Biological and Morphological Effects of Apatite Kinds (Sheep/Synthetic) on MgO Reinforced Bone Tissue with Hydroxyapatite Matrix

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Polish Acad Sciences Inst Physics

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, the biological and morphological structure of the bone tissue of hydroxyapatite produced from synthetic and natural bone was investigated. For this purpose, a three-dimensional bioprinter was designed and manufactured. For the production of bone tissue scaffolds, 10 wt% magnesium oxide added to synthetic hydroxyapatite and sheep hydroxyapatite bioink composites were prepared. The rheological analysis of the prepared bioinks was carried out. With the produced three-dimensional bioprinter, 10 x 10 x 2 mm(3) bone tissue scaffolds were bioprinted. Calcium chloride was used to form connective tissue between layers. 4 weeks of in-vitro bioactivity tests were applied in order to observe the behavior of the produced bone scaffolds and the formation of apatite in the body. After the bioactivity tests, scanning electron microscope and energy dispersive spectrometry analyzes were performed. In addition, a 3-4,5-dimethyl-thiazoly1-2,5-diphenyltetrazolium bromide test was performed in the laboratory environment of the bone tissue scaffolds. In this test, cytotoxicity analyses and cell counts were performed by fibroblast and osteoblast cell loading. Viability and cell proliferation were observed using the phalloidin staining method, and comparisons were made between the mixtures. As a result of the study, the printing ability of both bioinks on the three-dimensional bioprinter was successful. Thus, the bone tissue scaffold of the printed bioink was produced in the desired porous structure. Apatite formations were observed in the scanning electron microscope images of the bone tissue scaffolds that were kept in artificial body fluid for 4 weeks. In the cell culture analysis performed at the last stage with cell viability analysis, the continuation of cell viability was promising.

Açıklama

Anahtar Kelimeler

magnesium oxide, bioink, bone scaffold, cell culture

Kaynak

Acta Physica Polonica A

WoS Q Değeri

Q4

Scopus Q Değeri

Q4

Cilt

142

Sayı

2

Künye