Uysal, GumrahMishra, Vishnu NarayanSerenbay, Sevilay Kirci2024-09-292024-09-2920181976-86052288-1433https://doi.org/10.11568/kjm.2018.26.3.483https://hdl.handle.net/20.500.14619/6385In this paper, we present some recent results on weighted pointwise convergence and the rate of pointwise convergence for the family of nonlinear double singular integral operators in the following form: T eta (f; x, y) = integral integral(RK)-K-2 eta (t - x, s - y, f (t, s)) dsdt, (x, y) is an element of R-2, eta is an element of Lambda, where the function f : R-2 -> R is Lebesgue measurable on R-2 and Lambda is a non-empty set of indices. Further, we provide an example to support these theoretical results.eninfo:eu-repo/semantics/closedAccessGeneralized Lipschitz conditionWeighted pointwise convergenceRate of convergenceSOME WEIGHTED APPROXIMATION PROPERTIES OF NONLINEAR DOUBLE INTEGRAL OPERATORSArticle10.11568/kjm.2018.26.3.483501348326WOS:000445962200009N/A