Stochastic Computing Convolutional Neural Network Architecture Reinvented for Highly Efficient Artificial Intelligence Workload on Field-Programmable Gate Array
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Amer Assoc Advancement Science
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Stochastic computing (SC) has a substantial amount of study on application-specific integrated circuit (ASIC) design for artificial intelligence (AI) edge computing, especially the convolutional neural network (CNN) algorithm. However, SC has little to no optimization on field-programmable gate array (FPGA). Scaling up the ASIC logic without FPGA-oriented designs is inefficient, while aggregating thousands of bitstreams is still challenging in the conventional SC. This research has reinvented several FPGA-efficient function generator, and binary rectified linear unit, and successfully scaled and implemented a fully parallel CNN model on Kintex7 FPGA. The proposed SC hardware only compromises 0.14% accuracy compared to binary computing on the handwriting Modified National Institute of Standards and Technology classification task and achieved at least 99.72% energy saving per image feedforward and 31x more data throughput than modern hardware. Unique to SC, early decision termination pushed the performance baseline exponentially with minimum accuracy loss, making SC CNN extremely lucrative for AI edge computing but limited to classification tasks. The SC's inherent noise heavily penalizes CNN regression performance, rendering SC unsuitable for regression tasks.
Açıklama
Anahtar Kelimeler
Circuits, Design
Kaynak
Research
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
7