Uysal, Gumrah2024-09-292024-09-2920190170-42141099-1476https://doi.org/10.1002/mma.5425https://hdl.handle.net/20.500.14619/3720In this paper, we give some pointwise convergence and Fatou type convergence theorems for a family of nonlinear bivariate [m(1), m(2)] - singular integral operators in the following form: T-omega([m1,) (m2]) (f; x,y) = integral integral(R2) kappa(omega) (t, s, Sigma(m1)(v1=1) Sigma(m2)(v2=1) (-1)((v1+v2)) (m(1) v(1)) (m(2) v(2)) f(x + v(1)t, y + v(2)s)) dsdt, where m(1), m(2) >= 1 are fixed natural numbers, (x, y) is an element of R-2 and omega is an element of Omega, Omega denotes a nonempty set of indices endowed with a topology. Here, {kappa(omega)}(omega is an element of Omega) denotes a family of kernel functions and f belongs to the space of Lebesgue integrable functions L (R-2). Some numerical examples and graphical illustrations supporting the results are also given.eninfo:eu-repo/semantics/closedAccess[m(1), m(2)mu]-Lebesgue pointbivariate integral operatorsFatou type convergencepointwise convergenceOn nonlinear bivariate [m1, m2]-singular integral operatorsArticle10.1002/mma.54252-s2.0-85058147851546716Q1545542WOS:000503431300034Q2