Guller, Ozge OzalpUysal, Gumrah2024-09-292024-09-2920201303-5991https://doi.org/10.31801/cfsuasmas.762646https://search.trdizin.gov.tr/tr/yayin/detay/440145https://hdl.handle.net/20.500.14619/7274The aim of the paper is to obtain generalized convergence results for nonlinear multidimensional integrals of the form: L-eta(omega; x) = eta(n)/Omega(n-1) integral(D) K(eta vertical bar t - x vertical bar, omega(t))dt. We will prove some theorems concerning pointwise convergence of the family L-eta(omega; x) as eta -> infinity at a fixed point x is an element of D which represents any generalized Lebesgue point of the function omega is an element of L-1 (D); where D is an open bounded subset of R-n, Moreover, we will consider the case D = R-n.eninfo:eu-repo/semantics/openAccessgeneralized Lebesgue pointTaylor expansionpointwise convergenceON CERTAIN MULTIDIMENSIONAL NONLINEAR INTEGRALSArticle10.31801/cfsuasmas.76264613672135644014569WOS:000605200100025N/A