Turkey's industrial waste heat recovery potential with power and hydrogen conversion technologies: A techno-economic analysis
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Pergamon-Elsevier Science Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this study an investigation of Turkey's overall industrial waste heat potential is conducted, and possible power and hydrogen conversion technologies are considered to produce useful energy such as power and hydrogen. The annual total industrial waste heat was has a 71 PJ in 2019 and is expected to double by 2050. The temperature range of the waste heat differs by sector at a large range of 50 degrees C-1000 degrees C. Absorption power cycle (APC), Organic Rankine Cycle (ORC), Steam Rankine cycle (SRC) and Gas Turbine (GT) systems are adapted for power production based on the waste heat temperature while electrochemical and electro-thermochemical hydrogen production systems are adapted for hydrogen generation. Proton Exchange Membrane, Alkaline, and high temperature steam electrolysis methods are selected for pure electrochemical conversion technologies and Hybrid Sulfur (HyS), Copper Chlorine (CuCl), Calcium-Bromine (CaBr), and Magnesium Chlorine (MgCl) cycles are utilized as hybrid thermochemical technologies. Many cases are formed, and best temperature matching power-hydrogen system couples are selected. It is possible to produce enough hydrogen to compensate up to 480 million m(3) natural gas equivalents of hydrogen annually with selected technologies which corresponds to similar to 5% of residential natural gas consumption in Turkey. Economic analysis reveals that lowest hydrogen generation cost belongs to the GT-HyS system. When hydrogen is used for heating applications by a certain mixture fraction to NG pipelines, it may reduce more than 720 thousand tons of CO2 reduction annually due to natural gas use. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Açıklama
Anahtar Kelimeler
Waste heat, Hydrogen, CuCl, MgCl, HyS, PEME
Kaynak
International Journal of Hydrogen Energy
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
47
Sayı
5