Üretken rakip ağ ile türkçe metin üretimi

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Makine öğrenmesi yöntemlerinde tahmin aşamasının başarısı için kullanılan eğitim veri seti kümesi oldukça önemlidir. Doğal dil işlemede en çok karşılaşılan problemlerden birisi yeterli veri bulunamaması veya bulunan verilerin etiketsiz olmasıdır. Özellikle sınıflandırma problemlerinde belirli bir sınıftaki verinin azlığı sınıflandırmanın başarısını düşürmektedir. Bu çalışmada veri kümesinde bulunan eksik sınıfa ait metinlerin arttırılması amacı ile üretken rakip ağlar yöntemi kullanılmıştır. Haber metinleri üzerinde veri çoğalma işlemi gerçekleştirilmiştir. Elde edilen sonuçlar n-gram, destek vektör makinesi, TF-IDF ve lojistik regresyon gibi makine öğrenmesi teknikleriyle birlikte kullanılarak performansları değerlendirilmiştir. Sonuçlara göre üretken rakip ağların Türkçe metin üretimi için kullanılması sınıflandırma başarısını yaklaşık % 47 oranında arttırmıştır.

Açıklama

Anahtar Kelimeler

Kaynak

Avrupa Bilim ve Teknoloji Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

0

Sayı

23

Künye