İYONİK SIVI BAZLI NANOAKIŞKANLARIN (İYONANOAKIŞKAN) MANYETİK ALAN ALTINDAKİ AKIŞ VE ISI TRANSFERİ DAVRANIŞLARININ SAYISAL OLARAK İNCELENMESİ
Yükleniyor...
Dosyalar
Tarih
2022-07
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
İyonanoakışkanlar, yüksek sıcaklıktaki termal kararlılıklarının yanı sıra kirletici olmayan özellikleri nedeniyle termal enerji sistemlerinde yeni bir nanoteknoloji tabanlı ısı transfer sıvısı olarak sınıflandırılmıştır. Bu çalışmada, iyonanoakışkanların sabit manyetik alan varlığında ve yokluğunda akış ve taşınımla gerçekleşen ısı transfer özelliklerinin incelenmesi amaçlanmıştır. Bu amaçla, çalışma kapsamında dairesel kesitli bir kanalda farklı kütle konsantrasyonlarında (%1-15) Fe3O4 nanopartikül ile saf su-[C2mim][CH3SO3] (1-Etil-3-metilimidazolyum Metan sülfonat) iyonik sıvı karışımının akış ve ısı transferi karakteristikleri sabit manyetik alan etkisi altında sayısal olarak incelenmiştir. Akış ve ısı transferinin temel denklemlerini laminer akış (500 < Re <2000) şartlarında ve sabit manyetik alan (B0 = 0, 0.5, 1, 1.5 T) etkisi altında çözmek için Hesaplamalı Akışkanlar Dinamiğine (HAD) dayalı çözümleme yapabilen ANSYS Fluent 2020 R2 kodu kullanılmıştır. Elde edilen sonuçlara göre; İyonanoakışka sabit manyetik alan uygulandığı durumda manyetik alanın uygulanmadığı duruma göre daha yüksek ısı transfer artışı elde edilmiştir. %1,0wt ve %15wt kütlesel nanopartikül konsantrasyonuna sahip iyonanoakışkan sabit manyetik alan uygulandığı durumda manyetik alanın uygulanmadığı duruma göre sırasıyla %5 ve %16 oranlarında artış elde edilmiştir. Bununla birlikte manyetik alanın uygulanması yüksek basınç düşüşlerine neden olmuştur. Manyetik alanın şiddeti ve nanopartikülün kütle konsantrasyonu arttıkça performans değerlendirme kriteri değerlerinin (PDK) azaldığı görülmüştür. Ayrıca iyonanoakışkanların en yüksek PDK değeri %4 olarak manyetik alan uygulanmadığı durumda tespit edilmiştir.
Ionanofluids (INFs) are a recent class of nanotechnology-based heat transfer fluids. INFs are of great interest in thermal energy systems due to their thermal stability at high temperature as well as their non-polluting properties. In this context, in the present study, it is aimed to examine the flow and convection heat transfer characteristics of INFs in the presence and absence of magnetic field. For this propose, forced convection heat transfer of water-[C2mim][CH3SO3] (1-Ethyl-3-methylimidazolium Methane sulfonate) ionic liquid mixture with Fe3O4 nanoparticles of different mass concentrations (i.e. 1–15 %wt.) in a straight pipe under constant magnetic field effect has been investigated numerically. Governing equations of flow and heat transfer has been solved using a Computational Fluid Dynamics (CFD) method based ANSYS Fluent 2020 R2. Analysis were performed under laminar flow regime (500 < Re < 2000) and constant heat flux was applied externally on the part of pipe surface. Some pertinent parameters effects such as Reynolds number, mass concentration of nanoparticle (1-15%wt.), constant magnetic field (B0 = 0, 0.5, 1, 1.5 T) on the convective heat transfer are examined. According to the results obtained;. The forced convection of INFs effected by constant magnetic field shows higher heat transfer enhancement compared to the absence of a magnetic field for all mass concentration of nanoparticle. The constant magnetic fieldoffers 5% and 16% convective heat transfer enhancement compared to the absence of a magnetic field for 1%wt and 15%wt mass concentration of nanoparticle, respectively. On the other hand, Constant magnetic field generally causes higher pressure drops. Yet, Increase of magnetic field intensity as well as mass concentration of nanoparticle results in the performance evaluation criteria (PEC) decrement. The absence of magnetic field resulted in the highest values PEC %4 in the studied INFs."
Ionanofluids (INFs) are a recent class of nanotechnology-based heat transfer fluids. INFs are of great interest in thermal energy systems due to their thermal stability at high temperature as well as their non-polluting properties. In this context, in the present study, it is aimed to examine the flow and convection heat transfer characteristics of INFs in the presence and absence of magnetic field. For this propose, forced convection heat transfer of water-[C2mim][CH3SO3] (1-Ethyl-3-methylimidazolium Methane sulfonate) ionic liquid mixture with Fe3O4 nanoparticles of different mass concentrations (i.e. 1–15 %wt.) in a straight pipe under constant magnetic field effect has been investigated numerically. Governing equations of flow and heat transfer has been solved using a Computational Fluid Dynamics (CFD) method based ANSYS Fluent 2020 R2. Analysis were performed under laminar flow regime (500 < Re < 2000) and constant heat flux was applied externally on the part of pipe surface. Some pertinent parameters effects such as Reynolds number, mass concentration of nanoparticle (1-15%wt.), constant magnetic field (B0 = 0, 0.5, 1, 1.5 T) on the convective heat transfer are examined. According to the results obtained;. The forced convection of INFs effected by constant magnetic field shows higher heat transfer enhancement compared to the absence of a magnetic field for all mass concentration of nanoparticle. The constant magnetic fieldoffers 5% and 16% convective heat transfer enhancement compared to the absence of a magnetic field for 1%wt and 15%wt mass concentration of nanoparticle, respectively. On the other hand, Constant magnetic field generally causes higher pressure drops. Yet, Increase of magnetic field intensity as well as mass concentration of nanoparticle results in the performance evaluation criteria (PEC) decrement. The absence of magnetic field resulted in the highest values PEC %4 in the studied INFs."
Açıklama
Anahtar Kelimeler
İyonanoakışkan, laminer akış, manyetohidrodinamik (MHD), manyetik alan, hesaplamalı Akışkanlar Dinamiği (HAD), zorlanmış taşınım., Ionanofluid, laminar flow, Magnetohydrodynamics (MHD), magnetic field, Computational Fluid Dynamic (CFD), forced convection.