Yazar "Ali, Ismail Hamad Guma" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A detailed analysis of a novel auto-controlled solar drying system combined with thermal energy storage concentrated solar air heater (CSAC) and concentrated photovoltaic/thermal (CPV/T)(Pergamon-Elsevier Science Ltd, 2023) Benlioglu, Muhammet Mustafa; Karaagac, Mehmet Onur; Ergun, Alper; Ceylan, Lhan; Ali, Ismail Hamad GumaIn recent years, the use of solar energy, one of the renewable energy sources, has been increasing in many areas due to its practical, environmental, and economic benefits. Besides, the drying industry is an applied area where solar energy can be implemented. Solar drying systems are used in the industry to reduce high drying costs and to obtain better quality products. In this study, a novel solar drying system was designed by combining concen-trated solar air collector (CSAC) and concentrated photovoltaic/thermal system (CPV/T). In addition, the automation system has been integrated for data acquisition from the system and humidity-temperature control of the drying chamber. The SAC's inlet air was preheated by a heat exchanger using thermal energy from the PV/T. The drying system has been designed to be more useful by using phase change material in the collector. Thus, the drying process can be performed on cloudy days and after sunset. In addition, the designed system can generate electricity from the PV module to meet the electricity requirement. The mint which grows in various regions worldwide was chosen as the product to be dried in this study. Mint was dried from the first moisture content of 3.3125 g water/g dry matter to the last moisture content of 0.0625 g water/g water/g dry matter. Besides, the average overall efficiency of the system, PV module electrical efficiency, and drying efficiency were found to be 61%, 10%, and 26%, respectively. Furthermore, the average system exergy efficiency, PV module exergy effi-ciency, and concentrated solar air heater exergy efficiency values were calculated as 20%, 16%, and 21.9%, respectively. In the experiment, the ambient average temperature was 22 degrees C, while the average drying chamber temperature was 30 degrees C. The mint drying quality efficiency was 67% on average at this drying chamber tem-perature. The energy, exergy efficiency, and sustainability index of the system were calculated as 61%, 38.8%, and 1.69, respectively. Moreover, the enviro-economic cost of the system was determined to be 0.39 (SIC)/h.Öğe A detailed analysis of CPV/T solar air heater system with thermal energy storage: A novel winter season application(Elsevier, 2021) Ceylan, Ilhan; Gurel, Ali Etem; Ergun, Alper; Ali, Ismail Hamad Guma; Agbulut, Umit; Yildiz, GokhanThe interest in solar energy is increasing day by day because it is clean and limitless. Concentrated photovoltaic and thermal systems (CPV/T) are one of the systems that use in the winter and the summer, attract great attention among solar energy systems. The main purpose of this research is to discuss the capacity of a CPV/T to simultaneously convert solar energy into electrical energy and thermal energy, especially in winter seasons. While only thermal energy is obtained in many concentrated air collectors (CAC) used in the literature, in this study, energy is stored with the help of phase change material (PCM). Ethyl alcohol and water blend were utilized as a working fluid and paraffin wax was also utilized as a PCM. In this study, system performance was handled by applying energy, exergy and environmental economic analyzes. In the results, the average solar radiation was concentrated from 536 W/m(2) to 737 W/m(2). The average overall thermal efficiency and PV module efficiency of the CPV/T were calculated as 73% and 15%, respectively. In other words, the overall system efficiency of the CPV/T was obtained as 88%. The average exergy efficiency of the CPV/T was calculated as 10%. Concerning the environmental aspect, 1.11 kg of CO2 emission per hour into the atmosphere could be prevented by using such a system. In the conclusions, the present paper has reported that the integration of a PCM and air collector into a CPV/T system provided higher energy efficiency in the winter season.Öğe A New Hybrid System Design for Thermal Energy Storage(Springer, 2020) Ceylan, Ilhan; Ali, Ismail Hamad Guma; Ergun, Alper; Gurel, Ali Etem; Acar, Bahadir; Islam, NurselDue to some serious environmental problems like global warming and greenhouse effect, studies on solar energy systems are being conducted all over the world. The studies conducted in recent years are on hybrid designs in which solar energy systems can realize both electricity and heat production at the same time. In this way, both electrical energy and heat energy can be generated from the same system In this study, the design and analysis of a concentrated solar air collector with a heat storage unit were carried out.. In the solar air collector, heat energy was depot in paraffin wax, and the electrical energy which was stored in the battery using the PV (photovoltaic) modules in the system enabled the operation of the system fan. The experiments which aimed at determining system performance were carried out in winter when the ambient temperature was low. The experiments were performed with or without a heat storage unit, and a comparative analysis was made. It was found that the temperature of the air released from the collector ranged from 15 degrees C to 40 degrees C when the exterior temperature was -5 degrees C. The average efficiency of the concentrated system without the heat storage unit was calculated as 67%. The average efficiency of the concentrated system with the heat storage unit was calculated as 96%.