Bakici, Rukiye SumeyyeCakmak, MuhammetOner, ZulalOner, Serkan2024-09-292024-09-2920240717-95020717-9367https://hdl.handle.net/20.500.14619/876213th International Hippocrates Congress on Medical and Health Sciences -- DEC 15-16, 2023 -- TURKEYThe study aims to demonstrate the success of deep learning methods in sex prediction using hyoid bone. The images of people aged 15-94 years who underwent neck Computed Tomography (CT) were retrospectively scanned in the study. The neck CT images of the individuals were cleaned using the RadiAnt DICOM Viewer (version 2023.1) program, leaving only the hyoid bone. A total of 7 images in the anterior, posterior, superior, inferior, right, left, and right-anterior-upward directions were obtained from a patient's cut hyoid bone image. 2170 images were obtained from 310 hyoid bones of males, and 1820 images from 260 hyoid bones of females. 3990 images were completed to 5000 images by data enrichment. The dataset was divided into 80 % for training, 10 % for testing, and another 10 % for validation. It was compared with deep learning models DenseNet121, ResNet152, and VGG19. An accuracy rate of 87 % was achieved in the ResNet152 model and 80.2 % in the VGG19 model. The highest rate among the classified models was 89 % in the DenseNet121 model. This model had a specificity of 0.87, a sensitivity of 0.90, an F1 score of 0.89 in women, a specificity of 0.90, a sensitivity of 0.87, and an F1 score of 0.88 in men. It was observed that sex could be predicted from the hyoid bone using deep learning methods DenseNet121, ResNet152, and VGG19. Thus, a method that had not been tried on this bone before was used. This study also brings us one step closer to strengthening and perfecting the use of technologies, which will reduce the subjectivity of the methods and support the expert in the decision-making process of sex prediction.eninfo:eu-repo/semantics/openAccessHyoid boneDeep learningSex estimationDenseNet121ResNet152VGG19Sex Prediction of Hyoid Bone from Computed Tomography Images Using the DenseNet121 Deep Learning ModelConference Object832382642WOS:001289105800038N/A