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ABSTRACT 

 

M. Sc. Thesis 

 

PREDICTION OF THE POWER OUTPUT OF A POWER GENERATION 

GAS TURBINE USING ARTIFICIAL NEURAL NETWORK (ANN) 

APPROACH -CASE STUDY LIBYA 

 

Ali Salem MOHAMED EMDALEL 

 

Karabuk University 

Institute of Graduate Programs 

The Department of Electrical and Electronic Engineering 

 

Thesis Advisor: 

Assoc. Prof. Dr. Muhammet Tahir GÜNEŞER 

October 2020, 32 pages 

 

Today, regression artificial neural networks (ANN) have found their way into 

simulating different systems possessing advanced dimensions and having different 

outputs and inputs. This study attempts to forecast the energy output related to the gas 

turbines (GT) at the Al hawamid Power Plant in Libya by means of an ANN approach. 

The stated power station is exposed to a number of variables, which will be employed 

in terms of the input to obtain the power output generated by the turbines. To this end, 

we will use an ANN model for the prediction of this output, not to mention a Neural 

Fitting tool (nftool) to assist us in solving the related fitting issues by means of a two-

dual-level feed-forward system developed based on the Levenberg-Marquardt 

Algorithm (LMA). Our results show that the stated approach is an ideal back 

propagation algorithm at 10 neurons related to our subject turbines. Also, the most 

suitable fit based on the employed ANN stands at the R2 values of 0.9999, 0.9999, 
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0.972, and 0.999, respectively for the tested turbines. Lastly, it can be stated that the 

suggested ANN can be applied at a sound and acceptable level in place of mechanism 

to forecast the power output of a given GT. To this end, hypothetical structures using 

the approach play an important role so as to come up with an ideal process and the best 

outcome. 

 

Key Words : Levenberg-Marquardt Algorithms (LMA), Artificial Neural Networks 

(ANN), gas turbines (GT). 

Science Code : 90513 
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ÖZET 

 

Yüksek Lisans Tezi 

 

YAPAY SİNİR AĞI (YSA) YAKLAŞIMI İLE GÜÇ ÜRETİMİ GAZ 

TÜRBİNİNİN GÜÇ ÇIKIŞININ TAHMİNİ VAKA ÇALIŞMASI LİBYA 

 

Ali Salem MOHAMED EMDALEL 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Elektrik-Elektronik Mühendisliği Bölümü 

 

Tez Danışmanı: 

Doc.Dr. Üyesi Muhammet Tahir GÜNEŞER 

October 2020, 32 sayfa 

 

Bugün, regresyon yapay sinir ağları (YSA), gelişmiş boyutlara sahip ve farklı çıktı ve 

girdilere sahip farklı sistemleri simüle etme yolunu bulmuştur. Bu çalışma, Libya'daki 

Al hawamid Santrali'ndeki gaz türbinleri (GT) ile ilgili enerji üretimini YSA yaklaşımı 

ile tahmin etmeye çalışmaktadır. Belirtilen güç istasyonu, türbinler tarafından üretilen 

güç çıkışını elde etmek için girdi açısından kullanılacak bir dizi değişkene maruz 

kalmaktadır. Bu amaçla, bu çıktıyı tahmin etmek için bir YSA modeli kullanacağız, 

geliştirilen iki çift seviyeli ileri besleme sistemi aracılığıyla ilgili montaj sorunlarını 

çözmemize yardımcı olmak için bir Nöral Montaj aracından (nftool) bahsetmiyoruz. 

Levenberg-Marquardt Algoritması'na (LMA) dayanmaktadır. Sonuçlarımız, belirtilen 

yaklaşımın konu türbinlerimizle ilgili 10 nöronda ideal bir geri yayılma algoritması 

olduğunu göstermektedir. Ayrıca, kullanılan ANN'ye dayanan en uygun uyum, test 

edilen türbinler için sırasıyla 0.9999, 0.9999, 0.972 ve 0.999 R2 değerlerinde bulunur. 

Son olarak, önerilen YSA'nın belirli bir GT'nin güç çıkışını tahmin etmek için 
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mekanizma yerine sağlam ve kabul edilebilir bir seviyede uygulanabileceği 

söylenebilir. Bu amaçla, yaklaşımı kullanan varsayımsal yapılar ideal bir süreç ve en 

iyi sonucu elde etmek için önemli bir rol oynamaktadır. 

 

Anahtar Kelimeler : Levenberg-Marquardt Algoritması'na (LMA), Nöral Montaj 

aracından, gaz türbinleri (GT). 

Bilim Kodu :   90513
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PART 1 

 

INTRODUCTION 

 

1.1. BACKGROUND 

 

Gas turbines – GTs, for short – are an indispensable part of power generation in our 

world, also crucial in aeronautics and running large-scale pumping and compressing 

operations. It is always useful to simulate GT performance as it helps to predict and 

develop efficiency in these systems. Against this backdrop, quite impressive studies 

have been conducted to come up with analytical and experimental simulations and, 

henceforth, a better grasp of input-output variations and the intricacies behind such 

operations. Nonetheless, it is a key aspect of them all to be able to develop precise and 

trustworthy GS models intended for different purposes as the main differentiating 

factor in research. Some of these works cover black-box based simulations for control 

mechanisms. In terms of black box, Artificial neural networks (ANNs), too, have been 

considered worthy and effective in data management, simulation, and monitoring of 

systems with very different inputs and outputs – otherwise, nonlinear – and, in our 

case, gas turbines.  

 

To be able to fully examine how thermodynamics function in power stations, one needs 

advanced mathematical systems with many parameters and hypotheses; henceforth, to 

model as actually as possible the unpredictability factor [1-2]. Though, doing away 

with such modelling, machine learning now is a better option [3-4] – ANNs to provide 

an example. These networks can tackle any form of nonlinearity as the settings and the 

environment are taken as inputs and the energy created as the output. Then, one can 

easily forecast the output energy based on any given circumstances. 

 

Initially brought about in the mid-20th century to represent the human brain, they were 

only applied for such purposes and exceptionally rare hard-to-tackle math. Later, 
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though, they gained more notoriety and application as datasets and computation began 

to grow out of proportions [5].  

 

Power stations conventionally involve numerous parameters, the data related to which 

is kept over extended periods. For this reason, a large dataset is always at hand at no 

expense to the stakeholders [2]. 

 

ANNs have been employed, up to now, for numerous objectives by experts [6-13], 

successfully as such in math, engineering, medical sciences, finances, weather 

forecasts, brain-related studies, etc. [14].  

 

ANNs have found their way into pattern grouping, function approximation, 

optimization, forecasting and automatic control systems [15].  

 

The approach simply begins to learn based on what is fed, and it develops a map of 

the inputs and outputs so as to forecast a certain phenomenon. In this sense, developing 

and experimenting with ANN requires input and output values [16] to get over certain 

obstacles that exist in standard methods for complicated issues, those hard to simulate 

otherwise in analytic terms [17]. 

 

Lately, extensive power stations have been calling for better models of analysis for the 

dynamics and monitoring goals; practically, service companies tend to employ a large 

array of modelling techniques – among them, Modular Modeling Systems (MMS) [18] 

or specifically tailored ones. This task remains a challenge in the absence of certain 

variables, while already existing approaches cannot respond to the needs at such large-

scale power stations. For this purpose, therefore, any model has to be devised prior to 

operations. ANN advances in these days come to help in doing so and developing 

system identification and control mechanisms. Thanks to extensive databases, ANNs 

are trained with no difficulty to come up with nonlinear approximations that lead to 

control functions and systems later. Given the heavy reliance of ANNs on such 

input/output data and not necessarily the structure itself, however, adjustability is even 

more possible and any power station can benefit from this approach for the stated 

objectives.  
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ANNs have also been praised for their practicality and steady functioning by many 

experts as regards power stations and their workings [19-27]. 

 

Neutral Networks (NNs), in this vein, enjoy numerous applications as well for these 

plants [28-37]. As to ANNs, though, they are grouped based on the network settings; 

for instance, a feedforward NN mostly is applied for approximating steady-state 

simulations [82,35].  Repeating NNs, though, are ideal for active input/output designs 

because the repeating neurons can stand in place of different factors [28-31].  To 

maintain steady states while one is looking for best control inputs, ANNs can be 

employed to definers and identifiers in small-scale plants [32-35]. In this sense, the 

system is used by means of repetitive NNs or feedforward NNs as favored best 

according to precise data features and patterns. For the sake of control within larger-

scale stations, though, ANNs help to define every single secondary system in the plant 

[37]. Additionally, they are useful to create nominal patterns for fault analyses [35]. 

Despite the numerous uses for NNs, their application is only confined to small-scale 

plants with only a handful of inputs and outputs. These simulations are defined based 

on low-level nonlinear multi-input/outputs (MIMOs). These models, as aa result of 

such a limitation, may not accurately represent intricate features and relationships 

existing among the various subsystems; what’s more, research to date has failed to 

address this issue of hierarchical structuring with ANN outputs serving as input for 

another ANN. To verify one ANN, though, there are many works available in the 

literature related to plants in general [38, 39]. A hybrid approach, though, is still 

lacking so as to address numerous ANNs and their proper validation; hence, the 

motivation behind the present work.  

 

There are, of course, some researches on Steam Turbines (ST) within combined cycle 

power plants (CCPP) [40-42]. In one case, in the whole supply produce of combined 

power plant using triple GTs, triple HRSGs and singly steam turbine could be forecast. 

Niu [41] looked into adjustment mechanisms related to GTs in a CCPP by means of 

linearization. In another study, Samani [2] employs two separate ANNs one after 

another to simulate a CCPP based on an input comprising moisture, air force, proper 

temperature and the discharge of the steam turbine. In this work, only the exhaust 

steam pressure serves as a factor of ideal and proper conditions, hence not a 
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deterministic one. Tüfekc [40] and Kaya [42] do comparison of some machine learning 

tools with the goal to forecast the total work electrical power output of a basic load at 

a CCPP, thoroughly investigating a regression ANN case. 

 

1.2. THE AIMS AND OBJECTIVES 

 

ANN systems function as a group of smart members that resemble the neurons in our 

brain. They form a picture of the connections among all inputs and outputs as the main 

objective based on non/linear processes. To do so, NNs employ numerous techniques, 

namely multilayer perceptron or MPL. The present thesis utilizes such a multilayer 

feed-forward NN with back propagation. 

 

Here, ANN algorithms help us forecast the amount of energy output of the GTs located 

at the Al hawamid power plant in Libya, all developed with MATLAB (R2011a) 7.12. 

To this end, we will take into account the many factors effective as input to determine 

the power generated by the GTs as output. 

 

1.3. THESIS OUTLINE 

 

This thesis comprises the following sections:  

 

In Part One, we introduce the topic.  

 

Part two covers the background studies and literature review in the field of GTs and 

power plants, mathematical simulations for such sites, and the ANN applications in 

this field of activity.  

 

Part three deals with the methodology for every step of the research as per the afore-

mentioned literature, along with a highlighting related simulations carried out in 

MATLAB for ANN. Data pre-processing and data-sampling are also addressed in this 

Part together with the prediction methods and all related attributes to the models 

introduced so far.  
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In Part Four, we shall introduce the various algorithms to be tried, the related 

outcomes, and a comparative look into their effective performance. 

 

Lastly, Part Five provides the conclusion as well as the suggestions for upcoming 

studies and the limitations experienced and identified herein.  
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PART 2 

 

GASPOWER PLANT 

 

2.1. GAS TURBINE (GT) PERFORMANCE 

 

As the basic of the gas turbine, firstly, a working gas (air) compresses is compressed 

and heated, therefore, the temperature and pressure gas will be increased. The engine 

turns the energy of gas into the rotating energy of the blades, making use of the 

interaction between the gas and the blades. The types of the gas turbine can be 

classified as: the open cycle type which, is called internal type and the closed cycle 

type, which is called external type are types of the gas turbine.  The gas turbine can 

serve most gas effluent than that of the piston internal combustion engines, hence it 

applies a continued combustion.  This advantage is made use in the gas turbine for 

airplanes. The gas turbine works on the basis of the Brayton cycle and one deviation 

of this essential cycle is the supplement of a regenerator. Some of the energy in the 

exhaust gas is released to a gas turbine with a regenerator (heat exchanger), heating the 

air incoming to the combustor. This cycle is commonly used on low-pressure ratio 

turbines, and the resulting hot gas is enable to expand through a turbine to finish work. 

In a 33% efficient gas turbine, practically GTs operate on account of the process 

known as the Brayton cycle. Figure 2.1 depicts an example of such one-tube GTs and 

their features, namely pressurizer (compressor), combustor, and the turbine itself – all 

together referred to as gas generator (GG). The pressurizer section and the turbine join 

by means of a core tube, hence spinning in unison. In Figure 2.2, one can see a typical 

Brayton process within pressure-volume (P-V) and temperature-entropy (T-S) 

structures [26]. The air flow arrives in through the part marked as 1 so as to be 

pressurized. Then, the resulting heated and pressurized air finds its way into the 

combustor marked as 2, where fuel and air combined for ignition. The resulting heated 

fumes then are released into the turbine in 3 and cause it to spin. The turbine itself is 

the driving force behind the pressurizer and the GG output – in case of power stations, 
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electrical alternators – behind large pumps. Equal entropy is often favored in 

pressurizers (1-2) and turbines (3-4). Additionally, constant pressure is the ideal status 

in the combustor (2-3) and the environment (4-1); yet, in reality these two ideal 

scenarios do not exist within such systems and pressurizers – not to mention the loss 

of pressure while the system is at work. An isobaric state, hence, is considered to be 

dominant under such conditions at the 2-3 and 4-1 processes [43]. 

 

 

 

Figure 2.1. Diagram of a specific single-axle (GT) [26]. 

 

 
 

Figure 2.2.  Specific brayton cycle [26]. 
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2.2. SIMPLE CYCLE GAS PLANT 

 

These systems account for basic power plants powered by natural gas and functioning 

based on forced hot gas into turbines to make electricity. In this sense, they vary from 

other systems, such as combined cycles, in the sense that the exhaust heat remains 

unused and, as such, the facilities only work under high seasons and peaked demand 

within national grids. The released power by these turbines is quite significant in terms 

of the relative size of the turbines and their output [44]. 

 

The permanent minimum load provided to the network by various stations using coal 

or atomic fuel cover the basic needs of a given country, whereas other forms such as 

gas-powered plants cover the remaining demand in high times. To materialize this, 

simple cycle plants enjoy adaptability in operations, among them the quick response 

mechanism and advantage in operational terms. Nonetheless, the output and efficiency 

is compromised as opposed to combined systems because certain portions of the power 

generated by the fuel can be lost, decreasing efficiency to about 35% [44]. At any rate, 

simple cycle plants do not work the year around and only do so at peak times, hence 

granting them reduced capacity – in other words, relatively speaking, they hardly 

operate at full capacity and merely for a number of hours on a daily basis and at most.  

 

 
 

Figure 2.3.  Diagram of a simple cycle gas plant [44]. 
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2.3. GAS TURBINE MODEL APPROACHES 

 

There are a whole a lot of sources for modeling and modelling of gas turbines in the 

publications. multiple models are developed from different views and for different 

objectives. The simulated of industrial systems can be divided into two main 

classification ·: black-box and white-box models. 

 

2.3.1.  White-Box Model 

 

When sufficient knowledge of system physics is available, the model of white box can 

be used. Mathematical equations with respect to system dynamics are used to create a 

model. This Model deals with the system equations that are normally nonlinearity 

equations [45]. To ease these equations to create an acceptable model, it is inevitable 

to make some assumptions based on unique conditions and using some methods to 

linearize the system. There are several programs like Simulink-MATLAB and 

MATHEMATICA that are very useful with this method. 

 

2.3.2. Black-Box Model 

 

In case of little or no information available on system physics, black box model is 

suitable [45]. In this case, the objective is to know the relationships between system 

parameters using the operational and output data obtained from system running. The 

artificial neural network (ANN) is one of the methods used in black box modeling.      

ANN   was used   in various industries in recent years. The main the concept for 

generating ANN a subset of artificial intelligence, is to supply an easy model of the 

human brain to solve difficult research and industrial problems in a various of areas. 
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PART 3 

 

ARTIFICIAL NEURAL NETWORKS (ANNs) 

 

Modeling and control methods based on methodology of white box   are based on 

equations of   thermodynamic and energy combined with a high degree of nonlinearity. 

Therefore, the reporting of assumptions and the application of linearization methods 

is necessary to simplify and solve this complex dynamic. Therefore, models and 

control systems come on these easier and / or linearized equations are not accurate 

enough to accurately achieve control of system dynamics. This cause too unpredictable 

problems, such as unexpected break, particularly at the operation of gas turbines 

construct on the basis or the use of models. This shows that techniques and methods 

independent of the dynamics of the system must be used. In addition, the proportional-

integral-derivative (PID) control algorithm may be complex to maintain   very 

much nonlinear and variable time processes [45]. ANN is able to gain control over a 

considerable and complicate gas turbine operation that is independent of system 

physics. Therefore, the imperative for research in this area is apparent. 

 

Like other mechanical devices, the components of gas turbines gradually deteriorate 

and overlook their functionality and working capacity over time.  a few years later in 

the industry, the perfect thermodynamic regard and, therefore, the similar white box 

models are examinee to great modify and will no longer be valid. Therefore, predicting 

the behavior of old gas turbines is very complex. However, the replacement of old 

GTC with new ones demands huge money resources and, in most cases, is 

economically unsustainable. fortunately, black box   type is extremely suitable in this 

case because of their independence and adaptability to new conditions. The problem 

can be handled to monitor conditions based on new GT parameter records by Training 

and using an updated ANN-based model. 
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Otherwise called as connectionist systems, ANNs are simulations in the field 

computers and others working with extensive amounts of datasets gathered from basic 

neurons and roughly similar to how the axons operate in the human brain. All these 

units are joined with one another which could either reinforce or impede the ongoing 

processes anywhere within the system. To compute, every unit applied summation, 

while there can also exist thresholds anywhere within these joints in within each unit; 

hence, a given signal should go beyond the threshold in order to spread elsewhere. The 

mechanism, in this way, simply teaches itself and required no programming, thereby 

assisting users in seeking solutions or certain attributes that can otherwise be 

challenging if conventional programming were to be employed [5]. The act of ANN 

training requires preliminary and arbitrarily chosen weights, after which the neurons 

operate in a way to ensure the lowest frequency of faults.  

 

NNs (neural networks) comprise basic features working in unison and similar to 

biological processes within the nervous system. This, naturally, makes inevitable the 

importance of the joints made among all units in these systems, leading to how 

efficiently they operate. Consequently, NNs may be developed to carry out a certain 

task by simply changing the values or weights in the joints. Conventionally speaking, 

these systems are developed in a way that a given input can effect major outputs –as 

depicted in the following figure, where the system is adapted in accordance to what 

the output and target comparisons are. The process, then, continues up to the point 

where the two are equal. Obviously, for training purposes, many such couples as input 

and target will be necessary before obtaining the best results [45]. 

 

NNs are developed to carry out complicated tasks in different disciplines: for pattern 

recognition, detecting, grouping, sight, speech and control mechanisms. They may 

additionally help to tackle problems otherwise challenging if treated with traditional 

computer-based or human-initiated ways. This aid kit, in a sense, comprises specific 

and typical examples compiled or employed individually by engineers, financiers, or 

other field experts.  

 

Within this perspective, the present chapter introduces the way to apply four separate 

graphics that help train NNs to deal with function adjustments, pattern identifications, 
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grouping, and time sequences. these four applications set up the basis here for using 

the NN Toolbox software intended for the present study [ 45].  

 

 
 

Figure 3.1. Neuron model [45]. 

 

3.1. ANN IN MATLAB 

 

The above-stated program includes algorithms, functions, and applications that 

develop, train, picture, and model NNs through regression, pattern identification, 

grouping, clustering, deep learning, sequencing and active systems, not to mention 

numerous alternatives also accompanying the ANN models [45]. In all, seven different 

stages exist within this architecture, namely: 

 

1) Data gathering;  

2) Network development;  

3) Network configuration;  

4) Weight and Bias initialization;  

5) Network training;  

6) Network validation; and finally  

7) Network Application.  

 

The above-stated stages, in some cases, may be carried out automatically by means of 

default weights and arrangements; though, users can also adjust the details as desired. 

The kit has four design option for software application: the initial step is GUI-based, 

offering the chance for fast access related to multiple issues related to function fitting, 
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pattern detection, grouping, and sequences. What’s more, a MATLAB code may be 

developed with as much detail as needed to simulate the settings intended for the 

network analysis.  

 

The second step or level is based on simple command-based processes that employ a 

series of easy premises or arguments equipped with smart defaults as parameters. It 

goes without saying that all such defaults may be disregarded so as to achieve 

maximum efficiency. The third stage in the kit is toolbox adjustment – a high-level 

feature to develop tailor-made NNs while maintaining full functionality. in the fourth 

stage, one can have the chance to change whatever code file they wish within the kit. 

as all computations involve MATLAB coding and are, hence, available at large.  

 

3.2.  REGRESSION ANN IN MATLAB 

 

This feature is obtainable through the GUI or command-line functions [5]. In detail, 

two GUIs are available to develop and train the system, such as [14,15]:  

 

1) tool of Neural Network (nntool) as the overall feature providing complete control 

overthe network. With this feature, onecan develop whatever NN they wish and 

not just regression-based ones.  

2) Neural Fitting tool (nftool) as a guide to tackle issuesrelated to fitting, based on 

a two-layer feed-forward approach developed as per the Levenberg-Marquardt 

method and/or scale conjugate gradient back-propagation. The alternatives, 

hence, are limitless, and one can choose any data from the MATLAB 

environment or opt for the sample sets offered alongside the toolbox. Once 

training is through, the performance is assessed by means of mean squared error 

and regression methods. Additionally, the outcomes are evaluated based on 

visualization features like regression fits or error his-tograms. Lastly, users are 

able to assess the entire NN efficiency using a set for testing purposes.   
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PART 4 

 

ANN APPLICATION ON POWERPL AND METHODS 

 

4.1. DEVELOPING THE ANN APPROACH 

 

ANN is based on simulating the learning sequence occurring in human beings by 

neurons as the key components located inside the input layer and the output layer. In 

this way, all systems simulated alongside noisy or partial data [46] as, otherwise, they 

are too intricate for algorithms to be written or any specific system to be detected 

within the existing dataset. Learning by means of patterns and illustrations is the core 

feature of NNs because they cannot be planned when it comes to some tasks. In actual 

settings, the mechanism is composed of numerical data of non-linear nature with 

algorithms; there is also back propagation (BP) as a conventional method to reduce 

faults as much as possible between the output and what is anticipated after assigning 

the appropriate neuron weights.  

 

As mentioned before, the present study employs an ANN to forecast the amount of 

output from GTs located at the Al hawamid Power Plant in Libya. To accomplish this 

task, a feed forward NN is carried out using BP algorithms on MATLAB [47-30]. Both 

the input and the output elements will be chosen in the form of monthly approximate 

averages.   

 

4.2. DATA COLLECTION 

 

The data related to performance for a given GT is gathered based on the log sheets 

filled out every day for the period of 2016 to 2018. These variables are numerically 

assessed to obtain the mean values between January and December each year, and then 

a total average sum. Table 1 illustrates the parameters for a sample GT at the specified 

site. 
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Operating Parameters include the input factors, namely:  

 

Heat level at the point of entry to pressurizer K0 

Amount of pressure at entry to pressurizer MPa 

Heat at outlet point in the pressurizer K0 

Pressure at the outlet point of pressurizer MPa 

Pressure at entry for fuel-gas MPa 

Heat at entry for GT K0 

Inlet guide vanes  (IGVs) % 

Power output in MW  

 

  



16 

Table 4.1.  Average operating variables of G1 unit (GAS PLANTAlhawamid LIBYA) 

(2016-2018). 
 
YEAR Months Temperature 

of inlet air to 

compressor 

Pressur

e of 

inlet air 

to 

Compre

ssor 

MPa 

Outlet 

Temperat

ure 

of air 

from 

compress

or 

Outlet 

Pressur

e of 

air 

from 

Compre

sr 

IGV 

% 

Inlet 

Pressur

e of 

fuel gas 

MPa 

Inlet 

Temperat

ue 

to gas 

turbine K 

Power 

output 

(MW) 

2016 1 14 1 311 8.7 58 19.1 1160 116 

2 16 1 326 9.3 75 18.4 1160 127 

3 25 1 306 6.9 23 19.6 1160 87 

4 19.7 1 324 8.7 71 19.4 1160 119 

5 26 1 326 7.7 61 19.7 1160 104 

6 33 1 354 9.2 100 19.1 1160 118 

7 34 1 354 8.8 100 19.1 1160 116 

8 31 1 349 8.8 99 19.1 1160 120 

9 28 1 340 8.8 82 19.3 1160 119 

10 35 1 359 9 99 19.5 1160 122 

11 24 1 484 7.3 42 19.1 1160 80 

12 13 1 329 10.1 100 19.6 1160 145 

2017 1 12 1 311 8.7 58 19.1 1160 116 

2 19.5 1 326 9.3 75 18.4 1160 127 

3 16 1 306 6.9 23 19.6 1160 87 

4 20.3 1 324 8.7 71 19.4 1160 119 

5 22 1 326 7.7 61 19.7 1160 104 

6 26 1 354 9.2 100 19.1 1160 118 

7 31 1 354 8.8 100 19.1 1160 116 

8 31 1 349 8.8 99 19.1 1160 120 

9 29 1 340 8.8 82 19.3 1160 119 

10 17.07 1 359 9 99 19.5 1160 122 

11 24 1 484 7.3 42 19.1 1160 80 

12 12 1 329 10.1 100 19.6 1160 145 

2018 1 10 1 311 8.7 58 19.1 1160 116 

2 15 1 326 9.3 75 18.4 1160 127 

3 27 1 306 6.9 23 19.6 1160 87 

4 29 1 324 8.7 71 19.4 1160 119 

5 24 1 326 7.7 61 19.7 1160 104 

6 28 1 354 9.2 100 19.1 1160 118 

7 46 1 354 8.8 100 19.1 1160 116 

8 10 1 349 8.8 99 19.1 1160 120 

9 25 1 340 8.8 82 19.3 1160 119 

10 21 1 359 9 99 19.5 1160 122 

11 10 1 484 7.3 42 19.1 1160 80 

12 10.7 1 329 10.1 100 19.6 1160 145 
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4.3. APPLYING THE ANN APPROACH 

 

By means of the nftool, we will: 

 

1. Choose “Fitting Tool” and the related nftool command;  

 

2. Apply the “Inputs and Targets” from the “Select Data” through uploading the 

data from MATLAB;  

 

3. Select “Validation and Test Data” as illustrated below. These sets are arranged 

as 15% of the original set. Then, both the input and output vectors can be 

separated arbitrarily within three groups, namely:  

 

• 70% for training purposes;  

• 15% for validation upon generalization and stop short of training to avoid 

excessive fitting; and  

• 15% for a thoroughly separate testing of the network generalization. 

 

4. Choose “Next”. At this stage, we have a conventional NN tailored for fitness 

purposes as a dual-layer feed forward system having a sigmoid transfer option 

within the hidden layer along with linearity function in the output layer.  The 

default count for hidden neurons is fixed at 10, with the possibility to add to it 

subsequently should the training prove to be of low quality the first time around.  

 

5. Choose “Train”. Training starts and carries on to the point the validation error 

can no longer function upon six consecutive rounds. 

 

6. Under “Plots”, select “Regression” in order to validate the network. The 

regression plots demonstrate all outputs concerning all the goals intended for 

training, validation, and tests. To achieve ideal fits, the dataset has to lie against 

a 45-degree line because that is the position at which all the outputs are in par 

with the goals. In case of the present work, the fitness is satisfactory pertaining 

to all sets as the R values achieve 0.93, even more. However, should there be a 
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need for yet additional accuracy levels, the system requires additional training – 

which is possible by selecting “Retrain”; consequently, the original values and 

biases are altered and, possibly, better networks emerge afterward. The other 

alternatives are shown in the pan below.  
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PART 5 

 

RESULTS AND DISCUSSION 

 

5.1.  APPLYING THE ANN 

 

For the purpose applying, training and validating the NN, the nftool was used as 

available from MATLAB. A basic feedforward system is obtained having 10 units at 

the hidden layer trained by means of LM algorithm as stated previously. 

 

By means of the nftool, then, we apply the following steps:  

 

1. Select “Fitting Tool” for the nftool.  

 

 
 

Figure 5.1. Neural network fitting tool. 

 

2. Select “Next” and then “Use the Inputs and Targets” available from “Select 

Data” to upload data from MATLAB.  
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Figure 5.2. Using the inputs and targets options in the select data. 

 

3. Select “Next” to proceed to “Validation and Test Data”as illustrated below. In 

this way, we assign the test data as 15% of the original set.  

 

 
 

Figure 5.3. Validation, test and traing data sets. 

 

4. Select “Next” again. Here, the conventional system employed to fit the functions 

is dual-layered and feed forward with (function of sigmoid) inside the hidden 

layer and function  of  linear in the output layer. Additionally, default count for 

the hidden neurons stands at 10. As described earlier, the count may be added in 

case training appears to be unsatisfactory.  
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Figure 5.4. The default number of hidden neurons is set to 10. 

 

5. Select “Train”. Now, this process halts upon six rounds of failure in validation - 

in this case, at round 8. Upon selecting “Performance” from the options, what 

comes up is a list of faults pertaining to training, validation, and testing – as 

illustrated below. for the present research, though, the outcomes are satisfactory 

given the fact that:  

 

• The ultimate mean-square error is insignificant;  

• There are identical features shared by test errors and validation errors; and  

• There have been no major incidents of excessive fitting up to round 8, which 

is where optimum validation takes place.  

 

The process of training carries on up to the point that validation errors are not reduce 

any further – that is round 8 – hence, stopping the process.  
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Figure 5.5. Train network. 

 

 
 

Figure 5.6. GUI of the training tool. 

 

As the ultimate mean-square error is insignificant, the related ANN figures and 

weights for the ANN intended to forecast the energy output at the power plant in point 

are quite similar to the computed figures obtained in real datasets.  
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Figure 5.7. Performance plot for levenberg-marquardt algorithm; the number of 

neurons: 10. 

 

6. In the “Plots” section, select “Regression” so as to validate the overall 

performance. These series show all outputs related to the network as opposed to 

the intended targets set to train, validate, and test the sets. To achieve optimum 

fitness, as stated earlier, our data must overlap with a 45-degree line as that is 

where the stated outputs are closets to the objectives. In case of the present 

research, this overlapping is satisfactory concerning all sets with R-values at 

0.9999, 0.9999, 0.972, and 0.999, respectively.  
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Figure 5.8. Regression plot for levenberg -marquardt algorithm; the number of 

neurons: 10. 

 

Trial-and-error approach with the nftool is selected for the purposes herein to identify 

ideal settings and functions for the ANN to be employed. Based on the datasets for 

Gas Planta Hawamid LIBYA – the site in point – with alternative variables, we 

intended to achieve an exceptional framework within which the power output of the 

site can be correctly predicted in MW units. For this reason, the proposed approach 

follows feed-forward back propagation with a tansig function available within “one 

hidden layer", and function of a linearize transfer (purelin) at the product node that 

employs an nftool within.  

 

The LM algorithm is checked at the scope of all neurons by comparing the forecast 

outcomes with the actual data from the site in point in expression of (MSE) and (R2). 

As a consequence, ideal ANN model is selected based on the above stated algorithm 

having 10 neurons to forecast the output in MWs and minimum MSE and optimum R2. 

values. 

 

7. Save results The set of results collected are stored by means of selecting “save 

results “as indicated in the following illustration.  
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Figure 5.9. Save results. 
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PART 6 

 

CONCLUSION 

 

Today, regression ANN models are applied to simulate many alternative systems of 

advanced dimensions and differing inputs and outputs. In this research, we aimed to 

forecast the output energy in MW generated by gas turbines at the Al hawamid Power 

Plant in Libya by means of using such as ANN approach. The turbines in point 

possessed many affective factors, which were subsequently employed in the form of 

input and the power as the output. The ANN applied can measure the output energy 

for which purpose, we used an nftool to tackle issues related to data fitting and 

applying a dual-layer feed-forward system developed based on the LM algorithm. 

Accordingly, the outcomes suggest that the stated algorithm serves as an ideal back 

propagation algorithm with 10 neurons to be used. Additionally, the ideal fit for our 

ANN achieves R2 values at 0.9999, 0.9999, 0.972, and 0.999, respectively. Lastly, it 

can state that the generated model is applicable with a fair degree of satisfaction to 

forecast the power output of gas turbines in general. For this purpose, obviously, 

additional theoretical frameworks are a necessity for any ANN so as to come up with 

the most suitable simulation process and ideal outcomes in the end.  
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