Yazar "Almryad, A." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An application of artificial neural networks to assessment of the wind energy potential in Libya(Institute of Electrical and Electronics Engineers Inc., 2017) Kutucu, H.; Almryad, A.We modeled in this paper the variation of wind speed as a renewable energy in Mediterranean Sea of Libya (North of Africa) using an artificial neural network (ANN). We developed multi-layer, feed-forward, back-propagation artificial neural networks for prediction monthly mean wind speed. The monthly mean wind speed data of 25 cities in Libya were monitored during the period of six years from 2010 to 2015. Meteorological (mean temperature, relative humidity and mean sunshine duration) and geographical data (latitude, longitude and altitude) are used as the inputs and the wind speed is used as the output of the ANN. The experimental results show that the correlation coefficients between the predicted and measured wind speeds for training data sets are higher than 0.99. Therefore, the ANN model can be used with high prediction accuracy at locations where wind speed data are not measured. © 2016 IEEE.Öğe Modeling of solar energy potential in Libya using an artificial neural network model(Institute of Electrical and Electronics Engineers Inc., 2016) Kutucu, H.; Almryad, A.In this work, we develop an artificial neural network model to predict the potential of solar power in Libya. We use multilayered, feed-forward, back-propagation neural networks for the mean monthly solar radiation using the data of 25 cities spread over Libya for the period of 6 years (2010-2015). Meteorological and geographical data (longitude, latitude, and altitude, month, mean sunshine duration, mean temperature, and relative humidity) are used as input to the network. The solar radiation is in the output layer of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation for training and testing datasets are higher than 98%. Hence, the predictions from ANN model in locations where solar radiation data are not available has a high reliability. © 2016 IEEE.