Hashimoglu, Ilyas2024-09-292024-09-2920171687-2770https://doi.org/10.1186/s13661-017-0889-3https://hdl.handle.net/20.500.14619/6546In this study, we Investigate the discreteness and finiteness of the negative spectrum of the differential operator L in the Hilbert space L-2(H, [0, infinity)), defined as L-y = -d(2)y/dx(2) + A(A+1)/x(2) y - Q(x)y, under the boundary condition y(0) = 0.& para;& para;In the case when the negative spectrum is finite, we obtain an evaluation for the sums of powers of the absolute values of negative eigenvalues. The obtained result is applied to a class of equations of mathematical physics.eninfo:eu-repo/semantics/openAccessoperator-differential equationsSchrodinger operatorspectrumeigenvaluesHilbert spaceAn evaluation of powers of the negative spectrum of Schrodinger operator equation with a singularity at zeroArticle10.1186/s13661-017-0889-32-s2.0-85032817839Q3WOS:000414389100002Q1