Yazar "Bayraktar, Ayse" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biofortified Whey/Deglycosylated Whey and Chickpea Protein Matrices: Functional Enrichment by Black Mulberry Polyphenols(Springer, 2022) Ozleyen, Adem; Cinar, Zeynep Ozlem; Karav, Sercan; Bayraktar, Ayse; Arslan, Aysenur; Kayili, H. Mehmet; Salih, BekirMorus nigra L. (black mulberry-BM) is a promising nutraceutical fruit containing biologically active polyphenols like anthocyanins, proanthocyanidins, catechins, and stilbenes, with well-established anti-inflammatory, antidiabetic, anti-obesity, and anticancer biofunctions. However, these health-promoting properties in raw fruit are greatly masked due to the presence of soluble and insoluble carbohydrates in excess amounts restricting daily intake of the required dose to achieve targeted effects. In the current study, different protein sources (defatted whey and chickpea flours) were optimized through different conditions to capture polyphenols from BM juice while diminishing its glucose content. To optimize polyphenol-protein interactions, various pHs (3.7, 4.2, and 4.7), matrix concentrations (20, 50, and 80 g protein/L), and incubation times (5, 20, and 45 min) were tested. In the present work, optimized BM polyphenol enriched whey matrix inhibited pro-inflammatory mediators and promoted Nrf-2 dependent cytoprotective enzyme expressions in lipopolysaccharide (LPS) induced macrophages at low doses. In addition, whey proteins were also subjected to an enzymatic deglycosylation process by using recently identified EndoBI-1 enzyme for the specific cleavage of N-glycan core in all glycan types including high mannoses, hybrids as well as complex glycans found on defatted whey proteins. After this process, the polyphenol sorption capacity of deglycosylated whey proteins was found to be significantly higher (37%) than the capacity of non-treated normal whey protein under optimized conditions. In conclusion, deglycosylation of protein matrices could be a novel strategy for efficient sorption/concentration of polyphenols from fruits and vegetables, however, more detailed studies are needed to understand this effect.Öğe Recombinant Production of Bifidobacterial Endoglycosidases for N-glycan Release(Journal Of Visualized Experiments, 2021) Sucu, Berfin; Bayraktar, Ayse; Duman, Hatice; Arslan, Aysenur; Kaplan, Merve; Karyelioglu, Melda; Ntelitze, EdaProtein glycosylation is a diverse and common post-translational modification that has been associated with many important roles such as protein function, including protein folding, stability, enzymatic protection, and biological recognition. N-glycans attached to glycoproteins (such as lactoferrin, lactadherin, and immunoglobulins) cannot be digested by the host and reach the large intestine, where they are consumed by certain beneficial microbes. Therefore, they are considered nextgeneration prebiotic compounds that can selectively stimulate the gut microbiome's beneficial microorganisms. However, the isolation of these new classes of prebiotics requires novel enzymes. Here, we describe the recombinant production of novel glycosidases from different Bifidobacteria strains (isolated from infants, rabbits, chicken, and bumblebee) for improved N-glycan isolation from glycoproteins. The method presented in this study includes the following steps: molecular cloning of Bifidobacterial genes by an in vivo recombinational cloning strategy, control of transformation success, protein induction, and protein purification.