Zigzag machining surface roughness modelling using evolutionary approach

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Milling is one of the common machining methods that cannot be abandoned especially for machining of metallic materials. The cutters with appropriate cutting parameters remove material from the workpiece. Surface roughness has the major influence on both obtaining dimensional accuracy and quality of the product. A number of cutter path strategies are employed to obtain the required surface quality. Zigzag machining is one of the mostly appealing cutting processes. Modeling of surface roughness with traditional methods often results in inadequate solutions and can be very costly in terms of the efforts and the time spent. In this research Genetic Programming (GP) has employed to predict a surface roughness model based on the experimental data. The model has produced an accuracy of 86.43%. In order to compare GP performance, Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) techniques were utilized. It was seen that the surface roughness model produced by GP not only outperforms but also enables to produce more explicit models than of the other techniques. The effective parameters can easily be investigated based on the appearances in the model and they can be used in prediction of surface roughness in zigzag machining process.

Açıklama

5th International Symposium on Intelligent Manufacturing Systems -- MAY, 2006 -- Sakarya Univ, Sakarya, TURKEY

Anahtar Kelimeler

Zigzag machining, Surface roughness prediction, Genetic Programming

Kaynak

Journal of Intelligent Manufacturing

WoS Q Değeri

Q3

Scopus Q Değeri

Q1

Cilt

20

Sayı

2

Künye