Bactericidal and in vitro osteogenic activity of nano sized cobalt-doped silicate hydroxyapatite

dc.authoridEvis, Zafer/0000-0002-7518-8162
dc.authoridDalgic, Ali Deniz/0000-0003-2904-1204
dc.contributor.authorAlshemary, Ammar Z.
dc.contributor.authorHussain, Rafaqat
dc.contributor.authorDalgic, Ali Deniz
dc.contributor.authorEvis, Zafer
dc.date.accessioned2024-09-29T15:55:07Z
dc.date.available2024-09-29T15:55:07Z
dc.date.issued2022
dc.departmentKarabük Üniversitesien_US
dc.description.abstractHydroxyapatite (HA) particles with enhanced antibacterial properties can be prepared by integrating metal ions into the crystal structure of the nanoparticles. Cobalt and silicate ions containing HA (Co/Si-HA) with the formula Ca10-xCox(PO4)(6-y)(SiO4)(y)(OH)(2) (x = 0.2, 0.6, and 1.0 and y = 0.5) was successfully synthesised by using microwave-assisted wet precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS) techniques were used to characterise the synthesised nanoparticles. The results revealed that the incorporation of SiO44- ions increased the lattice parameters and decreased the crystallite size of HA. However, the incorporation of Co(2+)ions led to the reduction of lattice parameters and the particle size of the SiHA nanoparticles. In vitro antibacterial activity of materials was evaluated using disk diffusion and minimum inhibitory concentration (MIC) protocols. The findings indicated that incorporating Co2+ ions into SiHA inhibited the growth of Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The cytotoxicity of materials evaluated using the Sarcoma osteogenic (Saos-2) cell line revealed that they were cytocompatible and exhibited no adverse side effects. The osteogenic differentiation of cells was confirmed by the significant increase in the alkaline phosphatase (ALP) activity by incorporating Co2+/SiO44- ions into the HA crystal structure. Our results show that the nanoparticles prepared in this study have a promising future in biomaterial-tissue engineering applications.en_US
dc.identifier.doi10.1016/j.ceramint.2022.06.128
dc.identifier.endpage28239en_US
dc.identifier.issn0272-8842
dc.identifier.issn1873-3956
dc.identifier.issue19en_US
dc.identifier.scopus2-s2.0-85132705977en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage28231en_US
dc.identifier.urihttps://doi.org/10.1016/j.ceramint.2022.06.128
dc.identifier.urihttps://hdl.handle.net/20.500.14619/4477
dc.identifier.volume48en_US
dc.identifier.wosWOS:000874871100002en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofCeramics Internationalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHydroxyapatiteen_US
dc.subjectSilicate hydroxyapatiteen_US
dc.subjectAntibacterial activityen_US
dc.subjectCytotoxicityen_US
dc.subjectAlkaline phosphataseen_US
dc.titleBactericidal and in vitro osteogenic activity of nano sized cobalt-doped silicate hydroxyapatiteen_US
dc.typeArticleen_US

Dosyalar