Yazar "Altin Karatas, Meltem" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Experimental investigation of the effects of aging and cryogenic treatments on the mechanical properties of superelastic nickel-titanium shape-memory alloys(Sage Publications Ltd, 2022) Guven, Sedat; Altin Karatas, Meltem; Gokkaya, Hasan; Akinay, YukselIn this study, electropolishing and two different heat treatments were applied to wires made of superelastic nickel-titanium (NiTi) shape-memory alloy (SMA) and their mechanical properties and stress-induced deformations were investigated. In experimental studies, cryogenic and aging heat treatments were applied to NiTi SMA wire samples and tensile test experiments were carried out to determine the effect of the heat treatments on their mechanical properties. Following the tensile test experiments conducted at room temperature (23 degrees C), the study investigated changes in the elemental composition, fracture modes, micro cracks, and phase structures and in the mechanical properties formed in the fracture region. Intermetallic phase structures (Ti2Ni, Ni3Ti, and Ni4Ti3) were observed in the X-ray diffraction (XRD) analyses. It was concluded that the aging heat treatment had directly affected the reduction in hardness. In particular, in samples without the aging heat treatment, a stress-induced decrease in the Ni and Ti ratios and an increase in the carbon (C) ratio were observed in the chemical composition of the fracture surface of the superelastic NiTi SMA wires. It was determined that the changes in the chemical composition caused by stress had affected the mechanical properties negatively. In the fractography of the NiTi SMA wires, the samples exhibited mostly ductile fracture behavior with small dimples.Öğe Investigation of the effect of AWJ drilling parameters for delamination factor and surface roughness on GFRP composite material(Emerald Group Publishing Ltd, 2022) Altin Karatas, Meltem; Gokkaya, Hasan; Akincioglu, Sitki; Biberci, Mehmet AliPurpose The purpose of this study is to optimize processing parameters to get the smallest average surface roughness (Ra) and delamination damage (F-d) values during drilling via abrasive water jet (AWJ) of the glass fiber-reinforced polymer composite material produced at [0 degrees/90 degrees](s) fiber orientation angles. Design/methodology/approach Drilling experiments were done via AWJ with three-axis computer numerical control (CNC) control system. Machine processing parameters such as water pressure of 3,600, 4,300, 4,800 and 5,300 bar; stand-off distance of 1, 2, 3 and 4 mm; traverse rate of 750, 1,500, 2,000 and 3,000 mm/min; and hole diameters of 8, 10, 12 and 14 mm have been selected. The effects of processing parameters in drilling experiments were investigated in conformity with the Taguchi L-16 orthogonal array and the data obtained were analyzed using Minitab 17 software. The signal/noise (S/N) ratio was taken as a basis for evaluating the test results. Optimum processing conditions were determined by calculating the S/N ratio for both Ra and F-d in conformity with the smaller is better approximation. The effects of processing parameters on Ra and F-d were statistically investigated using analysis of variance, S/N ratio and Taguchi-based gray relational analysis. Ra and F-d were predicted by evaluating with the ANN model and were predicted with the least amount of error. Findings It has been determined that the most effective parameter for Ra and F-d is the water pressure and then the stand-off distance. Originality/value The novel approach is to reduce cost and the time spent by using Taguchi optimization as a result of AWJ drilling the material in this fiber orientation [0 degrees/90 degrees](s).Öğe Surface Integrity of NiTi Shape Memory Alloy in Milling with Cryogenic Heat Treated Cutting Tools under Different Cutting Conditions(Springer, 2021) Altas, Emre; Altin Karatas, Meltem; Gokkaya, Hasan; Akinay, YukselIn this study, the surface integrity of nickel-titanium (NiTi) shape memory alloys (SMAs) was investigated after face milling processes with cryogenically treated/untreated cemented carbide cutting tools at the conditions of dry cutting and minimum quantity lubrication (MQL) of cutting fluids depending on the changing cutting parameters. The integrity of surface layer of the workpiece material was evaluated according to the mean surface roughness, microstructure and hardness, as well as according to the resultant cutting force and flank wear of inserts. Cutting tests were carried out at three different cutting speeds (20, 35 and 50 m/min), feed rates (0.03, 0.07 and 0.14 mm/tooth) and a constant axial cutting depth (0.7 mm). The influence of these parameters on the surface integrity was extensively investigated. The face milling tests of NiTi SMA at optimal cutting parameters show that the surface integrity enhanced at a cutting speed of 50 m/min and feed rate of 0.03 mm/tooth using boron-added cutting fluid (EG + %5BX) with deep cryogenic heat treated (- 196 degrees C) CVD coated S40T grade cutting tool. Under MQL conditions, the minimum mean surface roughness (0.278 mu m), resultant cutting force (268.2 N) and flank wear (0.18 mm) were obtained due to the high thermal conductivity and lubrication property of EG + %5BX cutting fluid. The highest hardness values (343 HV) were measured at the zone subjected to the highest deformation, while the lowest one (316 HV) was measured at the zone at the least deformation.