Yazar "Turgay, T." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of homovalent Bi/Ga substitution on propagations of flaws, dislocations and crack in Bi-2212 superconducting ceramics: Evaluation of new operable slip systems with substitution(Elsevier Sci Ltd, 2019) Turkoz, M. B.; Zalaoglu, Y.; Turgay, T.; Ozturk, O.; Yildirim, G.This study defines a strong methodology between the mechanical performance behaviors and formation possible operable slip systems in the crystal structure of Bi-2212 superconducting phase with trivalent Bi/G substitution with the aid of Vickers hardness tests exerted at various indentation load intervals 0.245 N-2.940 N. It is found that the mechanical performance behaviors improve regularly with the increment in the trivalent Bi Ga partial substitution level up to the value of x = 0.05 due to the formation of new operable slip system. Namely, the optimum gallium (Ga) impurities serve as the strain fields and associated forces for the interaction of dislocations within the different orientations with each other to impose the surface residual compressive stresses orienting favorably the superconducting grains. Thus, the propagation of dislocations, flaws and cracks divert in the crystal structure. On this basis, the presence of optimum Ga impurity in the Bi-2212 crystal syster strengthens the mechanical strength, critical stress, resistance to the plastic deformation, stiffness and durabilit nature. Moreover, the experimental results advance in-depth understanding of fundamental links between th porosity and Young's moduli of elasticity founded on the impurity level and applied test loads. It is observed that in case of the optimum level of x = 0.05 the propagation of flaws, dislocations and cracks proceed along the transgranular regions instead of the intergranular regions as a consequence of improvement in the durabl tetragonal phase. On the other hand, the excess Ga content level in the polycrystalline Bi-2212 system results i the augmentation in the stress raisers, crack surface energy and crack-initiating flaws, activating the stress-induced phase transformation.Öğe Evaluation of key mechanical design properties and mechanical characteristic features of advanced Bi-2212 ceramic materials with homovalent Bi/Ga partial replacement: Combination of experimental and theoretical approaches(Elsevier Sci Ltd, 2019) Turkoz, M. B.; Zalaoglu, Y.; Turgay, T.; Ozturk, O.; Akkurt, B.; Yildirim, G.This study models the variations in the key mechanical design properties and mechanical characteristic features of Ga substituted Bi-site Bi-2212 ceramics prepared within the different molar ratios of x = 0.000, 0.005, 0.010, 0.030, 0.050, 0.100 and 0.300 with the assistant of available theoretical approaches; namely, Meyer's law, proportional sample resistance, elastic/plastic deformation, modified proportional sample resistance model, Hays Kendall and indentation-induced cracking methods for the first time. The mechanical modeling parameters are gathered from the microhardness (Vickers) experimental tests performed at various applied loads interval 0.245 N-2.940 N. The results provide that the key mechanical design features improve systematically with the augmentation of trivalent Bi/Ga partial replacement level up to x = 0.05 due to the rapid decrement in the main structural problems; namely, the grain orientations, lattice strains, distortions, dislocations, grain boundary interaction/coupling problems, crack-initiating and crack-producing omnipresent flaws in the advanced Bi-2212 ceramic system. Accordingly, the optimum Ga inclusions strengthens the mechanical durability towards the applied stress due to the increased stabilization in the durable tetragonal phase. After the critical substitution amount of x = 0.05, the mechanism turns reversely, and the general mechanical characteristic features including the stiffness, mechanical durability and strength degrade remarkably. Additionally, the mechanical modeling results demonstrate that the Bi/Ga impurity leads to vary positively the quality of standard indentation size effect (ISE) feature until x = 0.05, beyond which the excess Ga additives damage seriously ISE feature of Bi-2212 inorganic compounds. Besides, the indentation-induced cracking (IIC) model is noticed as the best method to describe the true microhardness parameters of Bi/Ga substituted Bi-2212 compounds for the mechanical characterization.Öğe A novel research on the subject of the load-independent microhardness performances of Sr/Ti partial displacement in Bi-2212 ceramics(Springer, 2020) Zalaoglu, Y.; Turgay, T.; Ulgen, A. T.; Erdem, U.; Turkoz, M. B.; Yildirim, G.This work is interested in the critical changes in the load-independent microhardness performance parameters with the partial substitution of Sr2+ inclusions for the Ti4+ impurities in the Bi-2212 inorganic solids with the help of the theoretical approximations as regards Meyer's law (ML), proportional sample resistance (PSR), modified proportional sample resistance (MPSR), elastic/plastic deformation (EPD), Hays-Kendall (HK) and indentation-induced cracking (IIC) models found on the experimental microhardness tests applied to a variety of test loads between 0.245 and 2.940 N for the first time. Moreover, Ti-substituted Bi-2212 bulk ceramics (Bi2.1Sr2.0-xTixCa1.1Cu2.0Oy) are prepared within mole-to-mole ratios of x = 0.000, 0.010, 0.030, 0.050, 0.070, 0.100 by the standard solid-state reaction method in the atmospheric pressure conditions. It is provided that Ti partial substitution in the superconducting system descends unsmilingly the mechanical durability, stability, strength, toughness, critical stress, stiffness and flexural strengths of Bi-2212 superconducting solids studied owing to the increment of crystal structural problems. Moreover, it is obtained that the degradation in the crystal structural leads to diminish the typical ISE characteristic of Bi-2212 superconducting ceramic compounds. At the same time, the results show that all the models (especially IIC approach) can serve as the suitable descriptors for the determination of the variation in the load-independent mechanical performances of the Bi-2212 superconducting materials.