Üretken rakip ağ ile türkçe metin üretimi
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Makine öğrenmesi yöntemlerinde tahmin aşamasının başarısı için kullanılan eğitim veri seti kümesi oldukça önemlidir. Doğal dil işlemede en çok karşılaşılan problemlerden birisi yeterli veri bulunamaması veya bulunan verilerin etiketsiz olmasıdır. Özellikle sınıflandırma problemlerinde belirli bir sınıftaki verinin azlığı sınıflandırmanın başarısını düşürmektedir. Bu çalışmada veri kümesinde bulunan eksik sınıfa ait metinlerin arttırılması amacı ile üretken rakip ağlar yöntemi kullanılmıştır. Haber metinleri üzerinde veri çoğalma işlemi gerçekleştirilmiştir. Elde edilen sonuçlar n-gram, destek vektör makinesi, TF-IDF ve lojistik regresyon gibi makine öğrenmesi teknikleriyle birlikte kullanılarak performansları değerlendirilmiştir. Sonuçlara göre üretken rakip ağların Türkçe metin üretimi için kullanılması sınıflandırma başarısını yaklaşık % 47 oranında arttırmıştır.
Açıklama
Anahtar Kelimeler
Kaynak
Avrupa Bilim ve Teknoloji Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
0
Sayı
23