could prevent accidents. Subsequently, I 

intend to develop a program capable of identifying states beyond three. Furthermore, 

this research will pave the way for others to investigate the mental states of animals. 

The study's use of pre-trained SVM models and subject-specific detectors further 

enhances its versatility and accuracy, highlighting the nuanced complexities of mental 

state classification in EEG signals. Overall, this research opens doors for utilizing 

passive EEG BCI in diverse settings, from healthcare to education, and offers valuable 

insights for future studies aimed at decoding the intricate language of the human brain 

and in future animal brain. 
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